
Further Collapses in TFNP

Mika Göös Alexandros Hollender Siddhartha Jain Gilbert Maystre
EPFL University of Oxford EPFL EPFL

William Pires Robert Robere Ran Tao
McGill University McGill University McGill University

February 15, 2022

Abstract. We show EOPL = PLS ∩ PPAD. Here the class EOPL consists of all total search
problems that reduce to the End-of-Potential-Line problem, which was introduced in the
works by Hubáček and Yogev (SICOMP 2020) and Fearnley et al. (JCSS 2020). In particular, our
result yields a new simpler proof of the breakthrough collapse CLS = PLS ∩ PPAD by Fearnley
et al. (STOC 2021). We also prove a companion result SOPL = PLS ∩ PPADS, where SOPL is
the class associated with the Sink-of-Potential-Line problem.

1 Introduction

Our main results are two collapses of total NP search problem (TFNP) classes.

Theorem 1. EOPL = PLS ∩ PPAD.

Theorem 2. SOPL = PLS ∩ PPADS.

Let us explain what these collapses mean and how they fit into the diverse complexity zoo of
search problem classes, as summarised in Figure 1. The classes PLS, PPAD, PPADS are classical.
They were all introduced in the original pioneering works [MP91, JPY88, Pap94] that founded the
theory of TFNP. To define these classes, it is most convenient to describe a canonical complete
problem for each class. (See Section 2 for more formal definitions).

PLS: Sink-of-DAG (SoD). We are given implicit access to a directed graph G = (V,E) that is
acyclic, has out-degree at most 1, and has exponentially many nodes, |V | = 2n. The graph is
described by a poly(n)-sized circuit: for any node v ∈ V , we can compute its unique successor
(out-neighbour) u, if any, and also an integer potential, which is guaranteed to increase along
the direction of the edge (v, u). The goal is to find a sink node (out-degree 0).

PPAD: End-of-Line (EoL). We are given access to a directed graph G = (V,E) that has in/out-
degree at most 1, and has |V | = 2n nodes. The graph is described by a poly(n)-sized circuit:
for any v ∈ V , we can compute its successor u and predecessor u′, if any. We are guaranteed
that if v’s successor is u, then u’s predecessor is v, and vice versa. In addition, we are given
the name of a distinguished source node v∗ (in-degree 0, out-degree 1). The goal is to find any
source or sink other than v∗.

PPADS: Sink-of-Line (SoL). Same as EoL except the goal is to find a sink.

1

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Report No. 18 (2022)

FP UEOPL EOPL

SOPL

CLS = PLS ∩ PPAD

PLS ∩ PPADS

PPAD

PPADS

PLS

PPP

PPA

TFNP

Theorem 1

Theorem 2

Figure 1: Class diagram for TFNP with new inclusions highlighted. An arrow A → B denotes A ⊆ B.

Modern classes. Research in the past decade has studied several relatively weak classes of search
problems that lie below PLS and PPAD. The intersection class PLS ∩ PPAD is, of course, one
immediate such example. This class, however, feels quite artificial at first glance. It does not seem
to admit any “natural” complete problem. Motivated by this, Daskalakis and Papadimitriou [DP11]
introduced the continuous local search class CLS ⊆ PLS∩PPAD, which, by its very definition, admits
natural complete problems related to the local optimisation of continuous functions over the real
numbers (computed by arithmetic circuits). The class CLS is exceptional in that it captures the
complexity of real continuous optimisation problems, while most classical search problem classes are
designed to capture combinatorial principles, often phrased in terms of directed graphs.

In order to understand CLS from a more combinatorial perspective, Hubáček and Yogev [HY20]
and Fearnley, Gordon, Mehta, and Savani [FGMS20] introduced the class EOPL ⊆ CLS, whose
complete problem is the namesake End-of-Potential-Line (EoPL) problem, defined below.
(The paper [HY20] initially defined a more restricted “metered” version of this problem, but we use
the formulation from [FGMS20], which they prove is equivalent to the one from [HY20].) It is also
natural to define a sink-only version of EOPL as suggested by [GKRS18].

EOPL: End-of-Potential-Line (EoPL). We are given access to a directed graph G = (V,E)
that is acyclic, has in/out-degree at most 1, and has |V | = 2n nodes; that is, G is a disjoint
union of directed paths. The graph is described by a poly(n)-sized circuit: for any node we
can compute its successor and predecessor, if any, and also an integer potential, which is
guaranteed to increase along the directed edges. In addition, we are given the name of a
distinguished source v∗. The goal is to find any source or sink other than v∗.

SOPL: Sink-of-Potential-Line (SoPL). Same as EoPL except the goal is to find a sink.

It is comforting to know that the definition of EOPL is robust: Ishizuka [Ish21] showed that a version
of EoPL that guarantees poly(n) many distinguished sources is still equivalent (via polynomial-time
reductions) to the above standard version with a single source.

Fearnley et al. [FGMS20] also defined a more restricted subclass UEOPL ⊆ EOPL where the
complete problem is Unique-EoPL, a version of EoPL with a unique directed path. They showed
that this class contains many important search problems with unique witnesses, such as unique
sink orientations, linear complementary problems, Arrival [DGK+17, GHH+18]. Other problems
known to lie in UEOPL are a restricted version of the Ham-Sandwich problem [CCM20] and a pizza
cutting problem [Sch21]. Fearnley et al. [FGMS20] conjecture that UEOPL ̸= EOPL.

2

A surprising collapse. In a breakthrough, Fearnley, Goldberg, Hollender, and Savani [FGHS21]
showed that, despite appearances to the contrary, CLS = PLS ∩ PPAD. This goes against the
conjecture of Daskalakis and Papadimitriou [DP11] that the classes are distinct, a belief which
underlied much of their original motivation for introducing CLS. The nontrivial direction of the
collapse is a reduction from a canonical complete problem SoD ⋏ EoL ∈ PLS ∩ PPAD (defined
below) to a problem KKT ∈ CLS, which involves computing a Karush–Kuhn–Tucker point of a
smooth function. We may summarise the main technical result of Fearnley et al. [FGHS21] as

SoD⋏EoL ≤ KKT which implies PLS ∩ PPAD ⊆ CLS. (1)

Here we use ≤ to denote a polynomial-time reduction between search problems. The operator ⋏
produces the meet of two search problems: the input to problem A⋏B is a pair (x, y) where x is
an instance of A and y is an instance of B and the goal is to output either a solution to x or to y.
Then SoD⋏EoL is the canonical (albeit “unnatural”) complete problem for PLS ∩ PPAD [DP11].

Our new collapses. Our main results, Theorems 1 and 2, follow from two new reductions, the
first one of which strengthens the reduction (1) from [FGHS21]:

SoD⋏EoL ≤ EoPL which implies PLS ∩ PPAD ⊆ EOPL, (2)

SoD⋏ SoL ≤ SoPL which implies PLS ∩ PPADS ⊆ SOPL. (3)

These reductions are between purely combinatorially defined search problems. In the case of (2), this
bypasses the continuous middle-man of CLS and makes our reduction relatively simple to describe.
In particular, we get a new simpler proof of the breakthrough collapse of [FGHS21] by combining (2)
with the inclusion EOPL ⊆ CLS proved by [HY20]. Furthermore, the new collapse implies that
problems related to Tarski’s fixpoint theorem [EPRY20] and to a colourful version of Carathéodory’s
theorem [MMSS17] lie in EOPL.

A further surprise? Given that the collapse CLS = PLS ∩ PPAD was considered extremely
surprising by most people, how surprised should we be by the further collapse

EOPL = CLS = PLS ∩ PPAD ?

Fearnley et al. [FGMS20] wrote regarding EOPL vs. CLS that “we actually think it could go either
way.” In the wake of their breakthrough, the paper [FGHS21] explicitly conjectured EOPL ̸= CLS.

For the authors of the present paper, the new collapse did come as an utter shock. When we
began work on this project, our intuitions convinced us that, again, EOPL ≠ CLS, a conjecture which
had just found its way to the second author’s PhD thesis [Hol21, Chapter 12]. In our convictions,
we set out to prove this separation in the black-box model where, instead of circuits, the directed
graphs are described by black-box oracles. We tried in vain for nine months. The upshot is that
Theorems 1 and 2 now crush this possibility, as they hold even in the black-box model.

2 A Unified View: The Grid Problem

In this section we formally define all the problems of interest. We take the unusual approach of
defining a single problem (which we call the Grid problem) with various parameters which can be
tweaked to obtain all of the problems we study in this paper. This mainly serves two purposes.
First of all, it is particularly convenient for presenting our reductions, since it allows us to combine
instances from different problems more easily. The second reason is that we believe that this unified
view of seemingly very different problems is of independent interest.

3

The Grid problem. For n ∈ N, let [n] := {1, 2, . . . , n}. We define a general problem on a grid
[N]× [M], where N and M should be thought of as being (potentially) exponentially large. The
problem involves A paths starting from column 1 ([N]× {1}) and moving from column i ([N]× {i})
to column i+ 1 ([N]× {i+ 1}). On the last column ([N]× {M}) there are at most B valid ends
of paths. If paths are not allowed to merge, then by the Pigeonhole Principle A > B ensures the
existence of a solution, i.e., a path that does not end at a valid position on the last column. If
paths are allowed to merge, then a solution is guaranteed to exist as long as B = 0. To make things
more precise, the paths start from nodes 1 to A in the first column (i.e., [A]× {1}), and the valid
termination points are nodes 1 to B in the last column (i.e., [B]× {M}).

In more detail, we are given a boolean circuit S : [N] × [M] → [N] ∪ {null}, the successor
circuit, which allows us to efficiently compute the outgoing edge at a node. If S(x, y) = null,
then (x, y) does not have an outgoing edge. Otherwise, there is an outgoing edge from (x, y) to
(S(x, y), y + 1). The problem also has two parameters which are used to tweak the definition: r
(reversible) and b (bijective). Intuitively, when r = 1, we are also given access to a predecessor
circuit P : [N]× [M] → [N] ∪ {null}, which, analogously to S, allows us to efficiently compute the
incoming edge at a node. In particular, when r = 1, two paths cannot merge. If, on top of that,
b = 1, then we do not allow any new paths apart from the original A paths, and we also require
that all B valid ends of paths are actually reached by a path. The combination r = 0, b = 1 is not
allowed. The formal definition is as follows.

Definition 1. In the Grid problem, given N,M,A,B with N ≥ A > B ≥ 0 and M ≥ 2, boolean
circuits S, P : [N]× [M] → [N] ∪ {null}, and bits r, b ∈ {0, 1}, output any of the following:

1. x ∈ [A] such that S(x, 1) = null, (missing pigeon/source)

2. x ∈ [N] such that S(x,M − 1) > B, (invalid hole/sink)

3. x ∈ [N] and y ∈ [M − 2] such that
S(x, y) ̸= null and S(S(x, y), y + 1) = null, (pigeon interception/sink)

4. If r = 1 and b = 1:

(a) (x, y) ∈ ([N]× [M − 1]) \ ([A]× {1}) such that
S(x, y) ̸= null and P (x, y) = null, or (pigeon genesis/source)

(b) x ∈ [B] such that P (x,M) = null. (empty hole/sink)

We also enforce the following two conditions syntactically:

• If r = 0, then b = 0 and B = 0.

• If r = 1, then the successor and predecessor circuits are consistent, which can be enforced as
follows. The circuit S is replaced by the circuit S, which on input (x, y) computes x′ := S(x, y)
and outputs x′, unless (x′, y + 1) /∈ [N] × [M] or P (x′, y + 1) ̸= x, in which case it outputs
null. Similarly, the circuit P is replaced by the circuit P , which on input (x, y) computes
x′ := P (x, y) and outputs x′, unless (x′, y − 1) /∈ [N]× [M] or S(x′, y − 1) ̸= x, in which case
it outputs null.

4

(a) Sink-of-DAG (SoD) (b) inj-PHP (c) Sink-of-Potential-Line (SoPL)

Figure 2: Examples of Grid problems. Square nodes are valid starts of paths (top-most A nodes in the
first column) and diamonds are valid ends of paths (top-most B nodes in the last column). Solutions are
drawn in red. However, for visual clarity we highlight the actual sinks rather than the sink predecessors as
in Definition 1. Nodes with a null successor are drawn without an outgoing pointer. (2a) has parameters
(r = 0, b = 0, A = 1, B = 0) and defines an SoD instance. Only the successor circuit is drawn, as the
predecessor circuit is not used by SoD. In particular, directed paths can merge, such as for node (2, 3).
(2b) has parameters (r = 1, b = 0, A = N,B = N − 1) and defines an inj-PHP instance. The diamond
with a green circle would be a solution of bij-PHP (with b = 1) but is not a solution of inj-PHP. (2c) has
parameters (r = 1, b = 0, A = 1, B = 0) and defines an SoPL instance. Sources with green circles would be
solutions of an EoPL instance (with b = 1).

Canonical complete problems as special cases of Grid. By imposing various restrictions
on the Grid problem, we obtain the following canonical complete problems; see Figure 2. (Here
inj-PHP/bij-PHP stand for Injective/Bijective Pigeonhole Principle.)

• SoD: r = 0, b = 0, A = 1, B = 0. (PLS-complete)

• SoPL: r = 1, b = 0, A = 1, B = 0. (SOPL-complete)

• EoPL: r = 1, b = 1, A = 1, B = 0. (EOPL-complete)

• inj-PHP: r = 1, b = 0,M = 2, N = A = B + 1. (PPADS-complete)

• bij-PHP: r = 1, b = 1,M = 2, N = A = B + 1. (PPAD-complete)

Remark 1. Here we have slightly abused notation by calling these problems SoD, SoPL and EoPL
even though their original definitions (in [JPY88, GKRS18, FGMS20], respectively) do not use a
grid structure, and instead come with an additional circuit computing the potential of any node. It
is not too hard to see that these grid-versions of the problems are indeed polynomial-time equivalent
to the original versions. The main idea is that the grid implicitly provides a potential value for
every node (x, y), namely its column number y. Thus, given such a problem on a grid, it is easy to
define a potential circuit by simply assigning the potential value y to any node (x, y) of the grid.

The other direction is slightly more involved. Consider an instance of one of the original problems
with vertex set V = [N] and potential values lying in P = [M]. Without loss of generality, we
can assume that along any edge the potential increases by exactly one. Indeed, this was proved
explicitly by [FGMS20] when they reduced EoPL to EoML, and the same idea applies to SoD
and SoPL as well. The reduction to the grid-version of the problem is then obtained by identifying
a vertex x ∈ V that has potential p ∈ P with the node (x, p) on the [N]× [M] grid.

5

The following is essentially folklore (see, e.g., [BM04]), so we only provide a brief proof sketch.

Lemma 1. inj-PHP and bij-PHP are respectively PPADS- and PPAD-complete.

Proof Sketch. To see that bij-PHP lies in PPAD, we can reduce to EoL (see, e.g., [DGP09] for a
formal definition) with vertex set V = [N] × [2] as follows: add a directed edge from node (x, 2)
to node (x, 1) for all x ≤ A − 1. By taking (x,A) as the distinguished source node, this yields
an EoL instance with the same solutions as the original bij-PHP instance. On the other hand,
given an instance of EoL with vertex set V = [N] and distinguished source node N (without loss of
generality), we construct an instance of bij-PHP on [N]× [2] as follows: for any isolated vertex
x ∈ [N], create an edge from (x, 1) to (x, 2); for any edge from x to y, create an edge from (x, 1) to
(y, 2). This simple reduction proves the PPAD-hardness of bij-PHP. The exact same constructions
can be used to prove that inj-PHP is PPADS-complete, by reducing to and from the SoL problem
(formally defined by Beame et al. [BCE+98], who call it Sink).

In Section 6, we briefly explain how an extended version of the Grid problem can be used to
also capture PPP, the class defined by Papadimitriou [Pap94] to capture a version of the Pigeonhole
Principle where edges can only be computed efficiently in the forward direction.

3 Path-Pigeonhole Problems

In this section we use the Grid problem to define some interesting extensions of the two pigeonhole
problems. Namely, we consider the case where, instead of just two columns, there are many columns.
In a certain sense, this corresponds to allowing the pigeons to travel for a long time before reaching
a hole. In particular, we can no longer efficiently tell in which hole a given pigeon will land. This
allows us to show that the problems remain hard even when there are significantly more pigeons
than holes. This fact, stated in Lemma 2 below, will be crucial to obtain our main result later.

Let f : N → N be a polynomial-time computable function with f(t) > t. In this section, we
consider the following restrictions of Grid:

• Path-inj-PHPf : r = 1, b = 0, A = f(B).

• Path-bij-PHPf : r = 1, b = 1, A = f(B).

The following lemma is an important ingredient for the proof of our main result.

Lemma 2. Let f(t) > t be polynomial-time computable. There exists a reduction inj-PHP ≤
Path-inj-PHPf that maps an instance with parameters (A,B) = (T + 1, T) to an instance with
parameters (A,B) = (f(T), T) and (N,M) = (f(T), f(T)− T + 1).

Proof. The idea behind this reduction is very simple. Intuitively, we have the ability to merge
T + 1 paths into T paths, such that finding a “mistake”, i.e., a path that stops, requires solving
the inj-PHP instance. In particular, if we start with some N paths, where N ≥ T + 1, then we
can merge those paths into N − 1 paths by merging the first T + 1 paths into T paths, and leaving
the remaining N − (T + 1) paths unchanged. Applying this idea repeatedly, we can merge f(T)
paths into just T paths in f(T) − T steps. This results in an instance of Path-inj-PHPf with
f(T)− T + 1 columns, where every solution yields a solution to the inj-PHP instance; see Figure 3.
More formally, let (S, P) denote an instance of inj-PHP with parameters A = T + 1 and B = T .
Without loss of generality, we can assume that no pigeon goes to the invalid hole, i.e., S(x, 1) ̸= T +1

6

Path-inj-PHPf

inj-PHP

≤

Figure 3: The reduction inj-PHP ≤ Path-inj-PHPf in Lemma 2. We build a Path-inj-PHPf instance
by chaining several identical inj-PHP instances side-by-side. Note that a solution to the Path-inj-PHPf

instance can be directly mapped to one for the original inj-PHP instance.

for all x ∈ [T +1]. We construct an instance (Ŝ, P̂) of Path-inj-PHPf on the [N]× [M] grid, where

N = f(T), M = f(T)− T + 1, A = f(T) and B = T . The successor circuit Ŝ is defined as follows:

Ŝ(x, y) :=

S(x, 1) if x ∈ [T + 1] and y ∈ [M − 1],

x− 1 if T + 2 ≤ x ≤ f(T)− y + 1 and y ∈ [M − 1],

null otherwise,

and the predecessor circuit P̂ is then defined accordingly to be consistent with Ŝ. Both circuits can
be constructed in polynomial time, given S and P , and given that f can be computed in polynomial
time. It is straightforward to check that any solution of the constructed instance yields a solution
to the original inj-PHP instance.

The same proof idea also yields that bij-PHP ≤ Path-bij-PHPf .

4 SOPL = PLS ∩ PPADS

In this section, we prove Theorem 2, namely SOPL = PLS ∩ PPADS. To prove this we provide a
reduction from a PLS ∩ PPADS-complete problem to the canonical SOPL-complete problem.

Lemma 3. SoD⋏ inj-PHP ≤ SoPL.

Proof Sketch. There are two obstacles to a direct reduction from SoD to SoPL: (i) we can only
compute edges in the forward direction (i.e., we only have access to a successor circuit), and (ii)
multiple edges can point to the same node.

To resolve the first issue, we modify the original [N] × [M] grid by taking N copies of each
node. This ensures that there is a separate copy of each node v for each potential predecessor on
the previous column. As a result, edges from different predecessor nodes will point to different
copies of v. This means that predecessor nodes can now also be computed efficiently. However,
the second issue remains: since we have made N copies of each node, there are also N copies of
each predecessor node, and thus N edges coming from that predecessor node that somehow have to
merge into the corresponding copy of v.

7

SoD

Path-inj-PHP

SoPL

⋏ ≤

Figure 4: The reduction SoD ⋏ Path-inj-PHP ≤ SoPL in the proof of Lemma 3. Given instances of
SoD and Path-inj-PHP, we build an SoPL instance whose solutions can be traced back to solutions of
SoD⋏ Path-inj-PHP. To overcome the issue of merging paths in SoD, the nodes of the SoD instance are
replaced with a copy of a Path-inj-PHP gadget (in blue). Those gadgets are ultimately built out of the
initial inj-PHP instance (not shown) using Lemma 2.

To overcome the second obstacle, we make use of the following high-level idea: use the inj-PHP
instance to “hide” the fact that multiple edges can point to a single node. Unfortunately, we cannot
use the inj-PHP instance to hide the fact that N paths merge into a single node. But, if we take N2

copies of each original node, instead of just N , then we have N2 paths and N target nodes. By
Lemma 2, the inj-PHP instance can be turned into a Path-inj-PHPf instance that hides the fact
that N2 paths merge into N paths. Thus, we replace each original node v of the SoD instance
by a gadget that has N2 nodes in the left-most column and N nodes in the right-most column,
and such that finding the sink of a path inside the gadget requires solving the inj-PHP instance.
Importantly, we only construct the paths inside this gadget when the original node v has a successor
in the SoD instance. This ensures that when v is an isolated node, the corresponding gadget does
not contain any edges. Figure 4 illustrates the construction.

Note that although we might have added many new sources to the graph (which are irrelevant
for SoPL), it remains the case that from any sink of the new graph, we can extract either a solution
to SoD or to inj-PHP.

In the final construction, edges can indeed be computed in both directions efficiently. Namely,
given any node, we can determine in polynomial time if it has an incoming and/or outgoing edge,
as well as the identity of the potential predecessor and successor nodes. Here, we crucially use the
fact that edges can be computed efficiently in both directions in the inj-PHP instance.

Proof. Let S be an instance of SoD on the grid [N] × [M]. We are also given an instance of
inj-PHP and without loss of generality we can assume that it has parameters (A,B) = (N + 1, N).
By Lemma 2, we can reduce this inj-PHP instance to a Path-inj-PHPt2 instance with parameters

8

(A,B) = (N2, N). Without loss of generality, we can assume that this Path-inj-PHPt2 instance
(S′, P ′) is defined on the grid [N2]× [M] (by padding the SoD or Path-inj-PHPt2 instance with
additional columns, if needed). This is not important for the reduction, but will be convenient.

We will take N2 copies of each node in the original SoD instance, and make M copies of each
column. As a result, our SoPL instance will be defined on the [N3]× [M2] grid. It will be convenient
to use some special notation to refer to points in this grid. For α ∈ [N2] and x ∈ [N], we use the
notation (α, x) to denote the row α+(x− 1) ·N2 ∈ [N3]. This corresponds to indexing the αth copy
of row x of the original instance. We also introduce some additional notation to index these [N2]
copies: for i, j ∈ [N], we let [i, j] := i+ (j − 1) ·N ∈ [N2]. Thus, ([i, j], x) denotes the [i, j]th copy
of row x. The “[i, j]” notation essentially subdivides [N2] into N blocks containing N values each,
which will be useful for routing incoming edges to the correct copy of a node. We introduce similar
notation to denote the M copies of a column y ∈ [M]. Putting everything together, the notation
(α, x; k, y) ∈ [N2]× [N]× [M]× [M] denotes the node (α+(x−1) ·N2, k+(y−1) ·M) ∈ [N3]× [M2].
In particular, the notation ([i, j], x; k, y) is well-defined.

The circuits Ŝ, P̂ of the SoPL instance on [N3]× [M2] are defined as follows:

Ŝ([i, j], x; k, y) :=

([i, x], S(x, y)) if k = M and j = 1,

(S′([i, j], k), x) if k < M and S(x, y) ̸= null,

null otherwise

P̂ ([i, j], x; k, y) :=

([i, 1], j) if k = 1 and y > 1 and S(j, y − 1) = x,

(P ′([i, j], k), x) if k > 1 and S(x, y) ̸= null,

null otherwise

where (α, z) ∈ [N2] × [N] is interpreted as an element in [N3] as above, and where we use the
convention (∗, null) = (null, ∗) = null. Using the fact that S′ and P ′ are consistent, it can be checked
that Ŝ and P̂ are also consistent.

In order to argue about the correctness of the reduction, consider any sink ([i, j], x; k, y) of the
SoPL instance. If 2 ≤ k ≤ M − 1, then it must be that ([i, j], k) is a sink of the Path-inj-PHPt2

instance (S′, P ′). If k = M and j = 1, then ([i, j], x; k, y) cannot be a sink, since P̂ ([i, j], x; k, y) ̸= null
implies that S(x, y) ̸= null, and thus Ŝ([i, j], x; k, y) ̸= null. If k = M and j > 1, then ([i, j], k)
is an invalid sink on the last column of the Path-inj-PHPt2 instance, and so in particular a
solution. If k = 1 and S(x, y) ̸= null, then ([i, j], k) is a missing source on the first column of the
Path-inj-PHPt2 instance, and so again a solution. Finally, if k = 1 and S(x, y) = null, then it must
be that S(j, y − 1) = x and thus (x, y) is a sink of the original SoD instance, and this is witnessed
by the node (j, y − 1).

5 EOPL = PLS ∩ PPAD

In this section, we prove Theorem 1, namely EOPL = PLS ∩ PPAD. The equality SOPL =
PLS∩PPADS (Theorem 2) proved in the previous section, together with the fact that PPAD ⊆ PPADS,
immediately imply that

SOPL ∩ PPAD = PLS ∩ PPAD.

As a result, in order to prove Theorem 1, it suffices to give a reduction from an SOPL∩PPAD-complete
problem to an EOPL-complete problem:

Lemma 4. SoPL⋏ bij-PHP ≤ EoPL.

9

v0 v0

ureversed SoPL original SoPL

Figure 5: A naive attempt at a reduction SoPL ≤ EoPL. Although most solutions arise from the sinks of
the original SoPL instance, a spurious solution is introduced at v̄0, which does not correspond to any sink of
the original instance.

Proof Sketch. A very natural attempt at a reduction from SoPL to EoPL is to try to remove all
undistinguished sources, i.e., all sources except the trivial one. Then, clearly, any EoPL-solution
would have to be a sink, and thus also a solution to SoPL.

There is a simple trick that almost achieves this. First, make a reversed copy of the SoPL
instance, i.e., reverse the direction of all edges, and the ordering of the potential. Note that sources
of the original instance have now become sinks in the reversed copy, and vice versa. Then, for each
source node v of the original graph, add an edge pointing from its copy v (which is a sink) to v.

The only problem with this reduction is that we have eliminated all sources of the original graph,
including the distinguished one. In particular, the distinguished source v0 of the original instance
is no longer a source, since there is an edge from its copy v0 to v0. As a result, the reduction
fails, because the instance of EoPL we have constructed does not have a distinguished source.
Furthermore, we cannot hope to turn one of the new sources into a distinguished source, since any
such source yields a solution to the original instance (where it is a sink).

In order to address this issue, we add a new node u and select it as our new distinguished source.
Clearly, u is a solution of the instance, since it is a distinguished source that is not actually a source,
but just an isolated node. Now, imagine that we remove the edge (v0, v0) and instead introduce
an edge (u, v0); see Figure 5. Then, u is no longer a solution, but v0 becomes a sink, and thus a
solution, instead. In other words, the reduction can pick whether it wants u or v0 to be a solution
by changing this edge. Of course, in both cases, the resulting instance is very easy to solve, but this
minor observation already provides the idea for the next step.

Take k copies of the instance we have constructed (before adding u). There are now k copies

v
(1)
0 , . . . , v

(k)
0 of the original distinguished source, and k copies of the reverse copy v

(1)
0 , . . . , v

(k)
0 .

Remove the edges (v
(i)
0 , v

(i)
0) for i = 1, . . . , k. If we now introduce the new distinguished source u, we

have k+1 nodes that “need” an outgoing edge in order to not be solutions (namely, u, v
(1)
0 , . . . , v

(k)
0)

and k nodes that “need” an incoming edge (namely, v
(1)
0 , . . . , v

(k)
0). Clearly, no matter how we

introduce edges here, one of u, v
(1)
0 , . . . , v

(k)
0 will not have an outgoing edge and will be a solution.

However, we can use a bij-PHP instance to make it hard to find such a solution. Let K denote
the parameter of the bij-PHP instance, i.e., K + 1 points are mapped to K points. Then, we let

k := K and add edges between u, v
(1)
0 , . . . , v

(k)
0 and v

(1)
0 , . . . , v

(k)
0 according to the bij-PHP instance.

An example of the construction is depicted in Figure 6.
Now, it is easy to check that any undistinguished source or any sink of the resulting graph must

yield a solution to the bij-PHP instance or a solution of the SoPL instance. In particular, if u is
not a source, then this yields a solution to bij-PHP.

10

SoPL

bij-PHP

EoPL

u

⋏
≤

Figure 6: The reduction SoPL⋏bij-PHP ≤ EoPL in Lemma 4. The bij-PHP instance (in pink) connects
the newly introduced source u together with the distinguished sources and sinks of the copied SoPL instances.
Non-distinguished sources and sinks are connected with blue edges. The node circled in green corresponds to
a solution of the bij-PHP instance.

Proof. Let (S, P) be an instance of SoPL on the grid [N]× [M]. Without loss of generality, we can
assume that all sources occur on the first column, i.e., for any source (x, y) ∈ [N]× [M] it holds
that y = 1. Indeed, by appropriately increasing N , for each source (x, y) we can add a path that
starts on the first column and ends at (x, y), thus effectively “transferring” the source to the first
column. Let (S′, P ′) be an instance of bij-PHP on the grid [K + 1]× [2] that maps K + 1 pigeons
to K holes.

We take K copies of the SoPL instance and K copies of the reversed SoPL instance, all together
in a single grid. This grid will be of the form [KN]× [2M]. For clarity, we will use the notation
(i, x; y) ∈ [K]× [N]× [2M] to denote the element (x+ (i− 1) ·N, y) ∈ [KN]× [2M]. The ith copy
of the instance will be embedded in {i} × [N]× ([2M] \ [M]), while the ith reversed copy will be in
{i} × [N]× [M]. Formally, we define new successor and predecessor circuits Ŝ, P̂ on [KN]× [2M]
as follows:

Ŝ(i, x; y) :=

{
(i, P (x,M − y + 1)) if y ≤ M,

(i, S(x, y −M)) if y ≥ M + 1

P̂ (i, x; y) :=

{
(i, S(x,M − y + 1)) if y ≤ M,

(i, P (x, y −M)) if y ≥ M + 1

where (i, z) ∈ [K] × [N] is interpreted as an element in [KN], and where we use the convention
(i, null) = null.

Since S and P are consistent, Ŝ and P̂ are also consistent. Note that there are currently no
edges between column M and column M + 1. In the second step of the reduction we add edges
between these two columns as follows. For every i ∈ [K] and x ∈ [N] \ {1}, if (i, x;M + 1) is a

11

source, then we add an edge from (i, x;M) to (i, x;M + 1). Note that in that case (i, x;M + 1)
was a sink. The case where x = 1 is handled separately, because it corresponds to nodes that are
copies of the distinguished source of the original SoPL instance. For any i ∈ [K] and for x = 1, if
S′(i, 1) = j ̸= null, we add an edge from (i, 1;M) to (j, 1;M + 1). Note that here we also use P ′

(which is assumed to be consistent with S′) to implement this edge in (Ŝ, P̂).
Finally, we introduce a new special node u on column M which will act as our new distinguished

source. If S′(K + 1, 1) = j ≠ null, then we add an edge from u to (j, 1;M + 1). By extending the
grid to be [KN + 1] × [2M], by renaming nodes and by “transferring” the source u to the first
column as before, we can ensure that the distinguished source is (1, 1).

It is easy to check that the new circuits Ŝ, P̂ can be constructed in polynomial time. For the
correctness of the reduction, note that any source or sink that occurs on columns [2M] \ {M,M +1}
must correspond to a sink of the original SoPL instance. On the other hand, any source or sink
that occurs on column M or M +1 must correspond to a solution of the bij-PHP instance (namely,
a pigeon without a hole, or a hole without a pigeon). This completes the reduction.

6 Discussion

As mentioned in the introduction, it remains open whether UEOPL
?
= EOPL. Separating the two

classes in the black-box model would be an important first step towards pinning down the complexity
of the various natural problems contained in UEOPL, since it would provide strong evidence that
these problems are unlikely to be complete for PLS ∩ PPAD.

The techniques developed in this paper do not seem to yield any other major class collapse.
Indeed, our reductions are all black-box, and the main classes are known to be distinct in that
model [BCE+98, Mor01, BM04]. A notable exception is the question of whether PLS is a subset
of PPP, or even of PPADS. This remains open even in the black-box model.

In the remainder of this section we briefly present some observations about the path pigeonhole
problems, as well as a further consequence of our reduction techniques: a version of SoD where
paths are not allowed to merge turns out to be PLS ∩ PPP-complete.

Path-Pigeonhole problems. Lemma 2 in particular establishes that Path-inj-PHPf is PPADS-
hard. Membership in PPADS can be shown by reducing to inj-PHP using a construction similar to
the reduction from EoL to bij-PHP in the proof of Lemma 1.

The statement of Lemma 2 also holds for bij-PHP ≤ Path-bij-PHPf , and the proof is
essentially the same. This shows that Path-bij-PHPf is PPAD-hard. However, it is unclear whether
Path-bij-PHPf lies in PPAD. Indeed, using the same idea as for Path-inj-PHPf ≤ inj-PHP
yields an instance with A ≫ B, and we cannot increase B artificially here (whereas this is possible in
inj-PHP). Another way to state this is to say that we can reduce Path-bij-PHPf to an instance
of EoL that has many distinguished source nodes, instead of just one. It is known that EoL with a
polynomial number of distinguished sources remains PPAD-complete [GH21], but in general we will
obtain an exponential number of such sources here.

Extending the Grid problem to capture PPP. The canonical PPP-complete problem is
Pigeon-Circuit [Pap94]: given a circuit mapping N pigeons to N − 1 holes, find a collision, i.e.,
two pigeons that are mapped to the same hole. Importantly, unlike in inj-PHP or bij-PHP, we
are not given a circuit to compute the mapping in the other direction, i.e., from holes to pigeons.
In order to capture this problem, we extend the definition of Grid by introducing an additional
parameter bit c ∈ {0, 1}, which stands for collision. We also introduce a new solution type:

12

5. If r = 0 and c = 1: x1, x2 ∈ [N] and y ∈ [M − 1] such that
x1 ̸= x2 and S(x1, y) = S(x2, y) ̸= null, (pigeon collision/merging)

Furthermore, the syntactic condition “If r = 0, then b = 0 and B = 0” is replaced by the condition:

• If r = 0, then b = 0. If r = 0 and c = 0, then B = 0.

The PPP-complete problem Pigeon-Circuit is then obtained by setting r = 0, c = 1,M = 2, N =
A = B + 1. In fact, Grid remains in PPP even if we just set r = 0, c = 1 and leave the other
parameters unfixed. This can be shown by using a construction similar to the reduction from EoL
to bij-PHP in the proof of Lemma 1.

SoD without merging. What is the complexity of SoD if paths are not allowed to merge? In
other words, what is the complexity of the Grid problem with parameters r = 0, c = 1, A = 1, B = 0?
Clearly, this restricted version still lies in PLS, and by the previous paragraph it also lies in PPP.
Using the ideas developed in this paper, it can be shown that the problem is in fact PLS ∩ PPP-
complete. To see this, note that using the simple construction in the proof of Lemma 2 we can reduce
Pigeon-Circuit to a path-version of the problem where f(T) pigeons are mapped to T holes.
Then, the construction in the proof of Lemma 3 can be used to reduce SoD⋏ Pigeon-Circuit to
SoD without merging.

Acknowledgements

We thank Aviad Rubinstein for his many questions during e-mail correspondence.

References

[BCE+98] Paul Beame, Stephen Cook, Jeff Edmonds, Russell Impagliazzo, and Toniann Pitassi. The relative
complexity of NP search problems. Journal of Computer and System Sciences, 57(1):3–19, 1998.
doi:10.1006/jcss.1998.1575.

[BM04] Joshua Buresh-Oppenheim and Tsuyoshi Morioka. Relativized NP search problems and proposi-
tional proof systems. In Proceedings of the 19th IEEE Conference on Computational Complexity
(CCC), pages 54–67, 2004. doi:10.1109/CCC.2004.1313795.

[CCM20] Man-Kwun Chiu, Aruni Choudhary, and Wolfgang Mulzer. Computational Complexity of the
α-Ham-Sandwich Problem. In 47th International Colloquium on Automata, Languages, and
Programming (ICALP), pages 31:1–31:18, 2020. doi:10.4230/LIPIcs.ICALP.2020.31.

[DGK+17] Jérôme Dohrau, Bernd Gärtner, Manuel Kohler, Jǐŕı Matoušek, and Emo Welzl. ARRIVAL:
A zero-player graph game in NP ∩ coNP. In A Journey Through Discrete Mathematics, pages
367–374. Springer, 2017. doi:10.1007/978-3-319-44479-6 14.

[DGP09] Constantinos Daskalakis, Paul Goldberg, and Christos Papadimitriou. The complexity of comput-
ing a Nash equilibrium. SIAM Journal on Computing, 39(1):195–259, 2009. doi:10.1137/070699652.

[DP11] Constantinos Daskalakis and Christos Papadimitriou. Continuous local search. In Proceedings
of the 22nd Symposium on Discrete Algorithms (SODA). Society for Industrial and Applied
Mathematics, January 2011. doi:10.1137/1.9781611973082.62.

[EPRY20] Kousha Etessami, Christos Papadimitriou, Aviad Rubinstein, and Mihalis Yannakakis. Tarski’s
theorem, supermodular games, and the complexity of equilibria. In Proceedings of the 11th
Innovations in Theoretical Computer Science Conference (ITCS), volume 151, pages 18:1–18:19,
2020. doi:10.4230/LIPIcs.ITCS.2020.18.

13

https://doi.org/10.1006/jcss.1998.1575
https://doi.org/10.1109/CCC.2004.1313795
https://doi.org/10.4230/LIPIcs.ICALP.2020.31
https://doi.org/10.1007/978-3-319-44479-6_14
https://doi.org/10.1137/070699652
https://doi.org/10.1137/1.9781611973082.62
https://doi.org/10.4230/LIPIcs.ITCS.2020.18

[FGHS21] John Fearnley, Paul Goldberg, Alexandros Hollender, and Rahul Savani. The complexity of
gradient descent: CLS = PPAD ∩ PLS. In Proceedings of the 53rd Symposium on Theory of
Computing (STOC), 2021. doi:10.1145/3406325.3451052.

[FGMS20] John Fearnley, Spencer Gordon, Ruta Mehta, and Rahul Savani. Unique end of potential line.
Journal of Computer and System Sciences, 114:1–35, 2020. doi:10.1016/j.jcss.2020.05.007.

[GH21] Paul Goldberg and Alexandros Hollender. The Hairy Ball problem is PPAD-complete. Journal
of Computer and System Sciences, 122:34–62, 2021. doi:10.1016/j.jcss.2021.05.004.

[GHH+18] Bernd Gärtner, Thomas Dueholm Hansen, Pavel Hubácek, Karel Král, Hagar Mosaad, and
Veronika Sĺıvová. ARRIVAL: Next stop in CLS. In 45th International Colloquium on Automata,
Languages, and Programming (ICALP), volume 107, pages 60:1–60:13. Schloss Dagstuhl, 2018.
doi:10.4230/LIPICS.ICALP.2018.60.

[GKRS18] Mika Göös, Pritish Kamath, Robert Robere, and Dmitry Sokolov. Adventures in monotone
complexity and TFNP. In Proceedings of the 10th Innovations in Theoretical Computer Science
Conference (ITCS), volume 124, pages 38:1–38:19, 2018. doi:10.4230/LIPIcs.ITCS.2019.38.

[Hol21] Alexandros Hollender. Structural results for total search complexity classes with applications to
game theory and optimisation. PhD thesis, University of Oxford, 2021. URL: https://ora.ox.ac.
uk/objects/uuid:67e2d80b-76bf-4b49-9b7d-8bbd91633dd7.

[HY20] Pavel Hubáček and Eylon Yogev. Hardness of continuous local search: Query complexity
and cryptographic lower bounds. SIAM Journal on Computing, 49(6):1128–1172, 2020. doi:
10.1137/17m1118014.

[Ish21] Takashi Ishizuka. The complexity of the parity argument with potential. Journal of Computer
and System Sciences, 120:14–41, sep 2021. doi:10.1016/j.jcss.2021.03.004.

[JPY88] David Johnson, Christos Papadimitriou, and Mihalis Yannakakis. How easy is local search? Journal
of Computer and System Sciences, 37(1):79–100, August 1988. doi:10.1016/0022-0000(88)90046-3.

[MMSS17] Frédéric Meunier, Wolfgang Mulzer, Pauline Sarrabezolles, and Yannik Stein. The rainbow at the
end of the line—a PPAD formulation of the colorful Carathéodory theorem with applications. In
Proceedings of the 28th ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 1342–1351,
2017. doi:10.1137/1.9781611974782.87.

[Mor01] Tsuyoshi Morioka. Classification of search problems and their definability in bounded arithmetic.
Master’s thesis, University of Toronto, 2001. URL: https://www.collectionscanada.ca/obj/s4/f2/
dsk3/ftp04/MQ58775.pdf.

[MP91] Nimrod Megiddo and Christos Papadimitriou. On total functions, existence theorems and
computational complexity. Theoretical Computer Science, 81(2):317–324, April 1991. doi:10.1016/
0304-3975(91)90200-L.

[Pap94] Christos Papadimitriou. On the complexity of the parity argument and other inefficient proofs of
existence. Journal of Computer and System Sciences, 48(3):498–532, June 1994. doi:10.1016/
s0022-0000(05)80063-7.

[Sch21] Patrick Schnider. The Complexity of Sharing a Pizza. In 32nd International Symposium on
Algorithms and Computation (ISAAC), pages 13:1–13:15, 2021. doi:10.4230/LIPIcs.ISAAC.2021.13.

14
ECCC ISSN 1433-8092

https://eccc.weizmann.ac.il

https://doi.org/10.1145/3406325.3451052
https://doi.org/10.1016/j.jcss.2020.05.007
https://doi.org/10.1016/j.jcss.2021.05.004
https://doi.org/10.4230/LIPICS.ICALP.2018.60
https://doi.org/10.4230/LIPIcs.ITCS.2019.38
https://ora.ox.ac.uk/objects/uuid:67e2d80b-76bf-4b49-9b7d-8bbd91633dd7
https://ora.ox.ac.uk/objects/uuid:67e2d80b-76bf-4b49-9b7d-8bbd91633dd7
https://doi.org/10.1137/17m1118014
https://doi.org/10.1137/17m1118014
https://doi.org/10.1016/j.jcss.2021.03.004
https://doi.org/10.1016/0022-0000(88)90046-3
https://doi.org/10.1137/1.9781611974782.87
https://www.collectionscanada.ca/obj/s4/f2/dsk3/ftp04/MQ58775.pdf
https://www.collectionscanada.ca/obj/s4/f2/dsk3/ftp04/MQ58775.pdf
https://doi.org/10.1016/0304-3975(91)90200-L
https://doi.org/10.1016/0304-3975(91)90200-L
https://doi.org/10.1016/s0022-0000(05)80063-7
https://doi.org/10.1016/s0022-0000(05)80063-7
https://doi.org/10.4230/LIPIcs.ISAAC.2021.13

