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Abstract

The notion of lifting theorems is a generic method to lift hardness of one-party functions to
two-party lower bounds in communication model. It has many applications in different areas
such as proof complexity, game theory, combinatorial optimization. Among many lifting results,
a central idea is called Raz-McKenize simulation (FOCS 1997). This simulation provides a
systematic way to convert a communication protocol into a corresponding decision tree. Though
it is very convenient in many applications, there are still some challenges in this framework. A
major problem is that Raz-McKenize simulation requires a very large gadget.

In this paper, we revise Raz-McKenzie simulation. We introduce a white-box simulation,
proving lifting theorems for block sensitivity with constant-size gadgets. Concretely, we show
there is a constant-size gadget g such that for any Boolean function f , the corruption bound
of f ◦ gn is lower bounded by Ω(bs(f)). Combined with a result of Beame et al. (CCC 2005),
this implies the randomized communication complexity of f ◦ gn is lower bounded by Ω(bs(f)).
Besides the result itself, we believe our simulation technique may have more applications in
diverse areas. We also discuss why our simulation method has a potential to avoid the large-size
gadget bottleneck in Raz-McKenzie simulation.

1 Introduction

The methodology of lifting theorems is a reductive lower bound technique that converts lower
bounds of f in query model (simpler-to-understand) to lower bounds of lifted functions f ◦ gn in
communication model. For a function f : {0, 1}n → R and a function g : X × Y → {0, 1} (we call
it gadget), their composition f ◦ gn : Xn × Y n → R is defined by

(f ◦ gn)(x, y) := f(g(x1, y1), . . . , g(xn, yn)).

In the communication model, Alice holds x ∈ Xn and Bob holds y ∈ Y n respectively, and their
goal is to compute (f ◦ gn)(x, y) through a communication channel.

There is a substantial number of works studying lifting theorems for a variety of query-to-
communication models including: deterministic [RM97, GPW18, CFK+19, LMM+20], randomized
[GPW20], non-deterministic [GLM+16, PSW21] and degree-to-rank [She11, PR17, PR18, RPRC16,
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CLRS16, KMR21, LRS15]. In these papers and others, lifting theorems have been applied to
simplify and resolve longstanding open problems, including new separations in communication
complexity [GPW18, GPW20], resolution of the clique vs independent set problem [Göö15] and
refutation of the log approximate-rank conjecture [CMS20]. Lifting theorems also have applications
in other literature, such as proof complexity [GLM+16, HN12, GP18, DRNV16, dR19], monotone
circuit complexity [GGKS18], date structure lower bounds [CKLM18], communication complexity of
Nash equilibrium [GR21, BR20], monotone span programs, linear secret sharing schemes [RPRC16,
PR17, PR18] and lower bounds on the extension complexity of linear and semi-definite programs
[GJW18, CLRS16, KMR21, LRS15].

Among many of these proofs, a very important idea is the simulation technique. It converts any
communication protocol for f ◦ gn (where f is arbitrary but the gadget g is chosen carefully) into
a decision tree for f . Simulation methods are generic and flexible in that it translates to different
communication models [GKPW19, GJPW18, GLM+16], and can be specialized to various gadgets
[LM19, CKLM18] as well. Applications of simulation-based lifting theorems often depend on the
size of the gadget where reducing the gadget size to a constant would be a fundamental break-
through with many interesting applications [GP18, GJW18, GR21]. An ideal lifting theorem with
constant gadget size would give a unified way to prove tight lower bounds for most known func-
tions. However, existing lifting theorems [RM97, WYY17, CKLM19, GPW18, CFK+19, LMM+20]
based on simulation methods need gadgets of very large size (q = poly(n)). In Raz-McKenzie
simulation [RM97, GPW18], there is a crucial average-to-worst reduction (known as the “thickness
lemma”), which requires q = Ω(n2) to maintain the pseudo-random property. Based on robust
sunflowers ([ALWZ21]), Lovett et al. [LMM+20] gives a simulation with q = Θ(n log q), which
is the best known result. Thus, the major open problem of the lifting literature is to prove a
query-to-communication lifting theorem that uses gadgets of constant size.

In this paper, we revise the simulation method and adapt it to lifting theorems with constant
gadgets. Concretely, we show there are constants ε > 0 and q > 1 such that Corrε(f ◦ gn) =
Ω(log q · bs(f)), where g : [q] × [q] → {0, 1} is any balanced gadget with small discrepancy. As a
byproduct, we show that BPPcc(f ◦gn) = Ω(log q ·bs(f)). Even though similar results were known
before [Zha09, GP18, HN12, ABDK20], our result still gives some novel insights which we believe
has a potential to give more applications.

1.1 Our Results

In this work, we study lifting theorems with low-discrepancy gadgets of constant size. In what
follows, we denote by Pcc the deterministic communication complexity and BPPcc the randomized
(public-coin) communication complexity with constant error probability. We denote bs(f) as the
block sensitivity of a Boolean function f and disc(g) as the discrepancy of a gadget g (Please see
formal definition in Section 2). We call a gadget g balanced if exactly half of the inputs satisfy
g(x, y) = 0.

As a warm-up, we first present a deterministic lifting theorem for block sensitivity.

Theorem 1.1. There is a constant q > 0. For any Boolean function f : {0, 1}n → {0, 1} and any
balanced gadget g : [q]× [q]→ {0, 1} with disc(g) ≤ 2− log q, we have that

Pcc(f ◦ gn) = Ω(log q · bs(f)).

A large family of gadgets are balanced with disc(g) ≤ 2− log q. For example, the inner product
gadget (previously known in [CKLM19, WYY17]) has this property. We make two remarks: 1).
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we believe the balanced assumption can be removed; 2) we can relax the discrepancy condition a
little bit in which requires only disc(g) = 2−γ·log q for a constant such as γ = 0.1. We do not make
these efforts here since we would like to keep our presentation as simple as possible.

By refining our ideas further, we are also able to prove a stronger statement. Let Corrε(f) be
the corruption bound of f with error ε.

Theorem 1.2. There exist constants ε > 0 and q > 1. For any Boolean function f : {0, 1}n →
{0, 1} and any balanced gadget g : [q]× [q]→ {0, 1} with disc(g) ≤ 2− log q, we have that

Corrε(f ◦ gn) = Ω(log q · bs(f)).

Since corruption bound is a lower bound of randomized communication complexity [BPSW05],
we have the following corollary.

Corollary 1.3. There exist constants ε > 0 and q > 1. For any Boolean function f : {0, 1}n →
{0, 1} and any balanced gadget g : [q]× [q]→ {0, 1} with disc(g) ≤ 2− log q, we have that

BPPcc(f ◦ gn) = Ω(log q · bs(f)).

Based on known connections between corruption bound and information complexity [KLL+12],
we also have the following corollary.

Corollary 1.4. There exist constants ε > 0 and q > 1. For any Boolean function f : {0, 1}n →
{0, 1} and any balanced gadget g : [q]× [q]→ {0, 1} with disc(g) ≤ 2− log q, we have that

ICext(f ◦ gn) = Ω(log q · bs(f)).

Applications. Lifting theorems for (critical) block sensitivity gave several known applications
in diverse areas, such as the polynomial relation between classical and quantum communication
complexities of certain block-composed functions [Zha09], length–space lower bounds for semi-
algebraic proof systems[HN12, GP18], monotone circuit depth lower bound [GP18] and randomized
communication complexity of approximate Nash equilibrium [GR21]. We believe our method can
be used to prove lifting theorems for critical block sensitivity, but it is not the main focus of this
paper.

Comparisons with Previous Results: Similar lifting results for (critical) block sensitivity were
obtained in [Zha09, HN12, GP18, ABDK20].

Zhang [Zha09] and Göös and Pitassi [GP18] proved BPPcc(f ◦ gn) = Ω(log q · bs(f)) for some
constant-size gadgets g. Their proof is built on a reduction from Unique-Disjointness, a well-known
hard problem in communication model. Huynh and Jakob [HN12] and Anshu et al. [ABDK20]
proved this statement by analyzing information complexity. Both proofs work only on versatile
gadgets: A versatile gadget must have flippability and random self-reducibility which makes it a
very special type of gadgets. We note that a flippable gadget is also balanced.

Our method is very different in that we prove it by the simulation framework. As a benefit, we
extend their results in two ways: 1) we only require the balanced gadget g to have small discrepancy;
2) we also obtain lower bounds for the corruption bound.
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1.2 Overview of Our Technique

In this part, we explain our simulation with a comparison to Raz-McKenzie framework. For sim-
plicity, we use some informal notations here that may have small difference with formal version in
Section 3. For now, we assume that bs(f) = bs(f, 0n) = s(f, 0n) = n. That is, f(0n) 6= f(ei) for
all indicator vector ei ∈ {0, 1}n. For a rectangle R ⊆ [q]n × [q]n, we denote D(R) = {(x, y) ∈ R :
gn(x, y) = 0n} and gn(R) = {gn(x, y) : (x, y) ∈ R}.

The idea of our simulation is to (explicitly) find a long path in any communication protocol
tree that computes f ◦ gn. To achieve this, we define a potential function for rectangles. For each
rectangle R, its potential is E(R) = log |D(R)|.

We recall that every node in a communication tree has an associated rectangle. Starting from
the root, we find a path as follows: for each intermediate node, the path always visits the child
(either left or right) with its associated rectangle maximizes the potential function. We observe
two important properties about the potential function.

• For every rectangle R, E(R) ≤ E([q]n × [q]n).

• Each step in the path decreases the potential function by at most 1.

Let ` be the length of the path, and let R` be the leaf rectangle reached by the path. We then have
that

E([q]n × [q]n)− ` ≤ E(R`).

On the other hand, we introduce a projection operation. We show that for each rectangle R with
0n ∈ gn(R) and ei 6∈ gn(R), a projection on the coordinate i outputs a “sub-rectangle”1 R′ of R
such that it has potential function E(R′) ≥ E(R) + Ω(log q). Furthermore, we prove that for every
monochromatic rectangle R with 0n ∈ gn(R), there is a sub-rectangle R∗ of R such that

E(R∗) ≥ E(R) + Ω(n log q),

where R∗ is obtained by applying the projection on R for each coordinate ei. We note that R` is
indeed a monochromatic function, hence

E([q]n × [q]n)− ` ≤ E(R`) ≤ E(R∗` )− Ω(n · log q) ≤ E([q]n × [q]n)− Ω(n · log q).

Thus we have that ` = Ω(n · log q).

Our simulation v.s. Raz-McKenzie simulations. Firstly, we point out that our simulation
is a method to find a long path in a communication protocol tree. By contrast, Raz-McKenzie
simulation is a method that fully converts a communication protocol into a decision tree. Under
this strong transformation, any query lower bound on the Boolean function f can be automatically
transformed into a communication lower bound of f ◦ gn. However, the price of full simulation is
expensive. A crucial step in Raz-McKenzie simulation is called the full rectangle lemma. Many
structures such as Fourier analysis and robust sunflowers were used to prove this full rectangle
lemma. But all of them require a gadget g of size at least Ω(n), which is far away from constants.
However this may not be necessary to prove communication lower bounds. It is actually sufficient

1Not exactly sub-rectangle, but have a similarity
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to find a long path in the communication protocol, which can potentially save the cost from the
full rectangle lemma.

Secondly, our simulation is a white-box simulation rather than black-box simulations such as
Raz-McKenzie. We call it white-box because the potential function depends on the function f
itself. In comparison, the potential function used in Raz-McKenzie is oblivious to the function f .
To prove a communication lower bound, we observe that it is sufficient to lift the “hard part” of
the function f . For example, if s(f) = s(f, 0n) = n, we only need to lift the set {0n, e1, . . . , en}.
However, a black-box simulation always lifts the whole domain {0, 1}n, which also requires the full
rectangle lemma.

In summary, our simulation avoids the full rectangle lemma, which is the main bottleneck
in Raz-McKenzie simulation. We believe our simulation can be also used in many other lifting
applications. For example, it has a potential to attack the main open question in lifting theorems:
to prove that Pcc(f ◦ gn) = Ω(Pdt(f)) for some constant-size gadget g. Even it may be challenging
to achieve this ambitious goal, we can first study those functions f with a good expression on its
hard part. In summary, our new simulation has a good potential to obtain many new results.

1.3 Paper Organization.

We recall some useful definitions in Section 2. In Section 3, we explain the proof of deterministic
lifting (Theorem 1.1). In Section 4, we give a proof of the randomized lifting (Theorem 1.2). Finally,
we discuss open problems in Section 5. Missing proofs are put in Appendix A.

Acknowledgements. Authors thank Jack DePascale for helpful discussions. We are grateful to
Kewen Wu for reading early versions of this paper and providing useful suggestions.

2 Preliminary

We assume the reader is familiar with the basic definitions of communication complexity (see, e.g.,
[Kus97]). For any n ∈ N, we denote [n] = {1, ..., n}. Unless otherwise specified, the log in this
paper will be base 2.

Let I ⊆ [n] be a set of coordinates. For any set X ⊆ [q]n, we define XI = {(xi)i∈I ∈ [q]I :
(x1, ..., xn) ∈ X} be the projection of X onto the coordinates in I and X |Xi=u= {x ∈ X : xi = u}
be the restriction of X on Xi = u.

Given a boolean function g : X×Y → {0, 1}, we denote by gI : XI ×Y I → {0, 1}I the function
that takes as inputs |I| pairs from X × Y that are indexed by I, and outputs the string in {0, 1}I
whose i-th bit is the output of g on the i-th pair. In particular, we denote gn := g[n].

Definition 2.1 (Discrepancy). Let g : [q] × [q] → {0, 1} be a function. Given a rectangle R ⊆
[q]× [q], the discrepancy of g with respect to R, denoted as discR(g), is

discR(g) =

∣∣|{(x, y) ∈ R : g(x, y) = 0}| − |{(x, y) ∈ R : g(x, y) = 1}|
∣∣

q2
.

The discrepancy of g, denoted as disc(g), is the maximum of discR(g) over all rectangle R ⊆ [q]×[q].
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Definition 2.2 (Entropy). Let D be a probability distribution. The entropy of D is

H(D) :=
∑
a

Pr[D = a] · log(1/Pr[D = a]).

For two (discrete) random variables A and B, the conditional entropy of B given A is defined as

H(B|A) =
∑
a,b

Pr[ab] · log
1

Pr[b|a]
=
∑
a

Pr[a] · H(B|A = a).

The following useful inequality will be used in our paper.

Fact 2.3. For any random variables A and B, we have H(B|A) ≤ H(B).

For a string x ∈ {0, 1}n and a set I ⊆ [n], the string xI is obtained from x by flipping all
coordinates in I. We use xi as a shorthand for x{i}.

Definition 2.4 (Sensitivity). Let f : {0, 1}n → {0, 1} be a Boolean function. For an input x ∈
{0, 1}n, the sensitivity s(f, x) of f at x is the number of coordinates i such that f(x) 6= f(xi). The
sensitivity of f is defined by

s(f) = max
x∈{0,1}n

s(f, x).

Definition 2.5 (Block sensitivity). Let f : {0, 1}n → {0, 1} be a Boolean function. For an input
x ∈ {0, 1}n, the block sensitivity bs(f, x) of f at x is the maximum number k such that there are
disjoint blocks B1, . . . , Bk ⊆ [n] satisfying f(x) 6= f(xBi) for every i ∈ [k]. The block-sensitivity of
f is defined by

bs(f) = max
x∈{0,1}n

bs(f, x).

Let F : X × Y → {0, 1}. we use R denote the set of rectangles of X × Y . For each z ∈ {0, 1},
we denote F−1(z) := {(x, y) ∈ X × Y : F (x, y) = z}. For a (joint) distribution µ on (X,Y ) and a
set S ⊆ X × Y , we define µ(S) := Pr(x,y)∼µ[(x, y) ∈ S].

Definition 2.6 (Corruption Bound). Let F : X × Y → {0, 1} and ε > 0. The corruption bound of
F with error ε, denoted by Corrε(F ), is

max
z∈{0,1}

µ on X×Y

min

{
log

1

µ(F−1(z) ∩R)
: R ∈ R with µ(F−1(1− z) ∩R) ≤ ε · µ(F−1(z) ∩R)

}
.

By [BPSW05], the corruption bound is a lower bound of the randomized communication com-
plexity.

3 Deterministic Lifting for Block Sensitivity

Now we discuss Theorem 1.1. In this section, we may skip some proofs since they are implied by
similar lemmas in Section 4. The main purpose of this section is to give a clear explanation of our
simulation framework. For simplicity in presentation, we first prove the following theorem.
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Theorem 3.1. There exists a constant q > 0. For any Boolean function f : {0, 1}n → {0, 1} and
balanced gadget g : [q]× [q]→ {0, 1} with disc(g) ≤ 2− log q, we have that

Pcc(f ◦ gn) = Ω(log q · s(f)).

Comparing with Theorem 1.1, we replace the block sensitivity by sensitivity. Without loss of
generality, we assume that s(f) = s(f, 0n) = n. That is, f(0n) 6= f(ei) for all i ∈ [n]. We now
introduce some notations to simplify our presentation. For any I ⊆ [n], we define

DI
0 := {(x, y) ∈ [q]I × [q]I : gI(x, y) = 0I},

and define for each i ∈ I

DI
i := {(x, y) ∈ [q]I × [q]I : gI(x, y) = ei},

where ei ∈ {0, 1}I is the indicator vector.

Definition 3.2 (Potential Function). For each I ⊆ [n] and X,Y ⊆ [q]I , let R = X×Y ⊆ [q]I× [q]I

and define its potential function of R as

EI(R) := log

(
|R ∩DI

0|
|DI

0|

)
.

We use E(R) as a shorthand for EI(R) when I is clear in the context.

We note that E(R) is always non-positive. During the simulation along the communication
tree, each communication round will decrease the potential function and each projection round will
increase the potential function. Now we define our projection process.

Definition 3.3 (Projection). Let R = X × Y ⊆ [q]I × [q]I be a rectangle. For i ∈ I and u ∈ [q],
the projection by Alice at (i, u) is a rectangle ΠA

i,u(R) = X ′ × Y ′ ⊆ [q]I\{i} × [q]I\{i} where

• X ′ := {x′ ∈ [q]I\{i} : (x′, u) ∈ X},

• Y ′ := {y′ ∈ [q]I\{i} : ∃v ∈ [q], g(u, v) = 0 and (y′, v) ∈ Y }.

Similarly, we define the projection by Bob as ΠB
i,u(R) = X ′′ × Y ′′ where

• X ′′ := {x′ ∈ [q]I\{i} : ∃v ∈ [q], g(v, u) = 0 and (x′, v) ∈ X},

• Y ′′ := {y′ ∈ [q]I\{i} : (y′, u) ∈ Y }.

Our projection borrows ideas from Raz-McKenzie but with some difference. In Raz-McKenzie,
a projection on the coordinate i corresponds to a query of the i-th coordinate in the decision tree. In
our projection, we fix the coordinate i as 0. Since we aim to find a long path in the communication
tree, we do projections towards the direction that maximizes our potential function. Now we are
ready to describe our simulation process in Algorithm 1.
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Algorithm 1 Simulation algorithm for deterministic lifting

Input: Communication protocol tree Π
Output: A communication path with length Ω(bs(f) · log q).
1: Initialize v = root of Π, Rv = Xv × Yv = [q]n × [q]n, and I = [n].
2: Let P be an empty string.
3: while Rv is not a monochromatic rectangle do
4: Let v0, v1 be the children of v in Π.
5: if Alice sends a bit at v then
6: Let Xv0 , Xv1 be the partition of Xv according to Alice’s partition.
7: Let Rv0 = Xv0 × Yv and Rv1 = Xv1 × Yv.
8: Let b ∈ {0, 1} be the bit maximizes E(Rvb).
9: Let P = P ◦ b.

10: Update Rv = Rvb and v = vb.
11: end if
12: if Bob sends a bit at v then
13: Let Yv0 , Yv1 be the partition of Yv according to Bob’s partition.
14: Let Rv0 = Xv × Yv0 and Rv1 = Xv × Yv1 .
15: Let b ∈ {0, 1} be the bit maximizes E(Rvb).
16: Let P = P ◦ b.
17: Update Rv = Rvb and v = vb.
18: end if
19: while Rv ∩DI

i = ∅ for some i ∈ I do
20: Do projection by a player C ∈ {Alice,Bob} at (i, u) that maximizes E(ΠC

i,u(Rv)).

21: Update Rv = ΠC
i,u(Rv) and I = I \ i.

22: end while
23: end while
24: Output P .

3.1 Proof of Theorem 3.1

To prove Theorem 3.1, we first observe some important properties of our projection.

Lemma 3.4 (Partition Lemma). Let R = X×Y ⊆ [q]I × [q]I be a rectangle, then for any partition
R = R0 ∪R1, there is some b ∈ {0, 1} such that E(Rb) ≥ E(R)− 1.

The proof of this Lemma 3.4 is straightforward: Since R0, R1 is a partition of R, either |R0 ∩
DI

0| ≥ |R ∩DI
0|/2 or |R1 ∩DI

0| ≥ |R ∩DI
0|/2. If |R0 ∩DI

0| ≥ |R ∩DI
0|/2, then E(R0) ≥ E(R)− 1;

otherwise E(R1) ≥ E(R)− 1.

Lemma 3.5 (Projection Lemma). Let R = X × Y ⊆ [q]I × [q]I be a rectangle. If there is a
coordinate i ∈ I such that R ∩DI

i = ∅, then there is a value u ∈ [q] such that,

• either E(ΠA
i,u(R)) ≥ E(R) + Ω(log q),

• or E(ΠB
i,u(R)) ≥ E(R) + Ω(log q).

Lemma 3.5 is the crucial step in our proof. Since the purpose of this section is merely introduce
the proof outline of our main results, we omit the proof of Lemma 3.5 here. We direct readers
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interested in its proof to Lemma 4.9 in Section 4, which is the randomized (thus stronger) version.
Now we are ready to prove Theorem 3.1.

Proof. Let (v0, v1, . . . , vt) be the path found by Algorithm 1. We aim to prove that t = Ω(n · log q).
Let R0, R1, . . . , Rt be rectangles in each step respectively. We first note several important facts:

• E(R0) = 0 and E(Rj) ≤ 0 for every j ∈ [t].

• E(Rj) ≥ E(Rj−1)− 1 for every j ∈ [t].

On the other hand, each projection increases the potential function by Ω(log q). Hence we have the
following statement:

t ≥ (number of projections happened in the algorithm) · Ω(log q).

Notice that a projection on ei happens whenever ei is not in current rectangle, and the projection
fixes the i-th coordinate of f to 0. So the projection will be executed by n times to result in a
monochromatic rectangle, which shows t = Ω(n · log q) as desired.

3.2 Proof of Theorem 1.1

Now we generalize our proof for block-sensitivity. Let f be a Boolean function such that bs(f) =
bs(f, 0n) = k. Let B1, . . . , Bk be disjoint sets that flips f(0n). We define a set X ∈ [q]n as

X = {x ∈ [q]n : ∀` ∈ [k], i1, i2 ∈ B`, xi1 = xi2}.

Similarly, we define
Y = {y ∈ [q]n : ∀` ∈ [k], i1, i2 ∈ B`, yi1 = yi2}.

Let D = X × Y be a rectangle. The main idea here is to enforce all coordinates in B` identical.
Let Dn

0 = {(x, y) ∈ D : gn(x, y) = 0n} and Dn
` := {(x, y) ∈ D : ∀i, g(xi, yi) = 1 iff i ∈ B`}. We can

then apply the simulation process in the sub-rectangle D.

4 Randomized Lifting for Block Sensitivity

Similar as Section 3, we assume that f(0n) 6= f(ei), for any i ∈ [n]. As we discussed in Section 3.2,
this assumption does not lose generality. Let DI

0 = {(x, y) ∈ {0, 1}I × {0, 1}I : gI(x, y) = 0I} and
DI
i = {(x, y) ∈ {0, 1}I × {0, 1}I : gI(x, y) = ei} be the same notations used in Section 3. We use

D0 as a shorthand for D
[n]
0 and Di a shorthand for D

[n]
i .

Our simulation for randomized lifting is slightly different from the one used above. To explain
connections better, we give a different algorithm (Algorithm 2) to find a long path. Comparing
to the previous one, this new algorithm defers all projections unto leaves. By analyzing deferred
projections in the leaf found by Algorithm 2, we can prove the following statement.

Theorem 4.1. Let R be a monochromatic rectangle such that R ∩D0 6= ∅, then

|R ∩D0| ≤ 2−Ω(bs(f)·log q) · |D0|.
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Algorithm 2 Simulation with Deferred Projections

Input: Communication protocol tree Π
Output: A communication path with length Ω(bs(f) · log q).
1: Initialize v = root of Π, Rv = Xv × Yv = [q]n × [q]n, I = [n].
2: Let P be an empty string.
3: while Rv is not a monochromatic rectangle do
4: Let v0, v1 be the children of v in Π.
5: if Alice sends a bit at v then
6: Let Xv0 , Xv1 be the partition of Xv according to Alice’s partition.
7: Let Rv0 = Xv0 × Yv and Rv1 = Xv1 × Yv.
8: Let b ∈ {0, 1} be the bit maximizes E(Rvb).
9: Let P = P ◦ b.

10: Update Rv = Rvb and v = vb.
11: end if
12: if Bob sends a bit at v then
13: Let Yv0 , Yv1 be the partition of Yv according to Bob’s partition.
14: Let Rv0 = Xv × Yv0 and Rv1 = Xv × Yv1 .
15: Let b ∈ {0, 1} be the bit maximizes E(Rvb).
16: Let P = P ◦ b.
17: Update Rv = Rvb and v = vb.
18: end if
19: end while
20: while Rv ∩DI

i = ∅ for some i ∈ I do
21: Do projection by a player C ∈ {Alice,Bob} at (i, u) that maximizes E(ΠC

i,u(Rv)).

22: Update Rv = ΠC
i,u(Rv) and I = I \ i.

23: end while
24: Output P .

Now we focus on proving the randomized lifting. We first define a hard distribution µ that will
be used in our proof.

1. Sample a bit b ∈ {0, 1} uniformly at random.

2. If b = 0, output a uniformly random (x, y) ∈ D0.

3. If b = 1, output a uniformly random (x, y) ∈
⋃
i∈[n]Di.

In the rest of the content, the notation µ is always used to refer this hard distribution. To prove
the main theorem (Theorem 1.2), it is sufficient to prove the following theorem.

Theorem 4.2. There is a constant ε ∈ (0, 9 ·10−6) such that the following holds. For any rectangle
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R ⊆ [q]n × [q]n, if

µ

(
n⋃
i=1

Di ∩R

)
≤ ε · µ (D0 ∩R) ,

then
µ (D0 ∩R) ≤ 2−Ω(bs(f)·log q).

This theorem is a randomized version of Theorem 4.1. The main difference is that we replace
the monochromatic assumption (i.e.,

⋃n
i=1Di∩R = ∅) by a bias assumption (i.e., µ(

⋃n
i=1Di∩R) ≤

ε · µ(D0 ∩R)). We then give a quick proof of Theorem 1.2 by assuming Theorem 4.2.

Proof of Theorem 1.2. Fix any R such that ε · µ((f ◦ gn)−1(0) ∩ R) ≥ µ((f ◦ gn)−1(1) ∩ R), by
Theorem 4.2, we have

Corrε(f ◦ gn) ≥ log
1

µ((f ◦ gn)−1(0) ∩R)
= log

1

µ(D0 ∩R)
= Ω(bs(f) · log q).

4.1 Proof of Theorem 4.2

To prove Theorem 4.2, we define a new potential function for randomized lifting. For a distribution
D on X × Y , we call it a product distribution if it samples x ∈ X and y ∈ Y independently.

Definition 4.3. For any set I ⊆ [n], let R = X × Y be a rectangle on [q]I × [q]I . For any product
distribution D on R, let D′ = D|gI(X,Y )=0I , we define the potential function of D as

EI(D) := H(D′)− 2 · |I| log q + |I|.

We use E(D) as a shorthand for EI(D) when I is clear in the context.

Since g is a balanced gadget, we note that E(D) = E(R) when D is uniform on R, where E(R) is
the potential function used in deterministic lifting. Hence, this definition is a natural generalization
of the deterministic case. Similarly, we also have E(D) ≤ 0 for any product distribution D.

In deterministic lifting, we apply a projection on a coordinate i whenever R ∩Di = ∅. In the
randomized case, however, the condition R∩Di = ∅ may not hold. Instead, we use a bias condition
defined below.

Definition 4.4. Let D be a distribution on [q]I × [q]I . For any (x, y) ∈ DI
0 and i ∈ I, the bias of

(x, y) at coordinate i is defined by,

γIi (x, y) = Pr
(x′,y′)∼D

[
g(x′i, y

′
i) = 1 | ∀` 6= i, x′` = x` and y′` = x`

]
.

If D is a product distribution, the bias of D at coordinate i is defined by

γIi (D) = E
(x,y)∼D′

[γi(x, y)].

For mixed distribution D =
∑

j pj · Dj, we define its bias as

γIi (D) =
∑
j

pj · γi(Dj).

We use γi(x, y) as a shorthand for γIi (x, y) and γi(D) as a shorthand for γIi (D) when I is clear in
the context.
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In deterministic case, we have that µ (Di ∩R) = 0 (bias of γi(D) is 0) for any monochromatic
rectangle R with R ∩D0 6= ∅. We have a similar lemma in the randomized case.

Lemma 4.5. For any fixed ε ∈ (0, 1/2), let R ⊆ [q]n × [q]n be a rectangle such that

µ

(
n⋃
i=1

Di ∩R

)
≤ ε · µ (D0 ∩R) .

Let D be the uniform distribution on R. We have that,

• E(D) = − log |D0|
|D0∩R| = − log µ(D0)

µ(R∩D0) ≥ − log 1
µ(D0∩R) .

•
∑

i γi(D) ≤ ε · bs(f).

The proof of this lemma follows from definitions. Now we introduce projections for randomized
lifting. We first need to generalize the notion of product distribution a little bit.

Definition 4.6. Let R be a rectangle. A distribution D on R is called a mixed distribution if there
exists product distributions D1, . . . ,D` and p1, . . . , p` > 0 with

∑
j pj = 1, such that D =

∑
j pj ·Dj.

Definition 4.7. For a mixed distribution D =
∑
pjDj, its potential function is defined by

E(D) =
∑
j

pj · E(Dj).

We define projections as follows.

Definition 4.8. Let D = X×Y be a product distribution on [q]I × [q]I , and let D′ = D |gI(X,Y )=0I .

For i ∈ I, the projection of D by Alice at coordinate i, denoted by ΠA
i (D), is a mixed distribution

on [q]I\{i} × [q]I\{i} defined as follows:

• For each u ∈ [q], let pu = Pr(x,y)∼D′ [xi = u] and let Bu := {v ∈ [q] : g(u, v) = 0}.

• For each u ∈ [q], let Du = Xu × Yu be the product distribution on [q]I\{i} × [q]I\{i} defined by
Xu = XI\{i} |Xi=u and Yu = YI\{i} |Yi∈Bu.

• Output ΠA
i (D) =

∑
u pu · Du.

Similarly, we can define projections ΠB
i (D) by Bob. If D =

∑
j pj · Dj is a mixed distribution,

projections is naturally defined by ΠA
i (D) =

∑
j pj ·ΠA

i (Dj).

We give a comparison to the deterministic case. In the deterministic case, since we only care
about the disperser property [LMM+20], we choose an element u ∈ [q] that maximizes the potential
function. By contrast, in randomized case, projections have to inherit bias, so we decompose all
elements u ∈ [q], and combine them as a mixed distribution. Given definitions of potential functions
and projections, we now prove a projection lemma for randomized lifting.

Lemma 4.9. There is a constant ε > 0 and a constant q > 0. For any mixed distribution D =∑
j pj · Dj on [q]I × [q]I with γi(D) ≤ ε for some i ∈ I, one the following statements must be true:

• E(ΠA
i (D)) ≥ E(D) + c · log q,

12



• E(ΠB
i (D)) ≥ E(D) + c · log q,

where c is a constant depending on ε and q.

We defer the proof of this lemma to Section 4.2. Now we present the following lemma indicating
that randomized projections keep bias.

Lemma 4.10. Let D be a mixed distribution on [q]I × [q]I . For any i 6= `, we have that,

γ`
(
ΠA
i (D)

)
≤ γ`(D).

Similarly, it also holds that γ`
(
ΠB
i (D)

)
≤ γ`(D).

This lemma is proven by a standard convexity inequality. We defer the proof to the appendix.

Proof of Theorem 4.2. Our aim is to prove log 1
µ(D0∩R) ≥ Ω(bs(f) · log q). Let q and ε be constants

from Lemma 4.9. Let ε′ = ε/10. We set ε′ as the constant for Theorem 4.2. We recall several facts:

• By Lemma 4.5, for the uniform distribution D on R, −E(D) ≤ log 1
µ(D0∩R) .

• By Lemma 4.5,
∑

i γi(D) ≤ ε′ · bs(f).

• For any mixed distribution D, E(D) ≤ 0.

Let P = {i ∈ [n] : γi(D) ≤ 10·ε′ = ε}. Then by an average argument, we have that |P | ≥ n/2 (recall
that we assumed bs(f) = n). Now we apply projections on all coordinates in P . By combining
Lemma 4.10 and Lemma 4.10, each round of the projection increases the potential function by
c · log q = Ω(log q). Hence we have that −E(D) ≥ −Ω(bs(f) · log q) . We then conclude the proof
since −E(D) ≤ log 1

µ(D0∩R) .

4.2 Proof of Projection Lemma

We first prove the projection lemma for production distributions. In this section, we reuse some
notations to make our writing clean. We use X,Y to denote distributions on [q]I . We fix parameters
as ε = 9 · 10−6,ε1 = 10−5, λ = 1 − 10−4 and q = 21010 in the rest of this section. We believe these
constants can be improved significantly. However, our main focus in this paper is to explain a clean
proof with constant-size gadgets.

There are two steps in our proof. Firstly, we show that bias implies entropy loss. Concretely,
we prove the following lemma.

Lemma 4.11. Let D = X × Y be a product distribution on [q]I × [q]I and denote (X ′I , Y
′
I ) =

D|g(X,Y )=0I . If γi(D) ≤ ε1 for some i ∈ I, one of the following statements must be true:

• H
(
X ′i |

(
X ′I\i, Y

′
I\i

))
≤ λ · log q,

• H
(
Y ′i |

(
X ′I\i, Y

′
I\i

))
≤ λ · log q.
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We prove this lemma by contradiction. If both X ′i and Y ′i have extremely high conditional
entropy, they also have high min-entropy. By an extractor-like property, g(X ′i, Y

′
i ) should close to

uniform (even after fixing other coordinates), which contradicts to the fact that γi(D) ≤ ε1. Here
we use the fact that a low-discrepancy gadget g has an extractor-like property. A similar extractor-
like property was used in many previous papers such as [GLM+16, CFK+19]. The difference is
that they need a block-wise extractor for distributions with high block-wise min-entropy. It is
unlikely to construct a constant-size gadget with block-wise extractor property. By contrast, we
study one-block extractors for distributions with high conditional entropy. Hence we avoided the
large-size gadget barrier. We defer the proof of Lemma 4.11 to the appendix.

Now we prove projection lemma for those coordinates with entropy loss.

Lemma 4.12. Let D = X × Y be a product distribution and let (X ′I , Y
′
I ) = D|gI(X,Y )=0I . For any

λ > 0 and q > 2, if H(Y ′i | (X ′I\i, Y
′
I\i)) ≤ λ · log q, the projection by Alice at coordinate i increases

potential function, i.e.,
E
(
ΠA
i (D)

)
≥ E(D) + (1− λ) · log q − 1.

Similarly, if H(X ′i | (X ′I\i, Y
′
I\i)) ≤ λ · log q, the projection by Bob at coordinate i increases potential

function,
E(ΠB

i (D)) ≥ E(D) + (1− λ) · log q − 1.

Proof. From the definition, we have that ΠA
i (D) =

∑
u pu · Du, where Du = Xu × Yu is a product

distribution on [q]I\{i} × [q]I\{i}. By chain rule,

H(X ′I , Y
′
I ) = H(X ′i) +H(X ′I\i, Y

′
I\i|X

′
i) +H(Y ′i |X ′I , Y ′I\i).

Denote (X ′u, Y
′
u) = (Xu, Yu) |gI\i(Xu,Yu)=0I\{i} . We observe that (X ′I\i, Y

′
I\i|X

′
i = u) = (X ′u, Y

′
u). It

implies that,

H(X ′I , Y
′
I ) = H(X ′i) +

∑
pu · H(X ′u, Y

′
u) +H(Y ′i |X ′I , Y ′I\i).

By using Fact 2.3, we have that

H(X ′I , Y
′
I ) ≤ H(X ′i) +

∑
pu · H(X ′u, Y

′
u) +H(Y ′i |X ′I\i, Y

′
I\i).

From the assumption of H(Y ′i |X ′I\i, Y
′
I\i) ≤ λ · log q, it concludes that,

H(X ′I , Y
′
I ) ≤ log q +

∑
pu · H(X ′u, Y

′
u) + λ · log q.

Recall the definition of potential function, then we have

E(ΠA
i (D)) =

∑
pu · E(Du) ≥ E(D) + (1− λ) · log q − 1.

The claim then follows.

Build on Lemma 4.11 and Lemma 4.12, we are ready to prove the projection lemma.

Proof of Lemma 4.9. Let D =
∑

j∈[m] pj · Dj be a mixed distribution with γi(D) ≤ ε. Let

J = {j ∈ [m] : γi(Dj) ≤ ε/0.9 = ε1}.

By the average argument, we have that
∑

j∈J pj ≥ 0.1.
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For each j ∈ J , Dj is a product distribution with γi(Dj) ≤ ε1. By Lemma 4.11 and Lemma
4.12, one of the following statements must hold:

E(ΠA
i (Dj)) ≥ E(Dj) + (1− λ) · log q − 1

or
E(ΠB

i (Dj)) ≥ E(Dj) + (1− λ) · log q − 1.

Let JA ⊆ J be the set of distributions Dj with E(ΠA
i (Dj)) ≥ E(Dj) + (1− λ) · log q − 1.. Without

loss of generality, we assume that
∑

j∈JA pj ≥ (
∑

j∈J pj)/2 ≥ 0.05.
On the other hand, for any j /∈ JA, we apply Lemma 4.12 with λ = 1, then

E(ΠA
i (Dj)) ≥ E(Dj)− 1.

In sum,

E(ΠA
i (D)) ≥

∑
j∈JA

pj (E(Dj) + (1− λ) log q − 2)) +
∑
j 6∈JA

pj (E(Dj)− 1)) .

Now we set c = (1− λ) · 0.05− 1
log q and derive

E(ΠA
i (D)) ≥ E(D) + c · log q.

5 Discussion and Open problems

5.1 New direct sum theorems

Lifting theorems can be viewed as a generalization of direct sum theorems [CFK+19]. In the setting
of randomized communication complexity, it is known that the “ability of g to admit a direct sum
theorem” is characterized exactly by the information cost of g (denoted IC(g)) [BYJKS04]. This
leads to the natural conjecture that a lifting theorem should hold for every gadget g that has
sufficiently high information cost. [CFK+19] proposed the following conjecture for large gadget
size,

Conjecture 5.1 ([CFK+19]). Let g : [q]× [q]→ {0, 1} be a two-party function, where q = nC for
some constant C > 0. Then for any Boolean function f : {0, 1}n → {0, 1},

BPPcc(f ◦ g) = Ω
(
BPPdt(f) · IC(g)

)
.

Similar to above conjecture, we propose the following conjecture for constant gadget size:

Conjecture 5.2. There is a constant q > 0. For any Boolean function f : {0, 1}n → {0, 1} and
gadget g : [q]× [q]→ {0, 1}, we have that

ICext(f ◦ gn) = Ω(bs(f) · IC(g)).

We note that above conjecture is a generalization of the direct sum argument in [BYJKS04].
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5.2 The corruption bound and log-rank conjecture

In order to prove log rank conjecture [Lov14], Adi Shraibman [Shr19] showed that for any function
f , there is a constant ε such that

Pcc(f) ≤ Corrε(f) · log2 rank(f).

This result is similar to the result Pdt(f) ≤ deg2(f)bs(f) [NS94] in query complexity.
However, for certain block-composed functions f ◦ gn (where f is arbitrary but the gadget g is

chosen carefully), in degree-to-rank lifting [She11], which shows that

log rank(f ◦ gn) = Ω(deg(f))

Remembering our result, that is

Corrε(f ◦ gn) = Ω(bs(f))

We can chose the gadget g carefully to lift the result Pdt(f) ≤ deg(f)bs(f) [Mid04] in query
complexity to communication complexity. Thus, there is a constant gadget g such that

Pcc(f ◦ gn) ≤ Pdt(f) ≤ deg(f) · bs(f) ≤ Corrε(f ◦ gn) · log rank(f ◦ gn).

Therefore, it’s natural to ask the question: Can we mimic the query protocol in [Mid04] to get
a communication protocol and prove the following conjecture?

Conjecture 5.3. For any Boolean function f : {0, 1}n × {0, 1}n → {0, 1}, there is a constant ε
such that

Pcc(f) ≤ Corrε(f) · log rank(f).

We note this conjecture, if true, will improve the results in [Shr19].
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A Missing proofs

A.1 Proof of Lemma 4.10

We quickly recall the statement of this lemma. Let D be a mixed distribution on [q]I × [q]I . For
any i 6= `, γ`(D) ≥ γ`

(
ΠA
i (D)

)
. Similarly, it also holds that γ`(D) ≥ γ`

(
ΠB
i (D)

)
.

We first prove the following lemma:

Lemma A.1. For any x1, ..., xn ≥ 0 and y1, ..., yn ≥ 0.

1∑n
j=1 yj

·
n∑
j=1

yj · xj
xj + yj

≤
∑n

j=1 xj∑n
j=1(xj + yj)

.

Proof. We prove this lemma by induction. We first prove the base case (n = 2),

y1

y1 + y2
· x1

x1 + y1
+

y2

y1 + y2
· x2

x2 + y2
≤ x1 + x2

x1 + x2 + y1 + y2
.
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Let f be a convex function defined as f(x) = x
x+1 . By Jensen inequality, we have

y1

y1 + y2
· f
(
x1

y1

)
+

y2

y1 + y2
· f
(
x2

y2

)
≤ f

(
y1

y1 + y2
· x1

y1
+

y2

y1 + y2
· x2

y2

)
≤ f

(
x1 + x2

y1 + y2

)
.

We then finish the proof by observing that f(x1/y1) = x1/(x1 + y1), f(x2/y2) = x2/(x2 + y2) and
f((x1 + x2)/(y1 + y2)) = (x1 + x2)/(x1 + x2 + y1 + y2).

Now we prove the induction part. Assume this statement holds for n = k−1, we prove the case
of n = k. Let x1, . . . , xk and y1, . . . , yn be the numbers. We first apply the base case on xk−1, xk
and yk−1, yk,

yk−1

yk−1 + yk
· xk−1

xk−1 + yk−1
+

yk
yk−1 + yk

· xk
xk + yk

≤ xk−1 + xk
xk−1 + yk−1 + xk + yk

.

By multiplying each term by (yk−1 + yk), we have

xk−1 · yk−1

xk−1 + yk−1
+

xk · yk
xk + yk

≤ (xk−1 + xk)(yk−1 + yk)

xk−1 + yk−1 + xk + yk
.

Set y′k−1 = yk−1 + yk, x
′
k−1 = xk−1 + xk and x′i = xi, y

′
i = yi for i < k − 1, we have that

1∑k
j=1 yj

·
k∑
j=1

yj · xj
xj + yj

=
1∑k
j=1 yj

·

k−2∑
j=1

yj · xj
xj + yj

+
yk−1 · xk−1

xk−1 + yk−1
+

yk · xk
xk + yk

 ≤ 1∑k−1
j=1 y

′
j

·
k−1∑
j=1

y′j · x′j
x′j + y′j

.

By applying hypothesis on x′1, ..., x
′
k−1 and y′1, ..., y

′
k−1, we have that

1∑k−1
j=1 y

′
j

·
k−1∑
j=1

y′j · x′j
x′j + y′j

≤
∑k−1

j=1 x
′
j∑k−1

j=1(x′j + y′j)
=

∑k
j=1 xj∑k

j=1(xj + yj)
.

Thus, the case n = k is holds.

Now we are ready to prove Lemma 4.10.

Proof. We first prove it for product distributions. Recall that ΠA
i (D) =

∑
u∈[q] pu · Du. For each

u ∈ [q], let

ru := Pr
(x,y)∼Du

[
(x, y) ∈ DI\{i}

0

]
.

For ` 6= i, let

su := Pr
(x,y)∼Du

[
(x, y) ∈ DI\{i}

`

]
.

We recall connections between ru, su and pu,

pu =
ru∑
ru
, γ`(Du) =

su
su + ru

, γ`(D) =

∑
su∑

(su + ru)
.

By Lemma A.1, we have

γ`(Π
A
i (D)) =

∑
u

pu · γ`(Du) =
1∑
ru
·
∑
u

ru · su
su + ru

≤
∑
su∑

su + ru
= γ`(D).
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The claim then follows for production distributions. For a mixed distribution D =
∑

u pj · Dj , we
apply the above inequality for each Dj ,

γ`(Π
A
i (D)) = γ`

∑
j

pj ·ΠA
i (Dj)

 =
∑
j

pj · γ`(ΠA
i (Dj)) ≤

∑
j

pj · γ`(Dj) = γ`(D).

A.2 Proof of Lemma 4.11

We recall parameters ε = 9 · 10−6, ε1 = 10−5, δ = 0.2, λ = 1− 10−4, λ′ = 1− 10−3, η = 10−4 and
q = 21010 . We restate Lemma 4.11.

Lemma A.2 (Restated). Let D = X × Y be a product distribution on [q]I × [q]I and denote
(X ′I , Y

′
I ) = D|gI(X,Y )=0I . If γi(D) ≤ ε1 for some i ∈ I, one of the following statements must be

true:

• H
(
X ′i |

(
X ′I\i, Y

′
I\i

))
≤ λ · log q,

• H
(
Y ′i |

(
X ′I\i, Y

′
I\i

))
≤ λ · log q.

In order to show entropy loss on the distribution D is large when γi(D) is small (Lemma 4.11),
we first show entropy loss for gadget function. Let g : [q] × [q] → {0, 1} be the gadget function
with discrepancy at most 2− log q. Such gadget function g satisfies the following “extractor-like”
property.

Lemma A.3. Let D = X × Y be a product distribution on [q]I × [q]I and denote (X ′I , Y
′
I ) =

D|g(X,Y )=0I . For a fixed (x′, y′) ∈ DI\{i}
0 , we define the Xi, Yi, X

′
i, Y

′
i :

Xi = X |XI\{i}=x′ and Yi = Y |YI\{i}=y′

and let
X ′i = X ′I |(X′

I\{i},Y
′
I\{i})=(x′,y′) and Y ′i = Y ′I |(X′

I\{i},Y
′
I\{i})=(x′,y′) .

If H(X ′i) ≥ λ′ · log q, H(Y ′i ) ≥ λ′ · log q, then

Pr[g(Xi, Yi) = 1] ≥ η · Pr[g(Xi, Yi) = 0].

The proof of Lemma A.3 is a standard technique in previous lifting theorems [CFK+19]. Note
that X ′i and Y ′i are independent because D is a product distribution. There is only a slight difference
between our lemma and the standard techniques. In previous proofs, they require that both X ′i
and Y ′i have large min-entropy, and then apply an extractor property. Here, we only requires that
X ′i and Y ′i have large Shannon entropy. The cost of using Shannon entropy is that, we have to
choose the entropy-loss parameter λ′ = 1− Ω(1), which also keeps the extractor property.

Given a Boolean random variable D,we denote the bias of D by bias(D) = |Pr[D = 0]−Pr[D =
1]|. We use the following lemma in [CFK+19].

21



Lemma A.4 ([CFK+19]). Let g : [q]× [q]→ {0, 1} be a function with discrepancy at most 2− log q,
Let X,Y be independent random variables taking values in [q] such that H∞(X)+H∞(Y ) ≥ 1.2·log q
then

bias(g(X,Y )) ≤ q−0.2.

Claim A.5. Let X be a distribution on [q]. If H(X) ≥ 0.998 · log q, then there is a distribution X ′

such that

• ||X −X ′||TV ≤ 0.01,

• H∞(X ′) ≥ 0.6 · log q,

Proof. Since H(X) ≥ λ0 · log q, By Markov inequality, we have that

Pr
x

[
log

1

Pr[X = x]
≤ 0.61 · log q

]
≤ 2.5 · 0.002 ≤ 0.01.

Let T = {x ∈ [q] : log 1
Pr[X=x] ≤ 0.61 log q}, we get X ′ by the following way:

1. For each x ∈ T , Pr[X ′ = x] = 0.

2. For each x ∈ [q] \ T , Pr[X ′ = x] = Pr[X=x]
1−t ≤ 1

1−0.005 · q
−0.61 ≤ q−0.6.

We note that ||X −X ′||TV ≤ 0.01 and H∞(X ′) ≥ 0.6 · log q.

Lemma A.6. Let X,Y be independent random variable on [q]. If H(X) ≥ 0.998 · log q and
H(Y ) ≥ 0.998 · log q, then there is a constant η′ ≥ 0.1 such that

Pr[g(X,Y ) = 1] ≥ η′ · Pr[g(X,Y ) = 0],

Proof. By Claim A.5, there is a independent variable X ′ and Y ′ such that

H∞(X ′) ≥ 0.6 · log q and H∞(Y ′) ≥ 0.6 · log q

and
||X −X ′||TV ≤ 0.01 and ||Y − Y ′||TV ≤ 0.01.

By Lemma A.4, we have

bias(g(X,Y )) ≤ bias(g(X ′, Y ′)) + 0.04 ≤ q−0.2 + 0.04 ≤ 0.05.

Setting η′ = 0.1, we have
Pr[g(X,Y ) = 1] ≥ η′ · Pr[g(X,Y ) = 0].

Now we are ready to prove Lemma A.3.
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Proof of Lemma A.3. Assume Pr[g(Xi, Yi) = 0] ≥ 0.9999. By the definition of D and D′, we have

H(X ′i) = H(Xi|g(Xi, Yi) = 0) ≤ H(Xi|g(Xi, Yi))

Pr[g(Xi, Yi) = 0]
≤ H(Xi)

Pr[g(Xi, Yi) = 0]
.

Since Pr[g(Xi, Yi) = 0] ≥ 0.9999, we have

H(Xi) ≥ 0.9999 · H(X ′i) ≥ 0.998 · log q.

Similarly,
H(Yi) ≥ 0.9999 · H(Y ′i ) ≥ 0.998 · log q.

Since D is product distribution, Xi and Yi are independent random variables, By Lemma A.6, we
have

Pr[g(Xi, Yi) = 1] ≥ 0.1 · Pr[g(Xi, Yi) = 0].

If Pr[g(Xi, Yi) = 0] ≤ 0.9999, then

Pr[g(Xi, Yi) = 1] ≥ 10−4 · Pr[g(Xi, Yi) = 0].

We note that if we fix coordinates in I\i, we only need to deal with gadget function in coordinate
i. Since γi(D) is small, by Lemma A.3, we have entropy loss either in Alice’s side or in Bob’s side.
Now we are ready to prove Lemma 4.11.

Proof of Lemma 4.11. We prove the statement by contradiction. We assume thatH(X ′i|(X ′I\i, Y
′
I\i)) ≥

λ · log q and H(Y ′i |(X ′I\i, Y
′
I\i)) ≥ λ · log q. Fix (x′, y′) ∈ D

I\i
0 , we use X ′i as a shorthand for

X ′i |(X′
I\{i},Y

′
I\i)=(x′

I\i,y
′
I\i)

and Y ′i as a shorthand for Y ′i |(X′
I\{i},Y

′
I\i)=(x′

I\i,y
′
I\i)

. Recall that λ′ =

1− 10−3, λ = 1− 10−4 and δ = 2.
If H(X ′i|(X ′I\i, Y

′
I\i)) ≥ λ · log q , then by an average argument,

Pr
(x′,y′)∼(X′

I\i,Y
′
I\i)

[H(X ′i)) ≥ λ′ · log q] ≥ 1− δ.

Similarly, if H(Y ′i |(X ′I\i, Y
′
I\i)) ≥ λ · log q, we have

Pr
(x′,y′)∼(X′

I\i,Y
′
I\i)

[H(Y ′i ) ≥ λ′ · log q] ≥ 1− δ.

By union bound, we have

Pr
(x′,y′)∼(X′

I\i,Y
′
I\i)

[H(X ′i) ≥ λ′ · log q and H(Y ′i ) ≥ λ′ · log q] ≥ 1− 2δ.

By Lemma A.3, if (x′, y′) ∼ (X ′I\i, Y
′
I\i), let Xi = X |XI\{i}=x′ and Yi = Y |YI\{i}=y′ , then with

probability 1− 2δ, we have

Pr[g(Xi, Yi) = 1] ≥ η · Pr[g(Xi, Yi) = 0].

Recall the definition of γi(D), then we have

γi(D) ≥ η

2
· (1− 2δ).

Setting ε < η
2 · (1− 2δ) ≤ 3 · 10−4 contradicts the fact that γi(D) ≤ ε.
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