
Worst-Case to Average-Case Reductions

via Additive Combinatorics

Vahid R. Asadi∗ Alexander Golovnev† Tom Gur‡ Igor Shinkar§

Abstract

We present a new framework for designing worst-case to average-case reductions. For a large
class of problems, it provides an explicit transformation of algorithms running in time T that
are only correct on a small (subconstant) fraction of their inputs into algorithms running in

time Õ(T ) that are correct on all inputs.
Using our framework, we obtain such efficient worst-case to average-case reductions for fun-

damental problems in a variety of computational models; namely, algorithms for matrix multi-
plication, streaming algorithms for the online matrix-vector multiplication problem, and static
data structures for all linear problems as well as for the multivariate polynomial evaluation
problem.

Our techniques crucially rely on additive combinatorics. In particular, we show a local
correction lemma that relies on a new probabilistic version of the quasi-polynomial Bogolyubov-
Ruzsa lemma.
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1 Introduction

Worst-case to average-case reductions provide a method for transforming algorithms that can only
solve a problem for a fraction of the inputs into algorithms that can solve the problem for all inputs.

For instance, consider one of the most fundamental algorithmic problems: matrix multiplication.
Suppose we have an average-case algorithm ALG that can correctly compute the product A ·B on
an α-fraction of matrices A,B ∈ Fn×n; that is, Pr[ALG(A,B) = A ·B] ≥ α. Is it possible to use ALG
to obtain an algorithm that computes A · B for all input matrices? A worst-case to average-case
reduction will give a positive answer to this question, boosting the success rate α to 1, without
incurring significant overhead. Of course, the same question can be asked with respect to any other
computational problem.

In this paper, we study such reductions for average-case algorithms where the success rate α
could be very small, such as in the %1 regime, and even when α tends to zero rapidly (i.e., for
algorithms that are only correct on a vanishing fraction of their inputs). There are two natural
perspectives in which we can view such reductions. On the one hand, they can provide a proof
that a problem retains its hardness even in the average case. On the other hand, they provide
a paradigm for designing worst-case algorithms, by first constructing algorithms that are only
required to succeed on a small fraction of their inputs, and then using the reduction to obtain
algorithms that are correct on all inputs.

Background and context. The study of the average-case complexity originates in the work of
Levin [Lev86]. A long line of works established various barriers to designing worst-case to average-
case reductions for NP-complete problems (see, e.g., [Imp11] and references therein). We refer the
reader to the classical surveys by Impagliazzo [Imp95], and Bogdanov and Trevisan [BT06] on this
topic.

On the positive side, Lipton [Lip91] proved that the matrix permanent problem admits a
polynomial-time worst-case to average-case reduction. Ajtai [Ajt96] designed worst-case to average-
case reductions for certain lattice problems, which led to constructions of efficient cryptographic
primitives from worst-case assumptions [AD97, Reg04]. Other number-theoretic problems in cryp-
tography have been long known to admit such reductions due to random self-reducibility: the
discrete logarithm problem, the RSA problem, and the quadratic residuosity problem (see, e.g.,
[Sho09]). For the matrix multiplication problem, there is a weak reduction that requires the
average-case algorithm to succeed with very high probability 3/4 (see Section 2.1). There are
also known worst-case to average-case reductions for many problems that are not thought to be in
NP [FF93, BFNW93, STV01].

Recently, the study of fine-grained complexity [Vas18] of algorithmic problems sparked interest
in designing efficient worst-case to average-case reductions for such problems as orthogonal vectors,
3SUM, online matrix-vector multiplication, k-clique, and others. Such reductions are motivated by
fine-grained cryptographic applications. A large body of work is devoted to establishing fine-grained
worst-case to average-case reductions for the k-clique problem, orthogonal vectors, 3SUM, and
various algebraic problems, as well as building certain cryptographic primitives from them [BRSV17,
BRSV18, GR18, LLV19, BABB19, DLV20]. Since there are no known constructions of one-way
functions and public-key cryptography from well-established fine-grained assumptions, the question
of constructing efficient worst-case to average-case reductions for other fine-grained problems still
attracts much attention.
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1.1 Our contribution

We design a framework for showing explicit worst-case to average-case reductions, and we use it to
obtain reductions for fundamental problems in a variety of computational models. Informally, we
show that if a problem has an algorithm that runs in time T and succeeds on α-fraction of its inputs
(even for sub-constant success rate α), then there exists a worst-case algorithm for this problem,
which runs in time Õ(T ). We design such reductions for the matrix multiplication problem in the
setting of algorithms, for the online matrix-vector multiplication problem in the streaming setting,
for all linear problems in the setting of static data structures, and for the problem of multivariate
polynomial evaluation. We describe these results in detail below.

1.1.1 Algorithms for matrix multiplication

Recall that in the matrix multiplication problem, the goal is simply to compute the product of
two given matrices A,B ∈ Fn×n. A long line of research, culminating in the work of Alman
and Vassilevska Williams [AV21], led to matrix multiplication algorithms performing O(n2.37286)
operations. We present a worst-case to average-case reduction for the matrix multiplication problem
over prime fields. Namely, we show that if there exists a (randomized) algorithm that, given two
matrices A,B ∈ Fn×n, runs in time T (n) and correctly computes their product for a small fraction
of all possible inputs, then there exists a (randomized) algorithm that runs in Õ(T (n)) time and
outputs the correct answer for all inputs. Formally, we have the following theorem.

Theorem 1. Let F = Fp be a prime field, n ∈ N, and α := α(n) ∈ (0, 1]. Suppose that there exists
an algorithm ALG that, on input two matrices A,B ∈ Fn×n runs in time T (n) and satisfies

Pr[ALG(A,B) = A ·B] ≥ α ,

where the probability is taken over the random inputs A,B ∈ Fn×n and the randomness of ALG.

• If |F| ≤ 2/α, then there exists a randomized algorithm ALG′ that for every input A,B ∈ Fn×n

and δ > 0, runs in time exp(O(log5(1/α)))
δ · T (n) and outputs AB with probability at least 1− δ.

• If |F| ≥ 2/α, then there exists a randomized algorithm ALG′ that for every input A,B ∈ Fn×n
and δ > 0, runs in time O( 1

δ·α4 · T (n)) and outputs AB with probability at least 1− δ.

For example, if we have an algorithm that succeeds on α fraction of the inputs for α >
exp(− 6

√
log(n)) in time T (n) = nc, then we get an algorithm that works for all inputs and runs in

time nc+o(1). In particular, if we have an n2+o(1) algorithm that succeeds on α > exp(− 6
√

log(n))
fraction of the inputs, then there is a worst case algorithm with running time n2+o(1).

1.1.2 Data structures for all linear problems

The class of linear problems plays a central role throughout computer science and mathematics,
yielding a myriad of applications both in theory and practice. Our next contribution gives worst-
case to average-case reductions for static data structures for all linear problems. Recall that a linear
problem LA over a field F is defined by a matrix A ∈ Fm×n.1 An input to the problem is a vector
v ∈ Fn, which is preprocessed into s memory cells. Then, given a query i ∈ [m], the goal is to

1Formally, LA is defined by an infinite sequence of matrices (An)n≥1, where An ∈ Fm×n for m = m(n).
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output 〈Ai, v〉, where Ai is the i’th row of A, by probing at most t of the memory cells, where t is
called the query time.

Note that the trivial solutions for data structure problems are to either: (i) store only s = n
memory cells containing the input v, and for each query i ∈ [m], read v entirely and compute the
answer in query time t = n; or (ii) use s = m memory cells, where the i’th cell contains the answer
to the query i ∈ [m], thus allowing for query time t = 1. In a typical application, the number of
queries m = poly(n)� n, and a data structure is efficient if it uses space s = Õ(n) (or s� m) and
has query time t = poly(log(n)) (or t = nε for a small constant ε > 0). Note that the two trivial
solutions do not lead to such efficient data structures for m� n.

We consider randomized data structures, where both the preprocessing stage and the query
stage use randomness, and are expected to output the correct answer with high probability (over
the randomness of both stages). In average-case randomized data structures, the success rate of
the algorithm is taken over both the inner randomness and the random input, whereas in worst-
case randomized data structure, the success rate is taken only over the inner randomness of the
algorithm (i.e., the algorithm succeeds with high probability on all inputs).

We present a worst-case to average-case reduction showing that if there exists a data struc-
ture DS that uses s memory cells, has query time t, and success rate such that for a small fraction
of inputs the data structure answers all queries correctly, then there exists another data structure
DS′ that uses 4s memory cells, has query time 4t, and success rate such that for all inputs the data
structure answers all queries correctly with high probability.

Theorem 2. Let F = Fp be a prime field, α := α(n) ∈ (0, 1], n,m ∈ N, and a matrix A ∈ Fm×n.
Denote by LA the linear problem of outputting 〈Ai, x〉 on input x ∈ Fn and query i ∈ [m]. Suppose
that

LA ∈ DS

 preprocessing time: p
memory used: s

query time: t
success rate: Prx∈Fn [DSx(i) = 〈Ai, x〉 ∀i ∈ [m]] ≥ α

 .
Then for every δ > 0,

LA ∈ DS

 preprocessing time: p+ exp(log4(1/α)) · poly log(1/δ) · poly(n)

memory used: 4s+O(log4(1/α) log(n))

query time: 4t+O(log4(1/α) log(n))
success rate: ∀x ∈ Fn Pr[DS′x(i) = 〈Ai, x〉 ∀i ∈ [m]] ≥ 1− δ

 .
We stress that in the average-case data structure we start with, the probability is taken over a

random input (as well as the inner randomness of the algorithm), whereas in the worst-case data
structure that we obtain, with high probably the algorithm is successful on all inputs.

The reduction above shows that for any linear problem LA, if a data structure succeeds on
an arbitrary small constant α > 0 fraction of the inputs, then we can obtain a data structure
that succeeds on all inputs with parameters that essentially differ only by a constant multiplicative
factor, and the query complexity t translates into query complexity 4t+O(log(n)).

We note that the O(log4(1/α) log(n)) overhead in the space complexity of the constructed data
structure is caused by storing O(log4(1/α)) numbers from [n]. In particular, if the word size of
the data structure is w ≥ log(n), then the space complexity of the resulting data structure is
4s + O(log4(1/α)). Similarly, in this case the query complexity of the resulting data structure is
4t+O(log4(1/α)).
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Note that for any non-trivial data structure problem, a data structure must use at least Ω(n)
memory cells (only to store a representation of the input). Therefore, even for α as small as
α = 2−n

η
for a small constant η > 0, the overhead in the space complexity is negligible. For typical

query times of data structures, such as t = poly(log(n)) and t = nε, the overhead in the query time
is negligible even for α = 1/poly(n) and α = 2−n

η
, respectively.

1.1.3 Online matrix-vector multiplication

Next we turn to the core data structure problem in fine-grained complexity, the online matrix-vector
multiplication problem (OMV). In the data structure variant of this streaming problem, one needs
to preprocess a matrix M ∈ Fn×n, such that given a query vector v ∈ Fn, one can quickly compute
Mv. The study of OMV (over the Boolean semiring) and its applications to fine-grained complexity
originates from [HKNS15], and [LW17, CKL18] give surprising upper bounds for the problem. Over
finite fields, [FHM01, CGL15] give lower bounds for OMV, and [CKLM18] proves lower bounds for
a related vector-matrix-vector multiplication problem. We prove an efficient worst-case to average-
case reduction for OMV over prime fields. A concurrent and independent work [HLS21] studies
worst-case to average-case reductions for OMV over the Boolean semiring and their applications.

Note that OMV is, in fact, not a linear problem, because for a query v the output is not a single
field element, but rather a vector Mv ∈ Fn. Moreover, the average case condition only guarantees
success with probability taken over both the matrix M as well as the vector v. Nevertheless, we
can exploit the fact that each coordinate of the correct output is a linear function in the entries of
M , and extend our techniques to the more involved setting of OMV.

Theorem 3. Let F = Fp be a prime field, n ∈ N, and α := α(n) ∈ (0, 1]. Consider the matrix-
vector multiplication problem OMVF for dimension n, and suppose that for some α > 0 it holds
that

OMVF ∈ DS

 preprocessing time: p
memory used: s

query time: t
success rate: PrM,v[DSM (v) = Mv] ≥ α

 .
Then for every δ > 0,

OMVF ∈ DS

 preprocessing time: 4p+ exp(log4(1/α)) · poly log(1/δ) · poly(n)

memory used: 4s+O(log4(1/α)n) +O(n2)
query time: (4t+ n) · poly(1/α) · poly log(1/δ)

success rate: ∀M, v : Pr[DSM (v) = Mv] ≥ 1− δ

 .
We stress that in the assumed data structure, the success rate asserts that for a random input M

and query v, the data structure produces the correct answer with (an arbitrary small) probability
α > 0, where the probability is over (i) the random input M (ii) random query v (iii) and the
randomness of the preprocessing and the query phases of the data structure. On the other hand,
the conclusion holds for worst case inputs and queries. That is, for every input M and query v, the
obtained data structure produces the correct answer with high probability, where the probability is
only over the randomness used in the preprocessing stage and the query phase of the data structure
(i.e., with high probability we can compute all of the inputs).

To understand the parameters of the reduction, note that in the the OMV problem with n× n
matrices, the preprocessing must be at least n2, as this is the size of the input matrix, and the
query time must be at least n, as information-theoretically we need to output n field elements. Our
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worst-case to average-case reduction is essentially optimal in these parameters for a constant α, as
a weak data structure that uses s memory cells and query time t is translated into a data structure
that works for all inputs and all queries using space 4s+O(n2) and query time 4t+O(n) = O(t).
In fact, even for α as small as α = 1/no(1), the space complexity is increased by at most O(n2),
and the query time is multiplied by at most no(1).

1.1.4 Worst-case to weak-average-case reductions

In the following, we discuss how to obtain worst-case algorithms starting from a very weak, but
natural, notion of average-case reductions that we discuss next.

Recall that in the standard definition of average-case data structures, the algorithm preprocesses
its input and is then required to correctly answer all queries for an α-fraction of all possible inputs.
However, in many cases (such as in the online matrix-vector multiplication problem), we only have
an average-case guarantee on both inputs and queries. In this setting, we should first ask what is
a natural notion of an average-case condition.

A strong requirement for an average-case algorithm in this case is to correctly answer all queries
for at least α-fraction of the inputs. However, it is desirable to only require the algorithm to correctly
answer on an average input and query. That is, a weak average-case data structure for computing
a function f : Fn× [m]→ F with success rate α > 0 receives an input x ∈ Fn, which is preprocessed
into s memory cells. Then, given a query i ∈ [m], the data structure DSx(i) outputs y ∈ Fn′ such
that Prx∈Fn,i∈[m][DSx(i) = f(x, i)] ≥ α.

The challenge in this setting is that the errors may be distributed between both the inputs
and the queries. On one extreme, the error is concentrated on selected inputs, and then the data
structure computes all queries correctly for α-fraction of the inputs. On the other extreme, the
error is spread over all inputs, and then the data structure may only answer α-fraction of the queries
on any inputs. Of course, the error could be distributed anywhere in between these extremes.

While we showed that every linear problem has an efficient worst-case to average-case reduction,
in Section 6.3 we show that not all linear (and non-linear) problems admit a worst-case to weak -
average-case reductions. Nevertheless, we overcome this limitation for certain problems of interest.

One of the most-studied problems in static data structures is the polynomial evaluation prob-
lem [KU08, Lar12, DKKS21]. Here, one needs to preprocess a degree-d polynomial q : Fm → F into
s memory cells, and then for a query x ∈ Fm, quickly compute q(x). We study the problem of
evaluating a low degree polynomial in the regime where the average-case data structure might only
succeed on a small α fraction of the queries (outside of the unique decoding regime, see discussion
below). We show that we can use such an average-case data structure to obtain a worst-case data
structure that can compute q on any x ∈ Fm.

Theorem 4. Let F = Fp be a prime field, α := α(n) ∈ (0, 1], and let m, d ∈ N be parameters.
Consider the problem RMF,m,d of evaluating polynomials of the form q : Fm → F of total degree d

(i.e., the problem of evaluating the Reed-Muller encoding of block length n =
(
m+d
d

)
).

Suppose that

RMF,m,d ∈ DS

 preprocessing time: p
memory used: s

query time: t
success rate: Prq,x[DSq(x)] ≥ α

 .
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Then

RMF,m,d ∈ DS


preprocessing time: p+ exp(log4(1/α)) · poly(n)

memory used: 4s+O(log4(1/α) log(n))

query time: O(|F|2 · t+ |F| log4(1/α) + |F| log(n))

success rate: ∀q, x : Pr[DSq(x) = q(x)] > 1−O
(√

d
|F|

)
 .

Here, similarly to Theorem 3, the assumed data structure succeeds only for a small fraction of
inputs and queries, while in the conclusion the data structure succeeds with high probability on
every input and every query.

As for the effect of the reduction on the parameters, we see that for any α > 1/poly(n) the
preprocessing time changes only by an additive poly(n), the space complexity changes from s to
4s + poly(log(n)), and the query time changes from t to O(|F|2 · t + |F| · poly log(n)). In the data
structure setting, the number of queries is usually polynomial in input length. Thus, in a typical
setting of parameters for RMF,m,d, the field size is |F| = poly(log n), and, therefore, the blow-up of
|F|2 is not critical.

A coding-theoretic perspective. For small values of average-case rate α > 0, the polynomial
evaluation problem can be cast as list decoding with preprocessing, by viewing the outputs of the
query phase of the data structure as a function h : Fm → F that agrees with the input polynomial
q : Fm → F on some small fraction of the queries, and the goal is to recover q from h.

Indeed, note that for a small α > 0, if a function h : Fm → F agrees with some unknown
low-degree polynomial q on α fraction of the inputs, then there are potentially O(1/α) possible
low-degree polynomials that are equally close to h. Hence, without preprocessing it is impossible
to recover the original polynomial q. However, in the data structure settings, we can use the
preprocessing to obtain an auxiliary structural information that would later allow us to transition
from the list decoding regime to the unique decoding regime, and in turn, compute the values of
the correct polynomial q with high probability (see more details in Section 2.4).

1.2 Open problems

Our work leaves many natural open problems, such as obtaining reductions for various natural
problems in other computational models (e.g., communication complexity, property testing, PAC
learning, and beyond). However, for brevity, we would like to focus on and highlight one direction
that we find particularly promising.

In Theorem 2, we design worst-case to average-case reductions for linear problems in the setting
of static data structures. An immediate and alluring question is whether our local correction via
additive combinatorics framework can also be used to show worst-case to average-case reductions
for all linear problems for both circuits and uniform algorithms. We observe that using similar
techniques as in Theorem 2, our framework can be used to show that given an efficient average-
case circuit or uniform algorithm and an efficient verifier for the problem, one can indeed design an
explicit efficient worst-case circuit or uniform algorithm. A natural open problem here is to eliminate
the assumption about the verifier and answer the aforementioned question to the affirmative.
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2 Technical overview

We provide an overview of the main ideas and techniques that we use to obtain our results. For con-
creteness, we illustrate our techniques by first focusing on the matrix multiplication problem.

We start in Section 2.1, where we explain the challenge and discuss why the naive approach
fails. In Section 2.2 we present the technical components that lie at the heart of this work: local
correction lemmas via additive combinatorics. Equipped with these technical tools, in Section 2.3
we present the main ideas in our worst-case to average-case reduction for matrix multiplication.
Finally, in Section 2.4 we briefly discuss how to obtain the rest of our main results.

2.1 The challenge: low-agreement regime

Recall that in the matrix multiplication problem we are given two matrices A,B ∈ Fn, and the
goal is to compute their matrix product A · B. For simplicity of the exposition, unless specified
otherwise, in this overview we restrict our attention to the field F2, and to constant values of the
success rate parameter α > 0 of average-case algorithms.

We would like to show that if there is an average-case algorithm ALG that can compute matrix
multiplication for an α-fraction of all pairs of matrices A,B ∈ Fn in time T (n), then there is a
worst-case randomized algorithm ALG′ that runs in time O(T (n)) and computes A · B with high
probability for every pair of matrices A and B.

We start with the elementary case where the average-case guarantee is in the high-agreement
regime, i.e., where the algorithm succeeds on, say, 99% of the inputs; that is,

Pr
A,B∈Fn×n

[ALG(A,B) = A ·B] ≥ α , (1)

for α = 0.99. In this case, a folklore local correction procedure (see, e.g., [BLR90]) will yield
a worst-case algorithm that succeeds with high probability on all inputs. We next describe this
procedure.

Given an average-case algorithm ALG satisfying Eq. (1) with α = 0.99, consider the worst-case
algorithm ALG′ that receives any two matrices A,B ∈ Fn×n and first samples uniformly at random
two matrices R,S ∈ Fn×n. Next, writing A = R + (A − R) and B = S + (B − S), the algorithm
ALG′ computes

M = ALG(R,S) + ALG(A−R,S) + ALG(R,B − S) + ALG(A−R,B − S) . (2)

Denote by X the set of matrix pairs (A,B) for which ALG(A,B) = A · B, and recall that by
Eq. (1) the density of X is 0.99. Note that: (a) the matrices R, A−R, S, and B−S are uniformly
distributed, and (b) if the pairs (R,S), (A−R,S), (R,B−S), and (A−R,B−S) are in the set X,
then by Eq. (2) we have M = A ·B, and the algorithm ALG′ computes the multiplication correctly.
Hence, by a union bound we have Pr[M = AB] ≥ 1− 4 · 0.01 > 0.9 for all matrices A,B ∈ Fn×n.
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Of course, the error probability can be further reduced by repeating the procedure and ruling by
majority.

Unfortunately, this argument breaks when the average-case guarantee is weaker; namely, in the
low-agreement regime, where the algorithm succeeds on, say, only 1% of the inputs. Here, when
trying to self-correct as above, the vast majority of random choices would lead to a wrong output,
and so at a first glace, the self-correction approach may seem completely hopeless.2

Nevertheless, using more involved tools from additive combinatorics such as a probabilistic
version of the quasi-polynomial Bogolyubov-Ruzsa lemma that we show, as well as tools such
as small-biased sample spaces and the Goldreich-Levin algorithm, we can construct different local
correction procedures that work in the low-agreement regime. We proceed to describe our framework
for local correction using the aforementioned tools.

2.2 Local correction via additive combinatorics

Additive combinatorics studies approximate notions of algebraic structures via the perspective of
combinatorics, number theory, harmonic analysis and ergodic theory. Most importantly for us,
it provides tools for transitioning between algebraic and combinatorial notions of approximate
subgroups with only a small loss in the underlying parameters (see surveys [Lov15, Lov17]).

The starting point of our approach for local correction is a fundamental result in additive
combinatorics, known as Bogolyubov’s lemma, which shows that the 4-ary sumset of any dense set
in Fn2 contains a large linear subspace. More accurately, recall that the sumset of a set X is defined
as X +X = {x1 + x2 : x1, x2 ∈ X}, and similarly 4X = {x1 + x2 + x3 + x4 : x1, x2, x3, x4 ∈ X}.
These quantities can be thought of as quantifying a combinatorial analogue of an approximate
subgroup. Bogolyubov’s lemma states that for any subset X ⊆ Fn2 of density |X|/2n ≥ α, there
exists a subspace V ⊆ 4X of dimension at least n− α−2.

We will show that statements of the above form can be used towards obtaining a far stronger
local correction paradigm than the one outlined in Section 2.1. To see the initial intuition, consider
an average-case algorithm that is guaranteed to correctly compute α-fraction of the inputs, and
denote by X the set of these correctly computed inputs. Then |X|/2n ≥ α, and Bogolyubov’s
lemma shows that there exists a large subspace V such that every v ∈ V can be expressed as a sum
of four elements in X, each of which can be computed correctly by the average-case algorithm.

The approach above suggests a paradigm for local correction, however, there are several non-
trivial problems in implementing this idea. For starters, how could we handle inputs that lay
outside of the subspace V ? To name a few others: how can we amplify the success probability in
the low-agreement regime? How do we algorithmically obtain the decomposition? Can we handle
finite fields beyond Fn2? How do we handle average-case where the success rate α is sub-constant?

Indeed, for our worst-case to average-case reductions, we will need local correction lemmas with
stronger structural properties than those admitted by Bogolyubov’s lemma, as well as new ideas for
each one of the settings. In the following, we discuss the main hurdles for the foregoing approach
and the tools that are needed to overcome them, leading to our main technical tool, which is a
probabilistic version of the quasi-polynomial Bogolyubov-Ruzsa lemma that we obtain. Then, we

2Indeed, consider the counterexample where the average-case algorithm ALG(A,B) outputs A · B in case the
first element of A is 0 and returns the zero matrix in case the first element of A is 1. Note that in this case
PrA,B∈Fn×n [ALG(A,B) = A ·B] ≥ 1/2, yet no decomposition of A =

∑
iAi and B =

∑
iBi as described above could

self-correct matrix multiplication where the first element of A is 1. Indeed, any such composition would have an Ai
with the first element 1, where ALG(Ai, Bj) fails.
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present our framework for local correction using these techniques. Finally, in Sections 2.3 and 2.4
we show the additional ideas that are necessary for applying the local correction lemmas in the
settings of matrix multiplication, online matrix-vector multiplication, and data structures.

A probabilistic Bogolyubov lemma. An immediate problem with the aforementioned local
correction scheme is that while Bogolyubov’s lemma asserts that there exists a decomposition of
each input into a sum of four elements in X, it does not tell us how to obtain this decomposition.

Toward this end, we further show that each vector v ∈ V has many “representations” as a
sum of four elements from X. This way, for any v ∈ V we can efficiently sample a representation
v = x1 + x2 + x3 + x4, where each xi ∈ X. More accurately, let X ⊆ Fn2 be a set of density α, let
R = {r ∈ Fn \ {0} :

∣∣1̂X(r)
∣∣ ≥ α3/2}, and let V = {v ∈ Fn : 〈v, r〉 = 0 ∀r ∈ R} be a linear subspace

defined by R. Then |R| ≤ 1/α2 and for all v ∈ V it holds that

Pr
x1,x2,x3

[x1, x2, x3, v − x1 − x2 − x3 ∈ X] ≥ α5 .

Sparse-shift subspace decomposition. The probabilistic Bogolyubov lemma allows us to lo-
cally correct inputs inside the subspace V ⊆ 4X. However, we need to be able to handle any
vector in the field. Towards that end, we show an algebraic lemma that allows us to decompose
each element of the field into a sum of an element v in the subspace V and a sparse shift-vector s.
More accurately, let R ⊆ Fn \ {~0} and V = {v ∈ Fn : 〈v, r〉 = 0 ∀r ∈ R}. We show that there
exists a collection of t ≤ |R| vectors B = {b1, . . . , bt}, bi ∈ Fn and indices k1, . . . , kt ∈ [n] such
that span(B) = span(R) and every vector y ∈ Fn can be written as y = v + s, where v ∈ V and
s =

∑t
j=1 cj · ~ekj for cj = 〈y, bj〉 and ~ekj is a unit vector.

We stress that the sparsity of the decomposition is essential to our applications, as we cannot
locally correct the shift part of the decomposition, and instead we need to compute it explicitly. We
remark that for matrix multiplication we can obtain a stronger guarantee by dealing with matrices
outside of the subspace V via a low-rank random matrix shifts (see Section 2.3).

Subspace computation via the Goldreich-Levin lemma. In order to perform local correc-
tion using additive combinatorics machinery as above while maintaining computational efficiency,
we need to be able to compute the aforementioned basis b1, . . . , bt ∈ Fn and indices k1, . . . , kt ∈ [n]
efficiently. We note that, in essence, this problem reduces to learning the heavy Fourier coefficients
of the set X. Thus, using ideas from [BRTW14] and an extension of the Goldreich-Levin algorithm
to arbitrary finite fields, we can perform the latter in a computationally efficient way.

Probabilistic quasi-polynomial Bogolyubov-Ruzsa lemma. The main weakness of Bo-
golyubov’s lemma is that the co-dimension of the subspace that it admits is polynomial in 1/α,
where α is the success rate of the average-case algorithm. While this dependency on α allows us
to locally correct in the 1% agreement regime, it becomes degenerate when α tends to 0 rapidly.

A natural first step towards overcoming this barrier is to use a seminal result due to
Sanders [San12], known as the quasi-polynomial Bogolyubov-Ruzsa lemma, which shows the ex-
istence of a subspace whose co-dimension’s dependency on 1/α is exponentially better. That is,
the lemma shows that for a set X ⊆ Fn2 of size α · |F2|n, where α ∈ (0, 1], there exists a subspace
V ⊆ Fn2 of dimension dim(V ) ≥ n − O(log4(1/α)) such that V ⊆ 4X. However, as in the case of
Bogolyubov’s lemma, we have the problem that the statement is only existential.
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We thus prove a probabilistic version of the quasi-polynomial Bogolyubov-Ruzsa lemma (see
Lemma 3.3) over any field F = Fp, which asserts that for an α-dense set X ⊆ Fn, there exists a
subspace V ⊆ Fn of dimension dim(V ) ≥ n−O(log4(1/α)) such that for all v ∈ V it holds that

Pr
x1,x2,x3∈Fn

[x1, x2 ∈ A, x3, x4 ∈ −A] ≥ Ω(α5) ,

where x4 = v−x1−x2−x3. Furthermore, by combining the techniques above, we show that given
a query access to the set X, there is an algorithm that runs in time exp(log4(1/α)) · poly log(1/δ) ·
poly(n) and with probability 1 − δ computes a set of vectors R ⊆ Fn such that V = {v ∈ Fn :
〈v, r〉 = 0 ∀r ∈ R}.

We are grateful to Tom Sanders for providing us with the argument for showing this lemma,
and we provide the proof in Appendix A.

Our local correction lemma. We are now ready to provide an informal statement of our local
correction lemma, which builds on the machinery above, and in particular, on the probabilistic
quasi-polynomial Bogolyubov-Ruzsa lemma.

Loosely speaking, our local correction allows us to decompose any vector y ∈ Fn as a linear
combination of the form

y = x1 + x2 − (x3 + x4) + s ,

where x1, x2, x3, x4 ∈ X and s ∈ Fn is a sparse vector.

Lemma 2.1 (informally stated, see Lemma 3.4). For a field F = Fp and α-dense set X ⊆ Fn, there
exists t ≤ 1/α2 vectors b1, . . . , bt ∈ Fn2 and indices k1, . . . , kt ∈ [n] satisfying the following. Given a
vector y ∈ Fn2 , let s =

∑t
j=1 〈y, bj〉 · ~ekj we have

Pr
x1,x2,x3∈Fn

[x1, x2 ∈ X,x3, x4 ∈ −X] ≥ Ω(α5) ,

where x4 = y − s− x1 − x2 − x3.
Furthermore, given an oracle that computes 1X(x) with probability at least 2/3, there exists an

algorithm that makes exp(log4(1/α)) · poly log(1/δ) · poly(n) oracle calls and field operations, and
with probability at least 1− δ outputs b1, . . . , bt and k1, . . . , kt.

The aforementioned local correction lemmas lie at the heart of our average-case to worst-case
reductions, which we discuss next.

2.3 Illustrating example: matrix multiplication

We present a high-level overview of our reductions for matrix multiplication, which illustrates
the key ideas that go into the proof. Let ALG be an average-case algorithm that can compute
matrix multiplication for an α-fraction of all pairs of matrices A,B ∈ Fn in time T (n). We use
the average-case algorithm ALG to construct a worst-case randomized algorithm ALG′ that runs
in time O(T (n)) and computes A · B with high probability for every pair of matrices A and B.
For simplicity of the exposition, in this overview we make the following assumptions: (1) the
algorithm ALG is deterministic, (2) the input is a pair (A,B) such that A is a matrix satisfying
PrB′ [ALG(A,B′) = A ·B′] ≥ α, (3) the success rate α is a constant, and (4) the field F is F2.

We start by noting two simple facts. First, given the algorithm’s (potentially wrong) output
ALG(A,B), we can efficiently check whether the computation is correct using Freivalds’ algorithm
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(Lemma 4.1). Second, denoting by X = {B′ ∈ Fn×n2 : ALG(A,B′) = A · B′} the set of “good”
matrices, we have that if B ∈ X, then the average-case algorithm correctly outputs ALG(A,B) =
A · B. Hence, the main challenge is in dealing with the case that B /∈ X, in which we need to
locally correct the value of the multiplication.

Local correction via Bogolyubov’s lemma. The first idea is to reduce the problem to the
case where the set of good matrices contains a large subspace, and hence admits local correction,
as discussed in Section 2.2. Specifically, by the probabilistic Bogolyubov lemma, given X we can
choose a subspace V ⊆ Fn×n2 of matrices, where dim(V ) ≥ n2 − 1/α2, such that for any B′ ∈ V , if
we sample M1,M2,M3 uniformly at random, then

Pr[M1,M2,M3,M4 ∈ X] ≥ α5 , where M4 = B′ −M1 −M2 −M3 .

Note that if the matrices M1,M2,M3,M4 produced by our sampling are all in the set of good
matrices X, then we can self-correct the value of ALG(A,B′) by evaluating {ALG(A,Mi)}i∈[4] and
computing the linear combination

4∑
i=1

ALG(A,Mi) =
4∑
i=1

A ·Mi = A · (
4∑
i=1

Mi) = A ·B′ .

Note that this event is only guaranteed to occur with probability α5, which is far smaller than
1/2. Nevertheless, since we can verify the computation using Freivalds’ algorithm, we can boost
this probability to be arbitrarily close to 1 by repeating the random sampling step O(1/α5) times,
each time computing

∑4
i=1 ALG(A,Mi) and verifying if the obtained result is indeed correct using

Freivalds’ algorithm. Therefore, if B belongs to the (unknown) subspace V , then the algorithm
described above indeed computes A ·B with high probability in time O(T (n)/poly(α)) = O(T (n)).

However, the approach above does not work for matrices B that do not lie in the subspace V
described above. To deal with this case, our next goal is to “shift” the matrix into the subspace V
using low-rank random shifts, which can then be computed efficiently and used for local correction.
We describe this procedure next.

Low-rank random matrix shifts. We start by making the following key observation: if we
have an arbitrary matrix A, and a matrix B ∈ Fn×n of rank k, then their product AB can be
computed in time O(kn2), given a rank-k decomposition of B. Details follow.

To see this, suppose that the first k columns of B denoted by (Bi)
k
i=1, are linearly independent,

and for each of the remaining n − k columns (Bj)
n
j=k+1, we know the linear combination Bj =∑k

i=1 di,j · Bi for some coefficients di,j ∈ F. We can first multiply A by each of the k linearly
independent columns of B. Then, to compute the remaining columns, for each i = 1, . . . , k let
Ci = A ·Bi be the i’th column of the matrix C = AB, and observe that if Bj =

∑k
i=1 di,jBi, then

Cj = A ·Bj = A · (
∑k

i=1 di,jBi) =
∑k

i=1 di,j · Ci, which can be computed in O(kn) time for each j.
Therefore the total running time of multiplying A by B is O(kn2).

We are now ready to describe our method for shifting the matrices into the subspace V using
low-rank matrices, capitalizing on the observation above. Given the matrix B (that is, possibly, not
in V ), we sample a random matrix RB ∈ Fn×n of rank 2k by randomly choosing 2k columns and
filling them with uniformly random field elements. Note that with high probability these 2k columns
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are linearly independent. Then, we let the rest of the columns be random linear combinations of
the first 2k columns we chose. We observe that if dim(V ) = n− k, then

Pr[B +RB ∈ V ] ≥ 1

2|F|k
.

If indeed B + RB ∈ V , then we can compute A · (B + RB) using the procedure discussed above,
by writing B + RB as a sum of 4 random matrices B + RB = M1 + M2 + M3 + M4, applying
ALG(A,Mi) for each i = 1...4, and using Freivalds’ algorithm to efficiently check if the produced
output is correct or not.

Note that since we have a lower bound on the probability that B + RB belongs to the desired
subspace, we have an upper bound on the expected number of attempts required until this event
occurs. When we obtain such low-rank matrix shifts, which we verify using Freivalds’ algorithm,
we proceed by computing A ·RB. Since RB is a matrix of rank at most 2k, the total running time
of this will be O(kn2). Finally, we return

ALG(A,B +RB)−A ·RB ,

which indeed produces the correct answer assuming that ALG(A,B +RB) is correct.

Remark 2.2. The discussion above made the simplifying assumption that the inputs we are getting
are pairs (A,B) such that A is a matrix satisfying PrB′ [ALG(A,B′) = A ·B′] ≥ α. The actual proof
require also handling the inputs for which the matrix A does not satisfy this requirement, which is
done using similar ideas by applying the local correction procedure first to A and then to B.

2.4 Beyond matrix multiplication

We conclude the technical overview by briefly sketching some of the key ideas in the rest of our
worst-case to average-case reductions, building on the local correction lemmas outlined in Sec-
tion 2.2. Below we assume that all data structures are deterministic, but by standard techniques
this assumption is without loss of generality. We start with the simplest setting, and then proceed
to the more involved ones.

Worst-case to average-case reductions for all linear data structure problems. The
setting here is the closest to that of matrix multiplication. Let DSA be an average-case data
structure for a linear problem defined by A, where we preprocess an input vector x and the answer
to query i is 〈Ai, x〉, and Ai is the i’th row of A.

Given a vector y ∈ Fn, we use our local correction lemma to obtain a decomposition of the form
y = x1 + x2 − (x3 + x4) + v, where x1, x2, x3, x4 ∈ X (i.e., on which DSxj (i) = 〈Ai, xj〉 for all i)

and a sparse shift vector v =
∑t

j=1 〈y, bj〉 · ~ekj . We then preprocess each of the xj ’s by applying
DSA to it, and we also compute 〈Ai, v〉 efficiently by using its sparse representation. The idea is
that by the linearity of the problem, we can locally correct according to

∑4
j=1DSxj (i) + 〈Ai, v〉.

It important to note that, unlike in the setting of matrix multiplication, we cannot use the
random low-rank matrix shifts, nor Freivald’s algorithm for verification. However, this is where we
rely on the sparse subspace decomposition to shift the input into the subspace V implied by the
quasi-polynomial Bogolyubov-Ruzsa lemma. In addition, instead of relying on Freivalds’ algorithm
for verification, here we use the guarantee about the correctness of computation in the subspace
V together with the sparsity of the shift vector, which allows us to correct its corresponding
contribution via explicit computation. See details in Section 6.1.
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Online matrix-vector multiplication (OMV). The online setting of the OMV problem poses
several additional challenges. Recall that in the average-case reductions above, the input is a vector
x ∈ Fn2 , each query is a coordinate i ∈ [n], and the matrix M ∈ Fn×n2 is a hard-coded parameter.
In the OMV problem, the matrix M is the input, the vector x is the query, and answer to a query
is not a scalar but rather a vector. Hence we need to use a two-step local correction where we
first decompose the matrix and then decompose the vector. Observe that we can use our additive
combinatorics mechanism to preprocess the matrix M and get a description of the subspace V
that it asserts, as well as the formula that is required to compute the shift vector s given x, but
the problem is that here we cannot preprocess x, as it arrives online. Thus, in the query phase,
when the algorithm receives x, we want to find the decomposition x = x1 + x2 + x3 + x4 + s. We
then compute the shift vector s, and then sample xi’s whose sum is x − s. However this leaves
us with the task of checking that all of the xi’s are computed correctly. To this end, we rely on a
generalization of small-bias sample spaces to finite fields in order to obtain an efficient verification
procedure. See details in Section 5.

Weak-average-case reductions. As discussed in the introduction, in the setting of weak-
average-case we cannot expect a reduction for all linear problems. In turn, this leads to sub-
stantially different techniques. We concentrate on the multivariate polynomial evaluation problem.
Here, we are given a polynomial p : Fm → F of degree d, where for simplicity, in this overview we
fix the parameters d = log(n), |F| = poly(log(n)), and m = log(n)/ log log(n), so that we encode
n field elements using a codeword of length poly(n), and the distance is 1 − dm/|F| > 0.99. The
polynomial is given as input by its n = dm coefficients, the queries are of the form x ∈ Fm, and
the goal is to output p(x). The key difficulty here, is that for small values of the average-case rate
α > 0, we need to be able to deal with the list decoding regime (see discussion in Section 1.1.4).

The first step is to rely on our additive combinatorics local correction tools similarly as in the
OMV reduction. Here the idea is to preprocess the polynomial p and obtain a decomposition of
the form p = p1 + p2 + p3 + p4 + s, where again s is a sparse shift-vector. We then construct
a data structure for each pi. However, since we cannot process the queries x ∈ Fm, we are left
with the task of locally correcting the noisy polynomials {pi}. If a polynomial pi is only slightly
corrupted (i.e., within the unique decoding regime), we can easily locally correct it without using
any preprocessing. However, we also need to deal with noisy polynomials pi in the list decoding
regime in which only α-fraction of the points are evaluated correctly, for an arbitrarily small α.

We overcome the difficulty above by capitalizing the preprocessing power of the data structure.
Namely, we will show how to boost the success probability from the list-decoding regime to the
unique-decoding regime, in which case we can perfectly correct the polynomial via the local correc-
tion of the Reed–Muller code. The key idea is that by the generalized Johnson bound, there is only
a list of O(1) codewords that agree with the average-case data structure on at least α/2-fraction of
the points. We thus fix a reference point w ∈ Fm and explicitly compute the correct value of pi(w).
Next, we sample a random point r and query the points of line `x,w incident to r and the reference
point z. Then, we consider the list (of size O(1)) of all low-degree univariate polynomials that
agree with the queried points on `x,w, and trim the list by removing each polynomial that does not
agree on the reference point. Using the sampling properties of lines in multivariate polynomials,
we can show that answering accordingly to the remaining polynomials in the list would yield the
right value with high probability.
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3 Additive combinatorics toolbox

In this section, we provide a toolbox for locally correcting vectors using techniques from additive
combinatorics. The toolkit will play a key technical role in all of our worst-case to average-case
reductions.

Throughout this section we fix a finite field F. For simplicity, we set F = Fp for a prime number p.
However, we remark that the following results hold for any finite field, with only a negligible change
in parameters (see discussions in relevant places below). Recall that the sumset of a set X is defined
as X +X = {x1 + x2 : x1, x2 ∈ X}, and, similarly, t ·X = {x1 + . . .+ xt : x1, . . . , xt ∈ X} for an
integer t ≥ 1.

Let X ⊂ Fn be a subset of size |X| = α · |F|n. As we outlined in Section 2, our goal is to
decompose any vector y ∈ Fn as a linear combination of the form

y = x1 + x2 − (x3 + x4) + s ,

where x1, x2, x3, x4 ∈ X, and s ∈ Fn is a sparse vector.
Towards this end, we will need additive combinatorics lemmas that will allow us to find a large

subspace V ⊆ 2X − 2X, so that any vector v ∈ V can be written as v = x1 + x2 − (x3 + x4).
Crucially, we will show that we can efficiently sample such a decomposition and verify membership
in the subspace V .

3.1 Probabilistic and quasi-polynomial Bogolyubov-Ruzsa lemmas

A natural starting point for obtaining a subspace as discussed above is via Bogolyubov’s lemma,
which states that for any subset X ⊆ Fn2 of density |X|/2n ≥ α, there exists a subspace V ⊆ 4X
of dimension at least n−α−2. However, in addition to minor issues such as being restricted to the
field F2, there are some fundamental problems with using Bogolyubov’s lemma for local correction.
Most importantly for our application is that while Bogolyubov’s lemma asserts that there exists a
decomposition of each input into a sum of four elements in X, it does not tell us how to obtain this
decomposition.

Hence, we further show that each vector v ∈ V has many “representations” of a sum of 4
elements from X. This way, for any v ∈ V we can efficiently sample a representation v = x1 +x2 +
x3 +x4, where each xi ∈ X. We refer to this statement as the probabilistic Bogolyubov lemma. To
make the following discussion precise, we shall need the following notation.

Given a set X ⊆ Fn, we denote by 1X : Fn → {0, 1} the indicator function of the set X.
The convolution of two boolean functions f and g we denote by (f ∗ g)(x) = Ey[f(y)g(x − y)].

The Fourier expansion of a function f : Fn → C is given by f(x) =
∑

r∈Fn f̂(r) · χr(x), where

the Fourier coefficients of f are defined as f̂(r) = 〈f, χr〉 = Ex[f(x) · χr(x)], with χr(v) = ω〈v,r〉

and ω = e
2πi
p is the p’th root of unity. In particular for convolution of two functions we have

(f ∗ g)(x) =
∑

r f̂(r)ĝ(r)χr(x).

Lemma 3.1 (Probabilistic Bogolyubov lemma). Let F = Fp be a prime field, and let X ⊆ Fn be
a set of size |X| = α · |F|n for some α ∈ (0, 1]. Let R = {r ∈ Fn \ {0} :

∣∣1̂X(r)
∣∣ ≥ α3/2}, and let

V = {v ∈ Fn : 〈v, r〉 = 0 ∀r ∈ R} be a linear subspace defined by R. Then |R| ≤ 1/α2, and for all
v ∈ V it holds that

Pr
x1,x2,x3

[x1, x2, x3, v − x1 − x2 − x3 ∈ X] ≥ α5 .
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Proof. Note first that by Parseval’s identity we have α = 〈1X , 1X〉 = ‖1X‖22 =
∑

r

∣∣1̂X(r)
∣∣2. In

particular, for R = {r ∈ Fn \ {0} :
∣∣1̂X(r)

∣∣2 > α3} we have |R| ≤ α
α3 = 1

α2 . Furthermore, we have∑
r∈Fn\(R∪{0})

∣∣1̂X(r)
∣∣4 ≤ α3 ·

∑
r∈Fn\(R∪{0})

∣∣1̂X(r)
∣∣2 ≤ α3(α− α2) ≤ α4 − α5 ,

where the second inequality uses that
∑

r

∣∣1̂X(r)
∣∣2 = α, and

∣∣1̂X(0)
∣∣2 = α2.

Noting that for every v ∈ V we have χr(v) = ω〈v,r〉 = ω0 = 1 for all r ∈ R, it follows that

Pr
x1,x2,x3∈Fn

[x1, x2, x3, v − x1 − x2 − x3 ∈ V ] = (1X ∗ 1X ∗ 1X ∗ 1X)(v)

=
∑
r∈Fn

(1̂X(r))4χr(v)

=
∣∣1̂X(0)

∣∣4χ0(v) +
∑
r∈R

∣∣1̂X(r)
∣∣4χr(v)

+
∑

r∈Fn\(R∪{0})

∣∣1̂X(0)
∣∣4χr(v)

≥ α4 + |R| · α6 − (α4 − α5)

≥ α5 ,

as required.

In fact, the foregoing lemma suffices for our application for worst-case to average-case reductions
where the success rate α is a constant. However, to also allow for success rates that tend to zero,
we shall need a much stronger statement of the form of the quasi-polynomial Bogolyubov-Ruzsa
lemma, due to Sanders [San12] (see also [Lov15, BRTW14]), which admits an exponentially better
dependency on α, albeit without the efficient sampling property.

Lemma 3.2 (Quasi-polynomial Bogolyubov-Ruzsa lemma [San12]). Let F = Fp be a prime field,
and let X ⊆ Fn be a set of size α · |F|n for some α ∈ (0, 1]. There exists a subspace V ⊆ Fn of
dimension dim(V ) ≥ n−O(log4(1/α)) such that V ⊆ 2X − 2X.

The caveat, however, is that while in Lemma 3.2 the codimension of V is only polylogarithmic
in 1/α (as opposed to polynomial, as in the probabilistic Bogolyubov lemma), it only guarantees
that for each v ∈ V there exist x1, x2, x3, x4 ∈ X such that x1 + x2 + x3 + x4 = v.

Hence, we further show that each vector v ∈ V has many “representations” in 2X − 2X. In
particular, for any v ∈ V we can efficiently sample a representation v = x1 + x2 − x3 − x4, where
each xi ∈ X. We are grateful to Tom Sanders for providing us with a modification of his proof that
admits a probabilistic version of the quasi-polynomial Bogolyubov-Ruzsa lemma. Furthermore,
we rely on the Goldreich-Levin algorithm and the techniques in [BRTW14] to obtain an efficient
algorithm for verifying membership in the implied subspace. This yields the main technical tool
that underlies our local correction paradigm.

Lemma 3.3 (Probabilistic quasi-polynomial Bogolyubov-Ruzsa lemma). Let F = Fp be a prime
field, and let A ⊆ Fn be a set of size |A| = α · |F|n, for some α ∈ (0, 1]. Then, there exists a subspace
V ⊆ Fn of dimension dim(V ) ≥ n−O(log4(1/α)) such that for all v ∈ V it holds that

Pr
a1,a2,a3∈Fn

[a1, a2 ∈ A, a3, a4 ∈ −A] ≥ Ω(α5) ,
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where a4 = v − a1 − a2 − a3. Furthermore, given a query access to the set A, there is an algorithm
that runs in time exp(log4(1/α)) · poly log(1/δ) · poly(n) and with probability 1− δ computes a set
of vectors R ⊆ Fn such that V = {v ∈ Fn : 〈v, r〉 = 0 ∀r ∈ R}.

We defer the proof of Lemma 3.3 to Appendix A.

3.2 Local correction lemma

Using the probabilistic quasi-polynomial Bogolyubov-Ruzsa lemma (i.e., Lemma 3.3), for any vector
v ∈ V we can efficiently sample x1, x2, x3, x4 ∈ X such that we can write

v = x1 + x2 − (x3 + x4) .

However, we need to be able to handle any vector y ∈ Fn, and not just vectors in the subspace V .
Towards that end, we show that since the subspace implied by the probabilistic quasi-polynomial
Bogolyubov-Ruzsa lemma is of large dimension (i.e., of dimension dim(V ) ≥ n−O(log4(1/α))), we
can decompose any vector y ∈ Fn as a linear combination of the form

y = x1 + x2 − (x3 + x4) + s ,

where x1, x2, x3, x4 ∈ X and s ∈ Fn is a sparse vector. We stress that the sparsity of the decomposi-
tion is essential to our applications, as we cannot locally correct the shift part of the decomposition,
and instead we need to compute it explicitly.

The above captures our local correction lemma which will be used throughout this paper.

Lemma 3.4 (Efficient local correction). Let F = Fp be a prime field, and let X ⊆ Fn be a set of
size |X| = α · |F|n, for some α ∈ (0, 1]. Then, there exists a non-negative integer t ≤ O(log4(1/α)),
a collection of t vectors B = {b1, . . . , bt ∈ Fn}, and t indices k1, . . . , kt ∈ [n] satisfying the following:

Given a vector y ∈ Fn, define s =
∑t

j=1 〈y, bj〉 · ~ekj where (~ei)i∈[n] is the standard basis. Then

Pr
x1,x2,x3∈Fn

[x1, x2 ∈ X,x3, x4 ∈ −X] ≥ Ω(α5) ,

where x4 = y − s− x1 − x2 − x3.
Furthermore, suppose we have a randomized membership oracle OX that for every input x ∈ Fn,

computes the indicator 1X(x) correctly with probability at least 2/3. Then, there exists an algorithm
that makes exp(log4(1/α)) · poly log(1/δ) · poly(n) oracle calls to OX , performs exp(log4(1/α)) ·
poly log(1/δ) ·poly(n) field operations, and with probability at least 1−δ returns vectors b1, . . . , bt ∈
Fn and indices k1, . . . , kt ∈ [n] as described above.

Proof. Fix a set X ⊆ Fn of size |X| = α · |F|n for some α ∈ (0, 1]. By applying Lemma 3.3, we
obtain a subspace V ⊆ Fn of dimension dim(V ) = n− t for t = O(log4(1/α)). Let R ⊆ Fn2 \ {~0} be
a set of vectors in Fn of size t such that V = {v ∈ Fn2 : 〈v, r〉 = 0 ∀r ∈ R}. Indeed, we can let R be
a set of t linearly independent vectors in V ⊥.

By writing the vectors of R in a matrix and diagonalizing the matrix, we obtain: (1) a set of
vectors B = {b1, . . . , bt ∈ Fn2} such that span(B) = span(R), and (2) the corresponding pivot indices
k1, . . . , kt ∈ [n] such that bj [kj ] = 1 and bj [kj′ ] = 0 for all j 6= j′.
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Given a vector y ∈ Fn, define s =
∑t

j=1 〈y, bj〉 · ~ekj , where (~ei)i∈[n] is the standard basis, and
let v = y − s. It is straightforward to verify that v ∈ V . Then for any j ∈ [t] we have

〈v, bj〉 = 〈y, bj〉 −
t∑

j=1

cj ·
〈
~ekj , bj

〉 (*)
= 〈y, bj〉 − cj ·

〈
~ekj , bj

〉 (**)
= 〈y, bj〉 − 〈y, bj〉 = 0 ,

where (*) is because
〈
~ekj′ , bj

〉
= bj [ij′ ] = 0 for j 6= j′, and (**) is because

〈
~ekj , bj

〉
= bj [ij ] = 1.

Now, since v ∈ V , by the guarantees of Lemma 3.3 it follows that

Pr
x1,x2,x3∈Fn

[x1 ∈ X,x2 ∈ X,x3 ∈ −X, v − x1 − x2 − x3 ∈ −X] ≥ Ω(α5) .

For the furthermore part, note that we can boost the success probability of the membership
oracle OX . That is, given a query x we can decide if x ∈ X with confidence 1 − 1

t be repeatedly
calling it O(log(t)) times and taking the majority vote. In particular, for t = exp(log4(1/α)) ·
poly log(1/δ) · poly(n), by making O(poly log(1/α) + log(1/δ) + log(n)) calls to OX(x) for each
element x ∈ Fn we need to query, we may assume that all queries output whether x ∈ X or not
correctly.

The furthermore part of the lemma follows immediately from the computational guarantees of
Lemma 3.3 together with the diagonalization procedure described above.

4 Worst-case to average-case reductions for matrix multiplication

We prove the worst-case to average-case reduction for matrix multiplication problem in this section.
Let’s restate Theorem 1 below.

Theorem 1. Let F = Fp be a prime field, n ∈ N, and α := α(n) ∈ (0, 1]. Suppose that there exists
an algorithm ALG that, on input two matrices A,B ∈ Fn×n runs in time T (n) and satisfies

Pr[ALG(A,B) = A ·B] ≥ α ,

where the probability is taken over the random inputs A,B ∈ Fn×n and the randomness of ALG.

• If |F| ≤ 2/α, then there exists a randomized algorithm ALG′ that for every input A,B ∈ Fn×n

and δ > 0, runs in time exp(O(log5(1/α)))
δ · T (n) and outputs AB with probability at least 1− δ.

• If |F| ≥ 2/α, then there exists a randomized algorithm ALG′ that for every input A,B ∈ Fn×n
and δ > 0, runs in time O( 1

δ·α4 · T (n)) and outputs AB with probability at least 1− δ.

We divide the proof into two parts, namely for when |F| ≥ α/2 and when |F| ≤ α/2. The proof
for the former case is given in Section 4.2 and the proof of the latter is given in Section 4.1.

We would like to point out that when the field size is large enough, we can use the standard
interpolation techniques for low-degree polynomials to prove the reduction. However, the problem
becomes more challenging when the field size is small (say, F = F2), and showing the reduction in
this case requires novel ideas. We will discuss both cases in detail in the following sections.
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4.1 Reduction for matrices over small fields

In this section, we show a worst-case to average-case reduction for matrix multiplication problem
over small fields, namely, where |F| ≤ 2/α, where α is the success rate of the average-case algorithm.
Informally, we will show that if there exists an algorithm that is able to compute the multiplication
for a small percentage of matrices, then it is possible to boost this algorithm such that it works
for all matrices, without sacrificing the running time too much. Before we proceed with the formal
result, we need the following lemma known as Freivalds’ algorithm.

Lemma 4.1 (Freivalds’ Algorithm [Fre77]). Given matrices A,B,C ∈ Fn×n there exist a proba-
bilistic algorithm that verifies whether A · B = C with failure probability 2−k where the algorithm
runs in O(kn2).

Throughout the proof, we will use Freivalds’ algorithm to verify the result of matrix multipli-
cation instances,

In particular, it suffices to design an algorithm that given two matrices A,B outputs their
product with some non-negligible probability ε > 0. By repeating the algorithm O(1/ε) times, we
can boost the probability of outputting the correct answer to a constant arbitrarily close to 1. This
is done by applying Freivalds’ algorithm on each of the outputs of the algorithm, rejecting incorrect
outputs with high probability, and accepting when the correct answer is found.

We now demonstrate the main result of this section, which corresponds to the first case in
Theorem 1.

Theorem 4.2. Let F = Fp be a prime field, n ∈ N, and α := α(n) ∈ (0, 1]. Suppose that there
exists an algorithm ALG that, on input two matrices A,B ∈ Fn×n runs in time T (n) and satisfies

Pr[ALG(A,B) = A ·B] ≥ α ,

where the probability is taken over the random inputs A,B ∈ Fn×n and the randomness of ALG. If
|F| ≤ 2/α, then there exists a randomized algorithm ALG′ that for every input A,B ∈ Fn×n and

δ > 0, runs in time O( exp(O(log5(1/α)))
δ · T (n)) and outputs AB with probability at least 1− δ.

Below we will prove the theorem assuming the algorithm ALG is deterministic, but a straight-
forward generalization of the proof works for randomized algorithms as well. To proceed with the
proof, we first need the following definitions.

Definition 4.3. Let X be the set of matrices A such that ALG computes their product with matrices
B with probability at least α/2. More formally

X = {A : Pr
B

[ALG(A,B) = A ·B] ≥ α/2} .

Similarly, for each A ∈ Fn×n, we define YA to be the set of matrices B such that given A and B,
ALG correctly computes A ·B. In other words

YA = {B : ALG(A,B) = A ·B} .

Claim 4.4. X and YA, where A ∈ X, have density at least α/2.
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Proof. Let PA be the random variable PA := PrB[ALG(A,B) = A · B]. From the definition, it is
clear that EA[PA] ≥ α. Now, by contradiction, if PrA[PA ≥ α/2] < α/2 then we have

EA[PA] = EAPr
B

[ALG(A,B) = A ·B] < α/2 · 1 + (1− α/2) · α/2 < α .

Hence, Pr[PA ≥ α/2] ≥ α/2 and X has density greater than or equal to α/2. It follows from the
definitions of X and YA that for all A ∈ X, YA has density at least α/2.

Next, we need the following definition.

Definition 4.5. For a matrix A ∈ Fn×n and k ∈ [n], let Mk
A = A+LkA where we define the matrix

LkA as follows.

1. First, choose a random subset S of size k from [n].

2. For each i ∈ S let the i’th row of LkA be uniformly random in Fn.

3. For all j ∈ [n] \ S, let the j’th row of LkA be a random linear combination of the rows in S.

Remark 4.6. For matrix LkA we have that rk(LkA) ≤ k, because every row indexed by j ∈ [n] \ S is
a linear combination of the rows in S.

Remark 4.7. If the random rows in S are not linearly independent, we can throw them away and
repeat Step 2. It is not hard to see that this event happens only with constant probability, and we
can check this in O(nk2) time.

The following lemma shows that matrix M2k
A = A+ (L2k

A ) belongs to any subspace of matrices
of constant co-dimension k with constant probability.

Lemma 4.8. Given a matrix A ∈ Fn×n and k ∈ [n], for any subspace V ⊆ Fn×n of dim(V ) ≥ n−k
we have

Pr[M2k
A ∈ V ] ≥ 1

2|F|k
.

Proof. Since V has co-dimension k, it can be defined by k linear constraints on the elements of the
matrix as follows.

M2k
A (i0, j0) +M2k

A (i1, j1) + ...+M2k
A (ir, jr) = 0 ,

where r ∈ [1, n2] denotes the number of coordinates that this constraint depends on. By re-writing
M2k
A as a vector m ∈ Fn2

, we can construct the system of equations G ·m = 0 for membership in
V . Here, G denotes the matrix of size k× n2, where each row specifies one single constraint of the
aforementioned form. Now, if we diagonalize G using Gaussian elimination, we can re-write the
system of equations in the form G′ ·m = 0 for a matrix G′, where for each row a in G′, there exists
a column ba which has value 1 in this row and 0 in the other rows.

For all ba where a ∈ [k], we consider the coordinate mba . The set of these k coordinates
{mb1 ,mb2 , ...,mbk} corresponds to k pairs of coordinates {(c1, c′1), (c2, c′2), ..., (ck, c′k)} in the original
matrix. Note that these k coordinates belong to at most k rows in M2k

A , and we want to bound the
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probability that none of these rows in L2k
A is a linear combination of the other rows. Let Z be the

event that all the 2k rows are pairwise linearly independent in L2k
A . We have

Pr[Z] =

(
1− 1

22k

)(
1− 2

22k

)(
1− 4

22k

)
...

(
1− 2k−1

22k

)
≥
(

1− 2k−1

22k

)k
≥
(

1− 1

2k+1

)k
≥ 1− k

2k+1
≥ 1

2
.

Now, we observe that if Z happens, it means that for all k constraints, there exist a coordinate
which we denote by (ci, c

′
i) in M2k

A such that none of the other constraints depend on the value of
M2k
A (ci, c

′
i), and the value of M2k

A (ci, c
′
i) is chosen uniformly at random. Hence, this random value

is equal to the unique solution which satisfies ith constraint (assuming values of all other coordi-
nates involved in this constraint are determined beforehand) with probability 1/|F|. Therefore, the
probability that M2k

A ∈ V is bounded by

Pr[M2k
A ∈ V ] = Pr[All k constraints are satisfied]

≥ Pr[Z] · 1

|F|k

=
1

2|F|k
.

Proof of Theorem 4.2. To prove this theorem, we design the following algorithm and prove
that this algorithm outputs the correct answer for the matrix multiplication problem with high
probability.

Algorithm 1 : Matrix multiplication reduction over small fields

Input: ALG, A,B ∈ Fn×n
Output: A ·B Set k to be O(log4(1/α)).

1. Set k to be O(log4(1/α)).

2. For matrices A and B, construct the matrices M2k
A and M2k

B .

3. Sample 3 random matrices R1, R2, R3 ∈ Fn×n and set R4 = R1 +R2 −R3 − A−M2k
A so

that A+M2k
A = R1 +R2 −R3 −R4.

4. Sample 12 random matrices S
(t)
1 , S

(t)
2 , S

(t)
3 ∈ Fn×n and set S

(t)
4 = S

(t)
1 +S

(t)
2 −S

(t)
3 −B−M2k

B

for t ∈ {1, 2, 3, 4}, so that B +M2k
B = S

(t)
1 + S

(t)
2 − S

(t)
3 − S

(t)
4 .

5. Compute OL =
∑4

t=1

∑4
s=1 signt,sALG(Rt, S

(t)
s ), where signt,s = −1 if {t, s} ∩ {1, 2} = 1,

and signt,s = 1 otherwise.

6. Compute O = OL −A · L2k
B − L2k

A ·B − L2k
A ·R2k

B .

7. If O = A ·B (check using Lemma 4.1), then return O.
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Correctness: Let’s consider X as it is defined in Definition 4.3. By applying Lemma 3.3 on X,
we can conclude that there exists subspace VX with co-dimension at most O(log4(1/α)) and the
guaranteed properties. On the other hand, by Lemma 4.8 we have that

Pr[M2k
A ∈ VX ] ≥ 1

2|F|O(log4(1/α))
.

Assuming M2k
A ∈ VX , by Lemma 3.3, we have that

Pr
R1,R2,R3

[R1, R2,−R3,−R4 ∈ X] ≥ Ω(α5) .

Now, for each Rt with t ∈ {1, 2, 3, 4}, we can consider YRt using Definition 4.3. Similarly, since
each YRt has density at least α/2, we can apply Lemma 3.3 on YRt to define the corresponding
subspaces VYRt . Having these four subspaces, we define VY = VYR1

∩VYR2
∩VY−R3

∩VY−R4
. It is not

hard to see that since each of the four subspaces has co-dimension O(log4(1/α)), the co-dimension
of VY is at most 4 ·O(log4(1/α)). Thus, by Lemma 4.8

Pr[M2k
B ∈ VY ] ≥ 1

2|F|O(log4(1/α))
.

Given M2k
B ∈ VY , for each t ∈ {1, 2, 3, 4} by Lemma 3.3

Pr
S
(t)
1 ,S

(t)
2 ,S

(t)
3

[S
(t)
1 , S

(t)
2 ,−S(t)

3 ,−S(t)
4 ∈ YRt ] ≥ Ω(α5) .

It is important to note that since L2k
A and L2k

B have rank less than or equal to 2k, and all linear
combinations of their rows are known previously, we can compute the multiplications in Step 6 in
time O(n2 · log4(1/α)).

Since all the events defined above are independent, we conclude that the algorithm succeeds
with the following probability

Pr[Algorithm 1 succeeds] ≥ Ω(α25)

O(|F|O(log4(1/α)))
≥ Ω(α25)

O(10α )O(log4(1/α))
≥ exp(− log5(1/α)) .

Therefore, by repeating the algorithm exp(log5(1/α))
δ times, and using Freivalds’ algorithm for

verification, we obtain an algorithm that solves the matrix multiplication on all instances with
probability at least 1− δ.

Running time: Th running time of the procedure described above is essentially dominated

by exp(log5(1/α))
δ calls to the weak average case algorithm, and hence the total running time is

exp(log5(1/α))
δ · T (n). In particular, even if the algorithm succeeds on a sub-constant fraction of

inputs α = exp(log0.199(n)), the reduction turns it into an algorithm that works for worst case
instances in time T (n) · no(1).
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4.2 Reduction for matrices over large fields

We now prove case 2 of Theorem 1 in this section. For concreteness, we restate this result.

Theorem 4.9. Let F = Fp be a prime field, n ∈ N, and α := α(n) ∈ (0, 1]. Suppose that there
exists an algorithm ALG that, on input two matrices A,B ∈ Fn×n runs in time T (n) and satisfies

Pr[ALG(A,B) = A ·B] ≥ α ,

where the probability is taken over the random inputs A,B ∈ Fn×n and the randomness of ALG. If
|F| ≥ 2/α, then there exists a randomized algorithm ALG′ that for every input A,B ∈ Fn×n and
δ > 0, runs in time O( 1

δ·α4 · T (n)) and outputs AB with probability at least 1− δ.

Proof. To prove Theorem 4.9, we use the following algorithm and we prove that this algorithm
outputs the correct answer for the matrix multiplication problem with high probability.

Algorithm 2 : Matrix multiplication reduction over large fields

Input: ALG, A,B ∈ Fn×n
Output: A ·B Set k to be O(log4(1/α)).

1. Let X and Y be matrices chosen uniformly at random from Fn×n, and let i, j, and k be
chosen uniformly at random from F.

2. Compute ALG(A+ iX,B + iY ),ALG(A+ jX,B + jY ), and ALG(A+ kX,B + kY ).

3. If the computations are correct (check using Lemma 4.1), then compute A · B by inter-
polating (A+ iX,B + iY ), (A+ jX,B + jY ), and (A+ kX,B + kY ).

Correctness: Again, we prove the result assuming the algorithm ALG is deterministic, but a
straightforward generalization of the proof works for randomized algorithms as well. We define the
set of good pairs of matrices for ALG as follows.

Definition 4.10. Let S ⊆ (Fn×n×Fn×n) be the set of pairs of matrices such that for all (M,N) ∈ S
we have ALG(M,N) = M ·N . More formally

S = {(M,N) : ALG(M,N) = M ·N,M ∈ Fn×n, N ∈ Fn×n} .

Note that by definition, S has density at least α.

Claim 4.11. Let `X,Y = {(A + iX,B + iY ) : i ∈ F} be the line that passes through (A,B) and is
defined by matrices X and Y . Then, with probability α/2, at least α/2 fraction of pairs of matrices
on this line belong to S.

Proof. Let P(X,Y ) be the random variable P(X,Y ) = Pri[ALG(A+ iX,B+ iY ) = (A+ iX) ·(B+ iY )].
From the definition, E[P(X,Y )] ≥ α. Now, by contradiction, if Pr[P(X,Y ) ≥ α/2] < α/2 then we have

E[P(X,Y )] = EX,Y Pr
i

[ALG(A+ iX,B + iY ) = (A+ iX) · (B + iY )] < α/2 · 1 + (1−α/2) ·α/2 < α .

Hence, Pr[P(X,Y ) ≥ α/2] ≥ α/2.
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Having Definition 4.10, we can make the following claim.

Claim 4.12. The three pairs of matrices defined in Step 2 of Algorithm 2 belong to S with probability
at least α4/16.

Proof. Note that in Step 1 of Algorithm 2, we are sampling a line `X,Y , which by Claim 4.11 has
density α/2 of good pair of matrices with probability α/2. Also, in Step 2, we are sampling three
uniformly random pairs on this line. Assuming `X,Y is a line with density α/2 of good pairs of
matrices, with probability at least (α/2)3 these three pairs belong to S. Hence, total probability
that we sample three pairs such that they all belong to S is at least (α/2)4 = α4/16.

Since matrix multiplication is a polynomial of degree 2 in the entries of the matrices, having 3
pairs where ALG outputs correct answers enables us to interpolate the value of A · B. Thus, the
algorithm succeeds with probability O(α4). By repeating the algorithm and verifying the answer
using Freivalds’ algorithm, one can amplify the success probability to any arbitrary constant.

5 Worst-case to average-case reductions for online matrix-vector
multiplication

In this section we prove Theorem 3, which we restate below.

Theorem 3. Let F = Fp be a prime field, n ∈ N, and α := α(n) ∈ (0, 1]. Consider the matrix-
vector multiplication problem OMVF for dimension n, and suppose that for some α > 0 it holds
that

OMVF ∈ DS

 preprocessing time: p
memory used: s

query time: t
success rate: PrM,v[DSM (v) = Mv] ≥ α

 .
Then for every δ > 0,

OMVF ∈ DS

 preprocessing time: 4p+ exp(log4(1/α)) · poly log(1/δ) · poly(n)

memory used: 4s+O(log4(1/α)n) +O(n2)
query time: (4t+ n) · poly(1/α) · poly log(1/δ)

success rate: ∀M, v : Pr[DSM (v) = Mv] ≥ 1− δ

 .
Remark 5.1 (Large fields). We would like to point out that this problem is more interesting when
the field F is small. Indeed, if the size of F is relatively large (say, |F| > 2/α), then we can think of
the matrix-vector multiplication as a polynomial of degree at most one in the elements of the vector.
Therefore, we can use the standard self-correction techniques for evaluating low-degree polynomials
to solve this problem. In particular, given a query v ∈ Fn we can sample a line ` ∈ Fn that passes
through v, and query two random vectors that belong to `, and compute Mv by interpolating the
two queried points.

Before proceeding with the formal proof of Theorem 3, we informally outline the argument.
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Proof sketch: The proof of Theorem 3 relies on Lemma 3.4, which shows that any vector in Fn
can be self-corrected via a linear constraint involving four vectors x1, x2, x3, x4 ∈ X and a shift by
sparse vector u. This result will be used several times in the proof of Theorem 3, which we explain
below.

• First, note that if PrM,v[DSM (v) = Mv] ≥ α, then there is a collection Z ⊆ Fn of size |Z| ≥ α/2 ·
|F|n of good matrices, i.e., those matrices M on which DS succeeds to compute Mv on some non-
negligible fraction of vectors v. More formally, Z = {M ∈ Fn×n : Prv[DSM (v) = Mv] ≥ α/2}.

• First time we apply Lemma 3.4 on the set Z ⊆ Fn×n. (That is, we identify n× n matrices with
vectors of length N = n2.) Roughly speaking, given an arbitrary matrix M we will apply the
lemma so that we can write M = M1 +M2−M3−M4 +U , where M1,M2,M3,M4 ∈ Z and U is
a sparse matrix. By the assumption in Theorem 3 each Mi succeeds on a non-negligible fraction
of vectors v.

• Second time Lemma 3.4 will be used with the set X = XMi of vectors v ∈ Fn on which DS
outputs Miv correctly, where Mi is each of the matrices above. Using the lemma we will be able
to represent every vector v ∈ Fn as v = x1 +x2−x3−x4 +u, where the xj ’s belong to XMi , i.e.,
the data structure outputs Mixj correctly for all j = 1, 2, 3, 4, and u ∈ Fn is a sparse vector.

• In particular, for each of the matrices Mi the data structure computes correctly Mixj for all
j = 1, 2, 3, 4, and Miu can be computed in the query phase by reading only O(1) columns of Mi,
as u is a sparse vector.

Before proceeding with the formal proof of Theorem 3, we need the following definition of
small-bias sample spaces, and the theorem regarding their existence.

Definition 5.2 (Small-bias sample spaces). A sample space S over Fn is called ε-biased if for
every r ∈ Fn \ {0} and every b ∈ F it holds that∣∣∣∣Pr

s∈S
[〈s, r〉 = b]− 1

|F|

∣∣∣∣ ≤ ε .

In other words, a sample space is ε-biased if it ε-fools every nontrivial linear test, i.e., for any
r ∈ Fn \ {0} the distribution of 〈s, r〉 with s sampled from S is close in distribution to 〈s, r〉 for
a uniformly random s ∈ Fn. When the exact value of ε is not important, e.g., by setting ε = 0.1,
we usually call such sample spaces small-bias sets. These objects have been introduced in the
work of Naor and Naor [NN93], followed by a long line of work culminating in the recent almost
optimal construction of Ta-Shma [TS17], who showed an efficient construction of such sets of size
O(n/ε2+o(1)) over F2. For our purposes, even a randomized construction will be sufficient (see, e.g.,
Corollary 3.3 in [AMN98]).

Theorem 5.3. For every finite field F, constant ε ∈ [0, 1] and n ∈ N, a random set S ⊆ Fn of
size O(n log |F|) is an ε-biased with high probability. For the field F = F2, there exists an explicit
construction of size |S| = O(n).

For concreteness, we will take ε = 0.1, which suffices for our application.
We are now ready to prove Theorem 3.
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Proof of Theorem 3. For each matrix M ∈ Fn×n, let DSM be the weak average-case data structure
implied by the hypothesis of the theorem, and denote by XM = {x ∈ Fn : DSM (x) = Mx} the
set of vectors on which the data structure outputs the correct answer. Let Z ⊆ Fn×n be the set
of matrices on which the data structure outputs the correct answer on at least α

2 -fraction of the

inputs; that is, Z = {M ∈ Fn×n : |XM | ≥ α
2 |F|

n}. By Markov’s inequality, we have |Z| ≥ α
2 · |F|

n2

.
Observe that given access to DSM , we can easily construct a probabilistic oracle for approximate
membership in Z.

Claim 5.4. There exists a probabilistic membership oracle OZ that for any query M ∈ Fn×n makes
t = O(1/α) calls to DSM (x) for uniformly random x ∈ Fn, compares the result to Mx, and accepts
if and only if at least α/3 fraction of the calls to DSM (x) output the correct answer. The oracle
has the following guarantees.

• If M ∈ Z, then Pr[OZ(M) = ACCEPT ] > 2/3.

• If |XM | ≤ α
4 |F|

n then Pr[OZ(M) = REJECT ] > 2/3.

Using the weak average-case data structure DSM , we construct a worst-case data structure DS′

as follows. First, we describe the preprocessing stage of the data structure DS(M).

Preprocessing:

Input: A matrix M ∈ Fn×n

1. Self-correcting M : Using Lemma 3.4 with probability 1− δ we represent the matrix M as
M = M1 +M2 −M3 −M4 + U , where each Mi has a large XMi and U is a t-sparse matrix
for t = O(log4(1/α)). The running time of this step is exp(log4(1/α)) · poly log(1/δ) ·
poly(n)

2. Self-correcting x: Then, for each Mi, we apply Lemma 3.4 on XMi = {x ∈ Fn : DSMi(x) =

Mix}, and compute a collection of t ≤ O(log4(1/α)) vectors Bi = {b(i)1 , . . . , b
(i)
t ∈ Fn} and

t indices k
(i)
1 , . . . , k

(i)
h ∈ [n] that allow us to represent each vector x = x1+x2−x3−x4+ui,

where ui has at most O(log4(1/α)) non-zero elements, and xj ∈ XMi for all i = 1, 2, 3, 4.

3. Let S ⊆ Fn be a small-biased set obtained by taking O(n) uniformly random vertices in
Fn. Note that for F = F2 we can take the explicit set S from Theorem 5.3 with ε = 0.1.

4. For each e ∈ S compute the multiplication from the left eMi of e with each of the Mi,
and store the pairs (e, eMi) in the data structure.

Overall, the data structure stores the following information in the preprocessing step:

• The sparse matrix U ∈ Fn×n with at most O(log4(1/α)) non-zero entries, obtained in Step 1;

• For each Mi, the weak average-case data structure DSMi for Mi, which outputs DSMi(x) = Mi ·x
correctly on at least α/4 fraction of x’s.

• For each Mi, the corresponding t = O(log4(1/α)) vectors Bi = {b(i)1 , . . . , b
(i)
t ∈ Fn}, and t indices

k
(i)
1 , . . . , k

(i)
t ∈ [n], obtained in Step 2;

• The pairs (e, eMi) for every vector e in the small-biased set S ⊆ Fn and for every Mi, obtained
in Step 3.
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Preprocessing time: The preprocessing time is determined by the time needed to find matrices
Mi, and the preprocessing time of the weak-average-case data structures. It is easy to verify that
the preprocessing time is bounded by 4p + exp(log4(1/α)) · poly log(1/δ) · poly(n), where p is the
preprocessing time of the weak-average-case data structure.

Memory used: In the preprocessing step, we store (1) 4 weak-average-case data structures of
size s for each of the matrices Mi, (2) for each matrix Mi we store the collection of t = O(log4(1/α))
vectors Bi and t indices, (3) a representation of the sparse matrix U using O(log4(1/α) log(n)) field
elements. (4) The pairs (e, eMi) for every vector e in the small-biased set S, which is of size O(n).
Hence, the total space used is 4s+O(log4(1/α)n) +O(n2).

Next we describe the query phase of the worst-case data structure. Recall, for each matrix Mi

where i = 1, 2, 3, 4, we store the vectors Bi = {b(i)1 , . . . , b
(i)
h ∈ Fn} and indices k

(i)
1 , . . . , k

(i)
h ∈ [n] in

out data structure, to compute ui every vector in Fn can be written as a linear combination of four
vectors in XMi . The query phase works as follows.

Query phase:

Input: A query x ∈ Fn

1. For i ∈ {1, 2, 3, 4}, sample random x
(i)
1 , x

(i)
2 , x

(i)
3 ∈ Fn and let x

(i)
4 be such that x =

ui + x
(i)
1 + x

(i)
2 − x

(i)
3 − x

(i)
4 .

2. For each matrix Mi and for j ∈ {1, 2, 3, 4}, apply DS
(Mi)
α to x

(i)
j .

3. Verify that DSMi(x
(i)
j ) = Mix

(i)
j using the small biased set S. Specifically, sample

O(log(1/δ)) vectors e ∈ S, and check that〈
e,DSMi(x

(i)
j )
〉

=
〈
eMi, x

(i)
j

〉
.

If the answer of DSMi(x
(i)
j ) outputs the correct answer, then the inner products will all

be equal. If DSMi(xj) 6= Mix
(i)
j , then a random e ∈ S will catch an inequality with

probability at least 0.4.

4. By repeating the sampling above for O(log(1/δ) · 1/α5) times, for each i ∈ {1, 2, 3, 4} we

will find such x
(i)
1 , x

(i)
2 , x

(i)
3 , x

(i)
4 on which DSMi(x

(i)
j ) outputs the correct answer with high

probability.

5. Compute Miui directly. Since ui has at most O(log4(1/α)) non-zero coordinates, it follows
that Miui can be computed in time O(log4(1/α)n).

6. For i ∈ {1, 2, 3, 4} compute Miy by taking Mix
(i)
1 +Mix

(i)
2 −Mix

(i)
3 −Mix

(i)
4 +Miui.

7. Compute Uy directly. Since U has at most O(log4(1/α)) non-zero elements, this can be
done in time O(log4(1/α) · log(n)).

8. Return My = M1y +M2y −M3y −M4y + Uy.
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Correctness: To prove the correctness, we bound the failure probability of the algorithm. Note
that the failure of the algorithm only depends on the verification procedure in Step 3. In other

words, if DS′M (x) 6= Mx, then at least for one pair of (i, j) we have that DSMia(x
(i)
j ) 6= Mix

(i)
j , and

none of the sampled vectors e has caught this inequality. On the other hand, this event happens
with probability at most 0.6O(log(1/δ)), bounding the failure probability to be at most δ.

Query time: The query time consist of the time required to compute Mix
(i)
j , the time required to

compute Miui, and the time needed to compute Uy where i, j ∈ {1, 2, 3, 4}. The sampling in Step 1
will be done O(log(1/δ) · 1/α5) times, and for each sampled vectors, DSMi is applied 4 times. Also,
the verification in Step 3 consists of computing the inner product for O(log(1/δ)) many vectors.
Thus, the total query time is equal to

O(log(1/δ) · 1/α5) · 4 · (t+O(log(1/δ)n) +O(n log4(1/α)))

= (4t+ n) · poly(1/α) · poly log(1/δ) .

This completes the proof of Theorem 3.

6 Worst-case to average-case reductions for data structures

In this section, we show worst-case to average-case reductions in the setting of static data structures.
We start by showing a reduction for all linear data structure problems in Section 6.1.

Then, we consider a more powerful type of reductions, which can be used to derive worst-case
algorithms from data structures that only satisfy a weak average case condition over both inputs and
queries (similarly to the setting of online matrix-vector multiplication). On the negative side, we
give a counterexample, showing that general weak-average-case reductions cannot hold for all linear
problems. On the positive side, we show that the problem of evaluating a multivariate polynomial
admits such a weak-average-case reduction. We stress that as opposed to the online matrix-vector
multiplication problem discussed above, the problem of multivariate polynomial evaluation is an
example of a non-linear problem admitting such a reduction.

6.1 Average-case reductions for all linear problems

Recall that in the setting of data structures, a linear problem over a field F is defined by a matrix
A ∈ Fm×n. The input to the data structure is a vector x ∈ Fn, which is preprocessed into s memory
cells. Then, given queries of the form i ∈ [m], the goal of the data structure is to output 〈Ai, x〉,
where Ai is the i’th row of A. We show a worst-case to average-case reduction for data structures
for all linear problems.

Remark 6.1. We note that the presented reduction results in uniform data structures. That is,
we give an efficient and simple procedure that, given an average-case data structure, creates a
worst-case data structure in a black-box way that works for all values of n.

There is a trivial folklore argument that transforms an average-case data structure into a
non-uniform worst-case data structure as follows. Let X ⊆ Fn of size |X| ≥ α|F|n be the set
where for a given n, the average-case data computes all queries correctly. By the probabilistic
method, there exists (n/α) log |F| shifts of X that cover all of Fn. For every n, a non-uniform data
structure will remember all of those shifts, and for each shift s ∈ Fn, it will also remember the
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product As. Now, given an input vector x, in the preprocessing stage, the data structure just stores
the index of a shift s such that x + s ∈ X, and in the query phase it reads the index of the shift
and, thus, learns As. Now, since x+ s ∈ X, we can use the average-case data structure to compute
A(x + s), and, finally, compute Ax = A(x + s) − As. This results in a non-uniform worst-case
data structure whose space complexity and query time differ from those of the average-case data
structure by an additive term of log((n/α) log |F|).

Theorem 2. Let F = Fp be a prime field, α := α(n) ∈ (0, 1], n,m ∈ N, and a matrix A ∈ Fm×n.
Denote by LA the linear problem of outputting 〈Ai, x〉 on input x ∈ Fn and query i ∈ [m]. Suppose
that

LA ∈ DS

 preprocessing time: p
memory used: s

query time: t
success rate: Prx∈Fn [DSx(i) = 〈Ai, x〉 ∀i ∈ [m]] ≥ α

 .
Then for every δ > 0,

LA ∈ DS

 preprocessing time: p+ exp(log4(1/α)) · poly log(1/δ) · poly(n)

memory used: 4s+O(log4(1/α) log(n))

query time: 4t+O(log4(1/α) log(n))
success rate: ∀x ∈ Fn Pr[DS′x(i) = 〈Ai, x〉 ∀i ∈ [m]] ≥ 1− δ

 .
Proof. Consider the data structure DS for the matrix A, implied by the assumption of the theorem.
There exists a subset X ⊆ Fn of size |X| ≥ α|F|n such that for every input x ∈ X the data structure
answers correctly all queries to the data structure, i.e., DSx(i) = 〈Ai, x〉 for all i ∈ [m] and x ∈ X.

We design a data structure DS′ that outputs correct answers in worst case as follows. Let x ∈ Fn
be the input to DS′. We start by describing preprocessing and query phases of the data structure.

Worst-case data structure for LA

Preprocessing: Given x ∈ Fn we apply the Lemma 3.4 on x with the set X, and obtain a
non-negative integer t ≤ O(log4(1/α)), a vector v ∈ Fn with at most t non-zero entries, and
x1, x2, x3, x4 ∈ X such that

x = x1 + x2 − x3 − x4 + v .

Furthermore, by Lemma 3.4 such decomposition can be found using exp(log4(1/α)) ·
poly log(1/δ) · poly(n) field operations with probability at least 1− δ.
Then, we use the preprocessing algorithm of the average-case data structure on each one of
the xj ’s to obtain the algorithms DSx1(·), DSx2(·), DSx3(·), DSx4(·). Finally, we store the
sparse shift vector v by storing the t coordinates, and their values. Therefore, the amount
of memory used is 4s+O(log4(1/α) log(n)).

Query phase: Given a query i ∈ [m], we invoke our four instantiations of
the average-case data structure stored in the preprocessing stage and compute
DSx1(i),DSx2(i),DSx3(i),DSx4(i). We then compute 〈Ai, v〉 and return

DSx1(i) + DSx2(i)− DSx3(i)− DSx4(i) + 〈Ai, v〉 .
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Complexity: The time and amount of memory used follow immediately from the description.
Namely, note that applying the local correction lemma, which dominates the time complexity,
is done in time exp(log4(1/α)) · poly log(1/δ) · poly(n). Hence the total preprocessing time is
4p+ exp(log4(1/α)) · poly(n).

In terms of memory, we store 4 instances of the average-case data structure DS, where each
instance requires s memory cells. In addition we store the sparse vector v, by storing its t non-zero
indices and their values. Hence the total memory required is 4s+O(log4(1/α) · log(n)).

Finally, the bound on the query time consists of 4 queries to the the average case data structure
DS, as well as the computation of 〈Ai, v〉. The latter can be done by reading the description of the
t-sparse vector v, and computing their inner product with the corresponding t entries in the i’th
row of A. Hence the total query time is 4t+O(log4(1/α) · log(n)).

Correctness: By Lemma 3.4 we have

x = x1 + x2 − (x3 + x4) + v ,

where x1, x2, x3, x4 ∈ X. By the definition of X, this implies that the average-case data structure
DS computes these points correctly, hence

DSx1(i) + DSx2(i)− DSx3(i)− DSx4(i) = 〈Ai, x1〉+ 〈Ai, x2〉 − 〈Ai, x3〉 − 〈Ai, x4〉 ,

Furthermore, we directly compute 〈Ai, v〉, and hence, by the linearly of the inner product operation,
it follows that

〈Ai, x〉 =

4∑
j=1

〈Ai, xj〉+ 〈Ai, v〉 .

This concludes the proof of Theorem 2.

6.2 Weak-average-case data structures

In Section 6.1, we showed a worst-case to average-case reduction for all linear problems in the
setting of data structures. In the following, we show how to obtain worst-case algorithms starting
from a very weak, but natural, notion of average-case reductions that we discuss next.

Recall that in the standard definition of average-case data structures, the algorithm preprocesses
its input and is then required to correctly answer all queries for an α-fraction of all possible inputs.
However, in many cases (such as in the online matrix-vector multiplication problem), we only have
an average-case guarantee on both inputs and queries. In this setting, we should first ask what is
a natural notion of an average-case condition.

A strong requirement for an average-case algorithm in this case is to correctly answer all queries
for at least α-fraction of the inputs. However, a more desirable condition is to require the algorithm
to correctly answer on an average input and query. This is captured by the following definition.

Definition 6.2. A weak average-case data structure for computing a function f : Fn × Q → Fk
with success rate α > 0 receives an input x ∈ Fn, which is preprocessed into s memory cells. Then,
given a query q ∈ Q, the data structure DSx(q) outputs y ∈ Fk such that

Pr
x∈Fn,q∈Q

[DSx(q) = f(x, q)] ≥ α .
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The challenge in this setting is that the errors may be distributed between both the inputs and
the queries. On one extreme, the error could be concentrated on selected inputs, and then the data
structure computes all queries correctly for α-fraction of the inputs. On the other extreme, the
error could be spread over all inputs, and then the data structure may only answer α-fraction of
the queries on any inputs. Of course, the error could be distributed anywhere in between these two
extremes.

Weak-average-case reductions for matrix-vector multiplication. As a first example of the
weak-average-case paradigm, we note that our reduction for the online matrix-vector multiplication
problem in Section 5 can be cast as a worst-case to weak-average-case reduction. Namely, we start
with a data structure that receives a matrix M ∈ Fn×n as an input, preprocesses it into s memory
cells. Then, on query v ∈ Fn the data structure algorithm DSM satisfies

Pr
M∈Fn×n,v∈Fn

[DSM (v) = Mv] ≥ α .

Hence we immediately obtain the following statement.

Theorem 3. Let F = Fp be a prime field, n ∈ N, and α := α(n) ∈ (0, 1]. Consider the matrix-
vector multiplication problem OMVF for dimension n, and suppose that for some α > 0 it holds
that

OMVF ∈ DS

 preprocessing time: p
memory used: s

query time: t
success rate: PrM,v[DSM (v) = Mv] ≥ α

 .
Then for every δ > 0,

OMVF ∈ DS

 preprocessing time: 4p+ exp(log4(1/α)) · poly log(1/δ) · poly(n)

memory used: 4s+O(log4(1/α)n) +O(n2)
query time: (4t+ n) · poly(1/α) · poly log(1/δ)

success rate: ∀M, v : Pr[DSM (v) = Mv] ≥ 1− δ

 .
An immediate question is whether it is possible to obtain worst-case to weak-average-case

reductions not only for the matrix-vector multiplication problem, but rather for all linear problems,
as we have in the setting of (standard) average-case data structure. Alas, as we show next, such a
general result is impossible.

6.3 Impossibility of weak-average-case reductions for all linear problems

We observe that for weak-average-case data structures, there is a simple counterexample which
shows that it is impossible to obtain worst-case to weak-average-case reductions for all linear prob-
lems. Nevertheless, we later show that it is possible to obtain such reductions for specific natural
problems beyond matrix-vector multiplication, namely for the (non-linear) problem of multivariate
polynomial evaluation.

To see the counterexample, first note that a weak-average-case data structure can be equivalently
thought of as a data structure where the answer to each input is a vector, rather than a scalar, and
the requirement is that the algorithms on average outputs a partially correct vector. That is, a
weak-average-case data structure computes a function f : Fn → Fm with success rate α > 0 if after
the preprocessing, on query x ∈ Fn it satisfies that Prx∈Fn,i∈[m][DS(x)i = f(x)i] ≥ α.
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Weak-average-case circuits. For simplicity, we start with a counterexample for weak-average-
case circuits, then extend it to the setting of data structures. Note that the number of linear
functions f : Fn2 → Fm2 is 2nm. The total number of (not necessarily linear) circuits with g gates is
2O(g log(g)) (see, e.g., Lemma 1.12 in [Juk12]). Therefore, by a simple counting argument, a random

linear function requires a circuit with g ≥ Ω
(

mn
log(mn)

)
gates.

Now fix a linear function f of complexity at least Ω
(

mn
log(mn)

)
, and an arbitrarily small constant

ε > 0. Let us consider the function h : Fn2 → Fm/ε2 that embeds f as follows: the first m outputs
of h(x) compute f(x) ∈ Fm, and the remaining m/ε−m outputs are always zeros. Note that h is

also a linear function that requires a circuit with at least Ω
(

mn
log(mn)

)
gates.

On the other hand, note that the trivial circuit outputting m/ε zeros well-approximates the
function h, i.e., it satisfies the weak-average-case with success rate α = (1 − ε). Thus, any worst-
case to average-case reduction for all functions in this setting would have to blow up the size of the

trivial circuit computing 0 to the size of at least Ω
(

mn
log(mn)

)
, which is almost the biggest circuit

with this given number of inputs and outputs. Therefore, such a reduction would be degenerate.

Weak-average-case data structures. Moving on to the setting of data structures, here there
is an issue with such an argument. To see that, recall that we want start by picking a linear
function that is hard even against non-linear data structures. While the number of linear functions
is still 2mn, a data structure can compute s arbitrary (i.e., not necessarily linear) functions in
the preprocessing stage. The problem is that even one such function gives a data structure 22

n

possibilities which is already larger than the number of linear functions, and so the counting
argument here doesn’t work.

Nevertheless, we can still get essentially the same result for data structures by the following
argument. Let C(n,m) be the complexity of the hardest data structure for a linear problem. Then,
again, we take the hardest linear function from n bits to m bits, and extend it to a function with
m/ε output bits (where m/ε −m outputs are constant zeros). The worst-case complexity of this
function is at least C(n,m), while the average-case complexity is 0. Hence, every worst-case to
average-case reduction will blow up the size from 0 to C(n,m). Since every linear function can be
computed by a data structure of size C(n,m/ε) without any reduction, such a reduction is also
degenerate.

6.4 Weak-average-case reductions for multivariate polynomial evaluation

Our main result in the weak-average-case setting is a worst-case to weak-average-case reduction for
data structures computing the (non-linear) problem of multivariate polynomial evaluation. In this
problem, the input is a polynomial q : Fm → F of total degree at most d, given as its coefficients.
That is, the length of the input is n =

(
m+d
d

)
. Given the input polynomial, it is preprocessed, and

then in the query phase the goal is to respond to each query x ∈ Fm with the value q(x). We
restate and prove Theorem 4 below.

Theorem 4. Let F = Fp be a prime field, α := α(n) ∈ (0, 1], and let m, d ∈ N be parameters.
Consider the problem RMF,m,d of evaluating polynomials of the form q : Fm → F of total degree d

(i.e., the problem of evaluating the Reed-Muller encoding of block length n =
(
m+d
d

)
).
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Suppose that

RMF,m,d ∈ DS

 preprocessing time: p
memory used: s

query time: t
success rate: Prq,x[DSq(x)] ≥ α

 .

Then

RMF,m,d ∈ DS


preprocessing time: p+ exp(log4(1/α)) · poly(n)

memory used: 4s+O(log4(1/α) log(n))

query time: O(|F|2 · t+ |F| log4(1/α) + |F| log(n))

success rate: ∀q, x : Pr[DSq(x) = q(x)] > 1−O
(√

d
|F|

)
 .

Theorem 4 follows from the following two lemmas.

Lemma 6.3. Let F be a prime field, and d ≤ |F|/10. Suppose that for α > 2
√

d
|F| we have

RMF,m,d ∈ DS

 preprocessing time: p
memory used: s

query time: t
success rate: Prq,x[DSq(x) = q(x)] ≥ α

 .

Then

RMF,m,d ∈ DS


preprocessing time: 4p+ exp(log4(1/α)) · poly log(1/δ) · poly(n)

memory used: 4s+O(log4(1/α))

query time: 4|F| · t+O(log4(1/α))) +O(log(n)

success rate: ∀q with deg(q) ≤ d : Prx[DSq(x) = q(x)] ≥ 1−O
(√

d
α·|F|

)
 .

Lemma 6.4. Let F be a prime field, and d ≤ |F|/10. Suppose that for γ < 0.1 we have

RMF,m,d ∈ DS

 preprocessing time: p
memory used: s

query time: t
success rate: ∀q with deg(q) ≤ d : Prx[DSq(x) = q(x)] ≥ 1− γ

 .

Then

RMF,m,d ∈ DS

 preprocessing time: p
memory used: s

query time: |F| · t
success rate: ∀q with deg(q) ≤ d,∀x ∈ Fn : Pr[DSq(x) = q(x)] ≥ 1− 4γ

 .

Before proceeding with the proofs of the lemmas above, we will need the following proposition.

Proposition 6.5. Let F be a prime field, d ≤ |F|/10, and let α > 2
√

d
|F| . Let n =

(
d+m
m

)
be the

input length—the number of coefficients in a polynomial q : Fm → F of total degree at most d,
Let DS be a data structure for RMF,m,d with preprocessing time p, that stores s field elements,

and has query time t. Then there exists another data structure DS′ for RMF,m,d with preprocessing
time p + n, that stores s + m + 1 field elements, has query time |F|t, and satisfies the following
guarantee for all input polynomials q of degree at most d.

If Pr
x

[DSq(x) = q(x)] ≥ α, then Pr
x

[DS′q(x) = q(x)] ≥ 1−

√
d

α · |F|
.
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We emphasize that in the claim above the data structures do not depend on the polynomial q.
The proposition says that if q is an input such that DS outputs the correct evaluation q(x) for at
least α fraction of the queries x, then DS′ (which also does not depend on any particular q) succeeds

on 1−
√

d
α·|F| fraction of the same input q.

Proof of Proposition 6.5. Denote by DS the data structure for RMF,m,d that outputs the correct
answer for at least α fraction of inputs to q. Below we describe the data structure DS′.

Data Structure DS′

Preprocessing: Given the polynomial q of degree at most d

1. Run the preprocessing procedure for DS on the input q.

2. Choose a random reference point ~w ∈ Fm and compute q(~w).

3. Store ~w and q(~w) in the memory.

Query: Given a query ~x ∈ Fm

1. Consider the line `~x,~w = {~x+ r(~w − ~x) : r ∈ F} going through ~x and ~w.

2. Use the query algorithm of DS to compute (DSq(z) : z ∈ `~x,~w).

3. Let Q = {q1, q2, . . . , qk} be all the univariate polynomials of degree at most d that agree
with (DSq(z) : z ∈ `~x,~w) on at least α/2 fraction of points in `~x,~w. (It is possible that
Q = ∅.)

4. Use the value q(~w) from the preprocessing phase, and let Q′ = {q′ ∈ Q : q′(~w) = q(~w)}.
(It is possible that Q′ = ∅.)

5. Choose q′ ∈ Q′ arbitrarily and output q′(~x).

Next, we claim that if α > 2
√

d
|F| , then for at least 1−O

(√
d
|Fα|

)
fraction of the queries ~x the

query phase correctly outputs q(~x).
It will be convenient to consider a function A : Fm → F defined as A(z) = DSq(z) for all z ∈ Fn.

Note that A agrees with q on at least α-fraction of points. Furthermore, note that for simplicity
we may assume that q is the all zeros polynomial. Indeed, we can define A′(x) := A(x) − q(x),
and consider the case where the input is the all zeros polynomial, and the query algorithm is A′.
Therefore, (1) we have Prx∈Fm [A(x) = 0] ≥ α, and (2) in the preprocessing phase we know that
q(~w) = 0 for a random point ~w, though it is not necessarily true that A(~w) = 0.

The following three claims complete the proof of Proposition 6.5.

Claim 6.6. In the preprocessing phase, for a random choice of the reference point ~w with high
probability over ~x it holds that ~0 ∈ Q, and hence in Q′. More formally, we have

E~w∈Fm [Pr
x

[~0 ∈ Q]] ≥ 1− 4

|F|α
.
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In particular, by Markov’s inequality, for at least 1−
√

4
|F|α of ~w’s it holds that

Pr
x

[~0 ∈ Q] ≥ 1−

√
4

|F|α
. (3)

Proof. It is a standard fact in the literature on derandomization (see, e.g., [MR06, Corollary 1.2])
that for any set O ⊆ Fn of size |O| = α|F|n, and a random line `~x,~w = {~x + t(~w − ~x) : t ∈ F} that
passes through uniformly random ~x, ~w ∈ Fn it holds that

Pr

[∣∣∣∣∣
∣∣`~x,~w ∩O∣∣∣∣`~x,~w∣∣ − α

∣∣∣∣∣ > ε

]
≤ 1

|F|
α

ε2
.

The conclusion of the claim follows by letting O = {x ∈ Fn : A(x) = 0}, and ε = α/2.

Claim 6.7 ([MR06, Proposition 3.5]). Choose ~w and ~x uniformly at random and consider the
line `~x,~w. Let Q = {q1, q2, . . . , qk} be all the univariate polynomials of degree at most d that agree

with A on at least α/2 fraction of points in `~x,~w. If α > 2
√

d
|F| , then k ≤ 2/α.

Claim 6.8. Choose ~w and ~x uniformly at random and consider the line `~x,~w. Let Q =
{q1, q2, . . . , qk} be all the univariate polynomials of degree at most d that agree with A on at least
α/2 fraction of points in `~x,~w. Then, for all qi ∈ Q that are not identically zero it holds that
Pr[qi(~w) = 0] ≤ d

|F| .

In particular, if α > 2
√

d
|F| then

Pr
~w

[
Pr
~x

[∀qi ∈ Q \ {~0} : qi(~w) 6= 0] ≥ 1−

√
2d

α|F|

]
≥ 1−

√
2d

α|F|
.

Proof. For any choice of ~x if ~w is chosen uniformly at random, and each univariate polynomial qi
is of degree d, the by Schwarz-Zippel lemma

Pr[qi(~w) = 0] ≤ d

|F|
.

Also, by Claim 6.7, we know that |Q| = k ≤ 2/α, and hence, by union bound

Pr
~x,~w

[
∃qi ∈ Q \ {~0} : qi(~w) = 0

]
≤ kd

|F|
≤ 2d

α|F|
.

This implies

E~w

[
Pr
~x

[∀qi ∈ Q \ {~0} : qi(~w) 6= 0]

]
≥ 1− kd

|F|
≥ 1− 2d

α|F|
.

The claim follows by Markov’s inequality.

We now return to the proof of Proposition 6.5. By the claims above, for most ~w’s it holds that if
we choose ~w as a reference point, then for most ~x’s, we have ~0 ∈ Q, and there is no other univariate
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polynomial qi in Q such that qi(~w) = 0. More precisely, by combining Claim 6.6 with Claim 6.8

for at least 1−O
(√

d
α|F|

)
fraction of ~w’s it holds that

Pr
x

[~0 ∈ Q ∧ ∀q ∈ Q : q 6≡ 0, q(~w) 6= 0] ≥ 1−O

(√
d

α|F|

)
, (4)

as required.

Now we proceed with proving Lemma 6.3.

Proof of Lemma 6.3. Suppose there is a data structure DS as in the assumption of Lemma 6.3, with
success probability Prq,x[DSq(x) = q(x)] ≥ α. We show below how to construct a data structure
DS′ that will work for all input polynomial q and for most queries x.

Preprocessing:

Input: An input polynomial q of degree at most d

1. Identify q with a vector q ∈ Fn of its coefficients for n =
(
m+d
d

)
.

2. Let Z = {q ∈ Fn : |Xq| ≥ α
2 · |F|

n}.

3. Let OZ be a membership oracle for Z that given a polynomial q′ estimates
|Xq′ |
|F|n , the

fraction of points on which DSq′ outputs q′(x) correctly, within an additive error of α/10,
and returns ACCEPT if and only if the estimated fraction is more than α/3.a

4. By applying Lemma 3.4, with probability 1 − δ we obtain a vector u with at most
O(log4(1/α)) non-zero elements such that

Pr
q1,q2,q3∈Fn

[q1, q2,−q3,−q4 ∈ Z] ≥ Ω(α5) ,

where q4 ∈ Fn is such that q − u = q1 + q2 − q3 − q4.

5. Therefore, given q and s we can sample O(log(1/δ) · log4(1/α)) triplets of vectors until we
find a triplet (q1, q2, q3) and let q4 = q1+q2−q3−q−u satisfying q1, q2 ∈ Z,−q3,−q4 ∈ Z.
Note that we can use the membership oracle OZ to check that the vectors belong to Z.

6. Note that since each vi belongs to Z, we have that DS outputs pi(x) correctly on at least
α/4 fraction of inputs. Thus, we can apply Proposition 6.5 on DS and obtain the data

structure DS′ such that Prx∈Fn [DS′qi(x) = qi(x)] ≥ 1 − O
(√

d
α·|F|

)
for all i = 1, 2, and

Prx∈Fn [DS′−qj (x) = −qj(x)] ≥ 1−O
(√

d
α·|F|

)
for j = 3, 4.

7. We store all the memory obtained by preprocessing the polynomials q1, q2, q3, q4 with DS.
We also store the sparse vector s by storing the O(log4(1/α)) non-zero coordinates, and
their values.

aThis is done by sampling O(1/α2) uniformly random x’s in Fn, computing DSq′(x) and q′(x), and com-
paring the two results. In particular, if |Xq′ | ≥ α

2
· |F|n, then OZ(q′) = ACCEPT with probability 1− ε, and

if |Xq′ | ≤ α
4
· |F|n, then OZ(q′) = REJECT with probability 1− ε.
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For every polynomial q of degree at most d, let Xq = {x ∈ Fm : DSq(x) = q(x)}. By averaging,
there is a set Z of degree d polynomials such that |Z| ≥ α/2 · |F|n, and |Xq| ≥ α/2 · |F|m for
every q ∈ Z. Furthermore, note that it is straightforward to construct a membership oracle OZ
for Z, that given a polynomial q and access to DSq estimates the fraction of queries x on which
DSq(x) = q(x).

Below we describe the preprocessing phase and the query phase of DS′.
The preprocessing on an input q works as follows. By identifying q with the vector of its

coefficients in Fn with n =
(
m+d
m

)
, we use Lemma 3.4 to represent the vector q as q = q1 + q2 −

q3 − q4 + u, where each qi ∈ Z and u is a sparse vector. Then, for each qi we the reduction from
Proposition 6.5 to obtain a data structure that works for each of the qi for almost all queries x.

In the query phase, we use the data structures for each qi to compute qi(x), and for the sparse
polynomial s, we simply compute u(x) using brute force. Finally, we return q1(x) + q2(x)− q3(x)−
q4(x) + u(x).

Preprocessing time and space: In the preprocessing step, we store the memory of the pre-
processing for each of qi and in addition the sparse vector u. Hence, the total space used is
4s + log4(1/α) field elements + additional log4(1/α) coordinates of the input. Also, the running
time is determined by number of samples needed to construct the oracle in Step 1 using Lemma 3.4.
Both these steps take at most O(log4(1/α) · log(1/δ)) samples, bounding the running time of the
preprocessing step.

Next we describe the query phase of our data structure.

Query phase:

Input: A query ~x ∈ Fm.
Recall that for the polynomial q, we have stored high-agreement data structures for eval-
uating q1, q2, q3, q3, together with a polynomial which is represented by a sparse vector of
coefficient u.

1. For each polynomial qi let yi = DS′qi(~x).

2. Compute u(x). Since u has at most O(log4(1/α)) non-zero coordinates, it follows that
u(x) can be computed in query time O(log4(1/α) log(n)).

3. Return y1 + y2 − y3 − y4 + u(x).

Query time: The query time consists of querying the data structure 4 times, and evaluating
u(x). Note that the high-agreement data structure makes |F| queries to the weak-average-case data
structure, and each query takes time t. Thus, the total query time is 4|F| · t+O(log4(1/α) log(n))).

Correctness: To prove the correctness, we bound the failure probability of the algorithm. Note
that the algorithm returns the correct answer, unless for one of the polynomials qi it holds that,

DS′qi(~x) 6= qi(~x). This event happens with probability at most O(
√

d
|F|α). Hence, by applying union

bound we can bound the failure probability to O(
√

d
|F|α).

Finally, we prove Lemma 6.4.
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Proof of Lemma 6.4. The proof of this lemma basically relies on the local decoding algorithm for
Reed-Muller codes. Given a point ~x, the query algorithm samples a random line `x,y = {~x+r(~y−~x) :
r ∈ F} passing through ~x, and queries the data structure for all the points on this line. Given these
values, the algorithm finds the closest univariate polynomial of degree at most d, call it h, and
outputs h(~x). It is not hard to see that the algorithm succeeds with probability at least 1− 4γ.

For correctness since DSp agrees with q on 1 − γ fraction of the points z ∈ Fn, it follows that
for a random line ` through x the data structure DS satisfies Pr[agr ≥ 3/4] ≥ 1 − 4γ, where agr
denotes the fraction of points z ∈ ` with DSqi(z) = qi(z). For each such line ` the only polynomial
that agrees with DS on ` is qi, and hence with probability at least 1−4γ the data structure outputs
qi(x), as required.

Putting it all together: Below we summarize the reductions above, and describe the full reduc-
tion that given a weak-average-case data structure DS that computes the correct answer for only
α fraction of (q, x), gives us a data structure that works with high probability for all inputs q and
all queries x.

We first use Lemma 6.4, reducing the problem to evaluating p on a random line ` passing
through ~x. Then, we apply Lemma 6.3, to write p as sum of 5 polynomials, for which we know
one of them is sparse and can be computed efficiently, and the other four belong to the set of good
polynomials, i.e., those polynomials for which the data structure succeeds in evaluating them on
all but a small fraction of inputs. Finally, for each of these polynomials we apply the reduction
in Proposition 6.5. This last step corresponds to choosing a random reference point ~w ∈ Fn, and
passing lines between every ~z ∈ ` and ~w, and evaluating each of the qi on each of the F lines.
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[BFNW93] László Babai, Lance Fortnow, Noam Nisan, and Avi Wigderson. BPP has subex-
ponential time simulations unless EXPTIME has publishable proofs. Computational
Complexity, 3(4):307–318, 1993.

37



[BLR90] Manuel Blum, Michael Luby, and Ronitt Rubinfeld. Self-testing/correcting with appli-
cations to numerical problems. In STOC 1990, pages 73–83. ACM, 1990.

[BRSV17] Marshall Ball, Alon Rosen, Manuel Sabin, and Prashant Nalini Vasudevan. Average-
case fine-grained hardness. In STOC 2017, pages 483–496, 2017.

[BRSV18] Marshall Ball, Alon Rosen, Manuel Sabin, and Prashant Nalini Vasudevan. Proofs of
work from worst-case assumptions. In CRYPTO 2018, pages 789–819. Springer, 2018.

[BRTW14] Eli Ben-Sasson, Noga Ron-Zewi, Madhur Tulsiani, and Julia Wolf. Sampling-based
proofs of almost-periodicity results and algorithmic applications. In ICALP 2014, pages
955–966. Springer, 2014.

[BT06] Andrej Bogdanov and Luca Trevisan. Average-case complexity. Foundations and Trends
in Theoretical Computer Science, 2(1):1–106, 2006.

[CGL15] Raphael Clifford, Allan Grønlund, and Kasper Green Larsen. New unconditional hard-
ness results for dynamic and online problems. In FOCS 2015, pages 1089–1107. IEEE,
2015.

[Cha02] Mei-Chu Chang. A polynomial bound in Freiman’s theorem. Duke Mathematical Jour-
nal, 113(3):399 – 419, 2002.

[CKL18] Diptarka Chakraborty, Lior Kamma, and Kasper Green Larsen. Tight cell probe bounds
for succinct boolean matrix-vector multiplication. In STOC 2018, pages 1297–1306,
2018.

[CKLM18] Arkadev Chattopadhyay, Michal Kouckỳ, Bruno Loff, and Sagnik Mukhopadhyay. Sim-
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bounds and popular conjectures. arXiv:2102.09294, 2021.

[DLV20] Mina Dalirrooyfard, Andrea Lincoln, and Virginia Vassilevska Williams. New tech-
niques for proving fine-grained average-case hardness. In FOCS 2020, pages 774–785.
IEEE, 2020.

[FF93] Joan Feigenbaum and Lance Fortnow. Random-self-reducibility of complete sets. SIAM
Journal on Computing, 22(5):994–1005, 1993.

[FHM01] Gudmund Skovbjerg Frandsen, Johan P. Hansen, and Peter Bro Miltersen. Lower
bounds for dynamic algebraic problems. Information and Computation, 171(2):333–
349, 2001.

[Fre77] Rusins Freivalds. Probabilistic machines can use less running time. In IFIP 1977, pages
839–842, 1977.

38



[GR18] Oded Goldreich and Guy Rothblum. Counting t-cliques: Worst-case to average-case
reductions and direct interactive proof systems. In FOCS 2018, pages 77–88. IEEE,
2018.

[HKNS15] Monika Henzinger, Sebastian Krinninger, Danupon Nanongkai, and Thatchaphol Sara-
nurak. Unifying and strengthening hardness for dynamic problems via the online
matrix-vector multiplication conjecture. In STOC 2015, pages 21–30, 2015.

[HLS21] Monika Henzinger, Andrea Lincoln, and Barna Saha. The complexity of average-case
dynamic subgraph counting. ECCC, 2021.

[Imp95] Russell Impagliazzo. A personal view of average-case complexity. In CCC 1995, pages
134–147. IEEE, 1995.

[Imp11] Russell Impagliazzo. Relativized separations of worst-case and average-case complexi-
ties for NP. In CCC 2011, pages 104–114. IEEE, 2011.

[Juk12] Stasys Jukna. Boolean function complexity: advances and frontiers, volume 27. Springer
Science & Business Media, 2012.

[KU08] Kiran S. Kedlaya and Christopher Umans. Fast modular composition in any charac-
teristic. In FOCS 2008, pages 146–155. IEEE, 2008.

[Lar12] Kasper Green Larsen. Higher cell probe lower bounds for evaluating polynomials. In
FOCS 2012, pages 293–301. IEEE, 2012.

[Lev86] Leonid A. Levin. Average case complete problems. SIAM Journal on Computing,
15(1):285–286, 1986.

[Lip91] Richard Lipton. New directions in testing. Distributed computing and cryptography,
2:191–202, 1991.

[LLV19] Rio LaVigne, Andrea Lincoln, and Virginia Vassilevska Williams. Public-key cryptog-
raphy in the fine-grained setting. In CRYPTO 2019, pages 605–635. Springer, 2019.

[Lov15] Shachar Lovett. An exposition of Sanders’ quasi-polynomial Freiman-Ruzsa theorem.
Theory of Computing, pages 1–14, 2015.

[Lov17] Shachar Lovett. Additive combinatorics and its applications in theoretical computer
science. Theory of Computing, pages 1–55, 2017.

[LW17] Kasper Green Larsen and Ryan Williams. Faster online matrix-vector multiplication.
In SODA 2017, pages 2182–2189. SIAM, 2017.

[MR06] Dana Moshkovitz and Ran Raz. Sub-constant error low degree test of almost-linear
size. In STOC 2006, pages 21–30. ACM, 2006.

[NN93] Joseph Naor and Moni Naor. Small-bias probability spaces: Efficient constructions and
applications. SIAM J. Comput., 22(4):838–856, 1993.

[Reg04] Oded Regev. New lattice-based cryptographic constructions. Journal of the ACM,
51(6):899–942, 2004.

39



[San12] Tom Sanders. On the Bogolyubov–Ruzsa lemma. IEEE Trans. Inf. Theory, 5(3):627–
655, 2012.

[Sho09] Victor Shoup. A computational introduction to number theory and algebra. Cambridge,
2009.

[STV01] Madhu Sudan, Luca Trevisan, and Salil Vadhan. Pseudorandom generators without
the XOR lemma. Journal of Computer and System Sciences, 62(2):236–266, 2001.

[TS17] Amnon Ta-Shma. Explicit, almost optimal, epsilon-balanced codes. In STOC 2017,
pages 238–251, 2017.

[Vas18] Virginia Vassilevska Williams. On some fine-grained questions in algorithms and com-
plexity. In ICM 2018, 2018.

40



A Proof of the probabilistic version of Sanders’ lemma

Below we prove Lemma 3.3. The proof follows the approach of Sanders, with several modifications.
We follow the exposition of Lovett [Lov15] in the proof of the lemma.

Lemma 3.3 (Probabilistic quasi-polynomial Bogolyubov-Ruzsa lemma). Let F = Fp be a prime
field, and let A ⊆ Fn be a set of size |A| = α · |F|n, for some α ∈ (0, 1]. Then, there exists a subspace
V ⊆ Fn of dimension dim(V ) ≥ n−O(log4(1/α)) such that for all v ∈ V it holds that

Pr
a1,a2,a3∈Fn

[a1, a2 ∈ A, a3, a4 ∈ −A] ≥ Ω(α5) ,

where a4 = v − a1 − a2 − a3. Furthermore, given a query access to the set A, there is an algorithm
that runs in time exp(log4(1/α)) · poly log(1/δ) · poly(n) and with probability 1− δ computes a set
of vectors R ⊆ Fn such that V = {v ∈ Fn : 〈v, r〉 = 0 ∀r ∈ R}.

Before starting with the proof, let us establish some notation. For a set A ⊆ Fn, we denote by
1A : Fn → {0, 1} the indicator function of A, where 1A(x) = 1 if x ∈ A, and 1A(x) = 0 otherwise.

In particular Ex∈Fn [1A(x)] = |A|
|F|n . We also let ϕA : Fn → R be the normalization of 1A defined as

ϕA(x) = 1A(x) · |F|
n

|A| so that Ex∈Fn [ϕA(x)] = 1. When the set A is a singleton A = {a}, we will
write ϕa = ϕ{a}.

It is easy to verify that for a set A and a function f the convolution ϕA ∗ f is given by
ϕA ∗ f(x) = Ea∈A[f(x− a)]. In particular, for a ∈ Fn we have ϕa ∗ f(x) = f(x− a).

As a starting point, we define the set D = {d ∈ Fn : 1A ∗ 1−A(d) ≥ δ} for a parameter
δ = α2/20. That is, D is the set of all popular differences of two elements of A. In other words,
D consists of all d ∈ Fn such that there are δ|F|n pairs (a, a′) ∈ A2 satisfying d = a − a′, i.e.,
Pra∈Fn,a′=d−a[a ∈ A, a′ ∈ −A] ≥ δ.

Note first that 〈1A−A, ϕA ∗ ϕ−A〉 = Ex,y∈Fn [1A−A(x − y)ϕA(x)ϕ−A(−y)] = Ex,y∈A[1A−A(x −
y)] = 1. Next we observe that D approximates A−A, in the sense that 〈1D, ϕA ∗ ϕ−A〉 ≥ 1− δ

α2 =
0.95. Indeed, using the fact that D ⊆ A−A, we have

〈1D, ϕA ∗ ϕ−A〉 = 〈1A−A, ϕA ∗ ϕ−A〉 −
〈
1Fn\D, ϕA ∗ ϕ−A

〉
= 1− 1

α2

〈
1Fn\D, 1A ∗ 1−A

〉
= 1− 1

α2
· Pr
d,a∈Fn

[a ∈ A, d− a ∈ −A|d /∈ D] · Pr
d∈Fn

[d /∈ D]

≥ 1− δ

α2
. (5)

We remark that this is one of the main differences in our proof compared to the original proof
of Sanders, who only relied on the fact that 〈1A−A, ϕA ∗ ϕ−A〉 = 1.

The proof of Lemma 3.3 consists of the following two parts.

Lemma A.1. Let A ⊆ Fn be a set of size |A| = α|F|n. Set t = O(log(1/α)). There exists a set

X ⊆ Fn of size |X| ≥ αO(log3(1/α))|F|n such that for all x1, x2, . . . , xt ∈ X it holds that

Pr
a1,a2∈A

[a1 − a2 −
t∑
i=1

xi ∈ D] ≥ 0.9 . (6)
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Given the set X from Lemma A.1 we use a standard Fourier-analytic argument to define a large
subspace V such that |D ∩ V ′| ≥ 0.8|V | where V ′ is some coset of V . In fact, we show that there
are many such cosets. Formally, we prove the following lemma.

Lemma A.2. Let A ⊆ Fn be a set of size |A| = α|F|n, Then, there exists a subspace V ⊆ Fn of
dimension dim(V ) = n − O(log4(1/α)) and a vector b ∈ Fn such that if we sample a uniformly
random a ∈ A and v ∈ V then

Pr
a∈A,v∈V

[v + a+ b ∈ D] ≥ 0.85 . (7)

Remark A.3. Lemma A.1 corresponds to Lemma 4.2 in [Lov15]. The only difference is that we
claim that the sum belongs to D with high probability, while in [Lov15] the sum belongs to A − A.
Note that the two statements are indeed close to each other by Eq. (5).

Lemma A.2 roughly corresponds to the conclusion of the section “A Fourier-analytic argument”
in [Lov15].

We show next how to conclude the proof of Lemma 3.3 from Lemma A.2. Indeed, by Eq. (7) it
follows that Ea∈A[Prv∈V [v+ a+ b ∈ D]] ≥ 0.85, and hence for at least 0.05|A| many a ∈ A it holds
that Prv∈V [v + a+ b ∈ D] ≥ 0.8. In particular, for C = {c ∈ Fn : |D ∩ (V + c)| ≥ 0.8|V |} we have
|C| ≥ 0.05α|F|n.

Claim A.4. The set C ⊆ Fn is symmetric. Namely, if c ∈ C, then −c ∈ C.

Proof. Let c ∈ C and let V + c be the corresponding coset of V . We claim that −c ∈ C, i.e.,∣∣{v ∈ V : there are ≥ δ|F|n pairs (a1, a2) ∈ A2 such that a1 − a2 = v − c}
∣∣ ≥ 0.8|V |.

For c ∈ C let Pc = {v ∈ V : there are ≥ δ|F|n pairs (a1, a2) ∈ A2 such that a1 − a2 = −v + c}.
By definition of C, we have |Pc| ≥ 0.8|V |.

To see that −c ∈ C take any v ∈ PC , and note that a1−a2 = −v+c if and only if a2−a1 = v−c.
Therefore, for each v ∈ Pc there are ≥ δ|F|n pairs (a1, a2) ∈ A2 such that a2− a1 = v− c, and thus
−c ∈ C, as required.

Let us choose a unique representative c∗ for each coset V + c of V such that |D ∩ (V + c)| ≥
0.8|V |, and let C∗ = {c∗ is the representative of V + c : |D ∩ (V + c)| ≥ 0.8|V |}. And furthermore,
let us assume without loss of generality that C∗ is symmetric, i.e. c∗ ∈ C∗ implies that −c∗ ∈ C∗.
Then, the union of all these coset covers is at least 0.05α fraction of Fn, i.e.,

|∪c∗∈C∗(V + c∗)| ≥ 0.05α|F|n . (8)

We are now ready to show that

Pr
a1,a2,a3∈Fn

a4=v−a1−a2−a3

[a1, a2 ∈ A, a3, a4 ∈ −A] ≥ Ω(α5) .

Proof of Lemma 3.3. Fix v ∈ V . Since |D ∩ (V + c∗)| ≥ 0.8|V | for every coset V + c∗ such that
c∗ ∈ C∗, it follows by the symmetry of C∗ that for every c∗ ∈ C∗ we have at least 0.1 · |V | pairs
(u + c∗, v − u − c∗) ∈ D2 such that u ∈ V . Therefore, by Eq. (8) for every v ∈ V there are at
least 0.1× 0.05α|F|n different pairs (u + c∗, v − u− c∗) such that both u + c∗ ∈ D ∩ (V + c∗) and
v − u− c∗ ∈ D ∩ (V − c∗).
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Letting d1 = u + c∗, so far we got that for every v ∈ V we have Prd1∈Fn,d2=v−d1 [d1, d2 ∈ D] ≥
Ω(α).

Recall that by the definition of D, every d1 ∈ D is a popular difference of elements of A, i.e.
Pr a1∈Fn

a3=d1−a1
[a1 ∈ A, a3 ∈ −A] ≥ δ. Similarly, for d2 ∈ D we have Pr a2∈Fn

a4=d2−a2
[a2 ∈ A, a4 ∈ −A] ≥ δ.

This implies that
Pr

a1,a2,a3∈Fn
a4=v−a1−a2−a3

[a1, a2 ∈ A, a3, a4 ∈ −A] ≥ Ω(α · δ2) ,

as required.

We now turn to proving each of the two steps stated in Lemma A.1 and Lemma A.2.

A.1 Proof of Lemma A.1

The proof starts with the following lemma of Croot and Sisask [CS10].

Lemma A.5 (Croot-Sisask [CS10, Proposition 3.3]). Let A,B ⊆ Fn be two sets, and let ε ∈ (0, 1)

and p ≥ 1. Let α = |A|
|F|n ∈ (0, 1). Then, there exists a set X ⊆ Fn of size |X| ≥ (α/2)O(p/ε2)|F|n

such that for all x ∈ X it holds that

‖ϕx ∗ ϕA ∗ 1B − ϕA ∗ 1B‖p ≤ ε .

Let p = log2(1/α), t = Θ(log(1/α)), and ε = (1/40t). By applying Lemma A.5 we obtain a set

X ⊆ Fn of size |X| ≥ (α/2)O(p/ε2) ≥ αO(log3(1/α))|F|n. We show below that X satisfies Eq. (6).
Fix x1, . . . , xt ∈ X, and let s =

∑t
i=1 xi. Note first that by setting B = D in Lemma A.5 and

combining it with triangle inequality we get that

‖ϕs ∗ ϕA ∗ 1D − ϕA ∗ 1D‖p ≤ t · ε ≤ 1/40 ,

where the last inequality is by the choice of ε = 1/40t. Let q = p/(p − 1), then by the choice of
p = log2(1/α) we have

‖ϕA‖q =

(
α · 1

αq

)1/q

=

(
1

α

)1/p

≤ 2 .

Then, by applying Hölder’s inequality with q = p/(p− 1) we get

|〈ϕs ∗ ϕA ∗ 1D − ϕA ∗ 1D, ϕA〉| ≤ ‖ϕs ∗ ϕA ∗ 1D − ϕA ∗ 1D‖p · ‖ϕA‖q ≤ 1/20 .

By combining the above inequality with Eq. (5) we get

Pr
a1,a2∈A

[a1 − a2 − s ∈ D] = 〈ϕs ∗ ϕA ∗ 1D, ϕA〉

= 〈ϕA ∗ 1D, ϕA〉 − 〈ϕA ∗ 1D − ϕs ∗ ϕA ∗ 1D, ϕA〉
= 〈1D, ϕA ∗ ϕ−A〉 − 〈ϕA ∗ 1D − ϕs ∗ ϕA ∗ 1D, ϕA〉
≥ (1− δ/α2)− 1/20 ≥ 0.9 ,

as required.

43



A.2 Proof of Lemma A.2

The proof of this step is essentially Section 5 of [Lov15]. The only (minor) difference is that we
work over Fp and not over F2.

Given the set X ⊆ Fn from Lemma A.1 of size |X| ≥ αO(log3(1/α))|F|n, we define Specγ(X) =

{r ∈ Fn : |ϕ̂X(r)| ≥ γ}. Since
∑

q∈Fn |ϕ̂X(r)|2 = Ez[ϕX(z)2] = 1/α, it follows that
∣∣Specγ(X)

∣∣ ≤
1
αγ2

. Chang’s lemma provides a non-trivial bound on the dimension of the subspace containing

Specγ(X).

Lemma A.6 (Chang [Cha02]). Let X ⊆ Fn of size |X| = β · |F|n, and let γ > 0. Then

dim(Specγ(X)) ≤ O
(

log(1/β)

γ2

)
.

Define the subspace V = Spec1/2(X)⊥ = {v ∈ Fn : 〈v, r〉 = 0 ∀r ∈ Spec1/2(X)}. Lemma A.6

implies that dim(V ) ≥ n−O(log4(|F|n/|X|)) ≥ n−O(log4(1/α)).
We now show that V indeed satisfies the guarantee of Lemma A.2. For x1, x2, . . . , xt ∈ X let

s =
∑t

i=1 xi as in the previous lemma. By Lemma A.1 for all x1, x2, . . . , xt ∈ X we have

Pr
a1,a2∈A

[a1 − a2 − s ∈ D] ≥ 0.9 .

Next, we are comparing this probability to the following.

Pr
v∈V

a1,a2∈A

[v + a1 − a2 − s ∈ D] . (9)

We claim that if we sample v ∈ V , a1, a2 ∈ A, and x1, . . . , xt ∈ X uniformly at random (and let
s =

∑t
i=1 xi), then the two quantities are close to each other. We prove this by rewriting the two

probabilities using the Fourier expansion. Note that the Fourier coefficients of ϕV are simple to
describe since V is a linear subspace, and they are equal to ϕ̂V (r) = 1 if r ∈ V ⊥ and ϕ̂V (r) = 0
otherwise. Therefore,

Pr
v∈V

x1,...,xt∈X
a1,a2∈A

[v + a1 − a2 − s ∈ D] =
〈
ϕV ∗ ϕA ∗ ϕ−A ∗ ϕ(t)

−X ,1D

〉

=
∑
r∈Fn

ϕ̂V (r) · ϕ̂A(r) · ϕ̂A(−r) · ϕ̂Xt(−r) · 1̂D(r)

=
∑
r∈V ⊥

ϕ̂A(r) · ϕ̂A(−r) · ϕ̂Xt(−r) · 1̂D(r) .

On the other hand

Pr
x1,...,xt∈X
a1,a2∈A

[a1 − a2 − s ∈ D] =
〈
ϕA ∗ ϕ−A ∗ ϕ(t)

−X ,1
〉

=
∑
r∈Fn

ϕ̂A(r) · ϕ̂A(−r) · ϕ̂Xt(−r) · 1̂D(r) .
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This implies∣∣∣∣∣∣∣∣ Pr
v∈V

x1,...,xt∈X
a1,a2∈A

[v + a1 − a2 − s ∈ D]− Pr
x1,...,xt∈X
a1,a2∈A

[a1 − a2 − s ∈ D]

∣∣∣∣∣∣∣∣ =
∑
r 6∈V ⊥

ϕ̂A(r) · ϕ̂A(−r) · ϕ̂Xt(r) · 1̂D(r)

≤
∑
r 6∈V ⊥

∣∣∣ϕ̂A(r) · ϕ̂A(−r) · 2−t · 1̂D(r)
∣∣∣

≤ 2−t
∑
r∈Fn
|ϕ̂A(r) · ϕ̂A(−r)|

By Cauchy-Schwarz ≤ 2−t
∑
r∈Fn

∣∣∣ϕ̂A2(r)
∣∣∣

= 2−t · Ex∈Fn [ϕ2
A(x)]

=
1

α · 2t
< 0.05 ,

where the last inequality holds due to the choice of t = O(log(1/α)). Therefore,

Pr
v∈V

x1,...,xt∈X
a1,a2∈A

[v + a1 − a2 − s ∈ D] ≥ Pr
x1,...,xt∈X
a1,a2∈A

[a1 − a2 − s ∈ D]− 0.05 ≥ 0.85 .

Finally, we can fix a2 + s maximizing the probability, and let b = −a2 − s to conclude the proof of
Lemma A.2.

A.3 Algorithmic construction of the subspace V

Given a set A we can construct V using the algorithm described in [BRTW14]. Indeed, the only
ingredients we need for our construction are the set X from Lemma A.1 and the subspace V
guaranteed by Lemma A.2.

A straightforward inspection of the algorithm described in [BRTW14] gives the desired result.
Informally, the algorithm works as follows: The set X is defined as the set of all x ∈ X such that

‖ϕx ∗ ϕA ∗ 1D − ϕA ∗ 1D‖p ≤ ε .

Note that given x ∈ Fn we can estimate the norm efficiently (up to a small error). This gives us a
membership oracle to the set X.

Given such a query oracle, we can use Goldreich-Levin algorithm over F to compute R =
Spec1/2(X) [Aka08], or more precisely its superset that is not too large, and using it we define the
subspace V = {v ∈ Fn : 〈v, r〉 = 0 ∀r ∈ R}.
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