
On Efficient Noncommutative Polynomial Factorization via Higman

Linearization *

V. Arvind� Pushkar S Joglekar�§

Abstract

In this paper we study the problem of efficiently factorizing polynomials in the free noncom-

mutative ring F〈x1, x2, . . . , xn〉 of polynomials in noncommuting variables x1, x2, . . . , xn over

the field F. We obtain the following result:

Given a noncommutative algebraic branching program1 of size s computing a noncommu-

tative polynomial f ∈ F〈x1, x2, . . . , xn〉 as input, where F = Fq is a finite field, we give

a randomized algorithm that runs in time polynomial in s, n and log2 q that computes a

factorization of f as a product f = f1f2 · · · fr, where each fi is an irreducible polynomial

that is output as a noncommutative algebraic branching program.

The algorithm works by first transforming the given algebraic branching program comput-

ing f into a linear matrix L using Higman’s linearization of polynomials. We then factorize

the linear matrix L and recover the factorization of f . We use basic elements from Cohn’s

theory of free ideals rings combined with Ronyai’s randomized polynomial-time algorithm

for computing invariant subspaces of a collection of matrices over finite fields.

Keywords: Noncommutative Polynomials, Arithmetic Circuits, Factorization, Iden-

tity testing.

*A preliminary version was presented at the 37th Computational Complexity Conference, CCC’22, [AJ22].
�Institute of Mathematical Sciences, Chennai, India and Chennai Mathematical Institute, Siruseri, Kelambakkam,

India, email: arvind@imsc.res.in
�Vishwakarma Institute of Technology, Pune, India, email: joglekar.pushkar@gmail.com
§Author would like to thank SERB for the funding through the MATRICS project, File no. MTR/2018/001214
1This strengthens the main result in earlier versions of this paper where the algorithm was only for noncommutative

arithmetic formulas.

1

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Revision 4 of Report No. 22 (2022)

Contents

1 Introduction 1

1.1 Overview of the results . 1

1.2 Small Finite fields . 3

1.3 Finite fields versus Rationals . 4

1.4 Related research . 4

2 Preliminaries 5

3 Some Basic Results 9

4 Polynomial factorization: commutatively non-zero case 13

4.1 Algorithm for a special case of LIN-FACT(Fq) . 14

5 Factorization of Commutatively zero polynomials 20

5.1 Factorization of full and monic linear matrices . 20

5.2 Factorization over small finite fields . 24

6 Concluding Remarks 25

A Appendix 28

A.1 Higman Linearization of Algebraic Branching Programs 28

A.2 Missing proofs from Section 2 . 31

A.3 Proof of Lemma 5.1 . 32

1 Introduction

Let F be any field and X = {x1, x2, . . . , xn} be a set of n free noncommuting variables. Let X∗

denote the set of all free words (which are monomials) over the alphabet X with concatenation of

words as the monoid operation and the empty word ε as identity element.

The free noncommutative ring F〈X〉 consists of all finite F-linear combinations of monomials

in X∗, where the ring addition + is coefficient-wise addition and the ring multiplication ∗ is the

usual convolution product. More precisely, let f, g ∈ F〈X〉 and let f(m) ∈ F denote the coefficient

of monomial m in polynomial f . Then we can write f =
∑

m f(m)m and g =
∑

m g(m)m, and in

the product polynomial fg for each monomial m we have

fg(m) =
∑

m1m2=m

f(m1)g(m2).

The degree of a monomial m ∈ X∗ is the length of the monomial m, and the degree deg f of a

polynomial f ∈ F〈X〉 is the degree of a largest degree monomial in f with nonzero coefficient. For

polynomials f, g ∈ F〈X〉 we clearly have deg(fg) = deg f + deg g.

A nontrivial factorization of a polynomial f ∈ F〈X〉 is an expression of f as a product f = gh

of polynomials g, h ∈ F〈X〉 such that deg g > 0 and deg h > 0. A polynomial f ∈ F〈X〉 is

irreducible if it has no nontrivial factorization and is reducible otherwise. For instance, all degree 1

polynomials in F〈X〉 are irreducible. Clearly, by repeated factorization every polynomial in F〈X〉
can be expressed as a product of irreducibles.

In this paper we study the algorithmic complexity of polynomial factorization in the free ring

F〈X〉. The factorization algorithm is by an application of Higman’s linearization process followed

by factorization of a matrix with linear entries (under some technical conditions) using Cohn’s

factorization theory.

It is interesting to note that Higman’s linearization process [Hig40] has been used to obtain a

deterministic polynomial-time algorithm for the RIT problem. That is, the problem of testing if

a noncommutative rational formula (which computes an element of the free skew field F⦓X⦔) is

zero on its domain of definition [GGdOW20, IQS17, IQS18, HW15].

1.1 Overview of the results

The main result of the paper is the following.

Theorem (Main Theorem). Given a multivariate noncommutative polynomial f ∈ Fq〈X〉 for a

finite field2 Fq by a noncommutative algebraic branching program of size s as input, a factorization

of f as a product f = f1f2 · · · fr can be computed in randomized time poly(s, log2 q, |X|), where

each fi ∈ Fq〈X〉 is an irreducible polynomial that is output as an algebraic branching program.

The proof has three broad steps described below.

� Higman linearization and Cohn’s factorization theory Briefly, given a noncommuta-

tive polynomial f ∈ F〈X〉, we can transform it into a linear matrix L such that f⊕I = PLQ,

2We present the detailed randomized algorithm over large finite fields. In the case of small finite fields we obtain

a deterministic poly(s, q, |X|) time algorithm with minor modifications.

1

where P is an upper triangular matrix with polynomial entries and all 1’s diagonal and Q

is a lower triangular matrix with polynomial entries and all 1’s diagonal, P and Q are the

matrices implementing the sequence of row and column operations required for the Higman

linearization process. Now, as observed by Garg et al [GGdOW20] (in their work on rational

identity testing), if f is given by a noncommutative formula as input then the above Higman

linearization can be carried out in polynomial time. We strengthen their observation with a

modified Higman linearization process that we call Block-Higman linearization (to emphasize

that the modification works with matrix blocks) and show the more general result that if f

is given by an ABP as input we can still compute its Higman linearization as defined above

in polynomial time.

� Ronyai’s common invariant subspace algorithm Next, the most important tool algo-

rithmically, is Ronyai’s algorithm for computing common invariant subspaces of a collection

of matrices over finite fields [Rón90]. We show that Ronyai’s common invariant subspace

algorithm can be repeatedly applied to factorize a linear matrix L = A0 +
∑n

i=1Aixi, into

a product of irreducible linear matrices provided A0 is invertible and [A1A2 · · ·An] has full

row rank or [AT
1A

T
2 · · ·AT

n]T has full column rank. The later conditions are called as right

and left monicity of the linear matrix L respectively. With some technical work we can en-

sure these conditions for a linear matrix L that is produced from a polynomial f by Higman

linearization. Then Ronyai’s algorithm yields the factorization of L into a product of irre-

ducible linear matrices (upto multiplication by units). Here, Cohn’s theory of factorization

of noncommutative linear matrices gives us sufficient useful information about the structure

of irreducible linear matrices.

� Recovering the factors of f Finally, we design a simple linear algebraic algorithm for

trivializing a matrix product AB = 0, where A is a linear matrix and B is a column vector

of polynomials from F〈X〉, using which we are able to extract the irreducible factors of f

from the factors of L. An invertible matrix M with polynomial entries trivializes the relation

AB = 0 if the modified relation (AM)(M−1B) = 0 has the property that for every index i

either the ith column of AM is zero or the ith row of M−1B is zero. While such matrices

M exist for any matrix product AB = 0 with entries from F〈X〉, we obtain an efficient

algorithm in the special case when A is linear and B’s entries are polynomials computed by

small arithmetic circuits. This special case is sufficient for our application.

There are some additional technical aspects we need to deal with. Let L = A0 +
∑n

i=1Aixi be

the linear matrix obtained from f ∈ Fq〈X〉 by Higman linearization, where X = {x1, x2, . . . , xn}
and Ai ∈ Fd×d

q , 0 ≤ i ≤ n. If A0 is an invertible matrix then it turns out that the problem of

factorizing L can be directly reduced to the problem of finding a common invariant subspace for

the matrices A−10 Ai, 1 ≤ i ≤ n. In general, however, A0 is not invertible. Two cases arise:

(a) The polynomial f is commutatively nonzero. That is, it is nonzero on Fn
q (or on Fn for a

small extension field F). In this case, by the DeMillo-Lipton-Schwartz-Zippel Lemma [DL78,

Sch80, Zip79], we can do a linear shift of the variables xi ← xi + αi in the polynomial f , for

αi randomly picked from Fq (or F). Let the resulting polynomial be f ′ and let its Higman lin-

earization be Lf ′ . In Lf ′ the constant matrix term A′0 will be invertible with high probabilty,

2

and the reduction steps outlined above will work for Lf ′ . Furthermore, from the factorization

of f ′ we can efficiently recover the factorization of f . Section 4 deals with Case (a), with

Theorem 4.10 summarizing the algorithm for factorizing f . Theorem 4.6 describes the algo-

rithm for factorization of the linear matrix Lf ′ , and the factor extraction lemma (Lemma 4.9)

allows us to efficiently recover the factorization of f ′ from the factorization of Lf ′ .

(b) In the second case, suppose f is zero on all scalars. Then, for example by Amitsur’s theorem

[Ami66], for a random matrix substitution xi ← Mi ∈ F2s×2s the matrix f(M1,M2, . . . ,Mn)

is invertible with high probability, where s is the formula size of f .3 4 Accordingly, we

can consider the factorization problem for shifted and dilated linear matrix L′ = A0 ⊗ I` +∑n
i=1Ai⊗ (Yi +Mi) which will have the constant matrix term invertible, where each Yi is an

`× ` matrix of distinct noncommuting variables, where ` = 2s. Recovering the factorization

of L from the factorization of L′ requires some additional algorithmic work based on linear

algebra. A lemma from [HKV20] (refer Section 5 and the Appendix for the details) turns out

to be crucial here. The algorithm handling Case (b) is described in Section 5. Indeed, the

new aspect of the algorithm is factorization of the dilated matrix L′ from which we recover

the factorization of the Higman linearization Lf of f . The remaining algorithm steps are

exactly as in Section 4.

1.2 Small Finite fields

We now briefly explain the deterministic poly(s, q, |X|) time factorization algorithm (when Fq is

small). There are two places in the factorization algorithm outlined above where randomization is

used: first, to obtain a matrix tuple (M1,M2, . . . ,Mn) such that f(M1,M2, . . . ,Mn) is invertible,

which ensures that the constant matrix term of the linear matrix L′ is invertible. When q = Ω(d),

where d = deg f , it suffices to randomly pick Mi ∈ F2s×2s
q . However, if q < d we can choose entries

of the matrices Mi from a small extension field Fqk such that qk = Ω(d). Thereby, we will obtain

factorization of L′ and subsequently that of the polynomial f over the extension field Fqk . However,

we can use the fact that the finite field Fqk can be embedded using the regular representation of the

elements of Fqk in the matrix algebra Fk×k
q . Thus, we can obtain from (M1,M2, . . . ,Mn) a matrix

tuple (M ′1,M
′
2, . . . ,M

′
n) with M ′i ∈ F2sk×2sk

q such that f(M ′1,M
′
2, . . . ,M

′
n) is invertible. This will

ensure that the linear matrix L′ can be factorized over the field Fq which will allow us to obtain a

complete factorization of f into irreducible factors over Fq.

In order to get a deterministic polynomial-time algorithm for finding such matricesM ′i , 1 ≤ i ≤ n
we will use the fact that the polynomial f is given by a small noncommutative formula and hence

has a small algebraic branching program. Then, using ideas from [RS05, For14, ACDM20] we can

easily find such matrices M ′i in deterministic polynomial time.

Next, we notice that Ronyai’s algorithm for finding common invariant subspaces of matrices over

Fq is essentially a polynomial-time reduction to univariate polynomial factorization over Fq. We

can use Berlekamp’s deterministic poly(q,D) algorithm for the factorization of univariate degree

D polynomials over Fq. Putting it together, we can obtain a deterministic poly(s, q, |X|) time

3Amitsur’s theorem strengthens the Amitsur-Levitski theorem [AL50] often used in noncommutative PIT algo-

rithms [BW05].
4In the actual algorithm we pick the matrices Mi using a result from [DM17]

3

algorithm for factorization of f ∈ Fq〈X〉 as a product of irreducible factors over Fq.

1.3 Finite fields versus Rationals

Unfortunately, the algorithm outlined above does not yield an efficient algorithm for noncommuta-

tive polynomial factorization over rationals. The bottlneck is the problem of computing common

invariant subspaces for a collection of matrices over Q. Ronyai’s algorithm for the problem over fi-

nite fields [Rón90] builds on the decomposition of finite-dimensional associative algebras over fields.

Given an algebra A over a finite field Fq the algorithm decomposes A as a direct sum of minimal

left ideals of A which is used to find nontrivial common invariant subspaces. However, as shown by

Friedl and Ronyai [FR85], over rationals the problem of decomposing a simple algebra as a direct

sum of minimal left ideals is at least as hard as factoring square-free integers.

1.4 Related research

The study of factorization in noncommutative rings is systematically investigated as part of Cohn’s

general theory of noncommutative free ideal rings [Coh06, Coh11] which is based on the notion

of the weak algorithm. In fact, there is a hierachy of weak algorithms generalizing the division

algorithm for commutative integral domains [Coh06].

Algorithmic: To the best of our knowledge, the complexity of noncommutative polynomial factor-

ization has not been studied much, unlike the problem of commutative polynomial factorization

[vzGG13, Kal89, KT90]. Prior work on the complexity of noncommutative polynomial factorization

we are aware of is [AJR18] where efficient algorithms are described for the problem of factoring

homogeneous noncommutative polynomials (which enjoy the unique factorization property, and

indeed the algorithms in [AJR18] crucially use the unique factorization property). When the input

homogeneous noncommutative polynomial has a small noncommutative arithmetic circuit (even

given by a black-box as in Kaltofen’s algorithms [Kal89, KT90]) it turns out that the problem is

efficiently reducible to commutative factorization by set-multilinearizing the given noncommutative

polynomial with new commuting variables. This also works in the black-box setting and yields a

randomized polynomial-time algorithm which will produce as output black-boxes for the irreducible

factors (which will all be homogeneous). When the input homogeneous polynomial is given by an

algebraic branching program there is even a deterministic polynomial-time factorization algorithm.

Indeed, the noncommutative factorization problem in for homogeneous polynomials efficiently re-

duces to the noncommutative PIT problem [AJR18], analogous to the commutative case [KSS15],

modulo the randomness required for univariate polynomial factorization in the case of finite fields

of large characteristic. The motivation of the present paper is to extend the above results to the

inhomogeneous case.

Mathematical: From a mathematical perspective, building on Cohn’s work there is a lot of research

on the study of noncommutative factorization. For example, [BS15, BHL17] focus on the lack of

unique factorization in noncommutative rings and study the structure of multiple factorizations.

The research most relevant to our work is the study of noncommutative analogues of the Nullstel-

lensatz by Helton, Klep and Volcic [HKV18, HKV20]. In these papers the authors study the free

singularity locus of a noncommutative polynomial f ∈ F〈X〉 where F is an algebraically closed field

of characteristic zero (in [HKV20] mostly they consider complex numbers). This is the set of all

4

matrix tuples M̄ ∈ Ln(f) (in all matrix dimensions d) where Ln(f) = {M̄ | det f(M̄) = 0, where

M̄ is an n-tuple of matrices}. It turns out that f ∈ F〈X〉 is irreducible if and only if for all d ≥ d0
for some d0 the hypersurface Ld(f) is irreducible which in turn holds iff det f(X̄) is an irreducible

commutative polynomial, where X̄ are generic matrices with commuting variables of dimension

d ≥ d0. However, d0 turns out to be exponentially large.

Plan of the paper. In Section 2 we present basic definitions and the background results from

Cohn’s work on factorization. In Section 3 we further present some results from Cohn’s work

relevant to the paper. In Section 4 we present the factorization algorithm for polynomials f that

does not vanish on scalars and in Section 5 we present the algorithm for the general case.

2 Preliminaries

In this section we give some basic definitions and results relevant to the paper, mainly from Cohn’s

theory of factorization. Analogous to integral domains and unique factorization domains in com-

mutative ring theory, P.M. Cohn [Coh06, Coh11] has developed a theory for noncommutative rings

based on the weak algorithm (a noncommutative generalization of the Euclidean division algorithm)

and the notion of free ideal rings. We present the relevant basic definitions and results, specialized

to the ring F〈X〉 of noncommutative polynomials with coefficients in a (commutative) field F, and

also for matrix rings with entries from F〈X〉.
The results about F〈X〉 in Cohn’s text [Coh06, Chapter 5] are stated uniformly for algebraically

closed fields F. However, those we discuss hold for any field F (in particular for Fq or a small degree

extension of it). The proofs are essentially based on linear algebra.

Since we will be using Higman’s linearization [Hig40] to factorize noncommutative polynomials,

we are naturally lead to studying the factorization of linear matrices in F〈X〉d×d using Cohn’s

theory.

Definition 2.1. [Coh06] A matrix M in F〈X〉d×d is called full if it has (noncommutative) rank d.

That is, it cannot be decomposed as a matrix product M = M1 ·M2, for matrices M1 ∈ F⦓X⦔d×e

and M2 ∈ F⦓X⦔e×d with e < d.

Remark 2.2. Based on the notion of noncommutative matrix rank [Coh06], the square matrix

M ∈ F〈X〉d×d is full precisely when it is invertible in the skew field F⦓X⦔. That is, M is full if

and only if there is a matrix N ∈ F⦓X⦔d×d such that MN = NM = Id, where Id is d× d identity

matrix.

We note the distinction between full matrices and units in the matrix ring F〈X〉d×d.

Definition 2.3. A matrix U ∈ F〈X〉d×d is a unit if there is a matrix V ∈ F〈X〉d×d such that

UV = V U = Id, where Id is d× d identity matrix.

Clearly, units in F〈X〉d×d are full. Examples of units in F〈X〉d×d, which have an important role

in our factorization algorithm, are upper (or lower) triangular matrices in F〈X〉d×d whose diagonal

entries are all nonzero scalars. Full matrices, in general, need not be units: for example, the 1× 1

matrix x, where x is a variable, is full but it is not a unit in the ring F〈X〉1×1 = F〈X〉.

5

Remark 2.4. Full non-unit matrices are essentially non-unit non-zero-divisors. For the factor-

ization of elements in F〈X〉d×d, units are similar to scalars in the factorization of polynomials

in polynomial rings. Cohn’s theory [Coh06] considers factorizations of full non-unit elements in

F〈X〉d×d.

We next define atoms in F〈X〉d×d, which are essentially the irreducible elements in it.

Definition 2.5. A full non-unit element A in F〈X〉d×d is an atom if A cannot be factorized as

A = A1A2 for full non-unit matrices A1, A2 in F〈X〉d×d.

Noncommutative polynomials do not have unique factorization in the usual sense of commuta-

tive polynomial factorization.5 A classic example [Coh06] is the polynomial x + xyx with its two

different factorizations

x+ xyx = x(1 + yx) = (1 + xy)x,

where 1 + xy and 1 + yx are distinct irreducible polynomials.

Definition 2.6. Elements A ∈ F〈X〉d×d and B ∈ F〈X〉d′×d′ are called stable associates if there

are positive integers t and t′ such that d + t = d′ + t′ and units P,Q ∈ F〈X〉(d+t)×(d+t) such that

A⊕ It = P (B ⊕ It′)Q.

It is easy to check that the polynomials 1 + xy and 1 + yx are stable associates.

Notice that if A and B are full non-unit matrices that are stable associates then A is atom if and

only if B is atom. Furthermore, we note that stable associativity defines an equivalence relation

between full matrices over the ring F〈X〉.
We observe that the problem of checking if two polynomials in F〈X〉 given as arithmetic formulas

are stable associates or not has an efficient randomized algorithm (Lemma 3.5).

Now we turn to the problem of noncommutative polynomial factorization. By Higman’s lin-

earization [Hig40, Coh06], given a polynomial f ∈ F〈X〉 there is a positive integer ` such that f is

stably associated with a linear matrix L ∈ F〈X〉`×`, that is to say, the entries of L are affine linear

forms.6 Higman’s linearization process is a simple algorithm obtaining the linear matrix L for a

given f , and it plays a crucial role in our factorization algorithm. We first describe it and then

recall an effective version [GGdOW20] which gives a simple polynomial-time algorithm to compute

L when f is given as a non-commutative arithmetic formula. Then we state our stronger result

showing that even if f is given by an algebraic branching program as input we can compute its

Higman linearization in deterministic polynomial time.

Higman’s linearization process

We describe a single step of the linearization process. Given an m×m matrix M over F〈X〉 such

that M [m,m] = f + g × h, apply the following:

5However, as shown by Cohn, using the notion of stable associates there is a more general sense in which noncom-

mutative polynomials have “unique” factorization [Coh06].
6More generally, by Higman’s linearization any matrix of polynomials M is stably associated with a linear matrix

L ∈ F〈X〉`×` for some `.

6

� Expand M to an (m + 1) × (m + 1) matrix by adding a new last row and last column with

diagonal entry 1 and remaining new entries zero:[
M 0

0 1

]
.

� Then the bottom right 2 × 2 submatrix is transformed as follows by elementary row and

column operations

(
f + gh 0

0 1

)
→

(
f + gh g

0 1

)
→

(
f g

−h 1

)

Given a polynomial f ∈ F〈X〉 by repeated application of the above step we will finally obtain

a linear matrix L = A0 +
∑n

i=1Aixi, where each Ai, 0 ≤ i ≤ n is an `× ` over F, for some `. The

following theorem summarizes its properties.

Theorem 2.7 (Higman Linearization). [Coh06] Given a polynomial f ∈ F〈X〉, there are matrices

P,Q ∈ F〈X〉`×` and a linear matrix L ∈ F〈X〉`×` such that(
f 0

0 I`−1

)
= PLQ (1)

with P upper triangular, Q lower triangular, and the diagonal entries of both P and Q are all 1’s

(hence, P and Q are both units in F〈X〉`×`).

Instead of a single f , we can apply Higman linearization to a matrix of polynomials M ∈
F〈X〉m×m to obtain a linear matrix L that is stably associated to M . We first recall the algorithmic

version of Garg et al. [GGdOW20] in this general form.

Theorem 2.8. [GGdOW20, Proposition A.2] Let M ∈ F〈X〉m×m such that Mi,j is computed by

a non-commutative arithmetic formula of size at most s and bit complexity at most b. Then, for

k = O(s), in time poly(s, b) we can compute the matrices P,Q and L in F〈X〉`×` of Higman’s

linearization such that (
M 0

0 Ik

)
= PLQ.

, where ` = m+k. Moreover, the entries of the matrices P and Q as well as P−1 and Q−1 are given

by polynomial-size algebraic branching programs which can also be obtained in polynomial time.

We will sometimes denote the block diagonal matrix

(
M 0

0 Ik

)
by M ⊕ Ik.

We now state our strengthening of Theorem 2.8 which enables us to factorize noncommuta-

tive polynomials given as algebraic branching programs. The complete proof is presented in the

appendix.

Theorem 2.9. Let M ∈ F〈X〉m×m such that each entry Mi,j is a polynomial computed by a non-

commutative algebraic branching program of size at most s and bit complexity at most b. Then,

7

for k = O(s), in time poly(s, b) we can compute the matrices P,Q and L in F〈X〉`×` of Higman’s

linearization such that (
M 0

0 Ik

)
= PLQ.

, where ` = m+k. Moreover, the entries of the matrices P and Q as well as P−1 and Q−1 are given

by polynomial-size algebraic branching programs which can also be obtained in polynomial time.

As P and Q are units with diagonal entries all 1’s, the matrix M is full iff the linear matrix L

is full. Also, the scalar matrix M(0) (obtained by setting all variables to zero) is invertible iff the

scalar matrix L(0), similarly obtained, is invertible.

Invariant Subspaces and Ronyai’s Algorithm

Definition 2.10. Let A1, . . . , An ∈ Fd×d. A subspace V ⊆ Fn is called as common invariant

subspace of A1, . . . , An if Aiv ∈ V for all i ∈ [n] and v ∈ V .

Clearly 0 and Fn are, trivially, common invariant subspaces for any collection of matrices.

The algorithmic problem is to find a non-trivial common invariant subspace if one exists. Ronyai

[Rón90] gives a randomized polynomial-time algorithm for this problem when F is finite field.

Theorem 2.11. [Rón90] Given A1, . . . , An ∈ Fd×d
q there is a randomized algorithm running in

time polynomial in n, d, log q that computes with high probability a non-trivial common invariant

subspace of A1, . . . , An if such a subspace exists, and outputs “no” otherwise.

Remark 2.12. We should note here, the classical Burnside’s theorem [Bur05] for matrix algebras

over algebraically closed fields. It essentially shows that the algebra generated by A1, A2, . . . , An is

the full matrix algebra iff there is no nontrivial common invariant subspace.

Remark 2.13. As already mentioned in the introduction, Friedl and Ronyai [FR85] have shown

that over rationals the problem is at least as hard as factoring square-free integers, and hence likely

to be intractable.

Noncommutative Formulas, Algebraic branching programs

Next we recall standard definitions of a noncommutative formulas and noncommutative algebraic

branching programs (ABPs). More details about noncommutative arithmetic computation can be

found in Nisan’s work [Nis91]:

A noncommutative arithmetic circuit C over a field F and indeterminates x1, x2, . . . , xn is a

directed acyclic graph (DAG) with each node of indegree zero labeled by a variable or a scalar

constant from F: the indegree 0 nodes are the input nodes of the circuit. Internal nodes, representing

gates of the circuit, are of indegree two and are labeled by either a + or a × (indicating the

gate type). Furthermore, the two inputs to each × gate are designated as left and right inputs

prescribing the order of gate gate multiplication. Each internal gate computes a polynomial (by

adding or multiplying its input polynomials), where the polynomial computed at an input node is

just its label. A special gate of C is the output and the polynomial computed by the circuit C is

8

the polynomial computed at its output gate. An arithmetic circuit is a formula if the fan-out of

every gate is at most one.

A noncommutative algebraic branching program (ABP) is a layered directed acyclic graph with

one source and one sink. The vertices of the graph are partitioned into layers numbered from 0

to d, where edges may only go from layer i to layer i + 1. The source is the only vertex at layer

0 and the sink is the only vertex at layer d. Each edge is labeled with a linear linear form in

the noncommuting variables x1, x2, . . . , xn The size of the ABP is the number of vertices. The

polynomial in F〈X〉 computed by the ABP is defined as follows: the sum over all source-to-sink

paths of the product of the linear forms by which the edges of the path are labeled.

3 Some Basic Results

In this section we present some basic results required for our factorization algorithm.

Monic linear matrices

Definition 3.1. [Coh06] Let L = A0 + A1x1 + . . . + Anxn ∈ F〈X〉d×d be a linear matrix, where

each Ai is a d × d scalar matrix over F. Then L is called right monic if the d × nd scalar matrix

[A1 A2 . . . An] has full row rank. Equivalently, if there are matrices B1, . . . , Bn ∈ Fd×d such that

Σn
i=1AiBi = Id (i.e. the matrix [A1 A2 . . . An] has right inverse).

Similarly, L is left monic if the nd × d matrix [AT
1 AT

2 . . . AT
n]T has full column rank. L is

called monic if it is both left and right monic.

The next two results from Cohn [Coh06] are important properties of monic linear matrices.

Lemma 3.2. [Coh06] A right (or left) monic linear matrix in F〈X〉d×d is not a unit in F〈X〉d×d.

Proof. Let L = A0 +
∑n

i=1Aixi be right monic, where each Ai ∈ Fd×d. By definition, there are

matrices Bi ∈ Fd×d, 1 ≤ i ≤ d such that
∑d

i=1AiBi = Id. Now, suppose L is a unit. Then there is

a matrix C ∈ F〈X〉d×d such that CL = Id. Let the maximum degree of polynomials occurring in

C be k, and let Ĉ ∈ F〈X〉d×d denote the degree k component of C (so each nonzero entry of Ĉ is a

homogeneous polynomial of degree k). Clearly, Ĉ ·(
∑n

i=1Aixi) = 0. The homogeneity of Ĉ’s entries

implies that ĈAi = 0 for each i. Hence,
∑n

i=1 ĈAiBi = 0 which implies Ĉ = 0, contradicting the

assumption that C ∈ F〈X〉d×d is the inverse of L. The case when L is left monic is symmetric. �

Let f ∈ F〈X〉 be a nonzero polynomial and L be a linear matrix obtained from f by Higman

linearization as in Equation 10. Clearly, L is a full linear matrix. We show that we can transform L

to obtain a full and right (or left) monic linear matrix L′ that is stably associated to f . Furthermore,

we can efficiently compute L′ and the related transformation matrices.

Theorem 3.3. [Coh06] Let L = A0 +
∑n

i=1Aixi be a full linear matrix in F〈X〉d×d obtained

by Higman linearization from a non constant polynomial f ∈ F〈X〉. Then there are deterministic

poly(n, d, log2 q) time algorithms that compute units U,U ′ ∈ F〈X〉d×d and invertible scalar matrices

S, S′ ∈ Fd×d
q such that:

1. ULS = L′ ⊕ Ir, and L′ is right monic. Moreover, if L is not right monic then r > 0.

9

2. S′LU ′ = L′ ⊕ Ir′, and L′ is left monic. Moreover, if L is not left monic then r′ > 0.

Proof. We prove only the first part. The second part has an essentially identical proof.

We present a proof with a polynomial-time algorithm for computing L′. If L is already right

monic there is nothing to show. Otherwise, the row rank of the matrix B = [A1 A2 · · · An] is

strictly less than d. By row operations we can drive at least one row of B to zero. So, there is an

invertible scalar matrix U1 ∈ Fd×d such that U1B has its last row as zeros. Now U1A0 must have

its last row non-zero since L is a full linear matrix. So the last row of U1L has only scalar entries

and at least one of these is non-zero. By a column swap applied to U1L we can bring this non-zero

scalar α in the (d, d)th position. Hence, the (d, d)th entry of U1LS1 is nonzero, where S1 is the

matrix implementing the column swap. Now, with suitable row operations using the last row, we

can make all entries above the (d, d)th entry of the dth column zero. Applying column operations

we can make all entries of the dth row to the left of the (d, d)th entry zero. The resulting matrix is

of the form RU1LS1S
′ = L̃ ⊕ 1, where the unit R is a linear matrix and S′ is an invertible scalar

matrix implementing the row and column operations.

If L̃ is not right monic, we can recursively apply the above procedure on L̃ until we finally

obtain a unit Ũ ∈ F〈X〉d×d and a scalar invertible matrix S̃ ∈ Fd×d such that Ũ L̃S̃ = L′ ⊕ Ir, for

some positive integer r < d, such that L′ is right monic.

To see why this recursive procedure terminates for r < d, note that the dimension of matrix L̃

is reducing by 1 in each recursive step and the matrix L̃ obtained is a stable associate of L. So, if

r = d it would imply L is a unit which is a contradiction as we know that L is obtained via Higman

linearization on a non-constant polynomial f , so L is noninvertible.

Putting U = RU1Ũ and S = S1S̃ we have ULS = L′ ⊕ Ir where L′ is right monic as desired.

It is clear that the entire construction is polynomial time bounded, and that we have small ABPs

for the entries of U . �

Remark 3.4. By repeated application of the algorithm in Theorem 3.3 we can compute units

U1, U2 ∈ F〈X〉d×d such that U1LU2 = L′ ⊕ Ir, where L′ is both left and right monic. Such a

two-sided monic L′ is called monic in [Coh06].

For our factorization algorithm, it suffices to compute an L′ that is either left or right monic

that is associated to L as in Theorem 3.3. It turns out that either a left monic or a right monic L′

suffices to use Ronyai’s common invariant subspace algorithm to factorize L′ (and hence also L)

as we show in Theorem 4.6. More importantly, the fact that matrices S and S′ in Theorem 3.3 are

scalar is important for the factor extraction algorithm as discussed in Theorem 4.10.

Lemma 3.5. Given polynomials f, g ∈ F〈X〉 as input by noncommutative arithmetic formulas, we

can check in randomized polynomial time if f and g are stable associates.

Proof. Given f and g, using Higman linearization we first compute in polynomial time full and

monic linear matrices A and B such that f and A are stable associates and g and B are stable

associates (see Theorem 3.3 and Remark 3.4). Now, f and g are stable associates iff A and B are

stable associates. As both A and B are full and monic linear matrices, they are stable associates iff

both A and B are matrices of the same dimension, say d, and there are scalar invertible matrices P

and Q in Fd×d such that PA = BQ [Coh06, Theorem 5.8.3], where F = Fq or a small field extension.

Letting the 2d2 entries of P and Q be variables, we can find a linearly independent set of solutions

10

to PA = BQ in polynomial time. Now, there exists invertible P and Q in the solution set iff the

degree-2d polynomial detP ×detQ is nonzero on the solutions to PA = BQ. We can check this by

the DeMillo-Lipton-Schwartz-Zippel Lemma [DL78, Sch80, Zip79] by evaluating detP and detQ

on a random linear combination of the basis of solutions to PA = BQ. This will be correct with

high probablity. �

The next result shows how irreducibility (more generally, the property of being an atom) is

preserved by Higman linearization.

Theorem 3.6. Let f ∈ F〈X〉 be a nonconstant polynomial and L be a full linear matrix stably

associated with f (obtained via Higman linearization).Then the polynomial f is irreducible iff L is

an atom.

We give a self-contained proof of the above theorem, using the following (suitably paraphrased)

result of Cohn.

Lemma 3.7 (Matrix Product Trivialization). [Coh11, pp. 198] Let A ∈ F〈X〉m×n and B ∈ F〈X〉n×s

be polynomial matrices such that their product AB = 0. Then there exists a unit P ∈ F〈X〉n×n

such that for every index i ∈ [n] either the ith column of the matrix product AP is all zeros or the

ith row of the matrix product P−1B is all zeros.

Proof of Theorem 3.6. By Higman linearization, we have upper and lower triangular matrices P

and Q, respectively, such that

f ⊕ Is = PLQ,

for some positive integer s.

Now, if f is not irreducible then we can write f = f1f2, where f1 and f2 are both nonconstant

polynomials in F〈X〉. Hence f ⊕ Is factorizes as the product of non-units (f1⊕ Is) · (f2⊕ Is), which

implies the factorization

L = P−1(f1 ⊕ Is)(f2 ⊕ Is)Q−1.

Now, we claim P−1(f1 ⊕ Is) and (f2 ⊕ Is)Q
−1 are non-units. Suppose P−1(f1 ⊕ Is) is a unit.

Then f1 ⊕ Is is a unit which would imply there is an invertible matrix M ∈ F〈X〉d×d such that

(f1 ⊕ Is)M = Is+1. But that implies f ·M1,1 = 1 which is impossible since f1 is a nonconstant

polynomial. Similarly, (f2 ⊕ Is)Q−1 cannot be a unit. Hence L is not an atom.

Conversely, suppose L is not an atom. Then we can factorize it as L = M1M2, where M1,M2 ∈
F〈X〉d×d are full non-units. Therefore, we have the factorization

f ⊕ Is = (PM1)(M2Q).

Writing the matrices PM1 and M2Q as 2× 2 block matrices, we have:(
f 0

0 Is

)
=

(
c1 c3

c2 c4

)
·

(
d1 d3

d2 d4

)
.

From the (2, 1)th matrix block on the left hand side of the above equation, we obtain the following

matrix identity:

0 =
(
c2 c4

)
·

(
d1
d2

)
,

11

where C = (c2 c4) is in F〈X〉s×(s+1) and D =

(
d1
d2

)
is in F〈X〉(s+1)×1. By Lemma 3.7 there is a

unit U ∈ F〈X〉(s+1)×(s+1) such that for every 1 ≤ i ≤ s+ 1 either the ith column of C ′′ = C · U is

all zeros or the ith row of D′′ = U−1D is all zeros. Note that D′′, and hence D, cannot be the all

zeros column as M2Q is full. So, at least one entry of D′′ is nonzero. Hence, at least one column

of C ′′ is all zeros. By a suitable column permutation matrix Π we can ensure that the first column

of C · UΠ is all zeros. Clearly, first entry of Π−1U−1D is nonzero. Writing f ⊕ Is as a product of

C ′ = PM1UΠ and D′ = Π−1U−1M2Q we have(
f 0

0 Is

)
=

(
c′1 c′3
c′2 c′4

)
·

(
d′1 d′3
d′2 d′4

)
,

where c′2 is an all zeros column and d′1 is nonzero. From the (2, 2)th matrix block of the above

equation, we obtain c′4d
′
4 = Is so c′4 and d′4 are units. By observing (2, 1)th matrix block of the

above equation we get c′4d
′
2 = 0, which implies d′2 is an all zeros column as c′4 is unit. It follows

that f = c′1 · d′1. Furthermore, it is a nontrivial factorization because both c′1 and d′1 are non-units

(because C ′ and D′ are non-units, and c′4 and d′4 are units). �

Let L ∈ F〈X〉d×d be a full and right (or left) monic linear matrix. Let L = A0 +
∑n

i=1Aixi. For

a positive integer ` let Mi, i ∈ [n] be ` × ` scalar matrices with entries from F (or a small degree

extension of F). Let Yi, i ∈ [n] be `× ` matrices whose entries are distinct noncommuting variables

yijk, 1 ≤ j, k ≤ `. Then the evaluation of the linear matrix L at xi ← Yi + Mi, 1 ≤ i ≤ n is the

d`× d` linear matrix in the yijk variables:

L′ = A0 ⊗ I` +
n∑

i=1

Ai ⊗Mi +
n∑

i=1

∑̀
j,k=1

(Ai ⊗ Ejk) · yijk

Lemma 3.8. There is a positive integer ` ≤ 2d such that for randomly picked ` × ` matrices

Mi, i ∈ [n] (with entries from F or a small degree extension field) the matrix A0⊗I`+
∑n

i=1Ai⊗Mi

is an invertible matrix.

Proof. Since L ∈ F〈X〉d×d is a full linear matrix, it has noncommutative rank d. Hence, by the

result of [DM17] for the generic 2d× 2d matrix substitution xi ← Xi, i ∈ [n], where Xi is a matrix

of distinct commuting variables, the commutative rank of L(X1, X2, . . . , Xn) is 2d2 (which means

it is invertible). Hence there is a least ` ≤ 2d such that the commutative rank of L(X1, X2, . . . , Xn)

is d`, where Xi are generic `×` matrices with commuting variables. Hence, by the DeMillo-Lipton-

Schwarz-Zippel lemma [DL78, Sch80, Zip79] the rank of the scalar matrix L(M1,M2, . . . ,Mn) is

d`, where Mi is a random scalar matrix with entries from F or a small extension. �

Finally, we state and prove a modified version of a result due to Cohn that allows us to relate

the factorization of a polynomial f ∈ F〈X〉 to the factorization of its Higman linearization L. The

proof is given in the appendix.

Theorem 3.9. [Coh06, Theorem 5.8.8] Let C ∈ F〈X〉d×d be a full and right monic (or left monic)

linear matrix for d > 1. Then C is not an atom if and only if there are d × d invertible scalar

12

matrices S and S′ such that

SCS′ =

(
A 0

D B

)
(2)

where A is an r× r full right (respec. left) monic linear matrix and B is an s× s full right (respec.

left) monic linear matrix such that r + s = d.

Remark 3.10. In [Coh06] the theorem is proved under the stronger assumption that C is monic.

However, as we show, it holds even for C that is right monic or left monic with minor changes to

Cohn’s proof. We require the above version for our factorization algorithm.

4 Polynomial factorization: commutatively non-zero case

Recall that F〈X〉 denotes the free noncommutative polynomial ring F〈x1, x2, . . . , xn〉 and our goal is

to give a randomized polynomial-time factorization algorithm for input polynomials in F〈X〉 given

as arithmetic formulas when F = Fq is a finite field of size q.

A polynomial f ∈ F〈X〉 is commutatively nonzero if f(α1, α2, . . . , αn) 6= 0 for scalars αi ∈ F (or

a small extension field of F).

In this section we will present the factorization algorithm for commutatively nonzero polyno-

mials.7 It has three broad steps:

(i) We transform the given polynomial f to a full and right (or left) monic linear matrix L by

first the Higman linearization of f followed by the algorithm in the proof of Theorem 3.3.

(ii) Next, we factorize the full and right (or left) monic linear matrix L into atoms.

(iii) Finally, we recover the irreducible factors of f from the atomic factors of L.

We formally state the three problems of interest in this paper.

Problem 4.1 (FACT(F)).

Input A noncommutative polynomial f ∈ F〈X〉 given by an arithmetic formula.

Output Compute a factorization f = f1f2 · · · fr, where each fi is irreducible, and each fi is output

as an algebraic branching program.

Problem 4.2 (LIN-FACT(F)).

Input A full and right (or left) monic linear matrix L ∈ F〈X〉d×d.

Output Compute a factorization L = F1F2 · · ·Fr, where each Fi is a full linear matrix that is an

atom.

Problem 4.3 (INV(F)).

Input A list of scalar matrices A1, A2, . . . , An ∈ Fd×d.

Output Compute a nontrivial invariant subspace V ⊂ Fd or report that the only invariant subspaces

are 0 and Fd.

7In the next section we will deal with the general case. The algorithm is more technical in detail, although in

essence the same.

13

In the three-step outline of the algorithm, for the second step we will show that factoring a full

and right (or left) monic linear matrix is randomized polynomial-time reducible to the problem of

computing a common invariant subspace for a collection of scalar matrices. For the third step, we

will give a polynomial-time algorithm (based on Lemma 3.7) to recover the irreducible factors of f

from the atomic factors of L.

Remark 4.4. We use Ronyai’s randomized polynomial-time algorithm [Rón90] to solve the prob-

lem of computing a a common invariant subspace for a collection of matrices over Fq. Over rational

numbers Q, even for a special case the problem of computing a common invariant subspace turns

out to be at least as hard as factoring square-free integers [FR85]. Hence, our approach to noncom-

mutative polynomial factorization does not yield an efficient algorithm over Q.

Suppose f ∈ F〈X〉 is given by a noncommutative arithmetic formula. Since f has small de-

gree we can check if it is commutatively nonzero in randomized polynomial-time by the DeMillo-

Lipton-Schwatrtz-Zippel test [DL78, Sch80, Zip79] and, if so, find αi ∈ F, i ∈ [n] such that

f(α1, α2, . . . , αn) 6= 0 (if F is small, we pick αi from a small extension field). Furthermore, by

a linear shift of the variables xi ← xi +αi, i ∈ [n] followed by scaling we can assume f(0) = 1. Note

that from the factorization of the linear shift of f we can recover the factors of f by shifting the

variables back, and irreducibility is preserved by linear shift. For the rest of this section we will

assume f(0) = 1.

Let L = A0 +
∑n

i=1Aixi. As f(0) = 1, we have L(0) = A0 is an invertible matrix. We now

present an efficient algorithm for factoring L as a product of linear matrices L1L2 · · ·Lr, where

each Li is an atom.

Remark 4.5. The factorization algorithm for arbitrary full and right (or left) monic linear matrices

(in which A0 need not be invertible) is similar but more involved. It is based on Lemma 3.8 and is

dealt with in the next section.

4.1 Algorithm for a special case of LIN-FACT(Fq)

Theorem 4.6. There is a randomized polynomial-time algorithm for the following two special cases

of the LIN-FACT(Fq) problem:

1. Given a full right monic matrix L as input such that L(0) is an invertible matrix, the algorithm

outputs a factorization of L as a product of linear matrices that are atoms.

2. Given a full left monic matrix L as input such that L(0) is an invertible matrix, the algorithm

outputs a factorization of L as a product of linear matrices that are atoms.

Proof. We present the algorithm only for the first part, as the second part has essentially the same

solution.

Let L = A0 +
∑n

i=1Aixi in F〈X〉d×d be such an instance of LIN-FACT(Fq). We can write

L = A0 · L′ where L′ is the full and right monic linear matrix

L′ = Id +

n∑
i=1

A−10 Aixi.

Clearly, it suffices to factorize the linear matrix L′ into atoms.

14

First we show that L′ is an not atom iff matrices A−10 Ai, 1 ≤ i ≤ n have a nontrivial common

invariant subspace. By Theorem 3.9, L′ is not an atom if and only if we can write S1L
′S2 =(

B 0

D C

)
for invertible scalar matrices S1 and S2, where B and C are full and right monic

linear matrices, and D is some linear matrix. Equating the constant terms on both sides of the

above equation we have S1S2 =

(
B0 0

D0 C0

)
as the constant term of L′ is Id. Thus the matrices

S1S2 and its inverse also has the same block form which implies that S1L
′S−11 = S1L

′S2(S1S2)
−1

also has the same block form. It follows that the n matrices A−10 Ai, 1 ≤ i ≤ n have a nontrivial

common invariant subspace. Conversely, if the matrices A−10 Ai, 1 ≤ i ≤ n have a nontrivial common

invariant subspace then we have a basic change scalar matrix S such that SL′S−1 has the block form(
L1 0

∗ L2

)
, where L1 and L2 are full and right monic linear matrices. So by Theorem 3.9 L′ is

not an atom. So we have established, L′ (and hence L) is not an atom iff matrices A−10 Ai, 1 ≤ i ≤ n
have a nontrivial common invariant subspace. We will use Ronyai’s randomized polynomial-time

algorithm for finding a nontrivial common invariant subspace for matrices A−10 Ai, 1 ≤ i ≤ n over

finite field Fq.

If there is no nontrivial invariant subspace then the linear matrix L′ (and hence L) is an atom.

Otherwise, by repeated application of Ronyai’s algorithm we will obtain a basis change scalar matrix

T which when applied to L′ yields a linear matrix in the following atomic block diagonal form:

TL′T−1 =


L1 0 0 . . . 0

∗ L2 0 . . . 0

∗ ∗ L3 . . . 0
. . .

∗ ∗ ∗ . . . Lr

 , (3)

where for each j ∈ [r], the full right monic linear matrix Lj ∈ F〈X〉dj×dj is an atom, and each ∗
stands for some unspecified linear matrix. It is now easy to factorize TL′T−1 as a product of atoms

by noting one step of the factorization of TL′T−1 from its form:

TL′T−1 =

(
A 0

D Lr

)
=

(
A 0

0 I

)
·

(
I 0

D I

)
·

(
I 0

0 Lr

)
.

We note that

(
I 0

D I

)
is a unit. Since Lr is an atom the product

(
I 0

D I

)
·

(
I 0

0 Lr

)
is also

an atom and a linear matrix, and it is the rightmost factor of TL′T−1. Continuing thus with A

now, we can factorize TL′T−1 as a product F ′1F
′
2 · · ·F ′r of r atoms, each of which is a linear matrix.

It follows that L = A0T
−1F ′1F

′
2 · · ·F ′rT is a complete factorization of L as a product of atomic

linear matrices (both A0 and T are scalar invertible matrices). �

Remark 4.7. We note that Ronyai’s algorithm [Rón90] for INV(Fq) is actually a deterministic

polynomial-time reduction from INV(Fq) to univariate polynomial factorization over Fq.

15

Based on whether we want to work with right monic or left monic case we will express f ⊕ Is
in an appropriate form using Higman linearization and Theorem 3.3 as described in the equation

below:

f ⊕ Is =

{
PU(L′ ⊕ It)SQ, in the right monic case

PS(L′ ⊕ It)UQ, in the left monic case
(4)

where d+ t = s+ 1, L′ ∈ F〈X〉d×d is a full and right (or left) monic linear matrix, P is upper

triangular with all 1’s diagonal, Q is lower triangular with all 1’s diagonal, U ∈ F〈X〉(d+t)×(d+t) is

a unit, and S ∈ F(d+t)×(d+t) is an invertible scalar matrix.

Algorithm for FACT(Fq)

We are now ready to describe the polynomial factorization algorithm for commutatively nonzero

polynomials in F〈X〉. Starting with the Higman linearization of the input polynomial f ∈ F〈X〉
as in Equation 4, by an application of the first parts of Theorems 3.3 and 4.6 we obtain the

factorization f ⊕ Is = PUF ′1F
′
2 · · ·F ′rSQ using the structure in Equation 3.

Alternatively, by applying the second part of Theorem 3.3 we can compute a left monic linear

matrix L′ that is a stable associate of f and, applying the second part of Theorem 4.6 we can

compute the factorization

f ⊕ Is = PS′F ′1F
′
2 · · ·F ′rU ′Q. (5)

where each linear matrix F ′i is an atom, P is upper triangular with all 1’s diagonal, Q is lower

triangular with all 1’s diagonal, U ′ is a unit and S′ is a scalar invertible matrix. Equation 5 is the

form we will use for the algorithm (we could equally well use the other factorization).

From the structure of the atomic block diagonal matrix TL′T−1 in Equation 3 notice that the

product S′F ′1F
′
2 · · ·F ′i is a linear matrix for each 1 ≤ i < r.

The next lemma presents an algorithm that is crucial for extracting the factors of f .

Lemma 4.8. Let C ∈ F〈X〉u×d be a linear matrix and v ∈ F〈X〉d×1 be a column of polynomials

such that Cv = 0. Each entry vi of v is given by an algebraic branching program as input. Then,

in polynomial time we can compute a invertible matrix N ∈ F〈X〉d×d such that

� For 1 ≤ i ≤ d either the ith column of CN is all zeros or the ith row of N−1v is zero.

� Each entry of N is a polynomial of degree at most d2 and is computed by a polynomial size

ABP, and also each entry of N−1 is computed by a polynomial size ABP.

Proof. We will describe the algorithm as a recursive procedure Trivialize that takes matrix C and

column vector v as parameters and returns a matrix N as claimed in the statement.

Procedure Trivialize(C ∈ F〈X〉u×d, v ∈ F〈X〉d×1)

1. If d = 1 then (since Cv = 0 iff either C = 0 or v = 0) return the identity matrix.

2. If d > 1 then

16

3. write C = C0 + C1, where C0 is a scalar matrix and C1 is the degree 1 homogeneous part of

C. Let k be the degree of the highest degree nonzero monomials in the polynomial vector v,

and let m be a nonzero degree k monomial. Let v(m) ∈ Fd×1
q denote its (nonzero) coefficient

in v. Then Cv = 0 imples C1v(m) = 0. Let T0 ∈ Fd×d
q be a scalar invertible matrix with first

column v(m) obtained by completing the basis.

(a) If C0v(m) = 0 then the first column of CT0 is zero.

(b) Otherwise, CT0 has first column as the nonzero scalar vector Cv(m) = C0v(m). Suppose

ith entry of Cv(m) is a nonzero scalar α. With column operations we can drive the ith

entry in all other columns of CT0 to zero. Let the resulting matrix be CT0T1 (where the

matrix T1 is invertible as it is a product of elementary matrices corresponding to these

column operations, each of which is of the form Coli ← (Coli + Col1 ·α0 +
∑

i αixi)).

Notice that CT0T1 is still linear.

(c) As Cv = (CT0T1)(T
−1
1 T−10 v), and in the ith row of CT0T1 the only nonzero entry is α

which is in its first column, we have that the first entry of T−11 T−10 v is zero.

4. Let C ′ ∈ F〈X〉u×(d−1) obtained by dropping the first column of CT0T1. Let v′ ∈ F〈X〉(d−1)×1

be obtained by dropping the first entry of T−11 T−10 v. Note that C ′ is still linear.

5. Recursively call Trivialize(C ′ ∈ F〈X〉u×(d−1), v′ ∈ F〈X〉(d−1)×1). and let the matrix returned

by the call be T2 ∈ F〈X〉(d−1)×(d−1).

6. Putting it together, return the matrix T0T1(I1 ⊕ T2).

To complete the proof, we note that a highest degree monomial m such that v(m) 6= 0 is easy

to compute in deterministic polynomial time if each vi is given by an algebraic branching program

using the PIT algorithm of Raz and Shpilka [RS05]. Notice that for the recursive call we need C ′

to be also a linear matrix and each entry of v′ to have a small ABP. C ′ is linear because CT0T1 is

a linear matrix since CT0 is linear, its first column is scalar, and each column operation performed

by T1 is scaling the first column of CT0 by a linear form and subtracting from another column

of CT0. Each entry of v′ has a small ABP because T−10 is scalar and it is easy to see that the

entries of T−11 have ABPs of polynomial size. Finally, we note that T1 is a product of at most

d− 1 linear matrices (each corresponding to a column operation), and N is an iterated product of

d such matrices. Hence, each entry of N as well as N−1 is a polynomial of degree at most d2 and

is computable by a small ABP.

�

Turning back to our algorithm for FACT(Fq), in the next lemma we design an efficient algorithm

that will allow us to extract all the irreducible factors of f (given Equation 5).

Lemma 4.9 (Factor Extraction). Let f ∈ F〈X〉 be a polynomial and G ∈ F〈X〉(d−1)×(d−1) be a

unit such that (
f u

0 G

)
= PCD, (6)

such that

17

� C is a full linear matrix that is a non-unit, P is upper triangular with all 1’s diagonal, and

D ∈ F〈X〉d×d is a full non-unit matrix which is also an atom.

� The polynomial f , and the entries of u,G, P,D are all given as input by algebraic branching

programs.

Then we can compute in deterministic polynomial time a nontrivial factorization f = g · h of the

polynomial f such that h is an irreducible polynomial.

Proof. Let

C =

(
c1 c3
c2 c4

)
and D =

(
d1 d3
d2 d4

)
,

written as 2× 2 block matrices where c1 and d1 are 1× 1 blocks. By dropping the first row of the

matrix in the left hand side of Equation 6 and the first row of P we get

(0 G) = (0 P ′)CD,

where P ′ is also an upper triangular matrix with all 1’s diagonal. Equating the first columns on

both sides we have

0 = (0 P ′)

(
c1 c3
c2 c4

)(
d1
d2

)
, which implies that

0 = P ′(c2 c4)

(
d1
d2

)
, and hence

0 = (c2 c4)

(
d1
d2

)
, since P ′ is invertible.

Since (c2 c4) ∈ F〈X〉(d−1)×d is a matrix with linear entries and

(
d1
d2

)
∈ F〈X〉d×1 is a column

vector of polynomials which are given by ABPs as input, we can apply the algorithm of Lemma 4.8

to compute a unit N such that its entries are all given by ABPs such that for 1 ≤ i ≤ d, either the

ith column of (c′2 c
′
4) = (c2 c4)N is zero or the ith row of

(
d′1
d′2

)
= N−1

(
d1
d2

)
is zero.

Now the following argument is almost identical with the argument towards the end of the proof

of the Theorem 3.6. We give it below for completeness. Since D is a full matrix, the matrix N−1D

is also full which implies its first column

(
d′1
d′2

)
cannot be all zeros. So there is at least one

nonzero entry in

(
d′1
d′2

)
and the corresponding column in (c′2 c

′
4) is all zero. This implies there

exist a permutation matrix Π such that the first column of C(c′2 c
′
4)Π is all zero and first entry of

Π−1

(
d′1
d′2

)
is non zero.

Consider the matrices C ′′ = CNΠ =

(
c′′1 c′′3
c′′2 c′′4

)
and D′′ = Π−1N−1D =

(
d′′1 d′′3
d′′2 d′′4

)
. We

have

18

(
f ∗
0 G′

)
= P−1

(
f u

0 G

)
=

(
c′′1 c′′3
c′′2 c′′4

)(
d′′1 d′′3
d′′2 d′′4

)
, where G′ = (P ′)−1G is a unit, c′′2 is all zero column matrix and d′′1 is non-zero. Now observing

(2, 1)th matrix block in the above equation, we get d′′2 is all zero column. Hence, by looking at

(2, 2)th block in the above equation, we can see that c′′4 and d′′4 are units as G′ is a unit. Clearly,

we have f = c′′1 · d′′1. Now, since C and D are non-units (by assumption), the matrices C ′′ and D′′

are also non-units. Therefore, c′′1 is not a scalar for otherwise C ′′ would be a unit. Similarly, d′′1 is

not a scalar. It follows that f = c′′1d
′′
1 is a nontrivial factorization of f .

Furthermore, since D is an atom by assumption and D′′ is a stable associate of D, D′′ is an

atom. As D′′ =

(
d′′1 d′′3
0 d′′4

)
and d′′4 is invertible, we get

(
1 0

0 (d′′4)−1

)
·D′′ =

(
d′′1 d′′3
0 Is

)
. Now

applying suitable row operations to the matrix (1⊕ (d′′4)−1)D′′ we can drive d′′3 to zero. So we have

U(1 ⊕ (d′′4)−1)D′′ = (d′′1 ⊕ Is) for a unit U . Hence d′′1 is an associate of D′′ and therefore d′′1 is

irreducible as D′′ is an atom.

�

Finally, we describe the factorization algorithm for commutatively nonzero polynomials f ∈
F〈X〉 over finite fields Fq.

Theorem 4.10. Let F〈X〉 = Fq〈X〉 and f ∈ F〈X〉 be a commutatively nonzero polynomial given

by an algebraic branching program of size s as input instance of FACT(Fq). Then there is a

poly(s, log q) time randomized algorithm that outputs a factorization f = f1f2 · · · fr such that each

fi is irreducible and is output as an algebraic branching program.

Proof. Given f as input, we apply Higman linearization followed by the algorithm for LIN-FACT(Fq)

described in Theorem 4.6 to obtain the factorization of f ⊕ Is = PSS1F1F2 . . . FrS2UQ where each

linear matrix Fi is an atom, P is upper triangular with all 1’s diagonal, Q is lower triangular with

all 1’s diagonal, U is a unit and S is a scalar invertible matrix, as given in Equation 5. We can now

apply Lemma 4.9 to extract irreducible factors of f (one by one from the right).

For the first step, let C = SS1F1F2 · · ·Fr−1 and D = FrS2UQ in Lemma 4.9. The proof of

Lemma 4.9 yields the matrix Nr = NΠ such that both matrices C ′′ = PSS1F1F2 · · ·Fr−1Nr and

D′′ = N−1r FrS2UQ has the first column all zeros except the (1, 1)th entries c′′1 and d′′1 which yields

the nontrivial factorization f = c′′1d
′′
1, where d′′1 = fr is irreducible. Renaming c′′1 as gr we have from

the structure of C ′′: (
gr ∗
0 Gr

)
= P (SS1F1F2 · · ·Fr−2)(Fr−1Nr).

Setting C = SS1F1F2 · · ·Fr−2 and D = Fr−1Nr in Lemma 4.9 we can compute the matrix Nr−1
using which we will obtain the next factorization gr = gr−1fr−1, where fr−1 is irreducible because

the linear matrix Fr−1 is an atom. Lemma 4.9 is applicable as all conditions are met by the matrices

in the above equation (note that Gr will be a unit).

19

Continuing thus, at the ith stage we will have f = gr−i+1fr−i+1fr−i+2 · · · fr after obtaining the

rightmost i irreducible factors by the above process. At this stage we will have(
gr−i+1 ∗

0 Gr−i+1

)
= P (SS1F1F2 · · ·Fr−i−1)(Fr−iNr−i+1),

where Gr−i+1 is a unit and all other conditions are met to apply Lemma 4.9.

Thus, after r stages we will obtain the complete factorization f = f1f2 · · · fr. For the running

time, it suffices to note that the matrix N computed in Lemma 4.9 is a product of degree at most

d2 many linear matrices (corresponding to the column operations). Thus, at the ith of the above

iteration, the sizes of the ABPs for the entries of Nr−i+1 are independent of the stages. Hence, the

overall running time is easily seen to be polynomial in s and log q. �

Corollary 4.11. If f ∈ F〈X〉 is commutatively nonzero polynomial given as input in sparse repre-

sentation (as an Fq-linear combination of its monomials) then in randomized polynomial time we

can compute a factorization into irreducible factors in sparse representation.

Proof. Let f be given as input in sparse representation. Suppos deg f = d and it is t-sparse. Then

there are at most td2 many monomials that can occur as a substring of the monomials of f . We

can apply the randomized algorithm of Theorem 4.10 to obtain the factorization f = f1f2 · · · fr,
where each fi is given by an ABP. Now, for each of the td2 many candidate monomials of fi we

can find its coefficient in fi in polynomial time (using the Raz-Shpilka algorithm [RS05]). Hence

we can obtain the factorization f = f ′1f
′
2 · · · f ′r, where each f ′i is a t-sparse polynomial. �

5 Factorization of Commutatively zero polynomials

In this section we will describe the general case of the factorization algorithm when the input

polynomial f ∈ F〈X〉 is a commutatively zero polynomial. That is, f evaluates to zero on all scalar

substitutions from Fq or any (commutative) extension field.

The factorization algorithm will follow the three broad steps described in Section 4 for the

commutatively nonzero case: first, using Higman linearization and Theorem 3.3, transform the

polynomial f to a stably associated linear matrix L that is full and left (or right) monic. Next,

factorize the linear matrix L into atoms. Finally, recover the irreducible factors of f from the atomic

factors of the linear matrix L using the factor extraction procedure described in Lemma 4.9.

The step that requires a new algorithm is factorizing a full and right (or left) monic linear matrix

L ∈ F〈X〉 into atoms when f is commutatively zero, which means there is no scalar substitution

xi ← αi, i ∈ [n] such that L(α1, α2, . . . , αn) is invertible. Note that in this case we cannot apply

the algorithm for factorizing a linear matrix as discussed in the proof of Theorem 4.6).

5.1 Factorization of full and monic linear matrices

Let f ∈ F〈X〉 be the input polynomial given by a size s formula and let L ∈ F〈X〉d×d be a full, right

monic linear matrix stably associated with f obtained via Higman linearization and an application

of Theorem 3.3.

20

Recall, by Equation 4 we have f ⊕ Is = PU(L ⊕ It)SQ where, P , Q are respectively upper

triangular and lower triangular units with diagonal entries 1, U is a unit and S is scalar invertible.

Let L = A0 +
∑n

i=1Anxi ∈ F〈X〉d×d be the given full and right monic linear matrix. First, by

Lemma 3.8, we will find a suitable scalar matrix n-tuple M̄ = (M1,M2, . . . ,Mn), each Mi ∈ F`×`
q

for ` ≤ 2d, such that under the substitution xi ←Mi the matrix L(M̄) is invertible.

For 1 ≤ i ≤ n let Yi be an ` × ` matrix of distinct noncommuting variables yijk. We consider

the dilated linear matrix

L′ = A0 ⊗ I` +
n∑

i=1

Ai ⊗ (Yi +Mi). (7)

It is not hard to see that L′ is full and L′ is right monic as L is right monic. Additionally, its

constant term is invertible. So, we can apply Theorem 4.6 to factorize L′ as a product of two linear

matrices, both non-units.

The following lemma [HKV20] has an important role in our algorithm for recovering the fac-

torization for L from a factorization of L′.

Lemma 5.1. [HKV20]

Let L ∈ F〈X〉d×d be a full linear matrix with L = A0 +A1x1 + . . .+Anxn such that Ai 6= 0 for

at least one i, 1 ≤ i ≤ n and L′ ∈ Rd`×d` be a matrix obtained from L by substituting variable xi by

Yi for i ∈ [n], where Yi is `× ` matrix whose (j, k)th entry is a fresh noncommuting variable yi,j,k
for 1 ≤ j, k ≤ `. Then

1. If L′ is of the form GL′H =

(
A′ 0

D′ B′

)
, where A′ is d′×d′ matrix and B′ is d′′×d′′ matrix

for 0 < d′, d′′, with d′ + d′′ = d` and G,H are d` × d` invertible scalar matrices then there

exist d × d invertible scalar matrices U, V such that ULV =

(
A 0

D B

)
, where A is e′ × e′

matrix and B is e′′ × e′′ matrix for 0 < e′, e′′, with e′ + e′′ = d.

2. Moreover, given L′ explicitly along with its representation mentioned above, we can find the

matrices U, V in deterministic polynomial time (in n, `, d).

Remark 5.2. We give a self-contained complete proof of the above linear-algebraic lemma in the

appendix for Fq, because the proof given in [HKV20] is sketchy in parts with some details missing,

and also their lemma is stated only for complex numbers and they are not concerned about computing

the matrices U and V .

Now, we can apply Lemma 5.1 to transform the factorization of L′ to a factorization of L as a

product of two linear matrices, both non-units. Repeating the above on both the factors of L we

will get a complete atomic factorization of L. Formally, we prove the following.

Theorem 5.3. On input a full and right (or left) monic linear matrix L = A0 +
∑n

i=1Aixi where

Ai ∈ Fd×d for i ∈ [n], there is a randomized polynomial time (poly(n, d)) algorithm to compute

scalar invertible matrices S, S′ such that SLS′ has atomic block diagonal form.

Proof. We present the algorithm only for right monic L; the left monic case has essentially the

same solution.

21

If the input L is not full or right monic the algorithm can efficiently detect that and output

“failure”. If L is an atom the algorithm will output that L is an atom and set the matrices S and

S′ to Id. Otherwise, the algorithm will compute invertible scalar matrices S and S′ such that

SLS′ =


L1 0 0 . . . 0

∗ L2 0 . . . 0

∗ ∗ L3 . . . 0
. . .

∗ ∗ ∗ . . . Lr

 , (8)

where the matrix on the right is in atomic block diagonal form, that is, each linear matrix Li is an

atom.

Procedure Factor(L).

1. Test if L has full noncommutative rank using the algorithm in [IQS17] or [GGdOW20]. Test

if L is right monic by checking if the matrix [A1A2 . . . An] has full row rank (which is d). If

L is not full and right monic the algorithm outputs “fail”.

2. Assume L is full and right monic. Using Lemma 3.8, find smallest positive integer ` ≤ 2d and

` × ` scalar matrices Mi, i ∈ [n] with entries from F (or a small degree extension of F) such

that W = L(M̄) is d · `× d · ` invertible scalar matrix. Compute the dilated linear matrix L′

in the yijk variables as in Equation 7 which can be rewritten as:

L′ = A0 ⊗ I` +

n∑
i=1

Ai ⊗Mi +

n∑
i=1

∑̀
j,k=1

(Ai ⊗ Ejk) · yijk.

Let L′′ = W−1L′. Clearly L′′(0) = Id`. Hence, by the algorithm of Theorem 4.6 we can

either detect that L′′ is an atom or factorize L′′. If L′′ is an atom then L is also an atom and

the algorithm can output that and stop. Otherwise, L′ is not an atom and by Theorem 4.6

we will obtain a basis change matrix T such that TW−1L′T−1 = TL′′T−1 =

(
C ′′ 0

∗ D′′

)
where C ′′ and D′′ are linear matrices of dimension c′′× c′′ and d′′× d′′ respectively, such that

c′′ + d′′ = d`.

3. By linear shift of variables yijk ← yijk −Mi(j, k) we obtain T̃ L̃T̃ ′ =

(
C ′ 0

∗ D′

)
for some

scalar invertible matrices T̃ , T̃ ′ where L̃ = L(Y1, . . . , Yn).

4. Applying the algorithm of Lemma 5.1 to L̃, T̃ , and T̃ ′, in deterministic polynomial time we

obtain scalar invertible matrices S̃, S̃′ such that S̃LS̃′ =

(
C 0

∗ D

)
where C, D are square

matrices of dimensions e× e and g × g, respectively, such that e+ g = d.

5. Recursively call Factor(C) and Factor(D). Let S1, S
′
1 be the matrices returned by Factor(C)

and S2, S
′
2 be the matrices returned by Factor(D).

22

6. Let S = (S1 ⊕ S2)S̃ and S′ = S̃′(S′1 ⊕ S′2). Return the invertible scalar matrices S and S′.

Note that at this stage SLS′ has the desired atomic block diagonal form.

Next we give a brief argument for proving correctness of the above algorithm. Firstly, the

algorithm declares L as an atom iff L is indeed an atom. To see this, we will prove L is not an atom

iff L′′ is not an atom. Forward direction is obvious. To prove the reverse direction of implication,

let L′′ is not an atom. Which implies L′ = WL′′ is not an atom. L̃ is a linear matrix obtained by

substituting Mi(j, k) = 0 for all i, j, k in L′. Clearly, L̃ is not an atom as L′ is not an atom. Using

Lemma 5.1 it follows that L is not an atom. So we have established L is not a atom iff L′′ is not

an atom. So if input linear matrix L is an atom, the algorithm will correctly declare it to be an

atom in step 2.

Now we argue that we will get correct atomic block diagonal form in the last step of the

algorithm. Firstly, for giving recursive calls to the Factor procedure for the matrices C, D, we

must have C,D to be right monic as stated in the claim below. This is proved by the same

argument as in the proof of Theorem 3.9.

Claim 5.4. Let L ∈ F〈X〉d×d be a full and right monic linear matrix such that P ′LQ′ =

(
C 0

E D

)
where C and D are linear matrices of dimensions e × e, g × g, respectively, such that e + g = d.

Then both C,D are right monic.

By recursive calls Factor(C) and Factor(D) obtain matrices S1, S
′
1, S2, S

′
2 such that S1CS

′
1 = C ′

and S2DS
′
2 = D′ are in atomic block diagonal form. We can write S̃LS̃′ as

=

(
C 0

E D

)

=

(
C 0

0 Ig

)(
Ie 0

E Ig

)(
Ie 0

0 B

)

= (S−11 ⊕ Ig)(C ′ ⊕ Ig)(S′
−1
1 ⊕ Ig)

(
Ie 0

E Ig

)
(Ie ⊕ S−12)(Ie ⊕D′)(Ie ⊕ S′−12)

= (S−11 ⊕ Ig)(C ′ ⊕ Ig)(Ie ⊕ S′−12)

(
Ie 0

S2ES
′
1 Ig

)
(S′
−1
1 ⊕ Ig)(Ie ⊕D′)(Ie ⊕ S′−12)

= (S−11 ⊕ Ig)(Ie ⊕ S−12)(C ′ ⊕ Ig)

(
Ie 0

S2ES
′
1 Ig

)
(Ie ⊕D′)(S′−11 ⊕ Ig)(Ie ⊕ S′−12)

= (S−11 ⊕ Ig)(Ie ⊕ S−12)

(
C ′ 0

S2ES
′
1 D′

)
(S′
−1
1 ⊕ Ig)(Ie ⊕ S′−12)

= (S−11 ⊕ S
−1
2)

(
C ′ 0

S2ES
′
1 D′

)
(S′
−1
1 ⊕ S′

−1
2).

Thus we have

(S1 ⊕ S2)S̃LS̃′(S′1 ⊕ S′2) =

(
C ′ 0

S2ES
′
1 D′

)
.

23

As C ′ and D′ are in atomic block diagonal form, it follows that

(
C ′ 0

S2ES
′
1 D′

)
is also in

atomic block diagonal form. Letting S = (S1 ⊕ S2)S̃ and S′ = S̃′(S′1 ⊕ S′2), it follows that SLS′

is in the desired atomic block diagonal form which proves the correctness of Factor procedure. In

each call to the procedure (excluding the recursive calls) the algorithm takes poly(n, d, log2 q) time.

The total number of recursive calls overall is bounded by d. Hence, the overall running time is

poly(n, d, log2 q). This completes the proof of the theorem. �

For the factorization of f , we assume the stably associated full linear matrix L is left monic.

After we obtain atomic block diagonal form as in Equation 8, we can factorize L into atomic factors

by Theorem 4.6. Combined with Equation 5 we have

f ⊕ Is = PS′F ′1F
′
2 · · ·F ′rU ′Q,

where each linear matrix F ′i is an atom, P is upper triangular with all 1’s diagonal, Q is lower

triangular with all 1’s diagonal, and S′ is scalar invertible and U ′ is a unit. Now, applying Lemma

4.9 and Theorem 4.10 we obtain the complete factorization of f into irreducible factors. This is

summarized in the following.

Theorem 5.5. Let f ∈ F〈X〉 be a polynomial given by an algebraic branching program as input

instance of FACT(Fq). Then there is a poly(s, log q, |X|) time randomized algorithm that outputs a

factorization f = f1f2 · · · fr such that each fi is irreducible and is output as an algebraic branching

program.

Analogous to Corollary 4.11, when the polynomial is given in a sparse representation, we have

Corollary 5.6. If f ∈ F〈X〉 is a polynomial given as input in sparse representation (that is, an

Fq-linear combination of its monomials) then in randomized polynomial time we can compute a

factorization into irreducible factors in sparse representation.

5.2 Factorization over small finite fields

Finally, we briefly discuss the factorization problem over small finite fields. As explained in Section

1.2, the two steps in our factoring algorithm requiring randomization can be replaced with deter-

ministic poly(s, q, |X|) time computation. Furthermore, as explained in Section 1.2, the matrix

shift (M1,M2, . . . ,Mn) required for the Theorem 5.3 can be obtained in deterministic polynomial

time such that the entries of the matrices Mi are from Fq for each i. Putting it together, it gives us a

deterministic factorization algorithm for noncommutative polynomials that are input as arithmetic

formulas over Fq. In summary, we have the following.

Theorem 5.7. Given as input a multivariate polynomial f ∈ Fq〈X〉 for a finite field Fq by a

noncommutative algebraic branching program of size s, a factorization of f as a product f =

f1f2 · · · fr can be computed in deterministic time poly(s, q, |X|), where each fi ∈ Fq〈X〉 is an

irreducible polynomial that is output as an algebraic branching program.

24

6 Concluding Remarks

In this paper we present a randomized polynomial-time algorithm for the factorization of non-

commutative polyomials over finite fields that are input as algebraic branching programs. The

irreducible factors are output as algebraic branching programs.

Several open questions arise from our work. We mention two of them. The first question is

the complexity of factorization over rationals of noncommutative polynomials given as ABPs or

arithmetic formulas. Our approach involves the crucial use of Ronyai’s algorithm for invariant

subspace comptutation which turns out to be a hard problem over rationals. We believe a different

approach may be required for the rational case.

The use of Higman linearization prevents us from generalizing this approach to noncommutative

polynomials given as arithmetic circuits. We do not know any nontrivial complexity upper bound

for the factorization problem for noncommutative polynomials given as arithmetic circuits.

Acknowledgements. We thank anonymous referees and Partha Mukhopadhyay for asking about

extension of our earlier factorization algorithm for noncommutative formulas to algebraic branching

programs.

References

[ACDM20] Vikraman Arvind, Abhranil Chatterjee, Rajit Datta, and Partha Mukhopadhyay.

A special case of rational identity testing and the brešar-klep theorem. In Javier

Esparza and Daniel Král’, editors, 45th International Symposium on Mathematical

Foundations of Computer Science, MFCS 2020, August 24-28, 2020, Prague, Czech

Republic, volume 170 of LIPIcs, pages 10:1–10:14. Schloss Dagstuhl - Leibniz-Zentrum

für Informatik, 2020.

[AJ22] Vikraman Arvind and Pushkar S. Joglekar. On efficient noncommutative polynomial

factorization via higman linearization. In Shachar Lovett, editor, 37th Computational

Complexity Conference, CCC 2022, July 20-23, 2022, Philadelphia, PA, USA, volume

234 of LIPIcs, pages 12:1–12:22. Schloss Dagstuhl - Leibniz-Zentrum für Informatik,

2022.

[AJR18] V. Arvind, Pushkar S. Joglekar, and Gaurav Rattan. On the complexity of noncom-

mutative polynomial factorization. Inf. Comput., 262:22–39, 2018.

[AL50] S.A. Amitsur and J. Levitzki. Minimal identities for algebras. Proceedings of the

American Mathematical Society, 4(2):449–463, 1950.

[Ami66] S.A Amitsur. Rational identities and applications to algebra and geometry. Journal

of Algebra, 3(3):304–359, 1966.

[BHL17] Jason Bell, Albert Heinle, and Viktor Levandovskyy. On noncommutative finite fac-

torization domains. Transactions of the American Mathematical Society, 369(4):2675–

2695, 2017.

25

[BS15] Nicholas R. Baeth and Daniel Smertnig. Factorization theory: From commutative to

noncommutative settings. Journal of Algebra, 441:475–551, 2015.

[Bur05] W. Burnside. On the condition of reducibility of any group of linear substitutions.

Proceedings of London Mathematical Society, 3:430–434, 1905.

[BW05] Andrej Bogdanov and Hoeteck Wee. More on noncommutative polynomial identity

testing. In 20th Annual IEEE Conference on Computational Complexity (CCC 2005),

11-15 June 2005, San Jose, CA, USA, pages 92–99, 2005.

[Coh06] P. M. Cohn. Free Ideal Rings and Localization in General Rings. New Mathematical

Monographs. Cambridge University Press, 2006.

[Coh11] P. M. Cohn. Introduction To Ring Theory. Springer, 2011.

[DL78] Richard A. DeMillo and Richard J. Lipton. A probabilistic remark on algebraic

program testing. Inf. Process. Lett., 7(4):193–195, 1978.

[DM17] Harm Derksen and Visu Makam. Polynomial degree bounds for matrix semi-

invariants. Advances in Mathematics, 310:44–63, 2017.

[For14] Michael A. Forbes. Polynomial identity testing of read-once oblivious algebraic branch-

ing programs. PhD thesis, Massachusetts Institute of Technology, Cambridge, MA,

USA, 2014.

[FR85] Katalin Friedl and Lajos Rónyai. Polynomial time solutions of some problems in

computational algebra. In Robert Sedgewick, editor, Proceedings of the 17th Annual

ACM Symposium on Theory of Computing, May 6-8, 1985, Providence, Rhode Island,

USA, pages 153–162. ACM, 1985.

[GGdOW20] Ankit Garg, Leonid Gurvits, Rafael Mendes de Oliveira, and Avi Wigderson. Operator

scaling: Theory and applications. Found. Comput. Math., 20(2):223–290, 2020.

[Hig40] Graham Higman. The units of group-rings. Proceedings of the London Mathematical

Society, s2-46(1):231–248, 1940.

[HKV18] J.W. Helton, Igor Klep, and Jurij Volčič. Geometry of free loci and factorization of

noncommutative polynomials. Advances in Mathematics, 331:589–626, 2018.

[HKV20] J Helton, Igor Klep, and Jurij Volčič. Factorization of Noncommutative Polynomi-

als and Nullstellensätze for the Free Algebra. International Mathematics Research

Notices, 2022(1):343–372, 06 2020.

[HW15] Pavel Hrubes and Avi Wigderson. Non-commutative arithmetic circuits with division.

Theory Comput., 11:357–393, 2015.

[IQS17] Gábor Ivanyos, Youming Qiao, and K. V. Subrahmanyam. Non-commutative ed-

monds’ problem and matrix semi-invariants. Comput. Complex., 26(3):717–763, 2017.

26

[IQS18] Gábor Ivanyos, Youming Qiao, and K. V. Subrahmanyam. Constructive non-

commutative rank computation is in deterministic polynomial time. Comput. Com-

plex., 27(4):561–593, 2018.

[Kal89] Erich Kaltofen. Factorization of polynomials given by straight-line programs. Adv.

Comput. Res., 5:375–412, 1989.

[KSS15] Swastik Kopparty, Shubhangi Saraf, and Amir Shpilka. Equivalence of polynomial

identity testing and polynomial factorization. Comput. Complex., 24(2):295–331,

2015.

[KT90] Erich Kaltofen and Barry M. Trager. Computing with polynomials given by black

boxes for their evaluations: Greatest common divisors, factorization, separation of

numerators and denominators. J. Symb. Comput., 9(3):301–320, 1990.

[Nis91] Noam Nisan. Lower bounds for non-commutative computation (extended abstract).

In Proceedings of the 23rd Annual ACM Symposium on Theory of Computing, May

5-8, 1991, New Orleans, Louisiana, USA, pages 410–418, 1991.

[Rón90] Lajos Rónyai. Computing the structure of finite algebras. J. Symb. Comput.,

9(3):355–373, 1990.

[RS05] Ran Raz and Amir Shpilka. Deterministic polynomial identity testing in non-

commutative models. Computational Complexity, 14(1):1–19, 2005.

[Sch80] Jacob T. Schwartz. Fast probabilistic algorithms for verification of polynomial iden-

tities. J. ACM, 27(4):701–717, 1980.

[vzGG13] Joachim von zur Gathen and Jürgen Gerhard. Modern Computer Algebra (3. ed.).

Cambridge University Press, 2013.

[Zip79] Richard Zippel. Probabilistic algorithms for sparse polynomials. In Edward W. Ng,

editor, Symbolic and Algebraic Computation, EUROSAM ’79, An International Sym-

posiumon Symbolic and Algebraic Computation, Marseille, France, June 1979, Pro-

ceedings, volume 72 of Lecture Notes in Computer Science, pages 216–226. Springer,

1979.

27

A Appendix

A.1 Higman Linearization of Algebraic Branching Programs

In this section we present a proof of Theorem 2.9. More precisely, we give an efficient determin-

istic algorithm to compute Higman Linearization for a non-commutative polynomial given by an

algebraic branching program. We obtain this by generalizing the Higman Linearization process

(described in Theorem 2.8) to what we call Block-Higman linearization. We restate Theorem 2.9)

and present its proof.

Theorem A.1 (Block Higman Linearization). Given as input an algebraic branching program

of size s computing a noncommutative polynomial f ∈ F〈X〉, we can compute in deterministic

polynomial time matrices P,Q ∈ F〈X〉`×` and a linear matrix L ∈ F〈X〉`×` such that

P

(
f 0

0 I`−1

)
Q = L (9)

with P upper triangular, Q lower triangular, and the diagonal entries of both P and Q are all 1’s

(hence, P and Q are both units in F〈X〉`×`). Futhermore, the algorithm computes the entries of

matrices P and Q as algebraic branching programs. The entries of P−1 and Q−1 are also computable

as algebraic branching programs.

Proof. Let f ∈ F〈X〉 be the input noncommutative polynomial of degree d computed by an ABP

of size s and d + 1 layers, where the ith layer has say ni nodes. Then we have linear matrices

A1, A2, . . . , Ad such that

f = A1 ·A2 · · ·Ad,

where Ai is ni × ni+1 for each i and n1 = nd+1 = 1. Note that the (j, k)th entry of Ai is the linear

form labeling the edge from jth node in layer i to kth node in layer i+ 1.

We will prove the following more general result, dropping the constraint that n1 = nd+1 = 1.

Suppose A1, A2, . . . , Ad are linear matrices of compatible dimensions (Ai is ni × ni+1 for each i)

such that the matrix product

M = A1 ·A2 · · ·Ad

is well defined. The algorithm we will describe will compute matrices P,Q,L such that

P

(
M 0

0 I`−1

)
Q = L (10)

and P,Q,L have the properties as stated in the theorem.

The proof is by an easy induction on number d of linear matrices whose product is M . We

set up this induction by describing a single step of Block-Higman linearization writing the input

matrix M = AB, where A = A1 ·A2 · · ·Ad−1 and B = Ad is a linear matrix.

So, let M be the r × t matrix where M = A ·B with A ∈ F〈X〉r×s and B ∈ F〈X〉s×t, and B is

a linear matrix. We apply the following steps to M .

28

� Expand M to a (r + s) × (t + s) matrix of the following shape by adding s new rows and s

new columns, with the bottom right diagonal block being Is and the remaining entries zero

to obtain the following: [
M 0

0 Is

]
.

� Use suitable block row and column operations to transform the matrix as follows(
AB 0

0 Is

)
→

(
AB A

0 Is

)
→

(
0 A

−B Is

)

Here the first step is realized by computing the matrix product A · [0 | Is] and adding it to

the respective blocks of the first r rows. The second step is realized by computing the matrix

product (
A

Is

)
· (−B)

and adding this to the respective blocks of the first t columns. These two steps are realized

by left multiplication by

(
Ir A

0 Is

)
and right multiplication by

(
It 0

−B Is

)
.

So we have (
Ir A

0 Is

)(
AB 0

0 Is

)(
It 0

−B Is

)
=

(
0 A

−B Is

)
.

In the above, we note that the row operation matrix

(
Ir A

0 Is

)
is upper triangular with all

diagonal entries 1 where as the column operation matrix

(
It 0

−B Is

)
is lower triangular with all

diagonal entries 1.

Crucially, if A = A1 ·A2 · · ·Ad−1 and B = Ad, the resulting matrix has only A as the nonlinear

block which is a product of d− 1 linear matrices. We can now apply induction to the matrix A to

obtain the Block-Higman linearization of M as claimed.

We describe the intermediate steps of the induction in more detail, in order to see the final

shape of the linear matrix.

Let M = A1A2 . . . Ad where Ai ∈ F〈X〉ni×ni+1 , are linear matrices. At the ith step of the

induction Block-Higman linearization transforms a matrix of the form

(
∗ A1A2 . . . Ad−i
∗ ∗

)
into

a matrix of the form

(
∗ A1A2 . . . Ad−i−1
∗ ∗

)
where each ∗ indicates matrix blocks with linear

entries. After d − 1 steps of Block-Higman linearization we obtain a linear matrix which is an

associate of M .

In more detail, let M0 = A1A2 . . . Ad, P0 = In1 , Q0 = Ind+1
and t0 = 0. We have P0(M ⊕

It0)Q0 = M0. Inductively, assume that we have upper triangular matrix Pi with all diagonal

29

entries 1 and a lower triangular matrix Qi with all diagonal entries 1 such that

Pi

(
M 0

0 Iti

)
Qi = Mi.

Here, Mi is a polynomial matrix which has top right block equal to A1A2 . . . Ad−i and the other

entries of M are linear and the entries of Pi and Qi are all computable by ABPs. Let ti+1 = ti+nd−i.

Clearly, (Pi ⊕ Ind−i
)(M ⊕ Iti+1)(Qi ⊕ Ind−i

) = Mi ⊕ Ind−i
. Let M ′i be a matrix obtained from Mi

by replacing top right block by 0. Let Mi+1 be a 2× 2 block matrix with M ′i as top left block and

the structure as shown below

Mi+1 =


0 A1A2 . . . Ad−i−1

0
...

0

0 0 . . . 0 0 −Ad−i Ind−i

 ,

where matrix blocks −Ad−i and A1A2 . . . Ad−i−1 align with top right 0 block in M ′i . Now we define

suitable block row and column operations which transforms matrix Mi ⊕ Ind−i
to Mi+1.

By applying the Block-Higman linearization step we will obtain

P ′(Mi ⊕ Ind−i
)Q′ = Mi+1,

where P ′ and Q′ are upper and lower triangular matrices performing the block row and column

operations and their entries are computable by ABPs. Letting Pi+1 = P ′(Pi ⊕ Ind−i
) and Qi+1 =

(Qi ⊕ Ind−i
)Q′ we get

Pi+1(M ⊕ Iti+1)Qi+1 = Mi+1

where Pi+1 and Qi+1 are upper and lower triangular matrices with diagonal entries 1, the top right

block (consisting of top n1 rows and last nd−i columns) of Mi+1 is A1A2 . . . Ad−i−1 and all other

entries of Mi+1 are linear. Continuing thus, we obtain upper and lower triangular matrices Pd−1
and Qd−1 with all diagonal entries 1 such that Pd−1(M ⊕ Itd−1

)Qd−1 = Md−1 which is a linear

matrix. Moreover, it is easy to see that entries of Pd−1 and Qd−1 are given by polynomial size

ABPs (of O(s2) size to be precise).

Carefully observing the shapes of the matrices Mi we note that the final linearized matrix Md−1
has the form 

0 0 0 0 . . . 0 A1

Ad Ind
0 0 . . . 0 0

0 Ad−1 Ind−1
0 . . . 0 0

0 0 Ad−2 Ind−2
. . . 0 0

0 0 . . .
...

. . .
... 0

0 0 0 0 . . . A2 In2


Md−1 is a d× d block matrix with

- n1 × n2 sized top right block in A1.

- (i, i)th block is Ind+2−i
for 2 ≤ i ≤ d.

30

- (i, i− 1)th block is Ad+2−i for 2 ≤ i ≤ d.

- all other entries are 0.

�

A.2 Missing proofs from Section 2

Proof of Theorem 3.9. Let C ∈ F〈X〉d×d be a full and right monic linear matrix. Suppose

Equation 2 holds for some invertible scalar matrices S, S′. Then we can write

SCS′ =

(
A 0

D B

)
=

(
A 0

0 I

)
·

(
I 0

D I

)
·

(
I 0

0 B

)
.

Since C is right monic and S, S′ are invertible scalar matrices the linear matrix SCS′ =

(
A 0

D B

)
is also full and right monic. Writing it as(

A 0

D B

)
=

(
A0 0

D0 B0

)
+

n∑
i=1

(
Ai 0

Di Bi

)
· xi,

it means the matrix [
A1 0

D1 B1

A2 0

D2 B2
. . .

An 0

Dn Bn

]
is full row rank. With suitable row operations applied to the above we can see that both [A1A2 . . . An]

and [B1B2 . . . Bn] are full row rank. Therefore, both A and B are full right monic matrices hence

they are nonunits by Lemma 3.2. Hence A ⊕ I and B ⊕ I are both non-units which implies that

the factorization of SCS′ is nontrivial and hence C is not an atom.

Conversely, suppose C is not an atom and C = F ·G is a nontrivial factorization. That means

both F and G are full and non-units. As C is a linear matrix, applying [Coh06, Lemma 5.8.7]

we can assume that both F and G are linear matrices. Now, since F is a full linear matrix, by

Theorem 3.3 (and Remark 3.4) there are a scalar invertible matrix S1 and polynomial matrix U1,

which is a unit, such that S1FU1 = A⊕ I such that A is left monic. Therefore, we have

S1C = S1FUU
−1G =

(
A 0

0 I

)
·

(
G′1 G′3
G′2 G′4

)
=

(
AG′1 AG′3
G′2 G′4

)
.

As S1C is a linear matrix and A is a left monic linear matrix we can assume that G′1 and G′3 are

scalar matrices. Since S1C is full rank, it forces the matrix [G′1G
′
3] to be full row rank (say r, where

A is r × r). Therefore, there is an invertible scalar matrix S′ such that [G′1G
′
3]S
′ = [Ir0]. Putting

it together, we get the factorization

SCS′ =

(
A 0

0 I

)
·

(
Ir 0

G′′2 G′′4

)
=

(
A 0

G′′2 G′′4

)

as claimed by the theorem. �

31

A.3 Proof of Lemma 5.1

We present a self-contained proof of Lemma 5.1 of [HKV20].

Definition A.2. Let U, V ⊆ FD be subspaces of FD and d = dimU . Fix a basis u1, u2, . . . , u` ∈ FD

for U∩V and extend it to a basis u1, u2, . . . , u`, u`+1, . . . , ud for U . Further, let u1, u2, ..., uD be a ba-

sis for FD obtained by extending the above basis for U . Then U\V is defined as span(u`+1, u`+2, . . . , ud),

i.e.

U \ V = {
d∑

i=`+1

αiui|αi ∈ F for ` < i ≤ d}

Clearly dimU \ V = dimU − dimU ∩ V . Notice that although the subspace U \ V is basis

dependent, the number dimU \ V is independent of the construction of U \ V .

Definition A.3. Let U = {U1, U2, . . . , Ud} be a collection of subspaces of FD. For each i ∈ [d]

define Ûi
(U)

= Ui \ (
∑

k 6=i Uk) as above with respect to fixed bases for the subspaces.

We first prove a technical lemma, essentially using the inclusion-exclusion principle.

Lemma A.4. Let U = {U1, U2, . . . , Ud} be a collection of subspaces of FD for d ≥ 1. Then

d∑
i=1

[
dimUi + dim Û

(U)
i

]
≥ 2 · dim

d∑
i=1

Ui.

Proof. The proof will be by induction on d. The base case, d = 1, is obvious. Suppose it is is true

for all t < d. I.e. for any subspace collection V = {V1, V2, . . . , Vt} we have

t∑
i=1

[
dimVi + dim V̂

(V)
i

]
≥ 2 · dim

t∑
i=1

Vi.

Letting Vi = Ui for 1 ≤ i ≤ d− 2 and Vd−1 = Ud−1 + Ud in the above, we have

d−1∑
i=1

[
dimVi + dim V̂

(V)
i

]
≥ 2 · dim

d−1∑
i=1

Vi = 2 · dim

d∑
i=1

Ui.

For the induction we need to show that
∑d−1

i=1 (dimVi + dim V̂
(V)
i) ≤

∑d
i=1(dimUi + dim Û

(U)
i).

Now,
d−1∑
i=1

(dimVi + dim V̂
(V)
i)

32

is

= dimVd−1 + dim V̂
(V)
d−1 +

d−2∑
i=1

 dimUi + dim(Ui \ (Ud−1 + Ud +
∑

k 6=i,k<d−1
Uk))


= dimVd−1 + dim V̂

(V)
d−1 +

d−2∑
i=1

 dimUi + dim(Ui \
∑

k 6=i,k≤d
Uk)


= dimVd−1 + dim V̂

(V)
d−1 +

d−2∑
i=1

[
dimUi + dim Û

(U)
i

]
= dimUd−1 + dimUd − dim(Ud−1 ∩ Ud) + dim V̂

(V)
d−1 +

d−2∑
i=1

[
dimUi + dim Û

(U)
i

]
=

[
d∑

i=1

dimUi

]
+

[
d−2∑
i=1

dim Û
(U)
i

]
+ dim V̂

(V)
d−1 − dim(Ud−1 ∩ Ud).

Hence, to complete the proof it suffices to show the following claim.

Claim A.5.

dim V̂
(V)
d−1 ≤ dim Û

(U)
d−1 + dim Û

(U)
d + dim(Ud−1 ∩ Ud)

Proof of Claim. Let T = U1 + U2 + . . . + Ud−2. Let D,D1, D2, and D3 denote dimensions of

T + Ud−1 + Ud, Ud−1, Ud, and T respectively.

We have

dim V̂
(V)
d−1 = dim(Ud−1 + Ud)− dim((Ud−1 + Ud) ∩ T)

= dim(Ud−1 + Ud)− dim(Ud−1 + Ud)− dim(T) + dim(Ud−1 + Ud + T)

= D −D3

Similarly,

dim Û
(U)
d−1 = dim(Ud−1)− dim(Ud−1 ∩ (T + Ud))

= D1 + dim(T + Ud−1 + Ud)− dim(Ud−1)− dim(T + Ud)

= D1 +D −D1 − dim(T)− dim(Ud) + dim(T ∩ Ud)

= D −D3 −D2 + dim(T ∩ Ud).

Likewise, we also have

dim(Û
(U)
d) = D −D3 −D1 + dim(T ∩ Ud−1).

It is clear that the claim is equivalent to

D ≥ D1 +D2 +D3 − dim(T ∩ Ud)− dim(T ∩ Ud−1)− dim(Ud−1 ∩ Ud)

which follows immediately from the Inclusion-Exclusion Principle. �

�

33

Now we will present a complete proof for Lemma 5.1 from [HKV20] where the proof is sketchy.

Proof of Lemma 5.1

Let L = A0 +
∑n

i=1Aixi Where Ai ∈ Fd×d
q for i ∈ [n]. So, L′ = A0 ⊗ I` +

∑n
i=1Ai ⊗ Yi

. From standard properties of the Kronecker product of matrices, there are a row permutation

matrix R and a column permutation matrix C such that L′′ = RL′C = I`⊗A0 +
∑n

i=1 Yi⊗Ai. So

L′′ = I`⊗A0 +
∑n

i=1

∑
1≤j,k≤`(Ej,k⊗Ai) yi,j,k, where Ej,k is a a matrix with (j, k)th entry one and

rest all entries equal to zero.

We have GL′H =

(
A′ 0

D′ B′

)
Where A′ is d′× d′ linear matrix for d′ > 0, B′ is d′′× d′′ linear

matrix with d′+d′′ = d`. Hence, GR−1L′′C−1H =

(
A′ 0

D′ B′

)
. Let GR−1 = P0 and C−1H = Q0.

Let [P1P2 . . . P`] be the (full row rank) matrix obtained by picking the top d′ rows of P0 where each

Pi is d′ × d scalar matrix. Similarly let [QT
1Q

T
2 . . . Q

T
`]T be the (full column rank) matrix obtained

by picking the rightmost d′′ columns of Q0 where each Qi is d× d′′ scalar matrix. Clearly,

[P1P2 . . . P`]L
′′[QT

1Q
T
2 . . . Q

T
`]T = 0,

which implies,

[P1P2 . . . P`]

I` ⊗A0 +
n∑

i=1

∑
1≤j,k≤`

(Ej,k ⊗Ai) yi,j,k

 [QT
1Q

T
2 . . . Q

T
`]T = 0.

Equating the coefficients of each yi,j,k to zero we get the following.

∑̀
i=1

PiA0Qi = 0. (11)

PjAiQk = 0 for each i > 0 and 1 ≤ j, k ≤ `. (12)

For each i ∈ [`] the matrix Pi is a linear transformation from Fd to Fd′ . Let Ui = Range(Pi) =

{Piu|u ∈ Fd} for each i, and U = {U1, U2, . . . , U`}. Let Ti =
∑

j 6=i Uj for i ∈ [`]. Clearly,

U1 + U2 + . . . + U` = Fd′
q as [P1P2 . . . P`] is a full row rank matrix. For i ∈ [`], let P̂i be a linear

transformation from Fd′ to Fd′ defined as follows. Fix a basis ui,1, ui,2, . . . , ui,ri of the subspace

Ui ∩ Ti. Extend it to a basis ui,1, ui,2, . . . , ui,ri , ui,ri+1, . . . , ui,ki , ki ≥ r, for Ui. Further, extend

this basis of Ui to a complete basis ui,1, ui,2, . . . , ui,d′ , for Fd′ , where d′ ≥ ki. For any vector

u =
∑d′

j=1 αjui,j in Fd′ let P̂i(u) =
∑k

j=r+1 αjui,j . So, P̂i(u) is the vector obtained by projecting to

the subspace Ui \ Ti (which is defined w.r.t. the above basis). Hence, P̂i(ui,t) = ui,t for ri < t ≤ ki
and P̂i(ui,t) = 0 otherwise. This defines a d′ × d′ matrix for each P̂i for i ∈ [`], which we also

refer to as P̂i by abuse of notation. From the Definition A.3, it follows that Range(P̂i) = Û
(U)
i , so

rank(Pi) = dim Û
(U)
i . Clearly, rank(P̂iPi) = rank(P̂i) for i ∈ [`]. Now, by Lemma A.4 applied to

the collection U = {U1, U2, . . . , U`} we get

∑̀
i=1

[
rankPi + rank P̂i

]
≥ 2 · dim

∑̀
i=1

Range(Pi) = 2d′.

34

Similarly, each Qi : Fd′′ → Fd is a linear map. We can define the corresponding linear maps

Q̂i : Fd′′ → Fd′′ and associated d′′ × d′′ sized matrices and we will have rankQiQ̂i = rank Q̂i for

each i. Applying the above argument we will get

∑̀
i=1

[
rankQi + rank Q̂i

]
≥ 2 · dim

∑̀
i=1

Range(Qi) = 2d′′.

Adding the two inequalities yields

∑̀
i=1

(
rank P̂i + rankQi

)
+
(

rankPi + rank Q̂i

)
≥ 2 · (d′ + d′′) = 2d`. (13)

From the Equation 13 we would like to prove the following Claim.

Claim A.6. There exist index i ∈ [`] such that rank P̂i + rankQi ≥ d and rank P̂i, rankQi > 0

or rankPi + rank Q̂i ≥ d and rankPi, rank Q̂i > 0.

First we complete the proof of the Lemma 5.1 assuming the Claim A.6. Without loss of

generality, let index i = 1 satisfies the Claim A.6 and further, let rank P̂1 + rankQ1 ≥ d with

rank P̂1, rankQ1 > 0 (other case handled similarly).

Equation 11 implies that Range(P1A0Q1) ⊆ T1, also clearly, Range(P1A0Q1) ⊆ Range(P1) =

U1. Which implies Range(P1A0Q1) ⊆ U1 ∩ T1. Hence P̂1P1A0Q1 = 0. Equation 12 implies that,

P̂1PjAiQk = 0 for all i ≥ 1 and 1 ≤ j, k ≤ `. So we get P̂1P1LQ1 = 0. Now rank(P̂1P1) =

rank(P̂1) ≥ 1, rank(Q1) ≥ 1 and rank(P̂1P1) + rank(Q1) ≥ d. It follows that there exist 0 < e′ ≤
rank(P̂1P1) and 0 < e′′ ≤ rank(Q1) with e′ + e′′ = d. By choosing e′ linearly independent rows of

P̂1P1 and e′′ linearly independent columns of Q1 we obtain full row rank matrix U ′ ∈ Fe′×d
q and

a full column rank matrix V ′ ∈ Fd×e′′
q respectively. Now we extend U ′ to a d × d matrix U by

adding any d− e′ linearly independent rows such that U is invertible. Similarly we extend V ′ to a

d × d matrix V by adding any d − e′′ linearly independent columns such that V is invertible. We

clearly have ULV =

(
A 0

D B

)
for some linear matrices A,D,B such that A ∈ F〈X〉e′×e′ and

B ∈ F〈X〉e′′×e′′ with 0 < e′, e′′ and e′+ e′′ = d as required. This completes the proof of Lemma 5.1.

Proof of Claim A.6.

Each Pi has d columns and each Qi has d rows. Thus, rankPi ≤ d and rankQi ≤ d. Also,

rank P̂i ≤ rankPi and rank Q̂i ≤ rankQi. Hence, rank P̂i+rankQi ≤ 2d and rankPi+rank Q̂i ≤ 2d

for each i.

It follows from Inequality 13 that if there is an i for which either rank P̂i + rankQi < d or

rankPi + rank Q̂i < d then there must be an index j such that either rank P̂j + rankQj > d or

rankPj + rank Q̂j > d. Two cases arise:

1. for all j ∈ [`], rank P̂j + rankQj = d and rankPj + rank Q̂j = d.

2. there is j ∈ [`] with either rank P̂j + rankQj > d or rankPj + rank Q̂j > d.

Suppose the first case occurs. It has the following two subcases.

35

(a) for all j ∈ [`], rank P̂j = 0 or rankQj = 0 and rankPj = 0 or rank Q̂j = 0.

(b) there is j ∈ [`] such that rank P̂j , rankQj > 0 or rankPj , rank Q̂j > 0

First, consider Case 1(a). Note that rank P̂j = 0 implies rankQj = d. And rankQj = 0 implies

rank P̂j = d, which implies rankPj = d. Thus, either rankPj = d or rankQj = d for every j.

Moreover, Case 1(a) also implies rankPj , rankQj ∈ {0, d} for each j.

Now as [P1P2 . . . P`] has full row rank and [QT
1Q

T
2 . . . QT

`]T has full column rank, Case 1(a)

implies that there are indices j, k ∈ [`] such that Pj and Qk are both rank d matrices. As Pj is

full column rank matrix, there is a d × d′ matrix P ′j such that P ′jPj = Id. Similarly, there is a

d′′× d matrix Q′k such that QkQ
′
k = Id. Now from Equation 12 we know that PjAiQk = 0 for all i,

1 ≤ i ≤ n. Hence P ′jPjAiQkQ
′
k = 0 for all i, 1 ≤ i ≤ n. Consequently, Ai = 0 for 1 ≤ i ≤ n which

is a contradiction to the lemma statement. Hence case 1(a) cannot occur.

If case 1(b) or 2 holds then for some index j ∈ [`] either rank P̂j + rankQj ≥ d with rank P̂j ,

rankQj > 0 or rankPj + rank Q̂j ≥ d with rankPj , rank Q̂j > 0. �

36
ECCC ISSN 1433-8092

https://eccc.weizmann.ac.il

