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Abstract

A map g : {0, 1}n → {0, 1}m (m > n) is a hard proof complexity generator for a proof
system P iff for every string b ∈ {0, 1}m \Rng(g), formula τb(g) naturally expressing b ̸∈ Rng(g)
requires superpolynomial size P -proofs. One of the well-studied maps in the theory of proof
complexity generators is Nisan–Wigderson generator. Razborov [Raz15] conjectured that if A
is a suitable matrix and f is a NP ∩ CoNP function hard-on-average for P/poly, then NWf,A

is a hard proof complexity generator for Extended Frege. In this paper, we prove a form of
Razborov’s conjecture for AC0-Frege. We show that for any symmetric NP ∩ CoNP function
f that is exponentially hard for depth two AC0 circuits, NWf,A is a hard proof complexity
generator for AC0-Frege in a natural setting. As direct applications of this theorem, we show
that:

1. For any f with the specified properties, τb(NWf,A) based on a random b and a random
matrix A with probability 1 − o(1) is a tautology and requires superpolynomial (or even
exponential) AC0-Frege proofs.

2. Certain formalizations of the principle fn ̸∈ (NP ∩ CoNP)/poly requires superpolynomial
AC0-Frege proofs.

These applications relate to two questions that were asked by Kraj́ıček [Kra19].

1 Introduction

Proving superpolynomial lower bounds for every proof system is one of the ultimate goals in proof
complexity. For this matter, we need to prove that for every proof system P , there exists an infinite
family of tautologies {ϕn}n∈N such that P does not have polynomial-size proofs for {ϕn}n∈N. It
is known that some weak proof systems require superpolynomial (or even exponential) size proofs
for some families of tautologies (see [Kra19] for more information). No superpolynomial lower
bounds are known for strong proof systems such as Frege or Extended Frege. We do not even know
superpolynomial lower bounds for AC0(⊕)-Frege. It seems that one of the main issues in proving
lower bounds is the lack of good candidate hard formulas. There are three prominent candidates of
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formulas that are believed to be hard for any proof system. The first candidate of these formulas
is random CNFs. Some experts believe that these formulas should be hard for any proof system
(see [Kra19]). Another family of conjectured hard formulas is finite consistency statements. These
formulas have tight connections to important conjectures in proof complexity and experts believed
that they are hard for any proof system (For a detailed discussion, see [KP89, Pud17]). The third
candidate is proof complexity generators.

1.1 Proof complexity generators

Let g : {0, 1}n → {0, 1}m (m > n) be a function which is computable in a reasonable low complexity
class such as FP/poly. As m > n, {0, 1}m \Rng(g) is nonempty. Let b ∈ {0, 1}m \Rng(g), then as g
is computable in FP/poly, we can naturally express the true statement b ̸∈ Rng(g) as a propositional
formula which is denoted by τb(g). If for a proof system P , τb(g) requires superpolynomial size P -
proofs for every b ∈ {0, 1}m\Rng(g), then g is a hard proof complexity generator for P . The concept
of proof complexity generators were defined independently by Alekhnovich et. al. [ABRW04] and
Kraj́ıček [Kra01a].

As pseudorandom generators are an important topic in computational complexity, Alekhnovich
et al. [ABRW04] asked the following natural question: which mappings g : {0, 1}n → {0, 1}m should
be considered hard from the point of view of proof complexity? To understand this concept, different
mappings were investigated from different aspects in [ABRW04]. In particular, they investigated
conditions that make a Nisan–Wigderson generator hard for proof systems such as Resolution and
Polynomial Calculus.

Kraj́ıček [Kra01a] investigated the hardness of different variants of the Pigeonhole principle in
proof systems and their provability in related theories of bounded arithmetic. One of these variants
is the dual weak Pigeonhole principle (dWPHPn

2n) which says that for every function g : [n] → [2n],
g cannot be onto. An interesting theory of bounded arithmetic is BT := S12 + dWPHP(PV) which
has several nice properties (see [Jeř04, Jeř07]). Here S12 is the base bounded arithmetic theory in
the Buss’s Bounded arithmetic hierarchy which is related to the polynomial-time reasoning (see
[Bus86]) and dWPHP(PV) consists of dWPHPn

2n(f) for every polynomial-time computable function
f . A natural question is whether S12 and BT are actually the same theory. Kraj́ıček introduced
the concept of proof complexity generators as functions which violate dWPHP(PV) and formulated
a conjecture about them in the setting of model theory of arithmetic that implies S12 ̸= BT (see
[Kra21] for a proof of separation of PV and PV + dWPHP(PV) under a different assumption).
Moreover, this conjecture implies that proof complexity generators are hard for Extended Frege.

Later, Kraj́ıček [Kra01b, Kra04a, Kra04b, Kra05, Kra09, Kra11a, Kra11b] investigated proof
complexity generators from different aspects, developed the theory of proof complexity generators
in great length and proposed some conjectures. In particular, Kraj́ıček [Kra11a] defined the gen-
erator nwn,c based on the gadget generators of [Kra09] and conjectured that nwn,c is a hard proof
complexity generator for any proof system.

Razborov [Raz15] made a significant contribution to the lower bound problem for proof com-
plexity generators. He proved that Nisan–Wigderson generators based on suitable matrices and
suitable functions are hard not only for Resolution but also for k-DNF Resolution, which improved
the previous lower bounds in terms of the stretch of the generator and the strength of the proof
system in [ABRW04, Kra04b]. Moreover, he formulated the following intriguing conjecture:
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Conjecture 1.1 (Razborov [Raz15]) Any Nisan–Wigderson generator based on suitable matrices
and any function in NP ∩ CoNP that is hard on average for P/poly, is hard for Extended Frege.

Conjecture 1.1 initiated new investigations in the theory of proof complexity generators from
different aspects. We refer the reader for comprehensive dissections of the conjectures about the
proof complexity generators to read Chapter 30 of [Kra11a] and Section 19.4 of [Kra19].

Regarding Razborov’s conjecture, Pich [Pic11] proved that this conjecture is true for proof
systems that enjoy different forms of the feasible interpolation property.

The strongest argument that supports Conjecture 1.1 was done by Kraj́ıček in [Kra11b]. He
proved that assuming the existence of a function f ∈ NP∩CoNP which is hard on average for P/poly;
it is consistent with the universal theory PV that any Nisan–Wigderson generator based on f (or
for a function closely related to f) and suitable matrices is hard not only for Extended Frege but
also for any proof system. Note that PV is a fairly strong theory as it proves a reasonable fragment
of computational complexity theorems (see [Pic15b] for more information). It is worth mentioning
those investigations of the Nisan–Wigderson generators in proof complexity led to advancements
in other areas as well, such as [Pic15a, PS21] which proved unprovability of circuit lower bounds
in bounded arithmetic and [Pic20] which proved the existence of learning algorithms from circuit
lower bounds.

Razborov’s conjecture is inherently different from other conjectures in proof complexity that
imply that strong proof systems are not p-bounded. The reason is that this conjecture describes
a situation where the hardness of computation implies the hardness of proof for strong proof sys-
tems. For weak proof systems, such a relation exists, which is called feasible interpolation property.
Kraj́ıček defined this property in [Kra97] and proved that several proof systems such as Resolution
have the feasible interpolation property, which implied lower bounds for new formulas. Proving
lower bounds using feasible interpolation proved to be very fruitful and led to several lower bounds
for different proof systems such as Cutting Planes [Pud97]. Unfortunately, this property does
not hold for strong proof systems such as Extended Frege [KP98], and even AC0-Frege [BDG+04]
assuming cryptographic hardness assumptions (for more information, see chapter 17 of [Kra19]).
To overcome the barrier against the feasible interpolation property, different attempts were made
to prove hardness of computation implies hardness of proof theorems for strong proof systems.
Kraj́ıček [Kra10] proved a form of feasible interpolation for AC0-Frege that is different from the
original definition of the feasible interpolation property. Moreover, he developed the method of
Forcing with random variables in [Kra11a] intending to prove hardness of computation to hardness
of proofs theorems for strong proof systems (bounded arithmetics) and proved types of this theorem
for AC0-Frege and AC0(⊕)-Frege (for a finitary proof of the theorem for AC0(⊕)-Frege see [Kra15]).
Pudlák [Pud21] characterized the canonical disjoint NP-pairs of AC0-Frege and proved a generalized
feasible interpolation theorem for them.

1.2 Our results

This paper aims to find sufficient conditions that make a Nisan–Wigderson generator hard for
proof systems such as AC0-Frege. Our main contribution is the proof of Razborov’s conjecture for
AC0-Frege in a natural setting which was not known before.

Theorem 1.1 (Main theorem, informal version) Let f ∈ NP∩CoNP be a symmetric function that

requires 2n
Ω(1)

depth two AC0 circuits. Then for any Σ1
1∩Π1

1 pair (ϕ0, ϕ1) that defines f , any suitable
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matrix A, and any b ̸∈ Rng(NWf,A), τb(NWf,A) requires superpolynomial (exponential) AC0-Frege
proofs when the Paris-Wilkie translation of (ϕ0, ϕ1) is used to form the formula τb(NWf,A).

Theorem 1.1 unconditionally implies that NWf,A for suitable functions f (such as Parity or Ma-
jority) and suitable matrices A are hard proof complexity generators for AC0-Frege even when the
stretch is exponential. No lower bounds for Nisan–Wigderson generators were known for this sys-
tem. It is worth noting that before this work, the only known hard proof complexity generators for
AC0-Frege, were the PHP-generator of [Kra09] and the more general generator nwn,c of [Kra11a].
Moreover, Theorem 1.1 implies the following results:

1. For any f that satisfies the conditions of Theorem 1.1 such as Parity, the formula τb(NWf,A)
based on a random b and a random matrix A is a tautology with probability 1 − o(1) and
requires superpolynomial (exponential) AC0-Frege proofs.

2. Certain formalizations of the principle fn ̸∈ (NTime(nk)∩CoNTime(nk))/poly requires super-
polynomial AC0-Frege proofs.

These results relate to two questions asked by Kraj́ıček [Kra19] (problems 19.4.5 and 19.6.1).
The first problem asks whether random linear generators (random systems of linear equations
over F2) are hard for AC0-Frege or not. The second problem asks whether linear generators are
iterable for AC0-Frege or not, which relates to the question of the hardness of proving the principle
fn ̸∈ SIZE(nk) in AC0-Frege.

2 Preliminaries

2.1 Nisan–Wigderson generators

For the rest of the paper for any two real numbers r1 ≤ r2, define [r1, r2) := {i ∈ N : ⌊r1⌋ ≤ i < ⌈r2⌉}
and [r1, r2] := {i ∈ N : ⌊r1⌋ ≤ i ≤ ⌈r2⌉}.

Let f : {0, 1}∗ → {0, 1} be a Boolean function. For a natural number n, fn denotes the
function f restricted to {0, 1}n. Let A be an m × n 0 − 1 matrix such that each row of A has
exactly l ones. Such a matrix is called an l-sparse matrix. For such a m × n l-sparse matrix A,
Ji(A) := {j ∈ [0, n) : Ai,j = 1}.

For every pair (f,A) where f is a Boolean function and A is a m × n l-sparse matrix, Nisan
and Wigderson [NW94] defined the generator NWf,A : {0, 1}l → {0, 1}m as follows:

• For every input a ∈ {0, 1}l, the i’th bit of the output of NWf,A(a) is f(a|Ji(A)).

It was proved in the seminal paper [NW94] that if f is a hard function (depending on the application)
and A satisfies specific combinatorial properties, then NWf,A is a good pseudorandom generator
(depending on the parameters).

Let f ∈ NP ∩ CoNP. A pair of propositional formulas (σ0(p,q), σ1(p, r)) is a representation of
fn for a natural number n iff:

1. |p| = n and moreover p, q, and r variables are disjoint.

2. (σ0, σ1) defines the function fn which means:

(a) ¬σ0 ∨ ¬σ1 is a tautology.
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(b) For every a ∈ {0, 1}n, f(a) = i iff σi(a, t) is satisfiable where i ∈ [0, 2).

Note that as f ∈ NP ∩ CoNP, for every n, fn has a representation.
Suppose f ∈ NP ∩ CoNP, (σ0, σ1) is a representation for fl, and A is a m × n l-sparse matrix.

Then for any b ∈ {0, 1}m, τb(NWf,A) based on (σ0, σ1) is the following propositional formula:∨
bi=1

¬σ1(p|Ji(A),qi) ∨
∨
bi=0

¬σ0(p|Ji(A),qi)

where qi’s are disjoint variables. Note that if b ̸∈ Rng(NWf,A), then τb(NWf,A) is tautology.
As it was discussed in previous works [ABRW04, Kra05, Raz15, Kra11b], NWf,A can be a hard

proof complexity generator for a proof system P for the following four reasons:

• The complexity of f .

• The properties that A satisfies.

• The representation of f that is used in the formula τb(NWf,A).

• The string b ̸∈ Rng(NWf,A).

As we will see, our main result also imposes different conditions on τb(NWf,A) to make sure
that it requires long proofs.

The following parts explain the properties that we need for the matrices and representations to
prove our theorems.

2.1.1 Representations

The hardness of τb(NWf,A) can depend on the pair (σ0, σ1) that is used in it. This matter has
been investigated in [ABRW04] and they examined different representations. Recently, Sokolov
[Sok21] answered one of the open problems that was stated about a representation of τb(NWf,A) in
[ABRW04].

Σ1
1 ∩Π1

1 representation

Let L be a finite relational language and X be a unary relational symbol which is not in L. A Σ1
1

formula ψ(X) in the language L ∪ {X} with equality defines a function f ∈ NP iff:

1. ψ := ∃Ȳ ϕ(X, Ȳ ) where ϕ(X, Ȳ ) is a first order formula in the language L∪{X} with equality.

2. X is not in Ȳ .

3. For every n, every a ∈ {0, 1}n, fn(a) = 1 iff ([0, n), a) |= ψ(X) when X is interpreted by a.

Fagin’s theorem [Fag74] directly implies that for every symmetric f ∈ NP, a Σ1
1 formula ψf (X)

exists in a language L∪{X} that defines f . Therefore, the set of functions that are Σ1
1 definable is

exactly symmetric NP and hence this set is quite rich. As an example, we explain how the negation
of Parity function can be defined as a Σ1

1 formula. Let L = {Y } where Y is a binary relation
symbol. Then

⊕̄(X,Y ) := ∀i (X(i) → ∃j(j ̸= i ∧X(j) ∧ Y (i, j) ∧ Y (j, i) ∧ ∀k(k = i ∨ ¬Y (i, k) ∨ j = k)) .
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Then ψ⊕̄(X) := ∃Y ⊕̄(X,Y ) defines the negation of Parity function (parity of a ∈ {0, 1}n is 0 iff
the number of 1’s in a is even).

The class of Σ1
1 formulas is a natural and important class in finite model theory and descriptive

complexity. Moreover, this class has appeared in different places in proof complexity, too (for
example, see [Kra10]).

To prove Theorem 1.1, the following lemma is needed. If A is a set and Q is a relation on it, i.e.
Q ⊆ Ak for some k, and h : A→ A is a function, then h(Q) := {(h(a1), ..., h(ak)) : (a1, ..., ak) ∈ Ak}.

Lemma 2.1 Let L = {Y0, ..., Yk} be a finite relational language and A0 = (A, {Q0
0, ..., Q

0
k}) be

an L-structure. Let h be a bijective function from A onto A. Consider the L-structure A1 :=
(A, {Q1

0, ..., Q
1
k}) where Q1

i = h(Q0
i ), for every i ∈ [0, k]. Then for every first-order formula

ϕ(x0, ..., xp) in L with equality, every (a0, ..., ap) ∈ Ap:

A0 |= ϕ(a0, ..., ap) ⇔ A1 |= ϕ(h(a0), ..., h(ap)).

Proof. This lemma can be proved by induction on the complexity of ϕ.

Let ∃Ȳ ϕ(X, Ȳ ) be a Σ1
1 formula. Then for any n, the Paris–Wilkie translation [PW85] (see also

Section 8.2 of [Kra19]) of ϕ<n(X, Ȳ ) (ϕ<n is ϕ when every first order quantifier is bounded by n) is
denoted by ⟨ϕ⟩n (p,q) which is a constant depth formula (without loss of generality we can assume
that it is a CNF using extension variables). The number n indicates the size of the universe in
which ϕ(X,Y ) has been considered. For example the Paris-Wilkie translation of ⊕̄(X,Y ) in the
universe of size n is

⟨⊕̄(X,Y )⟩n :=

n−1∧
i=0

¬pi ∨
n−1∨

j=0,j ̸=i

pj ∧ qi,j ∧ qj,i ∧ n−1∧
k=0,k ̸=i,k ̸=j

¬qi,k

 .

Let f ∈ NP∩CoNP be a symmetric function. Then a pair of Σ1
1 formulas (∃Ȳ ϕ0(X, Ȳ ), ∃Z̄ϕ1(X, Z̄))

defines f iff:

1. ∃Ȳ ϕ1(X, Ȳ ) defines f .

2. ∃Z̄ϕ0(X, Z̄) defines ¬f .

Such a pair is called a Σ1
1∩Π1

1 definition of f . Moreover, for any n, (⟨ϕ0⟩n , ⟨ϕ1⟩n) is a representation
of fn. For the sake of easiness, by ⟨ψ⟩n we mean ⟨ϕ⟩n where ψ(X) := ∃Ȳ ϕ(X, Ȳ ) is a Σ1

1 formula.

2.2 Proof systems

We assume the reader knows the basic facts about proof complexity, proof systems, and bounded
arithmetics (for a detailed discussion, see [Kra19, Kra95]). Here we state some useful facts about
AC0-Frege, which will be used in the results.
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2.2.1 AC0-Frege

AC0-Frege is the name for a family of proof systems that work with constant-depth de morgan
formulas. For each d ≥ 1, Fd denotes AC0-Frege proof system of depth d.

To prove Theorem 1.1, we need some known relations between AC0-Frege and V0
1, which is

a two-sorted bounded arithmetic (see [Bus86, Kra95]). These relations are related to the model
theory of V0

1.
Let M be an arbitrary nonstandard model of true arithmetic and n ∈ M \ N. Then

Mn := {a ∈ M : There exists a b ∈ M \ N such that a < 2n
1/b}.

The following theorems explain the relationship between AC0-Frege and V0
1 from the point of

view of proof complexity.
For a set A, P(A) denotes the power set of A.

Theorem 2.2 ([Kra95]) Let (M, χ) |= V0
1 and σ ∈ χ be a constant depth propositional formula

(depth of σ is standard). If ¬σ is satisfiable by an assignment in χ, then for every standard d, there
is no Fd-proof of σ in (M, χ).

Note that Theorem 2.2 also holds in the case where σ is the Paris-Wilkie translation of a bounded
arithmetical formula such as ϕ(x, R̄) (σ =

〈
ϕ(n, R̄)

〉
n
for some n ∈ M), i.e. if there is an ᾱ ∈ χ

such that (M, χ) |= ¬ϕ(n, ᾱ), then ¬σ is satisfiable by an assignment from χ and therefore it does
not have any Fd-proof in M.

Theorem 2.3 ([Kra95]) Let M be a countable nonstandard model of true arithmetic and ϕ(x,R)
be a bounded arithmetical formula such that for every d, the family {⟨ϕ(n,R)⟩n}n∈N requires expo-
nential Fd-proofs. Then for every m ∈ M \ N, there exists a χ ⊆ P(Mm) such that:

1. Every bounded subset of Mm which is definable in M is in χ.

2. (Mm, χ) |= V0
1.

3. There is an α ∈ χ such that (Mm, χ) |= ¬ϕ(m,α).

3 Razborov’s conjecture for AC0-Frege

In this section, we estate the main result of the paper. Let SAC0
2
denote the depth two AC0 circuit

complexity of functions, then:

Theorem 3.1 Let f ∈ NP∩CoNP be a symmetric function such that SAC0
2
(f) = 2n

Ω(1)
and (ϕ0, ϕ1)

be a Σ1
1 ∩Π1

1 definition of f . Then for every d:

1. For every positive c ∈ N, every 0 < ε < 1, every large enough n, every nc × n ⌊nε⌋-sparse
matrix A, any b ̸∈ Rng, τb(NWf,A) based on (⟨ϕ0⟩⌊nε⌋ , ⟨ϕ1⟩⌊nε⌋) does not have sub-exponential
Fd-proofs.

2. For every positive r ∈ N, every large enough s, every t ∈ [s/r, s], every large enough n, every
2n × ns nt-sparse matrix A, τb(NWf,A) based on (⟨ϕ0⟩nt , ⟨ϕ1⟩nt) does not have polynomial
size Fd-proofs.
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We prove this theorem in Section 4. This theorem is proved by a model-theoretic argument based on
the relations explained in Preliminaries in combination with the hardness of the Pigeonhole principle
in AC0-Frege. Model theoretic arguments have been used previously in proof complexity and they
were very fruitful (for example see [Ajt94, Kra01a, Kra10] and [Kra95] for a detailed explanation).
See [Woo97, Kra01b] for discussions about the importance and benefits of the model-theoretic
arguments (and in general, the logical point of view) in proof complexity.

Note that an immediate consequence of Theorem 3.1 is that NWf,A based on a hard enough
function f with suitable parameters is a hard proof complexity generator for AC0-Frege. As the
Parity function or the Majority function satisfies the required assumptions of Theorem 3.1, we get
that NW-generators based on these functions are hard proof complexity generators for AC0-Frege.

4 Proof of Theorem 3.1

In this section, we prove Theorem 3.1. We state the proof as a series of lemmas for more clarity.
We prove the second part of this theorem. The first part can be proved in the same way. For the
rest of the paper, [n] := [0, n).

Lemma 4.1 Let f : {0, 1}∗ → {0, 1} be a symmetric Boolean function such that SAC0
2
(fn) = Ω(2n

ϵ
)

for an ϵ > 0. Then there is a natural m such that for every n ≥ m there is natural number
u ∈ [nϵ/2, n− nϵ/2] such that

fn(1
u0n−u) ̸= fn(1

u+10n−u−1).

Proof. Let g : {0, 1}n → {0, 1} be a symmetric function. If there exists a r ≤ n/2 such that for
every r ≤ k ≤ n− r, g(1k0n−k) = 0, then

SDNF(g) ≤ 2n ·
r∑

i=0

(
n

i

)
≤ 2n(

en

r
)r

where SDNF denotes the DNF complexity of functions. Writing this inequality (1) for fn, we get
c2n

ϵ ≤ 2n( enr )
r for a c > 0. So if we put r = nδ and rewriting this inequality we have

c2n
ϵ ≤ 2n(en1−δ)n

δ ≤ 2en
δ
n1+nδ ≤ 2n1+2nδ

= 2(2n
δ+1) logn+1.

So assuming δ = ϵ/2, we have (2nδ +1) log n+1 = o(nϵ). Therefore for every large enough n, there
exists a v ∈ [nϵ/2, n−nϵ/2] such that fn(1

v0n−v) = 1. Following the same argument for ¬fn, we can
deduce that for every large enough n, there exists a v′ ∈ [nϵ/2, n−nϵ/2] such that ¬fn(1v

′
0n−v′) = 1.

So we have found v, v′ ∈ [nϵ/2, n − nϵ/2] such that fn(1
v0n−v) ̸= fn(1

v′0n−v′), hence there exists a
u ∈ [nϵ/2, n− nϵ/2] such that

fn(1
u0n−u) ̸= fn(1

u+10n−u−1).

Now let M be a countable nonstandard model of true arithmetic. Let n, s, t, A, b be arbitrary
elements of M such that:

1. n, t ∈ M \ N.
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2. A ∈ M \ N encodes a 2n × ns nt-sparse matrix where t ∈ [s/r, s], ns < 2n, and ns2n ≤ 2n
t/u

for a nonstandard u.

3. b ∈ M \ N is a binary string of length 2n such that b ̸∈ Rng(NWf,A).

Let χ be the set of all bounded subset of Mnt encoded in M. So in particular A, b ∈ χ.
As SAC0

2
(fm) = 2m

Ω(1)
, there is a standard rational ε > 0 such that SAC0

2
(fm) = Ω(2m

ε
). Let

δ := ϵ/2, then there exists u ∈ [nδt, nt − nδt] that is guaranteed to exist by Lemma 4.1 for fnt . Let
v := min{u, nt − u}, then

Lemma 4.2 There exists a binary string α ∈ χ of length ns such that for every i ∈ [2n],

#1(α|Ji(A)) ∈ [v(1− 1
3
√
v
), v(1 +

1
3
√
v
)]

where #s(w) is the number of occurrences of symbol s in the string w.

Proof. Let X0, ..., Xns−1 be independent random variables taking values in {0, 1} such that for
every i, Pr[Xi = 1] = v

nt . For every i ∈ [2n], let Yi =
∑

j∈Ji(A)Xj and hence E[Yi] = v. By the
Chernoff bound we have the following inequalities for every i ∈ [2n]:

1. Pr[Yi ≤ v(1− 1
3√v

)] ≤ e
− 3√v

2 .

2. Pr[Yi ≥ v(1 + 1
3√v

)] ≤ e
− 3√v

3 .

Let X ′ be the concatenation of X0, ..., Xns−1, hence it is a random string of length of ns. Now
combining the above inequalities with the union bound we get:

P = Pr

[
2n−1∨
i=0

#1

(
X ′|Ji(A)

)
̸∈ [v(1− 1

3
√
v
), v(1 +

1
3
√
v
)]

]
≤

2n−1∑
i=0

Pr

[
#1

(
X ′|Ji(A)

)
̸∈ [v(1− 1

3
√
v
), v(1 +

1
3
√
v
)]

]
≤

2n−1∑
i=0

(
Pr[Yi ≤ v(1− 1

3
√
v
)] + Pr[Yi ≥ v(1 +

1
3
√
v
)]

)
≤

2n · 2e
− 3√v

3 .

We know that v ≥ nδt, t is a nonstandard number, and δ is a standard rational, so

n+ 1 <
nδt/3

3
≤

3
√
v

3

which implies 2n · 2e
− 3√v

3 < 1, and hence P < 1. This implies that there exists a string α ∈ χ that
satisfies the desired property.

Lemma 4.3 The following functions exist in χ:

9



1. γ : [2n] → [nt + 1] such that for every i ∈ [2n], γ(i) = #1(α|Ji(A)).

2. ω : [2n] × [nt] → [nt] such that for every i ∈ [2n], ω(i, .) defines a permutation over [nt] and
moreover βj =

(
α|Ji(A)

)
ω(i,j)

where β = 1γ(i)0n
t−γ(i).

Proof. 1. The function γ exists in M. To prove that γ is in χ, we observe that encoding of γ as

a binary string requires at most c2n · log nt (for some c ∈ N) which is less than 2n
√

t
, hence

γ ∈ χ.

2. Like the previous part, ω exists in M, and its bit representation requires at most c2n ·nt log nt

(for some c ∈ N) which is again less than 2n
√
t
, and therefore ω ∈ χ.

To continue the proof, we need the celebrated result about the hardness of the Pigeonhole principle
for AC0-Frege.

Theorem 4.4 ([Ajt94, KPW95, PBI93]) For any natural number d, there exists an εd > 0 such
that for large values of n, any Fd-proof of PHP

n+1
n has size at least 2Ω(nεd ).

Now let l = ⌊ 4
√
v⌋, then we have the following lemma.

Lemma 4.5 There exists χ′ ⊆ P(Mnt) such that:

1. χ ⊆ χ′.

2. There exists a function σ ∈ χ′ such that σ is a bijection from [l] onto [l − 1].

3. (Mnt , χ′) |= V0
1.

Proof. By Theorem 4.4 we know that PHPm
m−1 requires exponential size Fd-proofs for every d.

Therefore by Theorem 2.3, there exists a χ′ ⊆ P(Ml) such that every bounded subset of Ml is in
χ′, (Ml, χ

′) |= V0
1 and there exists a σ ∈ χ′ such that it is bijection from [l] onto [l− 1]. Note that

if a ∈ Mnt , then there exists a b ∈ M \ N such that a < 2n
t/b

. Let b′ = ⌊ δb4 ⌋, then a < 2l
1/b′

as we

know l ≥ nδt/4. This implies that Ml = Mnt , and moreover χ ⊆ χ′ which completes the proof.

The following lemma shows that we can simultaneously falsify some weak Pigeonhole principle
instances.

Lemma 4.6 There exists a function F : [2n] × {−1, 0, 1} × [nt] → [nt] in χ′ such that for every
i ∈ [2n]

1. F (i, a, .) restricted to [v + a], is a bijection from [v + a] onto [γ(i)].

2. F (i, a, .) restricted to [v + a, nt), is a bijection from [v + a, nt) onto [γ(i), nt).

Proof. Let g ∈ χ′ be the function that Lemma 4.5 provides. Let

1. wi,a = |γ(i)− v − a|.

2. Mi,a = max{v + a, γ(i)}.

10



3. mi,a = min{v + a, γ(i)}.

Then we define the function G0(i, a, b) as follows:

G0(i, a, b) :=

{
σ(b− lk) + (l − 1)k b ∈ [lk, l(k + 1)) ∧ k ∈ [wi,a]

b− wi,a b ∈ [lwi,a,Mi,a)

where i ∈ [2n], a ∈ {−1, 0, 1}, and b ∈ [Mi,a].
Note that v − 1 ≤Mi,a, hence

wi,a ≤ v − 1
4
√
v

≤ v − 1

l
≤ Mi,a

l

as wi,a ≤ 3
√
v2 + 1 by Lemma 4.2. So G0(i, a, .) is a bijection from [lwi,a] onto [(l − 1)wi,a] and

moreover is a bijection from [lwi,a,Mi,a) onto [(l − 1)wi,a,mi,a) as

Mi,a − lwi,a = mi,a − (l − 1)wi,a.

Therefore the conclusion is that G(i, a, .) is a bijection from [Mi,a] onto [mi,a] for every i ∈ [2n] and
a ∈ {−1, 0, 1}. Now, we define the function G1(i, a, b) as the inverse of G0 which means that

G1(i, a,G0(i, a, b)) = b

where i ∈ [2n], a ∈ {−1, 0, 1}, and b ∈ [Mi,a]. So G1(i, a, .) is a bijection from [mi,a] onto [Mi,a].
Using G0 and G1, we can fulfill (1) from the lemma. Now we want to construct two other

functions H0 and H1 to fulfill (2).
The task is to define H0(i, a, .) as a function that defines a bijection from [max{nt − v− a, nt −

γ(i)}] onto [min{nt − v − a, nt − γ(i)}] where i ∈ [2n] and a ∈ {−1, 0, 1} and moreover H1 would
be the inverse of H0. Let

1. M ′
i,a = max{nt − v − a, nt − γ(i)}.

2. m′
i,a = min{nt − v − a, nt − γ(i)}.

Then we define H0(i, a, b) as follows:

H0(i, a, b) :=

{
σ(b− lk) + (l − 1)k b ∈ [lk, l(k + 1)) ∧ k ∈ [wi,a]

b− wi,a b ∈ [lwi,a,M
′
i,a)

where i ∈ [2n], a ∈ {−1, 0, 1}, and b ∈ [M ′
i,a].

Note that nt − v − 1 ≤ M ′
i,a and moreover v ≤ nt/2, therefore nt/2 − 1 ≤ M ′

i,a. This implies
that

wi,a ≤ 3
√
v2 + 1 ≤ 3

√
(nt/2)2 + 1 ≤ 4

√
(nt/2)3 − 1 ≤ nt/2− 1

4
√
nt/2

≤ nt/2− 1
4
√
v

≤ nt/2− 1

l
≤
M ′

i,a

l
.

ThereforeH0(i, a, .) is a bijection from [lwi,a] onto [(l−1)wi,a] and moreover is a bijection [lwi,a,M
′
i,a)

onto [(l− 1)wi,a,m
′
i,a). Hence H0(i, a, .) is a bijection from [M ′

i,a] onto [m′
i,a] for every i ∈ [2n] and

a ∈ {−1, 0, 1}. Now we define the function H1(i, a, b) as the inverse again as follows:

H1(i, a,H0(i, a, b)) = b

11



where i ∈ [2n], a ∈ {−1, 0, 1}, and b ∈ [M ′
i,a]. Hence H1(i, a, .) is a bijection from [m′

i,a] onto [M ′
i,a].

Now F (i, a, b) is:

F (i, a, b) :=


G0(i, a, b) b ∈ [v + a] ∧ v + a =Mi,a

G1(i, a, b) b ∈ [v + a] ∧ v + a = mi,a

H0(i, a, b− v − a) b ∈ [v + a, nt) ∧ nt − v − a =M ′
i,a

H1(i, a, b− v − a) b ∈ [v + a, nt) ∧ nt − v − a = m′
i,a

As G0, G1, H0, H1 are definable by a bounded arithmetical formula based on γ and σ, therefore
F is also definable by a bounded arithmetical formula based on γ and σ and this implies that
F ∈ χ′ as (Mnt , χ′) |= V0

1.

Without the loss of generality we can assume fnt(1u0n
t−u) = 0. Consider the following relations

in χ:

1. θ0 = 1u0n
t−u.

2. θ′0 = 0n
t−u1u.

3. θ1 = 1u+10n
t−u−1.

4. θ′1 = 0n
t−u−11u+1.

5. λ̄0 such that ϕ0(θ0, λ̄0) holds in (Mnt , χ).

6. λ̄′0 such that ϕ0(θ
′
0, λ̄

′
0) holds in (Mnt , χ).

7. λ̄1 such that ϕ1(θ1, λ̄1) holds in (Mnt , χ).

8. λ̄′1 such that ϕ1(θ
′
1, λ̄

′
1) holds in (Mnt , χ).

Now we are ready to describe the assignments X , {Ȳi}i∈[2n], and {Z̄i}i∈[2n] such that

(Mnt , χ′) |= ∀i < 2n
(
bi = 0 → ϕ0(X|Ji(A), Ȳi)

)
∧
(
bi = 1 → ϕ1(X|Ji(A), Z̄i)

)
which implies that τb(NWf,A) based on (⟨ϕ0⟩nt , ⟨ϕ1⟩nt) fails under an assignment in (Mnt , χ′). We
define these assignments as follows:

1. If u = v:

(a) X = α.

(b) Ȳi = ω(i, F (i, 0, λ̄0)).

(c) Z̄i = ω(i, F (i, 1, λ̄1)).

2. If u = nt − v:

(a) X is the complement of α, i.e., Xj = 1− αj j ∈ [ns].

(b) Ȳi = ω(i, F (i, 0, λ̄′0)).

(c) Z̄i = ω(i, F (i,−1, λ̄′1)).

12



Without loss of generality assume v = u. Then for an arbitrary i ∈ [2n], we know that

X|Ji(A) = ω(i, F (i, 0, θ0)),

hence σ0(X|Ji(A), Ȳi) holds by Lemma 2.1 as ω(i, F (i, 0, .)) is a bijection from [nt] onto itself and
the fact that σ0(θ0, λ̄0) holds. The same argument works for σ1(X|Ji(A), Z̄i). Moreover if v = nt−u,
the same argument works by using θ′0, θ

′
1, λ̄

′
0, λ̄

′
1.

To complete the proof, we argue as follows. Suppose the statement of the theorem is not true.
This means that there exist standard d and r such that the following arithmetical sentence is true
in N:

• H := ∀s1∃s ≥ s1, ∃t ∈ [s/r, s], ∃c > 0, ∀m,∃n > m∃ 2n × ns nt-sparse matrix A, ∃b ̸∈
Rng(NWf,A), ∃ Fd-proof π for τb(NWf,A) such that |π| ≤ |τb(NWf,A)|c.

Let M be a countable nonstandard model of true arithmetic. This means that M |= H. To simplify
the presentation let

H := ∀s1∃s, t, c∀m∃n,A, b, πΦ(s1, s, t, c,m, n,A, b, π).

Let s1 ∈ M \ N, then there exist s, t ∈ M \ N and c ∈ M such that

M |= ∀m∃n,A, b, πΦ(s1, s, t, c,m, n,A, b, π).

We choose an m ∈ M\N such that for all m1 ≥ m, mct
1 2

cm1 ≤ 2m
√
t/2

1 , hence there exist an n > m,
a 2n × ns nt-sparse matrix A ∈ M \ N, a b ∈ M \ N such that b ̸∈ Rng(NWf,A), and an Fd-proof
π ∈ M for τb(NWf,A) such that |π| ≤ |τb(NWf,A)|c. Now we consider Mnt and by the argument
in this section, there exists a χ′ ⊆ P(Mnt) such that it has every bounded M-definable subset of
Mnt and moreover

1. (Mnt , χ′) |= V0
1.

2. There exists an α ∈ χ′ which falsifies τb(NWf,A).

Then by Theorem 2.2 there is no Fd-proof of τb(NWf,A) in (Mnt , χ′). Note that there is a standard
number e such that

|π| ≤ |τb(NWf,A)|c ≤ (nct2cn)e ≤ 2en
√
t/2

which implies that π ∈ χ, but this leads to a contradiction and completes the proof.

5 What are the implications of the hardness of NW-generators for
a proof system?

Some experts believe that random DNFs with suitable parameters give hard formulas to prove in
any proof system. The hardness of random DNFs has been proved for several proof systems. One
way of proving the hardness of these formulas is by proving the harness of certain NW-generators.
Let A be a m×n l-sparse matrix such that m ≥ 2n and l is a constant or it is at most O(log n). Let
the base function be the Parity function ⊕. Then if we choose a random b ∈ {0, 1}m uniformly, with
probability 1 − o(1), b ̸∈ Rng(NW⊕,A). Now, if we choose a random A and a random b uniformly,
then with probability 1 − o(1) τb(NW⊕,A) is a tautology (here we use DNF representation of the
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Parity function in the definition of the τ formula). The interesting point about these formulas is
that if τb(NW⊕,A) is hard with probability 1− o(1) for a proof system P , then random l-DNFs are
hard with probability 1−o(1) for P . This strategy was used to prove the hardness of random DNFs
for some proof systems (for example, see [Kra04b, BI10]). For more information, see Section 13.4
of [Kra19]. In this regard, Kraj́ıček [Kra19] asked whether random systems of linear equations over
F2 are hard for AC0-Frege or not (problem 19.4.5). We note that Theorem 3.1 partially answers
this question as follows.

Let (ϕ0, ϕ1) be a Σ1
1 ∩Π1

1 definition of a function f ∈ NP∩CoNP (for example we can take f as
the Parity function). Then a random formula F ∼ F(ϕ0, ϕ1,m, n, l) is generated as follows:

1. we choose m subsets J0, ..., Jm−1 independently uniformly randomly such that Ji ⊆ [n] and
|Ji| = l for every i ∈ [m]. These subsets specify a random m× n l-sparse matrix A.

2. We choose a random b ∈ {0, 1}m uniformly randomly.

3. Then F := τb(NWf,A) based on (⟨ϕ0⟩l , ⟨ϕ1⟩l).

The following corollary partially answers Kraj́ıček’s question.

Corollary 5.1 Let f ∈ NP ∩ CoNP be a symmetric function such that SAC0
2
(fn) = 2n

Ω(1)
. Let

(ϕ0, ϕ1) be a Σ1
1 ∩Π1

1 definition of f . Then for every d, for every c > 1 and every 0 < ε < 1, if n is
large enough, then F ∼ F(ϕ0, ϕ1, n

c, n, ⌊nε⌋) is a tautology with probability 1− o(1) and it requires
exponential Fd-proofs.

Another implication of the hardness of NW-generators for a proof system P is that it implies
that it is hard for P to prove circuit lower bounds effectively. Razborov [Raz15] pointed out that
if the base function is in P/poly and the 2n×nO(1) matrix A is efficiently constructibe (an example
of such matrices was constructed in [NW94]), and moreover NWf,A is a hard proof complexity
generator for a proof system P , the P cannot prove circuit lower bounds effectively. Moreover, this
implies that NP ̸⊆ P/poly does not have efficient proofs in P . Razborov proved such a result for
k-DNF Resolution in [Raz15]. In this regard, our results imply a partial answer for the question
of the hardness of circuit lower bounds for proof systems. A related question about AC0-Frege was
asked by Kraj́ıček [Kra19] (problem 19.6.1). Let f ∈ NTime(nk)∩CoNTime(nk) and A be a 2n×ns
nt-sparse matrix which is effectively constructible. Then for any fixed w ∈ {0, 1}nc

, NWf,A(w)
defines a function Cw ∈ (NTime(nk) ∩ CoNTime(nk))/poly as follows:

• For every i ∈ {0, 1}n, Cw(i) = f
(
w|Jn(i)(A)

)
where n(i) is the number with the binary

representation i.

This means that if τb(NWf,A) is a tautology (for a fixed representation of f), then the function
with the truth-table b does not have a Cw circuit for any w ∈ {0, 1}ns

. As Theorem 3.1 (part 2)
implies that NW-generators based on suitable NP∩CoNP functions, suitable matrices, and suitable
representations are hard proof complexity generators AC0-Frege, we get the fact that proving certain
(NP ∩ CoNP)/poly lower bounds (b does not have Cw circuits) for Boolean functions are hard for
AC0-Frege. Note that in contrast with with the principle fn ̸∈ SIZE(nk) which can be written as a
propositional formula, it is not clear how the principle fn ̸∈ (NTime(nk) ∩ CoNTime(nk))/poly can
be written as a propositional formula. So one way of considering this principle in proof complexity
is to consider τfn(NWf,A) for any g ∈ NTime(nk) ∩ CoNTime(nk), any representation of g and
any effectively constructible A. In this regard, Theorem 3.1 includes a lot of possible natural
formalizations (but not all) of fn ̸∈ (NTime(nk) ∩ CoNTime(nk))/poly.
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[KPW95] J. Kraj́ıček, P. Pudlák, and A. Woods. An exponential lower bound to the size of bounded
depth Frege proofs of the pigeonhole principle. Random Structures & Algorithms, 7(1):15–
39, 1995.
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[Kra09] J. Kraj́ıček. A proof complexity generator. In Logic, methodology and philosophy of
science. Proceedings of the 13th international congress, Beijing, China, August 2007,
pages 185–190. London: College Publications, 2009.
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