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Abstract

A recurring challenge in the theory of pseudorandomness and circuit complexity is the ex-
plicit construction of “incompressible strings,” i.e. finite objects which lack a specific type of
structure or simplicity. In most cases, there is an associated NP search problem which we
call the “compression problem,” where we are given a candidate object and must either find a
compressed/structured representation of it or determine that none exist. For a particular no-
tion of compressibility, a natural question is whether an efficient algorithm for the compression
problem would aide us in the construction of incompressible objects. Consider the following two
instances of this question:

1. Does an efficient algorithm for circuit minimization imply efficient constructions of hard
truth tables?

2. Does an efficient algorithm for factoring integers imply efficient constructions of large prime
numbers?

In this work, we connect these kinds of questions to the long-standing challenge of proving time-
space tradeoffs for Turing machines, and proving stronger separations between the RAM and
1-tape computation models. In particular, one of our main theorems shows that modest time-
space tradeoffs for deterministic exponential time, or separations between basic Turing machine
memory models, would imply a positive answer to both (1) and (2). These results apply to the
derandomization of a wider class of explicit construction problems, where we have some efficient
compression scheme that encodes n-bit strings using < n bits, and we aim to construct an n-bit
string which cannot be recovered from its encoding.
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1 Introduction

Mathematicians have long been familiar with the curious phenomenon of a non-constructive proof :
an argument which demonstrates the existence of an object satisfying some special property, but
which fails to indicate a particular example of such an object. The advent of complexity theory
has provided us with a formal way of defining the level of “inherent constructivity” in a theorem:
we can say that an existence theorem is constructive if there is an accompanying polynomial time
algorithm supplying an example of one of the objects the theorem proves to exist, and is inherently
non-constructive if no such algorithm exists. Papadimitriou initiated a formal complexity-theoretic
treatment of this topic three decades ago [Pap94], where he provided a taxonomy of total search
problems (problems that always have solutions) in NP by classifying them based on the strength
of the lemma guaranteeing the existence of a solution on all instances.

When a particular theorem appears to be inherently non-constructive, in that no polynomial
time algorithm can witness the solutions it guarantees, one perspective we can take is that this
theorem is “effectively false” in a certain context, despite being irrefutably true in general. This is
essentially the outlook presented by Yao in his seminal paper introducing the basis of theoretical
cryptography [Yao82]. Here, Yao focuses on the central tenets of Shannon’s information theory.
He argues that although Shannon’s theorems are of course provably correct, in many scenarios it
appears computationally infeasible to witness their truth. For example, an output of some function
f : {0, 1}n → {0, 1}2n under the uniform distribution on {0, 1}n has entropy n, and thus by a result
of Shannon can be encoded on average using n bits. However for an observer who sees only the
outputs of this distribution, there seems to be no efficient way to generate such a code without the
ability to efficiently invert f . If we posit that there are some specific functions f for which it is
in fact impossible to efficiently realize Shannon’s theorem in this sense, one might venture to say
that Shannon’s theorem effectively fails for f in the computational realm, perhaps allowing us to
carry out tasks which would, in the absence of computational constraints, be deemed impossible.
Indeed it is widely conjectured that there are efficiently computable functions f of this form,
and this conjecture underpins the security of many cryptographic protocols. Similar situations
are abundant in the field of cryptography, where the computational infeasibility of witnessing
impossibility theorems from information theory allows us to effectively bypass them.

With this perspective in mind, let us now turn our attention to a special family of non-
constructive proofs of great interest to complexity theorists, proofs which guarantee the existence
of “pseudorandom objects.” Key examples include the existence of truth tables of high circuit com-
plexity and of pseudorandom generators capable of derandomizing algorithms. The task of making
these proofs constructive is often referred to as an “explicit construction problem,” since the goal is
to print one explicit example of an object possessing some pseudorandom property. In [Kor21] it is
shown that a broad collection of such problems can be reduced to the following more general task:
given some efficiently computable function f : {0, 1}n−1 → {0, 1}n, find an n-bit string outside the
range of f . The existence of a solution is guaranteed by the “dual weak pigeonhole principle,” and
indeed this principle guarantees that a randomly chosen string is a solution with high probability.
The question at hand is whether this principle is inherently nonconstructive. Unlike the case of
Shannon’s theorems on information transmission, the prevailing wisdom in complexity theory is
this theorem can be made constructive: it is widely conjectured that exponential time requires ex-
ponential circuit size, and by [Kor21], this would in fact imply a generic non-trivial1 “witnessing”
algorithm for the dual weak pigeonhole principle, i.e. an algorithm which produces n-bit strings
outside the range of any such f .

1The implied witnessing algorithm runs in PNP, whereas the trivial upper bound for this problem is ΣP
2 .
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In search of evidence for this widely-conjectured belief that the weak pigeonhole principle can
be made more constructive, the starting point of this work is to imagine what the computational
landscape would look like if it were false, i.e. if we lived in a world where there was an “effective
counterexample” to the weak pigeonhole principle. In particular, let us model this scenario by sup-
posing that there are a pair of efficiently computable functions G = {gn : {0, 1}n → {0, 1}n−1}n∈N,
F = {fn : {0, 1}n−1 → {0, 1}n}n∈N, such that no polynomial time algorithm is able to construct
an n-bit string x such that fn(gn(x)) ̸= x in poly(n) time (for more then finitely many n). Note
that this is a slightly different version of the weak pigeonhole principle then what we defined in the
previous paragraph: here we are given both the length-increasing function f and a supposed inverse
g, and the pigeonhole principle tells us that f ◦ g cannot be the identity. In this hypothetical world
where F ,G are an “effective counterexample” to the weak pigeonhole principle, we have access to
an efficient compression scheme which allows us to encode any n-bit string using n− 1 bits. What
improbable feats can be accomplished in such a world?

In this work we give one answer to this question: if the weak pigeonhole principle effectively
fails in the above sense, we can utilize this failure to construct an efficient data structure which
allows us to simulate RAM computations in low space and near-linear time on a 1-tape Turing
machine. Stated in contrapositive, mild time-space tradeoffs for simulating RAM machines on a
1-tape Turing machine would imply a generic algorithm to witness the weak pigeonhole principle,
and in turn would have significant consequences in the theory of pseudorandomness and circuit
complexity.

1.1 Our Contributions

1.1.1 Derandomization from Time-Space Tradeoffs

Let C,D = {Cn : {0, 1}n → {0, 1}n−1}n∈N, {Dn : {0, 1}n−1 → {0, 1}n}n∈N. We call such a pair
a “uniform compression scheme,” where C is the “compressor” which encodes n-bit “messages”
by n − 1-bit “codewords,” and D is the “decompressor” which maps n − 1-bit codewords to the
messages they represent2. We use the term “uniform” since in the relevant cases, C and D will
each be described by a single Turing machine which computes Cn (resp. Dn) for all n. We will say
that a string x ∈ {0, 1}n is “incompressible” for such a scheme if Dn(Cn(x)) ̸= x, i.e. if D cannot
be used to recover the message x from the codeword assigned to it by C. In this paper, we study
the complexity of the explicit construction task of generating incompressible strings for uniform
compression schemes. This task can be viewed naturally as a derandomization problem, since a
randomly chosen n-bit string will be incompressible with high probability with respect to any fixed
compression scheme.

Our results then show how to derive efficient derandomized algorithms for generating incom-
pressible strings, assuming certain uniform lower bounds. The lower bounds we consider are time-
space tradeoffs for simulating RAM by 1-tape machines. Roughly, they posit that there are problems
solvable in time T on a RAM machine which cannot be solved on a 1-tape machine using T 0.01

space and T 1.01 time. Depending on certain features of the compression scheme and the resources
available to the explicit construction algorithm, the specifics of the tradeoff assumption will vary,
as we shall explain in Figure 1.

Initially, we consider the case of “poly-time compression schemes”, where both C and D are
computable in polynomial time. We show that for such schemes, incompressible strings can be
constructed deterministically in polynomial time assuming time-space tradeoffs for deterministic
exponential time:

2The formal definition given in Section 3 is slightly more general, but we will focus on this special case for now.
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Theorem (Theorem 5). Suppose there is some exponential time bound T (n) ≥ 2Ω(n) and some
ϵ > 0 such that it is impossible to simulate T (n)-time RAM computations on 1-tape Turing machines
that use T (n)1+ϵ time and T (n)ϵ space. Then for any poly-time compression scheme, there is a
polynomial time algorithm that produces incompressible n-bit strings for this scheme on input 1n

(for infinitely many n).

Constructing incompressible strings for poly-time compression schemes is a natural and quite
broad derandomization problem. Theorem 5 gives a novel connection between derandomizing this
task and proving uniform time-space tradeoffs– in contrast, the assumptions previously required to
derandomize this sort of problem require a lower bound against non-uniform algorithms, such as
circuits. To put this derandomization task in a more familiar context, in Section 3.2 we show that
several well-studied explicit construction problems, such as the construction of large prime numbers
or the construction of truth tables of high circuit complexity/formula size, can be reduced to the
problem of finding incompressible strings for some uniform compression scheme. In each case, the
compression scheme will either be computable efficiently, or efficiently with access to an oracle for
some search problem in FNP which is not known to be NP-complete.

To state our other main results in their most interesting form, we focus our attention now
on the construction of strings/truth tables of high complexity with respect to some non-uniform
complexity measure, such as formula size, circuit size, or time-bounded Kolmogorov complexity. In
each case there is an associated NP search problem, where we are given a string/truth table and
must find a small formula/circuit/program computing it (if one exists); we call this the “compression
problem.” The following table shows how our three main theorems relate various time-space tradeoff
hypotheses to such problems:

Figure 1: Main Results. We use the shorthand T = T (n).

The classes seen on the left hand side will be defined formally in Section 2.2, but we give
a brief explanation here so that the table can be interpreted appropriately. TIME[T (n)] and
NTIME[T (n)] are defined in the standard way using multitape machines; the prefixes 1 and RAM
indicate, respectively, either a restriction of the model to 1-tape machines or a strengthening to
random access machines. The classTISP[T (n), S(n)] consists of problems decidable simultaneously
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in time T (n) and space S(n). Finally, NTISPG[T (n), S(n), G(n)] consists of problems decidable
by a nondeterministic machine running in time T (n) which, on every computation path, uses at
most S(n) space and G(n) nondeterministic guesses.

For a concrete example of how to apply these results, lets focus on the compression problem
Circuit Synthesis (given a truth table find a small circuit for it if one exists), and the explicit
construction problem of producing truth tables of exponential circuit complexity. The first hypoth-
esis in the above table implies that if Circuit Syntheses is in P then there is a polynomial time
construction of hard truth tables (i.e. E has exponential circuit complexity). The second hypothesis
implies unconditionally that there is an efficient NP oracle construction of hard truth tables (i.e.
ENP has exponential circuit complexity). Finally, the third and strongest hypothesis tells us that
there is a polynomial time construction of hard truth tables using an oracle for Circuit Synthesis.

The case of large prime construction does not fit in as neatly to the above picture, as the scheme
we devise for this problem will require a factoring oracle for both the compressor and decompressor
(while the above problems have a polynomial-time computable decompressor). In this case we get
the following result:

Theorem (Corollary 2). Under the hypothesis in the top row of the above table, a polynomial
time algorithm for factoring implies a polynomial time algorithm to construct 32n-bit primes of
magnitude > 2n for infinitely many n.

If we forgo the questionable assumption that factoring lies in P, we get:

Theorem (Corollary 3). One of the following is true:

1. For every exponential time bound T and every ϵ > 0, every language decidable in time T (n)
on a RAM machine can be decided in time T (n)1+ϵ and space T (n)ϵ by a 1-tape machine with
a factoring oracle, which makes oracle calls of length at most T (n)ϵ.

2. There is a polynomial time algorithm with a factoring oracle that generates 32n-bit primes of
magnitude > 2n for infinitely many n.

The problem of deterministically generating large primes has been investigated previously in
several works, and was notably the subject of the Polymath 4 project [Pol10]. In the public
discussion forums for this project, it was explicitly asked whether a polyomial time algorithm
for factoring, or more generally an oracle for factoring, would help. More recently, Oliviera and
Santhanam gave a subexponential time “pseudodeterministic” construction of large primes [OS17],
using only the fact that primality is testable in P [AKS02] and that primes occur with non-negligible
frequency.

1.1.2 BPP and the Weak Pigeonhole Principle

In Section 6 we briefly consider the relationship between various search problems associated with
the weak pigeonhole principle, and the “full derandomization task” characterized by the class
prBPP. Observe that the problem introduced above of finding incompressibe strings for uniform
compression schemes can be generalized to a TFNP search problem – instead of considering com-
pression schemes generated by uniform Turing machines, we can consider the search problem where
a compression scheme of some fixed length is given as input in the form of a pair of boolean circuits:

Definition 1. In Lossy Code, we are given as input a pair of circuits C : {0, 1}n → {0, 1}n−1,
D : {0, 1}n−1 → {0, 1}n, and must output some x ∈ {0, 1}n such that D(C(x)) ̸= x.
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While finding a deterministic algorithm for Lossy Code appears to be a quite generic deran-
domization problem, it would be a major breakthrough to show that Lossy Code captures the
“full derandomization problem:” since Lossy Code lies in TFNP, if prBPP reduces to Lossy
Code then BPP ⊆ NP, which is a notorious open problem. In Section 6, we show that a natural
generalization of Lossy Code, where we allow the compressor C to be randomized, is indeed strong
enough to characterize prBPP precisely. The formal problem is as follows:

Definition 2. In R-Lossy Code, we are given as input circuits C : {0, 1}n×{0, 1}m → {0, 1}n−1,
D : {0, 1}n−1 → {0, 1}n, and must find some x such that Prr[D(C(x, r)) = x] < 1

2 .

In this work we demonstrate:

Theorem (Theorem 8). R-Lossy Code is complete for prBPP under deterministic Turing re-
ductions.

The relation between pigeonhole principle search problems and more standard derandomization
problems is summarized in Figure 2.

Figure 2: Relations between the total search problems associated with various weak pigeonhole
principles, and standard derandomization problems. Solid arrows represent deterministic polyno-
mial time reductions, while dotted arrows represent NP-oracle reductions.

The proof of Theorem 8 is mostly standard, following quite directly from Yao’s next bit predictor
lemma. From the proof of this theorem we are able to extract the following interesting corollary:

Corollary (Corollary 4, Informal). If the fixing of the leftover bits in Yao’s hybrid argument can be
derandomized, then BPP ⊆ NP. Indeed, under this assumption, every problem in prBPP reduces
to the search problem Lossy Code in PPP ⊆ TFNP.

In other words, derandomizing a particular step in Yao’s classical argument implies a quite
universal derandomization of prBPP.
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1.2 Relation to Prior Work

Hardness vs. Randomness As mentioned above, the task of constructing incompressible
strings can be naturally viewed as a derandomization problem, and is thus amenable to the stan-
dard hardness/randomness paradigm. In particular, when the compression scheme is polynomial
time computable as in Theorem 5, the standard hardness assumptions used to derandomize BPP
(e.g. [IW97]) would suffice to yield a polynomial time construction of incompressible strings. Such
hardness assumptions require a lower bound for a language in E against some non-uniform model
of computation, such as boolean circuits. In contrast, Theorem 5 gives a hardness/randomness
connection for this problem which only requires a uniform lower bound for a a language in E, in
particular a lower bound against low-space algorithms running in slightly more time using a weaker
memory model.

The Easy Witness Lemma: Perhaps the closest prior work to our results is the “Easy Witness
Method,” initiated by [Kab01] and furthered in [IKW02] and [Wil13], which roughly says that
assuming ENP has small circuits, any nondeterministic exponential time computation must have
witnesses of low circuit complexity. This immediately implies that unless ENP requires large
circuits, we can efficiently simulate NTIME[2n] using limited nondeterminism by “guessing a
small circuit.” In Appendix B, we show that this old method (along with one other well-known
tool) is in fact enough to prove the second implication in Figure 1, although this connection to
time-space tradeoffs does not seem to have been noted previously. However, this proof heavily
utilizes the distinctive power of nondeterminism, whereby additional “guesses” allow us to vastly
simplify the verification procedure, and does not seem to extend to our other two main results.

1.3 Known Time-Space tradeoffs:

Finally, we cover the known results on time-space tradeoffs and separations between the RAM and
1-tape models. We first emphasize the following: all three time-space tradeoff hypotheses stated on
the left-hand side of Figure 1 are known to hold unconditionally when the time bound T is O(n).
In particular, an old result of Maass [Maa84] shows that the set of palindromes is recognizable in
quasilinear time on a deterministic RAM machine, but requires Ω(n2) time on a nondeterministic
1-tape machine. However, Maass’s proof is essentially a counting argument which crucially relies
on the entropy of the input being comparable in magnitude to the total computation time, which
is no longer the case for exponential time computations. When it comes to separating the RAM
and 1-tape models for generic time bounds, a result of [Rob92] shows that there must be some
slowdown when simulating a RAM on a 1-tape machine for any time bound greater then n log log n,
but the slow-down is an astronomically small multiplicative factor, on the order of log log T (n).

Another sequence of works ([For00], [FLvMV05], [Wil05] among others) has shown uncondi-
tionally that nondeterministic linear time cannot be solved in TISP[n1+ϵ, nϵ] for certain fixed
values of ϵ > 0, even when the simulating machine is given access to RAM. These results can
be scaled to larger time bounds as follows: for any time-constructible T , Σ2TIME[T (n)] is not
contained in TISP[T (n)1+ϵ, T (n)ϵ] for certain fixed values of ϵ > 0. Such results are obtained by
combining hiearchy theorems with a fast simulation result, whereby a Σ2 machine can simulate
a TISP[T (n)1+ϵ, T (n)ϵ] computation in time T (n)1−δ time for some fixed ϵ, δ > 0. It is evident
that such results will not be sufficient for our purposes, as they only rule out efficient low-space
simulations of Σ2 computations by deterministic machines.
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1.4 Main Tool: the J-tree

The basis of our main proofs is a construction which we call the “J-tree.” Roughly speaking,
the J-tree is a data structure which allows us to store an array of T elements, subject to fast
update/query operations, using significantly less then T bits. While this task is information-
theoretically impossible (by the weak pigeonhole principle), the J-tree uses a compression scheme
C,D to perform its operations, and whenever it fails in its role as a data structure, it is able to
print out an incompressible string for this scheme. Thus, assuming no polynomial time algorithm
can witness the weak pigeonhole principle for C,D, no polynomial time algorithm can witness the
failure of this data structure. This will allow our low-space simulations to operate a RAM memory
using low space on a 1-tape machine, in such a way that if the simulation fails, then a polynomial
time algorithm can witness this failure, and thus witness the weak pigeonhole principle for C,D.

The core construction underlying the J-tree has an intriguing history dating back to the late
1970’s. In the course of a decade, this construction was used, seemingly independently, to prove
three seminal results in cryptography and logic:

1. In 19793, Merkle showed how to iterate a cryptographically secure hash function h : {0, 1}2n →
{0, 1}n in a tree-like fashion to construct a secure digital signature scheme whose signature
size increases logarithmically in the number of messaged signed [Mer88]4.

2. In 1986, Goldwasser Goldreich and Micali showed how to iterate a pseudorandom generator
G : {0, 1}n → {0, 1}2n in a similar tree-like manner into a family of functions {Gx : {0, 1}n →
{0, 1}n}x∈{0,1}n whose input/output behaviours are indistinguishable from random, assuming
G is a secure PRG [GGM86].

3. In 1988, Paris, Wilkie, and Woods gave a novel proof of the weak pigeonhole principle in
bounded arithmetic[PWW88]. Again, the same process of iterating a function f : {0, 1}n →
{0, 1}2n is applied. Here, the function f is assumed to be a bijection between {0, 1}n and
{0, 1}2n, and the iteration procedure is the first step towards establishing a contradiction in
the relevant proof system.

Following [PWW88], Jeřábek [Jeř04] used this same construction within bounded arithmetic
to establish a deep connection between the weak pigeonhole principle and circuit complexity. This
work most closely informs our perspective, hence the name “J-tree.” In [Kor21], the techniques of
Jeřábek were translated to the language of traditional complexity theory, which yield the following
interpretation of this tree-like iteration process: given a circuit D : {0, 1}n → {0, 1}2n, we can

efficiently construct a new circuit D∗ : {0, 1}n → {0, 1}2kn satisfying the following: any string in
the range of D∗ is a truth table of low circuit complexity, and any string outside the range of D∗

can be used to efficiently construct a string outside the range of D using an NP oracle. If we have
a compression scheme C : {0, 1}2n → {0, 1}n, D : {0, 1}n → {0, 1}2n, the same argument lets us
iterate these to a scheme C∗, D∗ of message length 2kn and code length n, where again D∗ always
outputs low complexity truth tables, and now we have that any incompressible string for C∗, D∗

can be transformed in polynomial time (without an oracle) into an incompressible string for C,D.
Thus, if it is hard to witness the weak pigeonhole principle for C,D, then we will be able to take

any string (“message”) of length 2kn and find a small circuit computing it (“codeword”) by feeding
it through C∗. A circuit can naturally be interpreted as a data structure storing an array subject
to fast query operations: the truth table represents the contents of the array, and the circuit allows

3Although the cited work is dated to 1988, Merkle filed a patent for the concept about a decade earlier.
4The Merkle Tree is in some sense “dual” to the other two examples, as it iterates a function which compresses

strings by a factor of two, while the others iterate a function that extends by a factor of two.
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us to efficiently compute a particular bit in the truth table given its index. However, to use the
J-tree to simulate RAM computations, we will also require fast update operations, which let us set
a position in the array to a new value. Our main addition to this line of work is the “J-Tree Update
Lemma” (Lemma 9), which gives a procedure that accomplishes this second task. The Update
Lemma does not seem to have an analogue in any of the previously mentioned works.

2 Preliminaries

2.1 Basics

Our notation for basic concepts is standard, e.g. all logarithms are base 2, we use [n] to denote
{1, . . . , n}, |x| to denote length of a binary string. We will define the following precise notion of an
“exponential time bound:”

Definition 3. We say a function T : N → N is an “exponential time bound” if T is time con-
structible, and there exist constants 0 < β < B such that for sufficiently large n, 2βn ≤ T (n) ≤ 2Bn.

This is in contrast to the more general notion of exponential growth where we have 2n
β ≤

T (n) ≤ 2n
B
.

2.2 Machine Models

We start by precisely defining the various machine models and complexity classes that will be used.
We begin with a definition of “random access memory” or “RAM” machines:

Definition 4 (RAM machines). A RAM machine is a turing machine equipped with two binary
tapes, one called the “auxilliary tape” and the other called the “addressing tape.” We collectively
refer to these as the “linear tapes.” Both linear tapes admit the same operations as a standard
Turing machine tape, where in one step we can move the head left/right and read or modify a cell
of the tape. In addition, there is an associated “RAM memory” consisting of a sequence of binary
variables A1, A2, . . .. The addressing tape has two additional operations that allow it to interact
with the RAM memory. There is an Update operation, which in one step sets Ai = b, where i is
the integer whose binary representation lies to the left of the addressing tapehead, and b is the bit
currently read by the auxiliary tape. There is also a Load operation, which in one step sets the
cell pointed to by the auxiliary tapehead to the value Ai, where again i is the integer whose binary
representation lies to the left of the addressing tapehead. At the start of the computation on input
x, the RAM cells A1, . . . , A|x| are initialized to the bits of x in order, and A|x|+1, . . . are initialized
to 0. The addressing tape is then initialized to |x|, so that the machine knows where the input ends.

We will use the following simplification lemma for RAM computations later, which follows easily
from the use of balanced binary search trees:

Lemma 1. [GS89] A RAM machine running in time T (n) can be simulated in time T ′(n) =
Õ(T (n)) by a RAM machine that uses O(log T ′(n)) space on its addressing and auxiliary tapes,
and uses only its first T ′(n) RAM cells.

We will also make reference to k-tape Turing machines, for which we omit a formal definition as
this model is standard. However, we will at some points concern ourselves with multi-tape machines
equipped with oracles for languages/functions, and here we will need to be precise about the oracle
access mechanism:
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Definition 5 (Oracle Turing Machines). For a function F : {0, 1}∗ → {0, 1}∗, an F -oracle k-tape
Turing machine has k standard read/write “work tapes,” in addition to an oracle tape where in one
step the machine can replace the leading cells of the oracle tape with F (x), where x is the string
lying to the left of the oracle tapehead prior to the oracle call; after this the oracle tapehead is
moved to the first cell of the oracle tape. In some cases we will give a machine access to several
oracles F1, F2, . . . , Fk (for a fixed constant k), in which case each gets its own oracle tape. The
oracle tape(s) and the first work tape share a single tapehead, and in one move this tapehead can
move from the first cell of the work tape to the first cell of one of the oracle tapes, or vice-versa.

The space usage of an oracle k-tape machine is defined to be the sum of the space used on all
of its work tapes and oracle tapes.

The sharing of a single tapehead between the oracle tapes and the first work tape is only
relevant for 1-tape machines, where we don’t want the machine to “cheat” and use it’s oracle tapes
as additional work tapes.

Definition 6 (Time Bounded Classes). For a function T : N → N, let TIME[T (n)] denote the
class of languages which are decidable by a deterministic multi-tape Turing machine running in
time O(T (n)). Let RAM-TIME[T (n)] be defined analogously for RAM machines.

Definition 7 (Time-Space Classes). For functions T, S : N → N, let TISP[T (n), S(n)] denote the
class of languages which are decidable by a deterministic multi-tape Turing machine running simul-
taneously in time O(T (n)) and total space O(S(n)). Let 1-TISP[T (n), S(n)] be defined identically,
but with the additional restriction that the machine uses only one tape.

Finally, we define an analogous “time-space” class for nondeterministic time:

Definition 8 (Nondeterministic Time-Space Classes). For functions T, S,G : N → N, let
NTISPG[T (n), S(n), G(n)] (“nondeterministic time, space, guess”) denote the class of languages
decidable by a nondeterministic multi-tape Turing machine such that on any computation path on
an input of length n, the machine spends time O(T (n)), uses space at most O(S(n)), and makes at
most O(G(n)) non-deterministic guesses. Let 1-NTISPG[T (n), S(n), G(n)] be defined identically,
but with the additional restriction that the machine uses only one tape. We define NTIME[T (n)]
in the standard way, which is analogous to the above but with no restriction on space usage or
nondeterminism.

We make note of the following result, which tells us that for nondeterministic computations the
multi-tape and RAM models are roughly equivalent:

Lemma 2. [GS89] Any time-T (n) computation on a nondeterministic RAM machine can be sim-
ulated in Õ(T (n)) time on a nondeterministic multi-tape machine.

We will thus not bother to explicitly define a nondeterministic RAM model, though the def-
inition for the deterministic case naturally extends. Finally, we formally define our measures of
circuit complexity and Kt complexity (time-bounded Kolmogorov complexity):

Definition 9. Let x ∈ {0, 1}N . We say that x “has circuits of size s” if there is a boolean circuit
C of fan-in 2 over the basis ∧,∨,¬ on ⌈logN⌉ variables such that C has at most s gates and for
all 0 ≤ i < N , C(i) equals the ith bit of x (where we convert between integers and binary strings
in the standard way). We say that “x has circuit complexity s” if x does not have circuits of size
s− 1.

Definition 10. Fix some efficient universal Turing machine U . For x ∈ {0, 1}∗, we define Kt(x)
to be the length of the smallest string y such that U outputs x on input y in at most t steps.
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2.3 Search Problems

Definition 11. A “search problem” is simply a relation R ⊆ {0, 1}∗ × {0, 1}∗. The associated
computational task is: given x ∈ {0, 1}∗, find some y ∈ {0, 1}∗ such that (x, y) ∈ R, or else
determine that no such y exists. We say that R is “bounded” if there exists a polynomial p such
that (x, y) ∈ R ⇒ |y| ≤ p(|x|). We say that R is “total” if ∀x ∈ {0, 1}∗, ∃y ∈ {0, 1}∗ such that
(x, y) ∈ R.

At some points in this work we will be concerned with functions that are efficiently computable
with access to an oracle for solving some search problem. A subtlety arises here, since an instance
of a search problem may have many valid solutions, and this may cause our oracle machine to have
a variety of possible outputs. To formalize the notion of search problem oracles correctly, it seems
necessary to define the following notion of “functional oracles”:

Definition 12. Let R be a search problem. We say that O : {0, 1}∗ → {0, 1}∗⊔{⊥} is a “functional
oracle” for R if the following holds for all x ∈ {0, 1}∗:

1. If there exists a y such that (x, y) ∈ R then (x,O(x)) ∈ R.

2. If there does not exist a y such that (x, y) ∈ R then O(x) =⊥

Functional oracles give us a natural way to complexity classes solved by R-oracle machines for
some bounded relation R – an R-oracle machine computes a certain function, or solves some other
search problem, if it has a valid output on every input when given access to an arbitrary functional
oracle for R.

3 Pigeonhole Principles and Compression Schemes

We now define the basic formalization of the weak pigeonhole principle we will investigate in this
work, and introduce the relevant terminology.

3.1 Compressors and Decompressors

Definition 13. Let D : {0, 1}m → {0, 1}n, with m < n. We call such a map which extends its input
length a “decompresser.” The “code length” of this decompressor is m, and its “message length” is
n.

The terminology should be interpreted as follows: for a string x such that D(y) = x, y functions
as an m-bit compressed representation (or “codeword”) for the n-bit “message” x, and D functions
as an an algorithm which lets us “decompress” this codeword into the message it represents.

By the dual weak pigeonhole principle, if n > m, any function mapping 2m “pigeons” to 2n

“holes” must leave some hole empty. We thus know there must exist an x ∈ {0, 1}n such that
∀y ∈ {0, 1}m, D(y) ̸= x. We call such a string x an “empty pigeonhole” for the decompressor D.
The primary subject of [Kor21] was the problem EMPTY, originally introduced in [KKMP21],
where we are given a decompressor specified by a boolean circuit and must output one of its empty
pigeonholes. In this work, we will study a slight modification of this problem, where we are given
both a compressor and a decompressor, and must and must find a witness to the fact that some
message is not recoverable from its codeword. This was referred to by Jeřábek as the “retractive
pigeonhole principle.”[Jeř07].
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Definition 14. Let C : {0, 1}n → {0, 1}m, D : {0, 1}m → {0, 1}n, where m < n; we call such a C a
“compressor”, and collectively we will refer to C,D as a “compression scheme.” Again, m and n
are the “code length” and “message length” respectively. By the pigeonhole principle, we know that
there must exist some x ∈ {0, 1}n such that D(C(x)) ̸= x; we call such an x “incompressible” with
respect to the scheme C,D.

Note that when x ∈ {0, 1}n is an empty pigeonhole for a decompressor D, it is necessarily
incompressible for all schemes C,D which use D as the decompressor. The converse is not true in
general, but when it is we use the following terminology:

Definition 15. We call C a “proper compressor” for D if C,D satisfy the following for all x ∈
{0, 1}n: if there exists an y ∈ {0, 1}m such that D(y) = x, then D(C(x)) = x.

By definition, when C is a proper compressor for D, the incompressible strings for the scheme
C,D correspond exactly to the empty pigeonholes for D. It should be noted that when D is
polynomial time computable, or is specified by some boolean circuit, there always exists a proper
compressor forD computable efficiently with anNP oracle, which simply finds the lexicographically
first preimage of a string under D or else outputs something arbitrary when none exist. In this
sense, the work of [Kor21], which studies the complexity of EMPTY with respect to NP-oracle
reductions, was essentially studying a special case of this problem, where the compressor is the
“canonical proper compressor” which searches for the lexicographically first preimage.

For most of this work it will be convenient to focus on the special case of functions which exactly
double their input length:

Definition 16. When a compression scheme has code length n and message length 2n, we will say
that it has “stretch 2.”

We will utilize the following lemma, which tells us that if our goal is to find an incompressible
string with respect to some scheme, we can assume it has stretch 2 without loss of generality:

Lemma 3. Let C,D be a compression scheme with code length n and message length m. Then
there is another scheme C ′, D′ of code length n and message length 2n, such that C ′ is computable
in poly(m) time with an oracle for C, D′ is computable in poly(m) time with an oracle for D, and
such that given an incompressible string for C ′, D′, we can construct an incompressible string for
C,D in poly(m) time with oracles for C,D.

Proof. This is proven in [Kor21] for the special case when C is a proper compressor for D, but the
exact same proof extends to the more general case stated here.

In [Kor21], the problem EMPTY was studied as a search problem, where the decompressor D is
provided as input (in the form of a circuit), and the goal is to find one of its empty pigeonholes. We
could equivalently define such a search problem for the retractive pigeonhole principle, where we are
given circuits computing C,D as input, and must output an incompressible string for this scheme
(this search problem is considered in Section 6). However, for the purposes of our main results
it will be more suitable to study a uniform version of this problem, where we have a sequence of
schemes Cn, Dn of increasing size, and each are computable within some uniform complexity class.

Definition 17. A uniform compression scheme is a pair C = {Cn : {0, 1}ℓ(n) → {0, 1}m(n)}n∈N,
D = {Dn : {0, 1}m(n) → {0, 1}ℓ(n)}n∈N for some pair of time constructible functions m, l : N → N
such that m(n) < ℓ(n) for all n, and ℓ(n) is bounded above by a polynomial in n.

In this work we will concern ourselves with uniform compression schemes where C,D are com-
putable in polynomial time, each with access to different oracles, hence the name “uniform.”
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3.2 Particular Compression Schemes of Interest

We now introduce some uniform compression schemes whose incompressible strings have certain
desirable properties for which no explicit constructions are currently known.

3.2.1 Compression Schemes for Non-Uniform Complexity Measures

We start with the case of hard truth tables. The following lemma is a well-known folklore result,
for which a formal proof can be found in [Kor21]:

Lemma 4. For sufficiently large N ∈ N, there is function fN : {0, 1}N−1 → {0, 1}N computable
uniformly in Õ(N2) time such that if x ∈ {0, 1}N has circuits of size at most N

2 logN , then x is in
the range of fN .

We now define the search problem associated with finding preimages of strings under fN , which
has commonly been referred to as the “circuit synthesis problem:”

Definition 18 (Circuit Synthesis). Given a string x ∈ {0, 1}N , output an N −1 bit description
of a circuit C of size at most N

2 logN on ⌈logN⌉ variables such that C(i) = xi for all 0 ≤ i < N if
such a circuit exists, or else determine that no such circuit exists.

This problem is the search variant of the more well-studied “Minimum Circuit Size Problem”
[KC00], which is not known to admit a search-to-decision reduction. By the same arguments
underlying Lemma 4, given an instance x ∈ {0, 1}N of Circuit Synthesis, any circuit of the
stated size can be represented using at most N − 1 bits via a standard encoding so this search
problem is well defined. Further, requiring the output to be specified in such an encoding does not
increase the complexity of the problem, since the standard encoding can be computed efficiently
from any description of such a circuit.

By definition, we see that there is a proper compressor for fN computable in polynomial time
with a Circuit Synthesis oracle, and thus any incompressible string for this scheme is an N -bit
string with high circuit complexity. As foreshadowed in Section 2.3, a subtly arises here since
there are many valid functional oracles O for the search problem Circuit Synthesis, and for any
such oracle, fN ,O |{0,1}N will be a uniform compression scheme satisfying the required properties.
However, an important observation is that if Circuit Synthesis is in FP, then there is a particular
functional oracle O for this problem which is computed by some polynomial time algorithm, and
in this case we have a fixed compression scheme with the required properties where both the
compressor and decompressor are computable in polynomial time.

We similarly have the following:

Lemma 5. For any fixed polynomial p, there is a uniform compression scheme whose decompressor
is computable in polynomial time, and whose compressor is computable with an oracle for Kp(n)

Minimization (given x ∈ {0, 1}n find a short program y ∈ {0, 1}n−2 that prints x in p(n) steps if
one exists). The incompressible strings for this scheme have Kp(n) complexity ≥ n− 1.

Lemma 6. There is a uniform compression scheme whose decompressor is computable in polyno-
mial time, and whose compressor is computable with an oracle for Formula Synthesis (given a
truth table find a short formula if one exists). The incompressible strings for this scheme are truth
tables of exponential formula size.

We provide these as basic examples without defining the problems too formally; more gener-
ally it can be verified that for most reasonable non-uniform measures of complexity (which are
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bounded above by Kpoly), such a uniform scheme exists whose decompressor is computable effi-
ciently, whose compressor is computable with access to the relevant “compression problem,” and
whose incompressible strings have high complexity with respect to this measure.

3.2.2 Large Primes

We next construct a compression scheme related to the large prime construction problem. This
scheme is unlike the previous ones, in that both the compressor and decompressor have the same
complexity: each will require an oracle for factoring.

Theorem 1. There is a compression scheme R,P with code length n + ⌈log n⌉ + 3 and message
length n + ⌈log n⌉ + 4, such that R,P are each computable uniformly in polynomial time with a
factoring oracle, and given an incompressible string for this scheme, a 32n-bit prime of magnitude
> 2n can be constructed in polynomial time with a factoring oracle.

We can immediately note that we will not encounter the issue of dealing with different “func-
tional oracles” here, since the factoring problem has a unique solution on all inputs. This theorem
is an algorithmic analogue of a well known result of Paris, Wilkie, and Woods [PWW88], and our
proof will follow from analysing the computational resources needed to carry out their construction.
We start with the following useful lemma:

Lemma 7. For sufficiently large n there exists a pair of efficiently computable maps g : {0, 1}n →
{0, 1}n−2, f : {0, 1}n−2 → {0, 1}n such that for all n-bit primes p we have f(g(p)) = p.

The constant 2 is arbitrary and can be replaced with any positive integer; we give a proof of
this more general case in Appendix A. The encoding follows from the observation that the primes
can be easily shown to have natural density < ϵ by considering their structure with respect to
divisibility by the first O(1) primes.

We will also use the following notation at various points in the proof:

Definition 19. Let x ∈ N, and let
∏
i≤v

peii be the prime factorization of x where the pi are in

increasing order of magnitude. We define Ix to be the interval [ℓ] where ℓ =
∑
j≤v

ej⌈log pj⌉. We will

think of the interval Ix as being composed of e1 intervals of length ⌈log p1⌉, followed by e2 intervals
of length ⌈log p2⌉, and so on. In this way, we see that every position in the interval Ix determines
a prime power pk dividing x and an index i ∈ [⌈log p⌉], and conversely every such pk, i determines
a position in Ix.

We are now ready to prove Theorem 1:

Proof of Theorem 1. We will use the shorthand N = 2n for the remainder of the proof. Consider
an arbitrary string xs ∈ {0, 1}n+⌈logn⌉+4, where |x| = n and |s| = ⌈log n⌉ + 4. We will consider
x as an integer in the range [N ], and s as representing a position in the interval IN16+x. Since
N32 + x > N32, we see that IN32+x has length at least 32n, and thus any ⌈log n⌉+4 bit string can
be identified uniquely with some position in IN32+x. As described above, this position is in turn
fully defined by a prime power pk dividing N32 + x, together with an index i ∈ [⌈log p⌉]. Further,
it is clear that from x and s we can determine p, k, i in poly(n) time with a factoring oracle.

For some prime power pm and y ∈ [N ], we will say that pm ∼ y if the following holds: pm+1 has
no multiple in the interval [N32 + 1, N32 +N ], and N32 + y is the smallest integer in the interval
[N32+1, N32+N ] which is divisible by pm. Clearly it can be tested in poly(n) time whether pm ∼ y
using division. We can also see that for any prime p ≤ N , there exists a unique y ∈ [N ] such that
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pm ∼ y for some m, and such a y can be computed from p efficiently by testing increasing powers
of p.

Now, our compressor R on input xs will start by computing the values p, k, i determined by s and
IN32+x as described above. During this computation, R will test if each prime in the decomposition
of N32+x is of magnitude ≤ N . If one of them is not, R will “fail” and simply output an arbitrary
string (say 1n+⌈logn⌉+3 for concreteness). Otherwise, R next tests if pk ∼ x. If this holds, we have
that x can be recovered from p efficiently, and in this case R maps xs to 0ps where the prime p is
encoded in n−2 bits according to Lemma 7. Overall this can be done in the required n+⌈log n⌉+3
bits. Now say that pk ∼ x does not hold. In this case, R computes the unique integer y ∈ [N ] such
that pm ∼ y holds for some m. We then set z = |x− y|, and b = sign(x− y) ∈ {0, 1}. By definition
of m we see that k ≤ m, since pk does have a multiple in [N32 + 1, N32 +N ], namely N32 + x. In
addition we have that pm divides N32 + y and pk divides N32 + x. So overall we conclude that pk

must divide |(N32 + y)− (N32 + x)| = z. Now, consider the interval Iz, which has length at most
2n since z ≤ N . Since pk divides z, there is some position in Iz which determines p, k, i, and this
position can in turn be encoded in ⌈log n⌉ + 1 bits, call this encoding s′. Now R outputs 1zbs′.
Again we see that this output has length n+ ⌈log n⌉+ 3 as required.

We now define the decompressor P, which simply unpacks the above encoding of an input xs
whenever R does not fail. When P sees an input of the form 0ps (where p is encoded in n− 2 bits
as per Lemma 7), it recovers the unique x such that pm ∼ x for some m, and then outputs xs.
Otherwise, if it sees an input of the form 1zbs′, it computes the prime factorization z to determine
the values p, k, i encoded by the position of s′ in Iz. From p it then computes the unique y ∈ [N ]
and m such that pm ∼ y, and sets x = y+(−1)bz. Finally, it computes the factorization of N32+x,
and determines the position in IN32+x representing p, k, i, call it j; if j ≤ 2⌈logn⌉+4, it then encodes
the position j as a ⌈log n⌉+ 4 bit string and outputs xs; otherwise it outputs something arbitrary
(1n+⌈logn⌉+4 for example).

By construction we see that whenever R does not “fail” on input xs, it outputs some value from
which P then recovers xs. But the only way that R can fail on an input xs is when the prime
factorization of N32 + x contains a prime > N . Thus if xs is an incompressible string for P,R,
N32 + x must have prime factor > N , which we can compute given x using a factoring oracle.

4 J-Trees

In this section we develop the core tool used in our main result, namely the “J-tree.” The J-tree
is, informally, a data structure “solving” the following information-theoretically impossible task:
store an array of T elements, subject to efficient updates and queries, using significantly fewer then
T bits. While such a data structure cannot exist unconditionally, the J-tree will take as input a
compression scheme C,D, and will be set up so that when it fails in its capacity as a data structure,
it prints out an incompressible string for C,D. In other words, if it is hard to witness the weak
pigeonhole principle for the scheme C,D, then it is hard to find a sequence of updates/queries
which causes our data structure to fail.

Definition 20 (J-trees). Let D : {0, 1}n → {0, 1}2n be a decompressor of code length n and stretch
2. We define D0, D1 : {0, 1}n → {0, 1}n to be the maps obtained by computing D and taking the
first n and last n bits of output respectively. Now, for any binary string x ∈ {0, 1}∗, we define
Dx : {0, 1}n → {0, 1}n as follows. When |x| = 0, Dx is the identity, and when |x| = 1, D0, D1 are
defined as above. In the general case, when x = b1 · · · bk for some b1, . . . , bk ∈ {0, 1}, Dx is defined
as:

Dx = Dbk ◦ · · · ◦Db1
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Figure 3: A J-tree of depth 3. Each arrow consists of n wires, where n is the code length of the
decompressor D.

Now, for a particular input y ∈ {0, 1}n, we can define the function D[y] : {0, 1}∗ → {0, 1}n as
follows. For each x ∈ {0, 1}∗:

D[y](x) = Dx(y)

For an integer k, we then define Dk[y] : {0, 1}k → {0, 1}n, which is simply the restriction of D[y]
to the domain {0, 1}k.

We will refer to Dk[y] as a “J-tree,” D as its decompressor, y as its “seed,” and k as its “depth.”

It will be useful to visualize a J-tree as a binary tree (hence the name). Refer to Figure 3 which
illustrates a J-tree Dk[y] where k = 3. For a given D and depth k, we can construct a tree-like
circuit which starts with one copy of D, then feeds each of its two n-bit output blocks into another
copy of D, and so on for k iterations, ultimately yielding a circuit with n inputs and 2kn outputs
which has the structure of a perfect binary tree of depth k. If we now fix the inputs to some value
y (the seed), by passing y through this tree-like circuit we obtain 2k n-bit values at the output. As
seen in the figure, each of the 2k n-bit values is associated uniquely with a leaf in this binary tree
of depth k, and thus can be specified by a k-bit index indicating whether to move left or right at
each step along a root-to-leaf path. Dk[y] is then the function which, given the description of such
a path, returns the value at the corresponding leaf.

We will think of a J-tree Dk[y] operationally as a data structure which stores an array of 2k

n-bit values, one for each for each of its 2k “leaves”, where the ith value is simply Dk[y](i). The
state of the data structure is described purely by y and D, which in our use cases will require far
fewer bits then storing 2k n-bit strings explicitly. In the following, we now prove that the J-tree
data structure admits fast query and update operations, i.e. operations that allow us to read one
entry of the data structure, or update the value of one entry. While the query operation will be
computable efficiently by evaluating only the decompressor D O(k) times, the update operation will
require evaluating some compressor C, and might “fail” in a certain well-defined sense. However,
when the update does not fail, there is a deterministic algorithm which can verify, using O(k)
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evaluations of D, that the resulting J-tree is in fact the true updated version of the original. We
begin with the query or “access” operation:

Lemma 8 (J-tree Access Lemma). Let Dk[y] be a J-tree. Then for any i ∈ {0, 1}k we can compute
Dk[y](i) in time O(nk) given i, y and using O(k) evaluations of D.

Proof. This follows directly from the definition of Dk[y]. Letting b1, . . . , bk be the individual bits
of i, we have that:

Dk[y](i) = Dbk ◦Dbk−1
◦ · · · ◦Db1(y)

So we can compute Dk[y](i) by evaluating D k times successively starting with the input y.

Definition 21 (J-tree Modifications). Let Dk[y], Dk[y′] be J-trees of depth k and code length n.
We say that the relation Modified(y, y′, i, s,D) holds if:

1. Dk[y′](i) = s

2. For all i′ ∈ {0, 1}k, i′ ̸= i, Dk[y′](i′) = Dk[y](i′)

In other words, Modified(y, y′, i, s,D) asserts that the J-tree Dk[y′] represents a local modifica-
tion of the J-tree Dk[y] which changes its ith value to s and leaves all other values the same.

Lemma 9 (J-tree Update Lemma). There exist algorithms Find and Verify satisfying the following.
Verify takes as input a decompressor D (specified as an oracle) of code length n and stretch 2,

a pair of seeds y, y′ ∈ {0, 1}n, an index i ∈ {0, 1}k, and a value s ∈ {0, 1}n, and either accepts
or rejects. Verify runs in deterministic time O(nk) using O(k) evaluations of D, and satisfies the
property that if Verify(y, y′, i, s,D) accepts, then Modified(y, y′, i, s,D) must hold.

Find takes as input a compression scheme C,D of code length n and stretch 2 (again specified
as oracles), a seed y ∈ {0, 1}n, an index i ∈ {0, 1}k, and a value s ∈ {0, 1}n. It either “succeedes”
and outputs a string y′ ∈ {0, 1}n, or else outputs FAIL⟨e⟩, where e ∈ {0, 1}2n. Find runs in O(nk)
time using O(k) evaluations of C and D, and satisfies the property that for every input y, i, s, C,D,
one of the following holds:

1. Find(y, i, s, C,D) outputs a string y′ such that Verify(y, y′, i, s,D) accepts.

2. Find(y, i, s, C,D) outputs FAIL⟨e⟩, where e is incompressible with respect to C,D.

Proof. We start by defining the procedure Find. Given inputs y, i, s, C,D, Find begins by computing
a sequence of k values z1, . . . , zk ∈ {0, 1}n as follows. Let b1, . . . , bk denote the bits of i in order.
For each j ∈ [k], we set

zj = D[y](b1b2 . . . bj−1¬bj)
It is clear that the list of zj be computed in O(nk) time using O(k) evaluations of D, by storing
the intermediate values of D[y](b1 · · · bj) for each j and computing the zj in increasing order of j.

Now, given this list of values, we compute a second sequence v1, . . . , vk ∈ {0, 1}n. We compute
the vj for each j ∈ [k] in decreasing order of k as follows. First we set:

vk =

{
C(szk) if bk = 0

C(zks) if bk = 1

We then check that D(C(szk)) = szk (resp. D(C(zks)) = zks). If this check fails we abort and
return FAIL⟨szk⟩ (resp. FAIL⟨zks⟩). Now, for each j ∈ {k − 1, k − 2, . . . , 1}, we set:

vj =

{
C(vj+1zj) if bj = 0

C(zjvj+1) if bj = 1
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Figure 4: “Forward phase” of
Find(y, 100, s, C,D) (where k = 3), during
which the z1, . . . , zk are computed.

Figure 5: “Backward phase” of
Find(y, 100, s, C,D) (where k = 3), during
which the v1, . . . , vk are computed.

Again, each time we evaluate C on some input, we check that that input is indeed compressible with
respect to C,D, and if not then we return FAIL⟨e⟩ where e is the incompressible string we found. If
we get to the end of this process without returning failure, we return the string v1. This completes
the description of the Find procedure, which overall requires at most O(nk) time to compute using
at most O(k) evaluations of C and D. Figures 4 and 5 illustrate this procedure for a J-tree of depth
3.

We now describe the Verify procedure on input y, y′, i, s,D, which simply verifies that a given
string y′ is a possible successful output of Find(y, i, s, C,D) for some C. Given y, y′, i, s,D,
again let b1, . . . , bk denote the bits of i in order. First, Verify iterates over each value of
j ∈ [k], and checks that D[y′](b1, . . . , bj−1,¬bj) = D[y](b1, . . . , bj−1,¬bj). Next, it checks that
D[y′](b1, . . . , bk) = Dk[y′](i) = s. If all these conditions hold, the Verify procedure accepts, and
otherwise it rejects. It is clear that these conditions can be verified in O(nk) time using O(k)
evaluations of D, by storing the intermediate values D[y](b1, . . . , bj),D[y′](b1, . . . , bj) at each step.

We now show that if Find(y, i, s, C,D) succeeds and returns a string y′, then Verify(y, y′, i, s,D)
accepts. By definition, if Find(y, i, s, C,D) doesn’t fail, then it is able to compute some list of values
v1, . . . , vk ∈ {0, 1}n such that for all j < k, Dbj (vj) = vj+1 and D¬bj (vj) = zj , and it returns v1 as
its output. So then we have that D[v1](b1, . . . , bj−1,¬bj) = D[vj ](¬bj) = zj for all j ∈ [k]. Further,
we have that D[v1](b1, . . . , bk−1, bk) = D[vk](bk) = s. So overall Verify(y, v1, i, s,D) must accept if
Find(y, i, s, C,D) succeeds and returns v1.

It remains only to show that if Verify(y, y′, i, s,D) accepts, then Modified(y, y′, i, s,D) must
hold. Recall that Modified(y, y′, i, s,D) asserts that the two J-trees Dk[y], Dk[y′] agree an all
indices i′ ̸= i, and that Dk[y′](i) = s. If Verify accepts then this second condition holds trivially,
since Verify explicitly checks that Dk[y′](i) = s and rejects if this does not hold. Now consider the
first condition of Modified. Let i′ ∈ {0, 1}k, i′ ̸= i. Let ℓ1, . . . , ℓk denote the bits of i′ in order, and
let t ∈ [k] be the smallest index such that ℓt ̸= bt. By our assumption that Verify accepted, we have
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that

D[y](ℓ1, . . . , ℓt) = D[y](b1, . . . , bt−1,¬bt) = D[y′](b1, . . . , bt−1,¬bt) = D[y′](ℓ1, . . . , ℓt)

But by definition we also know that

D[y](ℓ1, . . . , ℓt, ℓt+1, . . . , ℓk) = D[D[y](ℓ1, . . . , ℓt)](ℓt+1, . . . , ℓk)

and similarly
D[y′](ℓ1, . . . , ℓt, ℓt+1, . . . , ℓk) = D[D[y′](ℓ1, . . . , ℓt)](ℓt+1, . . . , ℓk)

so if D[y](ℓ1, . . . , ℓt) = D[y′](ℓ1, . . . , ℓt) then it must be that D[y](ℓ1, . . . , ℓk) = D[y′](ℓ1, . . . , ℓk). So
we have established that Dk[y](i′) = Dk[y′](i′), which completes the proof.

Next, we prove the following “initialization” lemma, which lets us efficiently set all leaves of a
J-tree to a common value in time proportional to its depth:

Lemma 10. (J-Tree Initialization Lemma) There is an algorithm Initialize which takes as input a
compression scheme C,D of code length n and stretch 2 (specified as oracles), a value s ∈ {0, 1}n,
and a depth parameter k. It either succeeds and returns a seed y ∈ {0, 1}n such that for all
i ∈ {0, 1}k, Dk[y](i) = s, or else outputs Fail⟨e⟩ where e is incompressible with respect to C,D.
Initialize(s, k, C,D) runs in time O(nk) using O(k) evaluations of C an D.

Proof. We start by setting v1 = C(ss). When then check if D(v1) = ss and if not we return
Fail⟨ss⟩. Otherwise we continue for each value j ∈ [k] in increasing order, setting vj = C(vj−1vj−1),
checking that C finds a valid compression at each step, and returning an incompressible string if it
does not. We then return vk if all checks pass.

Say Find(s, k, C,D) succeeds and returns vk. By induction we show that D[vj ](i) = s for all
i ∈ {0, 1}j . For the base case, since D(v1) = ss have that D[v1](i) = s for all i ∈ {0, 1}. For the
inductive case say i = bi′ for b ∈ {0, 1}, i′ ∈ {0, 1}j−1. So then we have thatD[vj ](i) = D[Db(vj)](i

′).
By assumption that Find(s, C,D) succeeds we have that Db(vj) = vj−1, and by the inductive
hypothesis we have that D[vj−1](i

′) = s, completing the proof.

In the proofs to come it will also be useful to have the following “iterated compression” lemma.
This Lemma is implicit in the proof of the main theorem in [Kor21].

Lemma 11 (J-Tree Iterated Compression Lemma). Let C,D be a compression scheme of code
length n, and let S = (s1, s2, . . . , sℓ) be a sequence of strings, where si ∈ {0, 1}n. There exists an
algorithm Iter-Compress running in time poly(n, ℓ) and using poly(ℓ) evaluations of C and D which,
given C,D and S, either “succedes” and outputs a seed y ∈ {0, 1}n such that D⌈log ℓ⌉[y](i) = si for
all i ∈ {0, 1}⌈log ℓ⌉, i ≤ ℓ, or else “fails” and outputs a string e which is incompressible with respect
to C,D.

Proof. This follows from repeated application of the Find procedure in Lemma 9. We initialize
y = 0n. Now, for each i ∈ [ℓ], we perform Find(y, i, si, C,D), and if Find fails and an incompressible
string e, then Iter-Compress fails and outputs e. Otherwise we set y = Find(y, i, si, C,D). We then
repeat for the next value of i. If we succeed for all i, we output the final value of y. Correctness
and runtime of this algorithm follow from Lemma 9.
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5 Low-Space Simulations

In this section we prove our main set of theorems. In each case, we show how to simulate an
exponential time computation with a drastic reduction in certain resources, using short oracle calls
to some uniform compression scheme. We then show that either this simulation is successful, or
there is an explicit construction algorithm that prints incompressible strings for this compression
scheme.

5.1 Proofs of Main Theorems

Theorem 2. Let C,D = {Cn}n∈N, {Dn}n∈N be a uniform compression scheme.
Then one of the following must hold:

1. There is polynomial time algorithm with oracle access to C,D which, for infinitely many n,
outputs an incompressible string for Cn, Dn on input 1n.

2. For every exponential time bound T , every language L ∈ RAM-TIME[T (n)], and every
ϵ > 0, there is 1-tape Turing machine with oracle access to C,D which decides L in time
T (n)1+ϵ, uses space at most T (n)ϵ, and makes oracle calls of length at most T (n)ϵ.

Proof. Let L ∈ RAM-TIME[T (n)], and let M be the deterministic random access oracle machine
witnessing this inclusion. Let C,D be a uniform compression scheme. By Lemma 3, we can assume
Cn, Dn have stretch 2 for all n. We will define a “simulator machine” which attempts to decide L
using low space and small oracle calls to C,D. We then define a second “checker machine” which
checks the work of the simulator. We show that whenever the simulator fails to decide L, the
checker will be able to witness this failure in the form of an incompressible string. We will thus
conclude that if simulation of L fails for infinitely many inputs, the “checker” will constitute an
explicit construction algorithm which prints incompressible strings for C,D.

Step 1 - Defining the Simulator

Let 0 < ϵ < 1 be a fixed rational constant. We define a machine Sϵ which will attempt to efficiently
simulate M using low space, short C,D-oracle queries, and which operates on a 1-tape oracle Turing
machine. Let x ∈ {0, 1}n be an input. For the remainder of this section we will keep a particular
input length n fixed in our mind and thus drop the dependence of other terms on n in our notation;
in particular we will use the abbreviation T = T (n). Our machine will now fix a particular instance
of C,D, in particular C⌈2ϵn⌉, D⌈2ϵn⌉; again we simplify our notation from here on and simply write
C,D for this scheme. By definition of a uniform compression scheme, we see that the code length
of C,D will by poly(2ϵn) = T (n)O(ϵ), and by assumption its message length is twice its code length.
We will use W to denote its code length for the remainder of the proof.

We start by invoking Lemma 1, which lets us assume without loss of generality that M uses
its first T cells of RAM and uses at most O(log T ) space on its linear tapes. This simplification
will come at a log T multiplicative cost to run time, which is negligible here. Now, our simulating
machine will initialize a variable Mem ∈ {0, 1}W which will be used as a seed in a J-tree with
decompressor D and depth ⌈log T ⌉. From now on we will fix k = ⌈log T ⌉. The simulation Sϵ will
run in T phases, and will maintain the invariant that if M’s ith memory cell has value b ∈ {0, 1}
at the start of M’s tth time step, then Dk[Mem](i) = bW at the start of Sϵ’s t

th phase. Aside from
Mem, Sϵ will also explicitly store a copy of M’s linear tapes (which have total length O(k)), the
input x, and descriptions of M’s state and tape-head pointers, each requiring at most k bits. Thus
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the total space required to store all local variables between phases in the simulation is at most
O(W (n)2 + n) = T (n)O(ϵ) (recall that T is an exponential time bound).

At the start of the first phase, Sϵ initializes Mem to a value such that Dk[Mem](i) = 0W for
all i ∈ {0, 1}k, which matches the initial state of M’s RAM memory at the beginning of its
computation. By Lemma 10, this can be accomplished in time O(kW ) = TO(ϵ) with oracle access
to C,D; if the initialization procedure fails and returns an incompressible string for C,D, the
simulation halts and rejects its input x. Now, in phase t ∈ [T ], Sϵ will simulate the tth step of M
as follows:

1. Read the values at the current tapehead positions on all linear tapes, and the current state
of M.

2. Based on these values, determine which of M’s transition rules to apply. Every rule involves a
state update, which we can perform manually as we explicitly storeM’s state. If the new state
is an accept/reject state for M, then Sϵ halts and accepts/rejects accordingly. Otherwise:

(a) First, say the rule only involves updates to the linear tapes. In this case we just carry
out the rule explicitly, which requires at most poly(k) = T o(ϵ) operations since the linear
tapes have length O(k).

(b) Next, say the rule involves a RAM operation. In this case we start by reading the entire
contents of the addressing tape, which we denote i ∈ {0, 1}k. Now, if the operation
is a Load, we compute the first bit of Dk[Mem](i) and update the auxiliary tape at its
current tapehead position to this value. If the operation is an Update, we read the
value at the current position of the auxiliary tape, call it s ∈ {0, 1}. We then compute
Find(Mem, i, sW , C,D). If this procedure fails and returns an incompressible string, Sϵ

aborts its entire simulation and rejects its input. Otherwise, we update Mem to the value
returned by this Find call.

If we get through all T phases without halting, we reject the input.
We now show that Sϵ operates within the required resource bounds. First, we note that all

oracle calls are of length W = TO(ϵ). Second, it is clear that the Find/Initialize operations and the
evaluations of Dk[Mem] can be carried out in poly(W ) space, since in particular they require at most
poly(W ) time by Lemmas 8, 9, and 10. So the space used within a phase is at most poly(W ) = TO(ϵ)

and the size of oracle calls are bounded identically. To bound the time complexity, we note that
by the same arguments each phase can be completed in time TO(ϵ), and overall there are T phases,
so the total time complexity is T 1+O(ϵ). In the above description of each phase, we were informal
about the number of work tapes required to carry out these computations. However, since any
multi-tape machine running in space S and time T can be simulated on a one-tape machine in
time poly(S, T ) and space poly(S), we see that we can modify the algorithm within each phase to
operate on a 1-tape machine with at most a polynomial blowup in space and time. So the above
bounds still hold on a 1-tape machine, where the space is bounded by poly(T ϵ) = TO(ϵ), and the
time within each phase is bounded identically.

Step 2 - If Find Never Fails Then the Simulator Works

We now show that if Sϵ completes its computation on an input x without any Initialize or Find
operation failing, then Sϵ accepts x if and only if x ∈ L. To prove this, we show by induction on
t ∈ [T ] that at the beginning of the tth phase of Sϵ’s simulation on x, Sϵ’s simulated configuration
matches the configuration of M on input x at the beginning of time step t. This is clearly true for
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Figure 6: Simulating a RAM memory with a J-tree. While the RAM memory on the left requires
T bits to store explicitly, the virtual RAM on the right can be stored with |Mem| = W = TO(ϵ) bits.

t = 1, since at the start of the simulation we initialize explicit representations of M’s linear tapes
to all zeroes, and do the same for the RAM memory using the Initialize operation, which succeeds
by assumption.

Now assume the inductive hypothesis up to step t. So at the beginning of this time step on
input x, M’s linear tapes, tapehead pointers, machine state and RAM memory at the start of time
step t are faithfully represented by Sϵ at the start of phase t. Thus, Sϵ is able to choose the correct
transition rule to apply during this phase. It then updates the linear tapes, tapehead pointers, and
machine state accordingly; all of these are stored explicitly so Sϵ has no potential for failure here.
Next, if M uses a Load operation at this step, since we assumed the previous state of the virtual
RAM is accurate, the correct value will be found by Sϵ. Finally, if M uses a Update operation at
this step, Sϵ makes the associated call to the Find procedure. By Lemma 9, if this does not fail,
then the state of the virtual RAM after this step will accurately represent M’s ram at the end of
time step t. This completes the inductive case.

Step 3 - Failure of the Simulator Witnesses the Pigeonhole Principle for C,D

We now show that if the above simulation Sϵ fails to decide L for infinitely many inputs, then there
is an algorithm which, given 1n, outputs an incompressible string for Cn, Dn in polynomial time
using oracles for C,D, for infinitely many n.

In particular, assume that there is an infinite set R ⊆ N such that for all n ∈ R, S makes a
mistake on some length n input in its attempt to decide L. Recall that Sϵ uses the compression
scheme C⌈2ϵn⌉, D⌈2ϵn⌉ in its simulation on inputs of length n. Now, let I = {⌈2ϵn⌉ | n ∈ R}. We will
give a construction algorithm that succeeds for all input lengths in I.

Given an input 1m, our construction algorithm H operates as follows. It starts by computing
an n such that ⌈2ϵn⌉ = m; by construction we see n = O(logm). Next, H runs the simulation Sϵ on
all inputs of length n one after the other; by construction we see that Sϵ uses the same compression
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scheme Cm, Dm on all such inputs. During each simulation, if Sϵ fails on some Find or Initialize
operation and returns an incompressible string for Cm, Dm, H halts and outputs that string. If H
gets through all inputs of length n without any operation failing, it outputs something arbitrary,
say 1m. By definition we see that when m ∈ I, H cannot get through all simulations without Sϵ

failing, since by definition of I we know that Sϵ fails to compute L on some input of length n, and by
the previous section we know this can only happen when Sϵ fails on some Find/Initialize operation.
So overall we have that H runs in poly(2n) = 2O(n) = 2O(logm) = poly(m) time, and successfully
finds an incompressible string for Cm, Dm on input 1m for infinitely many m.

Step 4 - Wrapping Things Up

We now have that for any language L ∈ RAM-TIME[T (n)] and every ϵ > 0, there is a machine
Sϵ running in time T (n)1+O(ϵ), space TO(ϵ), and making C,D oracle calls of length TO(ϵ), such that
one of the following holds:

1. Sϵ correctly decides L on all but finitely many inputs.

2. There is a polynomial time construction algorithm which finds incompressible strings for
Cn, Dn given oracles for C,D, which works for infinitely many inputs.

Clearly if the first possibility holds then we can get a simulation of the same complexity which
decides L exactly. In addition, if the first possibility holds for all ϵ > 0, then we can replace the
O(ϵ) terms with ϵ as we take ϵ to zero. This yields the stated theorem.

We now prove a variant of the above theorem, which allows us to replace the oracle for the
compressor C in our low-space simulation with nondeterminism. This will be relevant for schemes
C,D where C is significantly harder to compute then D.

Theorem 3. Let T be an exponential time bound, and let C,D be a uniform compression scheme.
Then one of the following must hold:

1. There is polynomial time algorithm with oracle access to C,D which, for infinitely many n,
outputs an incompressible string for Cn, Dn on input 1n.

2. For every language L ∈ RAM-TIME[T (n)] and every ϵ > 0, there is nondeterministic 1-
tape Turing machine with oracle access to D which decides L in time T (n)1+ϵ, uses space at
most T (n)ϵ, and makes at most T (n)ϵ nondeterministic guesses on all computation paths.

Proof. We follow the same simulation Sϵ of some language L in RAM-TIME[T (n)], with a slight
modification. The key observation is the following: the procedure Find is proven to work with
access to both C and D oracles by Lemma 9. However, recall that Lemma 9 also defines separate
procedure Verify, which is able to verify that a certain J-tree seed is the updated form of another,
and this verification only needs the D oracle. Recall also the key property relating Find and Verify,
which says that Verify will accept any successful output of a Find operation.

Thus, if we make our simulator Sϵ nondeterministic, it can replace the Find operation by a
nondeterministic guess as to the new value of the seed Mem during each phase, and then use Verify
to check that this guess is correct, which requires only the D oracle. This immediately gives us a
low space nondeterministic simulator Sϵ with similar properties as that in the proof of Theorem 2.
However, the total nondeterminism used by this simulation is T (n)1+O(ϵ), since it has to guess a
seed of length TO(ϵ) during each of the T phases.
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To get away with TO(ϵ) bits of nondeterminism, we use the following trick5. At the beginning
of Sϵ’s simulation, it guesses a single seed for a separate J-tree of the same code length, call this
seed Up. Now, during phase t, to simulate an Update operation which sets RAM cell i ∈ {0, 1}k to
value s ∈ {0, 1}, we first set Mem′ = Dk[Up](t), and then check if Verify(Mem, Mem′, i, sW , D) holds. If
so we then set Mem = Mem′ and continue to the next phase, and if not then we halt the simulation
and reject outright. It is straightforward to see that this simulation runs in time T (n)1+O(ϵ), uses
space T (n)O(ϵ), and guesses at most T (n)O(ϵ) nondeterministic bits.

By the same arguments as in Theorem 2, we have that if every Verify call accepts during Sϵ’s
computation on input x, then Sϵ correctly decides if x ∈ L. To finish the proof, it suffices to show
that given some x such that Sϵ fails to decide if x ∈ L, we can construct an incompressible string
for C2ϵn , D2ϵn in poly(T (n)) time with C,D oracles; from here the theorem follows directly using
the arguments at the end of the proof of Theorem 2.

So, say we have such an x. Since our simulation errs on the side of rejecting, we know that
x ∈ L but Sϵ rejects x. We start by running the deterministic low space simulation from Theorem 2
(corresponding to L, ϵ) on x, which can be done in poly(T (n)) time with C,D oracles. During this
simulation, we keep track of all updated memory seeds constructed using Initialize and Find. If
at any step a Find or Initialize procedure fails, we find an incompressible string and output it.
Otherwise, we have found a sequence of seeds Mem1, . . . , MemT ∈ {0, 1}W (where W is the code
length used by the simulation), such that Memt+1 represents a correct update to the RAM memory
previously represented by Memt after time step t. Now, we use the Iter-Compress procedure to
construct a seed Up ∈ {0, 1}W such that for all t ∈ {0, 1}k, Dk[Up](t) = Memt. By Lemma 11, in
poly(T (n)) time we can either find such a seed Up, or else find an incompressible string for our
scheme. But if such a string Up exists, this is precisely the nondeterministic guess which would
cause our nondeterministic simulation Sϵ to accept x. So by assumption that it rejects x, if we get
to this point then Iter-Compress must find an incompressible string.

Finally, we show that if the explicit construction algorithm in the above theorem is also granted
access to an NP oracle, we can get the same result, but where we simulate languages in the larger
class NTIME[T (n)].

Theorem 4. Let T be an exponential time bound, and let C,D be a uniform compression scheme.
Then one of the following must hold:

1. There is polynomial time algorithm with oracle access to C,D, and SAT which, for infinitely
many n, outputs an incompressible string for Cn, Dn on input 1n.

2. For every language L ∈ NTIME[T (n)] and every ϵ > 0, there is nondeterministic 1-tape
Turing machine with oracle access to D which decides L in time T (n)1+ϵ, uses space at most
T (n)ϵ, and makes at most T (n)ϵ nondeterministic guesses on all computation paths.

Proof. This will follow quite directly from the proof of the previous theorem. Let M be some
NTIME[T (n)] machine which we are attempting to simulate. At the outset of its computation,
in addition to guessing one seed Up which encodes a sequence of RAM-seed updates, our new
simulator Sϵ also guesses a second seed Wit which will encode the nondeterministic choices made
by M during its computation. In particular, after guessing this seed, at each phase t of our
simulation the simulator reads the first O(1) bits of Dk[Wit](t), and uses this to determine which
transition rule to apply at that step (in a nondeterministic machine there can be O(1) such rules,

5This trick is essentially the “easy witness method” of [Kab01].
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which will be smaller then the code length of the decompressor for sufficiently large input lengths).
Otherwise we run the simulation exactly as in the above proof.

By the same reasoning as in the previous proof, we see that if this machine accepts an input
x then x ∈ L (since the simulation errs on the side of rejection), but it is possible that x ∈ L and
the simulation fails to determine this. In such a case, the only possibility is that for all sequences
z ∈ {0, 1}O(T ) of nondeterministic guesses causing M to accept x, there is no pair Up, Wit ∈ {0, 1}W
such that Wit encodes z (as described above), and Up encodes a sequence of valid RAM seeds
representing the deterministic computation of M on x with witness z. Thus, if we have some input
x on which our simulation fails, we can use an NP oracle to compute a witness z causing M to
accept x. We then run the deterministic low space simulation M on x with witness z, and either
find an incompressible string for C,D, or else find a sequence of valid RAM seeds Mem1, . . . , MemT for
this computation. We then proceed as in the previous Theorem, attempting to compress the Memt
to a single seed Up and the bits of z to another seed Wit, both using the Iter-Compress procedure.
By assumption that our main nondeterministic simulation rejected x, if we get to this point we
know that one of these Iter-Compress procedures must return an incompressible string.

5.2 Implications

Consider the following three hypotheses:

Hypothesis 1. There exists some exponential time bound T and some ϵ > 0 such that:

RAM-TIME[T (n)] ̸⊆ 1-TISP[T (n)1+ϵ, T (n)ϵ]

Hypothesis 2. There exists some exponential time bound T and some ϵ > 0 such that:

NTIME[T (n)] ̸⊆ 1-NTISPG[T (n)1+ϵ, T (n)ϵ, T (n)ϵ]

Hypothesis 3. There exists some exponential time bound T and some ϵ > 0 such that:

RAM-TIME[T (n)] ̸⊆ 1-NTISPG[T (n)1+ϵ, T (n)ϵ, T (n)ϵ]

The first Hypothesis asserts that deterministic exponential time RAM computations cannot be
simulated on 1-tape machines using low space and near-linear blowup in time. The second Hypoth-
esis asserts roughly the same for nondeterministic computations, claiming that such a simulation
cannot occur which simultaneously uses a small amount of nondeterminism. Recall that for non-
deterministic time, the multi-tape and RAM models are roughly equivalent, which is why we don’t
make a distinction here on the left-hand side. Finally, the third hypothesis says that deterministic
exponential RAM computations cannot be recognized by machines with short “proofs” verifiable
in low space and near-linear time on a 1-tape machine.

While 1 and 2 seem incomparable and both quite reasonable, we see that 3 is formally stronger
then the previous two, and we have significantly less intuition as to whether or not it should be
true. However, recall from Section 1.3 that when the time bound T is linear, all three of these
hypotheses are known to hold unconditionally (indeed they hold for all ϵ < 1). In any case, the
results of the previous section give us the following:

Theorem 5. If Hypothesis 1 holds, then for any uniform compression scheme C,D where both C
and D are computable in polynomial time, there is a polynomial time algorithm which, given 1n,
prints an incompressible string for Cn, Dn for infinitely many n.
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Proof. This follows from Theorem 2; since the C and D oracle calls are of length T (n)O(ϵ), if both
C and D are computable in polynomial time then the oracles can be abandoned without effecting
the resource bounds of the simulation.

For Hypothesis 2, we have:

Theorem 6. If Hypothesis 2 holds, then for any uniform decompressor D computable in polynomial
time, there exists there is a polynomial time NP-oracle algorithm which, given 1n, prints an empty
pigeonhole for Dn for infinitely many n. In particular, ENP ̸⊆ size[2n/2n].

Proof. This follows from Theorem 4. As noted in Section 3, any polynomial time decompressor D
has a canonical “proper compressor” C computable with an NP oracle, such that the incompressible
strings for this scheme are empty pigeonholes for D. The theorem then follows from the above proof,
where we can abandon the D oracle in our simulation if D is computable in polynomial time since
the oracle calls we make are small.

Finally, the strongest hypothesis gives us the following:

Theorem 7. If Hypothesis 3 holds, then for any uniform compression scheme C,D where D is
computable in polynomial time, there is a polynomial time algorithm using a C oracle which, given
1n, prints an incompressible string for Cn, Dn for infinitely many n.

Proof. This follows from Theorem 3, where again we use the fact thatD is computable in polynomial
time to eliminate the D oracle.

To illustrate the use of these theorems, we first consider their implications for the compression
schemes related to non-uniform complexity measures described in Section 3.2.1. In these cases, we
have some complexity measure on strings/truth tables, such as circuit complexity, formula size,
or Kpoly complexity, and wish to construct strings/truth tables of high complexity (for infinitely
many input lengths), which we call the “construction problem.” In each case there is an associated
“compression problem” in FNP, where we are given a string/truth table and wish to find a small
circuit/formula/program computing it if one exists. For these sorts of problems, we now have the
following:

Corollary 1. For each of the above mentioned uniform compression schemes related to non-uniform
complexity measures, we have:

1. If Hypothesis 1 holds, then an efficient algorithm for the compression problem implies an
efficient algorithm for the construction problem.

2. If Hypothesis 2 holds, then there is an efficient NP-oracle algorithm for the construction
problem.

3. If Hypothesis 3 holds, then there is an efficient algorithm for the construction problem using
an arbitrary oracle for the compression problem. In other words, the construction problem
reduces to the compression problem.

Proof. The first and second implications follow directly from the above theorems. For the last im-
plication, there is a slight subtlety related to the fact that the compression problem can generally
have many valid solutions per instance, and so an oracle for this problem must be defined according
to our notion of “functional oracles” (defined in Section 2.3). Thus, for a particular compression
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problem we have the following dichotomy for every one of its function oracles O: either the com-
pression scheme defined by O returns solutions that can be used as witnesses in the low space
simulation for all but finitely many inputs, or else there is an explicit construction algorithm with
access to O which prints strings of high complexity. So assuming Hypothesis 3, every O must fail to
help the simulation for infinitely many inputs. Thus, given access to an arbitrary functional oracle
for the compression problem, the explicit construction algorithm will work for infinitely many input
lengths, although the choice of functional oracle might affect which infinite set of input lengths the
algorithm works on.

We see here that the conclusion of the third implication implies the conclusion of the previous
two. As noted in the introduction, the second implication can be proved by simpler techniques,
utilizing the “Easy Witness Lemma.” We give an alternate proof using this method in Appendix B
for the interested reader. However, for the first and third implication, the J-tree update lemma
seems necessary.

The case of large prime construction does not quite fit in with the others, as both the compressor
and decompressor given in Theorem 1 require a factoring oracle. In addition, the second implication
of Corollary 1 above is trivial when applied to the construction of large primes, since primality
testing is in P [AKS02]. However we can still derive the following from Theorem 5:

Corollary 2. If Hypothesis 1 holds, then a polynomial time algorithm for factoring implies a
polynomial time algorithm to construct 16n-bit primes of magnitude > 2n (for infinitely many n).

More generally we can conclude the following directly from Theorem 2:

Corollary 3. One of the following is true:

1. For every exponential time bound T and every ϵ > 0, every language decidable in time T (n)
on a RAM machine can be decided in time T (n)1+ϵ and space T (n)ϵ by a 1-tape machine with
a factoring oracle, which makes oracle calls of length at most T (n)ϵ.

2. There is a polynomial time algorithm with a factoring oracle that generates 32n-bit primes of
magnitude > 2n for infinitely many n.

6 BPP, TFNP, and the Weak Pigeonhole Principle

Throughout this paper we have studied the problem of finding incompressible strings for uniform
compression schemes. As mentioned in Section 3, it would also be natural to study the more general
search problem, where a compression scheme of a fixed message/code length is given as input in
the form of a boolean circuit:

Definition 22. Lossy Code is the following problem: given circuits C : {0, 1}n → {0, 1}n−1 and
D : {0, 1}n−1 → {0, 1}n, find some x such that D(C(x)) ̸= x.

It follows from the definition that Lossy Code lies in TFNP (more specifically the class PPP
defined in [Pap94]), and reduces to the problem Empty studied in [KKMP21] and [Kor21]. Further,
we have seen that Lossy Code admits a randomized algorithm that outputs a solution with high
probability. Since solutions can be verified efficiently, this fits it into a family of search problems
studied by Goldreich [Gol11], whose results imply the following:

Lemma 12. Lossy Code is polynomial time Turing reducible to CAPP.
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Here, CAPP denotes the canonical complete problem for prBPP, where we are given as input
a circuit E : {0, 1}n → {0, 1}, and must output an approximation of Prx[E(x) = 1] that is accurate
to within ±1

6 . A natural question is whether the converse holds, i.e. whether CAPP reduces
deterministically to Lossy Code. As hinted towards in Section 3.2, a polynomial time algorithm
for Circuit Synthesis would imply such a reduction, but an unconditional reduction would be a
major breakthrough as it would placeBPP ⊆ NP. We show here that if the compressor C in Lossy
Code is allowed to be randomized, the associated total search problem is in fact Turing-equivalent
to CAPP, and thus complete for prBPP. The problem is defined formally as follows:

Definition 23. R-Lossy Code is the following problem: given C : {0, 1}n × {0, 1}m → {0, 1}n−1,
D : {0, 1}n−1 → {0, 1}n, find some x ∈ {0, 1}n such that Prr[D(C(x, r)) = x] < 1

2 .

To clarify, this is precisely the same problem as Lossy Code, except that the “compressor
circuit” C now uses some random coins. In this case, we seek a string which has a < 1

2 probability
of being recoverable from its description (where the probability is taken over the random coins of
the compressor C). Just like Lossy Code this search problem is total, but verifying a solution is
no longer in P. Indeed, it may be PP-hard to determine if any particular string is a solution, but
there is a efficient randomized verification procedure that accepts only valid solutions, and accepts
a random solution with high probability.

We now show the following:

Theorem 8. R-Lossy Code and CAPP are Turing reducible to one another in deterministic
polynomial time.

Proof. A reduction from R-Lossy Code to CAPP follows from [Gol11]. To see this, note that
a random x ∈ {0, 1}n is an empty pigeonhole for D with probability ≥ 1

2 , and whenever x is an
empty pigeonhole we have Prr[D(C(x, r)) = x] = 0. In contrast, when x is a non-solution we have
Prr[D(C(x, r)) = x] ≥ 1

2 . So distinguishing empty pigeonholes from non-solutions is a problem
in prBPP (indeed its lies in prRP), there is an efficient randomized algorithm which generates
empty pigeonholes with high probability (namely the trivial algorithm that outputs a random x),
and any empty pigeonhole is a solution. This problem therefore falls into the category of search
problems which were proven reducible to CAPP in [Gol11].

To get a reduction in the other direction, we rely on Yao’s next-bit predictor lemma [Yao82]. In
particular, say we are given a circuit E : {0, 1}n → {0, 1} whose acceptance probability we wish to
estimate to within an additive error of 1

6 . By Yao’s lemma, for any sufficiently large table of n-bit
strings A ∈ {0, 1}m×n we have that if E’s acceptance probability over the rows of A differs from its
true acceptance probability over {0, 1}n by more than 1

6 , then there is a simple “predictor circuit”
which uses E to derive one of the columns of A from its remaining columns. In other words, there
is some small advice of length < mn from which we can reconstruct A (whose original bit-length
is mn) using E. This immediately implies a reduction to Empty as described in [Kor21]. The
key observation we make here (which is also noted in several other works on the subject, notably
[CIKK16] and [Hir18]) is that the “compressed representation” of A described in this argument can
indeed be found efficiently given E using randomness. This will imply a reduction of CAPP to
R-Lossy Code, since any table A which cannot be recovered from this randomized compression
procedure will then give a good approximation to E’s acceptance probability.

More formally, given E as above we will construct an instance of R-Lossy Code with message
length n4 and code length n4 − 1. The compressor circuit C : {0, 1}n4 × {0, 1}poly(n) → {0, 1}n4−1

interprets its n4-bit input as an n3 × n matrix. C then iterates over all choices i ∈ [n], b ∈ {0, 1} of
a “hybrid index” and “bias.” For each such choice, let x<i

1 , . . . , x<i
m denote the rows of A truncated
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to their first i − 1 bits. Our compressor now selects a random z ∈ {0, 1}n−i, and attempts to
predict the ith column of A from the preceding columns as follows: it predicts the jth value of the
ith column of A to be the value c ∈ {0, 1} such that E(x<i

j cz) ̸= b. Given a particular selection of
i, b and z, the compressor then evaluates the accuracy of this prediction, by counting the number of
correctly guessed entries of the jth column of A. If it guesses fewer than n3

2 + n2

6 correctly, C aborts

and outputs something arbitrary. If C guesses at least n3

2 + n2

6 correctly, it then sets q ∈ {0, 1}n3

equal to the bit-wise XOR of the correct column and the predicted column. Since in this case q
will be an n3-bit string with weight at most n3

2 − n2

6 , we can then encode q in n3 −Ω(n) bits using
a standard sparse-string encoding scheme [Kor21]. Finally, the decompressor outputs an n4− 1-bit
string describing A with its ith column removed, b, i, and the encoding of q; it can be readily
verified that n4 − 1 bits suffice to specify all of these.

It is clear by definition that if the compressor successfully finds such an encoding, A can be
recovered efficiently (and deterministically) from this encoding, and we can easily construct a
decompressor D : {0, 1}n4−1 → {0, 1}n4

which realizes this reconstruction procedure. On the other
hand, by Yao’s lemma, whenever the acceptance probability of E over the rows of A differs from
its acceptance probability over {0, 1}n by > 1

6 , there exists some choice of i, b such that a random
choice of z will give a successful encoding with nonnegligable (≥ 1

poly(n)) probability. By repeatedly
trying different random values z for each i, b until a successful encoding is found we can amplify
this probability to ≥ 1

2 . Thus we have that any solution to this instance of R-Lossy Code is a
table of n-bit strings which can be used to approximate the acceptance probability of E to within
1
6 , completing the proof.

An interesting takeaway from the above proof is the following: choosing a good fixing of the
“leftover bits” in Yao’s lemma is in some sense a universal probabilistic search problem, since
derandomizing this step would give a reduction from prBPP to Lossy Code ∈ TFNP (and in
particular would imply BPP ⊆ NP). More formally:

Corollary 4. Consider the following promise problem: we are given a circuit E : {0, 1}n → {0, 1},
a matrix A ∈ {0, 1}m×n, and an index i ∈ [n], such that A fails Yao’s next-bit test with respect to
E at index i with bias ϵ = poly( 1

m), and we must produce some z ∈ {0, 1}n−i such that fixing the
last n− i bits of E to z preserves a non-negligible bias for this next-bit test. If this problem can be
solved in deterministic polynomial time, then prBPP reduces to Lossy Code.

This follows directly from the above proof, since the only randomness the compressor uses is
its random choice of these leftover bits.
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A Succinct Representation of Primes

We give here a proof of a generalization of Lemma 7.

Lemma. Let c ∈ N. For sufficiently large n there exists a pair of polynomial time computable maps
g : {0, 1}n → {0, 1}n−c, f : {0, 1}n−c → {0, 1}n, such that for all n-bit primes p we have f(g(p)) = p.

Proof. Let p1, . . . , pk be the first k primes, and consider the probability that a uniformly random
tuple in Z/p1Z× · · · × Z/pkZ has no zero-entry. This probability is:

k∏
j=1

pj − 1

pj

We see that this probability approaches zero for large k, so we now fix some k such that this
probability is at most 2−2c. Let M =

∏
j≤k

pk. By the Chinese remainder theorem, this implies the

existence of a set S ⊆ [M ] of size at most 2−2cM , such that any integer x which is not divisible by
any of p1, . . . , pk can only be congruent to a value in S modulo Z/MZ. So in particular, any prime
p > pk can only take on this small set of values modulo M . This immediately gives the required
encoding of n bit primes larger then pk for sufficiently large n: we simply divide by M which saves
⌊logM⌋ bits, and encode the remainder using ⌈log(2−2cM)⌉ ≤ ⌊logM⌋ − 2c+ 1 bits, so overall we
can use at most n− c− 1 bits to encode an n bit prime greater then pk, provided n >> M (recall
that M is a fixed constant). This encoding is not quite good enough, as it does not work for the
primes p1, . . . , pk. However by adding a single bit to the encoding scheme we can trivially extend
to it encode these k = O(1) values, completing the proof.

B Alternate Proof of Nondeterministic Low-Space Simulation

We give here an alternative proof of the following theorem using the well-known “Easy Witness
Lemma:”

Theorem. If, for some exponential time bound T and ϵ > 0 we have:

NTIME[T (n)] ̸⊆ NTISPG[T (n)1+ϵ, T (n)ϵ, T (n)ϵ]

then ENP ̸⊆ size[2n/2n].

We start by stating the “Easy Witness Lemma” for ENP:

Lemma 13. [IKW02] If ENP ⊆ size[f(n)], then for any exponential time nondeterministic turing
machine M and every input x that M accepts, there is a circuit of size O(f(|x|)k) (for some fixed
universal constant k) whose truth table is a sequence of nondeterministic bits causing M to accept
x.

The only other tool we need is the NP-completeness of 3-SAT under hyper-efficient reductions
due to [FLvMV05], which can be readily used to show the following:

Theorem 9. Let L ∈ NTIME[T (n)]. There is a nondeterministic machine M deciding L in
time T ′(n) = Õ(T (n)) of the following special form. M guesses T ′(n) nondeterministic bits on a
separate read-only random-access “guess tape” at the beginning of its computation in one step. M
then runs in time T ′(n) and uses space at most Õ(log T (n) + n) on its work tapes and accepts or
rejects. As usual, we say M accepts an input x if there is some initial guess tape configuration
causing it to accept, and otherwise we say that it rejects x. We do not count the guess tape towards
the space usage of M.
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Proof. The stated simulator simply iterates over each clause of a 3-SAT instance produced by
applying the efficient 3-SAT reduction from L. For each clause, the verifier confirms that the
clause is satisfied by checking the variable assignments on the random access guess tape. Due to
the efficiency/high degree of uniformity in the 3-SAT reduction of [FLvMV05], it is straightforward
to confirm that this verifier runs in the stated time and space bounds.

Combining this with the easy witness lemmas we get:

Theorem 10. There is a universal constant k such that if ENP ⊆ size[f(n)], then for all expo-
nential time bounds T (n) we have:

NTIME[T (n)] ⊆ NTISPG[T (n)f(n)k, f(n)k, f(n)k]

Proof. Let L be in TIME[T (n)], and let M be the special machine deciding L which is given by
Theorem 9. Note that although this machine is defined in a nonstandard way (guessing Õ(T (n)) bits
in one step on a random access tape), it can be simulated by a standard multi-tape nondeterministic
machine M′ in poly(T (n)) = 2O(n) time in such a way that there is a one-to-one correspondence
between the nondeterministic guesses causing M and M′ to accept on any given input x ∈ L. In
particular, the machine M′ simply guesses Õ(T (n)) bits one at a time and stores them on one of
its tapes, and then simulates random access to these bits during the verification by walking along
the tape, incurring a time overhead of Õ(T (n)). Now by the ∆2 Easy Witness Lemma, assuming
ENP ∈ size[f(n)] we have that for any x ∈ L, there is a circuit of size f(n)k (for a fixed universal
constant k) whose truth table is a sequence of guesses causing M′ to accept x, and by the above
relation between M and M′ this truth table must also cause M to accept x.

We can then simulate M in low space and low nondeterminism as follows: at the start, instead
of guessing a full random access tape of nondeterministic bits, we guess a circuit C of size f(n)k

encoding a potential witness, which requires Õ(f(n)) nondeterministic bits. We then run M’s
random access verification procedure, replacing unit cost accesses to its random access guess tape
with evalutations of the circuit C. The time overhead to simulate each step of M’s verification is at
most poly(f(n)k) (to evaluate C on a requested index), and the additional space usage is Õ(f(n))
to store C (on top of the original space usage of the verifier which is Õ(log T (n) + n)). Since T is
an exponential time bound and f(n) ≥ n, overall this simulation runs in time T (n)poly(f(n)) and
uses space and nondeterminism at most poly(f(n)), and by the easy witness lemma this simulation
must correctly decide the language L.

The main theorem is then obtained by combining the above with the following amplification
lemma for ENP:

Lemma 14. If ENP ⊆ size[2n/2n], then ENP ⊆
⋂
ϵ>0

size[2ϵn].

An almost identical theorem is proven in [Kor21], for the case where both inclusions are of the
“infinitely often” type. We give a proof of this version below for completeness.

Proof. We prove this statement by contrapositive. Say there exists a language L ∈ ENP and a
constant ϵ > 0 such that for infinitely many n ∈ N, Ln has circuit complexity 2ϵn. By assumption L
can be computed in time 2cn with an NP oracle for some fixed c ∈ N. Thus, given 1n, we can also
compute the truth table of Ln, which has length 2n, in time 2n2cn = 2(c+1)n with an NP oracle.

We now define a language H ∈ ENP such that H /∈ size[2n/2n]. To compute H on inputs of
length n, we start by constructing a circuit D with the following properties:

1. D has W = 2n − 1 inputs and 2W outputs, and has size O(W 3) = O(23n).
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2. Given a string outside the range of D, we can find an 2n-bit truth table which cannot be
computed by a circuit of size 2n/2n in poly(2n) time with an NP oracle.

The existence of a such a D can follows directly from combining Lemmas 3 and 4. Now, for each
m ∈ {⌈6ϵ ⌉n, . . . , ⌈

6
ϵ ⌉(n+ 1)}, we do the following:

1. Compute the truth table of Lm, which takes time 2(c+1)m with an NP oracle.

2. Attempt to find a seed y ∈ {0, 1}W such that for all i ∈ {0, 1}m, Dm[y](i) = bWi where bi
denotes the ith bit of Lm. This can be accomplished using the Iter-Compress algorithm. By
Lemma 11, in poly(|D|m) = O(23nn) time this procedure will either find such a y, or else find
an empty pigeonhole e for D. By construction of D, if we can find one of its empty pigeonholes
this in turn allows us to construct a truth table of length 2n and circuit complexity exceeding
2n/2n, also in poly(2n) time. If this happens, we halt the entire procedure and use this truth
table to decide whether to accept or reject the input.

If we get through all values of m without finding an empty pigeonhole, we reject the input. This
concludes the definition of the machine deciding H. By construction we have H ∈ ENP.

By definition, for a particular input length n, if there is some m ∈ {⌈6ϵ ⌉n, . . . , ⌈
6
ϵ ⌉(n + 1)} for

which the above procedure finds an empty pigeonhole for D, then Hn will have circuit complexity at
least 2n/2n. Now, say this does not hold for a particular n. Then we claim that for all input lengths
m ∈ {⌈6ϵ ⌉n, . . . , ⌈

6
ϵ ⌉(n+1)}, Lm has circuit complexity less then 2ϵm, provided n is sufficiently large.

This follows directly from Lemma 8: if there is some y ∈ {0, 1}W such that the first bit of Dm[y](i)
equals the ith bit of Lm for all i ∈ {0, 1}m, then this directly gives a circuit of size O(|D|m)
allowing us to compute Lm using y as advice (namely the algorithm described in Lemma 8, which
can be made non-uniform at no additional cost by [Kor21]). For n sufficiently large, this O(|D|m)
term will be strictly less then 2ϵm. Thus, if H ∈ size[2n/2n], then for all sufficiently large n, Lm

has circuit complexity less than 2ϵm for all m ∈ {⌈6ϵ ⌉n, . . . , ⌈
6
ϵ ⌉(n + 1)}. But since the intervals

{[⌈6ϵ ⌉n, ⌈
6
ϵ ⌉(n + 1)]}n∈N cover all but finitely many natural numbers, this implies Lm has circuit

complexity less than 2ϵm for all sufficiently large m, contradicting our hardness assumption for L.
So H /∈ size[2n/2n], completing the proof.
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