Trading Time and Space in Catalytic Branching Programs

James Cook
Amazon

Ian Mertz
University of Toronto

February 17, 2022

Abstract

An m-catalytic branching program (Girard, Koucky, McKenzie 2015) is a set of m distinct branching programs for f which are permitted to share internal (i.e. non-source non-sink) nodes. While originally introduced as a non-uniform analogue to catalytic space, this also gives a natural notion of amortized non-uniform space complexity for f, namely the smallest value $|G|/m$ for an m-catalytic branching program G for f (Potechin 2017).

Potechin (2017) showed that every function f has amortized size $O(n)$, witnessed by an m-catalytic branching program where $m = 2^{2^n - 1}$. We recreate this result by defining a catalytic algorithm for evaluating polynomials using a large amount of space but $O(n)$ time. This allows us to balance this with previously known algorithms which are efficient with respect to space at the cost of time (Cook, Mertz 2020, 2021). We show that for any $\epsilon \geq 2^{n^{-1}}$, every function f has an m-catalytic branching program of size $O_{\epsilon}(mn)$, where $m = 2^{2^\epsilon n}$. We similarly recreate an improved result due to Robere and Zuiddam (2021), and show that for $d \leq n$ and $\epsilon \geq 2d^{-1}$, the same result holds for $m = 2^{O_{\epsilon}(n)}$ as long as f is a degree-d polynomial over \mathbb{F}_2. We also show that for certain classes of functions, m can be reduced to 2^{poly_n} while still maintaining linear or quasi-linear amortized size.

In the other direction, we bound the necessary length, and by extension the amortized size, of any permutation branching program for an arbitrary function between $3n$ and $4n - 4$.

\footnote{Work done before joining Amazon.}
1 Introduction

In computational complexity, there is often a focus on analyzing the worst-case scenario for a given computation model C and a given function f, but there are other natural cases to consider. One such case is amortized computation, where our C algorithm computes many copies of f in such a way that the average cost per copy may be much less than the worst-case cost of computing f a single time.

Amortized analysis has typically been used in the context of (time-bounded) Turing Machines, but studying the amortized complexity of syntactic—and in particular non-uniform—computation models goes back just as far, such as Uhlig’s results on circuits computing f on m different inputs. The study of amortized analysis for branching programs, a model corresponding to non-uniform space-bounded complexity, was initiated by Potechin [Pot17] and later standardized by Robere and Zuiddam [RZ21] for branching programs and other syntactic models.

The amortized model was introduced by [GKM15] in a different context, namely as a non-uniform version of catalytic space, originally introduced in the uniform setting by Buhrman et al. [BCK+14] as a new type of space-bounded complexity class. In a catalytic Turing Machine, there are four tapes: as in a traditional space-bounded Turing Machine there is a read-only input tape of length n, a write-only output tape of length 1, and a read-write work tape of length $s(n)$, but additionally we have a read-write catalytic tape of length $2^{O(s(n))}$. Ordinarily a tape of this length would allow us to capture $SPACE(2^{O(s(n))})$ rather than $SPACE(s(n))$, but the catalytic tape comes with a catch: the entire tape is initialized to an arbitrary string τ, and at the end of the computation it must contain that same string τ. Since the algorithm must work for every string τ (so, for example, τ cannot be compressed), it seems as if we should get no additional power over $SPACE(s(n))$. Buhrman et al. defied this intuition, showing that when $s(n) = O(\log n)$, the catalytic tape allows us to compute any function in TC^1, a class which as far as we know is larger even than $NL = NSPACE(s(n))$.

Going to the non-uniform setting, an m-catalytic branching program for f [GKM15] is defined as having m start nodes, m 1-end nodes, and m 0-end nodes, where if we restrict to any particular start node we get an ordinary branching program for f with a single start, 1-end, and 0-end node, all of which are distinct for each different choice of the start node. To see the connection to catalytic space, we can think of each start node as corresponding to a different setting of a $\log m$-length catalytic tape, where the “restoration” of the catalytic tape is captured by the fact that the two
end nodes corresponding to any start node are unique to that start node. After defining this model and showing multiple results extending the uniform arguments in [BCK+14], Girard, Koucký, and McKenzie [GKM15] left open the question of how large of an \(m \)-catalytic branching program is required to compute an arbitrary function \(f \).

As observed by Potechin [Pot17], this definition is also a natural interpretation of branching programs in the amortized world, as our \(m \)-catalytic branching program can be thought of as computing the function \(f \) \(m \) times. Thus in approaching the question left open by [GKM15], they also settled the question of the amortized space required for an arbitrary function \(f \); they showed that every function \(f \) has an \(m \)-catalytic branching program of size \(O(mn) \), or in other words amortized size \(O(n) \). The only catch is that the number of copies is doubly exponential; specifically, there exists a (layered) \(m \)-catalytic branching program of width \(2^m \) and length \(4n \), where \(m = 2^{2^{n-1}} \). The branching program also has the nice property of reading each input variable exactly 4 times, and thus this also has implications for read-\(k \) branching programs for \(k = O(1) \).

In terms of amortized size, the result of [Pot17] is clearly optimal up to constant factors, and so following [GKM15] the central open question they posed is to understand whether or not \(m \) can be improved while maintaining linear amortized size, and what the implications of this result may be. Taking up this challenge, Robere and Zuiddam [RZ21] showed that any function \(f \) can be computed by an \(m \)-catalytic branching program with the same parameters as [Pot17] even when \(m = 2^{\binom{n}{d}-1} \), where \(d \) is the degree of \(f \) as an \(\mathbb{F}_2 \) polynomial. Unfortunately this doesn’t allow us to go beyond [Pot17] for most functions, but it provides a much sharper analysis for many functions that still appear quite difficult. The proof uses properties of \(\mathbb{F}_2 \) polynomials under permutations of the input variables.

1.1 Our results

While the \(m \)-catalytic branching programs of [Pot17, RZ21] can be viewed as catalytic algorithms by definition, our initial aim is to restate these algorithms using the basic catalytic tools derived in [BCK+14] and follow-up works. In particular we reprove their results using the natural non-uniform variant of register programs, which were defined by Ben-Or and Cleve [BoC92] as space-bounded machines for computing simple arithmetic operations and were also the model used in [BCK+14] for their results. Our non-uniform register program follows by extending previous work on catalytic algorithms for the tree evaluation problem [CM20, CM21], by adapting their register
program to optimize time rather than space.

More importantly, as a result of this connection, we can also exploit a trade-off between space and time—here corresponding to \(m\) and length, respectively—in order to strongly break the \(2^{2^n-1}\) barrier for arbitrary functions. We show that for any function \(f\) and any \(\epsilon \geq 2n^{-1}\), there exists an \(m\)-catalytic branching program of width \(2m\) and length \(2^{1/\epsilon} \cdot 2\epsilon n\) where \(m = 2^{n+\frac{1}{\epsilon}} \cdot 2^n\). Focusing on the case when \(\epsilon = \Omega(1)\), this gives us a read-\(O(1)\) \(m\)-catalytic branching program with \(m\) significantly less than \(2^{2^n-1}\). We also improve on the sharper result of [RZ21], by showing that the same result holds with length \(2^{1/\epsilon} \cdot 2n\) and \(m = 2^{n+\frac{1}{\epsilon}(\leq d)}\), again for \(d\) being the \(\mathbb{F}_2\) degree of \(f\) and any \(\epsilon \geq 2d^{-1}\).

As a bonus, this interpretation also allows us to show significant improvements on \(m\) (while still maintaining linear amortized size) for some functions not covered by [RZ21], in particular all functions in \(\text{TC}^0\), the class of functions computable by low-depth threshold circuits of polynomial size. By allowing the amortized size to increase to quasilinear, we can capture the much larger class \(\text{VP}\), which is the class of all polynomials computable by poly-size arithmetic circuits.

We also study whether tradeoffs can be made in the other direction, namely whether length \(4n\) is optimal for \(m\)-catalytic branching programs of width \(O(m)\). We show that a few modifications can bring the length down to \(4n - 4\) even for the original parameter \(m = 2^{2^n-1}\). As with the results of [Pot17, RZ21] and our improvements, this program is not only layered with optimal width \(2m\), but in fact can be made a permutation branching program, meaning that each layer has exactly \(2m\) nodes and the transition between layers is restricted to be a permutation. For such restricted programs, we show that for any \(m\), even the AND function cannot be computed by permutation programs of length less than \(3n\) once \(n \geq 4\). This leaves three questions: 1) what, between \(3n\) and \(4n - 4\), is the shortest length of a permutation branching program for an arbitrary function?; 2) can \(m\) can be improved for programs of length \(3n\)—or in general any fixed length?; and 3) can we get any improvements by moving to more general programs?

2 Preliminaries

We introduce two space-bounded models of computation. Our first model is a variation of branching programs, which are the standard syntactic (i.e. non-uniform) notion of space-bounded computation (see [CMW+12]).
Definition 1 (m-catalytic branching program [GKM15]). Let $n \in \mathbb{N}$ and let $f : \{0,1\}^n \rightarrow \{0,1\}$ be an arbitrary function. An m-catalytic branching program is a directed acyclic graph G with the following properties:

- There are m source nodes and $2m$ sink nodes.
- Every non-sink node is labeled with an input variable x_i for $i \in [n]$, and has two outgoing edges labeled 0 and 1.
- For every source node v there is one sink node labeled with $(v,0)$ and one sink node labeled with $(v,1)$.

We say that G computes f if for every $x \in \{0,1\}^n$ and source node v, the path defined by starting at v and following the edges labeled by the value of the x_i labeling each node ends at the sink labeled by $(v,f(\.))$. The size of G is the number of non-sink nodes in G.

We also consider m-catalytic branching programs with standard restrictions:

- **layered branching programs**: for some $\ell \in \mathbb{N}$, there exists a function $\sigma : G \rightarrow [\ell + 1]$ such that for all $u \in G$, the outgoing edges of u go to nodes v,w such that $\sigma(v) = \sigma(w) = \sigma(u) + 1$; we call the set of nodes $\{v \in \sigma^{-1}(j)\}$ the jth layer. Furthermore for each $j \in [\ell]$ there exists an input variable $x_{j,i}$ which is the variable labeling every $v \in \sigma^{-1}(j)$.

The width of G is $\max_{j \in [\ell]} |\sigma^{-1}(j)|$ and the length of G is ℓ. Note that the size of G is at most the product of the length and width of G.

- **read-k branching programs**: for any start node v and any input x, each variable x_i is read at most k times during the computation starting at v. We note that for layered branching programs, this corresponds to each variable x_j labeling at most k layers.

- **permutation branching programs**: consider a layered branching program of width $2m$ with $2m$ source nodes $S = \{s_1 \ldots s_{2m}\}$ and $2m$ sink nodes $T = \{t_1 \ldots t_{2m}\}$, and let $P(x) : [2m] \rightarrow [2m]$ be the function such that $P(x)(i) = i'$ where the computation path starting from s_i on input x

2This is somewhat non-standard, but when talking about layered branching programs this simplifies things by defining the length as the number of times we read variables, which will in turn be connected to the number of instructions in our register program model. This choice does not affect the asymptotics of any results.

3By construction layer $\ell + 1$ will contain exactly the sink nodes of G. See the previous footnote for an explanation of this somewhat non-standard convention.
Figure 1: The computation of an \(m\)-catalytic branching program starting at source node \(i\) ends at sink node \((i, 0)\) if \(f(x) = 0\) (left) or \((i, 1)\) if \(f(x) = 1\) (right). In these diagrams, \(m = 4\).

Our second model comes from a line of work starting with [BoC92], more recently fleshed out in [BCK+14] and used in many follow-up works on catalytic computation [CM20, CM21].

Definition 2 (Transparent register program). Let \(\mathcal{R}\) be a ring and \(f \in \{0, 1\}^n \rightarrow \{0, 1\}\) a function. A register program \(P\) is defined by a set of registers \(S = \{R_1 \ldots R_s, R_{\text{out}}\}\), each storing a value in \(\mathcal{R}\), plus an ordered list of \(t\) instructions where for every \(j \in [t]\) the \(j\)th instruction is \(R \leftarrow R + p_j(x, S\setminus\{R\})\) for some \(i \in [n], R \in S\), and polynomial \(p_j \in \mathcal{R}[x, y_0 \ldots y_s]\).

We say that \(P\) computes \(f\) if for every \(x \in \{0, 1\}^n\), after initializing \(R = 0\) for all registers \(R\) and then executing all instructions in order, the value stored in \(R_{\text{out}}\) is \(f(x)\). We say that \(P\) transparently computes \(f\) if instead of initializing all \(R\) to 0, each \(R\) begins in an arbitrary initial state \(\tau_i\), and at the end of the program we have \(R_{\text{out}} = \tau_{\text{out}} + f(x)\) and \(R_i = \tau_i\) for all \(i\). The size of \(P\) is the number of registers \(s + 1\) and the time of \(P\) is the number of instructions \(t\).

We use register programs as an abstraction for understanding \(m\)-catalytic branching programs, which will be the model our main results will refer to. The two models are connected through the following observation (see Figure 2 for an example of our construction).
Observation 1. Let $f_n : \{0, 1\}^n \rightarrow \{0, 1\}$ be a family of functions and let P_n be a family of register programs over a family of rings R_n with size $s(n) + 1$ and time $t(n)$ each transparently computing f_n. Then f_n can be computed by a family of m-catalytic branching programs of width $|R_n|m$ and length $t(n)$, where $m = |R_n|^{s(n)}$.

Proof. We will define a branching program with width $|R_n|^{s(n)+1}$ and length $t(n)$. Each layer will represent a stage in the register program and each node in a layer will represent a setting to the registers at that time. Since each register program step only requires us to read one input variable, at layer k we query the variable associated with step k in the register program and create edges from each node in layer k to the nodes at layer $k + 1$ representing the state of our memory after the step has completed. We label each input node as τ for some distinct initial configuration $\tau = (\tau_1 \ldots \tau_{s(n)})$ to all registers except R_{out}, and we treat R_{out} as being initialized to 0. Then by the fact that P transparently computes f, starting at node τ we are guaranteed to reach a node $(\tau, f(x))$. Since in each layer we have a node for every setting of the $s(n) + 1$ registers, the width of our branching program is $|R_n|^{s(n)+1}$, and since each non-output layer corresponds to a unique instruction from our register program, the length of our branching program is $t(n)$.

Note 2.1. In our computation we often include instructions of the form $R \leftarrow R + p_j(R/R)$, i.e. instructions that do not require reading a variable x_i. By observing the above proof, it is clear that such instructions do not add any length to the branching program, as they can be computed at the same time as an adjacent instruction.

3 Saving Space

In this section we show that every function can be computed by an m-catalytic branching program with size $O(mn)$ for $m \ll 2^{2n} - 1$ (improving on [Pot17]) and $m \ll 2^{(\frac{2}{5}d)} - 1$ (improving on [RZ21]). We present our algorithm in three steps:

- In Section 3.1 we show a simpler version of our algorithm which is sufficient to reproduce—with a negligible loss in parameters—Potechin’s result [Pot17] that any function can be computed with a linear-amortized-size m-catalytic branching program. Our program has length $4n$ and width $2m$, where $m = 2^{2^n + n}$.

1: $R_1 \leftarrow R_1 + x_1$
2: $R_{\text{out}} \leftarrow R_{\text{out}} + R_1 x_2$
3: $R_1 \leftarrow R_1 + x_1$
4: $R_{\text{out}} \leftarrow R_{\text{out}} + R_1 x_2$

\[R_{\text{out}} = 0 \]
\[R_1 = 1 \]

Figure 2: A transparent register program computing $\text{AND}(x_1, x_2)$, and its realization as a 2-catalytic branching program using Observation 1. Each node is annotated (above, in boxes) with the register values it stores, and each non-sink node is labelled (inside the circle) with the input to be read. Dashed lines are transitions taken when that input is zero, and solid lines are taken when the input is one. Finally, the source nodes are assigned the numbers 1 and 2 (since $m = 2$), and the sink nodes are assigned pairs of numbers, so that like in the more abstract Figure 1, a computation starting at source node v will end at end at sink node $(v, f(x))$. Note that nodes/edges that appear in gray are unreachable from the start states and thus would not appear in the final branching program; they appear only for reference as to how the register program translates to a branching program.
• In Section 3.2 we show how to trade off between m and amortized size, yielding for every $k \in [d]$ an m-catalytic branching program of length $2^k \cdot 4\lceil n/k \rceil$ and width $2m$, where $m = 2^{k\cdot 2\lceil n/k \rceil} + n$.

• In Section 3.3 we show a simple modification of our first algorithm which reproduces—again with a negligible loss—the result of Robere and Zuiddam [RZ21] that m can be made as small as $2^{(\binom{n}{d} - 1)}$, where d is the degree of f as an \mathbb{F}_2 polynomial, with no cost to the length. Our program has length $4n$ and width $2m$, where $m = 2^{(\binom{n}{d} + n)}$. We then show that the tradeoff algorithm gives us an m-catalytic branching program of length $2^k \cdot 2n$ and width $2m$, where $m = 2^{k\cdot 2\lceil n/(d/k) \rceil + n}$.

In Sections 3.2–3.3, our register programs will all operate over the field of two elements: $\mathcal{R}_n = \mathbb{F}_2$ for all n. In Section 3.4 we show our results for restricted models using somewhat different techniques over different fields.

3.1 Basic Algorithm

In this section, we will prove:

Theorem 1. For any function $f : \{0, 1\}^n \rightarrow \{0, 1\}$ there is an m-catalytic branching program with length $4n$ and width $2m$ that computes f, where $m = 2^{n+2^n}$.

This is proved by Algorithm 1 below. This nearly reproduces Potechin’s Theorem 3.1 [Pot17], but with a worse value $m = 2^{n+2^n}$ instead of 2^{2^n-1}. Nonetheless, we will find it a useful starting point for our algorithm that trades space for time in Section 3.2.

Proof. We will design a program that uses $n + 2^n$ work registers plus one output register R_{out}, which is sufficient by Observation 1. First, we have n registers $R_{\text{in}}^1, \ldots, R_{\text{in}}^n$, corresponding to the n input bits. This correspondence is given by the following subroutine:

1: procedure **TOGGLEINPUT**
2: for $i = 1, \ldots, n$ do
3: \hspace{1em} $R_{\text{in}}^i \leftarrow R_{\text{in}}^i + x_i$
4: end for

\footnote{While the program of [RZ21] matches or beats [Pot17] for all d, our improved version of [RZ21] is worse than our improved version of [Pot17] when $d = \Omega(n)$ (although still an improvement over the original results of both papers), and thus we state and prove both results separately rather than subsuming our improved version of [Pot17].}
We now introduce our other registers: we have \(2^n \) ToggleInput. After ToggleInput runs, the registers have values \(R_i^{\text{in}} = \tau_i^{\text{in}} + x_i \), where \(\tau_i^{\text{in}} \) stands for the initial value of \(R_i^{\text{in}} \). If we run it a second time, the registers are restored to their original values: \(R_i^{\text{in}} = \tau_i^{\text{in}} \). Since we query all \(n \) variables once, ToggleInput requires time \(n \) to run once.

Before defining our other \(2^n \) registers, we introduce an algebraic view of \(f \), which will be our main focus. We can view \(f \) as a multilinear polynomial \(p_f \in \mathbb{F}_2[x_1, \ldots, x_n] \) using basic interpolation:

Lemma 2. For any function \(f : \{0,1\}^n \to \{0,1\} \) there is a multilinear polynomial \(p_f \in \mathbb{F}_2[x_1, \ldots, x_n] \) such that \(p_f(\bar{x}) = f(\bar{x}) \) for all \(\bar{x} \in \{0,1\}^n \).

Proof. For any \(\bar{y} \in \{0,1\}^n \), we can algebraically define the indicator function \(\bar{x} = \bar{y} \) as \(\prod_{i=1}^n (x_i + y_i + 1) \in \mathbb{F}_2[x_1, \ldots, x_n] \). Then we can set

\[
p_f = \sum_{\bar{y} \in \{0,1\}^n : f(\bar{y})=1} [\bar{x} = \bar{y}]
\]

Now define \(y_i = \tau_i^{\text{in}} + x_i \); in other words, \(y_i \) is the value of \(R_i^{\text{in}} \) after running ToggleInput. Define \(q_f(y_1, \ldots, y_n, \tau_1^{\text{in}}, \ldots, \tau_n^{\text{in}}) = p_f(y_1 - \tau_1^{\text{in}}, \ldots, y_n - \tau_n^{\text{in}}) \) to be the result of rewriting \(p_f \) using the \(y_i \) and \(\tau_i \) variables. For \(S, S' \subseteq [n] \), let \(c_{S,S'} \) be the coefficient of \((\prod_{i \in S} \tau_i^{\text{in}}) (\prod_{i \in S'} y_i) \) in \(q_f \), so that

\[
q_f(\tau_i^{\text{in}}, \bar{y}) = \sum_{S,S' \subseteq [n]} c_{S,S'} \left(\prod_{i \in S} \tau_i^{\text{in}} \right) \left(\prod_{i \in S'} y_i \right)
\]

We now introduce our other registers: we have \(2^n \) registers \(R_S \) indexed by subsets \(S \subseteq [n] \). Our next subroutine prepares us to use these registers to compute \(q_f \):

1: **procedure** ToggleMonomials
2: ToggleInput
3: for \(S' \subseteq [n] \) do
4: \(R_{S'} \leftarrow R_{S'} + \prod_{i \in S'} R_i^{\text{in}} \)
5: end for
6: ToggleInput
7: **end procedure**

5For example, if \(f \) is the OR function \(f(x_1, x_2) = x_1 \lor x_2 \), we have \(p_f(x_1, x_2) = x_1 + x_2 + x_1 x_2 \) and \(q_f(\tau_1^{\text{in}}, \tau_2^{\text{in}}, y_1, y_2) = y_1 + \tau_1^{\text{in}} + y_2 + \tau_2^{\text{in}} + y_1 y_2 + y_1 \tau_2^{\text{in}} + y_2 \tau_1^{\text{in}} + y_1 y_2 + \tau_1^{\text{in}} \tau_2^{\text{in}} \), and both are equal to \(f(x_1, x_2) \) so long as \(\bar{y} \) have the correct values.
After ToggleMonomials runs, we have $R_S = \tau_S + \prod_{i \in S} y_i$ for each $S \subseteq [n]$, where τ_S stands for the register’s initial value. The R_i^{in} registers have their initial values $R_i^{\text{in}} = \tau_i^{\text{in}}$. We run ToggleInput twice and have 2^n additional instructions, but since the additional instructions do not query any x variables they can be computed in the last x query of ToggleInput, for a total runtime of $2n$.

Our final algorithm for computing f is:

Algorithm 1 Transparently compute f in time $4n$ with $n + 2^n + 1$ registers.

1: ToggleMonomials
2: $R_{\text{out}} \leftarrow R_{\text{out}} + \sum_{S,S' \subseteq [n]} c_{S,S'} (\prod_{i \in S} R_i^{\text{in}}) R_{S'}$
3: ToggleMonomials
4: $R_{\text{out}} \leftarrow R_{\text{out}} - \sum_{S,S' \subseteq [n]} c_{S,S'} (\prod_{i \in S} R_i^{\text{in}}) R_{S'}$

When Line 2 executes, we have $R_{S'} = \tau_{S'} + \prod_{i \in S'} y_i$, so after that line,

$$R_{\text{out}} = \tau_{\text{out}} + \sum_{S,S' \subseteq [n]} c_{S,S'} \left(\prod_{i \in S} \tau_i^{\text{in}} \right) \left(\tau_{S'} + \prod_{i \in S'} y_i \right).$$

Then when Line 4 executes, we have $R_{S'} = \tau_{S'}$, so the final value is

$$R_{\text{out}} = \tau_{\text{out}} + \sum_{S,S' \subseteq [n]} c_{S,S'} \left(\prod_{i \in S} \tau_i^{\text{in}} \right) \left(\prod_{i \in S'} y_i \right) = \tau_{\text{out}} + f(x_1, \ldots, x_n).$$

So Algorithm 1 correctly computes f. The space of the program is $n + 2^n$ by construction, and as before we can ignore the instructions on lines 2 and 4 since they do not use x, giving us a total runtime of $4n$ from the two calls to ToggleMonomials.

3.2 Trading Space for Time

In this section, we will modify Algorithm 1 to make m dramatically smaller, in exchange for making the branching program longer.

Theorem 3. For any $k \in \mathbb{N}$ and any function $f : \{0, 1\}^n \rightarrow \{0, 1\}$ there is an m-catalytic branching program with length $2^k \cdot 2[n/k]$ and width $2m$ that computes f, where $m = 2^n + k \cdot 2^{[n/k]}$.

Before jumping into the proof of Theorem 3, we will address the main innovation of our work, namely trading off time for space. Namely we begin
by building a register program that takes time $n2^{n+1}$ but uses only the $n + 1$ registers $R^{\text{in}}_1 \ldots R^{\text{in}}_n, R^{\text{out}}$. This is similar to what Theorem 3 guarantees when $k = n$.

As in Sections 3.1 and 3.3, let $p_f \in \mathbb{F}_2[x_1, \ldots, x_n]$ be f as a polynomial, let $q_f \in \mathbb{F}_2[\tau^{\text{in}}_1, \ldots, \tau^{\text{in}}_n, y_1, \ldots, y_n]$ be equal to p_f so long as $y_i = \tau^{\text{in}}_i + x_i$ for all i, and let $c_{S,S'}$ be the coefficient of $(\prod_{i \in S} \tau^{\text{in}}_i) (\prod_{i \in S'} y_i)$ in q_f. We define a small generalization of \textsc{ToggleButton}, where we can choose to toggle only a subset of our inputs:

1: \textbf{procedure} \textsc{ToggleButton}(S')
2: \hspace{1em} for $i \in S'$ do
3: \hspace{2em} $R^{\text{in}}_i \leftarrow R^{\text{in}}_i + x_i$
4: \hspace{1em} end for
5: \textbf{end procedure}

Using \textsc{ToggleButton}(S'), we can replace the register $R_{S'}$ in Algorithm 1 with a separate set of instructions that computes the corresponding term of q_f:

\begin{algorithm}
\caption{A slow algorithm for computing q_f.}
1: for $S' \subseteq [n]$ do
2: \hspace{1em} \textsc{ToggleButton}(S')
3: \hspace{2em} $R^{\text{out}}_i \leftarrow R^{\text{out}} + \sum_{S \subseteq [n]} c_{S,S'} \cdot \prod_{i \in [n]} R^{\text{in}}_i$
4: \hspace{1em} \textsc{ToggleButton}(S')
5: end for
\end{algorithm}

Whenever Line 3 is executed, $R^{\text{in}}_i = y_i$ for $i \in S'$, and $R^{\text{in}}_i = \tau^{\text{in}}_i$ for $i \notin S'$. By construction of q_f, S and S' are disjoint whenever $c_{S,S'} \neq 0$, from which it follows that $R^{\text{in}}_i = \tau^{\text{in}}_i$ for $i \in S$. Thus the effect of Line 3 is to add $\sum_{S \subseteq [n]} c_{S,S'} (\prod_{i \in S} \tau^{\text{in}}_i) (\prod_{i \in S'} y_i)$ to R^{out}. Since this is run for every subset S', the overall effect of the program is to add

$$\sum_{S,S' \subseteq [n]} c_{S,S'} \left(\prod_{i \in S} \tau^{\text{in}}_i \right) \left(\prod_{i \in S'} y_i \right) = p_f(x_1 \ldots x_n)$$

to R^{out}.

\textbf{Overview of full proof} Our goal is to balance Algorithms 1 and 2 by removing the registers R_S corresponding to large subsets S and using slow multiplication to build the polynomial q_f from the remaining small subsets. In particular, if we divide the input bits into k groups each of size $\lfloor n/k \rfloor$, and only
As we did with Algorithm 1. This gives us a new polynomial time.

store all subsets within each group, then any monomial \(c_{S,S'} \prod_{i \in S} \tau_i^{\text{in}} \prod_{i \in S'} y_i \) can be computed by multiplying together one subset from each group, namely the restriction of \(S \) to the group. Instead of \(2^n \) registers for all subsets, we use only \(k \cdot 2^{n/k} \) registers corresponding to subsets in the \(k \) groups, and we can compute all the corresponding monomials into these registers in time \(2n \) using the first half of Algorithm 1. Then since we are only multiplying \(k \) monomials together, we can compute \(q_f \) using Algorithm 2 in time \(2^k \cdot 2 \cdot 2n \), since each call to \(\text{TogglesSomeInputs} \) is replaced with our \(2n \) time execution of Algorithm 1.

As a slight last speedup, we use a Gray code to order our subsets in Algorithm 2, replacing two executions of \(\text{TogglesSomeInputs} \) with a subroutine toggling a single group on or off and only spending \(2 \left\lceil \frac{n}{k} \right\rceil \) time to do so. This allows us to compute \(q_f \) in \(2^k \cdot 2 \left\lfloor \frac{n}{k} \right\rfloor \) time rather than \(2^k \cdot 4n \) time.

Proof of Theorem 3. For \(j \in [k] \) let \(b_j = \lfloor nj/k \rfloor \), and divide the range \([n]\) into \(k \) groups: \(G_1 = \{1, \ldots, b_1\}, G_2 = \{b_1 + 1, \ldots, b_2\}, \ldots, G_k = \{b_{k-1} + 1, \ldots, b_n\} \). For each group \(G_j \), we have \(2^{|G_j|} \) registers \(R_{j,S} \) indexed by subsets \(S \subseteq G_j \). As in all previous algorithms we also use \(n \) registers \(R_{\text{in}}, \ldots, R_{\text{out}} \), corresponding to the \(n \) input bits, for a total of \(n + \sum_{j=1}^k 2^{|G_j|} \) registers plus the output register \(R_{\text{out}} \).

We’ll begin by rewriting the polynomial \(q_f \) in a new form. Recall from Section 3.1 that \(q_f(\tau^{\text{in}}, \bar{y}) = f(x) \) so long as \(\bar{y} = x + \tau^{\text{in}} \), and

\[
q_f(\tau^{\text{in}}, \bar{y}) = \sum_{S,S' \subseteq [n]} c_{S,S'} \left(\prod_{i \in S} \tau_i^{\text{in}} \right) \left(\prod_{i \in S'} y_i \right)
\]

Now, for every \(S' \subseteq [n] \), define \(S'_j := S' \cap G_j \). For each \(j \in [k] \) and \(S \subseteq G_j \), let \(z_{j,S} = \tau_{j,S} + \prod_{i \in S} y_i \), where \(\tau_{j,S} \) is the initial value of register \(R_{j,S} \). Now for every monomial in \(q_f \), we split the term \(\prod_{i \in S'} y_i \) in the monomial into \(k \) different products \(\prod_{i \in S'_j} y_i \), each of which we can replace with \(z_{j,S'_j} - \tau_{j,S'_j} \).

This gives us a new polynomial

\[
r_f(\tau^{\text{in}}, \bar{\tau}, \bar{z}) = \sum_{S,S' \subseteq [n]} c_{S,S'} \left(\prod_{i \in S} \tau_i^{\text{in}} \right) \left(\prod_{i=1}^k (z_{j,S'_j} - \tau_{j,S'_j}) \right)
\]

As we did with \(q_f \), for \(S, S' \subseteq [n] \) and \(T \subseteq [k] \), let \(d_{S,S',T} \) be the coefficient of \((\prod_{i \in S} \tau_i^{\text{in}})(\prod_{j \in T} z_{j,S'_j})(\prod_{j \in [k]\setminus T} \tau_{j,S'_j}) \) in \(r_f \), so that

\[
r_f(\tau^{\text{in}}, \bar{\tau}, \bar{z}) = \sum_{S \subseteq [n]} \sum_{S' \subseteq [n]} \sum_{T \subseteq [k]} d_{S,S',T} \left(\prod_{i \in S} \tau_i^{\text{in}} \right) \left(\prod_{j \in T} z_{j,S'_j} \right) \left(\prod_{j \in [k]\setminus T} \tau_{j,S'_j} \right)
\]
which is equivalent to \(f(x_1 \ldots f_n) \) as long as \(z_{j,S_j'} = \tau_{j,S_j'} + \prod_{i \in S_j'} (x_i + \tau_i^{in} + 1) \).

Following \textsc{ToggleSomeInputs}(S'), we define new versions of \textsc{ToggleInput} and \textsc{ToggleMonomials} from Section 3.1 which focus on some groups and not others. In fact we will only focus on a single group \(G_j \) rather than a subset of the groups, as we will order our subsets \(S' \) in such a way that we will only ever need to toggle one group at a time:

```
1: procedure \textsc{ToggleInputForGroup}(j)
2:     for \( i \in G_j \) do
3:         \( R_i^{in} \leftarrow R_i^{in} + x_i \)
4:     end for
5: end procedure

1: procedure \textsc{ToggleMonomialsForGroup}(j)
2:     \textsc{ToggleInputForGroup}(j)
3:     for \( S \subseteq G_j \) do
4:         \( R_{j,S} \leftarrow R_{j,S} + \prod_{i \in S} R_i^{in} \)
5:     end for
6:     \textsc{ToggleInputForGroup}(j)
7: end procedure
```

We are now ready to assemble Algorithm 4, which completes the proof of Theorem 3. To incorporate our improvement using Gray codes [Gra53], let \(T_0 = \emptyset, \ldots, T_{2^k-1} \) be an ordering of all subsets of \([k]\) such that each consecutive pair of sets \(T_\ell, T_{\ell+1 \mod 2^k} \) differs by exactly one element \(e_\ell \in [k] \); thus we will only need to toggle the group \(G_{e_\ell} \) as claimed:

\textbf{Algorithm 3} Transparently compute \(f \) in time \(2^k \cdot 2^{\lceil n/k \rceil} \) with \(n + k \cdot 2^\lceil n/k \rceil \) registers.

```
1: for \( \ell = 0, \ldots, 2^k - 1 \) do
2:     \( R_{\text{out}} \leftarrow R_{\text{out}} + \sum_{S \subseteq [n]} \sum_{S' \subseteq [n]} d_{S,S',T_\ell} (\prod_{i \in S} R_i^{in}) (\prod_{j=1}^k R_{j,S_j'}) \)
3:     \textsc{ToggleMonomialsForGroup}(e_\ell)
4: end for
```

Each time Line 2 is reached, we have \(R_{j,S} = \tau_{j,S} + \prod_{i \in S} y_j \) for \(j \in T_\ell \), and \(R_{j,S} = \tau_{j,S} \) for \(j \in [k] \setminus T_\ell \). We also have \(R_i^{in} = \tau_i^{in} \) for each \(i \in [n] \). So the effect of the line is to add

\[
\sum_{S \subseteq [n]} \sum_{S' \subseteq [n]} d_{S,S',T_\ell} \left(\prod_{i \in S} \tau_i^{in} \right) \left(\prod_{j \in T_\ell} z_{j,S_j'} \right) \left(\prod_{j \in [k] \setminus T_\ell} \tau_j,S_j' \right)
\]

to \(R_{\text{out}} \). Summing this expression over all possible subsets \(T_\ell \subseteq [k] \) gives
\[R^{\text{out}} = r^{\text{out}} + r_f(\cdots) = r^{\text{out}} + f(x_1, \ldots, x_n), \] and so our algorithm transparently computes \(f \).

Note 3.1. It is not difficult to save \(k \) registers by removing \(R_1, \emptyset, \ldots, R_k, \emptyset \), as we simply add each value \(d_{S, \emptyset, T}(\prod_{i \in S} R_i^{\text{in}}) \) to our polynomial without concerning ourselves with any \(x_i \) (and by extension any \(y_i \) or \(z_i \)) variables.

3.3 Bounded-Degree Polynomials

Robere and Zuiddam [RZ21, Theorem 5.13] showed that if \(f \) is a polynomial of degree \(d < n \), it is possible to improve on Potechin’s theorem by decreasing \(m = 2^{2^n-1} \) down to \(m = 2^{2^{\left\lfloor \frac{n}{2} \right\rfloor}} - 1 \). Here we show how to adapt Algorithm 1 to get a similar result, and then at the end of the section we build a tradeoff algorithm to improve it.

Theorem 4. For any function \(f : \{0, 1\}^n \to \{0, 1\} \) which is a degree-\(d \) polynomial, there is an \(m \)-catalytic branching program with length \(4n + 1 \) and width \(2m \) that computes \(f \), where \(m \leq 2^{n+\left\lfloor \frac{n}{2} \right\rfloor} \).

Again, while this is slightly worse than Robere and Zuiddam’s original result, we include it to show the flexibility of our approach and as a stepping stone to our tradeoff result.

Proof. As before, let \(p_f \in \mathbb{F}_2[x_1, \ldots, x_n] \) be \(f \) as a polynomial. We make the following change to Algorithm 1: for every \(S' \in [n] \) such that \(c_{S, S'} = 0 \) for all \(S \), remove the register \(R_{S'} \).

Formally, as before define \(\mathbb{F}_2 \) polynomials

\[
p_f(\overline{x}) = \sum_{\overline{y} \in \{0, 1\}^n : f(\overline{y}) = 1} \prod_{i=1}^{n}(x_i + y_i + 1)
\]

\[
q_f(\overline{\tau}^{\text{in}}, \overline{y}) = p_f(\overline{y} - \overline{\tau}^{\text{in}}) = \sum_{S, S' \subseteq [n]} c_{S, S'} \left(\prod_{i \in S} \tau_i^{\text{in}} \right) \left(\prod_{j \in S'} y_j \right)
\]

Let \(\mathcal{M}_f \subseteq 2^n \) be the set of all \(S' \) such that there exists an \(S \) where \(c_{S, S'} \neq 0 \). We define the following subroutine:

1: **procedure** TogGLEUSeFULMONOMIALS
2: TogGLEINPUT
3: **for** \(S \in \mathcal{M}_f \) **do**
4: \(R_S \leftarrow R_S + \prod_{i \in S} R_i^{\text{in}} \)
5: **end for**
The only difference from ToggleMonomials is that we ignore subsets S which are not in M_f (not “useful”). Our final algorithm is

Algorithm 4 Transparently compute a degree-d polynomial f in time $4n$ with $n + \binom{n}{d}$ registers.

1: $\text{ToggleUsefulMonomials}$
2: $R^{\text{out}} \leftarrow R^{\text{out}} + \sum_{S \subseteq [n]} \sum_{S' \in M_f} c_{S,S'} (\prod_{i \in S} R^{\text{in}}_i) R_{S'}$
3: $\text{ToggleUsefulMonomials}$
4: $R^{\text{out}} \leftarrow R^{\text{out}} - \sum_{S \subseteq [n]} \sum_{S' \in M_f} c_{S,S'} (\prod_{i \in S} R^{\text{in}}_i) R_{S'}$

To conclude the proof of Theorem 4, we need to show $|M_f| \leq \binom{n}{d}$. Indeed, since p_f is a degree-d polynomial, q_f also has degree d, which means $c_{S,S'} = 0$ whenever $|S| + |S'| > d$. So, M_f only contains sets S' with size at most d, of which there are $\binom{n}{d}$. \qed

Note 3.2. The original algorithms of [Pot17, RZ21] rely on the symmetries of f as an \mathbb{F}_2 polynomial, in essence having each start state represent a possible function g which can be obtained from f by negating input variables or taking \oplus with f itself. [Pot17] takes this set of functions to be the space of all n-variable functions, while [RZ21] analyzes these rules and obtains a more exact characterization. While this characterization is phrased in terms of orbit closures, it can also be described in terms of polynomials as the span of the set of all monomials appearing in f as an \mathbb{F}_2 polynomial along with all submonomials of this set; this exactly coincides with our notion as $\prod_{i \in S} y_i$ generates all submonomials $\prod_{i \in S' \subseteq S} x_i$ for $y_i := x_i + \tau_i$, which leads to the quantitative results being essentially the same despite taking two completely different approaches.

Now we state our tradeoff algorithm, which goes much in the same way as Theorem 3 but without breaking the variables into groups.

Theorem 5. For any $k \in \mathbb{N}$ and any function $f : \{0,1\}^n \to \{0,1\}$ there is an m-catalytic branching program with length $2^k \cdot 2n$ and width $2m$ that computes f, where $m = 2^{n+k}\left(\binom{n}{\lfloor d/k \rfloor}\right)$.

Proof. For any $\Delta \in \mathbb{N}$, let $M_f^{\Delta} \subseteq \binom{n}{\leq \Delta}$ be the set of all S'' of size at most Δ such that there exists an $S \subseteq [n]$ and $S' \supseteq S''$ where $c_{S,S'} \neq 0$. We will have k registers $R_{j,S''}$ for every $S'' \in M_f^{\lfloor d/k \rfloor}$, as well as the usual registers
\(R_1^{\text{in}} \ldots R_n^{\text{in}}, R^{\text{out}}\). Note that this gives us our target space, as \(|M_f^{[d/k]}| \leq n^{\left\lceil \frac{d}{k} \right\rceil}\).

Following our proof of Theorem 3, let \(z_{j,S} = \tau_{j,S} + \prod_{i \in S} y_i\), where \(\tau_{j,S}\) is the initial value of register \(R_{j,S}\), and for every monomial in \(q_f\) we split the term \(\prod_{i \in S_j} y_i\) in the monomial arbitrarily into \(k\) different products \(\prod_{i \in S_j} y_i\) — each of which we can replace with \(z_{j,S_j} - \tau_{j,S_j}\) — where \(S_j' \in M_f^{[d/k]}\) and \(\bigcup_{j \in [k]} S_j' = S\). This is possible because each non-zero term in \(q_f\) has degree at most \(d\), meaning that \(|S'| \leq d\) and furthermore every subset of \(S'\) of size at most \(\lceil d/k \rceil\) appears in \(M_f^{[d/k]}\) by construction.\(^6\)

Fixing some particular partition \((S'_j)_{j \in [k]}\) for each \(S\), this gives us a new polynomial

\[
t_r(f, \overline{r^{\text{in}}}, \tau, \overline{z}) = \sum_{S \subseteq [n]} \sum_{S' \subseteq [n]} \sum_{T \subseteq [k]} d_{S,S',T} \left(\prod_{i \in S} \tau_i^{\text{in}}\right) \left(\prod_{j \in T} z_{j,S'_j}\right) \left(\prod_{j \in [k] \setminus T} \tau_{j,S'_j}\right)
\]

which is equivalent to \(f(x_1 \ldots f_n)\) as long as \(z_{j,S'_j} = \tau_{j,S'_j} + \prod_{i \in S'_j} (x_i + \tau_i^{\text{in}} + 1)\).

We define \texttt{ToggleMonomialsForGroup} as before, using \texttt{ToggleInput} instead of \texttt{ToggleInputForGroup} since the variables are no longer split into groups, and using a Gray code we get our final algorithm:

\[
\textbf{Algorithm 5} \quad \text{Transparently compute } f \text{ in time } 2^k \cdot 2n \text{ with } n + k \cdot \left\lceil \frac{n}{\lceil d/k \rceil} \right\rceil \text{ registers.}
\]

1: for \(\ell = 0, \ldots, 2^k - 1\) do
2: \(R^{\text{out}} \leftarrow R^{\text{out}} + \sum_{S \subseteq [n]} \sum_{S' \subseteq [n]} d_{S,S',T} \left(\prod_{i \in S} R_i^{\text{in}}\right) \left(\prod_{j = 1}^{k} R_{j,S'_j}\right)\)
3: \texttt{ToggleMonomialsForGroup}(e_{\ell})
4: end for

The analysis is identical to that of Algorithm 4, except the runtime is \(2^k \cdot 2n\) rather than \(2^k \cdot 2\lceil n/k \rceil\) because we do not split the variables into groups. \(\square\)

\(^6\)Our use of \(j\) here is slightly different than in our previous proof; namely, \(j\) is not linked to a specific block of variables, and rather we arbitrarily partitioned \(S'\) into \(k\) sets and assigned them each a distinct \(j\). This will result in us having to spend time \(n\) to load the monomials in, rather than time \(\lceil n/k \rceil\) as in the previous proof, but this is necessary as we have no guarantee that there is a partition of the variables such that every monomial of degree at most \(d\) is split into \(k\) monomials of degree at most \(\lceil d/k \rceil\). Note that this is where our algorithm performs worse than Algorithm 4 when \(d = \Omega(n)\).
3.4 Getting More for Restricted Models

To close our discussion of improved values of m for general functions, we give a few examples of restricted classes of functions where m can be greatly improved.

For the results in this section, we will need to switch from working over \mathbb{F}_2 to more general fields. Observation 1 produces an m-catalytic branching program of width $|\mathcal{R}_n|m$. The following lemma shows how to reduce the width to $3m$ when \mathcal{R}_n is a finite field, at the cost of a factor of $|\mathcal{R}_n|$ increase in m.

Lemma 6. Let K_n be a family of finite fields. Let $f_n : \{0,1\}^n \rightarrow \{0,1\}$ be a family of functions and let P_n be a family of register programs over the fields K_n with size $s(n) + 1$ and time $t(n)$ each transparently computing f_n. Then f_n can be computed by a family of m-catalytic branching programs of width $3m$ and length $t(n)$, where $m = |K_n|^{s(n) + 1}$.

Proof. We will proceed as in Observation 1, except that instead of initializing R^{out} to 0, we will allow it to take on any starting value (hence the factor-of-$|K_n|$ increase in m). In order to detect whether R^{out} has changed at the end of the program, we store a minimal amount of information about the starting value of R^{out}.

Let $g : K_n \rightarrow \{0,1,2\}$ be a function with the following property: for any $x \in K$, $g(x + 1) \neq g(x)$. One way to construct g is as follows. Let p be the characteristic of K, i.e. $\prod_{i=0}^{p-1} = 0$ in p. Then K_n can be viewed as a field extension of \mathbb{F}_p, and so K_n can be viewed as a vector space over \mathbb{F}_p. Let $\{e_1, e_2, \ldots, e_k\}$ be a basis for K_n over \mathbb{F}_p, where $e_1 = 1 \in K_n$. For any $x \in K_n$, let $x_1 \in \mathbb{F}_p$ be its first coordinate under this basis. Then set $g(x) = 2$ if $x_1 = p - 1$ and for $x_1 \in \{0,1,\ldots,p-2\}$ set $g(x) = x_1 \bmod 2$.

Each node in our branching program, except the sink nodes, will be labelled with a tuple $(a, R^{\text{out}}, R_1, \ldots, R_{s(n)}) \in \{0,1,2\} \times \mathbb{F}_p^{s(n) + 1}$, representing an assignment of values to registers and one extra value $a \in \{0,1,2\}$.

Each intermediate (non-source non-sink) layer will have $3 \cdot p^{s(n) + 1}$ nodes, representing all possible tuples. The source layer will have all tuples satisfying the constraint $a = g(R^{\text{out}})$, for a total of $m = p^{s(n) + 1}$ nodes. In this way, the program “remembers” $g(\tau^{\text{out}})$ where τ^{out} is the initial value of R^{out}.

We proceed as in the proof of Observation 1: for each instruction of the register program querying an input variable x_i, we include a branching program layer which reads that same input, and modifies the values of the stored registers appropriately. These layers preserve the extra value a, so...
that all the non-sink nodes reached by a computation have the same value of \(a\), which is equal to \(g(\tau^{\text{out}})\).

The final (sink) layer is constructed the same way, with two changes. First, nodes where \(a \notin \{g(R^{\text{out}}), g(R^{\text{out}} - 1)\}\) are removed. Because the register program computes \(f(x) \in \{0, 1\}\), the final value of \(R^{\text{out}}\) is guaranteed to be either \(\tau^{\text{out}}\) or \(\tau^{\text{out}} + 1\), and so those removed nodes were not reachable anyway. Second, we relabel each node \((a, R^{\text{out}}, R_1, \ldots, R_{s(n)})\) to \((a', R^{\text{out}}, R_1, \ldots, R_{s(n)})\) where \(a' = 0\) if \(a = g(R^{\text{out}})\) and \(a' = 1\) if \(a \neq g(R^{\text{out}})\). By the construction of \(g\), \(a'\) is guaranteed to be 0 when \(R^{\text{out}} = \tau^{\text{out}}\) and 1 when \(R^{\text{out}} = \tau^{\text{out}} + 1\).

3.4.1 Constant depth circuits

A Boolean circuit is a rooted directed acyclic graph \(C\) where each leaf node is labeled with a variable \(x_i\) or its negation \(\overline{x_i}\), and where each internal node (which we refer to as a gate) is labeled with a Boolean function; the output of \(C\) is the value of the root, where the value of a leaf is the value of the input for the corresponding variable, and the value of a gate is the output of the function evaluated on the values of its children. \(C\) computes \(f\) if their outputs are the same on every input. The depth of \(C\) is length of the longest directed path from the root of \(C\) to any leaf node, and the size of \(C\) is the number of nodes in \(C\).

The first result is fairly immediate from the main technical section of [BCK+14].

Lemma 7. Let \(f\) be a function computed by a circuit \(C\) which has depth \(d\), size \(s\), and consists only of MAJ gates. Then \(f\) can be computed by an \(m\)-catalytic branching program of length \(4^d \cdot n\) and width \(3m\), where \(m = (2s)^{2s^3}\).

Proof. Let \(p_s\) be an arbitrary prime in the range \((s, 2s]\). Section 3.3 of [BCK+14] gives a register program \(P\) simulating the computation of \(C\), which reads leaves of \(C\) at most \(4^d \cdot n\) times in total and uses \(s \cdot 2p_s \cdot s/2 \leq 2s^3\) registers over \(\mathbb{F}_{p_s}\). Our result follows by Lemma 6.

Focusing on the case of TC\(^0\), defined as the set of all circuits of depth \(O(1)\) and size poly\((n)\) consisting only of MAJ gates, we get linear amortized size with \(m\) only singly exponential in \(n\). While such circuits are known to have poly-size branching programs even for \(m = 1\)—following directly from the fact that TC\(^0\) \(\subseteq\) L—no results for linear amortized size were previously known. For example, even applying Theorem 5 to a single MAJ gate would result in \(m\) being almost maximally large, as MAJ has degree \(n/2\) over \(\mathbb{F}_2\).
Corollary 8. Any function \(f \in TC^0 \) can be computed by an \(m \)-catalytic branching program of amortized size \(O(n) \), where \(m = 2^{\text{poly}(n)} \).

3.4.2 Arithmetic circuits

Our next results will take us out of the realm of Boolean functions and into the world of polynomials. Fix some field \(F \) for the rest of this section. An arithmetic circuit is similar to a Boolean circuit as defined before, but now the leaves will carry values in \(\mathbb{F} \) and the gates will compute the functions + and \(\times \) over \(\mathbb{F} \). Clearly such a circuit computes a polynomial over \(\mathbb{F} \). Note that a branching program computing the output of an arbitrary such circuit would need to have \(|\mathbb{F}| \cdot m \) output nodes, which would immediately rule out any linear amortized size. To get around this, we will assume the circuit only ever outputs 0 or 1.

We will focus on arithmetic circuits of logarithmic depth. Our techniques will be similar to the previous result, meaning that we will incur a cost that is exponential in the depth, which will unfortunately take us out of the regime of linear amortized size. Nevertheless, we will leverage the structure of \(VP \) to substantially mitigate this loss and still achieve a highly improved value of \(m \).

Lemma 9. Let \(\mathbb{F} \) be any finite\(^8\) field. Let \(f \) be a polynomial over \(\mathbb{F} \) the output of which is always 0 or 1, and let \(C \) be an arithmetic circuit over \(\mathbb{F} \) computing \(f \) which has depth \(d \), size \(s \), and consists of + gates of unbounded fan-in and \(\times \) gates of fan-in 2. Then for any \(k \leq d \), \(f \) can be computed by an \(m \)-catalytic branching program of length \(4^{[d/k]} \cdot n \) and width \(3m \), where \(m = |\mathbb{F}|^{\binom{s}{\leq 2k}} \).

Proof. We will describe a register program which uses \(\binom{s}{\leq 2k} \cdot s \) registers which each contain an element of \(\mathbb{F} \). Each register will be labeled with a unique gate \(g \) from the circuit \(C \)—in fact we will only need registers for some of the gates, but we will potentially overcount to keep things simpler—as well as a subset \(S \subseteq [s] \) of size at most \(2^k \), and we write the corresponding register as \(R_{g,S} \). We have \(\binom{s}{\leq 2k} \cdot s \) registers, so we get \(m = |\mathbb{F}|^{\binom{s}{\leq 2k}} \).

Our goal will be transparently compute, for \(L = 1 \ldots [d/k] \), the value of every gate \(g \) at level \(Lk \) of the circuit into \(R_{g,\emptyset} \), inductively using the fact that we can compute every gate appearing at level \((L-1)k\). To

\(^7\)This corresponds to the Boolean part of an arithmetic circuit class, which gives a natural way of computing Boolean functions with arithmetic circuits (see [AGM17]).

\(^8\)If \(\mathbb{F} \) is not finite, the proof produces a branching program of infinite width.
start this procedure off, we observe that for $L = 0$, we can compute all leaf nodes using n total input queries, namely by handling all leaves labeled x_i at the same time with one query to x_i. Now we proceed inductively using the following lemma:

Lemma 10. Let $L \in [\lfloor d/k \rfloor]$, and let P_{L-1} be a register program which transparently computes, for all g at level $(L-1)k$, the value at g into $R_{g,\emptyset}$. Then there exists a register program P_L making 4 calls to P_{L-1} which transparently computes, for all g at level Lk, the value at g into $R_{g,\emptyset}$.

Proof. Consider a single gate g at layer Lk, let $g_1 \ldots g_t$ be the gates at layer $(L-1)k$, and let $p_g = \sum_S c_S \prod_{i \in S} g_i$ be the polynomial over \mathbb{F} computed at gate g with inputs $g_1 \ldots g_t$. By induction every layer $\ell \in [(L-1)k..Lk]$ has degree at most $2^{\ell-(L-1)k}$ in $g_1 \ldots g_t$, and thus g has degree at most 2^k.

We now follow our proof of Theorem 4 exactly, except for two changes. First, `ToggleInput` will be replaced with P_{L-1}. Second, some calls to P_{L-1} or `ToggleUsefulMonomials_g` will be replaced with their inverses P_{L-1}^{-1} or `ToggleUsefulMonomials_g`. Note that any transparent register program P has an inverse P^{-1} of the same length such that PP^{-1} has no effect; see for example [BCK+14]. In the previous sections this was not necessary because the field had characteristic 2, and so each procedure was its own inverse.

Let τ_i be the initial value in g_i, let x_i be the value computed into g_i, define $y_i = \tau_i + x_i$, and let $q_g(\overrightarrow{y}, \overrightarrow{\tau}) = \sum_{S, S'} c_{S, S'} \prod_{i \in S} \tau_i \prod_{i \in S'} y_i$ be equal to $p(\overrightarrow{y} - \overrightarrow{\tau})$. Let M_g be the set of all non-empty monomials for which $c_{S, S'} \neq 0$ for some S; note that $|M_g| \leq s^{2k}$ by our degree upper bound. For each $S' \in M_g$, register $R_{g, S'}$ will correspond to the sum of monomials with coefficients $c_{S, S'}$. Since $\emptyset \notin M_g$, we can repurpose $R_{g, \emptyset}$ as our output register. Together, the following two procedures together compute q_g as before:

1: **procedure** `ToggleUsefulMonomials_g`
2: \[P_{L-1} \]
3: for $S \in M_g$ do
4: \[R_{g, S} \leftarrow R_{g, S} + \prod_{i \in S} R_{g, \emptyset} \]
5: end for
6: \(P_{L-1} \)
7: end procedure

1: procedure FinalCompute
2: ToggleUsefulMonomials
3: \(R_{g,\emptyset} \leftarrow R_{g,\emptyset} + \sum_{S \subseteq [t]} c_{S,\emptyset} + \sum_{S' \in M_{g}} c_{S,S'} (\prod_{i \in S} R_{g,i,\emptyset}) R_{g,S'} \)
4: ToggleUsefulMonomials
5: \(R_{g,\emptyset} \leftarrow R_{g,\emptyset} - \sum_{S \subseteq [t]} c_{S,\emptyset} - \sum_{S' \in M_{g}} c_{S,S'} (\prod_{i \in S} R_{g,i,\emptyset}) R_{g,S'} \)
6: end procedure

The analysis is identical to Theorem 4 and so we leave it to the reader. To compute all \(g \) at level \(L_k \), we replace every basic instruction in both ToggleUsefulMonomials\(_g\) and FinalCompute\(_g\) with the same instruction looped over all \(g \) at level \(L_k \); this does not add any recursive calls to either program, and by the correctness of the original algorithm for one \(g \) this new algorithm correctly computes all \(g \). Thus level \(L_k \) requires four calls to level \((L - 1)k\) as claimed.

If \(k \) divides \(d := P_{d/k} \) computes \(C \) correctly. Otherwise the same argument gives a program \(P \) making four calls to \(P_{\lfloor d/k \rfloor} \) computing \(C \) correctly. This gives a recursion of total height \(\lceil d/k \rceil \) where \(h(0) = n \) and \(h(L) = 4h(L - 1) \), which gives us a program of length \(4\lceil d/k \rceil \cdot n \) as claimed. Thus our result follows by Lemma 6.

One of the two most interesting classes of arithmetic circuits is VP, which corresponds to arithmetic circuits of depth \(O(\log n) \) and size \(\text{poly}(n) \) consisting of unbounded fan-in + gates and fan-in 2 \(\times \) gates. As before let \(p_s \) be a prime in the range \((s, 2s]\). Using the fact that VP over \(\mathbb{F}_{p_s}, \mathbb{Z}, \) and \(\mathbb{Q} \) are all logspace-reducible to one another [AGM17], and fixing \(k = c/\epsilon \) where \(d = c \log_2 n \), we obtain the following quasilinear result for VP.

Corollary 11. Let \(\mathbb{F} \in \{\mathbb{F}_{p \in \text{poly}(n)}, \mathbb{Z}, \mathbb{Q}\} \), and let \(\epsilon > 0 \). Any polynomial \(f \in \text{VP} \) can be computed by an \(m \)-catalytic branching program of amortized size \(O(n^{1+\epsilon}) \), where \(m = 2^{\text{poly}(n)} \).

4 Saving Time

In the previous section we took the length 4\(n \) branching programs of [Pot17, RZ21] as a starting point to analyze whether \(m \) could be significantly reduced while still maintaining a linear amortized size. In this section we investigate the opposite question: namely, is 4\(n \) optimal? If we do not restrict the
amortized size of our program, then every function has a branching program of length \(n\) even for \(m = 1\). We will not only consider branching programs of linear amortized size, but the stricter model of permutation branching programs.

We focus on permutation branching programs in this section for two reasons. First, all our algorithms in the previous section can be converted to permutation branching programs. To see this, we revisit our connection between register programs and \(m\)-catalytic branching programs, as proven in Observation 1. Our observation in fact says something stronger, which is that \(f_n\) can be computed by a family of permutation branching programs of width \(2^{s(n)}+1\). This follows because we can choose to not fix \(R^\text{out}\) to be 0, and instead have one source node corresponding to each initial configuration \(\tau_1 \ldots \tau_s, \tau^\text{out}\); by Definition 2 this source reaches the sink node labeled \(\tau_1 \ldots \tau_s, \tau^\text{out} + f(x)\), which is the identity permutation when \(f(x) = 0\) and a fixed set of \(2^{s(n)}\) transpositions otherwise. Thus as a corollary of [Pot17, RZ21] we get the following:

Theorem 12. Every function \(f\) can be computed by a read-4 permutation branching program of width \(2^{2n-1}\) (or \(2^{\binom{n}{2}}-1\), where \(d\) is the \(\mathbb{F}_2\)-degree of \(p_f\)).

Given the strength of these results, only a factor of 4 away from the best conceivable amortized size, there is no reason \textit{a priori} to believe that permutation branching programs are too weak to consider even better upper bounds. Indeed we will show that improvements are possible.

This leads to our other reason for focusing on permutation branching programs: lower bounds against general branching programs are notoriously difficult. Besides the basic counting argument, the best known branching program lower bounds for an explicit function are not even quadratic, using techniques known to go no further [Nec66]. Considering the amortized branching program size needed to compute any function \(f\) is always at most the basic branching program size, and considering the upper bound of \(4n\) given by [Pot17], proving lower bounds for concrete functions seems exceedingly difficult. Furthermore, even if we were to seek refuge in focusing on non-constructive lower bounds, the basic counting argument fails to prove \textit{any} non-trivial lower bounds in the case of \(m \geq 2^n/n\).

4.1 Notation and tools

Before going into our results, we formally define permutation branching programs along with the notation we will use in the rest of this section.
Figure 3: A permutation branching program computing AND(x_1, x_2). It is identical to the one from Figure 2, except that two more source nodes have been added so that all layers have the same width. As before, each non-sink node is labelled with the input to be read, dashed lines represent transitions taken when that input is zero, and solid lines are taken when the input is one. In the terminology of Definition 3, this program can be written as $\langle 1, (12)(34) \rangle, \langle 2, (13) \rangle$ (using cycle notation for the permutations).

These programs will have a more specialized form than when we introduced them in Section 2, which we subsequently justify. We assume basic familiarity with permutations, and we write $\sigma_1 \sigma_2$ as a shorthand for $\sigma_2 \circ \sigma_1$.

Definition 3. Let $n, m, s \in \mathbb{N}$ and let $f : \{0, 1\}^n \rightarrow \{0, 1\}$ be a function such that $f(0 \ldots 0) = 0$. A permutation branching program is a sequence $P = \pi_1 \ldots \pi_\ell$, where each π_j is a pair $\langle i_j, \sigma_j \rangle$ where $i_j \in [0..n]$ and σ_j is a permutation of $[m]$. We refer to each π_j as an instruction of P. The width of P is m and the length of P is ℓ.

For any $\alpha \in \{0, 1\}^n$ we define $P(\alpha)$ as follows: fix $\sigma = id$, and for every $j = 1 \ldots s$, we set σ to $\sigma \sigma_j$ if $\pi_j = \langle 0, \sigma_j \rangle$ or $\pi_j = \langle i_j, \sigma_j \rangle$ where $\alpha_{i_j} = 1$, and leave σ unchanged otherwise (that is, if $\pi_j = \langle i_j, \sigma_j \rangle$ where $\alpha_{i_j} = 0$). Our output is the final value of σ. We say that P computes f if there exists a permutation $\sigma^* \neq \alpha$ such that $P(\alpha) = id$ if $f(\alpha) = 0$ and $P(\alpha) = \sigma^*$ if $f(\alpha) = 1$.

We make three observations about our choices in Definition 3. First, the restriction that $f(0 \ldots 0) = 0$ will be a convenience; we can always compute $\neg f$ instead if this condition does not hold, or change Definition 3 such that $P(\alpha) = id$ if $f(\alpha) = 1$ and vice versa.\footnote{We also note that if P computes $\neg f$, we can compute f by appending the instruction $P_{\alpha} = \sigma \sigma_j$} Second, in a layer $\langle i, \sigma_j \rangle$ reading variable x_i, we only fix a permutation in the case that x_i is set to 1. This
is without loss of generality, as adding a layer of the form \(\langle 0, \sigma'_j \rangle\) before an instruction can be thought of as choosing a permutation in the case that \(x_i\) is set to 0 (while the permutation for \(x_i = 1\) can be adjusted accordingly).

Before going on to our third observation, we state and prove four simple lemmas which will allow us to conveniently restructure our programs \(P\).

Lemma 13. Let \(P\) be a permutation branching program computing \(f\) and let \(j\) be such that \(i_j = i_{j+1}\). Then the program \(P'\) resulting from replacing \(\pi_j, \pi_{j+1}\) with \(\pi'_j = \langle i_j, \sigma_j \sigma_{j+1} \rangle\) is also a valid program for computing \(f\).

Proof. In both \(P\) and \(P'\), the permutations \(\sigma_j\) and \(\sigma_{j+1}\) are both applied when \(i_j = 1\) and neither are applied when \(i_j = 0\). \(\square\)

Lemma 14. Let \(P\) be a permutation branching program computing \(f\) and let \(j\) be such that \(\sigma_j \sigma_{j+1} = \sigma_{j+1} \sigma_j\). Then the program \(P'\) resulting from switching the order of \(\pi_j\) and \(\pi_{j+1}\) is also a valid program for computing \(f\).

Proof. Consider any assignment \(\alpha\) to \(x\). In the case that either \(\alpha_{i_j}\) or \(\alpha_{i_{j+1}}\) is set to 0, these programs compute identical permutations as either \(\sigma_j\) or \(\sigma_{j+1}\) will not be applied. If both are set to 1, then

\[
P'(\alpha) = \Sigma_1 \sigma_{j+1} \sigma_j \Sigma_2 = \Sigma_1 \sigma_j \sigma_{j+1} \Sigma_2 = P(\alpha)
\]

where \(\Sigma_1, \Sigma_2\) are the permutations corresponding to the rest of the instructions on input \(\alpha\). \(\square\)

Lemma 15. Let \(P = \pi_1 \ldots \pi_s\) be a permutation branching program computing \(f\), let \(\pi_j = \langle i_j, \sigma_j \rangle\) for all \(j\), and let \(j^* \in [\ell]\) be such that \(i_{j^*} = 0\). Then there exists a permutation branching program \(P' = \pi'_1 \ldots \pi'_{j^*-1} \pi'_{j^*+1} \ldots \pi'_\ell \pi_{j^*}\) computing \(f\), where \(\pi'_j = \langle i_j, \sigma'_j \rangle\) for some permutation \(\sigma'_j\).

Proof. For \(j < j^*\) define \(\sigma'_j = \sigma_j\), and for \(j > j^*\) define \(\sigma'_j = \sigma_j \sigma_j^{-1}\). Clearly because \(\sigma_j^{-1}\) and \(\sigma_{j^*}\) cancel out for every adjacent pair of permutations \(\sigma'_j\), \(P'(\alpha)\) contains exactly the same permutations as \(P(\alpha)\) in the same order regardless of the assignment \(\alpha\). \(\square\)

\(\langle 0, (\sigma^*)^{-1} \rangle\) to \(P\). We avoid taking this route because a later observation will allow us to remove these fixed layers, but only when \(f(\alpha) = 0\), which would cause our logic to become circular.

This argument actually allows us to move \(\pi_{j^*}\) to any spot in the program we want, but we are content with just moving them to the end, for reasons which will become immediately clear.
Our last observation is that the layers of the form $\langle 0, \sigma_j \rangle$ are only a convenience and are not necessary to our definition. Let P be our program for f and let $\sigma_1 \ldots \sigma_k$ be the permutations corresponding to instructions π_j where $i_j = 0$. By our restriction that $f(0 \ldots 0) = 0$ we get $\sigma_1 \ldots \sigma_k = P(0 \ldots 0) = id$, and by Lemma 15 we can move the instructions π_j with $i_j = 0$ to the end of the program, in order, at which point we can simply remove them all using Lemma 13 as they compose to the identity for any input α.

We can also generalize Lemma 15 for restrictions of the function f, meaning when we fix the values of some variables and consider the function on the remaining variables. This is simply the observation that fixing variable x_i turns all instructions of the form $\langle i, \sigma_j \rangle$ into fixed layers $\langle 0, \sigma_j \rangle$.

Corollary 16. Let $\rho \in \{0, 1, *\}^n$ and let f_ρ be the function f with x_i fixed to $\rho(i)$ wherever $\rho(i) \neq *$. Let $P = \pi_1 \ldots \pi_\ell$ be a permutation branching program computing f, let $\pi_j = \langle i_j, \sigma_j \rangle$ for all j, and let $j^* \in [s]$ be such that $i_{j^*} = 0$ or $\rho(i_{j^*}) \neq *$. Then there exists a permutation branching program $P' = \pi'_1 \ldots \pi'_{j^*+1} \pi'_{j^*+1} \ldots \pi'_\ell \pi_j$ computing f_ρ, where $\pi'_j = \langle i'_j, \sigma'_j \rangle$ for some permutation σ'_j and $i'_j = i_j$ iff $\rho(i) = *$ and 0 otherwise.

Proof. Let program P'' be the result of replacing i_j with 0 in each instruction $\pi_j \in P$ such that $\rho(i_j) \neq *$. Clearly this program computes f_ρ, and so applying Lemma 15 to P'' completes the proof. \[\Box\]

Assuming that $f_\rho(0 \ldots 0) = 0$, by our previous observation this allows us to remove all layers that read variables fixed by ρ. We also note that the other three lemmas hold for f_ρ with no changes.

4.2 Upper bounds

For our main upper bound, we modify our algorithm recreating the result of [Pot17] (and analogously [RZ21]) to have length $4n - 4$. In particular, our program will read all but two variables four times, while the last two variables will be read twice.

Theorem 17. For every function f, there is a read-4 permutation branching program of width 2^{2n-1} and length $4n - 4$ computing f.

Proof. First, we make an easy change to Theorem 1 which allows us to achieve $4n - 3$. Observe that in ToggleInput the order in which we add the inputs is irrelevant, and so consider ToggleMonomials where we reverse the order of toggling on Line 6. Then notice that the last query on Line 2 and the first query on Line 6 are both made to x_n, and so we can merge...
these two layers along with our entire for loop (which reads no variables) into a single layer querying \(x_n \). Moving to Algorithm 1, this means we only query \(x_n \) twice, and furthermore the last query on Line 1 and the first query on Line 3 are both made to \(x_1 \), and so again by merging these two queries along with Line 2 we only query \(x_1 \) three times.

Now we will change our program so that \(x_1 \) is only read twice. Consider two new functions obtained by fixing the value of \(x_1 \), namely \(f_0 = f(0, x_2 \ldots x_n) \) and \(f_1 = f(1, x_2 \ldots x_n) \). Recall that we used the following polynomial to compute \(f \), where \(y_i = \tau^{\text{in}}_i + x_i \):

\[
q_f = \sum_{S,S' \subseteq [n]} c_{S,S'} \left(\prod_{i \in S} \tau^{\text{in}}_i \right) \left(\prod_{i \in S'} y_i \right)
\]

If we choose \(b \in \{0, 1\} \) and fix \(\tau^{\text{in}}_1 = 0 \) and \(y_1 = x_1 = b \), we get the following, which can be used to compute \(f_b \):

\[
q_{f_b} = \sum_{S,S' \subseteq [2..n]} (c_{S,S'} + b \cdot c_{S,S' \cup \{1\}})(\prod_{i \in S} \tau^{\text{in}}_i)(\prod_{i \in S'} y_i)
\]

We will use Algorithm 1 to compute \(q_{f_b} \), where \(b = x_1 \), by removing all reference to \(x_1 \) from \textsc{ToggleInput} and \textsc{ToggleMonomials}, and querying \(x_1 \) whenever we execute Lines 2 or 4 to determine whether to compute \(q_f^0 \) or \(q_f^1 \) in place of \(q_f \). More specifically, \textsc{ToggleInput} will now only loop over \(i = 2 \ldots n \), while \textsc{ToggleMonomials} will now only loop over \(S \subseteq [2..n] \).

Finally in Algorithm 1 we change Lines 2 and 4 to

\[
R_{\text{out}} \leftarrow R_{\text{out}} \pm \sum_{S,S' \subseteq [2..n]} (c_{S,S'} + x_1 \cdot c_{S,S' \cup \{1\}})(\prod_{i \in S} R^{\text{in}}_i)R_{S'}
\]

where Line 2 uses + and Line 4 uses -. Note that to execute these lines correctly, we will query \(x_1 \) and perform the corresponding instruction; thus we no longer ignore these two lines in calculating our program length.

By our earlier definition of \(q_{f_b} \), this exactly computes \(q_{f_b} \) for \(x_1 = b \) as claimed. As above we will reverse the order of the queries in \textsc{ToggleInput} the second time it is called in \textsc{ToggleMonomials}, which allows us to read \(x_n \) only once per execution for a total of two reads. \(x_1 \) will be queried in Lines 2 and 4, and all other variables will be queried four times.

\textbf{Note 4.1.} This strategy also allows us to save an exponential number of registers, as we only need a register \(R_S \) for each \(S \subseteq [2..n] \). While it may be tempting to extend this trick to more variables, say by fixing the values of
both x_1 and x_2, the fact that Lines 2 and 4 depend on the value(s) of the fixed variable(s) means that we will have to store at least one of these values in a non-catalytic register, which will add to our width and take us out of the realm of permutation programs. If we go back to m-catalytic branching programs, this gives us another way to save over $[\text{Pot17, RZ21}]$, but with worse parameters; for any $k \in [n]$ by fixing k values we can get a program of length $2(k + 1) + 4(n - k - 1)$ and amortized size $2^k \cdot O(n)$ as before, but for $m = 2^{2n-k-1}$ instead of $2^{2n/k-1}$.

There are two known cases in which we can achieve better than read-4 for AND: $n = 2, 3$. The $n = 2$ case is unsurprising, as our argument allows for two variables to be read twice; it has appeared in many previous works (see c.f. [Bar89]). The case of $n = 3$ is more surprising, and suggests that read-3 may be achievable in general. Note that because of the small values of n involved, neither result gives a program smaller than length $4n - 4$.

Lemma 18. There is a read-2 permutation branching program of width 3 computing $\text{AND}(x_1, x_2)$.

Proof. Choose any two permutations σ_1 and σ_2 such that $\sigma_1 \sigma_2 \sigma_1^{-1} \sigma_2^{-1} \neq id$; for example we can choose $\sigma_1 = (12)$ and $\sigma_2 = (23)$. Then consider the following program:

$$\langle 1, \sigma_1 \rangle, \langle 2, \sigma_2 \rangle, \langle 1, \sigma_1^{-1} \rangle, \langle 2, \sigma_2^{-1} \rangle$$

By definition of σ_1 and σ_2, $P(1, 1) \neq id$, and if either variable is set to 0 then the only permutations left are σ_j and σ_j^{-1} for some $j \in \{1, 2\}$, and the composition of these permutations is id. \hfill \Box

Lemma 19. There is a read-3 permutation branching program of width 3 computing $\text{AND}(x_1, x_2, x_3)$.

Proof. We state the program and leave the reader to check correctness.\(^{11}\) Our permutations σ_j are given in cycle notation.

$$(1, (23)), (2, (12)), (3, (123)),$$

$$(1, (12)), (2, (13)), (3, (23)),$$

$$(1, (132)), (2, (132)), (3, (13))$$

\(^{11}\)It should be noted that we found this program through an automated search, and it would be interesting to see what nice properties of the program—of which there are many candidates—could be useful in searching for read-3 programs for higher n.

27
Note 4.2. We could also consider a stronger model of permutation branching programs where we only require that \(P(\alpha) \neq id \) whenever \(f(\alpha) = 1 \), instead of requiring \(P(\alpha) \) always equal the same permutation when \(f(\alpha) = 1 \). This is the model used by e.g. [Bar89]. In this case, it is not hard to show that for any \(n \), if we can compute \(\text{AND}(x_1 \ldots x_n) \) in length \(\ell \), we can also compute any function \(f(x_1 \ldots x_n) \) in length \(\ell \) by “tensoring” the permutations in \(P \) with themselves for each \(\alpha \in f^{-1}(1) \). Our lower bounds in the following section will still hold against this model.

4.3 Lower bounds

In this section we show that if one tries to get a program of length less than \(3n \), one cannot beat Theorem 17.

Theorem 20. Any permutation branching program computing \(\text{AND}(x_1, \ldots, x_n) \) which reads some variable at most twice must have length at least \(4n - 4 \).

Proof. Let \(P = \pi_1 \pi_2 \ldots \pi_s \) be any program computing \(\text{AND}(x_1, \ldots, x_n) \). We will write \(\sigma_j^i \) to refer to the permutation in the \(j \)th instruction in \(P \) that reads variable \(x_i \); in other words, the instructions corresponding to \(x_i \) will be \(\langle i, \sigma_1^i \rangle \cdots \langle i, \sigma_k^i \rangle \) for some \(k \). Since we are focusing on \(\text{AND} \), which is symmetric, we will assume without loss of generality that \(x_i \) is read for the first time before any \(x_{i'} \) is read for \(i' > i \). As usual let \(\sigma^* \neq id \) refer to the permutation resulting from \(P \) when all variables are set to 1.

Claim 21. Any program \(P \) computing \(\text{AND} \) of more than one variable must read every variable at least twice

Proof. Assume that some variable \(x_i \) is read only once in \(P \). Then setting \(x_{i'} = 0 \) for all \(i' \neq i \), we get \(\sigma_1^i = P(0 \ldots 0, 1, 0, \ldots, 0) = id \). Therefore \(P \) acts identically whether \(x_i \) is 0 or 1, which is a contradiction because \(\text{AND} \) depends on \(x_1 \).

Now consider when some variable \(x_i \) is read exactly twice. Let \(j_1 < j_2 \) be the locations of the two instructions containing \(i \), i.e. \(\pi_{j_1} = \langle i, \sigma_{j_1} \rangle \) and \(\pi_{j_2} = \langle i, \sigma_{j_2} \rangle \), and let \(\Pi_1 = \pi_{j_1+1} \ldots \pi_{j_2-1} \). The following is our main claim.

Claim 22. Every variable besides \(x_i \) is read at least once in \(\Pi_1 \), and there is at most one such variable \(x_{i'} \) which is not read at least twice in \(\Pi_1 \).

Proof. First, assume for contradiction that there exists \(i' \neq i \) such that \(x_{i'} \) does not appear in \(\Pi_1 \). Then if we fix \(x_{i''} = 1 \) for all \(i'' \neq i, i' \), we can apply Corollary 16 to move all instructions querying variables other than \(x_i \) and \(x_{i'} \).
to the end of the program, and then apply Lemma 13 to get an equivalent program of the following form which computes AND\((x_i, x_{i'})\):

\[
\langle i, \sigma^{i1}_i \rangle, \langle i, \sigma^{i2}_i \rangle, \langle i', \sigma' \rangle, \langle 0, \sigma_\ast \rangle
\]

where \(\sigma'\) and \(\sigma_\ast\) are some permutations (\(\sigma_\ast\) comes from all the instructions \(\pi_{ji}\) produced by Corollary 16). This contradicts Claim 21 as \(i'\) is only read once.

Next, assume for contradiction that there exist \(i' \neq i'' \neq i\) such that \(i'\) and \(i''\) appear only once each in \(\Pi_1\). If we fix \(x_{i''} = 0\) for all \(i'' \neq i', i''\), applying Lemmas 16 and 13, without loss of generality the following program computes AND\((x_i, x_{i'})\):

\[
\langle i, \sigma^{i1}_i \rangle, \langle i', \sigma_{i'} \rangle, \langle i'', \sigma_{i''} \rangle, \langle i, \sigma^{i2}_i \rangle, \Sigma
\]

where \(\sigma_{i'}\) and \(\sigma_{i''}\) are some permutations and \(\Sigma\) is a set of instructions reading only the variables \(x_{i'}\) and \(x_{i''}\).

Define \(\Sigma_{i'}\) to be the result of fixing \(x_{i'} = 0\) in \(\Sigma\), and define \(\Sigma_{i''}\) to be the result of fixing \(x_{i''} = 0\) in \(\Sigma\). Note that if only one remaining variable is set to 1 then the program must output 0, so \(\sigma_i^{i2} = (\sigma_i^{i1})^{-1}\), \(\Sigma'_{i'} = (\sigma_{i'})^{-1}\), and \(\Sigma''_{i''} = (\sigma_{i''})^{-1}\). Thus if we set \(x_{i''} = 0\) our resulting program is

\[
\langle i, \sigma^{i1}_i \rangle, \langle i', \sigma_{i'} \rangle, \langle i, (\sigma^{i1}_i)^{-1} \rangle, \langle i', (\sigma_{i'})^{-1} \rangle
\]

and so setting \(x_i = x_{i'} = 1\) we get that \(\sigma^{i1}_i \sigma_{i'} (\sigma^{i1}_i)^{-1} (\sigma_{i'})^{-1} = id\). Therefore by Lemma 14 we can swap the order of these two instructions and get an equivalent program for AND\((x_i, x_{i'}, x_{i''})\) of the form

\[
\langle i', \sigma_{i'} \rangle, \langle i, \sigma^{i1}_i \rangle, \langle i'', \sigma_{i''} \rangle, \langle i, (\sigma^{i1}_i)^{-1} \rangle, \Sigma
\]

and similarly by fixing \(x_{i'} = 0\) we have \(\sigma^{i1}_i \sigma_{i''} (\sigma^{i1}_i)^{-1} (\sigma_{i''})^{-1} = id\), which by Lemma 14 leaves us with the program

\[
\langle i', \sigma_{i'} \rangle, \langle i'', \sigma_{i''} \rangle, \langle i, \sigma^{i1}_i \rangle, \langle i, (\sigma^{i1}_i)^{-1} \rangle, \Sigma
\]

and applying Lemma 13 on our two layers reading \(i\) gives us a program which never reads \(x_i\), which is a contradiction. \(\square\)

Define \(\Pi_2 = \pi_{j_2+1} \ldots \pi_s, \pi_1 \ldots \pi_{j_1-1}\); to prove Claim 22 holds for \(\Pi_2\) as well we will need one more observation. This is similar to our tools at the start of the section, but specifically for AND.\(^{12}\)

\(^{12}\)If we used our stronger notion of permutation branching program from the upper bounds section, it would apply to any \(f\) more generally, but this is unnecessary for our proof.
Claim 23. Let P be a permutation branching program computing AND whose first instruction is π_1. Then the program P' resulting from removing π_1 from the beginning of P and adding it to the end of P is also a valid program for computing f.

Proof. Let $\pi_1 = (i_1, \sigma_1)$ for some i_1, and recall that $\sigma^* = P(1\ldots1) \neq id$. Note that P' is equivalent to the program $(i_1, \sigma_1^{-1})P(i_1, \sigma_1)$. Thus $P'(1, 1, \ldots, 1) = \sigma_1^{-1}\sigma^*\sigma_1 \neq id$, and for all $\alpha \neq 1, 1, \ldots, 1$, $P'(\alpha)$ will either be $\sigma_1^{-1}(id)\sigma_1 = id$ or id.

Now we can prove the same statement for Π_2.

Claim 24. Every variable besides x_i is read at least once in Π_2, and there is at most one such variable x_i' which is not read at least twice in Π_2.

Proof. Applying Claim 23 repeatedly to P, we can get an equivalent program $P' = \pi_2\Pi_2\pi_1\Pi_1$, and apply Claim 22 to P'.

By a simple analysis of Claims 22 and 24, one of two cases must occur for the variables besides x_i: either 1) one variable x_i' is read at least twice and all other variables are read at least four times or 2) two variables $x_{i'}, x_{i''}$ are read at least three times and all other variables are read at least four times. This is because a read-2 variable can only be read at most once in each of Π_1 and Π_2, while a read-3 variable will be read at most once in either Π_1 or Π_2. In either of these cases, our branching program must have length at least $4(n-2) + 2 \cdot 2 = 4(n-3) + 2 \cdot 1 + 3 \cdot 2 = 4n - 4$.

Note 4.3. Besides the fact that our lower bound in Theorem 20 quantitatively matches up with our upper bound in Theorem 17 in the case of reading any variable twice, qualitatively both cases in the analysis at the end of our lower bound proof match with a possible construction given by our upper bound. After fixing a read-2 variable to condition f on, we get two halves to our top level program, and in each of them we will merge two reads of a variable in order to save a further layer. The choice of which variable to merge the reads of is arbitrary, so consider our choices for the first and second half. If we choose the same variable for both halves, it will be read twice and all other variables will be read four times. If we choose different variables in each half, both will be read three times and the rest will be read four times.
5 Open Problems

The most obvious problem left open by our work is to figure out, for an arbitrary function f, the optimal value of m under which we can still achieve linear amortized size. In the upper bounds direction, any improved transparent register program for computing the polynomial q_f could potentially give an upper bound of $2^{o(n)}$ on m. In the other direction, nothing is known besides the basic counting argument ($m \geq 2^n/O(n)$), and even getting a lower bound of $m \geq 2^n$ for some function f could shed some light on where the correct answer should lie.

In terms of connecting uniform and non-uniform models of space, L/poly is equivalent to the class of problems solvable by poly n-size branching programs. However, this gets trickier for catalytic logspace (CL), as the corresponding object for CL/poly would be m-catalytic branching programs of amortized size $\text{poly}(n)$ for $m = 2^{\text{poly}(n)}$, which has exponential size and thus cannot be written down in polynomial advice. It would be very interesting to understand the connection between such m-catalytic branching programs and CL/poly, as this would immediately give lower bounds on m for random functions.

Also of interest would be to study the same question for other restricted classes of functions. For example, it is possible that our result for VP could be extended to VNP, although such a result would presumably need to use non-uniformity in a stronger way lest we accidentally prove that uniform VNP is contained in CL—and by extension ZPP [BCK+14].

Finally, closing the gap between 3^n and $4n - 4$ on the upper and lower bounds for the optimal length of permutation branching programs seems within reach. For example, a cursory machine search gave no read-3 permutation branching programs for AND on four variables, and if we could formally verify this then it would immediately lead to fully closing the gap at $4n - 4$.

Acknowledgements The authors would like to thank Toniann Pitassi, Robert Robere, Jeroen Zuiddam, and Aaron Potechin for many helpful discussions. The second author was partially funded by NSERC.

References

