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Abstract

We construct a family of binary codes of relative distance 1
2 − ε and rate

ε2 · 2− logα(1/ε)

for α ≈ 1
2 that are decodable, probabilistically, in near-linear time. This improves upon the rate

of the state-of-the-art near-linear time decoding near the GV bound due to Jeronimo, Srivastava,
and Tulsiani, who gave a randomized decoding of Ta-Shma codes with α ≈ 5

6 [TS17, JST21].
Each code in our family can be constructed in probabilistic polynomial time, or deterministic
polynomial time given sufficiently good explicit 3-uniform hypergraphs.

Our construction is based on a new graph-based bias amplification method. While previous
works start with some base code of relative distance 1

2 − ε0 for ε0 � ε and amplify the distance
to 1

2 − ε by walking on an expander, or on a carefully tailored product of expanders, we walk
over very sparse, highly mixing, hypergraphs. Study of such hypergraphs further offers an
avenue toward achieving rate Ω̃(ε2). For our unique- and list-decoding algorithms, we employ
the framework developed in [JST21].
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1 Introduction

The Gilbert–Varshamov (GV) bound, for binary codes, tells us that there exist codes, even linear
ones, with relative distance 1−ε

2 and rate Ω(ε2) [Gil52, Var57]. Namely, there exist codes C ⊆ Fn2
such that for any two distinct codewords x, y ∈ C it holds that ∆(x, y) ≥ 1−ε

2 , for ∆ being the

normalized Hamming distance, such that log |C|
n = Ω(ε2). Finding such small-redundancy codes,

hopefully accompanied by an efficient decoding algorithm, has been subject to extensive and fruitful
research in the past decades (see, e.g., [NN93, ABN+92, AGHP92, BATS13, GI05, TS17]). In
a breakthrough result, Ta-Shma [TS17] constructed explicit linear codes of relative distance 1−ε

2

having rate ε2+o(1). Ta-Shma’s codes are also ε-balanced, i.e., ∆(x, y) ∈
[

1−ε
2 , 1+ε

2

]
, and thus give rise

to explicit ε-biased sample spaces, which are ubiquitous in pseudorandomness and derandomization.
No decoding algorithm was given in [TS17], and this was later ameliorated by Jeronimo, Quin-

tana, Srivastava, and Tulsiani [JQST20, JST21], who showed that a slight variant of Ta-Shma’s
codes are indeed efficiently decodable, and even in time Õε(n).

Theorem 1 ([TS17, JST21]). There exists an explicit family of ε-balanced binary linear codes
CTS ⊆ Fn2 of rate

rTSD = ε2 · 2−O(log(1/ε)5/6),

such that:

1. There exists a randomized algorithm that uniquely decode CTS up to half the distance in time
c1(ε) · Õ(n). That is, given a noisy word z̃ ∈ Fn2 , the algorithm returns, with high probability,
the unique z ∈ C such that ∆(z, z̃) ≤ 1−ε

4 (if such exists).

2. There exists a randomized algorithm that list-decodes CTS up to radius

ρTSD =
1

2
− 2−O((log(1/ε))1/6)

in time c2(ε) · Õ(n). That is, given a noisy word z̃ ∈ Fn2 , the algorithm returns, with high
probability, a list L = {z ∈ C : ∆(z̃, z) ≤ ρ} of size |L| = O(1/ε).1

We note that without any guarantee on the decoding capabilities, the codes in [TS17] achieve a
better rate of

rTS = ε2 · 2−Õ(log(1/ε)2/3).

Randomized constructions of binary codes, namely, randomized algorithms that output a good
code with high probability, are also well-studied, where the goal is to achieve enough structure to
allow for efficient decoding. If we focus on decoding in time n1+o(1), the current state-of-the-art
is due to Hemenway, Wootters, and Ron-Zewi, that reaches the GV bound with a randomized
construction.2

Theorem 2 ([HRZW19]). There exists a family of ε-balanced binary codes CHRW ⊆ Fn2 of rate
Ω(ε2) that can be constructed in probabilistic polynomial time, such that:

1The guarantee on the list size is not a unique property of CTS, but follows from the Johnson bound (see, e.g.,
[GRS15, Section 7.3]), observing that ρTSD ≤ 1

2
−
√
ε.

2The foregoing theorem appears in the arXiv version, and some of the parameters are only implicit there.
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1. There exists a randomized algorithm that uniquely decodes CHRW up to half the distance in
time c3(ε) · n1+1/t, where t ≈ log log log n.

2. There exists a randomized algorithm that list-decodes3 CHRW up to radius 1
2 −O(

√
ε) in time

c3(ε) · n1+1/t.

In this work, we continue the study of near-linear time decodable binary codes near the GV
bound, and give a randomized construction with improved rate.

Theorem 3 (see also Theorems 7 and 9). There exists a family of ε-balanced binary codes C ⊆ Fn2
that can be constructed in probabilistic polynomial time, of rate

r = ε2 · 2−Õ
(√

log(1/ε)
)
,

such that:

1. There exists a randomized algorithm that uniquely decodes C up to half the distance in time
c1(ε) · Õ(n).

2. There exists a randomized algorithm that list-decodes C up to radius

ρ =
1

2
− 2−O(

√
log(1/ε))

in time c2(ε) · Õ(n).

Thus, our codes achieve a better rate (and a better list decoding radius) than in [TS17, JST21],
while maintaining the Õ(n) runtime. Compared to state-of-the-art randomized constructions, we
do not reach the GV bound, nor do we reach the Johnson radius for list decoding, but our decoding
is faster, and as we shall soon see, our code is more structured. (The [HRZW19] result concatenate
an outer code over a large alphabet with uniformly and independently chosen inner binary codes.)

In terms of the dependence on ε, for Theorems 1 and 3, c1(ε) is doubly-exponential in logα(1/ε)
for some α < 1 (that is slightly better in Theorem 3), and c2(ε) is triply-exponential in logα(1/ε).
In Theorem 2, c3(ε) is triply-exponential in poly(1/ε).4

Our construction, which we shall soon describe, is arguably simpler than the constructions of
Theorems 1 and 2.5 Moreover, it gives an avenue toward achieving an even better rate of Ω̃(ε2)
if we assume the existence of better primitives. In slightly more details, our construction utilizes
hypergraphs with a strong mixing property, dubbed λ-mixing, and we show that a random 3-regular
hypergraph achieves a good enough λ. A better dependence between λ and the regularity of the
hypergraph readily gives better rate (for the details, see Section 6). We thereby put forward a
challenge that warrants revisiting mixing properties of 3-uniform hypergraphs, which is interesting
in itself.

3The randomized list decoding algorithm of [HRZW19] was later derandomized in [KRRZ+20].
4More accurately, it is also doubly-exponential in log(1/ε) · t. The original analysis of [HRZW19] implies a

quadruple-exponential dependence on poly(1/ε), but a better bound on the output list size of random list decodable
codes, given in [LW18], can be used to reduce it to triply-exponential. Using the concatenation scheme of [HRZW19]
with a different outer code given in [KRZSW18] may be used to reduce the dependence on ε but at a cost of making
the dependence on n worse. Finally, we note that the failure probability in Theorem 2 is sub-exponentially small,
whereas the failure probability in Theorems 1 and 3 is exponentially small.

5By this we refer to our probabilistic construction, in which we draw a favorable hypergraph H at random.
Admittedly, making our construction deterministic by constructing an explicit family of good H-s is likely to make
it less simple.
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1.1 Our construction

Our construction goes via distance amplification. We start with some base code C0 : Fk2 → Fn2 and
construct our code C : Fk2 → Fn̄2 so that for every coordinate i ∈ [n̄] and x ∈ Fk2, C(x)i is a function
of the bits C0(x)Γ(i), where Γ(i) ⊆ [n] is a small, carefully chosen, subset of the coordinates of C0.
When we take the aforementioned function to be the parity function, i.e.,

C(x)i =
⊕
j∈Γ(i)

C0(x)j ,

the code C is called the direct sum lift of C0 w.r.t. Γ. The goal is thus to start with C0 that is
ε0-balanced and argue that the lifted code C is ε-balanced, for ε� ε0. A good Γ, that would fulfil
this goal, is dubbed a parity sampler. See Section 2.1 for a slightly more general definition. Also,
see [NN93, ABN+92, Bog12, TS17] for previous works that utilize direct sum lifting for distance
amplification.

Our Γ, roughly speaking, consists of short walks over a hypergraph over n vertices. Toward
giving a more detailed overview, let us define the desired hypergraphs more formally.

Mixing hypergraphs. Let H = (V,E) be a d-regular 3-uniform hypergraph over V = [n]. That
is, E contains “hyperedges” of the form (w1, w2, w3), and for each v ∈ V and j ∈ [3] we have that
v = wj for exactly d hyperedges. We say H is λ-mixing if for any S1, S2, S3 ⊆ V , it holds that∣∣∣∣E(S1, S2, S3)

d
− |S1| · |S2| · |S3|

n2

∣∣∣∣ ≤ λ ·√|S1| · |S3|,

where E(S1, S2, S3) is the number of hyperedges (w1, w2, w3) ∈ E where wj ∈ Sj for j = 1, 2, 3.
This notion and some variants of it were studied before, and we refer to Section 3 for the relevant
discussion. In this work we show that a random hypergraphs is λ = O(1/

√
d)-mixing (see Corol-

lary 3.12), but unfortunately we are not aware of any explicit construction that achieves such a
good dependence on d.

Walks on hypergraphs. Set t = t(ε) be a desired walk length. Starting from a random v0 ∼ V ,
we walk on H according to uniformly random i1, . . . , it ∼ [d] as follows. For each j ∈ [t],

1. Let ej be the ij-th hyperedge that touches vj−1 according to some fixed ordering. In partic-
ular, we require that vj−1 = (ej)1.

2. Denote vj = (et)3.

3. Denote wj = (et)2.

Γ comprises all the walks
w = (w1, . . . ,wt).

Note that we choose to query wj , but use vj to determine the next step of our walk. Our lifted
C ⊆ Fn̄2 will therefore have blocklength n̄ = n · dt.6 Choosing parameters appropriately and using
a λ-mixing H that satisfies λ = O(1/

√
d), we achieve the rate k

n̄ that is given in Theorem 3.
In Section 1.2 below we briefly discuss how we analyze these walks, and how we are able to

improve upon previous constructions that are also based on random walk over expanders.

6We defer subtleties regarding sampling a single walk multiple times to the technical sections.

3



Non-backtracking walks on λ-spectral hypergraphs. It turns out that we can get an even
better rate, of Ω̃(ε2), by walking over hypergraphs with an even better dependence on d. Toward
this end, we need a strengthening of our λ-mixing property, which we call λ-spectral. We say that
H is λ-spectral if for any x, y, z ∈ Rn, it holds that∣∣∣∣∣∣1d ·

∑
(i,j,k)∈E

xiyjzk −
1

n2
·
∑
i∈V

xi ·
∑
i∈V

yi ·
∑
i∈V

zj

∣∣∣∣∣∣ ≤ λ · ‖x‖2 · ‖y‖∞ · ‖z‖2.
In Section 3, we show that a λ-spectral hypergraph is readily a λ-mixing one, and that a λ-mixing
hypergraph is λ′-spectral for λ′ = O(λ log(1/λ)).

Conjecturing the existence of λ-spectral hypergraphs with λ approaching 2/
√
d (see Open Prob-

lem 1), we can slightly modify the above construction to yield a rate of Ω̃(ε2), bringing us aston-
ishingly close to the GV bound.

Theorem 4 (informal; see Corollary 6.2). Assuming the existence of explicit λ-spectral hypergraphs
with λ approaching 2√

d
, there exists an explicit family of ε-balanced codes C ⊆ Fn2 of rate

ε2 · 1

poly(log(1/ε))

that are list- and uniquely-decodable in (probabilistic) near-linear time. The list decoding radius is
1
2 −

1
poly(log(1/ε)) .

For our modified construction, we replace the above random walks over H with non-backtracking
walks, thus not “wasting” any randomness on returning steps. Analyzing the refined construction
naturally requires working with non-symmetric operators, and in Section 6 we extend upon spectral
decomposition results of Lubetzky and Peres [LP16]. We remark that we are not aware of many
cases in which directed spectral graph theory is used in TCS, and our work demonstrates such an
application.

Explicitness. An ε-biased sample space over {0, 1}k is a set S ⊆ {0, 1}k such that for any nonzero
test α ⊆ [k], it holds that ∣∣∣∣∣ Pr

s∼S

[⊕
i∈α

si = 0

]
− Pr

s∼S

[⊕
i∈α

si = 1

]∣∣∣∣∣ ≤ ε.
It is well-known that linear ε-balanced codes are equivalent to ε-biased sample space, by letting the
elements of S correspond to rows in the generator matrix of a binary code C. Thus, an explicit ε-
balanced code C : Fk2 → Fn2 gives rise to an explicit ε-biased sample space S ⊆ {0, 1}k of cardinality
n. In our construction, the only non-explicit ingredient is the λ-mixing, or λ-spectral, hypergraph.
Thus, coming up with such explicit hypergraphs would readily yield explicit (or even fully-explicit)
small-biased spaces with better dependence on ε than the ones implied by Theorem 1.7

7For ε-biased sample spaces we don’t need to take a base code C0 that is efficiently encodable. Thus, given explicit
good hypergraph and a suitable C0 (say, from [NN93]), we would be able to construct our ε-biased sample spaces in
time polynomial in n and 1/ε for any ε > 0.
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1.2 On (re)breaking the rate-Ω(ε4) barrier of random walks

Recall that our construction uses a parity sampler Γ to amplify the distance of a base code that
is ε0-balanced to a one that is ε-balanced. Toward that goal, we will require that for a worst-case
S ⊆ [n] satisfying |Ei∈[n][(−1)1[i∈S]| ≤ ε0, that∣∣∣∣∣∣ Ew∈Γ

 |w|∏
j=1

(−1)1[wj∈S]

∣∣∣∣∣∣ ≤ ε. (1)

There is a simple, albeit inefficient, way to construct such a parity sampler: Take Γ to include all
elements of [n]t. This ensures ε = εt0, however, then |Γ| , n̄ = nt, which is obviously too large
and would lead to a code with a vanishing rate. Thus, we seek a sparsification of the trivial parity
sampler.

Random walks on graphs and the ε4-barrier. Building off of ideas of Rozenman and Wigder-
son, Ta-Shma [TS17] suggested replacing the above fully independent construction with a random
walk of length t on an n-vertex expander, associating each vertex of the expander with an element
of [n]. If the graph used, G, is d-regular, then this construction leads to n̄ = ndt−1, a substantial
improvement from |Γ| = nt.

We overload G to represent the graph’s normalized adjacency matrix and let Π be the diagonal
matrix in which Πi,i = (−1)1[i∈S]. One can verify that if Γ consists of all length-t walks on G,
Equation (1) is satisfied for

ε =

∣∣∣∣ 1n1† (ΠG)t 1

∣∣∣∣ ≤ ∥∥(ΠG)t
∥∥

op
,

where 1 is the all-ones vector and ‖ · ‖op is the operator norm ‖A‖op = maxx 6=0 ‖Ax‖2/‖x‖2. As a
first attempt, we could try to bound

∥∥(ΠG)t
∥∥

op
≤ ‖ΠG‖top. When a vector v is perpendicular to 1,

we have that ‖ΠGv‖2 ≤ ‖Gv‖2 ≤ λ‖v‖2. Unfortunately, when a vector v is parallel to 1, we have
that ‖ΠGv‖2 = ‖Gv‖2 = ‖v‖2 because G1 = 1, meaning that ‖ΠG‖op = 1.

Ta-Shma observed that in the latter case, the second step works in our favor. This is because
Π1 is “mostly” (depending on how small ε0 is) perpendicular to 1. In particular, he showed that
‖ΠGΠG1‖2 ≤ (λ + ε0)‖1‖2. Intuitively, at least one out of every two steps “works”,8 which is
sufficient to guarantee a rate of ≈ ε4 by taking a good enough G. That is still far from the GV
bound of ≈ ε2.

Breaking the ε4-barrier. To break the barrier, Ta-Shma uses an intricately-designed random
walk on a graph product called the s-wide replacement product (introduced in [BATS11]), to guar-
antee that s − O(1) out of every s steps work, for some s < t. Here, we diverge from Ta-Shma’s
approach. We will only aim for one out of every two steps to work, but will share randomness
between the two steps in order to make them as cheap as a single step.

Specifically, let G1 and G2 be two degree-d expanders on the same n vertices. In order to take
two coupled steps from a vertex v1, we draw a random j ∈ [d] and move to v2, the jth neighbor of
v1 in G1 (according to some fixed ordering). Then, we move to v3, the jth neighbor of v2 in G2.
As we use the same label j for both steps, this walk can take ` “double steps” with a support size

8That phenomenon, of losing one λ factor in every two steps, is not a mere artifact of the proof, at least if one
makes not further assumptions on the construction’s primitives. See [BATS11, TS17] for relevant discussions.
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of only nd`. In contrast, if the steps were chosen independently, the support size would be nd2`. If
we could guarantee that a double step is as productive as two independent steps, the rate of the
resulting code would be ε2+o(1).

For the double step to work, clearly there must be some relation between the two expanders.
Otherwise, G2 could always reverse the step taken by G1. Hence, we would like to think of G1

and G2 together as a single primitive: For each vertex v1, there are d choices for the pair (v2, v3).
As a result, we can think of G1 and G2 together as a single d-regular 3-uniform hypergraph, and
consider walks on that hypergraph, H = (V,EH), motivating the construction in Section 1.1.

To analyze this walk, we introduce an operator, A(S) ∈ RV×V . For each i, k ∈ [n], we set

A
(S)
i,k ,

1

d
·

∑
j:(i,j,k)∈EH

(−1)1[j∈S].

Then, for Γ corresponding to the length-t “double-step” construction, we show Equation (1) holds
for

ε =

∣∣∣∣ 1n1†
(

ΠA(S)
)t

1

∣∣∣∣ ≤ ∥∥∥∥(ΠA(S)
)t∥∥∥∥

op

.

If H is λ-spectral, it is simple to bound ‖ΠA(S)‖op = ‖A(S)‖op ≤ λ+ε0 (see Proposition 4.5), which
gives a bound of ε = (λ+ ε0)t and is sufficient for rate ≈ ε2.

Lastly, we note that because Π is unitary, the entire analysis goes through if instead of bounding
‖(ΠA(S))t‖op, we instead bound ‖(A(S))t‖op. This corresponds to the a double-step construction
where we only record every other vertex visited (starting with the second), which is exactly our
construction in Section 1.1.

Bounding A(S), given the right notion of hypergraph expansion, is easier than analyzing Ta-
Shma’s s-wide replacement product, so we think of our construction as conceptually simpler. For
our approach, the challenge is to construct sufficiently good hypergraphs. We are not aware of any
explicit constructions, but are able to show that a random hypergraph suffices for decoding our
code and obtaining Theorem 3.

1.3 Decoding our codes

Our decoding result in Theorem 3 follows the framework of Jeronimo et al. [JST21]. They used
a novel algorithmic weak regularity lemma to show that direct sum lifts are decodable, roughly
speaking, given that the parity sampler Γ used for the lifting satisfies the splittability condition (we
refer the reader to [JST21] for the precise definition). While we suspect that our Γ is not splittable,
we distill a weaker property that suffices for the [JST21] framework to work.

This property, which we call τ -sampling, tells us that we can use Γ ⊆ [n]t to sample any set
S ⊆ [n], starting from any prefix. Namely, for every i ∈ [t] and X ⊆ [n]i−1, we require that∣∣∣∣ Pr

w∈Γ
[wi ∈ S | (w1, . . . ,wi−1) ∈ X]− ρ(S)

∣∣∣∣ ≤ τ

ρ(X)
,

where ρ(A), for some subset A ⊆ [m], is its density |A|m . For the more general definition, and further
discussion, see Section 5.2. We believe that this strong mixing property, which still falls short of
full-fledged splittability, is an interesting notion in itself. In Section 5.2, we show that our Γ is
indeed τ -sampling, thereby allowing us to unique- and list-decode our code C in Õε(n) time.
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2 Preliminaries

For integers a, b, we use [a, b] to denote the set {a, . . . , b} and [n] as a shorthand for [1, n]. Given a

set S ⊆ [n], when the ground set [n] is clear from context, we denote ρ(S) = |S|
n , and its ±1 variant

as bias(S) = 1− 2ρ(S). For z ∈ Fn2 , we similarly denote bias(z) as the bias of its characteristic set,
i.e., Ei∈[n][(−1)zi ]. We use boldface letters to denote random variables, except for 1 ∈ Rn, which
we use for the all-ones vector. Also, when bounding running time, by writing g(n) = exp(f(n)) we
mean that g(n) ≤ 2c·f(n) for some universal constant c > 0.

Definition 2.1 (discretizable distribution). For M ∈ N, We say that a distribution W is M -
discretizable if it satisfies either of the following two equivalent properties.

1. For any x in the support of W, Prx∼W [x = x] = i/M for some i ∈ N.

2. Let UM be the uniform distribution over [M ]. Then, there is some function f mapping [M ] to
the support of W for which f(i), where i ∼ UM , has the same distribution as a sample from
W.

We say that W is computable in (deterministic or probabilistic) time T if f above is computable
in time T . In particular, W is explicit if it is computable in deterministic time poly(M), and fully
explicit if it is computable in deterministic time poly(logM).

Definition 2.2 (homogeneous distribution). For n, t ∈ N, we say that a distribution W over [n]t

is homogeneous if its restriction to any coordinate is uniform over [n], i.e., if for any i ∈ [t] and
a ∈ [n] it holds that Prw∼W [wi = a] = 1

n .

For any domain X and two distributions D,D′ over X we define the total variation distance of
D and D′ in terms of the optimal test distinguishing the distributions, i.e.,

dTV(D,D′) , sup
T : X→[0,1]

{
E

x∼D
[T (x)]− E

x∼D′
[T (x′)]

}
.

For a matrix A ∈ Rn×n, we denote by ‖A‖op its operator norm ‖A‖op = maxx 6=0
‖Ax‖2
‖x‖2 , which

is also the maximum of x†Ay over all norm-1 vectors x, y ∈ Rn.

Error correcting codes. A binary error correcting code of message length k and blocklength n is
a mapping C : Fk2 → Fn2 , which we will often identify with its image Im(C) ⊆ Fn2 . The rate of C is k

n ,
and its relative distance is ∆(C) = 1

n minz 6=z′ ∆(z, z′) for z, z′ ∈ C, and ∆(z, z′) = |{i ∈ [n] : zi 6= z′i}|
being the Hamming distance. The Hamming ball of (relative) radius β centered at z is the set
B(z, β) = {z′ ∈ Fn2 : ∆(z, z′) ≤ β}.

We denote bias(C) as the maximal bias, in absolute value, of every nonzero z ∈ C. Thus,
bias(C) ≤ ε if the Hamming weight of any nonzero codeword is in

[
1−ε

2 , 1+ε
2

]
.

Definition 2.3 (balanced codes). A linear binary error correcting code is ε-balanced if bias(C) ≤ ε.

In particular, an ε-balanced code C has distance at least 1−ε
2 .
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Unique and list decoding. We say that C is (combinatorially) (β, L) list decodable if for every
z ∈ Fn2 , |C ∩B(z, β)| ≤ L. The Johnson bound tells us that any ε-balanced code is (1/2 −

√
ε, L)

list decodable for L = O(1/ε). The algorithmic list decoding problem aims at finding the list
LC,β(z) , C ∩ B(z, β). When β ≤ 1−ε

4 and C is ε-balanced, we know that LC,β always contains at
most one codeword, which corresponds to the unique decoding problem.

2.1 Parity samplers and direct sum codes

We will be interested in constructing a binary linear code C ⊆ Fn̄2 with small bias by amplifying the
(moderate) bias of some base code C0 : Fk2 → Fn2 . One natural way to do so is by XORing t-tuples
of C0 according to some distribution W ∼ [n]t.

Definition 2.4 (direct sum codes). For t, n, n̄ ∈ N, let W ∼ [n]t be an n̄-discretizable distribution
equipped with a corresponding mapping function fW : [n̄]→ [n]t. For z ∈ Fn2 , we let dsumW(z) ∈ Fn̄2
be such that

dsumW(z)[`] =

t∑
i=1

z [fW(`)i]

where the addition is taken over F2. Given a code C0 ⊆ Fn2 , the direct sum lift of C0 according to
W is the code

dsumW(C0) = {dsumW(z) : z ∈ C0} ⊆ Fn̄2 .

Definition 2.5 (parity sampler). For t, n ∈ N, and 0 ≤ ε < ε0 ≤ 1, we say that W ∼ [n]t is an
(ε0, ε) parity sampler if for every z ∈ Fn2 with |bias(z)| ≤ ε0 it holds that |bias(dsumW(z))| ≤ ε.

Clearly, if C0 : Fk2 → Fn2 is ε0-balanced and W ∼ [n]t is an n̄-discretizable (ε0, ε) parity sampler,
the lifted code C = dsumW(C0) is ε-balanced with rate k

n̄ .

3 Expanding 3-Uniform Hypergraphs

Our construction uses a family of expanding d-regular 3-uniform hypergraphs.

Definition 3.1 (d-regular 3-uniform hypergraph). A 3-uniform hypergraph consists of a set of
vertices, V , and hyperedges E ⊆ V 3. The hypergraph H = (V,E) is d-regular if, for each v ∈ V
and j ∈ [3], the number of hyperedges (w1, w2, w3) ∈ E for which v = wj is d.

We will set d carefully in our construction, but for now, it can be thought of as an arbitrary
constant. For the remainder of this section, we will use “hypergraph” as shorthand for d-regular
3-uniform hypergraph.

There are various notions of expansion for hypergraphs and they are not all equivalent. In this
work, we consider two such notions.

Definition 3.2 (λ-mixing hypergraph). A d-regular hypergraph H = (V,E) on n vertices is λ-
mixing if, for any S1, S2, S3 ⊆ V ,∣∣∣∣E(S1, S2, S3)

d
− |S1| · |S2| · |S3|

n2

∣∣∣∣ ≤ λ ·√|S1| · |S3|, (2)

where E(S1, S2, S3) is the number of hyperedges (w1, w2, w3) ∈ E where wj ∈ Sj for j = 1, 2, 3.
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Note that the right-hand side of the above definition does not depend on the size of S2.9 That
parallels the definition below, in which we use ‖y‖∞ instead of ‖y‖2.

Definition 3.3 (λ-spectral hypergraph). A d-regular hypergraph H = (V,E) on n vertices is λ-
spectral if, for any x, y, z ∈ Rn,∣∣∣∣∣∣1d ·

∑
(i,j,k)∈E

xiyjzk −
1

n2
·
∑
i∈V

xi ·
∑
i∈V

yi ·
∑
i∈V

zj

∣∣∣∣∣∣ ≤ λ · ‖x‖2 · ‖y‖∞ · ‖z‖2. (3)

We will only care about cases where y ∈ {±1}n.10 In those cases, we have ‖y‖∞ = 1 and
‖y‖2 =

√
n. It is thus tempting to replace the ‖y‖∞ in the right-hand side of Equation (3) with

‖y‖2√
n

, as `2 norms are often easier to work with than `∞ norms. Unfortunately, no “good” λ-spectral

hypergraphs would exist with that modification: Whenever n� d2, it is straightforward to bound
λ = Ω(

√
n/d). For our definition, as we shall soon see, it is possible to achieve λ ≈ 1/

√
d.

A variant of the spectral definition, where indeed one takes ‖y‖2 instead of ‖y‖∞, was first
studied by Friedman and Wigderson [FW95], who also showed that the spectral definition implies
combinatorial mixing. They considered much larger edge densities than us (corresponding to d > n
for our definition). Hypergraphs with similar combinatorial mixing properties were previously con-
structed from random walks on expanders [BH04], from Ramanujan complexes and other spectral
properties of simplicial complexes (e.g., [LM15, PRT16, CMRT16, Par17, GP19]), and from Cayley
graphs [CTZ20]. However, to the best of our knowledge, no explicit construction achieves λ smaller
than ≈ 1

d1/3
. A simple hypergraph construction would be to take all length-2 walks on a Ramanujan

expander as the hyperedges. This was considered by [BH04], who showed it can achieve λ ≈ 1
d1/4

.11

Similar to standard graphs, spectral expansion implies mixing.

Proposition 3.4 (spectral =⇒ mixing). For any λ > 0, if H is a λ-spectral hypergraph, it is also
a λ-mixing hypergraph.

Proof. For any S1, S2, S3 ⊆ V , let xi = 1[i ∈ S1], yi = 1[i ∈ S2], and zi = 1[i ∈ S3]. Then,

E(S1, S2, S3) =
∑

(i,j,k)∈E

xiyjzk.

Equation (2) follows directly from Equation (3).

By applying the converse to the expander mixing lemma for ordinary graphs [BL06], we can show
that for symmetric hypergraphs, mixing implies spectral expansion with only a minor quantitative
gap.

Definition 3.5 (symmetric 3-uniform hypergraph). We say a 3-uniform hypergraph H = (V,E)
is symmetric if, for any edge e = (v1, v2, v3) ∈ E, the edge (v3, v2, v1) is also in E.

9Some works consider the stronger requirement of
√
|Sσ(1)| · |Sσ(2)| instead of

√
|S1| · |S3|, for Sσ(1) and Sσ(2)

being the two smallest sets.
10In fact, for any fixed choice of x and z, the left-hand side of Equation (3) is linear in y. Therefore, it is maximized

for some y ∈ {±1}n and so in general it is sufficient to consider only such y.
11In [BH04], Bilu and Hoory used hypergraphs for the construction of asymptotically good codes, generalizing

Tanner’s expander codes [Tan81] and their decoding [SS96, Zém01].
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Proposition 3.6 (mixing =⇒ spectral). There exists a universal constant cspec > 0 for which the
following holds. Let H = (V = [n], E) be any d-regular hypergraph, and λ ≤ 1

2 . If H is λ-mixing
and symmetric, then H is a λ′-spectral for λ′ = cspec · λ log(1/λ).

The proof of Proposition 3.6 is a simple application of a similar result for graphs.

Lemma 3.7 (Lemma 3.3 of [BL06]). There exists a universal constant cBL for which the following
hods. For any n × n real symmetric matrix A and λ ≤ 1

2 , suppose each row has an `1 norm of at
most 1 and for any two vectors u, v ∈ {0, 1}n,12

|u†Av| ≤ λ · ‖u‖ · ‖v‖. (4)

Then, the spectral radius of A is at most cBL · λ log(1/λ).

If G is the (normalized) transition matrix of a d-regular graph, and A = G− 1
nJ for J being the

all-ones matrix, then Lemma 3.7 shows a converse to the expander mixing lemma: Any graph with
good mixing is also a good spectral expander. We show that their result can be lifted to 3-uniform
hypergraphs.

Proof of Proposition 3.6. Fix any y ∈ Rn and let A(y) ∈ Rn×n be defined as

A
(y)
i,k ,

1

2d
·

∑
j∈[n]

1[(i, j, k) ∈ E] · yj

− 1

2n2
·
∑
j∈[n]

yj .

Then, for any x, z ∈ Rn,

2 · (z†A(y)x) =
1

d
·
∑

(i,j,k)∈E

xiyjzk −
1

n2
·
∑
i∈V

xi ·
∑
i∈V

yi ·
∑
i∈V

zj .

Therefore, in order to prove that H is an λ′-spectral expander, it is sufficient to show that for all
y ∈ Rn, the operator norm of A(y) is at most ‖y‖∞ · λ

′

2 . We observe that:

1. For any fixed x, z ∈ Rn, the quantity z†A(y)x is a linear function of y. Thus, we can consider
y-s with ‖y‖∞ = 1 without loss of generality. Furthermore, the y maximizing z†A(y)x among
those with ‖y‖∞ = 1 will be in {±1}n. Therefore we assume y ∈ {±1}n also without loss of
generality.

2. Since H is symmetric, the operator norm and spectral radius of A(y) are equal, so we instead
bound the spectral radius.

We will apply Lemma 3.7 to each A(y). Note that:

• A(y) is symmetric, which follows immediately from the fact that H is symmetric.

• The `1 norm of each row of A(y) is bounded by 1:

∑
k∈[n]

∣∣∣∣∣∣ 1

2d
·

∑
j∈[n]

1[(i, j, k) ∈ E] · yj

+
1

2n2
·
∑
j∈[n]

yj

∣∣∣∣∣∣ ≤ 1

2d
· d+

1

2n2
· n ≤ 1.

12Note that Bilu and Linial’s Lemma statement only has the weaker requirement that this hold for orthogonal u
and v. As a result, they have an additional condition that the diagonal entries of A not be too large, which is not
needed for our version of the Lemma.
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Finally, fix some u, v ∈ {0, 1}n, and define the sets

S1 = {i ∈ V : ui = 1}
S3 = {i ∈ V : vi = 1}
S+

2 = {i ∈ V : yi = 1}
S−2 = {i ∈ V : yi = −1}.

Then,∣∣∣u†A(y)v
∣∣∣ =

1

2
·
∣∣∣∣1d · (E(S1, S

+
2 , S3)− E(S1, S

−
2 , S3)

)
− |S1| · |S3| · (|S+

2 | − |S
−
2 |)

n2

∣∣∣∣
≤ 1

2
·
∣∣∣∣1d · E(S1, S

+
2 , S3)− |S1| · |S3| · |S+

2 |
n2

∣∣∣∣+
1

2
·
∣∣∣∣1d · E(S1, S

−
2 , S3)− |S1| · |S3| · |S−2 |

n2

∣∣∣∣
≤ λ

√
|S1| · |S3|,

where the last inequality follows from fact that H is λ-mixing (applied to both expressions). Thus,
|u†A(y)v| ≤ λ ·‖u‖·‖v‖ and we can apply Lemma 3.7 to obtain ‖A(y)‖op = cBL ·λ log(1/λ), implying
that H is (λ′ = 2cBL · λ log(1/λ))-spectral.

3.1 Random hypergraphs mix well

In this section, we’ll show that given an expanding graph G, its random hypergraph completion is,
with high probability, a good expander. Throughout, we say that an undirected regular graph G
is a λ-expander if the second largest eigenvalue of its normalized adjacency matrix, in magnitude,
is at most λ.

Definition 3.8 (random hypergraph completion of a graph.). Let G = (V = [n], EG) be a d-
regular graph. To sample a random hypergraph completion, H of G, we choose a uniformly random
ordering of G’s edges, {(u1,v1), . . . , (und,vnd)} = EG. Then, we set H = (V,EH), where

EH , {(ui, di/de,vi) | i ∈ [nd]} .

Equivalently, for each (u, v) ∈ EG, we choose an independent and uniform w ∈ V and add the
hyperedge (u,w, v) to EH , conditioned on the resulting hypergraph H being d-regular.

Next, we prove that the random hypergraph completion mixes well with high probability.

Lemma 3.9. Let G = (V = [n], E) be a d-regular λ-expander and H be a random hypergraph
completion of G. With probability at least 1− 2−n, H is a λ′-mixing hypergraph for λ′ = 2λ+ 2√

d
.

In order to prove Lemma 3.9, we’ll use Hoeffding’s for sampling without replacements.

Fact 3.10 (Hoeffding’s inequality, [Hoe63]). For any integers a, k ≤ m, suppose there are m items,
of which k of them are marked. Let x be a random variable indicating the number of marked items
when a of the m items are sampled uniformly and independently without replacement. Then, for
any t ≥ 0,

Pr

[∣∣∣∣x− k

m
· a
∣∣∣∣ ≥ t] ≤ 2 exp

(
−2t2

a

)
.

11



Proof of Lemma 3.9. Fix arbitrary S1, S2, S3 ⊆ V . We will show that with probability at least
1− 2−4n it holds that∣∣∣∣EH(S1, S2, S3)

d
− |S1| · |S2| · |S3|

n2

∣∣∣∣ ≤ ( 2√
d

+ 2λ

)
·
√
|S1| · |S3| (5)

where EH(S1, S2, S3) is the number of edges (v1, v2, v3) in H where vj ∈ Sj for each j ∈ [3]. The
desired result then follows from a union bound over the (2n)3 = 23n choices for S1, S2, S3. Let
EG(S1, S3) be the number of edges, (u, v), of G, such that u ∈ S1 and v ∈ S3. By the expander
mixing lemma applied to G, we have that∣∣∣∣EG(S1, S3)

d
− |S1||S3|

n

∣∣∣∣ ≤ λ√|S1||S3|.

Let us define µ , |S1||S3|
n and ∆ , λ

√
|S1||S3|. We consider two cases.

1. In the first case, µ ≤ ∆. Here, we use the simple bound

0 ≤ EH(S1, S2, S3)

d
≤ EG(S1, S3)

d
≤ 2∆

that holds with probability 1. This, along with the fact |S1|·|S2|·|S3|
n2 ≤ µ ≤ ∆ implies that

Equation (5) always holds.

2. In the second case, µ > ∆. Here, we will apply Fact 3.10. G has a total of nd edges, of which
d · |S2| are matched to a vertex in S2. EH(S1, S2, S3) samples EG(S1, S3) of those nd edges
(without replacement) and counts how many were among the d · |S2| assigned to S2. Hence,
by Hoeffding’s inequality, we have for any t ≥ 0,

Pr

[∣∣∣∣EH(S1, S2, S3)− d · |S2|
nd

· EG(S1, S3)

∣∣∣∣ ≥ t] ≤ 2 exp

(
−2t2

EG(S1, S3)

)
.

Then, setting t = 2
√
d|S1| · |S3| and using the fact that EG(S1, S3) ≤ d(µ+ ∆) ≤ 2dµ,

Pr

[∣∣∣∣EH(S1, S2, S3)− |S2|
n
· EG(S1, S3)

∣∣∣∣ ≥ 2
√
d|S1| · |S3|

]
≤ 2 exp

(
−8d|S1| · |S3|

2d · |S1||S3|
n

)
.

= 2 exp(−4.5n) ≤ 2−4n.

As the above shows, EH(S1, S2, S3) is within ±t of its expectation with probability at least
2−4n. When that occurs, we have that∣∣∣∣EH(S1, S2, S3)

d
− |S1| · |S2| · |S3|

n2

∣∣∣∣ =
1

d

∣∣∣∣EH(S1, S2, S3)− |S2|dµ
n

∣∣∣∣
≤ t

d
+
|S2|
n
·
∣∣∣∣EG(S1, S3)

d
− µ

∣∣∣∣
≤ t

d
+
|S2|
n
·∆ (expander mixing lemma)

≤ 2

√
|S1| · |S3|

d
+ λ

√
|S1| · |S3|. (|S2|/n ≤ 1)
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Hence, Equation (5) holds with probability at least 1− 2−4n in both cases, so we can union bound
over the 23n choices for S1, S2, S3.

For our purposes, we will want the hypergraph to be symmetric. It is quite easy to “symmetrize”
any hypergraph at only a modest cost to the degree.

Proposition 3.11. For any n, d ∈ N, there is an algorithm running in time O(nd) that takes as
input any d-regular λ-mixing hypergraph H = (V = [n], EH) and outputs a 2d-regular λ-mixing
hypergraph H ′ = (V = [n], EH′) over the same vertices.

Proof. For every edge (u, v, w) ∈ EH we include both (u, v, w) and the reverse edge (w, v, u) in
EH′ .

13 Clearly, this results in the degree of H ′ being 2d. Then, for any S1, S2, S3 ⊆ V ,∣∣∣∣EH′(S1, S2, S3)

2d
− |S1| · |S2| · |S3|

n2

∣∣∣∣
=

∣∣∣∣EH(S1, S2, S3) + EH(S3, S2, S1)

2d
− |S1| · |S2| · |S3|

n2

∣∣∣∣
≤ 1

2

∣∣∣∣EH(S1, S2, S3)

d
− |S1| · |S2| · |S3|

n2

∣∣∣∣+
1

2

∣∣∣∣EH(S3, S2, S1)

d
− |S1| · |S2| · |S3|

n2

∣∣∣∣
≤ λ

√
|S1| · |S3|.

Therefore, H ′ is λ-mixing, as desired.

We have explicit (and even fully explicit) constructions of Ramanujan graphs, i.e., λ-expanders

for λ ≤ 2
√
d−1
d , albeit with some restrictions on d [LPS88, Mar88]. By manipulating Ramanujan

graphs, Alon gave a construction of d-regular λ-expanders over n vertices for any d and n while
suffering only a tiny loss in λ (see [Alo21], and also [MRSV21, Gol19] for weaker constructions). In
particular, there exist explicit expanders with λ = O(1/

√
d) for all n-s. We thus get the following

corollary.

Corollary 3.12. There exists a probabilistic algorithm such that for any integer n and even integer
6 ≤ d ≤ n, runs in time poly(n) and with probability at least 1−2−n outputs a 3-uniform symmetric
d-regular hypergraph that is λ = crand√

d
-mixing, where crand ≥ 2 is some universal constant.

We will refer to the above probabilistic construction as our preprocessing step.
Unfortunately, we do not know how to construct explicit mixing, or spectral, hypergraphs

with λ ≈ 2/
√
d. We put forward a concrete goal of constructing “nearly Ramanujan” spectral

hypergraphs.

Open Problem 1. Construct a sufficiently dense infinite family of explicit 3-uniform d-regular
hypergraphs which are λ-spectral for λ ≤ 2√

d
· (1 + dc), where c < 0 is any absolute constant.

Getting such hypergraphs is an interesting goal on its own right, and it seems that Ramanujan
complexes are in some sense too strong to yield a hypergraph construction with such a small λ. As
we will later see, fulfilling Open Problem 1 would readily give explicit ε-balanced codes with rate

13Note that, we do this even if it results in duplicated hyperedges: If (u, v, w) and (w, v, u) are both in EH , then
there will be two copies of (u, v, w) and two copies of (w, v, u) in EH′ .
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Ω̃(ε2) and efficient decoding, and moreover, by the known connection to small-biased distributions,
also an explicit ε-biased distributions over Fn2 with support size n · Õ(ε−2). See Section 6 for the
details.

4 From Hypergraphs to Parity Samplers

Fix some n, t, d ∈ N and a d-regular 3-uniform hypergraph H = (V,EH) over n vertices. We will
construct a parity samplerWH,t ∼ [n]t from H and show that when H is a good spectral expander,
W is a good parity sampler.

The construction. For each v ∈ V , there are d edges (v1, v2, v3) ∈ EH with v1 = v. For any
i ∈ [d], let eH(v, i) be the ith such edge (i.e., eH(v, i)1 = v). Without loss of generality, we assume
the vertices are each labeled with a unique integer between 1 and n (i.e V = [n]).

To sample w ∼ WH,t, independently sample a starting vertex v0 ∈ [n] and edge labels
i1, . . . , it ∼ [d] uniformly. w will be a deterministic function of v0 and i1, . . . , it computed as
follows. For each j = 1, . . . , t,

1. Let ej = eH(vj−1, ij).

2. Let vj = (ej)3.

3. Let wj = (ej)2.

The sample is then w = (w1, . . . ,wt).
We present two simple claims about WH,t.

Claim 4.1. For any t ∈ N and a d-regular hypergraph H over n vertices,WH,t is (ndt)-discretizable.

Proof. The sample w ∼ WH,t is a deterministic function of v0 and i1, . . . , it, and those variables
are set to a uniform choice out of ndt possibilities. The claim then follows from Definition 2.1.

Claim 4.2. For any t ∈ N, d-regular hypergraph H, and j ∈ [t], ej is uniform over all nd edges of
H. As a result, WH,t is homogeneous.

Proof. We will first prove that each ej is uniform over EH by induction on j. e1 is uniform over
the nd edges in EH as it is sampled by independently choosing a starting vertex v0 ∼ V uniformly
and then uniformly choosing one of its d-neighbors. Furthermore, for any j ∈ [t − 1], if ej is
uniform, then vj is also uniform. Hence, ej+1 is sampled by selecting a uniform vertex and then
(independently) one of its d-neighbors, so ej+1 is also uniform over EH .

Next, we show WH,t is homogeneous. Fix any a ∈ [n] and j ∈ [t]. As wj = a if and only if ej
is one of the d-edges in EH whose second vertex is a and ej is uniform over the nd edges in EH ,

Pr[wj = a] =
d

nd
=

1

n
.

Finally, we show that whenever H is a good expander, WH,t is a good parity sampler.

Theorem 5. For any n, d, t ∈ N, λ, ε0 > 0, and H a λ-spectral d-regular 3-uniform hypergraph on
n vertices, WH,t is an (ε0, ε , (ε0 + λ)t)-parity sampler.
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As an immediate corollary of Theorem 5 and Proposition 3.6:

Corollary 4.3. There exists an absolute constant cspec > 0 for which the following holds. For any
n, d, t ∈ N, λ, ε0 > 0, and H a λ-mixing symmetric d-regular 3-uniform hypergraph on n vertices,
WH,t is an (ε0, ε , (ε0 + cspec · λ log(1/λ))t)-parity sampler.

Throughout the remainder of this section, we will use the shorthand W , WH,t. For proving
Theorem 5, it will be convenient to consider σ ∈ {±1}n rather than z ∈ Fn2 (as in Definition 2.5)
using the mapping σi = (−1)zi . Equivalent to Definition 2.5, W is an (ε0, ε) parity sampler if
|biasW(σ)| ≤ ε for all σ ∈ {±1}n satisfying |bias(σ)| =

∣∣Ei∼[n][σi]
∣∣ ≤ ε0, where

biasW(σ) , E
w∼W

 t∏
j=1

σwj

 .
Similarly to [TS17], we express that bias algebraically.

Lemma 4.4. Let A(σ) ∈ Rn×n be defined as

A
(σ)
i,k ,

1

d
·

∑
(i′,j′,k′)∈EH

σj′ · 1[i′ = i ∧ k′ = k].

Then,

biasW(σ) =
1

n
· 1†

(
A(σ)

)t
1.

Proof. Let v0, . . . ,vt and w1, . . . ,wt be the random variables defined in the construction ofW. We
claim that for each j ∈ {0, 1, . . . , t} and v ∈ [n], that

E

[
1[vj = v]

j∏
k=1

σwk

]
=

1

n
·
(

1†
(
A(σ)

)j)
v

(6)

By induction on j. Clearly, for j = 0, Equation (6) holds as both sides are equal to 1
n for any

v ∈ [n]. For j ≥ 1,

E

[
1[vj = v]

j∏
k=1

σwk

]
=
∑
v′∈[n]

E

[
1[vj = v ∧ vj−1 = v′]

j∏
k=1

σwk

]

=
∑
v′∈[n]

E

[
1[vj−1 = v′]

j−1∏
k=1

σwk

]
· E
[
1[vj = v] · σwj

∣∣vj−1 = v′
]

=
∑
v′∈[n]

1

n
·
(

1†
(
A(σ)

)j−1
)
v′
· E
[
1[vj = v] · σwj

∣∣vj−1 = v′
]

=
1

n

∑
(a,b,c)∈EH

(
1†
(
A(σ)

)j−1
)
a

· 1

d
· σb · 1[v = c]

=
1

n
·
(

1†
(
A(σ)

)j)
v

,
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where the third equality is the inductive hypothesis. Then,

biasW(σ) = E
w∼W

 t∏
j=1

σj

 =
∑
v∈[n]

E

[
1[vj = v]

j∏
k=1

σwk

]
=

1

n
· 1†

(
A(σ)

)t
1.

Next, we use the fact that H is a λ-spectral expander to reason about A(σ).

Proposition 4.5. Let Jn ∈ Rn×n be the matrix in which every element is 1/n. For any σ ∈ {±1}n,∥∥∥A(σ) − bias(σ)Jn

∥∥∥
op
≤ λ.

Proof. Fix any x, z ∈ Rn. Then,

z†
(
A(σ) − bias(σ)Jn

)
x =

1

d
·

∑
(i,j,k)∈EH

xkσjzi −
bias(σ)

n
·
∑
i∈[n]

xi
∑
j∈[n]

zj

=
1

d
·

∑
(i,j,k)∈EH

xiσjzk −
1

n2
·
∑
k∈[n]

σk
∑
i∈[n]

xi
∑
j∈[n]

zj

≤ λ‖x‖2‖z‖2. (Definition 3.3)

As an immediate consequence, we have:

Corollary 4.6. For any σ ∈ {±1}n,∥∥∥A(σ)
∥∥∥

op
≤ |bias(σ)|+ λ.

Proof. As ‖Jn‖op = 1, the desired result follows from the reversed triangle inequality applied to
the operator norm.

Finally, we prove Theorem 5.

Proof of Theorem 5. For any σ ∈ {±1}n satisfying |bias(σ)| ≤ ε0, we have:

|biasW(σ)| = 1†√
n

(
A(σ)

)t 1√
n

(Lemma 4.4)

≤
∥∥∥∥(A(σ)

)t∥∥∥∥
op

≤
∥∥∥A(σ)

∥∥∥t
op
≤ (|bias(σ)|+ λ)t ≤ (ε0 + λ)t. (Corollary 4.6)
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5 Codes Closer to the GV Bound

5.1 The construction

We use our parity sampler to amplify the distance of a given base code via direct sum lifting. More
formally, given k ∈ N and ε > 0, let ε0 = ε0(ε) soon to be determined, and let

• C0 : Fk2 → Fn2 be an ε0-balanced code, and,

• W ∼ [n]t be an (ε0, ε)-parity sampler which is M -discretizable.

Denote n̄ = |Supp(W)| ≤ M . Thus, the lifted code C = dsumW(C0) ⊆ Fn̄2 is clearly ε-balanced.
For the base code, we use the codes by Guruswami and Indyk, that admit Oε0(n)-time encoding
and decoding.

Theorem 6 ([GI05]). For every integer n and any ε0 > 0 there exists an ε0-balanced code C0 ⊆ Fn2
of rate Ω(ε3

0). Furthermore, C0 is encodable in time exp(poly(1/ε0))n and decodable from 1
4 − ε0

fraction of errors in time exp(poly(1/ε0))n.14

Setting parameters Given ε > 0, we henceforth set:

1. The initial bias of C0 to

ε0 =
1

2
· 2−
√

log(1/ε).

2. The number of steps over H to

t =
⌈√

log(1/ε)
⌉
.

3. The degree d of H to be the smallest even integer for which

cspec · crand ·
1√
d

log

( √
d

crand

)
≤ ε0.

This is chosen so that Corollary 3.12 gives, with high probability, a symmetric hypergraph H
such that, by Corollary 4.3, WH,t is a (ε0, (2ε0)t)-parity sampler.

Using the above parameters in Theorem 5, together with the random hypergraph of Corol-
lary 3.12. we get the following (randomized) error correcting code C.

Theorem 7. There exists an efficient randomized algorithm such that for every k and any ε > 0,
outputs with probability 1− 2−Ω(k) an ε-balanced linear code C : Fk2 → Fn̄2 of rate

k

n̄
= 2−cr log log(1/ε)

√
log(1/ε) · ε−2

for some universal constant cr, that is encodable in deterministic time exp(exp(
√

log(1/ε))) · k.15

14One can get a better randomized encoding time of poly(1/ε0).
15Following the previous footnote, one can get a randomized encoding in time poly(1/ε) · k by using a randomized

encoding of the based code.
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More precisely, there exists a randomized preprocessing step that runs in time exp(
√

log(1/ε))·k
and succeeds with probability 1− 2−Ω(k). Once it succeeds, it fixes a deterministic mapping C such
that for every x ∈ Fk2, C(x) can be computed in deterministic in the above Oε(n̄) time.

If, moreover, for a large enough constant d we are given an explicit family of λ-spectral d-regular
3-uniform hypergraphs satisfying λ = poly(log d)√

d
, there is no need for a preprocessing step, and C is

explicit.

Proof. Given k ∈ N and ε > 0, we set ε0, t, and d as above. Theorem 6 gives us a code C0 : Fk2 → Fn2
which is ε0-balanced, for n = O(k/ε3

0). By Corollary 3.12 we can output a λ = crand√
d

-mixing H with

probability at least 1 − 2−n in polynomial time. This is our preprocessing step. By Corollary 4.3
and our choice of parameters, indeed(

ε0 + cspec · λ log
1

λ

)t
≤ (2ε0)t ≤ ε,

so W =WH,t appropriately amplifies the distance. Moreover, W is M -discretizable for

M = ndt = O

(
k

ε3
0

)
· d
⌈√

log(1/ε)
⌉

= k · 2(3+log d)
√

log(1/ε)+log d+O(1).

We proceed to bounding log d in terms of ε. Recalling how we set d, we see that c√
d

log d =

2−
√

log(1/ε), where c is some universal positive constants. From this we can infer that

d ≤ c222
√

log(1/ε) · log3
(
c · 2
√

log(1/ε)
)
, (7)

so log d = 2
√

log(1/ε) + O(log log(1/ε)). (We are assuming that ε is smaller than some small
constant, which we can without loss of generality.) Hence,

M =
k

ε2
· 2O

(√
log(1/ε)·log log(1/ε)

)
.

Since W is M -discretizable, C = dsumW(C0) has block length n̄ ≤M , as required.
Drawing H at random, by Corollary 3.12 takes

O(dn) = Õ

(
1

ε3
0

)
· k = exp(

√
log(1/ε)) · k

time. Given the hypergraph H, the encoding amounts to computing C0(x) and taking parities of
its coordinates according to W. This takes

exp(poly(1/ε0)) · k +M · t

time, following Theorem 6.
For the “moreoever” part, one can verify that we can tolerate a polylog(d) multiplicative factor

in λ with no substantial loss in parameters.

Note that an explicit construction of H would also give an explicit ε-biased sample space over
Fk2 with support size n̄, improving upon the state-of-the-art

k

n̄
= 2−Õ(log(1/ε))2/3 · ε−2

by Ta-Shma [TS17].
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5.2 τ-sampling

Toward establishing efficient decoding, we will need the notion of τ -sampling.

Definition 5.1 (τ -sampling). We say that a distribution W over [n]t is τ -sampling if for any
i ∈ [t− 1], S ⊆ [n], and X ⊆ [n]i,

Cov
w∼W

[
1[wi+1 ∈ S],1[(w1, . . .wi) ∈ X]

]
≤ τ.

To highlight the fact that it is indeed a (strong) sampling property, assume for simplicity that
W is homogeneous. Fix any i ∈ [t − 1], S ⊆ [n], and X ⊆ [n]i . The property of τ -sampling thus
tells us we can use W to sample S starting from any prefix. Namely, that∣∣∣∣ Pr

w∈W
[wi+1 ∈ S | (w1, . . . ,wi) ∈ X]− ρ(S)

∣∣∣∣ ≤ τ

ρ(X)
.

Note that the t = 2 case corresponds to the setting of the expander mixing lemma.
A τ -sampling distribution W satisfies the property of the “Splittable Mixing Lemma” of Jeron-

imo, Srivastava, and Tulsiani [JST21, Lemma 4.6] for the family of “±1 cut functions”. This fact
is crucial us, and for completeness we establish this in Appendix A.

Given a τ -sampling homogeneous W ∼ [n]t, a standard hybrid argument shows the following.

Lemma 5.2. Let W ∼ [n]t be homogeneous and τ -sampling, and let z ∈ Fn2 be arbitrary. Then,∣∣∣∣ Ew∈W [(−1)zw1+...zwt
]
− bias(z)t

∣∣∣∣ ≤ 2(t− 1)τ.

Thus, high-order mixing in particular implies thatW is an (ε0, ε = εt0 +(t−1)τ) parity sampler
for all ε0. However, for us, and also in [JST21], t · τ is too large so we prove the parity sampling
property separately.

We conclude our discussion about τ -sampling by showing that our W is indeed τ -sampling.

Lemma 5.3. For any n, d, t ∈ N and λ > 0, if H = (V = [n], E) is a λ-spectral d-regular 3-uniform
hypergraph, then WH,t is τ = λ

4 -sampling.

Proof. As in Definition 5.1, fix any i ∈ [t−1], S ⊆ [n] and X ⊆ [n]i. Let Si(w) be the indicator that
wi+1 ∈ S, and Xi(w) the indicator that (w1, . . . , wt) ∈ X. Using the identity Cov[1− 2a, 1− 2b] =
4 Cov[a, b], it is sufficient to prove that

Cov
w∼WH,t

[
(−1)Si(w), (−1)Xi(w)

]
≤ λ.

Let v0, . . . ,vt, w1, . . . ,wt, and e1, . . . , et be the random variables defined in the construction of
WH,t. Furthermore, let x, y, z ∈ Rn be the vectors defined, for each j ∈ [n], by

xj , E

[
(−1)Xi(w)

∣∣∣∣vi = j

]
,

yj , (−1)1[j∈S],

zj ,
1

n
.
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Note that ‖z‖2 = 1/
√
n, ‖y‖∞ = 1, and ‖x‖2 ≤

√
n (which follows from ‖x‖∞ ≤ 1). Our goal in

this proof will be to show that the following equation holds:

Cov
w

[
(−1)Si(w), (−1)Xi(w)

]
=

1

d
·
∑

(a,b,c)∈E

xaybzc −
1

n2
·
∑
a∈[n]

xa ·
∑
a∈[n]

ya ·
∑
a∈[n]

za (8)

Once we do, the desired result follows from Definition 3.3. In order to compute the covariance, we
first expand:

E
w

[
(−1)Si(w) · (−1)Xi(w)

]
=

1

nd
·
∑
e∈E

E
w

[
(−1)Si(w) · (−1)Xi(w)

∣∣ ei+1 = e
]

(Claim 4.2)

=
1

nd
·
∑

(a,b,c)∈E

(−1)1[b∈S] · E
w

[
(−1)Xi(w)

∣∣∣∣vi = a

]
=

1

d
·
∑

(a,b,c)∈E

xaybzc. (9)

Next, directly from the definition of y and Claim 4.2,

E
w

[
(−1)Si(w)

]
=

1

n

∑
a∈[n]

ya. (10)

Similarly,

E
w

[
(−1)Xi(w)

]
=

1

n

∑
a∈[n]

xa. (11)

Equation (8) follows from Equations (9) to (11) and the fact that
∑

a∈[n] za = 1. The desired result
then follows Definition 3.3.

5.3 Decoding C

We follow the work of Jernoimo et al. who gave a near-linear time list- and unique-decoding algo-
rithm for Ta-Shma’s code via an efficient weak regularity lemma, and prove that their algorithm
also applies to our code as well. In the language of τ -sampling distributions, they prove:16

Theorem 8 ([JST21]). There exists a constant cJST such that the following holds for any integers
d, t, k, n and any τ, ε0, ε > 0. Let C0 : Fk2 → Fn2 be a code with bias at most ε0 which is uniquely
decodable to within distance 1−ε0

4 in time T0 = T0(n, ε0). LetW ∼ [n]t be a homogeneous τ -sampling
distribution, let C = dsumW(C0) be the corresponding direct sum lifting, and assume that the bias
of C is at most ε. Let β be such that

β ≥ max

{
√
ε,
√
cJST · t3τ , 2 ·

(
1

2
+ 2ε0

)t}
.

16Jernoimo et al. prove their result under stronger requirements, however one can verify that the mixing requirement
suffices.
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Then, there exists a randomized algorithm, which given ỹ ∈ F|W|2 , recovers the list C ∩B(ỹ, 1
2 − β)

with probability at least 1 − 1
ε · 2

−Ω(ε20n) in time Õ(cβ,t,ε0 · (|W| + T0)), for cβ,t,ε0 = (6/ε0)2O(t3/β2)
.

Moreover, if we are able to set β = 1+ε
4 , we can uniquely decode C to within distance 1−ε

4 with

probability at least 1− 2−Ω(ε20n).

Plugging-in our code C (using WH,t and C0 as described in Section 5.1), we get our main result.

Theorem 9. Given k ∈ N and ε > 0, let C : Fk2 → Fn̄2 be the ε-balanced, linear-time encodable code
guaranteed to us by Theorem 7 with high probability. Then, C also admits the following decoding
capabilities.

1. C is list decodable up to radius 1
2 − β for β = 2−

1
2

√
log(1/ε) by a randomized algorithm that

runs in time c1(ε) · k and succeeds with probability 1− 2−Ω(k).

2. C is uniquely decodable to within distance 1−ε
4 by a randomized algorithm that runs in time

c2(ε) · k and succeeds with probability 1− 2−Ω(k).

Above, c1(ε) = exp(exp(exp(
√

log(1/ε)))) and c2(ε) = exp(exp(
√

log(1/ε))).

Proof. By Lemma 5.3, our parity sampler W which we use for C is τ -sampling for

τ =
λ

4
= O

(
log d√
d

)
= Õ

(
2−2
√

log(1/ε)
)
,

where we used the fact that our randomized construction of H gives us λ = O
(

1√
d

log d
)

and the

bound on d from Equation (7). All that is left is to show how the two items follow from Theorem 8.
For the list decoding result, we take β to be as small as possible. For us,(

1

2
+ 2ε0

)t
≤ 2−

1
2

√
log(1/ε),

and √
cJST · t3τ = Õ

(
2−
√

log(1/ε)
)
.

We can thus conclude that β ≤ 2−
1
2

√
log(1/ε). (Again, we are assuming ε is smaller than some small

constant.) For the running time, note that

T0 = exp(poly(1/ε0))n = exp

(
2
O
(√

log(1/ε)
))
· k,

and cβ,t,ε0 is thus triply-exponential in
√

log(1/ε), and overall

Õ (cβ,t,ε0 · (|W|+ T0)) = Õ (cβ,t,ε0) · k.

For the unique decoding result, we take β = 1+ε
4 , and the running time becomes doubly-exponential

in
√

log(1/ε).
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6 Assuming a Ramanujan Hypergraph

In Section 4 we showed how to construct a parity sampler given a mixing, or spectral, hypergraph.
Applying that construction with a λ = polylog(d)√

d
-spectral hypergraph allows us to prove Theorem 3,

giving a code that approaches the GV bound.
One can also hope for better spectral hypergraphs. For (non-hyper) graphs, the best λ possible

is roughly 2
√
d−1
d , and graphs with such good expansion are the celebrated Ramanujan graphs. In

this section, we show how hypergraphs with similar expansion proprieties would give codes even
closer to the GV bound.

Definition 6.1 (almost Ramanujan hypergraph). For any δ ≥ 0, we say that a d-regular 3-uniform
hypergraph is δ-almost Ramanujan if it is λ-spectral for

λ =
2(1 + δ)

√
d− 1

d
.

We will be interested in δ-almost Ramanujan hypergraphs with δ ≤ dc for any constant c < 0.
The goal of this section is to prove the following theorem.

Theorem 10. For any absolute constants c1, c2 > 0, there is a deterministic algorithm that given
any n ∈ N and ε, τ > 0, and a d-regular 3-uniform (δ = d−c1)-almost Ramanujan hypergraph on n
vertices for any d in the range

dmin ≤ d ≤ dc2min where dmin = poly

(
log

1

ε
,

1

τ

)
,

constructs an (ε0, ε) parity sampler W ∼ [n]t that is homogeneous, M -discretizable, and τ -sampling
for

ε0 =
1

poly(log(1/ε), 1/τ)
,

t = O (log(1/ε)) ,

M =
n

ε2
· poly(log(1/ε), 1/τ).

Moreover, the algorithm runs in time O(Mt).

We prove Theorem 10 in Section 6.5. As a corollary of the above theorem, assuming explicit
almost Ramanujan hypergraphs, we get explicit codes with rate Ω̃(ε2) which are (probabilistically)
decodable.

Corollary 6.2. Given an explicit family of almost Ramanujan expanders, as described in Theo-
rem 10, for any k ∈ N and ε > 0 there exists an explicit17 ε-balanced code C : Fk2 → Fn̄2 of rate

k

n̄
= ε−2 · 1

poly(log(1/ε))

with the following decoding capabilities.

17Here we assume the explicitness of the base code C0. See Theorem 6 for the exact dependence of the encoding
time on ε0.
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1. C is list decodable up to radius 1
2−β for β = 1

poly(log(1/ε)) by a randomized algorithm that runs

in time c(ε) · k and succeeds with probability 1− 2−Ω(k).

2. C is uniquely decodable to within distance 1−ε
4 by a randomized algorithm that runs in time

c(ε) · k and succeeds with probability 1− 2−Ω(k).

Above, c(ε) = exp(exp(poly(log(1/ε)))).

By choosing an appropriate τ = 1
poly(log(1/ε)) in Theorem 10, the proof of Corollary 6.2 is

essentially identical, up to parameters, to the proof of Theorem 9 so we omit it.

6.1 The non-backtracking parity sampler

In order to take advantage of an almost Ramanujan hypergraph H = (V,EH), we need a more
efficient parity sampler than the one presented in Section 4. First, we recall that construction: For
any edge e ∈ EH , let the set of neighboring edges, NH(e), be all edges e′ ∈ EH satisfying e3 = e′1.
To sample from our original parity sampler w ∼ WH,t, we first sampled a starting hyperedge e1.
Then, for each j ∈ [2, n], we sampled ej uniformly from the d edges in N(ej−1). The final sample
w comprises wj = (ej)2 for each j ∈ [t].

When H is symmetric (as in Definition 3.5), the previous construction is wasteful, as there
is a 1

d chance that ej+1 will just be ej in reverse. To remedy that inefficiency, we define a non-
backtracking parity sampler that avoids taking any reverse steps. Let H = (V,EH) be a symmetric

d-regular hypergraph. For any edge e ∈ EH , let N
(nb)
H (e) be the (d − 1)-sized set consisting of all

neighboring edges except for the reversed edge. Namely,

N
(nb)
H (e) = NH(e) \ {(e3, e2, e1)} .

The parity sampler W(nb)
H,t . The non-backtracking parity sampler is identical to the original

parity sampler, except N
(nb)
H is used instead of NH to sample ej+1 given ej . In more detail, to

sample from it, w ∼ W(nb)
H,t , we first sample a starting edge e1 uniformly. Then, for each j ∈ [2, n],

we sample ej uniformly and independently from N
(nb)
H (ej−1). The final sample w is once again the

set wj = (ej)2 for each j ∈ [t].

Remark 6.3 (unique edges). For convenience, we will assume that in the hypergraph H = (V,EH),
for any v1, v3 ∈ V , there is at most one edge e ∈ EH satisfying e1 = v1 and e3 = v3. This assumption
is not essential but simplifies notation. If H has multiple identical edges, then NH(e) is a multiset

instead of a set, and in order to ensure N
(nb)
H (e) has size exactly d− 1, we only want to remove one

copy of the reverse edge (e3, e2, e1) from NH(e).

Much of the analysis of W(nb)
H,t is similar to that of WH,t. We defer the more repetitive proofs

to the appendix and will instead focus this section on novel machinery. For example, the proof of
Claim 6.4 is given in Appendix B.

Claim 6.4. For any t ∈ N and any d-regular symmetric hypergraph H over n vertices, the following
holds.

Proposition B.1: W(nb)
H,t is homogeneous, and,

Proposition B.2: W(nb)
H,t is nd(d− 1)t−1-discretizable.
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6.2 Expressing the bias algebraically

Fix some ε0 > 0. In order to prove that WH,t is an (ε0, ε , (ε0 + λ)t)-parity sampler (Theorem 5),
we considered any σ ∈ {±1}n satisfying

∣∣Ei∼[n][σi]
∣∣ ≤ ε0 and proved that

∣∣biasWH,t
(σ)
∣∣ ≤ ε, where

biasWH,t
(σ) = E

w∼WH,t

 t∏
j=1

σwj

 .
To do so, we expressed biasWH,t

(σ) algebraically in terms of the matrix18 A(σ) ∈ RV×V , where

A
(σ)
i,k ,

∑
(i′,j′,k′)∈EH

σj′ · 1[i′ = i, k′ = k]. (12)

Then, we showed that

biasWH,t
(σ) =

1†
(
A(σ)

)t
1

ndt
≤

∥∥(A(σ))t
∥∥

op

dt
.

Our approach to proving that W(nb)
H,t is a parity sampler will be similar. Rather than analyzing

A(σ), we will analyze the non-backtracking operator B(σ) ∈ REH×EH , where

B
(σ)
e′,e , 1

[
e ∈ N (nb)

H (e′)
]
· σe2 . (13)

This is a slight extension, to hypergraphs, of the classical non-backtracking operator commonly used
to analyze non-backtracking walks on graphs (a walk of vertices v0, v1, . . . , vt is non-backtracking if
vi 6= vi+2 for each i ∈ [t−2]). Just as in the proof of Theorem 5, we’ll be able to bound biasW(nb)

H,t

(σ)

in terms of an appropriate operator norm.

Lemma 6.5. For any d-regular symmetric hypergraph H = (V,EH), σ ∈ {±1}n, letting B(σ) be
the non-backtracking operator defined in Equation (13), we have that∣∣∣∣biasW(nb)

H,t

(σ)

∣∣∣∣ =

∣∣∣∣∣1†(B(σ))t1

nd(d− 1)t

∣∣∣∣∣ ≤
∥∥(B(σ))t

∥∥
op

(d− 1)t
.

As the proof of Lemma 6.5 is similar to that of Theorem 5, we defer it to Appendix B.

6.3 Bounding ‖Bt‖op

Throughout this subsection, σ ∈ {±1}n is fixed so we will use A and B as a shorthand for A(σ)

and B(σ) respectively. In proving Theorem 5, we bounded the operator norm of At using ‖At‖op ≤
‖A‖top. As A is real and symmetric, that inequality is tight. The corresponding inequality for B,
‖Bt‖op ≤ ‖B‖top, is not tight. We will later see that ‖B‖op = d−1, and bounding ‖Bt‖op ≤ (d−1)t

would be useless for Lemma 6.5 as it would only upper bound the bias at the trivial bound of 1.
In a different context, Lubetzky and Peres were able to analyze non-backtracking walks on

Ramanujan graphs [LP16]. While we cannot use their results verbatim, by reasoning about A and

18In this section ,we scale up A(σ) by a factor of d relative to in Section 4 so that all of its elements are integers.
This simplifies notation.
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B as operators on a graph (rather than the hypergraph H), we will be able to apply their ideas
and techniques.

Let G = (V,EG) be the graph on the same vertices as H with the edge set

EG , {(e1, e3) | e ∈ EH} .

Hence, each edge e ∈ EH corresponds to an edge (e1, e3) ∈ EG. With that edge, we associate the
sign σe2 . The matrix A is then the signed adjacency matrix of G. If instead of viewing B as a
matrix in REH×EH (as in Equation (13)), we consider the equivalent matrix B ∈ REG×EG , then

Bab,cd ,

{
Acd if b = c and a 6= d

0 otherwise
. (14)

The goal of this subsection is to prove the following bound on ‖Bt‖op.

Lemma 6.6. For any d ≥ 2 and a d-regular edge-signed graph G = (V,E), let A be its (signed)
adjacency matrix and B be defined as in Equation (14). For

θmax ,

{
‖A‖op

2 +

√
‖A‖2op

4 − (d− 1) if ‖A‖op ≥ 2
√
d− 1√

d− 1 otherwise

and any t ≥ 1, ∥∥Bt
∥∥

op
≤ 2(d− 1)t(θmax)t−1. (15)

To prove Lemma 6.6, we will show that B is almost-diagonalizable. In particular, that it is
unitarily equivalent to a block-diagonal matrix in which each block has size at most 2×2. Lubetzky
and Peres proved the below lemma in the case where G is not edge-signed (or equivalently, all edges
have the sign +1) [LP16, Proposition 3.1]. Our proof follows theirs in spirit, but we aimed to provide
additional details for some parts of the argument (see Remark 6.15 for a more detailed comparison).

Lemma 6.7. Let G = (V,E) be a d-regular edge-signed graph on n vertices and λ1, . . . , λn be the
eigenvalues of its (signed) adjacency matrix. For each i ∈ [n], let

Ri ,


[d− 1] if λi = d

[−(d− 1)] if λi = −d[
θi αi

0 θ′i

]
otherwise,

for some αi ∈ C satisfying |αi| ≤ d− 1 and θi, θ
′
i ∈ C being the two solutions of

θ2 − λiθ + (d− 1) = 0.

Then, for k = nd −
∑

i∈[n] dim(Ri) and some bi ∈ {±1} for each i ∈ [k], the operator B from
Equation (14) is unitarily equivalent to

Λ , diag(R1, . . . , Rn, b1, . . . , bk).

First, we show how Lemma 6.6 follows from Lemma 6.7.
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Proof of Lemma 6.6 assuming Lemma 6.7. By Lemma 6.7, we know that B is unitarily equivalent
to

Λ , diag(R1, . . . , Rn, b1, . . . , bk),

where R1, . . . , Rn are as defined in Lemma 6.7 and bi ∈ {±1} for all i ∈ [k]. Therefore, Bt is
unitarily equivalent to

Λt = diag(Rt1, . . . , R
t
n, b

t
1, . . . , b

t
k).

As a result, ∥∥Bt
∥∥

op
=
∥∥Λt
∥∥

op
= max

{
1,max

i∈[n]

∥∥Rti∥∥op

}
.

Our goal is to show that the above is bounded by the expression in Equation (15). Since that
bound is larger than 1, it is enough to show that ‖Rti‖op ≤ 2(d− 1)t(θmax)t−1 for each i ∈ [n].

First, consider the case where |λi| = d. By Lemma 6.7, we have Ri = [±(d − 1)], and so
‖Rti‖op = (d − 1)t. In this case, we must have ‖A‖op = d implying that θmax = d − 1. Hence, the
right hand side of Equation (15) is at least 2t(d−1)t which is at least as large as ‖Rti‖op, as desired.

In the other case, |λi| < d. By Lemma 6.7,

Ri =

[
θi αi
0 θ′i

]
for some αi ∈ C satisfying |αi| ≤ d− 1 and θi, θ

′
i ∈ C the two solutions of

θ2 − λiθ + (d− 1) = 0.

As |λi| ≤ ‖A‖op, the two solutions of the above equation have their magnitudes bounded by θmax.
We’ll use that to bound ‖Rti‖op. By an easy inductive argument,

Rti =

[
(θi)

t αi
∑t−1

j=0(θi)
j(θ′i)

t−1−j

0 (θ′i)
t

]
.

Therefore,

‖Rti‖op ≤
∥∥∥∥[(θi)t 0

0 (θ′i)
t

]∥∥∥∥
op

+

∥∥∥∥[0 αi
∑t−1

j=0(θi)
j(θ′i)

t−1−j

0 0

]∥∥∥∥
op

≤ max(|θi|, |θ′i|)t + tmax(|θi|, |θ′i|)t−1|αi|
≤ (θmax)t + t(θmax)t−1(d− 1)

≤ 2t(θmax)t−1(d− 1). (θmax ≤ (d− 1) and t ≥ 1)

We conclude that ‖Rti‖op is at most the bound of Equation (15) for every i ∈ [t], as desired.

In order to prove Lemma 6.7, we decompose CE into subspaces on which B acts independently,
namely they are orthogonal and B-invariant.

Fact 6.8. Let B : Ω → Ω a linear operator, and let S1, . . . , Sm be disjoint subspaces for which
S1 ⊕ · · · ⊕ Sm = Ω. Assume that the following holds:

1. For any i 6= j ∈ [m], Si ⊥ Sj, and,
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2. For any i ∈ [m], Si is an invariant subspace of B, meaning BSi ⊆ Si.

For each i ∈ [m], let Ri ∈ C(dimSi)×(dimSi) be a matrix computing the restriction B|Si : Si → Si
with respect to some orthonormal basis of Si. Then, B is unitarily equivalent to

Λ , diag(R1, . . . , Rm).

Proof. For each i ∈ [m], there is some orthonormal basis vi,1, . . . , vi,ki in which the operator
B|Si corresponds to the matrix Ri. As S1 ⊕ · · · ⊕ Sm = B and Si are orthogonal subspaces,
v1,1, . . . , v1,k1 , . . . , vm,1, . . . , vm,km is an orthonormal basis for all of Ω, and Λ computes B with
respect to that basis.

We break CE into subspaces satisfying the requirements of Fact 6.8. For any w ∈ CV , we define
w(in), w(out) ∈ CE .19

w(in)
xy , wy

w(out)
xy , Axywx.

(16)

For A ∈ RV×V being the adjacency matrix defined in Lemma 6.7, let λ1, . . . , λn be the eigenvalues
of A with corresponding eigenvectors w1, . . . , wn. For each i ∈ [n], we define

Si , Span
{
w

(in)
i , w

(out)
i

}
, (17)

and define Srem to be the orthogonal compliment of S1 ⊕ · · · ⊕ Sn within CE . Our first goal is to
show that S1, . . . , Sn, Srem meet the requirements of Fact 6.8.

A large portion of this proof will require straightforward calculations. We collect all of these
calculations into the following proposition, proved in Appendix B.

Proposition 6.9.

1. For any w,w′ ∈ CV ,

〈w(in), (w′)(in)〉 = d · 〈w,w′〉
〈w(out), (w′)(out)〉 = d · 〈w,w′〉
〈w(in), (w′)(out)〉 = 〈Aw,w′〉

(18)

2. For any w ∈ CV ,

Bw(in) = (Aw)(in) − w(out)

Bw(out) = (d− 1)w(in).
(19)

3. For any v ∈ CE satisfying v ⊥ w(out) for all w ∈ CV ,

vxy = −Ayxvyx for every edge xy. (20)

19We use the name w(in) as all edges going into a vertex y have weight wy. Similarly, for w(out), all edges going
out of the vertex x have weight wx multiplied by that edge’s sign.
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4. The operator norm of B is
‖B‖op = d− 1. (21)

We use Proposition 6.9 to prove Lemma 6.7 by showing that S1, . . . , Sn, Srem meet the require-
ments of Fact 6.8.

Proposition 6.10. For B defined in Lemma 6.7 and S1, . . . , Sn defined in Equation (17), for any
i 6= j ∈ [n], Si ⊥ Sj.

Proof. It is sufficient to prove that for any i 6= j ∈ [n], w
(in)
i ⊥ w

(in)
j , w

(out)
i ⊥ w

(out)
j , and w

(in)
i ⊥

w
(out)
j . As A is real and symmetric, its eigenvectors are orthogonal, and so wi ⊥ wj and Awi ⊥ wj .

The desired result follows from Equation (18).

In order to apply Fact 6.8, we also need to prove that each Si and Srem are all invariant under
B.

Proposition 6.11. For B defined in Lemma 6.7 and S1, . . . , Sn defined in Equation (17), BSi ⊆ Si
for each i ∈ [n]. Furthermore, for Srem, the orthogonal compliment of S1 ⊕ · · · ⊕ Sn within CE, we
also have that BSrem ⊆ Srem.

Proof. First we show that BSi ⊆ Si for any i ∈ [n]. Recall that Si is the span of w
(in)
i and w

(out)
i ,

so it suffices to show that Bw
(in)
i ∈ Si and Bw

(out)
i ∈ Si. This follows from Equation (19) and the

fact that wi is an eigenvector of A.

Secondly, we show that for any v ∈ Srem, Bv ∈ Srem. As v ∈ Srem, we know that v ⊥ w
(out)
i

and v ⊥ w
(in)
i for each eigenvector wi. As the eigenvectors span all of CV , we further have that

v ⊥ w(in) and v ⊥ w(out) for any w ∈ CV . In order to prove that Bv ∈ Srem, we will need to prove
that Bv ⊥ w(in) and Bv ⊥ w(out) for any w ∈ CV .

1. We show that Bv ⊥ w(in):

〈Bv,w(in)〉 =
∑
xy∈E

(Bv)xywy

=
∑
xy∈E

−Ayxvyxwy (Equation (20))

= −
∑
xy∈E

(Axywx)vxy (switching names of x and y)

= −〈w(out), v〉 = 0. (v ⊥ w(out))
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2. Similarly, we show that Bv ⊥ w(out):

〈Bv,w(out)〉 =
∑
xy∈E

(Bv)xyAxywx

=
∑
xy∈E

−AyxvyxAxywx (Equation (20))

= −
∑
xy∈E

vyxwx (Axy = Ayx ∈ {±1})

= −
∑
xy∈E

vxywy (switching names of x and y)

= −〈v, w(in)〉 = 0. (v ⊥ w(in))

Therefore, Bv ∈ Srem, as desired.

Using Propositions 6.10 and 6.11 we can apply Fact 6.8 with the decomposition CE = S1 ⊕
· · · ⊕ Sn ⊕ Srem. In order for Fact 6.8 to be useful, we need to understand the restricted operator
B|Si . Toward this end, we recall the Schur decomposition.

Fact 6.12 (Schur decomposition). For any linear operator T : Ω → Ω, there is an orthonormal
basis in which T can be written as an upper triangular matrix U ∈ C(dim Ω)×(dim Ω). In particular,
the diagonal entries of U are the eigenvalues of T .

Proposition 6.13. Let A,B, λ1, . . . , λn be as defined in Lemma 6.7 and S1, . . . , Sn as in Equa-
tion (17). For any i ∈ [n], there is an orthonormal basis of Si under which B|Si : Si → Si is
computed by the following matrix.

Ri ,


[d− 1] if λi = d

[−(d− 1)] if λi = −d[
θi αi

0 θ′i

]
otherwise,

for some αi ∈ C satisfying |αi| ≤ d− 1, and θi, θ
′
i ∈ C are the two solutions of

θ2 − λiθ + (d− 1) = 0.

Proof. We first compute the dimension of Si = Span
{
w

(in)
i , w

(out)
i

}
. This dimension is 1 if w

(in)
i

and w
(out)
i are parallel, and 2 otherwise. They are parallel if and only if∣∣∣〈w(in)

i , w
(out)
i 〉

∣∣∣ =
∥∥∥w(in)

i

∥∥∥
2

∥∥∥w(out)
i

∥∥∥
2
.

Assuming that wi is normalized to satisfy ‖wi‖2 = 1, we have from Equation (18) that ‖w(in)
i ‖2 =

‖w(out)
i ‖2 =

√
d and that 〈w(in)

i , w
(out)
i 〉 = λi. There are three cases depending on the value of λi:
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1. If λi = d, then 〈w(in)
i , w

(out)
i 〉 = ‖w(in)

i ‖2‖w
(out)
i ‖2, implying that w

(in)
i = w

(out)
i . In this case,

the dimension of Si is 1, and we can just set Ri to

[‖Bv‖2/‖v‖2]

for a single nonzero v ∈ Si. Recall from Equation (19) that Bw
(out)
i = (d − 1)w

(in)
i =

(d− 1)w
(out)
i . Therefore, we set Ri = [d− 1].

2. If λi = −d, then 〈w(in)
i , w

(out)
i 〉 = −‖w(in)

i ‖2‖w
(out)
i ‖2, implying that w

(in)
i = −w(out)

i . Once
again, the dimension of Si is 1, and we set Ri to

[‖Bv‖2/‖v‖2]

for a single nonzero v ∈ Si. Also from Equation (19), Bw
(out)
i = (d−1)w

(in)
i = −(d−1)w

(out)
i .

Therefore, we set Ri = [−(d− 1)].

3. Otherwise, dim(Si) = 2. Recall from Equation (19) that

Bw
(in)
i = λiw

(in)
i − w(out)

i ,

Bw
(out)
i = (d− 1)w

(in)
i .

Therefore, the characteristic polynomial of B|Si is p(θ) = θ2 − θλi + (d − 1). Applying
Fact 6.12, for θi, θ

′
i being the two roots of p(θ) and some αi ∈ C, we can set

Ri =

[
θi αi
0 θ′i

]
.

Finally, we bound |αi|:
|αi| ≤ ‖Ri‖op ≤ ‖B‖op ≤ d− 1,

where ‖B‖op ≤ d− 1 is Equation (21).

Similar to Proposition 6.13, we characterize B|Srem .

Proposition 6.14. Let A,B be as defined in Lemma 6.7, S1, . . . , Sn as in Equation (17), and Srem

be the orthogonal compliment of S1 ⊕ . . . ⊕ Sn within CE. Then, there is an orthonormal basis
for Srem in which the restriction B|Srem is expressed by diag(b1, . . . , bdim(Srem)) where bi ∈ {±1} for
each i ∈ [dim(Srem)].

Proof. For any v ∈ Srem and any edge xy ∈ E, by Equation (20),

(Bv)xy = −Ayxvyx.

Hence, the operator B|Srem preserves the `2 norm. By Fact 6.12, there is some orthonormal basis
in which the matrix representing B|Srem is an upper triangular matrix. The only upper triangular
matrices that are `2 norm-preserving are diagonal matrices in which all diagonal entries are ±1.

Combining the above propositions completes the proof of Lemma 6.7.
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Proof of Lemma 6.7. We apply Fact 6.8 with the subspaces S1, . . . , Sn, Srem. By Propositions 6.10
and 6.11, those subspaces meet the requirement of Fact 6.8. Applying Propositions 6.13 and 6.14
gives the desired form for Λ.

Remark 6.15 (comparison with [LP16]). Our proof of Lemma 6.7 follows that of [LP16, Proposi-
tion 3.1] with a few (minor) technical differences. In order to handle edge signs, we must adjust the
definitions in Equation (16) and carry that change throughout the computation. Additionally, to
prove (the analogous statements of) Propositions 6.10 and 6.11, Lubetzky and Peres reason about
the operator C , (d− 1)B−1 +B, whereas we never need consider the inverse of B.

6.4 τ-sampling

In this section, we prove that W(nb)
H,t is τ -sampling for an appropriately chosen τ . Recall that this

is needed for the decoding result.

Lemma 6.16. For any n, d, t ∈ N and λ > 0, if H = (V = [n], E) is a λ-spectral d-regular

3-uniform hypergraph, then W(nb)
H,t is τ -sampling for τ = λ

4 + 2
d .

In order to prove Lemma 6.16, we will construct a distribution Ŵ(nb)
H,t that is close, in total

variation distance, to W(nb)
H,t and show that Ŵ(nb)

H,t is τ = λ
4 -sampling. Once we do this, we will use

the closeness ofW(nb)
H,t and Ŵ(nb)

H,t to transfer that result to a bound on the τ -sampling ofW(nb)
H,t . As

the definition of τ -sampling involves computing a covariance, the following proposition will useful.

Proposition 6.17. Let D, D̂ be distributions each over some domain Ω. For any bounded functions
f, g : Ω→ [0, 1], ∣∣∣∣Cov

x∼D
[f(x), g(x)]− Cov

x̂∼D̂
[f(x̂), g(x̂)]

∣∣∣∣ ≤ 2dTV(D, D̂).

Proof. We use the following covariance identity:

Cov
x∼D

[f(x), g(x)] =
1

2
· E
x1,x2∼D2

[(f(x1)− f(x2))(g(x1)− g(x2))].

Defining h(x) , (f(x1)− f(x2))(g(x1)− g(x2)), we have∣∣∣∣Cov
x∼D

[f(x), g(x)]− Cov
x̂∼D̂

[f(x̂), g(x̂)]

∣∣∣∣ ≤ 1

2

∣∣∣∣ E
x∼D2

[h(x)]− E
x̂∼D̂2

[h(x̂)]

∣∣∣∣
≤ 1

2
dTV(D2, D̂2) ·

(
sup
x∈Ω2

h(x)− inf
x∈Ω2

h(x)

)
≤ 1

2
(2dTV(D, D̂)) · (1− (−1)) = 2dTV(D, D̂).

In order to prove that Ŵ(nb)
H,t is close, in TV distance, toW(nb)

H,t , we’ll use the following easy fact.

Fact 6.18. For any distributions D and D′ over the same domain, and any coupling of x ∼ D and
x′ ∼ D′,

dTV(D,D′) ≤ Pr[x 6= x′].
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The proof of Fact 6.18 follows readily from the definition of TV distance. Indeed, it is well known
that the TV distance is equal to the infimum of Pr[x 6= x′] over all couplings x ∼ D,x′ ∼ D′.

Using Fact 6.18, it’s not hard to show that the TV distance of W(nb)
H,t and WH,t is at most t

d .

Therefore, Lemma 5.3 and Proposition 6.17 are sufficient to show that W(nb)
H,t is λ

4 + 2t
d -sampling.

In the following proof, we’ll construct a distribution Ŵ(nb)
H,t that is closer to W(nb)

H,t , giving a better
bound on τ .

Proof of Lemma 6.16. As in Definition 5.1, fix any i ∈ [t], S ⊆ [n] and X ⊆ [n]i. Let Si(w) be the
indicator that wi+1 ∈ S, and Xi(w) the indicator that (w1, . . . ,wt) ∈ X. Our goal is to prove that

Cov
w∼Ŵ(nb)

H,t

[
Si(w), Xi(w)

]
≤ λ

4
+

2

d
.

To do so, we will define a distribution Ŵ(nb)
H,t satisfying dTV(W(nb)

H,t , Ŵ
(nb)
H,t ) ≤ 1

d and prove that

Cov
ŵ∼Ŵ(nb)

H,t

[
Si(ŵ), Xi(ŵ)

]
≤ λ

4
. (22)

At a high level, Ŵ(nb)
H,t will perform “non-backtracking” steps during the first i time steps and a

normal (“backtracks” with probability 1
d) step at time step j = i+ 1. In contrast, W(nb)

H,t performs

“non-backtracking” steps at every time step. Formally, to sample ŵ ∼ Ŵ(nb)
H,t , we first sample

w ∼ W(nb)
H,t . Then, with probability 1 − 1

d , ŵ is set to w. Otherwise, ŵj = wj for each j 6= i + 1,
and ŵi+1 = wi. Through the remainder of this proof, we assume that w and ŵ are coupled
according to this generation process.

Clearly, dTV(W(nb)
H,t , Ŵ

(nb)
H,t ) ≤ 1/d. Hence, by Proposition 6.17 it suffices to prove Equation (22).

The remainder of this proof is similar to that of Lemma 5.3. Instead of showing Equation (22), we
prove the following (equivalent equation) holds:

Cov
[
(−1)Si(ŵ), (−1)Xi(ŵ)

]
≤ λ.

Let e1, . . . , et be the random variables defined in the construction of W(nb)
H,t (which are coupled to

the sample w ∼ W(nb)
H,t and hence ŵ ∼ Ŵ(nb)

H,t ). If the probability-
(
1− 1

d

)
event occurred where we

set ŵ = w, then we define êi+1 , ei+1.
Recall that ei+1 is sampled uniformly from the (d − 1) hyperedges satisfying (ei)3 = (ei+1)1

and ei+1 6= ((ei)3, (ei)2, (ei)1). Therefore, the generation process for êi+1 is equivalent to sampling
uniformly from the d hyperedges satisfying (ei)3 = (êi+1)1.

Let x, y, z ∈ Rn be the vectors defined, for each j ∈ [n],

xj , E

[
(−1)Xi(ŵ)

∣∣∣∣ (êi+1)1 = j

]
yj , (−1)1[j∈S]

zj ,
1

n
.
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Note that ‖z‖2 = 1/
√
n, ‖y‖∞ = 1, and ‖x‖2 ≤

√
n (which follows from ‖x‖∞ ≤ 1). Our goal will

be to prove that the following equation holds.

Cov
ŵ

[
(−1)Si(ŵ), (−1)Xi(ŵ)

]
=

1

d
·
∑

(a,b,c)∈E

xaybzc −
1

n2
·
∑
a∈[n]

xa ·
∑
a∈[n]

ya ·
∑
a∈[n]

za. (23)

Once we prove the above equation holds, the desired result follows from Definition 3.3. As we
proved in Claim 6.4, the distribution of ei is uniform over all nd hyperedges, and hence that of
êi+1 is also uniform over all hyperedges. In order to compute the covariance, we first expand:

E
ŵ

[
(−1)Si(ŵ) · (−1)Xi(ŵ)

]
=

1

nd
·
∑
e∈E

E
ŵ

[
(−1)Si(ŵ) · (−1)Xi(ŵ) | êi+1 = e

]
=

1

nd
·
∑

(a,b,c)∈E

(−1)1[b∈S] · E
[
(−1)Xi(ŵ)

∣∣∣∣ (êi+1)1 = a

]
=

1

d
·
∑

(a,b,c)∈E

xaybzc. (24)

Next, directly from the definition of y and Claim 6.4,

E
ŵ

[
(−1)Si(ŵ)

]
=

1

n

∑
a∈[n]

ya. (25)

Similarly,

E
ŵ

[
(−1)Xi(ŵ)

]
=

1

n

∑
a∈[n]

xa. (26)

Equation (23) follows from Equations (24) to (26) and the fact that
∑

a∈[n] za = 1. Lemma 6.16
follows from Definition 3.3, and the desired result from Proposition 6.17.

6.5 Setting the parameters

In this subsection, we set the parameters needed to prove the following theorem, restated for
convenience.

Theorem 10. For any absolute constants c1, c2 > 0, there is a deterministic algorithm that given
any n ∈ N and ε, τ > 0, and a d-regular 3-uniform (δ = d−c1)-almost Ramanujan hypergraph on n
vertices for any d in the range

dmin ≤ d ≤ dc2min where dmin = poly

(
log

1

ε
,

1

τ

)
,

constructs an (ε0, ε) parity sampler W ∼ [n]t that is homogeneous, M -discretizable, and τ -sampling
for

ε0 =
1

poly(log(1/ε), 1/τ)
,

t = O (log(1/ε)) ,

M =
n

ε2
· poly(log(1/ε), 1/τ).

Moreover, the algorithm runs in time O(Mt).
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Proof. We set

dmin , max

(
9

τ2
, log

(
1

ε

)2/c1

, 145

)
.

Let H be the d-regular 3-uniform (δ , d−c1)-almost Ramanujan hypergraph on n vertices for some

dmin ≤ d ≤ (dmin)c2 given to the algorithm. It will return W , W(nb)
H,t for some t to be later

specified.
Regardless of what that t is, by Lemma 6.16, we have that W is τ ′-sampling for

τ ′ ≤ 4
√
d− 1

4d
+

2

d
≤ 3√

d
≤ τ.

To complete this proof, we need to set t large enough so that W is an (ε0, ε)-parity sampler and
small enough so that it is M -discretizable. Set

ε0 =
2δ
√
d− 1

d
.

In order to set t, we first define,

ε(t′) ,
2t′(1 + 5d−c1/2)t

′−1

(d− 1)(t′−3)/2

and then set t to the minimum integer so that ε(t) ≤ ε. As d ≥ dmin ≥ 145,

ε(t′) ≥ 2t′ · 6t′−1

12t′−3
= c · t′ · 2−t′

for an absolute constant c. Therefore, the minimum t for which ε(t) ≤ ε is O(log(1/ε)), as desired.

We proceed to bound M . For any t′ ∈ N, ε(t′)
ε(t′+1) ≤

√
d− 1, so ε(t) ≥ ε√

d−1
. Therefore,

(d− 1)t−1 =
4t2(d− 1)2(1 + 5d−c1/2)2t−2

ε(t)2
≤ 4t2(d− 1)3(1 + 5d−c1/2)2t−2

ε2
.

By Claim 6.4, W is M -discretizable for

M ≤ n

ε

2
· 4dt2(d− 1)3(1 + 5d−c1/2)2t−2

Using the bounds (1 + a)b ≤ exp(ab), d ≥ dmin ≥ log(1/ε)2/c1 , and t = O(log(1/ε), we have
(1 + 5d−c1/2)2t−2 = O(1). We’ve also already bounded d and t, each at most poly(log(1/ε), 1/τ),
so we can give the desired bound on M ,

M ≤ n

ε

2
· poly(log(1/ε), 1/τ).

Lastly, we need to show that W is an (ε0, ε)-parity sampler. Choose any σ ∈ {±1}n satisfying
|Ei∼[n][σi]| ≤ ε0. By Lemma 6.5, it is sufficient to show, for B(σ) defined in Equation (13), that∥∥∥(B(σ)

)t∥∥∥
op

(d− 1)t
≤ ε.
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Lemma 6.6 allows us to bound ‖(B(σ))t‖op in terms of ‖(A(σ))t‖op for A(σ) defined in Equation (12).
Applying Corollary 4.6 (and noting that A(σ) of this section is scaled up by a factor of d relative
to that in Corollary 4.6), ∥∥∥A(σ)

∥∥∥
op
≤ d (|bias(σ)|+ λ)

≤ dε0 + 2(1 + δ)
√
d− 1

= 2δ
√
d− 1 + 2(1 + δ)

√
d− 1

= 2(1 + 2δ)
√
d− 1.

The quantity θmax defined in Lemma 6.6 satisfies

θmax =
‖A‖op

2
+

√
‖A‖2op

4
− (d− 1)

≤ (1 + 2δ)
√
d− 1 +

√
d− 1

√
(1 + 2δ)2 − 1

=
√
d− 1 ·

(
1 + 2δ +

√
4δ2 + 4δ

)
≤
√
d− 1 ·

(
1 + 2δ +

√
8δ
)

(δ ≤ 1)

≤
√
d− 1 ·

(
1 + 2δ + 3

√
δ
)

≤
√
d− 1 ·

(
1 + 5

√
δ
)

≤
√
d− 1 ·

(
1 + 5d−c1/2

)
.

By Lemma 6.6, we then have that∥∥∥(B(σ)
)t∥∥∥

op

(d− 1)t
≤ 2(d− 1)t(θmax)t−1

(d− 1)t−1

≤ 2(d− 1)t(1 + 5d−c1/2)t−1

(d− 1)(t−1)/2

= ε(t) ≤ ε.

Therefore, W is an (ε0, ε) parity sampler.
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A Splittability and τ-Sampling

Our decoding result follows from the work of Jernoimo, Srivastava, and Tulsiani [JST21]. In
[JST21], for the result of Theorem 8 to hold, they require W to be τ -splittable. τ -splittability is
stronger than, and in fact implies, τ -sampling. We will not define splittability here, since for their
result to hold, only a “Splittable Mixing Lemma” is required. The mixing property used in [JST21]
goes as follows.

Definition A.1 (splittable mixing for ±1 cut functions). Given positive integers n, t, and s < t−1,
we denote by Fs the set of all functions f : [n]t → {1,−1} of the form

f(x1, . . . , xt) = b · χA1(x1) · . . . · χAs(xs) · χB(xs+1, . . . , xt), (27)

where b ∈ {1,−1}, A1, . . . , As ⊆ [n], B ⊆ [n]t−s, and where χS(x) = −1 if x ∈ S and 1 otherwise.
For a distributionW ∼ [n]t, we denote byW[i,j] the distribution over [n]j−i+1 that is obtained by

sampling x ∼ W and outputting x[i,j]. For simplicity, we abbreviate Wi =W[i,i]. Given s ∈ [t− 1],
let νs be the probability measure over [n]t for which νs(x) =

∏
i∈[s] Pr[Wi = xi]·Pr[W[s+1,t] = x[s+1,t]].

We say W ∼ [n]t satisfies splittable mixing with error τ , if for every s ∈ [t−1] and every f, f ′ ∈ Fs
it holds that ∣∣∣∣ Ex∼νs [f(x)f ′(x)

]
− E

x∼νs−1

[
f(x)f ′(x)

]∣∣∣∣ ≤ τ. (28)

In [JST21], they show that the above property follows from τ -splittablility. Here we show
that the above property also follows from our weaker notion of τ -sampling. For the sake of being
compatible with [JST21], we will use a slightly different definition of τ -sampling than what was
given in Definition 5.1.

Definition A.2. We say that a distributionW over [n]t is τ -sampling if for any i ∈ [t−1], S ⊆ [n],
and X ⊆ [n]t−i,

Cov
w∼W

[
1[wi ∈ S],1[(wi+1, . . .wt) ∈ X]

]
≤ τ.
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For decoding lifted sum codes, both definitions are essentially the same, since we can always
work with Wrev, wherein we sample w = (w1, . . . ,wt) ∼ W and output (wt, . . . ,w1). Moreover,
our W satisfies W =Wrev.

Claim A.3. Let W ⊆ [n]t be homogeneous and τ -sampling. Then, W satisfies splittable mixing
with error 4τ .

Proof. Let s ∈ [t− 1], b, b′ ∈ {1,−1} and sets A1, . . . , As, A
′
1, . . . , A

′
s ⊆ [n] and B,B′ ⊆ [n]t−s that

correspond to the functions f and f ′. For i ∈ [s] denote Ci = Ai4A′i and D = B4B′. We then
have

f(x)f ′(x) = σ · χC1(x1) · . . . · χCs(xs) · χD(xs+1, . . . , xt),

for σ = bb′ ∈ {1,−1}. The subtraction on the left hand side of Equation (28) now reads∑
x∈[n]s−1

∏
i∈[s−1]

Pr[Wi = xi] · σ · χC1(x1) · . . . · χCs−1(xs−1)·

∑
y∈[n],z∈[n]t−s

χCs(y) · χD(z) ·
(
Pr[Ws = y] Pr[W[s+1,t] = z]− Pr[W[s,t] = y ◦ z]

)
. (29)

The second line of the above expression can be written as

E
y∼Ws

[
(−1)1[y∈Cs]

]
· E
z∼W[s+1,t]

[
(−1)1[z∈D]

]
− E

(y,z)∼(Ws,W[s+1,t])

[
(−1)1[y∈Cs](−1)1[z∈D]

]
, (30)

which is simply the covariance between the random variables (−1)1[y∈Cs] and (−1)1[z∈D] where y
and z are drawn appropriately. As W is τ -sampling, we know that

|Cov [1[y ∈ Cs],1[z ∈ D]]| ≤ τ,

and so Equation (30), in absolute value, amounts to∣∣∣Cov
[
(−1)1[y∈Cs], (−1)1[z∈D]

]∣∣∣ ≤ 4τ,

which readily follows from the fact that (−1)b = 1− 2b for b ∈ {0, 1}, as we argued in Lemma 5.3.
Taking absolute value, by the triangle inequality, Equation (29) can be bounded by

4τ ·
∑

x∈[n]s−1

∏
i∈[s−1]

Pr[Wi = xi].

As W is homogeneous, Pr[Wi = xi] = 1
n , and we are done.

B Properties of the Non-Backtracking Parity Sampler

First, we prove the two propositions of Claim 6.4.

Proposition B.1. For any t ∈ N and d-regular symmetric hypergraph H over n vertices, W(nb)
H,t is

homogeneous.
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Proof. e1 is uniform over EH . Then, for every j ∈ [t− 1], if ej is uniform, the ej+1 is uniform. By
induction, ej is uniform for every j ∈ [t].

Next, fix any a ∈ [n] and j ∈ [t]. As wj = a if and only if ej is one of the d-edges in EH who’s
second vertex is a and ej is uniform over the nd edges in EH ,

Pr[wj = a] =
d

nd
=

1

n
.

Proposition B.2. For any t ∈ N and d-regular symmetric hypergraph H over n vertices, W(nb)
H,t is

(nd(d− 1)t−1)-discretizable.

Proof. e1 is picked uniformly from nd options. Then, for each j ∈ [2, t], ej+1 is picked uniformly

(and independently from prior choices) from N
(nb)
H (e), which has (d− 1) elements. Therefore, w is

picked uniformly from nd(d− 1)t possible items, potentially with duplicates.

Next, we prove the following Lemma, restated for convenience.

Lemma 6.5. For any d-regular symmetric hypergraph H = (V,EH), σ ∈ {±1}n, letting B(σ) be
the non-backtracking operator defined in Equation (13), we have that∣∣∣∣biasW(nb)

H,t

(σ)

∣∣∣∣ =

∣∣∣∣∣1†(B(σ))t1

nd(d− 1)t

∣∣∣∣∣ ≤
∥∥(B(σ))t

∥∥
op

(d− 1)t
.

Proof. Our goal is to prove that

biasW(nb)
H,t

(σ) = E
w∼WH,t

 t∏
j=1

σwj

 =
1†(B(σ))t1

nd(d− 1)t
.

Draw some w ∼ W(nb)
H,t , and let e1, . . . , et be the random variables (coupled to w) defined in

the construction of W(nb)
H,t . We claim that for each j ∈ [t] and e ∈ EH ,

E

[
1[ej = e]

j∏
k=1

σwk

]
=

(1†(B(σ))j)e
nd(d− 1)j

. (31)

For j = 1, e1 is initialized uniformly among the nd edges, so the above expression should be equal
to

σe2
nd . Indeed,

(1†B(σ))e
nd(d− 1)

=
1

nd(d− 1)

∑
e′∈EH

Be′,e

=
1

nd(d− 1)

∑
e′∈EH

1
[
e ∈ N (nb)

H (e′)
]
· σe2

=
σe2
nd

.
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So Equation (31) holds for j = 1. For j ≥ 2, we proceed by induction.

E

[
1[ej = e]

j∏
k=1

σwk

]
=
∑
e′∈EH

E

[
1[ej = e, ej−1 = e′]

j∏
k=1

σwk

]

=
∑
e′∈EH

E

[
1[ej−1 = e′]

j−1∏
k=1

σwk

]
· E
[
1[ej = e] · σwj | ej−1 = e′

]
=
∑
e′∈EH

(1†(B(σ))j−1)e′

nd(d− 1)j−1
· E
[
1[ej = e] · σwj | ej−1 = e′

]

=
∑
e′∈EH

(1†(B(σ))j−1)e′

nd(d− 1)j−1
·
1
[
e ∈ N (nb)

H (e′)
]
· σe2

d− 1

=
1

nd(d− 1)j
·
∑
e′∈EH

(1†(B(σ))j−1)e′ ·B
(σ)
e′,e

=
(1†(B(σ))j)e
nd(d− 1)j

Hence, Equation (31) holds by induction. The desired result follows by summing Equation (31)
over all edges.

Next, we do all the calculations necessary for Proposition 6.9, restated below for convenience.

Proposition B.3.

1. For any w,w′ ∈ CV ,

〈w(in), (w′)(in)〉 = d · 〈w,w′〉
〈w(out), (w′)(out)〉 = d · 〈w,w′〉
〈w(in), (w′)(out)〉 = 〈Aw,w′〉

(18)

2. For any w ∈ CV ,

Bw(in) = (Aw)(in) − w(out)

Bw(out) = (d− 1)w(in).
(19)

3. For any v ∈ CE satisfying v ⊥ w(out) for all w ∈ CV ,

vxy = −Ayxvyx for every edge xy. (20)

4. The operator norm of B is
‖B‖op = d− 1. (21)

Proof. First, for Equation (18):
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1. We compute 〈w(in), (w′)(in)〉:

〈w(in), (w′)(in)〉 =
∑
xy∈E

wyw
′
y

= d ·
∑
y∈V

wyw
′
y

= d · 〈w,w′〉

2. We compute 〈w(out), (w′)(out)〉:

〈w(out), (w′)(out)〉 =
∑
xy∈E

(Axy)
2wxw

′
x

= d
∑
x∈V

wxw
′
x (Axy ∈ {±1} for any edge xy)

= d · 〈w,w′〉

3. We compute 〈w(in), (w′)(out)〉:

〈w(in), (w′)(out)〉 =
∑
xy∈E

Axywyw
′
x

=
∑
x∈V

w′x ·
∑

y:xy∈E
Axywy

=
∑
x∈V

w′x(Aw)x

= 〈Aw,w′〉

Next, we verify Equation (19). Consider any w ∈ CV .

1. We analyze Bw(in). For any xy ∈ E,

(Bw(in))xy =
∑

z:yz∈E,z 6=x
Ayz · (w(in))yz

=
∑

z:yz∈E,z 6=x
Ayzwz

=
∑

z:yz∈E
Ayzwz −Ayxwx

= (Aw)y −Axy · wx (Ayx = Axy)

Therefore, Bw(in) = (Aw)(in) − w(out).
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2. We analyze Bw(out). For any xy ∈ E,

(Bw(out))xy =
∑

z:yz∈E,z 6=x
Ayz · (w(out))yz

=
∑

z:yz∈E,z 6=x
(Ayz)

2(w)y

= (d− 1) · wy ((Ayz)
2 = 1 for any yz ∈ E.)

Therefore, Bw(out) = (d− 1)w(in).

Next, we verify Equation (20). Choose any v ∈ CE satisfying v ⊥ w(out) for all w ∈ CV . In
particular, v is orthogonal to (ex)(out) for every x ∈ V , where ex is the vector that has weight 1 on
vertex x and weight 0 everywhere else. This implies that, for all x ∈ V ,∑

y:xy∈E
vxyAxy = 〈v, (ex)(out)〉 = 0.

We compute (Bv)xy for any edge xy.

(Bv)xy =
∑

z:yz∈E,z 6=x
Ayzvyz

=
∑

z:yz∈E
Ayzvyz −Ayxvyx

= −Ayxvyx (v ⊥ (ey)
(out))

Finally, we prove Equation (21). In the proof of Proposition 6.11, we showed that if v′ ∈ CE is
orthogonal to w(out) for all w ∈ CV , then Bv′ is orthogonal to w(in) for all w ∈ Cv. Furthermore,
in the proof of Proposition 6.14, we showed that under the same condition, ‖Bv′‖2 = ‖v′‖2.

Now, consider any v ∈ CE . We can decompose it into

v = w(out) + v′

for some w ∈ CV and v′ that is orthogonal to (w′)(out) for all w′ ∈ CV . Then, we have that

‖Bv‖2 = ‖(d− 1)w(in) +Bv′‖2

=
√

(d− 1)2‖w(in)‖22 + ‖Bv′‖22 (Bv′ is orthogonal to w(in))

=
√

(d− 1)2‖w(out)‖22 + ‖v′‖22

=
√

(d− 1)2‖v‖22 − ((d− 1)2 − 1)‖v′‖22 (‖v‖22 = ‖w(out)‖22 + ‖v′‖22)

≤
√

(d− 1)2‖v‖22
= d− 1.

Hence, ‖Bv‖2 ≤ (d−1)‖v‖2, and with equality whenever v = w(out) for some w ∈ CV , proving that
‖B‖op = d− 1.
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