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Abstract

Multiplicity codes are a generalization of RS and RM codes where for each evalua-
tion point we output the evaluation of a low-degree polynomial and all of its directional
derivatives up to order s. Multi-variate multiplicity codes are locally decodable with the
natural local decoding algorithm that reads values on a random line and corrects to the
closest uni-variate multiplicity code. However, it was not known whether multiplicity
codes are locally testable, and this question has been posed since the introduction of
these codes with no progress up to date. In fact, it has been also open whether mul-
tiplicity codes can be characterized by local constraints, i.e., if there exists a subset
B such that c is in the code iff c · z = 0 for any z ∈ B, and, every z ∈ B has small
Hamming weight, i.e., few non-zero symbols.

We begin by giving a simple example showing the line test does not give local
characterization when d > q. Surprisingly, we then show the plane test is a local
characterization when s < q and d < qs − 1 for prime q. In addition, we show the
k-dimensional test is a local tester for multiplicity codes, when s < q and k is at least
dd+1
q−1e.

1 Combining the two results, we show that the plane test is a local tester for
multiplicity codes, with constant rejection probability for constant s.

Our technique is new. We represent the given input as a possibly very high-degree
polynomial, and we show that for some choice of plane, the restriction of the polyno-
mial to the plane is a high-degree bi-variate polynomial. The argument has to work
modulo the appropriate kernels, and for that we use Grobner theory, the Combinato-
rial Nullstellensatz theorem and its generalization to multiplicities. Even given that,
the argument is delicate and requires choosing a non-standard monomial order for the
argument to work.
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1 Introduction

Multiplicity codes were defined in [GW13, KSY14] and are a generalization of RS and RM
codes. The code MRM(q,m, d, s) has a codeword for each degree d m-variate polynomial p,
and the codeword consists of the evaluation of p and all of its directional derivatives up to
order s on Fmq . Thus, the length of the code is qm (one coordinate per each evaluation point)

and the alphabet size is q(
m+s−1

s−1 ), consisting of one Fq value for each m-directional derivative
of order up to s. Choosing s = 1 gives us the familiar RS code (when m = 1) and RM code
(for general m). This work studies the local structure of multiplicity codes.

Let us begin with three (informal) definitions:

• A code C has a local characterization with t queries if there exists a subset B such that:
c ∈ C iff c · z = 0 for every z ∈ B, and, every z ∈ B has Hamming weight at most t.2

• A code C is locally correctable with t queries if there exists a randomized algorithm A
that for any string w close to a codeword c ∈ C, and any coordinate i, A(w, i) = ci,
while making at most t queries to w.3

• A code C is locally testable with t queries if there exists a randomized algorithm A that
given a string w, decides whether w is a codeword of C, or far away from any codeword
of C, while making at most t queries to w. Being a bit more precise, we require that
the rejection probability of the algorithm on words w that are δ far from the code is
at least min {αδ, c}, for some constants α, c > 0, and is zero on codewords.

Local characterization is a necessary, but not sufficient, condition for local testability. In
both, all codewords c pass all tests, i.e., for every z ∈ B it holds that c · z = 0. Also, in
both, any non-codeword w fails some test, i.e., for some z ∈ B, w · z 6= 0. However, in local
testability there is an additional requirement that the rejection probability is linked to the
distance from the code, and words far away from the code should have significant rejection
probability.

While at first it seems local correctability is stronger requirement than local testability,
this is not the case because local correctability only imposes conditions on the behavior of A
on words close to the code C, while local testability also imposes conditions on the behavior
of A on words w that are far away from the code C. As a result, local correctability does
not imply local testability.

Before we discuss how multiplicity codes fare with these local properties, let us first
survey the extensive research done on local properties of RM codes.

Over large enough fields, RM codes have a natural and simple local characterization:
A multi-variate polynomial is degree d iff for every line, its restriction to the line is a uni-
variate degree d polynomial. We call this the line test characterization. The if direction
is simple, while the only-if direction is more subtle and was proved in a sequence of works
[GLR+91, RS92, RS96, FS95]. Formally, when q is prime and d < q − 1, a multi-variate

2The notion of local characterization is equivalent to the notion of an LDPC code. A code C is LDPC
(Low density parity check) if there exists a subset B of the dual code C⊥ such that Span(B) = C⊥ and each
z ∈ B has small Hamming weight.

3We say A(w, i) = b if A(w, i) is b with probability at least 2/3 over the internal random coins of A.
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polynomial is degree d iff its restriction to all lines is a degree d polynomial. When d = q−1
the assertion is clearly false, as any function from Fq to Fq can be interpolated by a degree
q − 1 polynomial. For non-prime fields Fq with characteristic p, it was shown that when
d < q(1− 1

p
) the line test is a characterization, whereas for d = q(1− 1

p
) it is not.

The small field case also attracted a lot of attention [AKK+05, KR06, JPRZ04, BKS+10,
HSS13]. When q is prime and q ≤ d + 1 the line test is not a characterization, and the
next natural candidate is the plane test, or more generally the k-dimensional test, where
one chooses a random k dimensional affine space and tests whether the restriction of the
function to it agrees with a degree d polynomial. Roughly speaking, the bottom line is that
characterization by (affine) subspaces happens as soon as it makes sense. For example, when
d = q − 1 characterization by lines does not make sense, because every function on the line
can be explained by a degree q − 1 polynomials, whereas not all functions over Fmq can be
explained by a degree q − 1 polynomial. Similarly, if d ≥ k(q − 1) the k-dimensional test
contains no information, because every function on a k dimensional space can be explained
by a degree k(q − 1) polynomial. Consequently, we may define two quantities:

• The naive characterization dimension ncq,d = dd+1
q−1
e, and,

• The characterization dimension cq,d which is the lowest k such that the k dimensional
test locally characterizes RM(q,m, d).

By the reasoning above, clearly, cq,d ≥ ncq,d. The line of work cited above shows that in fact
when q is prime characterization happens as soon as it is possible, namely that cq,d = ncq,d.

When q is a prime p power, a similar phenomenon exits, but the characterization di-
mension should be adjusted to cq,d = d d+1

q− q
p
e. More precisely, the cq,d dimension test is a

characterization, and,

Theorem 1.1. ([KR06], Theorem 4) Let d be an integer and q = pn a prime power. If

k <
⌈

d+1
q−q/p

⌉
there exists a function f such that:

• f is not a degree d polynomial, but,

• The restriction of f to any k dimensional subspace can be explained by a degree d
polynomial.

We now move on testing. We may define the RM testing dimension tq,d to be the lowest
k such that RM(q,m, d) is locally testable by the k-dimensional test. Roughly speaking,
[KR06, HSS13] show that tq,d = cq,d, though here we need to mention the parameters that
are associated with the rejection probability of the test. Being more precise:

Theorem 1.2. ([KR06]) Let k =
⌈

d+1
q−q/p

⌉
. Given f : Fmq → Fq let:

• REJk,d(f) denotes the rejection probability of the test, namely, the probability over a
random k dimensional affine space, that f restricted to the space cannot be explained
by a degree k polynomial, and,

• δ(f,RM(q,m, d)) be the distance of f from the code RM(q,m, d).
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Then

REJk,d(f) ≥min {α0 · δ(f,RM(q,m, d)), c0} .

where α0 = qk

2
and c0 = 1

2(k+1)qk+1 .

RM codes over large enough fields are also locally decodable with q queries [STV01].
A simple and natural local correction procedure is the following: Randomly choose a line
in Fmq , read all the evaluations on points lying on the line, and answer according to the
closest degree d univariate polynomial. Other variants exist, e.g., one may replace the line
with a low-degree curve to handle larger error, but all variants use the crucial observation
that the restriction of a multi-variate degree d polynomial to a line is a degree d uni-variate
polynomial.

Having said all that we turn our attention back to multiplicity codes, that are a natural
generalization of RM codes. Which of the local properties of RM code are preserved in
multiplicity codes?

Multi-variate multiplicity codes are locally decodable [KSY14]. The local correction
procedure is simple and natural: Choose a random line in Fmq , read all the evaluations on
points lying on the line and answer according to the closest degree d univariate polynomial.
For correctness, we first notice that C restricted to a line can be associated with a uni-variate
MRM(q, 1, d, s) code (see Lemma 2.8 for details). Also, since the points on a random line
form a pairwise independent sample space, and since w is close to a codeword c ∈ C, with a
good probability w restricted to the line is close to c restricted on the line. Together, this
implies that c is the unique codeword closest to w on the line, and the algorithm outputs
(with a good probability) the correct answer ci. Indeed, in [KMRZS17] multiplicity codes
serve as a building block for the construction of the state of the art high-rate locally decodable
codes.

The situation with regard to local characterization and local testability is different. The
question whether multiplicity codes are locally testable is already mentioned in [Kop13], and
without local characterization there is no hope for local testability. To appreciate the problem
let us try to imitate the successful line of thought attacking the RM case. Given q,m, d and
s what is the trivial k for which there is no hope of characterizing the MRM(q,m, d, s) code
by dimension k affine spaces? Stated differently, given k, for what d every table on Fkq giving
evaluations for the function and all directional derivatives, can be explained by a degree d
polynomial? We will see that the answer to that is d = (s− 1)q + k(q − 1). This allows for
degrees d that are significantly larger than q. For example, for k = 1 (i.e., the line test) it
allows d to go up to sq − 2. However, as we shall see soon, for k = 1 even d = q + 1 is too
large.

In this paper we study local characterization and local testing of MRM(q,m, d, s) codes.
The starting point is a simple example that local characterization by lines is not possible
(except for extreme cases). We find what comes next very surprising. We show that local
characterization by planes works as long as s ≤ q and d < sq − q

p
. I.e., for a very large

set of parameters (containing the parameters that are often used in multiplicity codes) the
MRM characterization dimension is 2, regardless of q,m and d. Given this, the next natural
goal is understanding the MRM testing dimension. Our first result here is that if k is
above the RM testing dimension, then k-dimensional tests give a local MRM test. Said
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differently, the MRM testing dimension is no larger than the RM testing dimension. Having
that it is natural to ask: Can it actually be smaller? Our second result shows that it
indeed can be smaller. We show that if d < q(s − 1

p
) (and notice that d may get very

close to qs) then the plane test is a local test (with parameters that depend on q and s).
We devote the rest of the introduction to explaining our results, and discussing the new
techniques developed to obtaining them. While we do not give applications of the new
results, we believe our results give us new basic understandings on this important class of
codes, extending the vast literature surveyed before on the corresponding question for RM
codes (e.g. [AKK+05, KR06, JPRZ04, BKS+10, HSS13]).

1.1 Our results - I

1.1.1 The line test

We begin our journey by analyzing a natural candidate test for characterizing multiplicity
codes: the line test. The line test adapts the standard, well known local testing algorithm
for RM and checks whether a restriction to a line is a uni-variate MRM(q, 1, d, s) code.
Specifically:

• We are given as input an evaluation table T : Fmq → Σm,s where for every point x ∈ Fmq
and every directional derivative I of order up to s, we get a value in Fq and therefore
Σm,s is vector of

(
m+s−1
s−1

)
values from Fq, one value per each directional derivative.

• The test chooses a random line, i.e., we choose a,b ∈ Fmq uniformly at random and we
define `a,b : Fq → Fmq by `a,b(t) = t · a + b.

• We then query the table T at the q points of Fmq that lie on the line `a,b, and we learn
the function Ta,b : Fq → Σm,s defined by T ◦ `a,b.

Informally, we want to test whether Ta,b is the evaluation table of some degree ≤ d
uni-variate polynomial and its derivatives up to order s. Formally, we should first apply a
transformation φa,b that converts multi-variate derivatives to uni-variate derivatives over the
line (see Lemma 2.8). With this transformation at hand we test whether φa,b ◦ T ◦ `a,b is a
codeword of MRM(q, 1, d, s).

It is straight forward to check completeness, i.e., that the restriction to a line of an m-
variate multiplicity codeword is indeed a uni-variate multiplicity codeword, and therefore an
m-variate codeword passes all tests. However, it turns out soundness sometimes fails:

Theorem 1.3. (informal) Fix a prime power q = pr, m and s ≤ d. Let C = MRM(q,m, d, s).

• When q 6 d the line test is not a local characterization for C.

• When q − q
p
> d+ 1 the line test is a local characterization for C.

Formal statements appear in Theorem 4.1 and Corollary 5.3.
The first item states that the line test fails when q ≤ d. To see that let us look at an

example. Set Q(x, y) = (xq − x)y− x(yq − y) = xqy− xyq. Q is a degree q+ 1 homogeneous
polynomial that vanishes on Fmq . When we restrict to the line `a,b we get the polynomial

Q ◦ `a,b(t) = Q(at+ b) = Q(a1t+ b1, a2t+ b2),
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which is a degree q polynomial rather then a degree q+1 polynomial, because the coefficient
of tq+1 is Q(a1, a2) = 0 because Q vanishes on F2

q. It therefore follows that the restriction of
Q to lines behaves as a degree q polynomial, whereas Q itself is not degree q and the line
test wrongly accepts Q.

We now turn to the second item. In the terminology of this paper, the case of s = 1 and
q ≥ d+ 2 was proved in [FS95] and we generalize the q ≥ d+ 2 case to larger s. The second
item is a special case of a more general claim, that we discuss next.

1.1.2 The k-dimensional test

We next consider the k-dimensional test, that tests whether the restriction to k-dimensional
affine spaces reduces the the m-variate multiplicity code to a k-variate multiplicity code.
More formally, we are given as input a table T : Fmq → Σ2,s. We choose h = (h0,h1, . . . ,hk)
with each hi uniformly at random from Fmq conditioned on h1, . . . ,hk being independent and
define the k-dimensional affine space `h : Fq → Fmq by

`h(y1, . . . , yk) =h0 +
k∑
i=1

yihi.

We check whether the restriction T ◦ `h is a k-dimensional multiplicity code, when applying
the appropriate conversion φh (see Lemma 2.10), i.e., we check whether φh◦T ◦`h : Fkq → Σk,s

is a codeword of MRM(q, k, d, s). As before completeness is easy, and the big question is
whether soundness holds. In Section 5 we prove:

Theorem 1.4. Let Fq be a field of size q, and assume s ≤ min {d, q − 1}. Suppose for
RM(q,m, d) there exists α > 0 and c0 ≤ 1 such that for every f

REJRM
k,d (f) ≥ min {α · δ(f,RM(q,m, d)), c0} . (1.1)

Then, for every T we have

REJMRM
k,d (T ) ≥ min {α′ · δ(T,MRM(q,m, d, s)), c0} (1.2)

for

α′ =
q − (s− 1)

q

1

1 + qd/(q−1) 1
α

(1.3)

We have used REJRM
k,d (f) to denote the rejection probability of the RM k-dimensional

test on f , and REJMRM
k,d (T ) to denote the rejection probability of the MRM k-dimensional

test on T .
A consequence of the theorem is that if k is above the RM testing dimension, then,

automatically, the k dimensional MRM test gives local testing for MRM codes. For example,
if q is prime and d < 2(q − 1), the RM testing dimension is 2 and by Theorem 1.2 the

plane test satisfies Equation (1.1) with α = q2

2
and c0 = 1

6q3
. Hence, by the theorem, the

plane test is a local testing procedure for MRM(q,m, d, s), for any s < q, with α′ ≥ 1
3q

in
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Equation (1.2), as d/(q − 1) < 2. If s ≤ q
2

we have α′ ≥ 1
6
. In essence this means that if k is

above the Reed Muller testing dimension, then the k-dimensional test is also a local testing
algorithm for MRM(q,m, d, s) for any s as large as q − 1, and if, say, s < q/2 we even get
constant α′. Generally, if d < k(q − 1), the k-dimensional test is a local testing procedure
for MRM(q,m, d, s) for s up to q− 1. Item 2 in the previous subsection is the special case of
this theorem when we pick k = 1 (i.e., we consider the line test) and we replace the testing
property with the weaker characterization property.

The proof idea is as follows. Let us first consider characterization. When k is above
the testing dimension, the evaluation of the function itself that are given in the input T ,
without the evaluations of the derivatives that are given in T , suffice to uniquely characterize
the function. More precisely, if all the line tests pass the MRM test, then in particular the
restriction of the function to all lines is a degree d polynomial. Then, by Theorem 1.2 the
function itself is a degree d polynomial (because k is above the testing dimension). Let us call
this polynomial P . This polynomial is the only possible candidate for a MRM explanation
of the given input. What remains to show is that the given values of the derivatives in the
input T are consistent with the derivatives of the global function P . To explain the problem,
notice that every successful dimension k test gives us information about k-variate derivatives
in P and T , while we need to claim about m-variate derivatives in P and T . The crux of
the solution is the fact that the k-variate derivatives in a point are a linear combination of
the m-variate derivatives at the point. We then show that the set of linear equations form
a good code. Thus, if a point x ∈ Fmq is good in the sense that many of the tests passing
through it are good, then we get a codeword with many zeroes in it, and when the number
of zeroes is larger than the distance then it must be the zero codeword, which implies the m-
variate derivatives given in P and T coincide. A similar (but technically more complicated)
approach proves the local testing version, giving the theorem.

The theorem is satisfying in that it gives a local testing procedure for multiplicity codes.
However, a natural question arises: Claim 3.5 shows every table T : Fkq → Σk,s can be
explained by a degree (s − 1)q + k(q − 1) polynomial P (meaning that EVAL(P ) = T ).
Thus, if our strategy is to use the k-dimensional test to restrict a MRM(q,m, d, s) code
to a MRM(q, k, d, s) code, then this approach breaks down when d ≥ (s − 1)q + k(q − 1).

Thus, we can define the naive MRM characterization dimension to be dd+1−(s−1)q
q−1

e, which
is the minimal k needed for this approach to have chances to work. We have seen that the
d d+1
q−q/pe-dimensional test is a local testing procedure for MRM(q, d,m, s), but considering the

naive bound we must consider whether this is, perhaps, a gross overkill. After all, as far as
the naive bound is concerned even the line test might have worked. True, we have already
seen that the line test does not give a characterization. Yet, is it possible that the plane test
already gives a characterization, or, perhaps, even a local test?

1.1.3 The plane test

So next we analyse the plane test, that tests whether the restriction to two-dimensional planes
reduces the the m-variate multiplicity code to a two-dimensional multiplicity code. More
formally, we are given as input a table T : Fmq → Σ2,s. We choose a,b, c uniformly at random
from Fmq conditioned on a,b being linearly independent and define the plane `a,b,c : Fq → Fmq
by `a,b,c(t, r) = t ·a+r ·b+c. We check whether the restriction T ◦`a,b,c is a two-dimensional
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multiplicity code, when applying the appropriate conversion φa,b,c (see Lemma 2.9), i.e., we
check whether φa,b,c ◦ T ◦ `a,b,c : F2

q → Σ2,s is a codeword of MRM(q, 2, d, s). As before
completeness is easy, and the big question is whether soundness holds. Our main result is
the surprising:

Theorem 1.5. (The plane test - informal) Fix q,m, d, s such that q is a power of the prime
p and s ≤ q. Suppose d < (s− 1

p
)q. Let C = MRM(q,m, d, s). Then, the plane test is a local

characterization for C.

See Section 6 for a formal statement. We mention that we do not know if the condition
s ≤ q is redundant or not. We devote the next part of the introduction for an informal
explanation of our approach and technique for proving the theorem.

1.2 A warm-up proof for RM codes

As a warm-up towards the proof we first prove the line test is a characterization for RM
codes (i.e., when s = 1) and q is prime. This claim is well known. It appears as a well
known claim in Rubinfeld Sudan [RS96] but only for the case q ≥ 2d+ 1. In [FS95] another
proof is given that holds for all fields Fq of characteristic p, as long as (1− 1

p
)q ≥ d + 1. In

particular, when q is prime, the proof works for all q ≥ d + 2. As mentioned above, [FS95]
also show the bound is tight, i.e., that if d is such that d+ 1 > (1− 1

p
)q, then the line test is

not a characterization. Here, when q is prime we give yet another proof of the claim that is
somewhat simpler than the one in [FS95] and will be easier to generalize to larger s. Other
proofs exist, see, e.g., [JPRZ04, Section 1.4].

The starting point is the same as in [FS95]. Suppose T : Fmq → Fq is some function.
There exists a polynomial P : Fmq → Fq in Fq[X1, . . . , Xm] that agrees with T on Fmq . The
polynomial P is not unique, but it is unique modulo Im,1 which is the ideal of all polynomials
in Fq[X1, . . . , Xm] that vanish on Fmq . If we choose P to be the polynomial of minimal degree
agreeing with T , then from the Combinatorial Nullstellensatz (see Theorem 2.20) we see that
we can represent P as

P (x1, . . . , xm) =
∑

0≤i1,...,im<q

αi1,...,imx
i1
1 . . . x

im
m .

For ease of notation let us denote I = (i1, . . . , im) and XI = xi11 . . . x
im
m . Before we go on

notice that while the individual degree of P in each of the m variables is smaller than q, the
total degree of P ,deg(P ), may be as large as m(q− 1) and in particular much larger than q.

When we restrict P to the line `a,b(t) we see that:

Pa,b(t)
def
= P ◦ `a,b(t) =P (at+ b) =

∑
I

αI(at+ b)I

and we can express

Pa,b(t) =

deg(P )∑
k=0

Ak(a,b)tk,
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where Ak ∈ Fq[a1, . . . , am, b1, . . . , bm].
At first it seems our task is to show that if deg(P ) > d, then Adeg(P )(a,b) is non-zero,

and therefore for some a,b ∈ Fqmwe have Pdeg(P )(a,b) 6= 0. Then, when we test the line `a,b,
the restricted function P ◦ `a,b is a degree deg(P ) > d uni-variate polynomial, and therefore
fails the line test. This argument is, however, flawed in two essential points:

1. First, we should look not at Pa,b but rather at Pa,b mod I1,1, i.e., modulo the ideal
of functions that vanish on Fq. This is because from our point of view a table can be
associated with a degree d polynomial iff there exists a degree d polynomial with such
an evaluation table, and two polynomials that differ by an element from I1,1 have the
same valuation table. The ideal I1,1 is generated by g(t) = tq − t and so we need to
look at Pa,b(t) mod (tq − t).

2. It is not enough to show that Ak is non-zero in Fq[a1, . . . , am, b1, . . . , bm] but rather
that Ak has a non-zero evaluation point in F2m

q . By the Combinatorial Nullstellensatz
this is equivalent to Ak mod I2m,1 being non-zero.

The way we fix these two issues is different than [FS95]. We say I is a maximal monomial
of P if deg(XI) = deg(P ). We say (I0, I1) is a partition of I if I0 + I1 = I and I0, I1 ≥ 0,
where I0, I1 ∈ Zm and the addition and inequality are in each of the m coordinates. We also
let w(I), the weight of I, be

∑m
j=1 ij. We claim:

Lemma 1.6. Assume q is prime. Let I be a monomial of P of weight at least d + 1 and
I0, I1 a partition of I with w(I0) = d + 1. Then Ad+1(a,b) is a non-zero polynomial in
Fq[a1, . . . , bm] and furthermore aI0bI1 appears in it as a non-zero monomial.

To see why the lemma is true first notice that the coefficient of aI0bI1 in (at+ b)I is
(
I
I0

)
which is non-zero if q is prime (see Section 2.1 for the notation

(
I
I0

)
)4 and it appears as a

coefficient of tw(I0) mod (tq − t) = td+1 mod (tq − t) = td+1. In general, other terms may
contribute to the coefficient of td+1, and we should make sure none of these terms cancel the
monomial aI0bI1 . For this, we notice that from aI0bI1 we can recover I0, I1, and therefore
I = I0 + I1. Hence, for all J 6= I, aI0bI1 is not obtained in (at+ b)J. Thus, there is a unique
way to obtain aI0bI1 , and it appears with a non-zero coefficient and therefore Ad+1(a,b) has
the monomial aI0bI1 with a non-zero coefficient, and the lemma follows.

For the second issue we notice that for every k, Ak(a,b) is a polynomial in Fq[a1, . . . , bm]
with individual degree at most q − 1, and therefore it is already reduced modulo Im,1. We
can therefore conclude that for some a,b ∈ Fmq the polynomial Pa,b(t) mod (tq − t) is a
non-zero polynomial of degree at least d + 1, and therefore the line test fails for this choice
of a,b.

1.3 The general case

We now want to explore whether we can generalize the argument to show the plane test is a
characterization for s > 1. Suppose we are given a table T of function and derivative evalua-
tions, T : Fmq → Σm,s. Every table T has some (possibly high degree) polynomial P such that

4One can give an analogous argument for a prime power q, and we indeed do that for later on, but we
skip it here because this is just a warm-up exercise.
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T is the codeword of P . The functions whose table is identically zero are those polynomials
that vanish on Fmq with multiplicity s. Let Im,s denote the set of m-variate polynomials that
vanish on Fmq with multiplicity s. Im,s is an ideal of the ring Fq[X1, . . . , Xm]. I1,1 is the ideal of
all uni-variate functions that vanish on Fq, and is generated by g(x) = Πα∈Fq(x−α) = xq−x.
Similarly, I1,s is generated by g(x)s (and I1,s = Is1,1). From the combinatorial nullstellensatz
[Alo99] one can deduce that Im,1 is generated by {g(x1), . . . , g(xm)} and a further general-
ization [BS09] shows that Im,s = Ism,1 and is therefore generated by

Gm,s =
{
g(X)I | w(I) = s

}
,

where we use the notation g(X)I = g(x1)i1 · . . . · g(xm)im . It turns out that Gm,s is a Grobner
basis for Im,s (see Section 2.3). This implies that a basis for Fq[X1, . . . , Xm] mod Im,s (as a
vector space) is

Bm,s =
{
g(X)I ·XJ | (I,J) ∈Ms,q

}
.

Where (I,J) ∈Ms,q iff w(I) < s and j1, . . . , jm < q. Notice that there are basis elements in
Bm,s whose degree is as large as m(q − 1) + (s− 1)q � sq. For more details see Section 3.

We will occasionally abuse notation and refer to members of Bm,s as ”monomials”.
Going back to the plane test, we are given a table T : Fmq → Σm,s and we want to check

whether the polynomial P that represents T is a degree d polynomial or not. W.l.o.g., we can
assume P is reduced modulo Im,s and we express P (X1, . . . , Xm) ∈ Fq[X1, . . . , Xm] mod Im,s
in the basis Bm,s:

P (X) =
∑

(I,J)∈Ms,q

αI,J · g(X)IXJ.

We let Pa,b,c be P restricted to the plane `a,b,c, i.e., Pa,b,c
def
= P ◦ `a,b,c ∈ Fq[t, r]. We want

to check whether Pa,b,c belongs to MRM(q, 2, d, s) and we therefore take Pa,b,c modulo I2,s.
We express

Pa,b,c(t, r) mod I2,s =
∑

i+j<s,k,`<q

Ai,j,k,`(a,b, c) · g(t)ig(r)jtkr`

Our plan is to show that if P has degree larger than d, then for some a0,b0, c0 ∈ Fmq it must
be that Pa0,b0,c0(t, r) mod I2,s is a polynomial of degree larger than d, and therefore the test
a0,b0, c0 fails. Equivalently, we want to show that for some i0, j0, k0, `0 with i0 + j0 < s and
k0, `0 < q it holds that:

• Ai0,j0,k0,`0(a,b, c) mod I3m,1 is non-zero, and therefore for some a0,b0, c0 ∈ Fmq we have
Ai0,j0,k0,`0(a0,b0, c0) 6= 0 and the monomial g(t)i0g(r)j0tk0r`0 survives, and,

• q · (i0 + j0) + k0 + `0 > d and therefore deg(Pa0,b0,c0) > d.

The crux of the proof is finding an order on monomials under which the following lemma
is true:
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Lemma 1.7. If (Imax,Jmax) is such that g(X)ImaxXJmax is a maximal monomial in P in the
monomial order, then for any partition of Jmax to Jbmax+Jcmax such that q·w(Imax)+w(Jbmax) <
qs and

(
Jmax

Jb
max

)
6= 0 mod p, the monomial aImaxbJb

maxcJc
max appears with a non-zero coefficient

at
A
w(Imax),bw(Jbmax)

q
c,0,w(Jb

max) mod q
(a,b, c) mod I3m,1.

See Lemma 6.3 for a formal statement. There is no requirement for this order to be a
monomial ordering in the sense usually used for Grobner bases. The proof is much more
delicate than the one we presented before for the RM case (where s = 1) and we give some
essential ideas below. We omit some of the technical details, and, as a result, we do not
see, e.g., why in the proof we also need the assumption q ≥ s. The full proof appears in
Section 6.

Pa,b,c(t, r) = p(at+ br + bc) is a polynomial in a1, . . . , am, b1, . . . , bm, c1, . . . , cm, t and r.
We first note that (recalling that g(x) = xq − x)

g(at+ br + c) =(at+ br + c)q − (at+ br + c) = ag(t) + bg(r),

and so g(at+br+c) behaves as a total degree q polynomial in t, r, and as a linear polynomial
in a = a1, . . . , am and b = b1, . . . , bm. In particular g(X)IXJ(at + br + c) has total degree
w(I) + w(J) in a,b, where by P (X)(at+ br + c) we mean P (at+ br + c).

One crucial difference between the s = 1 and s > 1 case is that now we may get monomials
aI1bI2cI3 that are not reduced modulo I3m, e.g., aq1 = a1 is a monomial that appears in
g(X1)Xq−1

1 (at+ br + c). In general, if for some coordinate j ∈ [m] we have Ij + Jj ≥ q, we
get (among other things) a monomial in a,b, c that gets reduced. This complicates things
for us, because a monomial that has more then one ”source” may cancel out.

To solve this problem we do two things:

• First, we choose a monomial order that first order monomials g(X)IXJ by w(I)+w(J),
and then orders monomials by w(I).

• Second, we focus on special monomials in a,b, c and degrees of t, r. We fix (Imax,Jmax)
with maximal w(Imax)+w(Jmax) in P , and we take some partition Jbmax +Jcmax of Jmax.
We look at the monomial aImaxbJb

maxcJc
max .

We observe that the monomial aImaxbJb
maxcJc

max (which is reduced modulo I3m,1) is always
obtained in a reduced I3m,1 form, i.e., it cannot appear as a reduction from g(X)IXJ for
some (I,J) 6= (Imax,Jmax). This is because it has maximal w(Imax) +w(Jmax) weight, and if
it was to appear as reduction from (I,J), then those (I,J) would have a higher w(I) +w(J)
weight.

The monomial aImaxbJb
maxcJc

max is obtained from g(X)ImaxXJmax(at + br + c) as a coeffi-
cient of tqw(Imax)rw(Jb

max). We claim that this is the only way to obtain aImaxbJb
maxcJc

max as a
coefficient of tqw(Imax)rw(Jb

max). To see that suppose aImaxbJb
maxcJc

max is obtained as a coefficient
of tqw(Imax)rw(Jb

max) from some g(X)IXJ(at+ br+ c). Since the degree in t is qw(Imax), i.e., q
times the total degree in a, it must be that the a part is obtained from g(X)I(at+ br + c),
because only the g part behaves as a linear function in a ∈ Fq and a degree q polynomial in
t. Furthermore w(I) ≥ w(Imax). Since (Imax,Jmax) is maximal and monomials that have the
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maximal w(I) +w(J) are then ordered by w(I), we must have w(I) = w(Imax). From that it
is easy to conclude that (I,J) = (Imax,Jmax).

Next, we need to force the monomial in t, r to have degree d + 1 when taken modulo
I2,s. We take advantage of the fact that our claims work for any partition of a maximal
monomial, and therefore we can shift weight from c to b in the partition of the maximal
monomial. Each time we shift weight one from c to b we change the degree in t, r by one,
and this is true even when working modulo I2,s. If the degree of P is larger than d, then
there is a way to put just the right weight on b such that the resulting polynomial in t, r is
degree at least d+ 1 even when taken modulo I2,s. In fact, one can calculate explicitly how
the weight should be partitioned (see Lemma 6.4). This concludes the proof of Lemma 1.7.

Having the lemma, there exist some a0,b0, c0 ∈ F3m
q such that P restricted to the plane

a0t + b0r + c0 is degree larger than d, even after doing the reduction modulo I2,s, because
the corresponding coefficient polynomial in a,b, c is non-zero modulo I3m,1. Hence the test
a0,b0, c0 fails!

1.4 Our results - II

We have seen two results so far:

• The k-dimensional test, for k above the RM testing dimension gives a MRM local
tester, and,

• The planes test gives a MRM local characterization,

where for both results we assume s < q. We now combine the two results to show that the
plane test gives a MRM local tester, with constant parameters when s is constant. We prove:

Theorem 1.8. Suppose q is a prime power, s ≤ q and d < q(s− 1
p
). Let T : Fmq → Σm,s be

a table and let δ = δ(T,MRM(q,m, d, s)). Then

REJMRM
2,d (T ) ≥ min {αδ, c}

with α = Ω(q−6s+5) and c = Ω(q−8s+4).

The proof idea is follows. Suppose T is far from MRM(q,m, d, s). By the first result
mentioned above, a random k dimensional affine space H (for k above the RM testing
dimension) cannot be explained a MRM(q, k, d, s) polynomial. Then, by the second result,
some plane in H cannot be explained by a MRM(q, 2, d, s) polynomial. Hence, that plane
rejects. The number of planes in k dimensional space is about q3k, and so, intuitively, the
rejection probability should be about q−3s times the rejection probability of the k-dimensional
test, which we already saw is quite good. We give the details in Section 7.

1.5 Organization and open problems

In Section 2 we introduce notation, recall multiplicity codes and some basic results about
ideals in polynomial rings (Grobner theory and combinatorial nullstellensatz). In Section 3,
we develop an understanding of the relation between tables of valuations and polynomials
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which are consistent with them. This is done by relying on the theory of Grobner bases
[CLO13], and the combinatorial nullstellensatz [Alo99] and a generalization of the combina-
torial nullstellensatz for multiplicities higher than one [BS09]. In Section 4 we prove the line
test is not a characterization when d > q + 1. In Section 5 we prove the k-dimensional test
is a MRM local tester when k is above the RM testing dimension. In Section 6 we prove the
plane test is a local characterization of the MRM code, and in Section 7 we combine the two
results to show the plane test is a local tester for MRM codes.

Finally, we state some open problems:

• A self-evident open problem that arises from our work is whether the parameters of
the plane test in Section 7 can be made better.

• Another intriguing question is whether the condition s ≤ q is necessary or not. We
remark that in the usual setting of the parameters q � s. Nevertheless, we think it is
interesting to know whether the condition is required, and this is likely to improve our
understanding of the code.

• In Theorem 4.1 we show that for d ≥ q+1 the line test is not a local characterization for
MRM(q,m, d, s) for any s > 1. When s > 1 and d < q(1− 1

p
) it follows from Section 5

that the line test is a local characterization. An open problem is pinning down where
in the range q(1− 1

p
) ≤ d < q + 1 the line test stops being a local characterization.

• Similarly, in Claim 3.5 we show that the plane test has no hope of being a local
characterization for MRM(q,m, d, s) when d ≥ q(s− 1) + 2(q− 1) = qs+ q− 2. When
d < q(s − 1

p
) Theorem 6.2 tells us that the plane test is a local characterization. The

same question can be asked about where in the range q(s − 1
p
) ≤ d < qs + q − 2 the

plane test stops being a local characterization.

• Another natural open problem, pointed to us by Tali Kaufman, is understanding the
d� (s− 1

p
)q case. As we mentioned before, For RM codes (where s = 1) the problem

attracted a lot of attention, see, e.g., [AKK+05, KR06, JPRZ04, BKS+10, HSS13] and
it is natural to ask what happens to multiplicity codes over such small fields.

1.6 Acknowledgements

We would like to thank Tali Kaufman and Noga Ron-Zewi for a stimulating discussion on
the paper. In particular, we thank them for suggesting to utilize the approach for giving a
new analysis of the RM characterization.

2 Preliminaries

2.1 Notation

We denote vectors by bold letters. For X = X1, . . . , Xm we denote by F[X] the set of multi-
variate polynomials in the variables X1, . . . Xm. We denote by F[X]6d the set of polynomials
of individual degree at most d , and by F[X]loc6d the set of polynomials of individual degree
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at most d (i.e degree in each variable). Given a vector I = (i1, . . . , im) ∈ Nm, we use the
notation

XI def
=

m∏
k=1

X ik
k .

For a vector I ∈ Nm, and a set S ⊆ [m], we define the vector IS by (IS)j =

{
Ij, j ∈ S
0, j /∈ S .

Recall The definition of the binomial and multinomial coefficients for natural numbers:

(
a

b

)
def
=

a!

b!(a− b)!(
a

b1, . . . , b`

)
=

a!

b1! · · · b`!

where
∑
bi = a. We extend this definition to I, I1, J, J1, . . . , J` ∈ Nm where J = J1 + . . .+J`

by (
I

I1

)
def
=

m∏
k=1

(
Ik

(I1)k

)
(

J

J1, . . . , J`

)
def
=

m∏
k=1

(
Jk

(J1)k, · · · , (J`)k

)
.

We mention Lucas theorem, that if p is prime, q = pw for w ∈ N, and a, b ∈ N have base
p representation a =

∑w
`=0 a`p

`, b =
∑w

`=0 b`p
` with 0 ≤ a`, b` < p, then(

a

b

)
mod p = Πw

`=0

(
a`
b`

)
, (2.1)

where we use the convention that
(
c
d

)
= 0 when d > c. Thus,

(
a
b

)
mod p 6= 0 iff a` ≥ b` for

all ` = 0, . . . , w − 1.
Finally, we let g ∈ Fq[X] denote the polynomial g(X) = Xq −X. For X = (X1, . . . , Xm)

and I = (i1, . . . , im) ∈ Nm we let g(X)I denote Πm
k=1(g(Xk))

ik .

2.2 Reed Muller and Multiplicity codes

Definition 2.1. Let d,m be non-negative integers, and q a prime power. The (m, d, q) Reed-
Muller code is defined as the set of evaluation vectors of m-variate polynomials of degree 6 d
over Fmq , namely,

RM(q,m, d) =
{

(f(α))α∈Fm
q
| f ∈ Fq[X]6d

}
.

We will make use of the following lemma:
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Lemma 2.2. [HSS13, Lemma 3.2] Let δRM
q,m,d be the relative distance of the code RM(q,m, d).

Then δRM
q,m,d ≥ q−d/(q−1).

Definition 2.3. (Hasse derivative) For a multivariate P (X) ∈ F[X] where X = (X1, . . . Xm)
for some m ∈ N, and a non-negative vector I ∈ Nm, the I-th Hasse derivative of P , denoted
P (I)(X), is the coefficient of ZI in the polynomial P (X,Z) = P (X + Z). Thus

P (X + Z) =
∑
I

P (I)(X) · Zi

Hasse derivatives are linear. I.e, for all P,Q ∈ F[X] and λ ∈ F, (λP )(I)(X) = λP (I)(X)
and P (I)(X)+Q(I)(X) = (P+Q)(I)(X). The product rule shows (PQ)(I)(X) =

∑
I0+I1=I P

(I0)(X)·
QI1(X).

Definition 2.4 (Weight). If I = (i1, . . . , im) ∈ Nm then w(I) =
∑m

j=1 ij.

Definition 2.5 (Multiplicity). For P (X) ∈ F[X] and a ∈ Fm, the multiplicity of P at a,
denoted mult(P, a), is the largest integer s such that for every non-negative vector I with
w(I) < s we have P (I)(a) = 0. If s may be taken arbitrarily large, we set mult(P, a) =∞ .

Note that by definition mult(P, a) > 0 for every a. One important property about
multiplicities is a generalization of the Schwartz-Zippel lemma for multivariate polynomials:

Lemma 2.6. [DKSS13] Let P ∈ F[X] be a non-zero polynomial of total degree at most d.
Then for any finite A ⊆ F, ∑

a∈Am

mult(P, a) 6 d · |A|m−1.

Definition 2.7 (Multiplicity code). Let m, d ≥ s be non-negative integers, and let q be a
prime power. Let

Σm,s = Fq{I:w(I)<s} ' Fq(
m+s−1

m ).

For P (X) ∈ Fq[X1, . . . Xm] we define the order s evaluation of P at a, denoted P (<s)(a),
to be the vector (P (I)(a))I:w(I)<s ∈ Σm,s. The multiplicity code MRM(q,m, d, s) is defined as
follows. The alphabet of the code is Σm,s and the length is qm. Every polynomial P (X) ∈
Fq[X] of deg(P ) 6 d defines a codeword by

(
P (<s)(a)

)
a:a∈Fm

q
∈ (Σm,s)

qm.

We also let MRS(q, d, s) := Mult(q, 1, d, s) stand for Reed-Solomon multiplicity code.
The following lemma states the relationship between the derivatives of a polynomial to

the derivatives of its restriction to a line.

Lemma 2.8. [KSY14, Sec 4] Let P ∈ F[X] be a multivariate polynomial where X =
(X1, . . . , Xm). Let a,b ∈ Fm and define a univariate polynomial PLa,b(t) = P (at + b).
Then

PL
(j)
a,b(t) =

∑
I:w(I)=j

P (I)(at+ b) · aI.
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We also derive a formula for the derivative of a restriction to a two dimensional plane.

Lemma 2.9. Let P ∈ F[X] be a multivariate polynomial where X = (X1, . . . , Xm). Let
a,b ∈ Fm and define a bivariate polynomial by PPa,b,c(t, r) = P (at + br + c). Then for
(j1, j2) ∈ N2 :

PP
(j1,j2)
a,b,c (t, r) =

∑
I∈Nm

P (I)(at+ br + c) ·
∑

I1+I2=I
w(I1)=j1,w(I2)=j2

(
I

I1

)
aI1bI2 .

Proof. Given R1, R2 ∈ F, we write the expression P (a(t+R1)+b(r+R2)+c) in two different
ways. On the one hand,

P (a(t+R1) + b(r +R2) + c) = PPa,b,c(t+R1, r +R2) = PPa,b,c((t, r) + (R1, R2))

=
∑

j1,j2∈N

PP
(j1,j2)
a,b,c (t, r)Rj1

1 R
j2
2 .

On the other hand,

P (a(t+R1) + b(r +R2) + c) = P (at+ br + c+R1a +R2b)

=
∑
I∈Nm

P (I)(at+ br + c) · (R1a +R2b)I

=
∑
I∈Nm

P (I)(at+ br + c) ·
m∏
k=1

(akR1 + bkR2)ik

=
∑
I∈Nm

P (I)(at+ br + c) ·
∑

I1+I2=I
w(I1)=j1,w(I2)=j2

(
I

I1

)
aI1bI2Rj1

1 R
j2
2 .

Comparing coefficients of Rj1
1 R

j2
2 for every J = (j1, j2) ∈ N2 we get the result.

We will also be interested in the restrictions of polynomials to general k-dimensional
subspaces. Let PPh0,h1,...,hk

(Y) = P (h0 +
∑k

i=1 hiYi). Then, similarly to Lemma 2.9,

Lemma 2.10.

PP J
h0,h1,...,hk

(Y) =
∑
I∈Nm

P (I)(h0 +
k∑
i=1

hiYi) ·
∑

I1+···+Ik=I
w(Ir)=jr

(
I

I1, . . . , Ik

) k∏
i=1

hIk
k .

The proof is identical to the proof of Lemma 2.9.

2.3 Grobner bases and Nullstellensatz

The theory of Grobner bases describes the structure of ideals in the ring R = F[X] and
we briefly explain some of the essential concepts of this theory. We refer to [CLO13] for a
thorough treatment of this theory.
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Definition 2.11. A monomial order � on R is a relation � on Zn>0, or equivalently a
relation on the set of monomials xα, α ∈ Zn>0 satisfying:

1. � is a total ordering.

2. If α � β and γ ∈ Zn>0 then α + γ � β + γ .

3. � is a well-ordering. I.e, every non-empty A ⊂ Zn>0 has a minimal element.

Example 2.1 (Lexicographic order). Let α, β ∈ Zm>0. We say α �lex β if the minimal i
which satisfies αi 6= βi, also satisfies αi > βi .

Example 2.2 (Total degree lexicographic order). The total degree lexicographic order is
defined as follows: A monomial m1 is greater than m2 if it has higher total degree, where
ties are broken lexicographically (i.e X1 > X2 > · · · > Xm ). More formally , let α, β ∈ Zm>0.
Then α �tot β if w(α) =

∑
αi > w(β) =

∑
βi or, w(α) = w(β) and α �lex β.

Definition 2.12. Let f(X) =
∑

I aIX
I and � a monomial order.

1. The multi-degree of f is multideg(f) = max {I | aI 6= 0} where the maximum is taken
w.r.t �.

2. The leading coefficient of f is LC(f) = amultideg(f) ∈ F.

3. The leading monomial of f is LM(f) = Xmultideg(f).

4. The leading term of f is LT (f) = LC(f) · LM(f).

Definition 2.13 (Multivariate polynomial division). Let � be a monomial order on Zm>0,
and let F = {f1, . . . , fk} be a set of k polynomials in F[X]. Then every f ∈ F[X] can be
written as

f = q1f1 + · · ·+ qkfk + r,

where qi, r ∈ F[X], and either r = 0 or r is a linear combination, with coefficients in F, of
monomials, none of which is divisible by any of LT (f1), . . . , LT (fk). We call r a remainder of
the division by F . Moreover, multideg(qifi) 6 multideg(f) for every i ∈ [s]. The remainder
r is not necessarily unique, and might depend on the order of division.

Definition 2.14. Let {0} 6= I ⊆ F[X] be an ideal. Fix a monomial ordering on F[X]. Then

1. We denote by LT (I) the set of leading terms of non-zero elements in I.

LT (I) = {LT (f) | f ∈ I \ {0}}

2. We denote by 〈LT (I)〉 the ideal generated by the elements in LT (I).

Definition 2.15. Let {0} 6= I ⊆ F[X] be an ideal. Fix a monomial order on F[X]. A subset
G = {g1, . . . , gt} ⊂ I is said to be a Grobner basis for I, if

〈LT (g1), . . . , LT (gt)〉 = 〈LT (I)〉.
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Fact 2.1. Every ideal I ⊂ F[X1, . . . , Xm] is finitely generated and has a Grobner basis.

The importance of a Grobner basis, is that it gives a natural way of choosing represen-
tatives for the quotient space F[X1, . . . , Xm] /I .

Theorem 2.16. [CLO13, Section 2, Proposition 1] Let I ⊂ F[X1, . . . , Xm] be an ideal and
G = {g1, . . . , gk} a Grobner basis. Then given f ∈ F[X] there is a unique r ∈ F[X] such that
there is a g ∈ I such that f = g+r and no term of r is divisible by any of LT (g1), . . . , LT (gk).
We call this r, the reduced form of f (relative to I).

Note that the reduced form of any polynomial is equivalent to this polynomial modulo
I. Thus, the theorem gives us a natural way of choosing representatives modulo I.

Theorem 2.17. Let R = F[X] be the ring of polynomials, and I ⊂ R an ideal. Let G be a
Grobner basis for I. Then the set

B = {M(X) |M is a monomial not divisible by any LT (g) for g ∈ G } ,

is a basis for R /I .

The following criterion determines whether G is a Grobner basis.

Definition 2.18 (LCM and S polynomials). Let f, g ∈ F[X] be non-zero polynomials. Let
α = multideg(f) and β = multideg(g).

1. The least common multiple of LM(f) and LM(g), denoted LCM(LM(f), LM(g)), is
Xγ, where γ = (γ1, . . . , γm) and γi = max {αi, βi} for each i.

2. The S− polynomial of f and g is

S(f, g) =
LCM(LM(f), LM(g))

LT (f)
· f − LCM(LM(f), LM(g))

LT (g)
· g

Theorem 2.19. (Buchberger’s Criterion) [CLO13, Sec 6] Let I ⊂ F[X] be an ideal. Then
a basis G = {g1, . . . , gk} of I is a Grobner basis of I if and only if for all pairs i 6= j, the
remainder on division of S(gi, gj) by G is zero .

Note that we always have S = S(gi, gj) ∈ I by the definition of S. When saying the
remainder of the division by G is zero, we mean that there are {fi}, such that S =

∑
figi

and multideg(figi) 6 multideg(S) for every i (as in Definition 2.13).

Theorem 2.20. (Combinatorial Nullstellensatz) [Alo99] Let F be a field, and A1, . . . , Am ⊆
F . Let gi(X) =

∏
α∈Ai

(X − α) for i = 1, . . . ,m. Assume a polynomial f ∈ F[X] satisfies
f(α) = 0 for all α ∈ A1 × · · · × Am. Then there are h1, . . . , ht such that

f =
∑

higi,

and deg(hi) + deg(gi) 6 deg(f) for all i.
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When Ai = Fq denote

g(X) =
∏
α∈Fq

(X − α) = Xq −X.

Also, let Im denote the ideal Im =
{
f ∈ Fq[X] | ∀α ∈ Fmq f(α) = 0

}
.

Corollary 2.21. Im = 〈g(X1), . . . , g(Xm)〉.

Proof. Let f ∈ Im. By Theorem 2.20, taking Si = Fq for every i, we get that f =
∑
higi

for some {hi} and so f ∈ 〈gk〉k∈[m]. The other inclusion is trivial since g(Xi) = Xq
i − Xi

vanishes on Fmq for every i.

Using Theorem 2.19 it can be easily proved that:

Claim 2.22. G = {g(Xk)}mk=1 is a Grobner basis for Im relative to the total degree lexico-
graphic order.

Let s ∈ N and let Im,s denote the ideal

Im,s = {f ∈ Fq[X] | ∀α ∈ Fqm Mult(f ;α) ≥ s} .

In this notation, Im,1 = Im defined before. For every I = (I1, . . . , Im) ∈ Nm define

g(X)I =
m∏
k=1

g(Xk)
Ik .

Theorem 2.23. (Combinatorial Nullstellensatz with multiplicity) [BS09, Sec 3] Im,s =
〈g(X)I〉w(I)=s. Furthermore, the set Gm,s =

{
g(X)I

}
w(I)=s

is a Grobner basis for Im,s.

Proof. To see that Im,s is indeed an ideal, fix f ∈ Im,s and h ∈ F[X]. Then for r < s:
(hf)(r) =

∑r
i=0 f

(i) · h(r−i) = 0 and so hf ∈ Im,s. Also, clearly, g(X)I ∈ Im,s for every I with
w(I) = s. We need to show Gm,s is a Grobner basis for Im,s,

[BS09, Section 3] show Gm,s generates Im,s and, furthermore, f =
∑

b:w(I)=s g(X)IhI for

some hI with deg(hI) 6 deg(f) − s deg(g). In particular, this is true for the S polynomials
in Theorem 2.19. I.e, every such S polynomial can be expressed as S =

∑
g(X)IhI where

deg(g(X)IhI) 6 deg(S). By Buchberger’s criterion
{
g(X)I

}
is a Grobner basis.

Finally, we look at equality modulo Im,1.

Definition 2.24. For n1, n2 ∈ N we say n1 =Fq n2 iff xn1 = xn2 mod I1,1. Equivalently,
n1 =Fq n2 iff

• n1 = n2, or,

• min(n1, n2) > 0 and n1 = n2 mod (q − 1).

Definition 2.25. Let A,B ∈ Nm. We say A =Fq B for iff Ak =Fq Bk for every 1 ≤ k ≤ m.

We also record:

Claim 2.26. Let a, b ∈ N. If a =Fq b and a < q then a ≤ b.

Proof. If b < q then a =Fq b implies a = b. Otherwise a < q ≤ b.
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3 Polynomials and tables

A table is an element of Σqm

m,s, i.e., a function mapping every evaluation point in Fmq to an
element in Σm,s. EVAL takes a multi-variate polynomial and returns its table of evaluations.
More precisely,

Definition 3.1. We define EVALm,s : Fq[X]× Fmq → Σm,s by

EVALm,s(P ; a) =
(
P (I)(a)

)
w(I)<s

.

Similarly, we define EVALm,s : Fq[X]→ (Σm,s)
qm by

EVALm,s(P ) = (EVAL(P ; a))a∈Fm
q
.

We say T ∈ (Σm,s)
qm is the table of P ∈ Fq[X] if EVAL(P ) = T .

An element in Σm,s contains information about all the derivatives of order up to s.
Sometimes we would like to focus on a certain directional derivative. If σ ∈ Σm,s and I ∈ Nm

with w(I) < s, then σ(I) ∈ Fq is the entry of σ that encodes the I’th derivative. Similarly, if
f ∈ Σqm

m,s is a table, i.e., f : Fmq → Σm,s, then f(I) : Fmq → Fq is defined by letting f(I)(x) be
the I’th entry of f(x) ∈ Σm,s.

Note that every polynomial determines its table EVAL(P ). However, two different poly-
nomials might have the same table if their difference is the zero table on Fmq . From Theo-
rem 2.23,

Ker(EVALm,s) = Im,s = 〈g(X)I〉w(I)=s.

Since Im,s does not contain any non-zero polynomial of total degree less than sq, we
conclude that:

Corollary 3.2. EVALm,s is injective on polynomials of total degree less than sq.

Claim 3.3. EVALm,s is onto Σqm

m,s.

Proof. We will show that

dim
(
Fq[X1, . . . , Xm]

/
Im,s

)
≥ dim

(
(Σm,s)

qm
)

= qm ·
(
m+ s− 1

m

)
,

where the dimension is over Fq. This implies that the image of EVALm,s is everything, and
the mapping is injective.

To see that consider the set

Bm,s =

{
g(X)I ·

m∏
k=1

Xjk
k | w(I) < s, 0 6 jk < q

}
. (3.1)

The elements in Bm,s have different multi degree and therefore are independent. Also
elements in Bm,s are monomials of degree smaller than sq, and therefore are Im,s reduced.
Thus,
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dim
(
Fq[X]

/
Im,s

)
≥ dim Span(Bm,s)

=| {(I,J) ∈ Nm × Nm | w(I) < s, 0 6 jk < q} |

=

(
m+ s− 1

m

)
· qm,

as desired.

Corollary 3.4. The set Bm,s is a basis for F[X]
/
Im,s .

Example 3.1. When m = 1 the set {g(x)ixj | i ∈ N, j < q} is a basis of F[X]. Thus, for
every ` ∈ N there are β`,i,j such that

x` =
∑

i1,i2:i1q+i26`,i2<q

β`,i1,i2g(x)i1xi2 .

By comparing coefficients of x` we see that β`,b `
q
c,` mod q = 1.

Claim 3.5. For every table T : Fqm → Σm,s there exists a degree q(s − 1) + (q − 1)m
polynomial such that EVAL(P ) = T .

Proof. By Claim 3.3, T may be written as EVAL(P ), where P is an Fq-combination of basis
elements in Bm,s. By the definition of Bm,s, any basis element is of the form g(X)I ·

∏m
k=1X

jk
k

where w(I) < s and 0 6 jk < q. As such, deg(P ) ≤ deg(g(X)I) + deg(
∏m

k=1X
jk
k ) ≤

q(s− 1) + (q − 1)m.

We will later need:

Lemma 3.6. Let A ∈ Fq[t] and B ∈ Fq[r]. Then,

degt(A(t)B(r) mod I2,s) ≤ degt(A).

Proof. Express A in the basis {g(t)itj}i∈N,j<q,

A(t) =
∑

(i,j)∈A

αi,jg(t)itj,

and similarly for B,

B(r) =
∑

(k,`)∈B

βk,`g(r)kr`,

for some sets A,B, αi,j, βk,` ∈ Fq. Then,

A(t)B(r) mod I2,s =
∑

(i,j)∈A,(k,`)∈B:i+k<s

αi,jβk,`g(t)ig(r)ktjr`.

Suppose degt(A(t)B(r) mod I2,s) is achieved on the monomial of (i, j) ∈ A, (k, `) ∈ B. In
particular, this degree in t is already achieved in A for the monomial (i, j). Thus, degt(AB) ≤
degt(A).
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Next, we would like to give a purely algebraic criteria, which states when exactly a table
belongs to the code MRM(q,m, d, s).

Definition 3.7. Let T ∈ Σqm

m,s be a table. By Corollary 3.2 and Claim 3.3 there is a unique

element PT ∈ F[X]
/
Im,s such that EVALm,s(PT ) = T . We call PT the representing poly-

nomial of T .

Lemma 3.8. Assume d < sq. Let T ∈ Σqm

m,s be a table, and PT its representing polynomial.
Then

T ∈ MRM(q,m, d, s) ⇐⇒ deg(PT ) 6 d.

Proof. First, assume deg(PT ) 6 d. Then, by definition, since EVALm,s(PT ) = T , we have
T ∈ MRM(q,m, d, s). For the other direction, assume T ∈ MRM(q,m, d, s). Then there is
some Q ∈ F[X] of total degree 6 d such that EVALm,s(Q) = T . As deg(Q) ≤ d < sq, Q is
Im,s reduced and by Corollary 3.2 Q is the representing polynomial of T .

To understand the low-dimensional tests on tables, we need to define the restriction of
tables to subspaces. If T is a table T : Fmq → Σm,s and we want to restrict to the plane
at + br + c the restriction Ta,b,c should be a table F2

q → Σ2,s. To this end we define the
alphabet reduction map φ(a,b) : Σm,s → Σ2,s by

Definition 3.9. (
φ(a,b))(z)

)
J=(j1,j2)

=
∑
I∈Nm

zI ·
∑

I1+I2=I
w(I1)=j1,w(I2)=j2

(
I

I1

)
aI1bI2

This map applies the ”chain rule” to an element in Σm,s, in accordance with Lemma 2.9.
We may then define

Ta,b,c = φ(a,b) ◦ T ◦ `a,b,c
.

Similarly, for h = (h0,h1, . . . ,hk) we define φh and Th by:

(φh(z))J =
∑
I∈Nm

zI ·
∑

I1+···+Ik=I
w(Ir)=jr

(
I

I1, . . . , Ik

) k∏
i=1

hIk
k , and,

Th(Y) = φ(h) ◦ T (h0 +
k∑
i=1

Yihi)

4 The line test is not a characterization when d ≥ q

We now show that when the field size is smaller than the degree d, the line test fails.

Theorem 4.1. Assume q is a prime power, q 6 d < sq − 1 and m > 2. There exists
a table T ∈ Σq

m,s which passes all the tests of the line test, but there is no polynomial
P ∈ Fq[X1, . . . , Xm]6d that satisfies EVALm,s(P ) = T .
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Proof. Define

Q = Xd−q
1 · (g(X1)X2 − g(X2)X1)

= Xd−q
1 · (Xq

1X2 −Xq
2X1).

Note that Q is homogeneous of degree d+1. Fix a,b ∈ Fqm and let QLa,b(t) = Q(at+b).
Since Q is homogeneous of degree d+ 1, the coefficient of td+1 in QLa,b(t) is Q(a). However,
Q ∈ 〈g(X1), g(X2)〉 ⊆ Im,1 and therefore Q(α) = 0 for every α ∈ Fmq . In particular Q(a) = 0.
Thus, deg(QLa,b) ≤ d and Q passes the degree d line test for the line `a,b. Thus, Q passes
the degree d line test for all lines.

Now take the table T = EVAL(Q). By Corollary 3.2, there cannot be a polynomial P
with deg(P ) ≤ d < deg(Q) = d + 1 < sq having the same table. However, we saw T passes
all line tests. Thus, T wrongly passes the line test.

5 Local testing above the RM testing dimension

In this section we look at the local characterization and local testing of MRM(q,m, d, s) by
dimension k tests, when k is above the RM testing dimension tq,d = d d+1

q− q
p
e of RM(q,m, d). By

Theorem 1.2 dimension k subspaces give a local test (and hence also a local characterization)
for RM(q,m, d). We show they also give a local test (and hence also a local characterization)
for MRM(q,m, d, s) for s < q. There is, however, some parameter loss in the reduction as
we next explain. To formally state the result we need some notation. For x ∈ Fmq let

Hk =
{
h = (h0,h1, . . . ,hk) | h0, . . . ,hk ∈ Fmq , dim(span{h1, . . . ,hk}) = k

}
, and,

Hk,x = {h ∈ Hk | x ∈ h0 + Span {h1, . . . ,hk}} .

By h ∼k H (resp. Hk,x) we mean a choosing h uniformly at random from Hk (resp. Hk,x).
We let Ah = h0 + Span {h1, . . . ,hk} be the k-dimensional affine space defined by h. We also
recall the distance and rejection function from the introduction:

Definition 5.1. Let T : Fmq → Σm,s be a table. Then

• δ(T,MRM(q,m, d, s)) is the distance between T and the closest evaluation table of a
degree d polynomial, i.e., δ(T,MRM(q,m, d, s)) = minG∈MRM(q,m,d,s){δ(T,G)}, and,

• REJMRM
k,d (T ) is the probability a dimension-k test demonstrates that T is not a degree

d polynomial.

With this notation we prove:

Theorem 5.2. Let Fq be a field of size q, and assume s ≤ min {d, q − 1}. Suppose for
RM(q,m, d) there exists α > 0 and c0 ≤ 1 such that for every f

REJRM
k,d (f) ≥ min {α · δ(f,RM(q,m, d)), c0} .

Then, for every s < q, for every T we have

REJMRM
k,d (T ) ≥ min {α′ · δ(T,MRM(q,m, d, s)), c0} (5.1)
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for

α′ =

(
1− s− 1

q

)
1

1 + qd/(q−1) 1
α

(5.2)

For example, assume q is prime. If d + 1 ≤ q − 1 the testing dimension is 1, meaning
that lines are a good local test for RM(q,m, d). Then, Theorem 5.2 says that lines are also
a good test for MRM(q,m, d, s), alas, with a larger coefficient. Similarly, if q < d ≤ 2(q− 1)
the RM testing dimension is 2 and therefore planes are a good local test for RM(q,m, d).
Then, Theorem 5.2 says that planes are also a good test for MRM(q,m, d, s), with a larger
coefficient. In the same vein 3-dimensional planes are a good local test for MRM(q,m, d, s)
when d ≤ 3(q − 1).

To explain the intuition behind the theorem we first consider the characterization as-
pect of it. Suppose k is above the RM testing dimension, and that the table T passes all
MRM(q,m, d, s) k-dimensional tests h. Specifically, this means that for every h ∈ Hk, the
table T restricted to the k-dimensional affine space Ah is consistent with a degree d polyno-
mial Ph. Now, let T(0) be the table T where at each entry we keep only the evaluation of the
function itself and remove the evaluations that are associated with higher derivatives. Then,
in particular, for every h ∈ Hk, the table T(0) restricted to the k-dimensional space Ah is
still consistent with the degree d polynomial Ph. As k is above the RM testing dimension,
there must be a unique degree d polynomial P that is consistent with Ph (and the table T(0))
for every h ∈ Hk. This P is the only possible candidate for a low-degree explanation of the
table T . What we need to check, and is indeed correct, is that since T passes all dimension
k tests, P is indeed consistent with T .

The testing case requires more technical details but is similar in spirit. We first, again,
look at T(0) that contains only the function evaluations, and not the higher derivatives
evaluations. If T passes the test with high enough probability, then so does T(0), and this
ensures the existence of a global degree-d polynomial P that agrees with most values of T(0).
Again, what remains to be shown is that P agrees with most values of T , which we indeed
prove.

In short, one can informally say that Theorem 5.2 shows that the MRM testing dimension
is not larger than the RM testing dimension, and that above the RM testing dimension one
can get local testing for MRM codes. A natural question is whether the MRM testing
dimension is equal to the RM testing dimension, or not. In Section 4 we saw that when
the RM testing dimension is larger than 1, so is the MRM testing dimension, and lines
do not characterize the MRM code. One might be drawn to the conjecture that the RM
and MRM testing dimensions coincide. However, surprisingly, in Section 6 we show that
no matter what the RM testing dimension is, when d < sq the MRM testing dimension is
at most two (for a precise statement see Theorem 6.2). For example, for MRM(q, d,m, s)
with 2q < d < 3(q − 1), the RM testing dimension is (roughly) 3 while the MRM testing
dimension is still 2.

Combining the result with Theorem 1.2 we get:

Corollary 5.3. Let d, q, s < q be positive integers and let t = tq,d = d d+1
q− q

p
e be the RM testing
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dimension. Then,

REJMRM
t,d (T ) ≥ min

{
1

3
· (1− s− 1

q
) · δ(T,MRM(q,m, d, s)),

1

2(t+ 1)qt+1

}
Proof. Theorem 1.2 from [KR06] ensures that

REJt,d(f) ≥ min

{
qt

2
· δ(f,RM(q,m, d)),

1

2(t+ 1)qt+1

}
Using Theorem 5.2 we see that

α′ ≥
(

1− s− 1

q

)
1

1 + qd/(q−1) 1
α

≥ 1

3
(1− s− 1

q
).

using the fact that d
q−1
≤ t and qd/(q−1)

α
≤ 2.

In particular, for d < (q − q
p
) the line test is a local characterization, as tq,d = 1.

We note that the assumption s ≤ d is quite natural, as derivatives with order higher
than the degree must be identically zero. In contrast, it is not clear whether the assumption
s < q is indeed required, and we leave it for future study.

5.1 The proof

Proof. Let T : Fmq → Σm,s be a table. Let

ρ =REJMRM
k,d (T )

be the k-dimensional MRM test rejection probability. If ρ ≥ c0 we are done. Therefore, we
assume ρ < c0. We first utilize what we know at the zero level.

Claim 5.4. Let δRM = δRM
q,m,d be the distance of the RM(q,m, d) code. There exists a degree

d polynomial P such that

Pr
h∈Hk

[
(φh ◦ T )|Ah

6= EVAL(P |Ah
)
] def

= ε0 ≤ ρ(1 +
1

α · δRM
).

We call h good if (φh ◦ T )|Ah
= EVAL(P |Ah

) and bad otherwise. In this terminology,
ε0 = Prh∈Hk

[h is bad].

Proof. Let T(0) : Fmq → Fq be as in Section 3, i.e., the table where we keep only the entries of
the function evaluations and ignore the evaluations of higher order derivatives. For a given
affine space A we have that (T |A)(0) = T(0)

∣∣
A

, and so if the former agrees with a degree d
polynomial, so does the latter. It follows that

REJRM
k,d (T(0)) ≤ρ.

By the hypothesis regarding RM(q,m, d) and using ρ < c0 there exists a unique degree d
polynomial P ∈ Fq[X] such that

δ(0)
def
= δ(T(0), P ) ≤ ρ

α
.
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We notice that

Eh∼Hk
δ(T(0)

∣∣
Ah
, P |Ah

) = Pr
x∼Fm

q

(T(0)(x) 6= P (x)) = δ(T(0), P ) = δ(0),

because the subspaces in Ah for h ∈ Hk, cover every point an equal number of times.
Therefore, by Markov’s inequality,

Pr
h∼Hk

(
δ(T(0)

∣∣
Ah
, P |Ah

) ≥ δRM
)
≤

δ(0)

δRM
(5.3)

Also, by assumption,

Pr
h∈Hk

(
(φh ◦ T )|Ah

6∈ MRM(q, k, d, s)
)
≤ρ. (5.4)

This means that except for probability ρ over h, (φh ◦ T )|Ah
agrees with EVAL(Ph) for some

k-variate degree d polynomial Ph. When this happens it also holds that T(0) agrees with Ph

over Ah (because φh does not change the zero level).
Thus, Equations (5.3) and (5.4) together imply that except for probability ρ+ δ0

δRM ≤ ρ(1+
1

αδRM ) over h, we simultaneously have that T(0) = Ph over Ah and that δ(T(0)

∣∣
Ah
, P |Ah

) <

δRM. When both events happen we conclude that

δ(Ph, P |Ah
) < δRM

As Ph and P |Ah
are degree d polynomials on Ah and are closer than δRM, it must be the that

in fact Ph = P |Ah
. Thus, (φh ◦ T )|Ah

is a valid MRM(q, k, d, s) table, and it is the table of
the polynomial P |Ah

, i.e., (φh ◦ T )|Ah
= EVAL(P |Ah

) as desired.

Our goal is to bound δ(EVAL(P ), T ). This means that at most x ∈ Fmq we should have
T (x) = EVAL(P ;x). T (x) and EVAL(P ;x) contains values for all the m-variate directional
derivatives of order up to s. Our handle on these values is Claim 5.4, that shows that most
h are good, meaning that the k-variate derivatives of P |Ah

and φh ◦ T |Ah
are the same. We

notice that every such k-variate derivative is a linear combination (dependent on h) of the
m-variate derivatives. If x is such that for many h ∈ Hk,x, h is good, then for that x we get
many linear equations on the m-variate derivatives. Our task is to prove that for many x
there are enough good h ∈ Hk,x to force the underlying m-variate derivatives of P and T to
agree.

Claim 5.5. We say x ∈ Fmq is bad if Prh∈Hk,x
[h is bad] ≥ 1 − s−1

q
and good otherwise.

Then

Pr
x∈Fm

q

[x is bad] ≤ q

q − (s− 1)
· Pr
h∈Hk

[h is bad] .

Proof. We have

Ex∈Fm
q

[
Pr

h∈Hk,x

( h is bad)

]
= Pr

h∈Hk

( h is bad) = ε0,

25



where ε0 is as in Claim 5.4. This is because choosing a uniform h ∈ Hk is the same as first
choosing a uniform x ∈ Fmq and then choosing a uniform h ∈ Hk,x. Therefore, for every
c > 1, by Markov’s inequality,

Pr
x∈Fm

q

[
Pr

h∈Hk,x

(h is bad) ≥ c · ε0

]
≤1

c
.

Choosing c = q−(s−1)
q·ε0 gives the result.

We note that if most k-dimensional subspaces are good, then most lines are:

Claim 5.6. For every x ∈ Fmq and k ≥ 1,

Pr
u∈H1,x

[u is bad] ≤ Pr
h∈Hk,x

[h is bad]

Proof. Fix x. For every h ∈ Hk,x, If h is good, then (φh ◦ T )|Ah
= EVAL(P |Ah

). This
implies, in particular, that for every u ∈ H1,x such that Au ⊆ Ah, we also have that
(φu ◦ T )|Au

= EVAL(P |Au
). The result then follows because we can sample u ∈ H1,x by

first sampling h ∈ Ak,x and then choosing a random u ∈ H1,x such that Au ⊆ Ah.

We now fix any good x. We will prove:

Claim 5.7. Suppose x ∈ Fmq is good. Then for any m-variate direction I with w(I) < s we
have

T(I)(x) = P (I)(x) (5.5)

Once we prove the claim we can conclude the proof of the theorem because:

δ(T,EVAL(P )) ≤ Pr
x∈Fm

q

(x is bad) ≤ q

q − (s− 1)
· ε0

≤ q

q − (s− 1)
· ρ · (1 +

1

α · δRM
) ≤ ρ

(
1− q

s− 1

)−1(
1 +

qd/(q−1)

α

)
.

Proof. (of Claim 5.7) Fix a good x ∈ Fmq and let w0 < s. We will show Equation (5.5)
simultaneously for all m-variate directions I with w(I) = w0. We know that

Pr
u∈H1,x

(u is bad) ≤ Pr
h∈Hk,x

(h is bad) < 1− s− 1

q
, (5.6)

where the first inequality is by Claim 5.6 and the second because x is good.
Suppose u = (b, a) is good (where b, a ∈ Fmq ). Then, by definition, (φu ◦ T )|Au

=
EVAL(P |Au

). In particular φu(T (x)) = EVAL(P |Au
;x), because x ∈ A`. Now:

• By Definition 3.9 (and plugging k = 1)

(φu(T (x)))w0 =
∑

I,w(I)=w0

T (x)(I) · aI,
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• Also, by Lemma 2.8 (plugging t = 0),

(EVAL(P |Au
;x))w0 =

∑
I,w(I)=w0

P I(x) · aI.

Thus, a good u = (b, a) gives the liner equation∑
I,w(I)=w0

(P I(x)− T (x)(I)) · aI =0,

where the variables are vI = P I(x) − T (x)(I) for every m-variate direction I of total weight
exactly w0. Thus, Equation (5.6) implies that

Pr
a∈Fm

q \{0}

 ∑
I,w(I)=w0

(T (x)(I) − P (I)(x)) · aI = 0

 >
(s− 1)

q
.

Now, look at the polynomial fx ∈ Fq[X1, . . . , Xm] defined by

fx(a) =
∑

I,w(I)=w0

(T (x)(I) − P (I)(x)) · aI.

fx is an m-variate, degree w0 homogeneous polynomial, and it is 0 with probability larger
than (s−1)

q
≥ w0

q
= deg(fx)

q
. By the Schwartz-Zippel lemma, it must be the 0 polynomial.

Therefore, T (x)(I) − P (I)(x) for all I with w(I) = w0 as desired.

Remark 5.8. Another way to view the argument, is that each a ∈ Fmq is an evaluation point
of a homogeneous RM(q,m,w0) codeword, and therefore each good u = (b, a) gives a zero
coordinate of the codeword. If the number of good u is too large, we get too many zeroes, and
therefore the codeword must be the zero codeword, meaning that the values of the variables
are zero as we wish.

Remark 5.9. The argument we use has the information that many k-dimensional restric-
tions are good, but then chooses to reduce this knowledge to the weaker statement that for
many x, for many lines passing through x, the linear restrictions are good. It seems that
using the stronger statement might give a better code and improve the parameters, but we
have not succeeded yet in analyzing this.

6 The plane test is a characterization

In this section we show that the multiplicity code MRM(q,m, d, s) can be characterized by
restrictions to planes. Let Fq be a field and let m, s ≤ d be positive integers. For a,b, c ∈ Fqm
5 define:

5In this section, we omit the requirement that a,b be independent. If some degenerate plane shows that
a table is not a low degree polynomial, then some actual plane will too.
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• `a,b,c : F2
q → Fmq by:

`a,b,c(t, r) = at+ br + c.

From Lemma 2.9 and Definition 3.9 we see that:

Theorem 6.1. (Completeness) Suppose d < sq − 1. If a table T ∈ Σqm

m,s satisfies T ∈
MRM(q,m, d, s) then for all a,b, c ∈ Fmq ,

φ(a,b) ◦ T ◦ `a,b,c ∈ MRM(q, 2, d, s).

The main challenge is proving the converse:

Theorem 6.2. (Soundness) Suppose q is a power of the prime p, q ≥ s and d < q(s− 1
p
).

If a table T ∈ Σqm

m,2 satisfies that for all a,b, c ∈ Fmq , φ(a,b) ◦ T ◦ `a,b,c ∈ MRM(q, 2, d, s) then
T ∈ MRM(q,m, d, s).

We define the vector space of tables which pass the test:

Vm,d,s =
{
T ∈ Σqm

m,s | ∀a,b, c ∈ Fmq φ(a,b) ◦ T ◦ `a,b,c ∈ MRM(q, 2, d, s)
}

(6.1)

We denote by Cm,d,s = Vm,d,s\MRMm,d,s, the set of tables which cheat the test. We would like
to show that Cm,d,s = ∅. Assume towards a contradiction that there is a table T ∈ Cm,d,s. By

Claim 3.3, T can be realized (uniquely) as an element P of the quotient space Fq[X]
/
Im,s .

We use the basis Bm,s from Equation (3.1) to write P in the form

P (X) =
∑

(I,J)∈Ms,q

αI,J · g(X)IXJ,

where αI,J ∈ Fq and (I,J) ∈ Ms,q iff w(I) < s and Jk < q for every 1 ≤ k ≤ m. Since
T 6∈ MRMm,d,s we have deg(P ) > d. This means there must be some I and J such that
αI,J 6= 0 and

w(I)q + w(J) > d. (6.2)

We may assume that every I,J for which αI,J 6= 0 satisfy Equation (6.2). This is since the
test is linear, and any degree 6 d terms have no effect on whether P passes the test or not.

We use the following monomial order �w on Bm,s:

1. First order monomials according to w(I) + w(J),

2. Then order monomials according to w(I),

3. Finally, order monomials according to the lexicographic order on I,J.

We emphasize that �w is not a monomial order in the sense of Grobner bases, and we make
no use of it in that sense.

Let (Imax,Jmax) be s.t. g(X)Imax ·XJmax is a maximal monomial of P according to �w.
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For a,b, c ∈ Fm the restriction of P to the plane defined by a,b, c is PPa,b,c(t, r) =
P (at+ br + c). Expressing PPa,b,c(t, r) in the basis B2,∞:

PPa,b,c(t, r) =
∑

i∈N,j∈N,k,`<q

Ai,j,k,`(a,b, c) · g(t)ig(r)jtkr`

PPa,b,c(t, r) mod I2,s =
∑

i+j<s,k,`<q

Ai,j,k,`(a,b, c) · g(t)ig(r)jtkr`

We view Ai,j,k,`(a,b, c) as a polynomial in the variables a,b, c.

Lemma 6.3. For every partition Jmax = Jbmax + Jcmax such that:

• q · w(Imax) + w(Jbmax) ≤ qs− 1, and,

•
(
Jmax

Jb
max

)
6= 0 mod p,

the monomial aImaxbJb
maxcJc

max appears with a non-zero coefficient at

A
w(Imax),bw(Jbmax)

q
c,0,w(Jb

max) mod q
(a,b, c) mod I3m,1.

Where the ideal I3m,1 above is in the variables a1, . . . , am, b1, . . . , bm, c1, . . . , cm.

Proof. We expand PPa,b,c(t, r). First, P (X) =
∑

(I,J)∈Ms,q
αI,J · g(X)IXJ. Thus

PPa,b,c(t, r) =
∑

(I,J)∈Ms,q

αI,J · g(at+ br + c)I(at+ br + c)J

=
∑

(I,J)∈Ms,q

αI,J

m∏
k=1

(g(akt+ bkr + ck))
Ik · Πm

i=k(akt+ bkr + ck)
Jk

=
∑

(I,J)∈Ms,q

αI,J

m∏
k=1

(g(t)ak + g(r)bk)
Ik · Πm

i=k(akt+ bkr + ck)
Jk

=
∑

(I,J)∈Ms,q

αI,J

∑
Ia+Ib=I

Ja+Jb+Jc=J

(
I

Ia

)(
J

Ja,Jb,Jc

)
aIa+JabIb+JbcJc · g(t)w(Ia)g(r)w(Ib)tw(Ja)rw(Jb)

(6.3)

We expand tw(Ja) and rw(Jb) in the basis B1,s as in Example 3.1 to get:

PPa,b,c(t, r) =
∑

(I,J)∈Ms,q

αI,J ·
∑

Ia+Ib=I
Ja+Jb+Jc=J

(
I

Ia

)(
J

JaJbJc

)
∑
i1,i2

i1q+i26w(Ja)
i2<q

∑
j1,j2

j1q+j26w(Jb)
j2<q

βw(Ja),i1,i2βw(Jb),j1,j2

aIa+JabIb+JbcJc · g(t)w(Ia)+i1ti2 · g(r)w(Ib)+j1rj2 . (6.4)
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We now have a representation in the basis B2,∞.
Set:

∆rq =

⌊
w(Jbmax)

q

⌋
∆t = 0 (6.5)

∆r = w(Jbmax) mod q.

We wish to see for which choice of values I,J, Ia, Ib,Ja,Jb,Jc, i1, i2, j1, j2 in Equation (6.3),
aImaxbJb

maxcJc
max appears as a coefficient of A(w(Imax),∆rq ,∆t,∆r)mod I3m,1. We must have

Imax =Fq Ia + Ja By comparing the powers of a, remembering mod I3m,1 ,

Jbmax =Fq Ib + Jb By comparing the powers of b, remembering mod I3m,1 ,

Jcmax =Fq Jc By comparing the powers of c, remembering mod I3m,1 ,

where =Fq was defined in Definition 2.24.
By Claim 2.26 together with s < q we have

w(Imax) ≤ w(Ia) + w(Ja) (6.6)

w(Jbmax) ≤ w(Ib) + w(Jb) (6.7)

Jcmax = Jc. (6.8)

It follows that

w(Imax) + w(Jmax) = w(Imax) + w(Jbmax) + w(Jcmax)

≤ w(Ia) + w(Ja) + w(Ib) + w(Jb) + w(Jc)

= w(I) + w(J).

As (Imax,Jmax) is maximal it follows that

w(Imax) + w(Jmax) = w(I) + w(J). (6.9)

This, in turn, implies that both inequalities in Equations (6.6) and (6.7) are in fact equalities,
i.e.,

w(Imax) = w(Ia) + w(Ja) (6.10)

w(Jbmax) = w(Ib) + w(Jb). (6.11)

We now look at

degt
def
= degt(g(ta)Ia · (ta)Ja · g(rb)Ib · (rb)Jb · cJc mod I2,s).

On the one hand, we look for the monomial aImaxbJb
maxcJc

max in Aw(Imax),∆rq ,∆t,∆rmod I3m,1,
and so we should have degt = q · w(Imax) + ∆t. On the other hand, by Lemma 3.6,

degt = degt(g(ta)Ia(ta)Jag(rb)Ib(rb)JbcJcmod I2,s)

≤ degt(g(ta)Ia(ta)Ja)

= q · w(Ia) + w(Ja).
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Thus,

q · w(Imax) + ∆t ≤ q · w(Ia) + w(Ja).

Together with Equation (6.10) we see that q · w(Ia) + q · w(Ja) + ∆t ≤ q · w(Ia) + w(Ja),
and therefore q · w(Ja) + ∆t 6 w(Ja) which is possible iff w(Ja) = 0 (and ∆t = 0, which is
indeed true, see Equation (6.5)). Now, w(Ja) = 0 implies:

w(Ia) = w(Imax), and,

Ja = ∅.

We saw in Equation (6.9) that w(I) + w(J) = w(Imax) + w(Jmax). If Ib 6= ∅ then

w(I) = w(Ia) + w(Ib)

> w(Ia) = w(Ia) + w(Ja) = w(Imax).

Thus, (I,J) �w (Imax,Jmax) in contradiction to the maximality of (Imax,Jmax). We conclude
that

Ib = ∅.

As (Imax,Jmax) ∈ Ms,q we have (Jmax)k ≤ q − 1 for every k ∈ [m]. Thus, Jbmax =Fq Jb,
w(Jbmax) = w(Jb) and Jbmax is already reduced. Together this implies that

Jbmax = Jb.

Finally, we use the hypothesis that q ≥ s. We have, (Imax)k < s ≤ q for all k ∈ [m].
Thus, Imax =Fq Ia, w(Imax) = w(Ia) and Imax is already reduced. Together this implies that
that

Imax = Ia.

Thus,

Imax = Ia = Ia + Ib = I,

Jbmax = Ib + Jb = Jb.

Altogether,the only term that may possibly contribute aImaxbJb
maxcJc

max toAw(Imax),∆rq ,∆t,∆r mod I3m,1

is (Ia, Ib,Ja,Jb,Jc) = (Imax, ∅, ∅,Jbmax,J
c
max). Also, the tuple (Ia, Ib,Ja,Jb,Jc) = (Imax, ∅, ∅,Jbmax,J

c
max)

contributes

αImax,Jmax ·
(

Jmax

Jbmax

) ∑
j1,j2

j1q+j26w(Jb
max)

j2<q

βw(Jb
max),j1,j2a

ImaxbJb
maxcJc

max · g(t)w(Imax) · g(r)j1rj2 .

to the term in Equation (6.3).
Notice that w(Imax) + j1 < s, for otherwise q ·w(Imax) +w(Jbmax) ≥ q(w(Imax) + j1) ≥ qs

in contradiction to the hypothesis. Thus the term is already I2,s reduced. The contribution
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to Aw(Imax),∆rq ,0,∆r mod I3m,1 occurs for (j1, j2) such that j1 = ∆rq and j2 = ∆r. Thus, in

the sum in Equation (6.3) there is exactly one possible way to contribute aImaxbJb
maxcJc

max to
Aw(Imax),∆rq ,0,∆r mod I3m,1, and this is when

(Ia, Ib,Ja,Jb,Jc) = (Imax, ∅, ∅,Jbmax,J
c
max), and

(i1, i2, j1, j2) = (0, 0,∆rq,∆r).

The coefficient of this term is:

αImax,Jmax ·
(

Jmax

Jbmax

)
· βw(Jb

max),∆rq ,∆r
.

αImax,Jmax 6= 0. By assumption
(
Jmax

Jb
max

)
is non-zero. β`,b `

q
c,` mod q = 1 (see Example 3.1) and tak-

ing ` = w(Jbmax) shows the coefficient is non-zero. As there is a unique term contributing the
monomial with a non-zero coefficient, the monomial cannot cancel inAw(Imax),∆rq ,∆t,∆rmod I3m,1

and Aw(Imax),∆rq ,∆t,∆rmod I3m,1 is non-zero.

Lemma 6.4. There is a partition Jmax = Jbmax + Jcmax, such that

d < q · w(Imax) + w(Jbmax) ≤qs− 1, and,(
Jmax

Jbmax

)
mod p 6=0.

Proof. Suppose q = pw where p is prime (if q is prime then p = q and w = 1). We choose
Jbmax as follows. We go over k = 1, . . . ,m and find the first k0 ≥ 0 such that q · w(Imax) +∑k0

k=0(Jmax)k > d. There must be some k0 ≤ m like that since qw(Imax) + w(Jmax) > d. We
set:

• (Jbmax)k = (Jmax)k, for k = 1, . . . , k0 − 1, and,

• (Jbmax)k = 0, for k = k0 + 1, . . . ,m.

Set v = (Jmax)k0 . There is a first value 0 < v′ ≤ v such that

qw(Imax) +

k0−1∑
k=1

(Jmax)k + v′ > d.

We express v = (Jmax)k0 in base p: v =
∑w−1

`=0 v` · p`. We let v′′ be the first integer such that:

• v′′ ≥ v′, and,

• If we express v′′ in base p as v′′ =
∑w−1

`=0 v
′′
` · p` then v′′` ≤ v` for every `.

Claim 6.5. v′ ≤ v′′ ≤ min {v, v′ + pw−1 − 1}.

Proof. Notice that v respects the conditions that we need, and so if v ≤ v′ + pw−1 − 1 the
claim holds. Otherwise, v ≥ v′+pw−1−1. Then, v′′ ≤ v′+pw−1−1 because we can increase v′

by setting all the lower bits in the p-representation to 0, while increasing the most significant
bit (that is multiplied by pw−1) by 1.

32



Thus, by Lucas theorem (see Equation (2.1))(
v

v′′

)
mod p = Πw−1

`=0

(
v`
v′′`

)
6= 0.

Having that, we let (Jbmax)k0 = v′′. We have, Jbmax ≤ Jmax, qw(Imax) + w(Jbmax) > d and(
Jmax

Jb
max

)
mod p 6= 0. Also,

qw(Imax) + w(Jbmax) ≤ d+ pw−1 ≤ qs− 1,

because d ≤ qs− pw−1 − 1 = q(s− 1
p
)− 1, completing the proof of the lemma.

We are now ready to prove Theorem 6.2.

Proof. Fix a partition Jmax = Jbmax + Jcmax as in Lemma 6.4. Let

degr = degr(g(t)w(Imax)rw(Jb
max) mod I2,s)

= degr(g(t)w(Imax)rw(Jb
max)) = w(Jbmax).

Define ∆rq = bw(Jb
max)
q
c,∆t = 0 and ∆r = w(Jbmax) mod q. By Lemma 6.3 we know that

Aw(Imax),∆rq ,∆t,∆r(a,b, c) mod I3m,1 6= 0

Thus, there exist a0,b0, c0 such that

Aw(Imax),∆rq ,∆t,∆r(a0,b0, c0) 6= 0

We look at the test a0,b0, c0. We have

PPa,b,c(r, t) mod I2,s =
∑

i+j<s,k,`<q

Ai,j,k,`(a,b, c)g(t)ig(r)jtkr`.

As Aw(Imax),∆rq ,∆t,∆r(a0,b0, c0) 6= 0 we see that

deg(PPa0,b0,c0 mod I2,s) ≥ q · w(Imax) + q ·∆rq + ∆t + ∆r

= q · w(Imax) + w(Jbmax) > d.

Thus, by Lemma 3.8, the test (a0,b0, c0) rejects.

7 Planes give a local MRM tester

We restate Theorem 1.8:

Theorem 7.1. Suppose q is a prime power, s ≤ q and d < q(s− 1
p
). Let T : Fmq → Σm,s be

a table and let δ = δ(T,MRM(q,m, d, s)). Then

REJMRM
2,d (T ) ≥ min {αδ, c}

with α = Ω(q−6s+5) and c = Ω(q−8s+4).
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Proof. We remind the reader that

Hk =
{
h = (h0,h1, . . . ,hk) | h0, . . . ,hk ∈ Fmq , dim(span{h1, . . . ,hk}) = k

}
Let us say that v ∈ Hk is bad, if the k-dimensional test with v rejects, i.e., (φv ◦ T )|Av

6∈
MRM(q, k, d, s). We let t = d d+1

q− q
p
e be the RM(q,m, d, s) testing dimension. Selecting a

uniform u ∈ H2 is the same as selecting h ∼ Ht and then a uniform u ∈ H2 such that
Au ⊂ Ah. Thus,

REJMRM
2,d (T ) = Pr

u∼H2

(u is bad)

≥ Pr
h∈Ht

(h is bad) · Pr
u∈H2:Au⊂Ah

(u is bad | h is bad).

• By Corollary 5.3, the probability of picking a bad h ∈ Ht is:

REJMRM
t,d (T ) ≥ min

{
δ

3q
,

1

2(t+ 1)qt+1

}
.

• By Theorem 6.2 we know that for any bad h ∈ Ht there is at least one u ∈ H2 such
that Au is contained Ah and u is bad. Furthermore, if Au = Au′ then u is bad iff
u′ is bad. We look at Au. There are (q2 − 1)(q2 − q)q2 different u′ ∈ H2 such that
Au′ = Au (because there are q2 − 1 choices for the first basis element, q2 − q choices
for the second basis element and |Au| = q2 choices for the offset).

Altogether,

REJMRM
2,d (T ) ≥ Ω(q6)

q3t
·min

{
δ

3q
,

1

2(t+ 1)qt+1

}
= Ω(min

{
q−3t+5δ,

q−4t+5

t

}
).

We notice that t ≤ d q(s−
1
p

)

q− q
p
e ≤ d s

1− 1
p

e ≤ 2s. Thus α = Ω(q−6s+5) and c = Ω(q−8s+4) as

promised.
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