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Abstract

We show that the “majority is least stable” conjecture is true for n = 1 and 3 and false for all
odd n ≥ 5.

1 Introduction

A Boolean function f : {−1, 1}n → {−1, 1} is said to be a linear threshold function (LTF) if there are
real constants w0, w1, . . . , wn such that for any x = (x1, . . . , xn) ∈ {−1, 1}n, f(x) = sgn(w0 + w1x1 +
· · ·+ wnxn), where sgn(z) = 1 if z ≥ 0, and −1 if z < 0.

For x ∈ {−1, 1}n and ρ ∈ [0, 1], define a distribution Nρ(x) over {−1, 1}n in the following manner:
y = (y1, . . . , yn) ∼ Nρ(x) if for i = 1, . . . , n, yi = xi with probability ρ and yi = ±1 with probability
(1 − ρ)/2 each. The noise stability of a function f : {−1, 1}n → R, denoted by Stabρ(f), is defined as
follows.

Stabρ(f) = E
x∼{−1,1}n, y∼Nρ(x)

[f(x)f(y)] .

For odd n, the majority function Majn : {−1, 1}n → {−1, 1} is the following.

Majn(x1, . . . , xn) = sgn(x1 + x2 + . . .+ xn).

Benjamini, Kalai and Schramm in 1999 (see [1, 3]) put forward the following conjecture.

Conjecture 1 (“Majority is Least Stable”) : Let n be odd and f : {−1, 1}n → {−1, 1} be an LTF. Then
for all ρ ∈ [0, 1], Stabρ(f) ≥ Stabρ(Majn).

A counterexample to the conjecture for n = 5 has been reported in [5] by Vishesh Jain where it is also
mentioned that there are other known counterexamples to this conjecture by Sivakanth Gopi (2013),
and Steven Heilman and Daniel Kane (2017). We could not locate these other counterexamples. As of
2021, the conjecture is mentioned on Page 133 of the book on Boolean functions by O’Donnell [6].

In this note, we show that Conjecture 1 is true for n = 1 and 3 and false for odd n ≥ 5. To show
that the conjecture is false for odd n ≥ 5, we define a sequence of Boolean functions gn and show that
Stabρ(gn) < Stabρ(Majn). To show that the conjecture is true for n = 3, we employed a search over
all locally monotone 3-variable Boolean functions f and obtained the expressions for Stabρ(f). It turns
out that each of these expressions is greater than or equal to Stabρ(Majn) for all ρ ∈ [0, 1].
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2 Preliminaries

For a positive integer n, let [n] = {1, 2, . . . , n} and 2[n] be the power set of [n]. The Fourier transform
of f : {−1, 1}n → {−1, 1} is a map f̂ : 2[n] → [−1, 1] defined as follows. For S ⊆ [n],

f̂(S) =
1

2n

∑
x=(x1,...,xn)∈{−1,1}n

f(x)
∏
i∈S

xi. (1)

For f : {−1, 1}n → {−1, 1} and k ∈ {0, . . . , n}, let W (k)[f ] =
∑

S⊆[n],|S|=k f̂
2(S) and W≤k[f ] =∑k

i=0W
(i)[f ]. We say that f is balanced if #{x : f(x) = 1} = #{x : f(x) = −1}. It follows that f is

balanced if and only if f̂(∅) = 0.
The Fourier expression of Stabρ(f) is the following (see Page 56 of [6]).

Stabρ(f) =
n∑

k=0

ρk ·W (k)[f ]. (2)

It is easy to see that Majn is balanced and so W (0)[Majn] = 0. It is known that (see Page 62 of [6])

W (1)[Majn] =

(n−1
n−1
2

)
2n−1

2

· n. (3)

It was observed in [5] that if f is a balanced linear threshold function, then showingW (1)[f ] < W (1)[Majn]
would disprove Conjecture 1. For the sake of completeness, we state a more general form of this
observation as a lemma and provide a proof.

Lemma 1 Let n be odd and f : {−1, 1}n → {−1, 1} be a Boolean function such that W (0)[f ] = 0 and
W (1)[f ] < W (1)[Majn]. Then there exists a δ > 0 such that Stabρ(f) < Stabρ(Majn) for all 0 < ρ < δ.
Consequently, the function f is a counter-example to Conjecture 1.

Proof: For k ≥ 0, let ak = W (k)[f ] − W (k)[Majn]. Since by assumption, W (0)[f ] = 0, W (1)[f ] <
W (1)[Majn], and noting that Majn is balanced, it follows that a0 = 0 and −1 ≤ a1 < 0. On the other
hand, for k ≥ 2, we have −1 ≤ ak < 1.

Now, Stabρ(f)− Stabρ(Majn) =
∑n

k=1 ρ
k · ak. Therefore, Stabρ(f)− Stabρ(Majn) < 0 if and only if

ρ(a2+ρa3+ . . .+ρn−2an) < −a1. Since ak < 1 for k = 2, . . . , n, it follows that ρ(a2+ρa3+ . . .+ρn−2an)
is upper bounded by ρ(1 + ρ + . . . + ρn−2) whose limiting value is 0 as ρ → 0. Therefore, there must
exist some δ > 0 such that for all 0 < ρ < δ, ρ(a2 + ρa3 + . . . + ρn−2an) < −a1. Consequently,
Stabρ(f) < Stabρ(Majn) for all 0 < ρ < δ. □

Next we introduce the notion of influence of a variable on a Boolean function. For i ∈ [n] and
f : {−1, 1}n → {−1, 1}, Infi(f) is defined as follows (see Page 46 of [6]).

Infi(f) = Pr
x∈{−1,1}n

[f(x) ̸= f(x⊕i)],

where x⊕i denotes the vector (x1, . . . , xi−1,−xi, xi+1, . . . , xn).
An n-variable Boolean function f is said to be locally monotone if it is monotone increasing or

decreasing in each variable. From [4] (see Lemma 2.2 and the comment following it), it follows that if f
is a locally monotone function, then for all i ∈ [n], Infi(f) = |f̂({i})|. Since an LTF is locally monotone,
we have the following result which has been used in the proof of Theorem 4.1 of [4].

Theorem 1 [4] If f : {−1, 1}n → {−1, 1} is an LTF. Then
∑n

i=1 Infi(f)
2 = W (1)[f ].
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3 Settling Conjecture 1

We state and prove some results from which the main theorem follows.

Lemma 2 Let n ≥ 1, w0 be an integer and w1 and w2 be non-zero integers. Let T be a subset of [n] of
cardinality t. Consider the following LTF:

f(x1, . . . , xn) = sgn

w0 + w1 ·
∑
u∈T

xu + w2 ·
∑
v∈T

xv

 .

Then

W (0)[f ] =
1

22n
·

 ∑
(i,j)∈S0

(
t

i

)(
n− t

j

)2

, (4)

W (1)[f ] =
t

22n−2
·

 ∑
(i,j)∈S1

(
t− 1

i

)(
n− t

j

)2

+
n− t

22n−2
·

 ∑
(i,j)∈S2

(
t

i

)(
n− t− 1

j

)2

, (5)

where S0, S1 and S2 are defined as follows.

S0 =


{(i, j) : 0 ≤ i ≤ t, 0 ≤ j ≤ n− t

and − w0 ≤ w1(2i− t) + w2(2j − (n− t)) ≤ w0} if w0 ≥ 0,
{(i, j) : 0 ≤ i ≤ t, 0 ≤ j ≤ n− t

and w0 < w1(2i− t) + w2(2j − (n− t)) < −w0} if w0 < 0;
S1 = {(i, j) : 0 ≤ i ≤ t− 1, 0 ≤ j ≤ n− t

and − |w1|≤ w0 + w1(2i− (t− 1)) + w2(2j − (n− t)) < |w1|};
S2 = {(i, j) : 0 ≤ i ≤ t, 0 ≤ j ≤ n− t− 1

and − |w2|≤ w0 + w1(2i− t) + w2(2j − (n− t− 1)) < |w2|}.

Proof: We start with the proof of (4). For x ∈ {−1, 1}n, let A(x) = w1 ·
∑

u∈T xu + w2 ·
∑

v∈T xv
so that f(x) = sgn(w0 +A(x)). Let N (resp. M) be the number of x’s such that w0 +A(x) ≥ 0 (resp.
w0 +A(x) < 0). Then f̂(∅) = (N −M)/2n. There are two cases to consider.

First consider the case w0 ≥ 0. Let N1 (resp. N2) be the number of x’s such that A(x) > −w0

(resp. −w0 ≤ A(x) ≤ w0). So, N = N1 + N2. Since A(−x) = −A(x), it follows that N1 = M and so
f̂(∅) = N2/2

n. Therefore to obtain W (0)[f ] = f̂2(∅) it is sufficient to obtain N2. For x ∈ {−1, 1}n, let
i = #{u ∈ T : xu = 1} and j = #{v ∈ T : xv = 1}. Then A(x) = w1(2i − t) + w2(2j − (n − t)). For
0 ≤ i ≤ t and 0 ≤ j ≤ n− t, the pair (i, j) is in S0 if and only if −w0 ≤ A(x) ≤ w0. So, the number of
x’s for which −w0 ≤ A(x) ≤ w0 holds is

∑
(i,j)∈S0

(
t
i

)(
n−t
j

)
which is the value of N2.

Next consider the case w0 < 0. Let M1 (resp. M2) be the number of x’s such that A(x) ≤ w0 (resp.
w0 < A(x) < −w0). So, M = M1 +M2. Again since A(−x) = −A(x), it follows that M1 = N and so
f̂(∅) = −M2/2

n. Therefore to obtain W (0)[f ] = f̂2(∅) it is sufficient to obtain M2. A similar argument
as above shows that M2 is equal to

∑
(i,j)∈S0

(
t
i

)(
n−t
j

)
.

Now we turn to the proof of (5). Fix some s ∈ T and some r ∈ T . Due to symmetry, for any i ∈ T ,
we have Infi(f) = Infs(f) and for any j ∈ T , we have Infj(f) = Infr(f) and so from Theorem 1,

W (1)[f ] = t · Infs(f)2 + (n− t) · Infr(f)2. (6)
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Let Ns (resp. Nr) be the number of x ∈ {−1, 1} such that f(x) ̸= f(x⊕s) (resp. f(x) ̸= f(x⊕r)). Then
Infs(f) = Ns/2

n−1 and Infr(f) = Nr/2
n−1.

For x ∈ {−1, 1}n, let B(x) = w0 + w1
∑

u∈T\{s} xu + w2
∑

v∈T xv. From the definition of f , Ns is
the number of x’s such that either (w1xs + B(x) ≥ 0 and −w1xs + B(x) < 0) or (w1xs + B(x) < 0
and −w1xs + B(x) ≥ 0) holds. The two conditions are equivalent to −w1xs ≤ B(x) < w1xs and
w1xs ≤ B(x) < −w1xs respectively. For the first condition, we must have w1xs > 0 as otherwise
we obtain |w1xs|≤ B(x) < −|w1xs| which is a contradiction since w1xs is non-zero; similarly, for the
second condition, we must have w1xs < 0. Noting that xs ∈ {−1, 1}, both the conditions boil down to
−|w1|≤ B(x) < |w1|, and consequently, Ns is the number of x’s such that −|w1|≤ B(x) < |w1| holds.

For x ∈ {−1, 1}n, let i = #{u ∈ T \ {s} : xu = 1} and j = #{v ∈ T : xv = 1}. Then B(x) =
w0 + w1(2i − (t − 1)) + w2(2j − (n − t)). For 0 ≤ i ≤ t − 1 and 0 ≤ j ≤ n − t, the pair (i, j) is in S1

if and only if −|w1|≤ B(x) < |w1| holds. So, the number of x’s for which −|w1|≤ B(x) < |w1| holds is∑
(i,j)∈S1

(
t−1
i

)(
n−t
j

)
which is the value of Ns.

A similar argument shows that Nr is equal to
∑

(i,j)∈S2

(
t
i

)(
n−t−1

j

)
. Using the values of Ns and Nr

to obtain Infs(f) and Infr(f) respectively and substituting these in (6) gives the expression for W (1)[f ]
stated in (5). □

For odd n ≥ 3, we define a sequence of functions gn : {−1, 1}n → {−1, 1} where

gn(x1, . . . , xn) = sgn(2 · (x1 + . . .+ xn−3) + xn−2 + xn−1 + xn). (7)

In [5], the function g5 has been shown to be a counter-example to Conjecture 1.

Lemma 3 For gn defined in (7), we have

W (0)[gn] = 0,

W (1)[gn] = (n− 3) ·

(n−4
n−5
2

)
· 8

2n−1

2

+ 3 ·

(n−3
n−3
2

)
· 2

2n−1

2

. (8)

Proof: We use Lemma 2. For gn, we have w0 = 0, w1 = 1 and w2 = 2. Also, we can choose
T = {n − 2, n − 1, n} and so t = 3. With these values, the sets S0, S1 and S2 defined in Lemma 2 are
the following.

S0 = {(i, j) : 0 ≤ i ≤ 3, 0 ≤ j ≤ n− 3 and (2i− 3) + 2(2j − (n− 3)) = 0},
S1 = {(i, j) : 0 ≤ i ≤ 2, 0 ≤ j ≤ n− 3 and − 1 ≤ (2i− 2) + 2(2j − (n− 3)) < 1},
S2 = {(i, j) : 0 ≤ i ≤ 3, 0 ≤ j ≤ n− 4 and − 2 ≤ (2i− 3) + 2(2j − (n− 4)) < 2}.

Since (2i− 3) + 2(2j − (n− 3)) is odd, it cannot be zero and so S0 is empty showing that W (0)[gn] = 0.
Since (2i − 2) + 2(2j − (n − 3)) is even it cannot be equal to −1 and so the only possible value it

can take is 0. From this, we obtain S1 to be {(1, (n− 3)/2)}.
Similarly, since (2i − 3) + 2(2j − (n − 4)) is odd, the only possible values in the set {−2,−1, 0, 1}

that it can take are −1 and 1. Corresponding to these two values, we obtain j = (n − 3 − i)/2 and
j = (n− 2− i)/2 respectively. Since n is odd, in the first case i must be even, while in the second case
i must be odd. So, S2 = {(0, (n− 3)/2), (2, (n− 5)/2), (1, (n− 3)/2), (3, (n− 5)/2)}.

Substituting the values of w0, w1, w2, t as well as S1 and S2 in (5), we obtain

W (1)[gn] =
3

22n−2
·
[(

2

1

)(
n− 3
n−3
2

)]2
+

n− 3

22n−2
·
[(

n− 4
n−3
2

)
+ 3

(
n− 4
n−5
2

)
+ 3

(
n− 4
n−3
2

)
+

(
n− 4
n−5
2

)]2
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Noting that (n− 3)/2 + (n− 5)/2 = n− 4 leads to the expression for W (1)[gn] given in (8). □

Lemma 4 Let gn be defined as in (7). For odd n ≥ 5, W (1)[gn] < W (1)[Majn].

Proof: The expression for W (1)[Majn] is given by (3) and the expression for W (1)[gn] is given by (8).
Therefore

W (1)[gn]

W (1)[Majn]
=

(n−4
n−5
2

)
· 8(n−1

n−1
2

)
2(

n− 3

n

)
+

(n−3
n−3
2

)
· 2(n−1

n−1
2

)
2(

3

n

)
=

[
n− 1

n− 2

]2(4n− 9

4n

)
. (9)

From (9), it follows that W (1)[gn] < W (1)[Majn] if and only if (n− 3)2 > 0 i.e. n ≥ 5. □
Note that from (9), for n = 3 we have W (1)[g3] = W (1)[Maj3].

Lemma 5 Conjecture 1 is true for n = 1 and n = 3.

Proof: For n = 1, the only LTF is the majority function and so Conjecture 1 is trivially true.
Using (2), for n = 3, it is easy to check that Stabρ(Maj3) = 0.75ρ + 0.25ρ3. We need to compare

this expression with Stabρ(f) where f is an LTF. We used an exhaustive search. There is no easy
way to determine whether a given function is an LTF. Instead we considered the set of all 3-variable
locally monotone functions. Since an LTF is locally monotone, our search covered all LTFs. Let
f be a 3-variable locally monotone function. We obtained the values of W (k)[f ], for k = 0, 1, 2, 3
and using (2) obtained the expression for Stabρ(f). From the search, the possible expressions for
Stabρ(f) were obtained to be the following: 1, ρ, 0.75ρ+0.25ρ3, 0.0625+0.6875ρ+0.1875ρ2+0.0625ρ3,
0.25 + 0.5ρ + 0.25ρ2, 0.5625 + 0.1875ρ + 0.1875ρ2 + 0.0625ρ3. For each of these expressions, it is easy
to verify that Stabρ(f) ≥ Stabρ(Maj3) for all ρ ∈ [0, 1]. □

Based on Lemmas 1, 4 and 5, we obtain the main result of the paper, of which the case n = 5 was
reported in [5].

Theorem 2 Conjecture 1 is true for n = 1 and n = 3. For odd n ≥ 5, Conjecture 1 is false.

For n ≥ 5, there are other functions which provide counterexamples to Conjecture 1. For odd n,
suppose hn is defined as hn(x) = sgn(2 · (x1 + . . . + xn−3) − (xn−2 + xn−1 + xn)). Then proceeding as
in the proof of Lemma 3, it is possible to show that W (0)[hn] = 0 and W (1)[hn] = W (1)[gn]. So, for odd
n ≥ 5, the function hn is a counterexample to Conjecture 1.

Further, for concrete values of n, it is possible to obtain examples of functions fn such thatW≤1[fn] <

W≤1[gn]. Suppose t is odd and n = t2. For positive integer w, define the function f
(w)
n in the following

manner.

f (w)
n (x1, . . . , xn) =


sgn((2w + t− 1) + 2w(x1 + · · ·+ xt)+

· · ·+ (2w + t− 1)(xn−t+1 + · · ·+ xn)) if (t+ 1)/2 is even,
sgn((2w + t) + (2w + 1)(x1 + · · ·+ xt)+

· · ·+ (2w + t)(xn−t+1 + · · ·+ xn)) if (t+ 1)/2 is odd.

Computations show that W≤1[f
(4)
9 ] = 0.651764 < 0.659180 = W≤1[g9] and W≤1[f

(12)
25 ] = 0.640686 <

0.643535 = W≤1[g25].
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4 Limiting Value of W≤1[gn]

It is known (see Page 62 of [6]) that W (≤1)[Majn] is a decreasing sequence which is lower bounded by
2/π. It has been conjectured (see [1] and Page 115 of [6]) that if f is an LTF, then W≤1[f ] ≥ 2

π .

We have shown that for odd n ≥ 5, the function gn defined by (7) satisfies W (1)[gn] < W (1)[Majn].
This brings up the question of whether the sequence gn also provides a counter-example to the 2/π
lower bound conjecture for LTFs. In this section, we show that this is not the case.

From Lemma 3, W (0)[gn] = 0 and so, W≤1[gn] = W (1)[gn]. This shows that it is sufficient to
consider W (1)[gn]. We show that W (1)[gn] is a decreasing sequence which is lower bounded by 2/π.
The expression for W (1)[gn] given by (8) involves binomial coefficients. We use the following bounds on
factorial function (see Page 54 of [2]).

√
2πm · m

m

em
exp

(
1

12m+ 1

)
≤ m!≤

√
2πm · m

m

em
exp

(
1

12m

)
. (10)

Let p = k
m and q = 1− p. Using (10), the following bounds on

(
m
k

)
can be obtained.(

m
k

)
≥ 1√

2πmpq
(ppqq)−m exp

(
1

12m+1 − 1
12k − 1

12(m−k)

)
,(

m
k

)
≤ 1√

2πmpq
(ppqq)−m exp

(
1

12m − 1
12k+1 − 1

12(m−k)+1

)
.

 (11)

Lemma 6 For gn defined in (7), W (1)[gn] is a decreasing sequence and limn→∞W (1)[gn] =
2
π . Conse-

quently, for all odd n, W (1)[gn] ≥ 2/π.

Proof: Let an = W (1)[gn] and bn = W (1)[Majn]. We wish to show that an is a decreasing sequence.
To do this, we compare an+2/bn to an/bn. The expression for an/bn is given by (9). Using (3) and (8),
we obtain an+2/bn = (4n − 1)/(4n). We have an ≥ an+2 if and only if an/bn ≥ an+2/bn. Using the
expressions for an/bn and an+2/bn, the last condition is equivalent to[

n− 1

n− 2

]2(4n− 9

4n

)
>

4n− 1

4n

which holds if and only if n ≥ 3. So, an is a decreasing sequence for all odd n ≥ 3.

Let An = (n − 3) ·

[
(n−4
n−5
2
)·8

2n−1

]2

and Bn = 3 ·

[
(n−3
n−3
2
)·2

2n−1

]2

and so an = An + Bn. We show that An

tends to 2/π and Bn tends to 0 and so an tends to 2/π as n goes to infinity.
First consider An. Letting m = n− 4, k = n−5

2 , p = k/m and q = 1− p, from (11) and using some
routine simplifications we obtain the following bounds on An.

An ≥ 2

π

[
n− 4

n− 3

](n−3) [n− 5

n− 4

]−(n−4)

exp

(
2

12n− 47
− 2

6n− 30
− 2

6n− 18

)
,

An ≤ 2

π

[
n− 4

n− 3

](n−3) [n− 5

n− 4

]−(n−4)

exp

(
2

12n− 48
− 2

6n− 29
− 2

6n− 17

)
.

Since limx→∞(1 + 1
x)

x = e and limx→∞(1− 1
x)

x = 1
e , it follows that limn→∞An = 2/π.
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Now, consider Bn. Letting m = n − 3, k = n−3
2 and p = q = 1

2 , from (11) and using some routine
simplifications we obtain the following bounds on Bn.

Bn ≥ 3

2π

(
1

n− 3

)
exp

(
2

12n− 35
− 2

6n− 18
− 2

6n− 18

)
,

Bn ≤ 3

2π

(
1

n− 3

)
exp

(
2

12n− 36
− 2

6n− 17
− 2

6n− 17

)
.

It follows that limn→∞Bn = 0.
□
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