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Abstract

A distribution is k-incompressible, Yao [FOCS ’82], if no efficient compression scheme com-
presses it to less than k bits. While being a natural measure, its relation to other computational
analogs of entropy such as pseudoentropy, Hastad, Impagliazzo, Levin, and Luby [SICOMP 99],
and to other cryptographic hardness assumptions, was unclear.

We advance towards a better understating of this notion, showing that a k-incompressible dis-
tribution has (k−2) bits of next-block pseudoentropy, a refinement of pseudoentropy introduced
by Haitner, Reingold, and Vadhan [SICOMP ’13]. We deduce that a samplable distribution X
that is (H(X) + 2)-incompressible, implies the existence of one-way functions.
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1 Introduction

Computational analogs of information-theoretic notions have given rise to some of the most in-
teresting phenomena in the theory of computation. For example, computational indistinguisha-
bility, a computational analogue of statistical indistinguishability introduced by Goldwasser and
Micali [GM84], enabled the bypassing of Shannon’s impossibility results on perfectly secure en-
cryption [Sha49], and provided the basis for the computational theory of pseudorandomness [BM82;
Yao82]. Pseudoentropy, a computational analogue of entropy introduced by Hastad, Impagliazzo,
Levin, and Luby [Has+99], was the key to their fundamental result that established the equivalence
of pseudorandom generators and one-way functions and has become a basic concept in complexity
theory and cryptography. Next-block pseudoentropy, a refinement of pseudoentropy introduced by
Haitner, Reingold, and Vadhan [Hai+13] and Vadhan and Zheng [VZ12], has led to simpler and
more efficient constructions of pseudorandom generators based on one-way functions. An analogue
of entropy for the realm of unforgeability, named inaccessible entropy, introduced by Haitner, Rein-
gold, Vadhan, and Wee [Hai+19; Hai+20], has led to simpler and more efficient constructions of
statistically hiding commitment and universal one-way hash functions from one-way functions.

In contrast to the above, incompressibility, a computational analogue of entropy introduced by
Yao [Yao82], was much less explored. Roughly, a random variable X is k-incompressible, if there
exists no efficient (i.e., poly-time) compression scheme that compresses X to less than k bits. That
is, there exists no efficient encoding scheme (Enc,Dec), i.e., Dec(Enc(x)) = x for every x ∈ Supp(X),
with

E[|Enc(X)|] < k .

(Both X and k are functions of a “security parameter” n, which we omit throughout the introduc-
tion). It is immediate that a pseudorandom distribution of k bits is (k − O(1))-incompressible.1

More generally, Wee [Wee04] proved that a distribution with k-bits of pseudoentropy, i.e., computa-
tionally indistinguishable from a distribution Y of k-bits of (real) Shannon entropy, is (k−O(log n))-
incompressible. In contrast, the converse direction is less clear. Barak, Shaltiel, and Wigderson
[Bar+03] showed how to extract k−ω(log n) (close to uniform) bits from a k-strongly-incompressible
source X, i.e., Pr[|Enc(X)| < k − t] ≤ 2−t for every t.2 Other works showed that incompressibility
is unlikely to imply pseudoentropy. Wee [Wee04] showed that proving that incompressibility im-
plies (similar amount of) pseudoentropy cannot be done using black-box reductions. Hsiao, Lu, and
Reyzin [Hsi+07] proved that under a certain cryptographic assumption, there exists a distribution
whose conditional incompressibility is much larger than its conditional pseudoentropy, where con-
ditional means that the compression and pseudoentropy are measures with respect to a randomly
generated common reference string. Still, the the most basic questions remained open:

Does k-incompressibility imply having a different, natural, type of “pseudoentropy”?

Does non-trivial incompressibility, i.e., sufficiently larger than the real entropy, imply
the existence of one-way functions?

We give affirmative answers to the above questions, proving that a k-incompressible source
has (k − 2) bits of next-block pseudoentropy, and thus, a samplable source X that is (H(X) + 2)-

1The O(1) loss is since even the (true) uniform distribution can be compressed by Θ(1) bits (using non prefix-free
schemes) Szpankowski and Verdú [SV11].

2I.e., not only that one cannot efficiently compress X to less than k bits, but it cannot compress, non-trivially,
even parts of X.
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incompressible implies the existence of one-way functions. Before stating our results in more details,
we recall the notion of next-block pseudoentropy Haitner et al. [Hai+13], focusing on its single-bit
block variant, called next-bit pseudoentropy.

Next-bit pseudoentropy. Next-bit pseudoentropy measures the bit-wise unpredictability of X:
how hard is it to predict Xi from X<i = (X1, . . . , Xi−1), for a uniform i. More formally, a random
variable X = (X1, . . . , Xm) over {0, 1}m has next-bit pseudoentropy k, if there exists a set of
random variables {Yi}i∈[m], jointly distributed with X, such that

1.
∑

i∈[m]H(Yi | X<i) ≥ k, for H being the Shannon entropy function, and

2. (X<i, Xi) is computationally indistinguishable from (X<i, Yi), for every i.

That is, X has next-bit pseudoentropy k if predicting Xi from X<i is not easier than predicting Yi
fromX<i, where the bits of Y have k bits of (real) entropy given the past. It is easy to see that k-bits
of (standard) pseudoentropy implies k-bits of next-bit pseudoentropy (simply let Y = (Y1, . . . , Ym)
be the variable that realizes the pseudoentropy of X), but the converse does not always hold.3

Yet, Haitner et al. [Hai+13] showed that an efficiently samplable source with non-trivial next-bit
pseudoentropy, can be used to construct pseudorandom generators (and thus one-way functions).

1.1 Our Results

In this paper, following [Bar+03; Wee04], we focus on the non-uniform settings—the efficient
algorithms get non-uniform polynomial-size advice per input length—and defer the uniform version
of our results to the future version (see more details in Section 1.2). We state our results with respect
to a weaker notion of incompressibility, where the source is only assumed to be incompressible by
prefix-free schemes: no codeword is a prefix of another.

Lemma 1.1 (Incompressiblity→ next-bit pseudoentropy). A random variable that is k-incompressible
by efficient prefix-free schemes, has next-bit pseudoentropy (at least) k(n)− 2.

That is, incompressibility is a stronger measure of “pseudoentropy” than next-bit pseudoen-
tropy. Since, incompressibility is weaker than pseudoentropy, we now have a rather good under-
standing about the computational hardness incompressibility induces. By Haitner et al. [Hai+13],
Lemma 1.1 yields the following characterization.

Theorem 1.2 (Non-trivial incompressibility implies one-way functions). Assume there exist an
(efficiently) samplable random variable X that is (H(X) + 2 + 1/p(n))-incompressible by efficient
prefix-free schemes, for some p ∈ poly, then one-way functions exist.

That is, if one-way functions do not exist, e.g., we live in “Pessiland” [Imp95], then any sam-
plable distribution can be compressed to its entropy plus two bits.

Theorem 1.2 improves upon previous results that require additional structure from the incom-
pressible distribution. Wee [Wee04] proved that if an m-bit flat X (i.e., uniformly distributed over
its support) is (H(X) + Ω(logm))-incompressible, then one-way functions exist. Where a simple

3 Let g be a pseudorandom generator from n bits to 2n bits. Then Z = (g(Un), Un) does not have pseudoentropy
larger than n (Z is determined by its last n bits), but has 2n bits of next-bit pseudoentropy: let Y1, . . . , Y2n be
uniform and independent bits, and (Y2n+1, . . . , Y3n) = (Z2n+1, . . . , Z3n).
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application of Barak et al. [Bar+03], yields the same for (H(X)+ω(log n))-strongly-incompressible
X.4

Applications to sparse languages. A language L is s-sparse if |L ∩ {0, 1}n| ≤ 2s(n). Theo-
rem 1.2 yields the following characterization of sparse languages.

Theorem 1.3 (Informal). Let L be an s-sparse language and let D be a samplable distribution over
L (i.e., Supp(Dn) ∩ {0, 1}n ⊆ L ∩ {0, 1}n). If D is (s+ 3)-incompressible, then one-way functions
exist.

Remark 1.4 (The two bits gap). One might wonder whether the annoying two bits gap in Lemma 1.1
and theorems 1.2 and 1.3 is unavoidable. We pay these two bits since in the proof of Lemma 1.1 we
use the arithmetic encoding prefix-free compression scheme, which compresses a random variable
X to H(X) + 2 bits. We use arithmetic encoding since it can be implemented efficiently given ora-
cle access to the accumulated distribution function of X (with respect to the lexicographic order of
elements). Indeed, the 2 bits gap can be reduced given a better encoding scheme that is efficient in
these settings. While there are prefix-free compression schemes that get closer to H(x), cf., Shan-
non [Sha48], Fano [Fan49], and Huffman [Huf52], these schemes might not be efficient for large
alphabets (in our case, the alphabet is {0, 1}m). So as far as we know, there might be a random
variable X that is not compressible to less than H(x) + 2 by an efficient prefix-free scheme. Since
the existence of such a variable is unlikely to imply the existence of one-way functions, the 2 bits
gap in our results might be unavoidable.

One might do better by asking for incompressibility by arbitrary (no prefix-free) efficient schemes
(which might even compress to strictly less than H(X) bits). But bearing in mind that compression
is used for communicating many samples from the distribution, asking for prefix-freeness seems like
the natural definition for incompressibility.

1.2 Our Technique

We explain here the high-level approach for proving Lemma 1.1 (incompressibility → next-bit
pseudoentropy). Let X = (X1, . . . , Xm) be a random variable over {0, 1}m, and assume X does not
have next-bit pseudoentropy k − 2. We prove that such X can be (efficiently) compressed into k
bits, proving the lemma. Recall that next-bit pseudoentropy measures the bit-wise unpredictability
of X: how hard is it to predict Xi from X<i, for i ← [m]. So X not having k − 2 bits of next-bit
pseudoentropy implies that X is “rather predictable” in an online fashion: predict X1, then use X1

to predict X2, and so on. We use this characterization to design a prefix-free bits encoding of X,
of average length less than k, more details below.

Let I ← [m]. Since X does not have k − 2 bits of next-bit pseudoentropy, the random vari-
able (X<I , XI) is distinguishable from (X<I , YI) for every set of random variable {Yi}i∈[m] with∑

i∈[m]H(Yi|X<i) ≥ (k − 2). That is, XI has low entropy given X<I , in the eyes of poly-time dis-
tinguisher. As discussed above, this implies that XI is somewhat predictable given X<I . Vadhan

4We note that since it might take poly(|X|) > H(X) random bits for sampling X, the direct approach for proving
Theorem 1.2 by outputting the randomness used to sample X as its encoding, which can be done efficiently assuming
one-way functions do not exit, does not apply here. Also while, assuming that one-way functions do not exit, the
probability of any element in the support of X can be efficiently estimated [IL89], this alone does not suffice for
efficient compression.
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and Zheng [VZ12] formalized this intuition and proved that for such an X, there exists a poly-time
predictor P that predicts XI from X<I within small KL-divergence. Specifically,

KL(X<I , XI ||X<I ,P(X<I)) < (k − 2)/m−H(XI | X<I) (1)

Let Y = (Y1, . . . , Ym) be the random variable defined inductively by P as follows: Y1 = P(ϵ),
and Yi = P(Y<i). By Equation (1) and the chain-rules of KL-divergence, we deduce that

KL(X||Y ) < k − 2−H(X) (2)

The above suggest the following method for compressing X. Use P for designing a good prefix-free
encoding scheme for Y , and then apply Equation (2) to deduce that the scheme also compresses
X well. The scheme we design for Y is the arithmetic encoding scheme. This scheme is useful for
compressing any distribution D for which we know how to compute the accumulated provability
function FD(x) :=

∑
x′≤x PrD[x

′]. Since Y is defined according to P, it is not hard to see that the
accumulated function of Y is efficiently computable, implying that the arithmetic encoding (Enc, ·)
of Y can be computed efficiently. Furthermore, since (Enc, ·) is the arithmetic encoding of Y , it
holds that

|Enc(y)| ≤ − log(Pr[Y = y]) + 2 (3)

for every y ∈ Supp(Y ). Using a well-known fact about using “wrong compression”, we deduce that

E[|Enc(X)|] ≤ H(X) + KL(X||Y ) + 2 (4)

Applying Equation (2), we conclude that E[|Enc(X)|] < k.

Remark 1.5 (Uniform incompressibility). In the above proof we assumed that the predictor P is
deterministic (which can be assumed without loss of generality in the non-uniform setting). This
assumption was crucial for the arithmetic encoding to work. Otherwise, the encoder and decoder will
not agree on the same accumulated probability function. In the uniform setting, this obstacle can be
overcome by letting the encoder and decoder have access to shared randomness (independent of the
distribution to compress) which they can use as the random coins of P. We measure the compression
of such shared randomness scheme by the expected encoding length over the shared randomness and
the underlying distribution. All the results stated in this paper extend, with essentially the same
parameters, to this uniform setting.

1.3 Related Work

Yao [Yao82] used the term effective entropy to measure by how much a distribution can be com-
pressed efficiently. So k-incompressiblity is equivalent to having effective entropy at least k. Yao
[Yao82] did not require the compression scheme to be prefix-free, but only required that for every
t ∈ poly, the sequence Enc(x1), . . . ,Enc(xt), where x1, . . . , xt are independent samples from the
distribution, are decoded with high probability.

An interesting line of work considered efficient compression of of samplable distributions with
(efficient) membership queries. Goldberg and Sipser [GS85] showed that any such distribution can
be compressed by log n bits, and Trevisan, Vadhan, and Zuckerman [Tre+05] gave better schemes
for flat distributions, and for distribution generated by log-space machines.

4



Paper Organization

Basic definitions and notations are given in Section 2. The formal definition of incompressibility
and our results relating it to next-bit pseudoentropy, including some results that are not mentioned
above, are given in Section 3.

2 Preliminaries

2.1 Notations

All logarithms are taken in base 2. We use calligraphic letters to denote sets and distributions,
uppercase for random variables, and lowercase for values and functions. Let poly stand for the
set of all polynomials. Let ppt stand for probabilistic poly-time, and n.u.-poly-time stand for
non-uniform poly-time. An n.u.-poly-time algorithm A is equipped with a (fixed) poly-size advice
string set {zn}n∈N (that we typically omit from the notation), and we let An stand for A equipped
with the advice zn (used for inputs of length n). Let neg stand for a negligible function. For a set
L ⊆ {0, 1}∗, let Ln := L ∩ {0, 1}n. A set S is prefix free, if for no x1 ̸= x2 ∈ S it holds that x1
is a prefix of x2. Given a vector v ∈ Σn, let vi denote its ith entry, let v<i = (v1, . . . , vi−1) and
v≤i = (v1, . . . , vi). Similarly, for a set I ⊆ [n], let vI be the ordered sequence (vi)i∈I .

2.2 Distributions and Random Variables

When unambiguous, we will naturally view a random variable as its marginal distribution. The
support of a finite distribution P is defined by Supp(P) := {x : PrP [x] > 0}. For a (discrete)
distribution P, let x ← P denote that x was sampled according to P. Similarly, for a set S, let
x← S denote that x is drawn uniformly from S. For random variable ensemble B = {Bn}n∈N and

t : N 7→ N, let Bt =
{
B

t(n)
n

}
n∈N

for B
t(n)
n being t(n) independent copies of Bn. For m ∈ N, we

use Um to denote a uniform random variable over {0, 1}m (that is independent from other random
variables in consideration). We use the following standard definitions:

Definition 2.1 (Indistinguishably). Distribution ensembles P = {Pn}n∈N and Q = {Qn}n∈N are
n.u.-poly-time-indistinguishable, if

Prx←Pn [D(x) = 1]− Prx←Qn [D(x) = 1] ≤ neg(n)

for any n.u.-poly-time algorithm D.

Definition 2.2 (Samplablity). A distribution ensemble P = {Pn} is samplable, if there exists
poly-time algorithm (sampler) S and poly-time computable function m ∈ poly, such that for every
n ∈ N, S(1n;Um(n)) is distributed according to Pn.

2.2.1 Entropy and Distance Measures

The Shannon entropy of a distribution P is defined by H(P) =
∑

p∈Supp(P) PrP [p] · log
1

PrP [p] . The

conditional entropy of a random variable A given B, is defined as H(A|B) = Eb←B[H(A|B=b)]. We
will use the following known facts:
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Fact 2.3 (Chain rule for Shannon entropy). For a random variable A = (A1, . . . , An), it holds that
H(A1, . . . , An) =

∑n
i=1H(Ai|A<i).

The KL-divergence (also known as, Kullback-Leibler divergence, and relative entropy) between
distributions P and Q is defined by

KL(P||Q) =
∑

a∈Supp(P)

PrP [a] log(
PrP [a]

PrQ[a]
).

The KL-divergence also admits a chain rule.

Fact 2.4 (Chain rule for KL-divergence). For random variables A = (A1, . . . , An) and B =
(B1, . . . , Bn), it holds that

KL(A||B) =
∑
i∈[n]

Ea1,...,an←A

[
KL(Ai|A<i=a<i ||Bi|B<i=a<i)

]
.

Both Entropy and KL-divergence admit data processing inequalities.

Fact 2.5 (Data processing inequality). For every random variables A,B and function f , it holds
that KL(f(A)||f(B)) ≤ KL(A||B) and H(f(A)) ≤ H(A).

We will use the following observation that bounds the KL-divergence between two distributions
using their maximal ratio over a set.

Proposition 2.6 (Bounding KL-divergence). Let X and Y be finite distributions, and assume

log PrX [s]
PrY [s] ≥ α for every element s of a set S. Then KL(X||Y) > (α− log e) · PrX [S].

Proposition 2.6 is proved in Appendix A.
We will also use the following simple observation to bound the probability of an event in terms

of Entropy.

Fact 2.7 (Bounding probability via entropy). Let C be a Boolean random variable. If H(C) ≥ d
then Pr[C = 1] ≥ (d/40)2.

Fact 2.7 is proved in Appendix A.

2.3 Encoding and Compression

We start with the definition of encoding schemes.

Definition 2.8 (Encoding schemes). A pair of algorithms (Enc,Dec) is an encoding for a distri-
bution D, if for every x ∈ Supp(D) it holds that Dec(Enc(x)) = x.5 The pair is an encoding for a
distribution ensemble D = {Dn}n∈N, if
(Enc(1n, ·),Dec(1n, ·)) is an encoding scheme for Dn for every n. The encoding is fixed-length, if
|Enc(1n, x)| = ℓ(n) for every n and x ∈ Supp(Dn), for some function ℓ, and is prefix-free if the set
{Enc(1n, x) : x ∈ Supp(Dn)} is prefix-free for every n.

Definition 2.9 (Compressing a distribution). An encoding scheme (Enc, ·) ℓ-compereses a distri-
bution ensemble D, if Ex←Dn [|Enc(1n, x)|] ≤ ℓ(n) for every n ∈ N.

We will refer to an encoding scheme that compresses the distribution as a compressing scheme.
When clear from the context, we omit the parameter 1n given to the encoder and the decoder.

5Our results readily extend to encoding schemes with negligible decoding errors.

6



Changing distributions. The following well-known observation bounds the price you pay by
using the compressing scheme for the “wrong” distribution.

Proposition 2.10 (Changing distributions). Let P and Q be finite distributions with KL(P||Q) <
∞. Let (Enc,Dec) be a compression scheme for Q, such that |Enc(q)| ≤ − log(PrQ[q]) + c for every
q ∈ Supp(Q) for some c > 0. Then (Enc,Dec) is a compression scheme for P with Ep←P [|Enc(p)|] ≤
H(P) + KL(P||Q) + c.

Proposition 2.10 is proved in Appendix A

Arithmetic encoding We use Arithmetic encoding, a well-known prefix-free encoding scheme.

Definition 2.11 (Arithmetic encoding). Let X be a finite random variable over U and let ≺ be
a total order over U . Let F : U → [0, 1] by F (x) = (

∑
a≺x Pr[X = a]) + 1/2 · Pr[X = x]. Define

Enc(x) as the first (⌈− log Pr[X = x]⌉+ 1) bits of F (x).

Arithmetic encoding enjoys the following properties:

Fact 2.12 (Properties of arithmetic encoding, lemma 2.8 in [Tre+05] ). For every random variable
X and order ≺, the function Enc defined in Definition 2.11 is one-to-one and monotone, and the
scheme (Enc,Enc−1) is prefix-free and compresses X to H(X) + 2 bits.

2.4 One-way Functions

Definition 2.13 (One-way functions). A poly-time computable function
f : {0, 1}n 7→ {0, 1}n is n.u.-one-way, if

Prx←{0,1}n
[
An(f(x)) ∈ f−1(f(x))

]
≤ neg(n)

for any n.u.-poly-time A.

2.5 Pseudoentropy and Next-bit Pseudoentropy

In this section we define pseudoentropy and next-bit pseudoentropy, a special case of next-block
pseudoentropy defined at Haitner et al. [Hai+13].

Pseudoentropy. We start with recalling the standard notion of pseudoentropy [Has+99].

Definition 2.14 (Pseudoentropy). A random variable ensemble B has n.u.-pseudoentropy (at least)
k, if for every p ∈ poly there exists an ensemble C = {Cn}n∈N, such that:

1. H(Cn) ≥ k(n), and

2. B and C are n.u.-poly-time-indistinguishable.

We also use a conditional version of the above definition.

Definition 2.15 (Conditional pseudoentropy). Let B = {Bn}n∈N be a random variable ensemble
over {0, 1} jointly distributed with X = {Xn}n∈N. We say that B has n.u.-conditional-pseudoentropy
(at least) k given X, if for every p ∈ poly there exists an ensemble C = {Cn}n∈N, jointly distributed
with (X,B), such that:

7



1. H(Cn|Xn) ≥ k(n)− 1/p(n), 6 and

2. (X,B) and (X,C) are n.u.-poly-time-indistinguishable.

Next-bit pseudoentropy. We are now ready to define next-bit pseudoentropy. Intuitively, a
random variable B over {0, 1}m has next-bit pseudoentropy k, if for a uniformly chosen i ∈ [m], it
holds that Bi has pseudoentropy k/m given B<i. Formally, this is put using the above notation of
conditional pseudoentropy.

Definition 2.16 (Next-bit pseudoentropy). The random variables ensemble B = {Bn}n∈N over

{0, 1}m(n) has n.u.-next-bit-pseudoentropy (at least) k if the following holds: let I = {In}n∈N be
an ensemble of uniformly distributed random variables over [m(n)], then {(Bn)In}n∈N has n.u.-
conditional-pseudoentropy k/m given {(Bn)<In}n∈N.

In their construction of pseudorandom generator, [Hai+13] has proved that a generator whose
next-bit pseudoentropy is larger than its input length, can be used to construct pseudorandom
generators and thus one-way functions. The following is the non-uniform variant of their result.

Theorem 2.17 (Extending next-bit pseudoentropy implies one-way functions, [Hai+13]). Assume

there is a poly-time computable function f : {0, 1}n → {0, 1}m(n) such that {f(Un)}n∈N has n.u.-
next-bit-pseudoentropy n+ 1/p(n) for some p ∈ poly. Then there exists a n.u.-one-way functions.

For our needs, we use the following corollary of the above.

Corollary 2.18 (Non-trivial next-bit pseudoentropy implies one-way functions). Assume there is

a poly-time computable function f : {0, 1}n → {0, 1}m(n) such that {f(Un)}n∈N has n.u.-next-bit-
pseudoentropy H(f(Un)) + 1/p(n) for some p ∈ poly. Then there exists a n.u.-one-way functions.

That is, it is enough to show that f has next-bit pseudoentropy larger than its image real
entropy, rather than its input size. A proof sketch for Corollary 2.18 is given in Appendix A.

It is easy to see that next-bit pseudoentropy behaves nicely under direct product. It turns out
that the converse is also true: if the direct product has kt bits of next-bit pseudoentropy, then a
single copy has next-bit pseudoentropy (at least) k.

Proposition 2.19 (Direct product of next-bit pseudoentropy). For any random variable ensemble
B and t ∈ poly, if Bt has n.u.-next-bit pseudoentropy (t ·k), then B has n.u.-next-bit pseudoentropy
k.

Proposition 2.19 is proved in Appendix A.

2.5.1 KL-hardness

In their “hashing free” construction of pseudorandom generators from one-way functions, Vadhan
and Zheng [VZ12] introduced the notion of KL-hardness of a distribution. Informally, it states that
it is hard to approximate the distribution within a small KL divergence. This notion is formally
defined using KL-predictors.

6[Hai+13] do not have the 1/p(n) term in their definition of conditional pseudoentropy (which is implicit in their
definition of next-bit pseudoentropy). Following [VZ12], we add this term to slightly simplify the text.
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Definition 2.20 (KL-predictors). Let (X,B) be a distribution over {0, 1}m × {0, 1}, and let P : {0, 1}m×
{0, 1} 7→ (0,+∞) be a deterministic function. We say that P is a δ-KL-predictor of B given X, if

KL(X,B||X,CP) ≤ δ,

for CP being a random variable (jointly distributed with X) with

Pr[CP = b | X = x] = P(x,b)
P(x,0)+P(x,1) .

A distribution is KL-hard if it posses no efficient KL-predictor.

Definition 2.21 (KL-hardness). Let (X,B) be a distribution ensemble over {0, 1}m(n) × {0, 1}.
We say that B is δ-n.u.-KL-hard given X, if there exists no n.u.-poly-time P and q ∈ poly such that
Pn is a (δ − 1/q(n))-KL-predictor of B given X , for infinitely many n’s.

We use the following result from [VZ12].

Theorem 2.22 (KL-hardness imply pseudoentropy, [VZ12] Corollary 3.9). Let (X,B) = {(Xn, Bn)}n∈N
be a random variable ensemble over {0, 1}m(n) × {0, 1}. If B is δ-n.u.-KL-hard given X, then it
has n.u.-conditional-pseudoentropy H(Bn|Xn) + δ(n) given X.

That is, KL-hard distribution has non-trivial next-bit pseudoentropy.7

3 Incompressibility and Next-bit Pseudoentropy

In this section, we define several notions of incompressibility and relate them to next-bit pseudoen-
tropy (defined in Section 2.5). As said in the introduction, we focus on the non-uniform settings.

Incompressibility. We start with the standard notion of incompressibility that we define with
respect to prefix-free compression schemes (it is immediate that a distribution that is incompressible
with respect to arbitrary scheme is incompressible according to our definition).

Definition 3.1 (Incompressibility). A distribution ensemble B is k-incompressible, if for every
n.u.-poly-time prefix-free compression scheme (Enc, ·) for B, it holds that

Ex←Bn [|Enc(x)|] ≥ k(n),

for all but finitely many n’s.

We will also address the following more fine-grain version of incompressibility.

Definition 3.2 (Local incompressibility). A distribution ensemble B is (α, β)-locally-incompressible,
if for every n.u.-poly-time prefix-free compression scheme (Enc, ·) for B, it holds that

Prx←Bn

[
|Enc(x)| ≥ log

1

PrBn [x]
+ α(n)

]
≥ β(n),

for all but finitely many n’s.

7[VZ12] also proved that the converse direction holds.
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Local incompressibility gets handy when the gap between next-bit pseudoentropy and the real
entropy is smaller than 2, settings in which our result for (non-local) incompressibility is not
applicable.

We observe the following connections between incompressiblity and local incompressiblity, both
proved in Section 3.6.

Proposition 3.3 (Incompressiblity→ local incompressiblity). A k-incompressible distribution en-

semble B over {0, 1}m(n), with m ∈ poly, is (k(n)−H(Bn)− 2, 1
3m(n))-locally-incompressible.

Proposition 3.4 (local incompressiblity→ incompressiblity). An (α, β)-locally incompressible dis-
tribution ensemble B, is H(Bn) + β(n)(α(n)− log e)-incompressible.

Relation to pseudoentropy. We recall the following two facts. The first states that incom-
pressibility is not stronger than pseudoentropy.

Theorem 3.5 (Pseudoentropy → incompressibility, [Wee04]). Let B be a distributions ensemble

over {0, 1}m(n) with n.u.-pseudoentropy k, then B is (k − 2 logm)-incompressible.8

While it is unknown if incompressibility is a weaker notion than pseudoentropy, there is an
oracle separation between them, as stated in the next theorem.

Theorem 3.6 (Incompressibility ̸→ pseudoentropy, oracle separation, [Wee04]). There is an oracle
O and a distribution ensemble B that relative to O, B is (n−ω(log n))-incompressible but does not
have pseudoentropy larger than n/2.

3.1 Our Results

3.1.1 Incompressibility → Next-Bit Pseudoentropy

Our main result states that incompressibility implies next-bit pseudoentropy.

Lemma 3.7 (Incompressibility → next-bit pseudoentropy). The following holds for every distri-

bution ensemble B over {0, 1}m(n) with m ∈ poly.

1. B is k-incompressible =⇒ B has n.u.-next-bit pseudoentropy k(n)− 2.

2. B is (α, β)-locally-incompressible =⇒ B has n.u.-next-bit pseudoentropy H(Bn) + β(n)(α(n)−
2− log e).

Lemma 3.7 is proved in Section 3.3. Combining its first part with Corollary 2.18, yields the
following informative theorem.

Theorem 3.8 (Incompressiblity → one-way functions). Assume there exists a samplable distribu-

tion ensemble B over {0, 1}m(n) that is (H(Bn) + 2 + 1/p(n))-incompressible for some p ∈ poly,
then n.u.-one-way functions exit.

8This result holds also for non-prefix free compressing schemes.
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Amortization. When amortizing over several instances, Lemma 3.7 yields the following tighter
characterization.

Lemma 3.9 (Incompressiblity→ next-bit pseudoentropy, multiples copies). Let B be a distribution

ensemble over {0, 1}m(n) with m ∈ poly, such that Bt for some t ∈ poly, is (t · k)-incompressible.
Then B has n.u.-next-bit pseudoentropy k(n)− 2/t(n).

Proof. Since Bt has t ·k-incompressibility, by Lemma 3.7 it has n.u.-next-bit pseudoentropy t ·k−2.
Hence, Proposition 2.19 yields that B has n.u.-next-bit pseudoentropy k − 2/t. □

3.1.2 Strong-Next-Bit Pseudoentropy

It is easy to see that next-bit pseudoentropy does not imply incompressibility.

Proposition 3.10 (Next-bit pseudoentropy ̸→ incompressibility). Assuming n.u.-one-way function
exists, then there exists a samplable distribution ensemble with n.u.-next-bit pseudoentropy 2n, that
is not (n+ 1)-incompressible.

Proof sketch. Let g : {0, 1}n 7→ {0, 1}2n be a pseudorandom generator. The distribution ensemble
B = {(g(Un), Un)}n∈N has 2n n.u.-next-bit pseudoentropy. But B can be trivially compressed to n
bits by Enc(f(x), x) = x. □

In contrast, the following variant of next-bit pseudoentropy does imply (and is equivalent to)
incompressibility.

Definition 3.11 (Strong-next-bit pseudoentropy). A random variable ensemble B has n.u.-strong-
next-bit pseudoentropy k, if for every n.u.-poly-time, fixed-length encoding (Enc, ·), the ensemble
{Enc(B)}n∈N has n.u.-next-bit pseudoentropy k.9

That is, B has strong-next-bit pseudoentropy if every encoding of B has next-bit pseudoentropy.
Lemma 3.7 easily extends to strong-next-bit pseudoentropy.

Lemma 3.12 (Incompressibility → strong-next-bit pseudoentropy). A k-incompressible distribu-
tion ensemble has n.u.-strong-next-bit pseudoentropy k − 2.

Proof. Let B be a k-incompressible distribution ensemble, and let B be a random variable ensemble
distributed according to B. It follows that for every n.u.-poly-time fixed-length encoding scheme
(Enc, ·), it holds that Enc(Bn) is k-incompressible. Otherwise, one can efficiently compress Bn by
first encode it according to Enc, and then compress the output. Thus, by Lemma 3.7, Enc(Bn) has
n.u.-next-bit pseudoentropy at least k − 2. □

More interestingly, strong-next-bit pseudoentropy does imply incompressibility.

Lemma 3.13 (Strong-next-bit pseudoentropy → incompressibility). Let B be a distribution en-

semble with Supp(Bn) = {0, 1}m(n). If B has n.u.-strong-next-bit pseudoentropy k + 1/p for some
p ∈ poly, then B is k-incompressible.

Without requiring that Supp(Bn) = {0, 1}m(n), we would only get that B is incompressible by an

encoding schemes that is prefix-free over {0, 1}m(n). Interestingly, the proof of Lemma 3.12 readily
yields that this type of incompressibility is sufficient for next-bit pseudoentropy. Lemma 3.13 is
proved in Section 3.5.

9Note that in this definition, Enc is not necessarily a compressing encoding.
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3.2 Applications to Sparse Languages

We use the following definition of sparse language. (Recall that for a set L ⊆ {0, 1}∗, Ln :=
L ∩ {0, 1}n.)

Definition 3.14. A language L ∈ {0, 1}∗ is s-sparse if |Ln| ≤ 2s(n) for every n ∈ N.

The results of Section 3 immediately yield that unless one-way functions exist, any samplable
distribution over s-sparse language can be compressed to s+ 2 bits.

Theorem 3.15. For every samplable distribution ensemble B = {Bn}n∈N and s-sparse language L,
such that Supp(Bn) ⊆ Ln for every n ∈ N, if B is (s+ 2 + 1/p)-incompressible for some p ∈ poly,
then n.u.-one-way functions exist.

Proof. Since B is over L, s(n) ≥ H(Bn), and thus B is (H(Bn) + 2 + 1/p)-incompressible. Thus by
Theorem 3.8, n.u.-one-way functions exist. □

3.3 Proving Lemma 3.7—Incompressibility implies Next-Bit Pseudoentropy

In this part we prove Lemma 3.7. We use the following lemma, proved in Section 3.4.

Lemma 3.16 (Next-bit predictor to compression). There exists a pair of oracle-aided algorithms
(Enc,Dec) such that the following holds: let P : {0, 1}∗ → (0,+∞) be deterministic algorithm, and
for m ∈ N let DP

m be the distribution over {0, 1}m defined by:

PrDP
m
[x] =

∏
i∈[m]

P(x<i, xi)

P(x<i, 0) + P(x<i, 1)

Then (EncP(1m, ·),DecP(1m, ·)) is a prefix-free compressing scheme for DP
m with |Enc(x)| ≤ ⌈− log PrDP [x]⌉+

1 for every x ∈ {0, 1}m. The running-time of EncP(1m, ) and DecP(1m, ·) is polynomial in m and
the output length of P on inputs of length at most m.

Given Lemma 3.16, we are ready to prove Lemma 3.7.

Proof of Lemma 3.7. Let B be as in Lemma 3.7, and assume it does not have next-bit pseudoen-
tropy q (we will chose q later). We start by proving that there exists n.u.-poly-time algorithm

P such that the distribution ensemble
{
DP

m(n)

}
n∈N

is close in KL-divergence to B, for DP
m being

according to Lemma 3.16.
Let In be a uniform random variable over [m(n)], and let B be an ensemble of random variables

distributed according to B. By assumption and Definition 2.16, {(Bn)In}n∈N has no q/m conditional
pseudoentropy given {(Bn)<In}n∈N. Thus, Theorem 2.22 implies that {(Bn)In}n∈N is not δ(n) :=(
q/m−H

(
(Bn)In | (Bn)<In

))
KL-hard given {(Bn)<In}n∈N. Namely, (see, Definition 2.21) there

exists an infinite set I ⊆ N, c > 0 and a n.u.-poly-time algorithm P : {0, 1}∗ → (0,+∞), such that
Pn is a (δ − 1/nc)-KL-predictor of {(Bn)In}n∈N given {(Bn)<In}n∈N, for every n ∈ I. Fix n ∈ I,
and omit n from the notation, and let DP

m be a random variable distributed according to DP
m. By

definition of KL-predictor (Definition 2.20), it holds that:

KL(B<I , BI ||B<I ,Pn(B<I)) ≤ δ − 1/nc < δ = q/m−H(BI | B<I) (5)
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It follows that

q/m > Ei←I [KL(B<i, Bi||B<i,P(B<i)) +H(Bi | B<i)]

= 1/m ·
∑
i∈[m]

(KL(B<i, Bi||B<i,P(B<i)) +H(Bi | B<i))

= 1/m ·
∑
i∈[m]

(KL(B<i||B<i) + Eb←B

[
KL(Bi|B<i=b<i

||P(B<i)|B<i=b<i
)
]
+H(Bi | B<i))

= 1/m ·
∑
i∈[m]

(Eb←B

[
KL(Bi|B<i=b<i

||(DP
m)i|(DP

m)<i=b<i
)
]
+H(Bi | B<i))

= 1/m · (KL(B||DP
m) +H(B)).

The second equality is due to chain-rule of KL-divergence. The third equality by the definition of
DP

m and since KL(X||X) = 0 for every random variable X. The last equality holds by chain-rule
of KL-divergence and Shannon entropy. We deduce that

KL(B||DP
m) < q −H(B) (6)

Let (Enc,Dec) be the compressing scheme guaranteed by Lemma 3.16. Lemma 3.16 implies that∣∣∣EncP(x)∣∣∣ ≤ ⌈
− log PrDP

m
[x]

⌉
+ 1 ≤ − log PrDP

m
[x] + 2 (7)

for every x ∈ {0, 1}m. Given the above, we separately prove each part of the lemma.

B is k-incompressible. Let q(n) = k(n)− 2. By Proposition 2.10 and Equations (6) and (7),

Ex←Bn

[∣∣∣EncP(x)∣∣∣] < q(n) + 2 = k(n)

We conclude that B is k-compressible, yielding a contradiction.

B is (α, β)-locally-incompressible . By Equation (7),∣∣∣EncP(x)∣∣∣ ≤ − log PrDP
m
[x] + 2 (8)

Let S =
{
x ∈ {0, 1}m :

∣∣EncP(x)∣∣ ≥ − log PrB[x] + α
}
and let η = PrB[S]. Equation (8) yields that

− log PrB[x] + α ≤ − log PrDP
m
[x] + 2 for every x ∈ S, implying that α − 2 ≤ log PrB[x]

PrDP
m
[x] for every

x ∈ S. Applying Proposition 2.6 with respect to S, yields that

KL(B||DP
m) > η · (α− 2− log e)

Applying Equation (6) for q = H(B) + β · (α− 2− log e), yields that

KL(B||DP
m) < β · (α− 2− log e)

We deduce that that β > η = PrB[S], yielding that B is not (α, β)-locally incompressible.
□
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3.4 Proving Lemma 3.16—Next-bit Predictor to Compression

Proof. Let P,m and D = DP
m be according to the lemma statement. Our encoder defined below,

encodes D according to the arithmetic encoding, see Definition 2.11, with respect to the lexico-
graphic order. Recall that on input x, the arithmetic encoding should output e(x) : the first
(⌈log 1/PrD[x]⌉+ 1) bits of F (x) := (

∑
y<x PrD[y]) + 1/2 · PrD[x].

Algorithm 3.17 (Enc).

Oracle: Predictor P.

Input: x ∈ {0, 1}m.

Operation:

1. Let peq = 1 and pless = 0.

2. For every i ∈ [m]:

(a) If xi = 1: pless = pless + peq · P(x<i,0)
P(x<i,0)+P(x<i,1)

.

(b) peq = peq · P(x<i,xi)
P(x<i,0)+P(x<i,1)

.

3. Output the first (⌈− log peq⌉+ 1) bits of pless + peq/2.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

By induction, at the end of the ith iteration of Enc it holds that pless = Pry←D[y≤i < x≤i], and
peq = Pry←D[y≤i = x≤i]. Hence, when Enc reaches Step 3., it holds that pless = Pry←D[y < x],
and peq = PrD[x], stipulating that EncP(x) = e(x). Thus by Fact 2.12, we deduce that EncP is a
prefix-free compressing scheme for D with |Enc(x)| = ⌈log 1/PrD[x]⌉+ 1, for every x ∈ {0, 1}m.

Regarding efficiency, since P only outputs positive numbers, the running time of EncP is poly-
nomial time in m and output size of P on inputs of length at most m. In addition, a decoding
procedure DecP(1m, ·) for EncP(1m, ·) can be implemented with the same efficiently using a straight-
forward binary search over {0, 1}m. □

3.5 Proving Lemma 3.13 — Strong-Next-Bit Pseudoentropy implies Incom-
pressibility

Proof. Assume that B is not k-incompressible and let (Enc,Dec) be the n.u.-poly-time compress-
ing scheme that k′-compresses B, with k′(n) < k(n) for infinite many n’s. Let q(n) for q ∈
poly be a bound on the output length of Enc on inputs of length m(n), and let Enc′(1n, x) =
(Enc(x), 0q(n)−|Enc(x)|).

Let B be a random variable ensemble distributed according to B. We claim that Enc′(1n, Bn)
does not have next-bit pseudoentropy k(n) + 1/p(n). Indeed, consider the following distinguisher
D = {Dn}n∈N:

Algorithm 3.18 (Dn).

Input: y ∈ {0, 1}∗, b ∈ {0, 1}.
Operation:

1. If there is no i ≤ |y| such that Dec(y≤i) ∈ {0, 1}m(n) and Enc(Dec(y≤i)) = y≤i, output 0.
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2. Otherwise, output b.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

We now show that D contradicts the k(n) + 1/p(n)-next-bit pseudoentropy of
{
Enc′(Bn)

}
n∈N

(Definition 2.16). It is easy to see that if (y, b) is a prefix of Enc′(x) for some x ∈ {0, 1}m(n), then Dn

outputs 0. Hence, we conclude the proof by showing that Dn outputs 1 with noticeable probability
over (Enc′(Bn)<In , Cn), for In ← [q(n)] and any random variable Cn with

H(Cn | Enc′(Bn)<In) ≥
k(n) + 1/p(n)

q(n)
− 1

2p(n)q(n)
=

k(n)

q(n)
+

1

2p(n)q(n)
.

Indeed, fix n ∈ N with k′(n) < k(n), and let Cn be such random variable and let δ(n) := 1
2p(n)q(n) ≥

1/poly(n). Let W be the indicator for the event In > |Enc(Bn)| (that is, W = 1 if In > |Enc(Bn)|
and W = 0 otherwise). Compute,

k(n)/q(n) + δ(n)

≤ H(Cn | Enc′(Bn)<In)

= H(Cn | Enc′(Bn)<In ,W )

= Pr[W = 1] ·H
(
Cn | Enc′(Bn)<In ,W = 1

)
+ Pr[W = 0] ·H

(
Cn | Enc′(Bn)<In ,W = 0

)
≤ Pr[W = 1] ·H

(
Cn | Enc′(Bn)<In ,W = 1

)
+ Pr[W = 0]

= Pr[In > |Enc(Bn)|] ·H
(
Cn | Enc′(Bn)<In , I > |Enc(Bn)|

)
+ Pr[In ≤ |Enc(Bn)|]

≤ Pr[In > |Enc(Bn)|] ·H
(
Cn | Enc′(Bn)<In , I > |Enc(Bn)|

)
+ k(n)/q(n).

The first equality holds since Enc′(Bn)<In determines the value of W . The second inequality holds
since H(Cn) ≤ 1. It follows that

Pr[In > |Enc(Bn)|] ·H
(
Cn | Enc′(Bn)<In , I > |Enc(Bn)|

)
≥ δ(n) (9)

In particular,

Pr[In > |Enc(Bn)|] ≥ δ(n) (10)

and

H(Cn | In > |Enc(Bn)|) ≥ H
(
Cn | Enc′(Bn)<In , In > |Enc(Bn)|

)
≥ δ(n) (11)

Hence, Fact 2.7 yields that

Pr[Cn = 1 | In > |Enc(Bn)|] ≥ (δ(n)/40)2 (12)

Since Dn outputs 1 when Cn = 1 and In > |Enc(Bn)|, we deduce that

Pr
[
Dn(Enc

′(Bn)<In , Cn) = 1 | In > |Enc(Bn)|
]
≥ (δ(n)/40)2 (13)

Combining the above with Equation (10), yields that,

Pr
[
Dn(Enc

′(Bn)<In , Cn) = 1
]

= Pr
[
Dn(Enc

′(Bn)<In , Cn) = 1 | In > |Enc(Bn)|
]
· Pr[In > |Enc(Bn)|]

≥ (δ(n)/40)3.

It follows that Dn distinguishes Cn from Enc′(Bn)In given Enc′(Bn)<In with probability (δ(n)/40)3 ≥
1/poly(n). □
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3.6 Additional Missing Proofs

Proposition 3.3.

Proof of Proposition 3.3. Assume toward contradiction that B is not (α, β)-locally-incompressible,
for α(n) = k(n)−H(Bn)− 2 and β = 1/3m(n).

Let (Enc, ·) be a compression scheme that violates the local-incompressibility of B, and consider
the following encoder Enc′:

Enc′(1n, x) =

{
0,Enc(x) |Enc(x)| ≤ m(n)

1, x o/w.

It follows that
∣∣Enc′(1n, x)∣∣ ≤ m(n) + 1 for every x ∈ {0, 1}m(n), and by (local) compressibility

Prx←Bn

[∣∣Enc′(1n, x)∣∣ ≥ log
1

PrBn [x]
+ α(n) + 1

]
< β(n) (14)

It follows that,

Ex←Bn
[∣∣Enc′(1n, x)∣∣] ≤ Ex←Bn [− log PrBn [x] + α(n) + 1] + β(n)(m(n) + 1)

≤ H(Bn) + α(n) + 1 + β(n)(m(n) + 1)

= k(n)− 1 + β(n)(m(n) + 1).

< k(n) (15)

The first equation holds by Equation (14), the equality holds by our choice of α and the last
inequality follows by our choice of β. This conclude that proof since by Equation (15), Bn is not
k-incompressible. □

Proposition 3.4.

Proof of Proposition 3.4. Let (Enc, ·) be a prefix-free compression scheme for B, and let D =
{Dn}n∈N be the distribution ensemble over Supp(Bn) ∪ {⊥}, defined by PrDn [x] = 2−|Enc(x)| for

x ∈ Supp(Bn), PrDn [⊥] = 1−
∑

x∈Supp(Bn) 2
−|Enc(x)|.

Since B is locally-incompressible, it holds that Prx←Bn

[
log

PrBn [x]
PrDn [x]

≥ α(n)
]
≥ β(n). Thus,

Proposition 2.6 yields that KL(Bn||Dn) ≥ β(n)(α(n)− log e), and therefore

Ex←Bn [|Enc(x)|] = Ex←Bn [− log PrDn [x]]

= Ex←Bn

[
− log PrBn [x] + log

PrBn [x]

PrDn [x]

]
= H(Bn) + KL(Bn||Dn)

≥ H(Bn) + β(n)(α(n)− log e).

□
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A Missing Proofs

We will make use of the following Fact:

Fact A.1. (1− p) log(1− p) ≥ −p log e for p ∈ [0, 1).

Proof. Let f(p) := (1 − p) log(1 − p) + p log e, and note that f(0) = 0 and limp→1 f(p) = log e.
Moreover,

f ′(p) = − log(1− p)− (1− p) · 1

(1− p) ln 2
+ log e = − log(1− p).

Thus, the only extreme point in this interval is 0, implying that the inequality holds. □

A.1 Fact 2.7

Fact A.2 (Bound on the probability via entropy, restatement of Fact 2.7). Let C be a Boolean
random variable. If H(C) ≥ d then Pr[C = 1] ≥ (d/40)2.

Proof of Fact 2.7. Let Pr[C = 1] = p. For every p ≤ 1/100, by definition,

H(C) = p log(1/p) + (1− p) log(1/(1− p))

≤ p log(1/p) + p log e

≤ 4
√
p

Where the penultimate inequality follows by Fact A.1. Thus it follows that,

Pr[C = 1] ≥ max
{
1/100, (H(C)/4)2

}
≥ d2/(42 · 100) ≥ (d/40)2.

□
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A.2 Proposition 2.6

Proposition A.3 (Bounding KL-divergence, restatement of Proposition 2.6). Let X and Y be

finite distributions, and assume log PrX [s]
PrY [s] ≥ α for every element s of a set S. Then KL(X||Y) >

(α− log e) · PrX [S].

Proof. Let X̂ be the indicator for X ∈ S and define Ŷ similarly with respect to Y. Let p =

Pr[X ∈ S] = Pr
[
X̂ = 1

]
and let q = Pr[Y ∈ S] = Pr

[
Ŷ = 1

]
. Notice that by definition of S, it

holds that p ≥ 2αq. Therefore,

KL(X||Y) ≥ KL(X̂||Ŷ ) = p log
p

q
+ (1− p) log

1− p

1− q

> pα+ (1− p) log(1− p) ≥ p(α− log e)

The first inequality is by data-processing of KL-divergence. The last inequality holds by Fact A.1
since (1− p) log(1− p) ≥ −p log e for every p ∈ [0, 1). □

A.3 Proposition 2.10

Proposition A.4 (Changing distributions, restatement of Proposition 2.10). Let P and Q be
finite distributions with KL(P||Q) < ∞. Let (Enc,Dec) be a compression scheme for Q, such
that |Enc(q)| ≤ − log(PrQ[q]) + c for every q ∈ Supp(Q) for some c > 0. Then (Enc,Dec) is a
compression scheme for P with Ep←P [|Enc(p)|] ≤ H(P) + KL(P||Q) + c.

Proof. Let P,Q and (Enc,Dec) be as above. Since KL(P||Q) < ∞, it holds that Supp(P) ⊆
Supp(Q), and thus it is clear that (Enc,Dec) is a compression scheme for P.

Ep←P[|Enc(p)|] ≤
∑

p∈Supp(P)

PrP [p] · (− log(PrQ[p]) + c)

= c+
∑

p∈Supp(P)

PrP [p] · (log
PrP [p]

PrQ[p]
− log PrP [p])

= c+KL(P||Q) +H(P).

□

A.4 Corollary 2.18

Corollary A.5 (Non-trivial next-bit pseudoentropy implies one-way functions, restatement of

Corollary 2.18). Assume there is a poly-time computable function f : {0, 1}n → {0, 1}m(n) such that
{f(Un)}n∈N has n.u.-next-bit-pseudoentropy H(f(Un)) + 1/p(n) for some p ∈ poly. Then there
exists a n.u.-one-way functions.

Proof sketch. Let f and p be as in Corollary 2.18, and define g : {0, 1}n 7→ {0, 1}m(n)+n by g(x) =
(f(x), x). We will show that {g(Un)}n∈N has n.u. next-bit pseudoentropy n+1/p(n), and the proof
follows by Theorem 2.17.
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For every n, let Xn ← Un and In ← [m(n)] be a random variable. Fix q ∈ poly. Since f(Un)
has non-trivial next-bit pseudoentropy, there is a random variable ensemble C (jointly distributed
with Xn and In), such that

H(Cn | f(Xn)<I) ≥
H(f(Un)) + 1/p(n)

m(n)
− 1/q(n),

and {(f(Xn)<I , Cn)}n∈N is indistinguishable from {(f(Xn)<In , f(Xn)In)}n∈N.
Let I ′n ← [m(n) + n], and define C ′n (jointly distributed with Xn, I

′
n) as following:

C ′n|Xn=x,I′n=i =

{
Cn|Xn=x,In=i i ≤ m(n)

x(i−m(n)) o/w.

Since (C ′n, I
′
n, Xn)|I′n≤m(n) ≡ (Cn, In, Xn), and

(g(Xn), C
′)|I′n>m(n) ≡ (g(Xn), g(Xn)I′n)|I′n>m(n), it is clear that (g(Xn)<I′n , C

′
n) and (g(Xn)<I′n , g(Xn)I′n)

are indistinguishable.
We conclude the proof by bounding the entropy of C ′n. Fix n ∈ N and omit it from the notation.

Let W be the indicator for the event I ′ ≤ m (that is, W = 1 if I ′ ≤ m and W = 0 otherwise). It
holds that,

H(C ′|g(X)<I′) = H(C ′|g(X)<I′ ,W )

= Pr[W = 1] ·H
(
C ′|g(X)<I′ ,W = 1

)
+ Pr[W = 0] ·H

(
C ′|g(X)<I′ ,W = 0

)
= Pr[W = 1] ·H(C|f(X)<I) + Pr[W = 0] ·H(XI′−m|f(X), X<I′−m,W = 0)

≥ Pr[W = 1] ·
(
H(f(X)) + 1/p

m
− 1/q

)
+ Pr[W = 0] ·H(X|f(X))/n

=
1

m+ n
· (H(f(X)) + 1/p−m/q +H(X | f(X)))

= (H(X, f(X)) + 1/p)/(m+ n)−m/(m+ n)q

≥ (n+ 1/p)/(m+ n)− 1/q,

where the first equality holds since the value of I ′ (and W ) is determined by g(X)<I′ , the first
inequality holds by the bound on the entropy of C, and chain-rule of entropy. The last equality
holds by chain-rule of entropy, and the last since H(X, f(X)) = n. The above concludes the proof,
since it holds for every q ∈ poly. □

A.5 Proposition 2.19

Fact A.6 (Direct product of next-bit pseudoentropy, restatement of Proposition 2.19). For any
random variable ensemble B and t ∈ poly, if Bt has n.u.-next-bit pseudoentropy (t · k), then B has
n.u.-next-bit pseudoentropy k.

Proof. Let I = {In}n∈N be ensemble of uniform random variables over [t(n) ·m(n)]. Fix p ∈ poly,

and let C = {Cn}n∈N be the ensemble of random variables over {0, 1}t·m promised by the definition
of next-bit pseudoentropy. That is:

1. H(Cn | (Bt
n)<In) ≥ k(n)/m(n)− 1/p(n), and
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2.
{
(B

t(n)
n )≤In

}
n∈N

and
{
(B

t(n)
n )<In , Cn

}
n∈N

are n.u.-poly-time indistinguishable.

Fix n. For j ∈ [t(n)], let Zj be j
th m(n)-size block of [t(n)m(n)], i.e., Zj = {(j − 1)m(n) + 1, . . . , j ·m(n)}.

The guarantee of C yields that

H(Cn | (Bt
n)<In) = H(Cn | (Bt

n)<In , In) = Ej←[t(n)]

[
H(Cn | (Bt

n)<In , In ∈ Zj)
]

(16)

In particular, there exists j = j(n) ∈ [t(n)] such that for Zn := Zj(n) it holds that

H(Cn | (Bt
n)<In , In ∈ Zn) ≥ H(Cn | (Bt

n)<In) ≥ k(n)/m(n)− 1/p(n) (17)

In addition, since H(A | B) ≥ H(A | B,C) for every random variables A,B and C,

H(Cn | (Bt
n)[In−1]∩Zn

, In ∈ Zn) ≥ H(Cn | (Bt
n)<In , In ∈ Zn) (18)

We prove the claimed next-bit pseudoentropy of B by considering the following ensemble of
random variables C ′ = {C ′n}n∈N defined by

(C ′n, B
′
n, I
′
n) :=

(
Cn, (B

t(n)
n )Zn , (In − (jn − 1)m(n))

)
|In∈Zn .

Notice that, (B′n, I
′
n) has the same distribution as (Bn, I

′′
n) for I ′′n ← [m(n)]. By Equations (17)

and (18),

H(C ′n | (B′n)<I′n) ≥ k(n)/m(n)− 1/p(n) (19)

In addition, since the event In ∈ Zn is noticeable, the ensembles{
(B

t(n)
n )≤In | In ∈ Zn

}
n∈N

and
{
(B

t(n)
n )<In , Cn | In ∈ Zn

}
n∈N

are n.u.-poly-time indistinguish-

able. And by a simple date-processing argument, so do the ensembles
{
(B

t(n)
n )[In]∩Zn

| In ∈ Zn

}
n∈N

and
{
(B

t(n)
n )[In−1]∩Zn

, Cn | In ∈ Zn

}
n∈N

. We conclude that C ′ realizes the k − 1/p next-bit pseu-

doentropy of B. □
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