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Abstract
We prove that a modification of Andreev’s function is not computable by (3+α−ε) log n

depth De Morgan formula with (2α − ε) log n layers of AND gates at the top for any 0 <
α < 1

5 and any constant ε > 0. In order to do this, we prove a weak variant of Karchmer-
Raz-Wigderson conjecture. To be more precise, we prove the existence of two functions
f : {0, 1}n → {0, 1} and g : {0, 1}n → {0, 1}n such that f(g(x) ⊕ y) is not computable by
depth (1 + α− ε)n formulas with (2α− ε)n layers of AND gates at the top. We do this by
a top-down approach, which was only used before for depth-3 model.

Our technical contribution includes combinatorial insights into structure of composition
with random boolean function, which led us to introducing a notion of well-mixed sets. A
set of functions is well-mixed if, when composed with a random function, it does not have
subsets that agree on large fractions of inputs. We use probabilistic method to prove the
existence of well-mixed sets.

1 Introduction

Proving lower bounds on Boolean formulas remains one of the fundamental problems in com-
plexity theory. Specifically, one of the major open question here is separating classes P and
NC1 by proving a super-logarithmic depth lower bound for a function from P. The long line
of prior work includes [Sub61], [Khr71], [And87], [PZ91], [IN93] up to the currently best depth
lower bound (3−o(1)) log n from the celebrated paper by Håstad [Hås98] which stands unbeaten
for two decades up to lower order terms [Tal14].

Karchmer, Raz and Wigderson [KRW95] proposed an approach for attacking this problem,
introducing a block composition of two Boolean functions:

Definition 1. The block composition f ⋄ g : ({0, 1}m)n → {0, 1} of two Boolean functions
f : {0, 1}n → {0, 1} and g : {0, 1}m → {0, 1} is defined as follows:

(f ⋄ g)(x1, . . . , xn) = f(g(x1), . . . , g(xn))

where xi ∈ {0, 1}m.

Let D(f) be the minimal depth of a formula computing f . It is easy to see that f ⋄ g can be
computed by a formula of depth D(f) +D(g). Karchmer, Raz and Wigderson conjectured that
this bound is roughly optimal.
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Conjecture 1 (KRW conjecture). For any non-constant functions f : {0, 1}n → {0, 1} and
g : {0, 1}m → {0, 1}:

D(f ⋄ g) ≈ D(f) +D(g)

The symbol “approximately equal” could be interpreted in a number of ways, but pretty
much all reasonable interpretations, should the conjecture be proven, imply P ⊈ NC1. In fact,
while in the original conjecture there is ∀ quantifier for both f and g, the existence of such g for
every f would be quite enough.

As an example, let us formulate a weaker version of conjecture, from which P ⊈ NC1 would
still follow.

Conjecture 2 (KRW conjecture, weaker version). There exists a constant ε such that for any
n and m and any non-constant f : {0, 1}n → {0, 1} there exists g : {0, 1}m → {0, 1} such that

D(f ⋄ g) ≥ D(f) + εm

KRW conjecture was extensively studied in a series of work [EIRS01], [HW90], [GMWW17],
[DM16], [KM18], [dRMN+20], mostly from communication complexity point of view. To present
a thorough overview, we include the necessary definitions as well.

For a function f : {0, 1}n → {0, 1}, let KWf (Karchmer-Wigderson game for a function f)
be a communication problem, where Alice gets x ∈ f−1(0), Bob gets y ∈ f−1(1), and they need
to find i such that xi ̸= yi. In [KW88] it was observed that D(f) = CC(KWf ), where CC(R)
denotes the minimal depth of a communication protocol solving relation R.

KRW conjecture can be reformulated in those terms as CC(KWf⋄g) ≈ CC(KWf ) +
CC(KWg).

Karchmer-Wigderson games have been successfully applied to a monotone setting, separating
monotone NC1 and NC2 [KW88]. There have been attempts to tackle monotone KRW conjec-
ture [dRMN+20], where the authors introduced also a semi-monotone setup. [EIRS01, HW90]
proved a lower bound for a block-composition of two universal relations.

Definition 2. Un = {(x, y, i) | x, y ∈ {0, 1}n, xi ̸= yi} ∪ {(x, x,⊥) | x ∈ {0, 1}n}

In a sense, universal relation generalizes KWf for any f , since a protocol for Un can be
used to solve KWf as well. The difference is that in Un, inputs for players do not come from
two disjoint sets. The same way as universal relation generalizes KW games for functions, their
composition generalizes KW games for composition of functions. There does not seem to be any
formula lower bounds that follow from communication lower bounds involving universal relation,
but it can be considered more of a stepping stone to hone our techniques before dealing with
actual function.

Currently there exist lower bounds in the following setups:

• a lower bound on Un ⋄ Un [EIRS01, HW90];

• a lower bound on KWf ⋄ Un for any f [GMWW17, KM18];

• a lower bound on Un ⋄ KWg and Un ⊞2 KWg for some g [MS21].

Here the operation ⊞m is defined in the following way:

Definition 3 ([MS21]). XOR-composition f⊞mg : ({0, 1}n)n → {0, 1} of functions f : {0, 1}n →
{0, 1} and g : {0, 1}n → {0, 1}n is defined as follows:
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(f ⊞m g)(x1, . . . , xm) = f(g(x1)⊕ . . .⊕ g(xm))

.
where xi ∈ {0, 1}n.

In [MS21] authors also define another version of XOR-composition, which we use throughout
the paper:

Definition 4 ([MS21]). XOR-composition f⊞g : {0, 1}2n → {0, 1} of two function f : {0, 1}n →
{0, 1} and g : {0, 1}n → {0, 1}n is defined as follows:

(f ⊞ g)(x, y) := f(g(x)⊕ y)

This differs from the definition of ⊞2 in the sense that g is not applied to a second argument.
In the same paper, the authors stated a variant of KRW conjecture using XOR-composition

instead of block-composition. This variant of the conjecture also implies P ⊈ NC1. Moreover,
[MS21] also introduced a variant of XOR-KRW regarding size of the formulas. If proved, this
would imply a supercubic lower bound on a modified Andreev’s function.

To outline a general idea of how different variants of KRW work, for P ⊈ NC1 we need to
prove a variant of conjecture of the form “∀f∃g such that the depth of a formula for f ◦ g (for
a reasonable definition of ◦) noticeably increases in comparison to a depth of a formula for f ”.
For beating cubic size lower bound for Andreev’s function, we only need to prove that “∃f, g
such that the formula size for f ◦ g is big enough”.

The next step following the lower bounds mentioned above would be getting rid of universal
relation as both inner and outer parts of the composition, since for formula lower bounds of any
form we need proper functions there. We are able to do that with restrictions on top gates of
the formula:

Theorem 1 (Main theorem). With probability 1 − o(1) for a random function f : {0, 1}n →
{0, 1}, there exists a function g : {0, 1}n → {0, 1}n, such that f ⊞ g is not computable by an
AND of 2(2α−ε)n formulas of size at most 2(1−α−ε)n for any 0 < α ≤ 1

5 − 0.01 and any constant
0 < ε < α.

AND in the statement could be replaced by OR, and 0.01 serves as an arbitrary small constant
separating α from 1

5 . We also obtain a new lower bound on modified Andreev’s function, again
with the restriction on top gates of the formula.

Our approach equips a technique from [EIRS01] of tracking a suitable subadditive measure
with new combinatorial insights.

The plan of the proof of Theorem 1 could be briefly summarized as follows:

• we sample a set of functions such that any big enough subset of its compositions with f
have very few zeroes in common;

• we track a certain subadditive measure while we walk down the trees of formulas for the
compositions;

• we consider different subformulas obtained in this way, and argue that they cannot repre-
sent too many functions g at once, or the measure would be too small;

• then a counting argument gives a lower bound on maximal size of such subformulas.
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The paper is organized in the following way. First we give the necessary definitions and
some warm-up lemmas. Then we prove Theorem 1 and derive a lower bound on modified An-
dreev’s function from it, assuming the existence of a set of functions with required combinatorial
properties. Then we prove the existence of such set in Section 4.

While in our proof we rely on the fact that the top gate of a formula has a big fan-in (which,
in a setting with fan-in 2, corresponds to having a top subtree of gates of the same type and big
enough depth), this restriction seems somehow artificial. We believe that there is a possibility
that this method could be adapted for the general case.

2 Preliminaries

2.1 Notation

Let us recall the definition of the XOR-composition.

Definition 4 ([MS21]). XOR-composition f⊞g : {0, 1}2n → {0, 1} of two function f : {0, 1}n →
{0, 1} and g : {0, 1}n → {0, 1}n is defined as follows:

(f ⊞ g)(x, y) := f(g(x)⊕ y)

Let us list some notation in regard to formula complexity.

Definition 5. Let L(f) be the minimum number of leaves in a formula F over basis {∧,∨,¬}
such that it computes f .

Let h(x, y) be a function of two variables. We denote as hx a function: hx(y) := h(x, y).
We also introduce the following shortcut notation for dealing with matrices.
Let M = X × Y be a matrix. We denote a submatrix A× Y for A ⊆ X as MA. An element

of a matrix, located in row indexed by x, x ∈ X and column indexed by y, y ∈ Y , is denoted as
M [x, y]. Analogously, we denote a row indexed by x as M [x].

For the rest of the paper, we consider only boolean matrices whose rows and columns are
indexed by X := {0, 1}n and Y := {0, 1}n.

Definition 6. For a function h : {0, 1}n × {0, 1}n → {0, 1}, we define a matrix Mh:

Mh[x, y] := h(x, y)

Definition 7. For a pair of functions f : {0, 1}n → {0, 1} and g : {0, 1}n → {0, 1}n we define a
matrix Mf,g:

Mf,g[x, y] := f(g(x)⊕ y)

Definition 8. For a function f : {0, 1}n → {0, 1} and a set of functions Z from {0, 1}n → {0, 1}n
we define a matrix Mf,Z :

Mf,Z [x, y] :=
∨
g∈Z

f(g(x)⊕ y)

For the rest of the paper, N := 2n.
As we use f and g solely to denote first and second arguments of XOR-composition, we always

imply the following domains and ranges for them: f : {0, 1}n → {0, 1}, g : {0, 1}n → {0, 1}n.
Analogously, x and y are implied to be vectors from {0, 1}n.
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2.2 Warm-up lemmas

Lemma 1. For a random f and arbitrarily fixed g and x we have: L((f ⊞ g)x) ≥ N1−o(1) with
probability 1− o(1).

Proof. As we fix g and x, f(g(x)⊕ y) depends only on y, so let h(y) := f(g(x)⊕ y).
Any formula for h can be transformed into a formula for f by adding negations to the

variables yi for all i where g(x)i = 1. But, as a random function, f does not have a formula of
size less than N1−o(1) with high probability [RS42].

The next lemma gives us connection between formula complexity of a function f and the
size of f−1(0):

Lemma 2. For f : {0, 1}n → {0, 1}, it holds that L(f) ≤ |f−1(0)| · n.

Proof. Let us compose a CNF formula for f . For any x ∈ f−1(0), we write a clause of n
variables which becomes violated iff we substitute x to those variables. It is easy to check that
a CNF formula composed exactly of |f−1(0)| such clauses represents function f . This formula
has |f−1(0)| · n leaves, which proves the inequality.

Lemma 3. Let h(x, y) be a function of two variables. Then L(h) ≥ L(hx) for any x.

Proof. Taking a formula, computing h, we get a formula, computing hx, by hardwiring the value
of x into it.

3 Proof of the main theorem

In this section, we prove Theorem 1 and, as a corollary, a lower bound on modified Andreev’s
function.

3.1 Modified Andreev’s function

Definition 9. Modified Andreev’s function Andr′ takes (3 log n + 1)n bits and outputs 1. We
will treat it’s inputs as:

• first 2n log n bits are 2 log n strings of size n;

• next n log n bits represent a description of a function from {0, 1}logn to {0, 1}logn;

• last n bits represent a description of a function from {0, 1}logn to {0, 1}.

Andr′(x1, . . . , x2 logn, g, f) = (f ⊞ g)
(⊕

x1, . . . ,
⊕

x2 logn

)
where

⊕
z is parity of the vector z.

Theorem 2. Modified Andreev’s function is not computable by an AND of n2α−ε formulas of
size at most n3−α−ε for any 0 < α ≤ 1

5 − 0.01 and any 0 < ε < α.

Again, AND in the statement could be replaced by OR.
As size of the formula is at most exponential in its depth, it immediately follows that:

Theorem 3. Modified Andreev’s function is not computable by an a (3 + α − 2ε) log n-depth
formula with (2α − ε) log n layers of AND gates at the top for any 0 < α ≤ 1

5 − 0.01 and any
constant 0 < ε < α.

5



Note that lower bounds for different values of α are incomparable, since for increasing depth
we have to pay with increasing number of same-type layers.

This beats current lower bounds on the formula depth of an explicit function, but it is
conditioned on the form of the formula. To the best of our knowledge this is the first lower
bound with restriction on the top of the formula.

Let us first show how a lower bound for a modified Andreev’s function follows from Theorem
1. We will follow the classical proof of hardness for Andreev’s function. We will take a look at
how modified version behaves under random restriction Rp, where p := 2 ln logn

n and show that
it both shrinks well and remains hard with high probability. The only technical difficulty we
need to overcome is that we need shrinkage to occur for many subformulas simultaneously. To
do this we use concentration inequality on shrinkage proved in [IMZ12].

Let Rp be a distribution on partial assignments, such that for any variable x we independently
assign:

• x := ∗ with probability p;

• x := 1 with probability (1− p)/2;

• x := 0 with probability (1− p)/2;

Lemma 4 ([IMZ12]). For any p ≥ 1√
(L(f))

:

Pr
[
L(f | Rp)) ≥ p2L(f)1+o(1)

]
≤ 1

L(f)11

As in [IMZ12] this lemma is proved somewhat implicitly, we refer the reader to the Appendix
A.1 for a more detailed explanation for which families of random restrictions their result works.

Proof of Theorem 2 from Theorem 1.
We can take any pair of functions f, g and hardwire it into Andr′. We pick those for which

f ⊞ g is not computable by AND of n2α−δ formulas of size at most n1−α−δ. Such functions exist
due to Theorem 1.

Let us take a look at how Andr′ with hardwired f and g behaves under random restriction
Rp, where p := 2 ln logn

n :

Pr [all variables in a block are fixed by a Rp] = (1− p)n =

=

(
1− 2 ln log n

n

)n

≤ e−2 ln logn = (log n)−2

As there are 2 log n input blocks, with probability 1 − o(1) we have at least one variable in
each block that is not fixed. We pick exactly one such variable per block and fix other variables
to arbitrary values. Now as there is exactly one variable in each block which is not fixed we end
up with a function that is equal to f ⊞ g up to possible negation of some variables. This means
that with high probability Andr′ is not computable by AND of n2α−δ formulas of size at most
n1−α−δ under random restriction Rp.

Now suppose that modified Andreev’s function equals to
∧n2α−ε

i=1 ai, where each ai is com-
putable by n3−α−ε size formula for some ε > δ > 0.

We prove that under restriction Rp, all ai shrink to a size less than n1−α−δ.
For any i we have 3 different cases depending on L(ai):

• L(ai) < n1−α−ε. In this case we are already done, as the formula size cannot increase
under random restriction.
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• p ≥ 1√
L(ai)

, L(ai) ≥ n1−α−ε. In this case, we apply Lemma 4. Since L(ai) ≤ n3−α−ε,

Pr
[
L(ai | Rp) ≥ n1−α−ε+o(1)

]
≤ L(ai)

−11 ≤ 1
n5

• p < 1√
L(ai)

, L(ai) ≥ n1−α−ε. In this case, we invoke monotonicity of Pr[L(ai |

Rp) ≥ k] on p with fixed k. Let q := 1√
L(ai)

, then Pr
[
L(ai | Rp) ≥ q2+o(1)L(ai)

]
≤

Pr
[
L(ai | Rq) ≥ L(ai)

o(1)
]
≤ L(ai)

−11 ≤ 1
n5 .

Hence, with probability 1− o(1) there is no i such that L(ai | Rp) ≥ n1−α−δ ≥ n1−α−ε+o(1)

for δ < ε. Then with probability very close to 1 function Andr′ under random restriction Rp is
computable by AND of n2α−δ formulas of size at most n1−α−δ, which is a contradiction.

3.2 Proof of Theorem 1

Now we prove Theorem 1.

Theorem 1 (Main theorem). With probability 1 − o(1) for a random function f : {0, 1}n →
{0, 1}, there exists a function g : {0, 1}n → {0, 1}n, such that f ⊞ g is not computable by an
AND of 2(2α−ε)n formulas of size at most 2(1−α−ε)n for any 0 < α ≤ 1

5 − 0.01 and any constant
0 < ε < α.

To achieve that, we need to define a notion of well-mixed set of functions.

Definition 10 (Well-mixed set of functions). A set of functions G from {0, 1}n → {0, 1}n is
(Q,D,P )-well-mixed for f if ∀Z ⊂ G, |Z| = Q, there exist a set K ⊂ {0, 1}n, |K| ≤ P , such
that MX\K

f,Z has no more than D zeroes in total.
We call the set K unlucky rows, and we call the set X \K lucky rows.

Informally, we say that a set is well-mixed if all of its subsets behave close to how a random
subset of functions would behave.

The key assumption for proving Theorem 1 is that there exists large enough well-mixed set
of functions G with suitable parameters. We leave proving its existence until next section, and
for now let us prove Theorem 1 under this assumption.

Let us recall that N stands for 2n, as this notation is used heavily below.

Proof. Let us randomly pick a function f . Then we take a set of functions G such that |G| =
N

1
4
N1−α

and G is (Nα, 2N2−2α, 2N1−α)-well-mixed. We aim to show that f ⊞g is hard for some
g ∈ G.

We assume the contrary. Suppose for all g ∈ G the XOR-composition f⊞g can be represented
as AND of small enough formulas. Formally, for any g ∈ G:

f ⊞ g =
N2α−ε∧
i=1

hg,i

where all hg,i are computable by formulas of size N1−α−ε. For any g we fix the smallest formula
for f ⊞ g of such form, and we denote it Fg.

We define a measure C(h) of any function h of two arguments:

C(h) =
∑
x∈X

L(hx)

Let us note that C(f ⊞ g) ≥ N · L(f) ≥ N2−o(1).
We prove that this measure is subadditive in the following sense:
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Lemma 5. Let h(x, y) = ◦(g1, g2, . . . , gk)(x, y), where ◦ is either ∧ or ∨. Then C(h) ≤ C(g1)+
. . .+ C(gk).

Proof. If we prove that the inequality holds for any specific x, namely, L(hx) ≤ L(gx1 ) + . . . +
L(gxk), the lemma immediately follows.

Since h(x, y) = ◦(g1, g2, . . . , gk)(x, y), we can construct a formula computing hx, applying
operation ◦ to formulas computing each gxi . The inequality follows.

It means that for any g ∈ G and Fg =
∧N2α−ε

i=1 hg,i we can fix 1 ≤ ig ≤ N2α−ε such that for
hg,ig the measure is big enough, namely:

C(hg,ig) ≥ N2−2α+ε−o(1)

We are going to use two different upper bounds on L(hxg,ig) for any x.
If for some hg,ig it is true that L(hg,ig) ≥ N1−α, then we are done, as the corresponding

subformula should be big enough. Otherwise, for any x ∈ X:

L(hxg,ig) ≤ L(hg,ig) ≤ N1−α

.
On the other hand,

L(hxg,ig) ≤ |(hxg,ig)
−1(0)| · n

by Lemma 2.
Now let Zh be a subset of G such that ∀g ∈ Zh : hg,ig = h for some fixed h.
Suppose |Zh| ≥ Nα. We are going to come to a contradiction with this assumption. First,

without losing generality, assume |Zh| = Nα, as we can take a subset of Zh of exactly this size.
Since G is (Nα, 2N2−2α, 2N1−α)-well-mixed, we can consider a matrix Mf,Zh

and distinguish
set of unlucky rows K and set of lucky rows X \K in it.

From the properties of well-mixed set, we know that:

• |K| ≤ 2N1−α;

• there is an upper bound on number of zeroes in M
X\K
f,Zh

, which are exactly common zeroes
of all g ∈ Zh on X \K: ∑

x/∈K

∣∣∣ ⋂
g∈Zh

(gx)−1(0)
∣∣∣ ≤ 2N2−2α

Let us also note that Mh ≥ Mf,Zh
, since (f ⊞g)(x, y) = 1 for any g ∈ Zh implies h(x, y) = 1.

C(h) =
∑
x

L(hx) =
∑
x∈K

L(hx) +
∑
x/∈K

L(hx) ≤

≤
∑
x∈K

L(hx) +
∑
x/∈K

|(hx)−1(0)| · n ≤

≤ 2N1−α ·N1−α +
∑
x/∈K

∣∣∣ ⋂
g∈Zh

(gx)−1(0)
∣∣∣ · n ≤

≤ 2N2−2α + 2N2−2α · n = N2−2α+o(1)

since we have no more than 2N2−2α zeroes in all lucky rows in Mf,Zh
, therefore, the number

of zeroes in rows x /∈ K in Mh does not exceed this as well.
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We know that C(h) ≥ N2−2α+ε−o(1) though, so this is a contradiction.
So |Zh| < Nα. Then number of different h’s is at least |G|

Nα ≥ N
1
4
N1−α(1−o(1)).

Now let s := maxh L(h). The number of functions with formulas of size at most s is at most
ss(1+o(1)), so ss(1+o(1)) ≥ N

1
4
N1−α(1−o(1)) and s log s(1 + o(1)) ≥ 1

4N
1−α logN(1 − o(1)). Then

s ≥ N1−α−ε, and this completes the proof.

4 The existence of a well-mixed set of functions

Let us restate the definition of a well-mixed set:

Definition 10 (Well-mixed set of functions). A set of functions G from {0, 1}n → {0, 1}n is
(Q,D,P )-well-mixed for f if ∀Z ⊂ G, |Z| = Q, there exist a set K ⊂ {0, 1}n, |K| ≤ P , such
that MX\K

f,Z has no more than D zeroes in total.
We call the set K unlucky rows, and we call the set X \K lucky rows.

The goal of this section is to prove the following theorem:

Theorem 4. For 0 < α ≤ 1
5 − 0.01, let G be a family of functions {0, 1}n → {0, 1}n of size

N
1
4
N1−α

, each sampled uniformly at random. Then G is (Nα, 2N2−2α, 2N1−α)-well-mixed set
with probability at least 1− 1

exp (exp (n)) .

Note that we sample G as a family of functions, with possible repetitions, which we use

heavily in the proof. But with probability at least
(
1− 1

NN−N
1
4N1−α

)N
1
4N1−α

≥ e
− 2

N3N/4 ≥

1− 2
N3N/4 all functions turn out to be different from each other.
The plan of the proof is as follows:

• We identify which rows are supposed to be unlucky, and there will be two kinds of those:
good and bad.

• For each kind of unlucky rows, we do three steps:

– we prove that for a fixed row the probability to be of this kind for a random family
of functions is very low;

– we amplify this probability further, calculating the probability that some number of
rows fail us simultaneously;

– we sum the error over subsets of the random family.

The first kind of unlucky rows would be a bad row.

Definition 11. Let Z be a family of functions {0, 1}n → {0, 1}n, each function sampled uni-
formly at random. We call x a bad row for Z, if dim

(
span

(⋃
g∈Z{g(x)}

))
≤ 2αn, and a good

row otherwise. Here the vector space is defined over F2 in a natural way.

We bound the probability that a given x is bad for a random Z:

Lemma 6. Let Z be a random family of functions {0, 1}n → {0, 1}n of size Q. Then for a fixed
x:

Pr
Z

dim
span

⋃
g∈Z

{g(x)}

 ≤ 2αn

 ≤ N2αn

(
1

N1−2α

)Q

9



Proof. The proof is a simple counting argument. To have a vector subspace of dimension 2αn,
we need to pick 2αn generating vectors. There are 22αn = N2α vectors in such space, and for
each of Q functions from Z we pick its value in point x from those possibilities, versus NQ

possibilities in general case. So we have:

Pr
Z

dim
span

⋃
g∈Z

{g(x)}

 ≤ 2αn

 ≤

≤
(

N

2αn

)(
N2α

)Q
N−Q ≤

≤ N2αn

(
1

N1−2α

)Q

Now let us prove that with high probability, we have no more than N1−α bad rows for a
random Z.

Lemma 7. Let Z be as in Lemma 6. Then

Pr
Z

∃V ⊂ X, |V | = N1−α : ∀x ∈ V : dim

span

⋃
g∈Z

{g(x)}

 ≤ 2αn

 ≤ N−(1−2α)QN1−α(1−o(1))

if Q = ω(n).

Proof. Since each function in Z is sampled uniformly at random, for each x the event of “being
bad” is independent of others. So for random Z the probability that a fixed set of N1−α x’s is

bad can be bounded by
(
N2αn

(
1

N1−2α

)Q)N1−α

. After that we apply a union bound over all sets
of x’s.

We get:

NN1−α
N2αnN1−α

(
1

N1−2α

)QN1−α

=

(
N2αn+1

N (1−2α)Q

)N1−α

=

= N
−(1−2α)Q(1− 2αn+1

(1−2α)Q
)N1−α

≤

≤ N−(1−2α)QN1−α(1−o(1))

for Q = ω(n).

At last, we apply union bound over all choices of Z from G.

Lemma 8. Let G be as in Theorem 4. Then:

Pr
G

[
∃Z ⊂ G, |Z| = Q,∃V ⊂ X, |V | = N1−α : ∀x ∈ V : x is bad for Z

]
≤ N−Q

4
N1−α(1−o(1))

Proof. For any specific Z ⊂ G we can apply Lemma 7, as each function in G is sampled uniformly
at random. We sum the error over all possible choices of Z and get:

|G|QN−(1−2α)QN1−α(1−o(1)) =

(
N

1
4
N1−α

N (1−2α)N1−α(1−o(1))

)Q

≤ N−Q
4
N1−α(1−o(1))

10



Hence, for every Z ⊂ G there are no more than N1−α bad rows with high probability.
We consider bad rows unlucky. After we take those out of consideration, we prove that

almost all good rows are lucky.
To do that, first we consider a technical Lemma:

Lemma 9. Let f be a function {0, 1}n → {0, 1}, chosen uniformly randomly, S be any set of
functions from {0, 1}n → {0, 1}n such that for a fixed x values g(x) for all g ∈ S are linearly
independent, 2 ≤ |S| < n

2 . Then:

Pr
f

[
Mf,S [x] has 2N2−|S| zeroes

]
≤ 2(n+1)|S|−2n−2|S|−2

This is a corollary from the following statement by Kaave Hosseini (from personal commu-
nication):

Lemma 10. Let B ⊂ {0, 1}n be a random set, where each point lies with probability 1
2 , L =

x1, . . . , xk be linearly independent vectors, k ≥ 2. Then:

Pr
B

[
|(B + x1) ∩ . . . ∩ (B + xk)| ≥ 2n−k+1

]
≤ 2(n+1)k−2n−2k−2

First we show how Lemma 9 follows from Lemma 10.
Proof of 9 from 10: The value of Mf,S [x, y] is zero iff ∀g ∈ S : f(g(x) ⊕ y) = 0. Plugging

B := f−1(0), k := |S|, L := {g(x)}g∈S in 10, we get 9, since zeroes of f(g(x)⊕ y) are shifted by
vector g(x) in comparison with zeroes of f .

Now we prove Lemma 10.

Proof. To upper bound |(B + x1) ∩ . . . ∩ (B + xk)|, let us consider the following sum:

A :=
∑

y∈{0,1}n
χ(y + x1)χ(y + x2) . . . χ(y + xk)

where χ is a characteristic function of a set B. This sum equals |(B + x1) ∩ . . . ∩ (B + xk)|
exactly.

Let us now extend set L = {x1, . . . , xk} to a basis and split {0, 1}n onto 2k parts, depending
on whether a vector contains xi in its decomposition onto basis vectors or not. Each part
contains 2n−k different points. Let us consider one of those parts, without losing generality we
pick:

P = {y | y does not contain any of xi in decomposition}

In the sum AP :=
∑
y∈P

χ(y + x1) . . . χ(y + xk) every point in {0, 1}n occurs as an argument

of χ no more than once, so all summands and all multipliers in them are independent.
If we interpret every summand as a Bernoulli variable which equals 1 with probability 1

2k
,

we can apply Chernoff bounds.
The exact form that we use here is the following:

Theorem 5 (Chernoff bounds, multiplicative form). For independent random X1, . . . , Xn from
{0, 1} and 0 ≤ δ ≤ 1:

Pr

[∑
i

Xi ≥ (1 + δ)µ

]
≤ e−

δ2µ
3

where µ is the expected value of
∑

iXi.

11



Here the expected value of AP equals 2n−2k.

Pr
B

[
AP > (1 + δ)2n−2k

]
< e(−δ2)2n−2k−2

This holds regardless of the choice of a part P . We apply union bound and sum the error
over all possible parts:

Pr
B

[
A > (1 + δ)2n−k

]
≤ Pr

B

[
∃P : AP > (1 + δ)2n−2k

]
< 2k · e(−δ2)2n−2k−2

At last, we apply union bound over all possible choices of L:

Pr
B

[
∃L : A > (1 + δ)2n−k

]
< 2nk · 2k · e(−δ2)2n−2k−2

We pick δ := 1 and get:

Pr
B

[
A > 2n−k+1

]
< 2(n+1)k−2n−2k−2

This finishes the proof of the Lemma.

We use the Lemma to bound the number of zeroes in good rows.

Lemma 11. Let x be a good row for a family of functions Z. Then:

Pr
f

[
Mf,Z [x] has 2N1−2α zeroes

]
≤ 2−Nα+0.05(1−o(1))

Proof. Since x is good for Z, we can find a subset S ⊂ Z such that |S| = 2αn and {g(x)}g∈S are
linearly independent. By Lemma 9 and the fact that n− 2 · 2αn ≥ (α+0.05)n, we immediately
have an upper bound on number of zeroes in a row x:

Pr
f

[
Mf,Z [x] has 2N1−2α zeroes

]
≤

≤ Pr
f

[
Mf,S [x] has 2N1−2α zeroes

]
≤

≤ 2(n+1)2αn−2(α+0.05)n−2
=

= 2−Nα+0.05(1−o(1))

Lemma 12. Let Z be a random family of functions from {0, 1}n → {0, 1}n. Then:

Pr
f,Z

[
∃V,V is a set of good rows for Z, |V | = N1−α : ∀x ∈ V : Mf,Z [x] has 2N1−2α zeroes

]
≤

≤ 2−N1.05(1−o(1))

12



Proof. Again, as Z is picked uniformly at random, the events regarding every x are independent
for a fixed V . Now let us sum the error over all choices of V :

Pr
f,Z

[
∃V, V is a set of good rows for Z, |V | = N1−α : ∀x ∈ V : Mf,Z [x] has 2N1−2α zeroes

]
≤

≤
(

N

N1−α

)(
2−Nα+0.05(1−o(1))

)N1−α

≤

≤
(

N

N1−α

)
2−N1.05(1−o(1)) ≤

≤ 2N
1−α·logN · 2−(1−o(1))N1.05 ≤

≤ 2−(1−o(1))N1.05

Now, we are ready to sum over all possible choices of Z in a random G.

Lemma 13. Let G be as in Theorem 4. Then:

Pr
f

[
∃Z ⊂ G, |Z| = Q,∃V, V is a set of good rows for Z, |V | = N1−α :

∀x ∈ V : Mf,Z [x] has 2N1−2α zeroes
]
≤ NQ 1

4
N1−α

2−(1−o(1))N1.05

Proof. This is a union bound over all choices of a subset Z of size Q from set G of size N
1
4
N1−α

.

Now we are ready to prove Theorem 4.
Let us take a family G of functions from {0, 1}n → {0, 1}n of size N

1
4
N1−α

, where each
function is sampled uniformly at random. With probability 1− 1

exp (exp (n)) all functions turn out
to be different from each other.

Let us take any Z ⊂ G of size Nα. We plug Q := Nα into Lemma 8 and get that with
probability at least 1−N−N1−α we have no more than N1−α bad rows for our Z.

Plugging this parameter in Lemma 13, we get that with probability 1−N
1
4
N2−N1.05(1−o(1)) =

1− 2−N1.05(1−o(1)) no more than N1−α good rows have 2N1−2α zeroes in them.
So, with very high probability, all properties hold. We say that both bad rows and good

rows with at least 2N1−2α zeroes are our unlucky rows, and this is a set K from Theorem 4.
Now, as every lucky row has at most 2N1−2α zeroes, and there are no more than N lucky

rows, there are no more than 2N2−2α zeroes in all lucky rows, which gives us the statement of
Theorem 4.

5 Notes and open questions

Note that our result works for α that is separated from 1
5 by some constant. With more accurate

analysis in Section 4 it might be possible to push α up. So the first natural question is: can we
prove variant of the main theorem for α < 1

2?
The second question concerns the balance of the parameters. In our current result, one can

say that we are trading one arbitrary layer for two AND layers. Can this trade-off be made more
favorable?

But the main question that arises from our work is whether this method could be adapted
to work without restrictions on top gates of the formula, or with weaker restrictions. The first
natural extension would be to to prove a lower bound for AC0 formula on top of arbitrary De
Morgan formulas.
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Conjecture 3. For any positive integer d, there exists α > 0 and c > 1 such that modified
Andreev’s function is not computable by an AC0 formula of depth d and size ncα on top of
(3− α) log n-depth De Morgan formulas.
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7 Another important statement

The contents of this section had to be modified for the reasons of safety of the authors, compared
to the original version, as the recently adopted Russian laws effectively establish censorship.

Nevertheless, we are deeply upset about the events currently happening in Ukraine and wish
for peace more than anything.
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A Appendix

A.1 Notes on Shrinkage Lemma

As the formulation of Lemma 4 is proven in [IMZ12] somewhat implicitly, we give some notes
on that. The following notation is consistent with [IMZ12].
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Let a p-regular distribution on partial assignments to variables x1, . . . , xn be the one for
which for any variable xi: Pr[xi = ∗] = p.

For random restriction ρ, let supp(ρ) := {xi | ρ(xi) ̸= ∗}.
[IMZ12] use a notion of an independent sequence of restrictions. While it is defined naturally

on families of restrictions to which shrinkage is applicable, defining this in general can be quite
technical. Below we explain the usage of this notion in [IMZ12].

The authors construct a random restriction ρ as a sequence of r k-wise independent restric-
tions ρ1, . . . , ρr. First they sample ρ1, and then ρ2 is sampled independently on those variables
x for which ρ1(x) = ∗ and so on. Note that supports of such restrictions are not independent of
each other, so formalizing this in general would require some accuracy with probability space.
Nevertheless, this construction is truly independent for a sequence of uniform distributions with
the same parameter.

Let us now present a general statement, which follows [IMZ12] almost to a letter.

Lemma 14 (Lemma 4.8 in [IMZ12]). Let Γ := 2. For a constant c ≥ 11, p ≥ m−1/Γ, r ≥ 11, a
formula f on ≤ m variables with L(f) = m and any p-regular random restriction ρ which is a
sequence of r independent (q = p

1
r )-regular k-wise independent restrictions:

Pr
[
L(f | ρ) ≥ 23c log

2/3 npΓm
]
≤ m−c

Note that in [IMZ12] authors argue the existence of such distribution and take great care of
minimizing the number of random bits needed to generate it. Nevertheless, their proof works
for any distribution with mentioned properties and we use it for uniform distribution.

The uniform distribution Rp can be broken up to a sequence of r distributions Rq, where
q = p

1
r . All of them are k-wise independent for any k, so, plugging in the parameters along with

c = 11, we get Lemma 4.
In terms of uniform distribution this statement was also mentioned in [Tal14].
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