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Abstract

We analyze the Fourier growth, i.e. the L1 Fourier weight at level k (denoted L1,k), of
read-once regular branching programs. We prove that every read-once regular branching program
B of width w ∈ [1,∞] with s accepting states on n-bit inputs must have its L1,k bounded by

min
{
Pr[B(Un) = 1](w − 1)k, s ·O

(
(n log n)/k

) k−1
2

}
.

For any constant k, our result is tight up to constant factors for the AND function on w − 1
bits, and is tight up to polylogarithmic factors for unbounded width programs. In particular, for
k = 1 we have L1,1(B) ≤ s, with no dependence on the width w of the program.

Our result gives new bounds on the coin problem and new pseudorandom generators (PRGs).
Furthermore, we obtain an explicit generator for unordered permutation branching programs of
unbounded width with a constant factor stretch, where no PRG was previously known.

Applying a composition theorem of B lasiok, Ivanov, Jin, Lee, Servedio and Viola (RANDOM
2021), we extend our results to “generalized group products,” a generalization of modular sums
and product tests.
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1 Introduction

Every Boolean function f : {−1, 1}n → {0, 1} can be identified by its unique multilinear extension

f(x) :=
∑
S⊆[n]

f̂(S)
∏
i∈S

xi,

where the coefficients

f̂(S) := E
x∼{−1,1}n

[
f(x)

∏
i∈S

xi

]
are called the Fourier coefficients of f . Over the past few decades, the analysis of these coefficients of
Boolean functions has become an indispensable tool in theoretical computer science and mathematics.
We refer the readers to the excellent textbook by O’Donnell [O’D14] for a broad introduction.

Given the wide applicability of this tool, researchers have proposed and analyzed different
quantitative measures of Fourier coefficients of Boolean functions. In this work we focus on the L1

Fourier norm at level k:

Definition 1 (L1 Fourier norm at level k). The L1 Fourier norm of a function {−1, 1}n → {0, 1}
at level k is

L1,k(f) :=
∑

S⊆[n]:|S|=k

|f̂(S)|.

For a function class F , we use L1,k(F) to denote maxf∈F L1,k(f).

The notion of Fourier growth is a convenient way of capturing the growth of L1,k with respect
to levels k.

Definition 2 (Fourier growth). A function class F ⊆ {f : {−1, 1}n → {0, 1}} has Fourier growth
L1(a, b) if there exist constants a and b such that L1,k(F) ≤ a · bk for every k.

By the Cauchy–Schwarz inequality, every Boolean function has its L1,k bounded by
(
n
k

)1/2
, and

thus has Fourier growth L1(1,
√
n).

Fourier growth was first studied by Mansour to obtain sample-efficient algorithms for learning
DNFs [Man95]. It was later formally introduced by Reingold, Steinke and Vadhan in [RSV13],
where they constructed explicit unconditional pseudorandom generators for permutation branching
programs. Subsequently, this notion has led to many exciting developments in learning the-
ory [IRR+21, EI21] and pseudorandomness [CHRT18, CHHL19, FK18, CHLT19, CGL+21]. In
recent years researchers have also discovered new applications to other areas such as separating
quantum and classical computation [RT19, Tal20, BS21, SSW21, GRZ21], and proving correlation
bounds with the Majority function (and its variants) [CHH+20, CGL+21, Vio21].

Thus given a function class, it has now become a natural question to analyze its Fourier
growth. Indeed, in the past decade it has been shown that several well-studied classes of func-
tions exhibit bounded Fourier growth. These include (parity) decision trees [OS07, BTW15,
Tal20, SSW21, GTW21], constant-depth circuits [Man95, Tal17], subclasses of low-degree F2-
polynomials [CHHL19, GTW21, CGL+21], low-degree real polynomials [IRR+21, EI21], func-
tions with bounded sensitivity [GSTW16], product tests [Lee19], and read-once branching pro-
grams [RSV13, SVW17, CHRT18].

Motivated by derandomization of space-bounded algorithms, in this work we continue the line
of research on the Fourier growth of read-once branching programs.
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Definition 3 (Read-once branching programs). An (unordered) read-once branching program B
of length n and width w computes a function B : {−1, 1}n → {0, 1}. On input x ∈ {−1, 1}n, the
program B fixes a permutation π : [n] → [n] and computes as follows. It starts at a fixed start state
v1 ∈ [w]. Then for t = 1, . . . , n, it reads the next input bit xπ(t) and updates its state according to a
transition function Bt : [w] × {−1, 1} → [w] by taking vt+1 := Bt(vt, xπ(t)). Note that the transition
function Bt can differ at each time step. The program has a fixed set of accept states Vacc ⊆ [w],
and B(x) = 1(vn+1 ∈ Vacc).

As we will not consider non-read-once branching programs in this work, henceforth we will often
omit the word “read-once” and use “branching programs” to refer read-once branching programs for
simplicity. Furthermore, as the Fourier growth of a function is unaffected by reordering the input
bits, for the purpose of establishing L1,k bounds we can restrict our attention to the case where π is
the identity permutation.

A well-studied subclass of branching programs is the class of regular branching programs. This
model has received a lot of attention in the literature [RTV06, De11, BRRY14, RSV13, BHPP21],
in part due to the fact that pseudorandomness against this restricted subclass sometimes suffices
for pseudorandomness against general branching programs, and hence the derandomization of
space-bounded computation [RTV06, BHPP21].

Definition 4 (Read-once regular branching programs). A read-once regular branching program is
a read-once branching program where for every time step t and state v ∈ [w], there are exactly 2
pairs (u, b) ∈ [w] × {−1, 1} such that Bt(u, b) = v.

A more restricted class that has also been well-studied is the class of permutation branching
programs.

Definition 5 (Read-once permutation branching programs). A read-once permutation branching
program is a read-once regular branching program where for every time step t and state v ∈ [w], if
Bt(u, b) = Bt(u

′, b′) then either u = u′ or b ̸= b′.

A recent line of works constructed explicit pseudorandom objects for regular and permutation
branching programs of unbounded width with a bounded number of accept states1 [HPV21, PV21,
PV22, BHPP21], a model for which prior to these works even non-explicit constructions were not
known to exist. Motivated by these results, we investigate the Fourier growth of these same models.

1.1 Our results

We obtain near-optimal L1,k bounds for regular branching programs of any width, improving the
bounds in [RSV13] and obtaining the first non-trivial bounds for unbounded width programs.

Theorem 6. Let B : {−1, 1}n → {0, 1} be a regular branching program of width w ∈ [1,∞] with s
accept states in its final layer. Then

L1,k(B) ≤ min
{
Pr[B(Un) = 1] · (w − 1)k︸ ︷︷ ︸

1

, s ·O ((n log n)/k)
k−1
2︸ ︷︷ ︸

2

}
.

Note that the two bounds are incomparable: the first bound is independent of the input length
n, and the second bound is independent of the width w. The first bound is tight for the ANDw−1

1Note that unbounded width permutation programs with an unbounded number of accept states can compute
arbitrary Boolean functions.
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function on w− 1 bits, which can be computed by a width-w permutation branching program, since

L1,k(ANDw−1) = 2−(w−1) ·
(
w − 1

k

)
= Pr[ANDw−1(Uw−1) = 1] ·

(
w − 1

k

)
.

For k = 1, our second bound can be sharpened to s · Pr[B(Un) = 0] (see Theorem 21), which
is also tight for the AND2 function on 2 bits, which has s = 1, Pr[AND2(U2) = 0] = 3/4, and
L1,1(AND2) = 3/4.

We complement Theorem 6 by a lower bound showing that our second upper bound is in fact

tight up to a factor of Θk(1) · (log n)
k−1
2 for k ≥ 2, even for the restricted subclass of permutation

branching programs.

Proposition 7. For all positive integers k, n, and s where s ≤
√
kn, there exists a permutation

branching program B : {−1, 1}n → {0, 1} of width Θ(
√
kn) with s accept states such that L1,k(B) ≥

s√
kn

· Ω(n/k)k/2 = Ωk(1) · s · n
k−1
2 .

We now make some remarks on Theorem 6. Previously, Reingold, Steinke and Vadhan proved an
upper bound of (2w2)k [RSV13]. Hence, our first upper bound improves their bound on two fronts.
Our first improvement is a quadratic sharpening on the dependence on the width w. Our second
improvement is the additional acceptance probability factor in our bounds, which, as we will discuss
in the next section, has further implications. L1,k bounds with a dependence on the acceptance
probability have proved to be useful, both in extending the bounds to higher levels k′ > k [CHRT18]
and extending the bounds to other classes of tests [Lee19, BIJ+21]. Indeed, we obtain both our
L1,k bounds for k > 1 by applying the reduction in [CHRT18] to bounds at a lower level, and
this reduction requires obtaining an L1,k bound that scales linearly with respect to the acceptance
probability of the function. We note that functions admitting L1,k bounds that scale linearly
with acceptance probability include arbitrary Boolean functions [O’D14, Lee19], constant-width
read-once branching programs [CHRT18], F2-polynomials [GTW21, BIJ+21], product tests with
outputs {−1, 1} [Lee19, BIJ+21]. Therefore, Theorem 6 adds the class of regular branching programs
to this list.

Our second upper bound gives the first non-trivial L1,k bounds for regular branching programs

of unbounded width. Recall that every bounded function has its L1,k bounded by
√(

n
k

)
; so this

upper bound is interesting only when s = o(
√

n/(k(log n)k−1)).
Proposition 7 follows from the observation that symmetric F2-polynomials of degree w can be

computed by a permutation branching program of width at most 2w [BGL06], where L1,k lower
bounds on the former class were recently established in [BIJ+21]. For the same reason, Theorem 6
recovers the L1,k bounds for symmetric F2-polynomials in [BIJ+21, Theorem 8] with a different
proof.

1.2 Applications

We describe several consequences of Theorem 6.

Coin problem. Let Xδ = (X1, . . . , Xn) be the distribution over {−1, 1}n, where the Xi’s are
independent and each Xi has expectation δ. The δ-coin problem studies the maximum advantage
for a function class F to distinguish between the distributions Xδ and X0 = Un. This basic
problem has been studied extensively for various restricted classes of tests, and has a wide range
of applications in computational complexity, including circuit complexity [Ajt83, Val84, SV10,
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LSS+21, GII+19], pseudorandom generators [BV10], quantum computing [Aar10, AD11], streaming
algorithms [BGW20], and multiparty computation [CDrI+13]. In particular, there has been a rich
line of work on the coin problems for branching programs [BV10, Ste13, LV18, BGW20, BGZ21].

It is known that bounded Fourier growth of F implies an upper bound the coin problem for F
(see [Lee19, Fact 9]). Thus we obtain the following corollary of Theorem 6.

Corollary 8. There exists a constant α > 0 such that the following holds. Let B : {−1, 1} →
{0, 1} be a regular branching program of width w ∈ [1,∞] with s accept states. For every δ ≤
αmax{1/w, 1/

√
n log n}, we have∣∣E[B(Xδ)] −E[B(X0)]

∣∣ ≤ δs + δ2 ·O
(

min
{
w2, s

√
n log n

})
.

Moreover, Avishay Tal showed (see [Agr20, Lemma 9]) that if a class F is closed under restrictions,
then L1,1 bounds on F already implies bounds on the coin problem for F . Since the class of
permutation branching programs is closed under restrictions, we obtain the following stronger coin
problem bounds for that class:

Corollary 9. Let B : {−1, 1} → {0, 1} be a permutation branching program with s accept states.
Then |E[B(Xδ)] −E[B(X0)]| ≤ δ

1−δ · s .

Claim 10. For every δ > 0 and positive integer s ≤ 32/δ, there exists a permutation branching
program B of length 32/δ2 and width 128/δ with s accept states such that E[B(Xδ)] −E[B(X0)] ≥
sδ

1000 .

Corollaries 8 and 9 can be interpreted as follows. Regular (and permutation) programs with a
single accept state cannot distinguish (sufficiently small) biased coins from uniform much better
than simply outputting their first input bit.

Previously Braverman, Rao, Raz, and Yehudayoff [BRRY14] obtained a coin problem bound
of δ · s · (w − 1) for width-w regular branching programs with s accept states. Corollaries 8 and 9
improve this to roughly δ · s when δ is very small (Corollary 8) or when we restrict to permutation
branching programs (Corollary 9). Claim 10 shows that the upper bound in Corollary 9 is tight up
to constant factors.

Pseudorandom generators. Theorem 6 also implies new pseudorandom generators for permuta-
tion branching programs.

Definition 11 (Pseudorandom generators). A function G : {0, 1}s → {−1, 1}n is a pseudorandom
generator (PRG) for a function class F with seed length s and error ϵ, if for every f ∈ F ,∣∣E[f(Un)] −E[f(G(Us))]

∣∣ ≤ ϵ.

G is explicit if it can be computed in polynomial time.

Recall that we consider unordered branching programs, where a program can read its inputs
in arbitrary order before its execution. Starting from the work of Bogdanov, Papakonstantinou,
and Wan [BPW11], there has been extensive research on constructing pseudorandom generators for
unordered branching programs [BPW11, IMZ19, RSV13, SVW17, HLV18, LV20, CHRT18, MRT19,
FK18, DHH19, Lee19, DHH20, DMR+21], in search for new ideas for improving Nisan’s PRG for
ordered branching programs [Nis92], which remains the best PRG for derandomizing space-bounded
computation to date. This line of research recently led to the first improvement over Nisan’s PRG
for the special case of width-3 (ordered) branching programs [MRT19].

Applying our L1,k bounds to the “polarizing random walk” framework of [CHHL19, CHLT19,
CGL+21], we obtain the following pseudorandom generator.
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Corollary 12. There is an explicit pseudorandom generator for width-w permutation branching
programs with seed length w2 ·O(log(n/ϵ))(log(1/ϵ) + log log n) and error ϵ.

Corollary 12 gives a slight improvement on the PRG given by [CHHL19], reducing the dependence
on width from w4 to w2, stemming directly from the L1,k(B) ≤ (w − 1)k bound in Theorem 6,
which improves the L1,k(B) ≤ (2w2)k bound of [RSV13]. (Corollary 12 is for permutation branching
programs rather than regular branching programs, because the polarizing random walk framework
requires that the class is closed under restriction). By the reduction of [BHPP21], this also implies
a hitting set generator (HSG) for permutation branching programs of unbounded width with seed
length O(1/ϵ2) · log(n/ϵ)(log(1/ϵ) + log logn), quadratically improving the dependence on ϵ. (An
ϵ-HSG for a class F is a function G : {0, 1}s → {−1, 1}n where for all f ∈ F with Pr[f(Un) = 1] > ϵ
there is an x ∈ {0, 1}s such that f(G(x)) = 1.)

From Corollary 9, we also obtain the first nontrivial pseudorandom generator that fools unordered
permutation branching programs of unbounded width with constant factor stretch and constant
error.2 For simplicity we state our result for constant error, and do not optimize constants.

Let H(x) := x log( 1x) + (1 − x) log( 1
1−x) denote the binary entropy function.

Theorem 13. Given any constant δ ∈ (0, 1/2) independent of n, there is an explicit PRG for
unordered permutation branching programs with a single accept state with seed length H(1/2 +
0.499δ) · n + o(n) and error δ

1−δ + δ
100 .

This is proven by noting that with the specified seed length, we can approximately sample n
independent δ-biased coins, which are pseudorandom by Corollary 9. We are not aware of any PRGs
prior to our result.

As mentioned above, there exist explicit hitting-set generators (HSGs) with better seed length
for this class [BHPP21]. For the easier case of ordered permutation programs, Hoza, Pyne, and
Vadhan [HPV21] constructed an explicit PRG with significantly better seed length, namely Õ(log n ·
log(1/ϵ)).

We note that our results do not give any PRGs for regular programs, because all of the methods
for obtaining PRGs from Fourier growth bounds require the class to be closed under restrictions. In
particular, even in the ordered setting, it remains unknown whether a nontrivial PRG for unbounded
width regular programs exists.

Generalized group products. As mentioned in the previous section, L1,k bounds with the
acceptance probability factor (as in Theorem 6) are useful for obtaining L1,k bounds for wider
function classes. To make this precise, we recall the definition of disjoint composition of two function
classes.

Definition 14 (Disjoint composition). Let F be a class of functions from {−1, 1}m to {−1, 1} and
let G be a class of functions from {−1, 1}ℓ to {−1, 1}. Define the class F ◦ G of disjoint composition
of F and G to be the class of all functions from {−1, 1}mℓ to {−1, 1} of the form

h(x1, . . . , xm) = f(g1(x
1), . . . , gm(xm)),

where g1, . . . , gm ∈ G are defined on m disjoint sets of variables and f ∈ F .

B lasiok, Ivanov, Jin, Lee, Servedio and Viola [BIJ+21] showed that if both F and G are closed
under negation of their outputs, and F is closed under restrictions, then L1,k bounds with the

2The co-HSG of [BHPP21] can be interpreted as an explicit PRG for permutation programs with error 1−1/(n+1).
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acceptance probability factor for F and G imply L1,k bounds on the disjoint composition of F and
G. Specifically, if for every 1 ≤ k ≤ K, we have L1,k(f) ≤ Pr[f(Um) = 1] · bkouter for every f ∈ F
and L1,k(g) ≤ Pr[g(Uℓ) = 1] · bkinner for every g ∈ G, then for every function h ∈ F ◦ G, we have that

L1,K(h) ≤ Pr[h(Umℓ) = 1] · (binnerbouter)
K .

Therefore, we also obtain new L1,k bounds for the disjoint composition of permutation branching
programs and other classes of functions that admit the acceptance probability factor in their L1,k

bounds (see Section 1 for a list). As a concrete example of such composition, we introduce the class
of generalized group products.

Definition 15 (Generalized group products). A function f : {−1, 1}n → {0, 1} is a (m, ℓ,G)-group
product if there exist m disjoint subsets I1, . . . , Im ⊆ [n] of size at most ℓ such that

f(x) = 1

(
m∏
i=1

g
fi(xIi

)

i ⊆ S

)
,

for some subset S ⊆ G, group elements gi ∈ G, and functions fi : {−1, 1}Ii → {0, 1}. Here xIi are
the |Ii| bits of x indexed by Ii.

Note that generalized group products are unordered by definition. They are a generaliza-
tion of several function classes that have received some attention in the past, including modular
sums [LRTV09, MZ09, GKM18] (when G is the cyclic group and ℓ = 1), product tests with
outputs {-1,1} [HLV18, LV18, LV20, Lee19] (when G = {−1, 1}), and unordered combinatorial
shapes [GMRZ13, GKM18] (when G = Zm+1).

An (m, ℓ,G)-group product can be written as the disjoint composition of a width-|G| permutation
branching program and arbitrary Boolean functions on ℓ bits. Since both of these classes admit
L1,k bounds with the acceptance probability factor, using the composition theorem of [BIJ+21] we
obtain Fourier growth bounds for generalized group products.

Corollary 16. Let f : {−1, 1}n → {0, 1} be an (m, ℓ,G)-group product. Then L1,k(f) ≤ Pr[f(Un) =
1] ·O(ℓ · |G|)k.

Corollary 16 extends the Fourier growth bounds for product tests studied in [Lee19] (where
G = {−1, 1}). Plugging our bounds into the polarizing random walk framework, we also obtain new
pseudorandom generators for generalized group products.

Corollary 17. There is an explicit pseudorandom generator for (m, ℓ,G)-group products with seed
length O(ℓ · |G|)2 · log(n/ϵ) · (log(1/ϵ) + log log n) and error ϵ.

Note that an (m, 1, G)-group product can be computed by a permutation branching program
of width |G|, and a (m, ℓ,G)-group product can be computed by a general branching program
of width w = 2ℓ · |G|. When ℓ ≥ 2, we are not aware of any PRG that fools (m, ℓ,G)-group
products better than unordered general branching programs. For the latter class, the current
best PRGs are given by Forbes and Kelley [FK18] which, with the above choice of w, have seed
lengths O(ℓ + log(|G|) + log(n/ϵ)) log2 n and Õ(2ℓ + |G|) log(n/ϵ) log n. For comparison, for any
error ϵ = O(1), our PRG for generalized group products has seed length (ℓ · |G|)2 · Õ(log n), where is
nearly optimal when ℓ · |G| = O(1), whereas the Forbes–Kelley PRGs have seed lengths Ω(log2 n).

Finally, we note that when G = {−1, 1}, there exists a PRG [Lee19, DHH20] with seed length
Õ(ℓ + log(m/ϵ)) + poly(log log(n/ϵ)), which is nearly optimal.
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1.3 Techniques

Our main contribution is a simple inductive proof for bounding the first level L1,1 of a regular
branching program in terms of the number of its accept states and rejection probability. Specifically,
for a regular branching program B of s accept states, we prove that

L1,1(B) ≤ s ·Pr[B(Un) = 0]. (1)

We prove Equation (1) by induction on n, the length of the program. We give some intuition for
where Equation (1) came from. Let S be the set of accept states in the final layer. By regularity,
the set of states T in the previous layer that lead to S must be at least the size of S. If they have
the same size then the current layer is redundant. So we must have a nonempty set T1 of vertices
that have only one outgoing edge leading to S. Since these vertices also have one edge leading to
the complement of S, they all contribute to the probability that the program rejects. This suggests
bounding L1,1 in terms of |S| and the rejection probability. In the proof we use regularity of the
program to relate |S| to |T | and |T1|.

Our first L1,k bound L1,k(B) ≤ Pr[B(Un) = 1] · (w − 1)k then follows from the same inductive
argument in [CHRT18], where the authors proved L1,k bounds for general constant-width branching
programs. We note that this inductive argument relies on bounding the L1,1 of the local monotoniza-
tion of a branching program [BV10], which does not preserve the permutation property. Therefore,
even for proving Fourier growth bounds of permutation programs, to apply this argument it is
crucial to establish Equation (1) for the wider class of regular programs. Proving our second bound

L1,k(B) ≤ s ·O ((n log n)/k)
k−1
2 is slightly more involved. Our proof combines the inductive idea in

[CHRT18] with the “level-k inequalities” of Lee [Lee19] (Lemma 22), which give L1,k bounds for
an arbitrary Boolean function in terms of its acceptance probability, and the approximator from
Bogdanov, Hoza, Prakriya, and Pyne [BHPP21] (Lemma 23).

Given a regular branching program B of unbounded width, as in [BHPP21] we first construct
a regular program B′ that approximates B by rejecting all the states in B that can be reached
with probability at most q := Õ(1/

√
n). In [BHPP21], they observed that the probability that the

program B accepts via any of these “sudden reject” states is at most q. So the error function B−B′

has small acceptance probability, and by the level-k inequalities it has small L1,k. So it suffices to
bound the L1,k of the approximator B′. We use the fact that B′ has at most 1/q non-sudden-reject
states in each layer, and so the total number of non-reject states in B′ is bounded by n/q = poly(n).
This allows us to apply an inductive argument to reduce bounding L1,k(B′) to bounding (roughly)
the product of L1,k−1(B′) and L1,1(B′). For L1,k−1(B′) we again use the level-k inequalities, and for
L1,1(B) we use the bound in (1). Note that while the states in B′ all have reaching probability at
least q in the original program B, some of them may have reaching probability much smaller than
q in the approximator B′. To deal with this, we take a similar approach in [CHRT18] to handle
states with small reaching probabilities separately.

Organization. We begin by introducing some notation in the next paragraph. In Section 2,
we prove our L1,k bounds of permutation branching programs (Theorem 6 and Proposition 7)
and generalized group products (Corollary 16). In Section 3, we prove our coin problem bounds
(Corollaries 8 and 9 and Claim 10), and construct our pseudorandom generators for permutation
programs (Corollary 12 and Theorem 13) and generalized group products (Corollary 17).

Notation. For a branching program B of length n and width w, we will view it as a directed
layer graph with n + 1 layers of vertices denoted by V1, . . . , Vn+1, each consists of w vertices. For
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every two consecutive layers Vt and Vt+1, every vertex u ∈ Vt has two outgoing edges labeled by
b ∈ {−1, 1}, where the b-edge goes to the vertex Bt(u, b) in Vt+1. We will overload notation and
consider the transition function as a map Bt : Vt × {−1, 1} → Vt+1 in addition to thinking of it as a
map Bt : [w]×{−1, 1} → [w]. Similarly, we will often think of the start state v1 as being an element
of V1 instead of an element of [w], and Vacc ⊆ Vn+1 instead of Vacc ⊆ [w], etc.

For a vertex v in some layer Vt, we use B→v to denote the sub-branching program of length t− 1
but with v being the only accept vertex. We also use Bv→ to denote the sub-branching program of
length n + 1 − t that starts at v and ends in Vn with accept vertices Vacc.

For ease of notation we use µ(f) to denote the expectation of f under uniform inputs.

2 L1,k bounds of regular branching programs

In this section we prove our L1,k bounds for regular branching programs (Theorem 6) and generalized
group products (Corollary 16). We start with bounding the first level L1,1 of regular branching
programs.

Lemma 18. Let B : {−1, 1}n → {0, 1} be a regular branching program of width w ∈ [1,∞] with s
accept states. Then

L1,1(B) ≤ min{s ·Pr[B(Un) = 0],Pr[B(Un) = 1] · (w − 1)}.

Proof. We prove the first bound by induction on n. For n = 0 the bound is vacuous. Now assume
it holds for n − 1 and consider a regular program B(x1, . . . , xn) with a set S of s accept states.
Define the following 3 subsets of states in layer n− 1, where T is the set of states with both of its
edges leading to S, T+ is the set of states with only 1-edges leading to S, and likewise for T− and
(−1)-edges. Observe that we can write B as

B(x1, . . . , xn) = g(x1, . . . , xn−1) +
1 + xn

2
g+(x1, . . . , xn−1) +

1 − xn
2

g−(x1, . . . , xn−1),

where g, g+, g− are functions computable by regular branching programs of length n− 1 with T , T+

and T− as the sets of accept vertices, respectively. Note that s = |T |+ |T−|+|T+|
2 . Define g1 := g−+g+

and T1 := T+ ∪ T−. Now observe that∣∣B̂({i})
∣∣ =

∣∣∣ĝ({i}) +
1

2

(
ĝ+({i}) + ĝ−({i})

)∣∣∣ ≤ 1

2

∣∣ĝ({i})
∣∣+

1

2

∣∣ĝ({i}) + ĝ1({i})
∣∣ for i ∈ [n− 1]∣∣B̂({n})

∣∣ =
1

2

∣∣µ(g+) − µ(g−)
∣∣ ≤ 1

2

(
µ(g+) + µ(g−)

)
≤ 1

2
µ(g1)

µ(B) = µ(g) +
µ(g1)

2
.

Finally, as T and T1 are disjoint, the function g + g1 is Boolean and is computable by a regular
program of length n− 1 with |T | + |T1| accept states, and µ(g + g1) = µ(g) + µ(g1). So applying

8



our induction assumption on g and g + g1, we have

2L1,1(B) = 2
n∑

i=1

∣∣B̂({i})
∣∣ ≤ n−1∑

i=1

∣∣ĝ({i})
∣∣+

n−1∑
i=1

∣∣ ̂(g + g1)({i})
∣∣+ µ(g1)

= L1,1(g) + L1,1(g + g1) + µ(g1)

≤ |T | ·
(
1 − µ(g)

)
+ (|T | + |T1|) ·

(
1 − µ(g + g1)

)
+ µ(g1)

=
(
2|T | + |T1|

)
−
(
|T | · µ(g) +

(
|T | + |T1|

)
· µ(g + g1) − µ(g1)

)
= 2s−

((
2|T | + |T1|

)
· µ(g) +

(
|T | + |T1| − 1

)
· µ(g1)

)
≤ 2s−

((
2|T | + |T1|

)
· µ(g) +

(
|T | + |T1|

2

)
· µ(g1)

)
= 2s− 2s

(
µ(g) + µ(g1)

2

)
= 2s ·

(
1 − µ(B)

)
,

where the last inequality uses that |T1|
2 · µ(g1) ≥ µ(g1), since T1 is either empty or has size at least 2.

To prove the second bound, suppose B is a regular program of width w < ∞ with a set S of
accept states. For every state v ∈ S, the function 1 −B→v is computable by a regular branching
program with w− 1 accept states. Since L1,1(B→v) = L1,1(1−B→v), it follows from the first bound
we just proved that L1,1(B→v) ≤ Pr[B→v(Un) = 1] · (w − 1). Summing over all the accept states
v ∈ S gives the second bound.

To obtain L1,k bounds at higher levels, we will apply the inductive argument in [RSV13, CHRT18].
We first recall the local monotonization of a branching program introduced in [BV10, CHRT18].
For a branching program B, we define the local monotonization B′ of B by the following process.
For every layer t, state u ∈ Vt, and input b ∈ {−1, 1}, let vb := Bt(u, b) and define

B′
t(u, b) =

{
Bt(u,−b) if µ(Bv1→) < µ(Bv−1→)

Bt(u, b) otherwise.

In words, we swap the two outgoing edge-labels of u whenever µ(Bv1→) < µ(Bv−1→). As the
underlying graph of B′ remains the same as B, if B is regular then B′ is also regular (with the
same set of accept states). Also µ(Bv→) = µ(B′

v→) for every state v. By construction we have

|B̂({i})| = B̂′({i}) for every i ∈ [n].
The following claim reduces bounding L1,k of a branching program to bounding its L1,k−1.

Claim 19 ([CHRT18]). Let B : {−1, 1}n → {0, 1} be a branching program, and B′ be its local

monotonization. Then L1,k+1(B) ≤
∑n

i=1

∑
v∈Vi

(
L1,k(B→v) · B̂′

v→({i})
)
.

9



Proof. We have

L1,k+1(B) =

n∑
i=1

∑
S⊆{1,...,i−1}:

|S|=k

∣∣∣B̂(S ∪ {i})
∣∣∣

=
n∑

i=1

∑
S⊆{1,...,i−1}:

|S|=k

∣∣∣∣∑
v∈Vi

B̂→v(S)B̂v→({i})

∣∣∣∣
≤

n∑
i=1

∑
S⊆{1,...,i−1}:

|S|=k

∑
v∈Vi

(∣∣∣B̂→v(S)
∣∣∣ · ∣∣∣B̂v→({i})

∣∣∣)

=

n∑
i=1

(∑
v∈Vi

∑
S⊆{i,...,i−1}:

|S|=k

∣∣∣B̂→v(S)
∣∣∣)∣∣∣B̂v→({i})

∣∣∣
=

n∑
i=1

∑
v∈Vi

(
L1,k(B→v) · B̂′

v→({i})
)
.

Theorem 20. Let B : {−1, 1}n → {0, 1} be a regular branching program of width w. Then

L1,k(B) ≤ Pr[B(Un) = 1] · (w − 1)k.

Proof. Let B′ be the local monotonization of B. By Claim 19,

L1,k+1(B) ≤
n∑

i=1

∑
v∈Vi

(
L1,k−1(B→v) · B̂′

v→({i})
)

≤ (w − 1)k
n∑

i=1

∑
v∈Vi

Pr[B→v(Ui) = 1] · B̂′
v→({i})

= (w − 1)k
n∑

i=1

∑
v∈Vi

Pr[B′
→v(Ui) = 1] · B̂′

v→({i})

= (w − 1)k
n∑

i=1

B̂′({i})

≤ Pr[B(Un) = 1] · (w − 1)k+1.

Theorem 21. Let B : {−1, 1}n → {0, 1} be any regular branching program with s accepting states.
Then

L1,k(B) ≤ sPr[B(Un) = 0] ·O

(
n

k

(
1 +

1

k
log
( n

Pr[B(Un) = 0]

))) k−1
2

.

We will use the following “L1 level-k inequalities,” which follows from applying Cauchy–Schwarz
to Lemma 10 in [Lee19], and the observation that every non-constant Boolean function f has
µ(f) ≥ 2−n.

Lemma 22. For every Boolean function f : {0, 1}n → {0, 1}, we have

L1,k(f) ≤

√(
n

k

)
· µ(f) ·O

(
log

(
2

µ(f)1/k

))k/2

≤ Pr[f(Un) = 1] ·O(n)k/2.

10



We also need the following lemma in [BHPP21], which follows from applying a union bound
over all the s accept vertices to Claim 3.1 in [BHPP21].

Lemma 23 (Claim 3.1 in [BHPP21]). Let B : {−1, 1}n → {0, 1} be a regular branching program
with s accept vertices. Let V ϵ := {v : µ(B→v) ≤ ϵ} be the set of states in B that have at most ϵ
probability of being reached over uniform inputs. Then for every state v,

Pr
x∼Un

[
B→v(x) = 1 ∧B→u(x1, . . . , xt) = 1 for some t ∈ [n] and u ∈ V ϵ

]
≤ s · ϵ.

Proof of Theorem 21. Let µ̄ := 1 − µ(B), and define

q :=
µ̄

s

(
k

n log(ns/µ̄)

)1/2

.

Let V q be the set of states v in B with µ(B→v) ≤ q. As in [BHPP21], we construct another regular
program B′ that approximates B as follows. For each state u ∈ V q, we “sudden reject” u by rewiring
its outgoing edges to an “unused” state. Specifically, we construct B′ by modifying B as follows.
We iterate each u ∈ V q and do the following: Suppose u ∈ Vt ∩ V q for some layer t. Let u′ ∈ Vt be a
state with µ(B→u′) = µ(Bu′→) = 0. We swap the outgoing b-edges of u and u′ for both b ∈ {−1, 1}.
Observe that for every state u in B′, we have µ(B→u) ≥ q and so in each layer of B′ there are at
most 1/q many non-sudden-reject states with µ(B′

→u) > 0.
We now bound above L1,k+1(B) by L1,k+1(B −B′) + L1,k+1(B

′). By Lemma 23,

Pr
[
(B −B′)(Un) = 1

]
= Pr

x∼Un

[
B(x) = 1 ∧B→u(x1, . . . , xt) = 1 for some t and u ∈ V q

]
≤ s · q.

As B −B′ has small acceptance probability, it follows from Lemma 22 that

L1,k+1(B −B′) ≤ O(1)k

√(
n

k + 1

)
· s · q ·

(
log

2

q1/(k+1)

) k+1
2

≤ O(1)k ·
(n
k

) k+1
2 · µ̄ ·

(
k

n log(ns/µ̄)

)1/2(
1 +

log(ns/µ̄)

k

) k+1
2

≤ O(1)k · µ̄ ·
(
n

k

(
1 +

log(ns/µ̄)

k

))k/2(n

k
· k

n log(ns/µ̄)
·
(

1 +
log(ns/µ̄)

k

))1/2

≤ O(1)k · µ̄ ·
(
n

k

(
1 +

log(ns/µ̄)

k

))k/2

,

It remains to bound L1,k+1(B
′). Let B′′ be the local monotonization of B′. By Claim 19

and Lemma 22,

L1,k+1(B
′) ≤

n∑
i=1

∑
v∈V ′

i

(
L1,k(B′

→v) · B̂′′
v→({i})

)

≤ O(1)k ·
(n
k

)k/2
·

n∑
i=1

∑
v∈V ′

i

(
µ(B′

→v) · log

(
2

µ(B′
→v)1/k

)k/2

· B̂′′
v→({i})

)
.

We separate the double sum above into two parts, depending on whether the states v can be reached
with probability at least qµ̄/n.

11



We first consider those with reaching probability less than qµ̄/n, As the function x 7→ x log(2/x1/k)k/2

is increasing for x ∈ [0, 1], we have

n∑
i=1

∑
v∈V ′

i :

µ(B→v)<
qµ̄
n

(
µ(B→v) · log

(
2

µ(B→v)1/k

)k/2

· B̂′′
v→({i})

)

≤ O(1)k ·
(

1 +
log(ns/µ̄)

k

)k/2

· qµ̄
n

·
n∑

i=1

∑
v∈V ′

i

0<µ(B′
→v)<

qµ̄
n

B̂′′
v→({i})

≤ O(1)k ·
(

1 +
log(ns/µ̄)

k

)k/2

µ̄,

where the last inequality is because |B̂′′
v→({i})| ≤ 1 and we are summing over at most n · 1/q many

vertices.
For those states that are reached with probability at least qµ̄/n, we apply Lemma 22 and our

L1,1 bound in Lemma 18. We have

n∑
i=1

∑
v∈V ′

i :

µ(B′
→v)≥

qµ̄
n

(
µ(B′

→v) · log

(
2

µ(B′
→v)1/k

)k/2

· B̂′′
v→({i})

)

≤ O

(
1 +

log(n/µ̄)

k

)k/2 n∑
i=1

∑
v∈V ′

i :

µ(B′
→v)≥

qµ̄
n

(
µ(B′

→v) · B̂′′
v→({i})

)
,

where by Lemma 18 we get

n∑
i=1

∑
v∈V ′

i :

µ(B′
→v)≥

qµ̄
n

(
µ(B′

→v) · B̂′′
v→({i})

)

=
n∑

i=1

∑
v∈V ′

i :

µ(B′′
→v)≥

qµ̄
n

(
µ(B′′

→v) · B̂′′
v→({i})

)
(µ(B′′

→v) = µ(B′
→v))

≤
n∑

i=1

∑
v∈V ′

i

(
µ(B′′

→v) · B̂′′
v→({i})

)
(B̂′′

v→({i}) ≥ 0)

≤
n∑

i=1

B̂′′({i}) ≤ s ·Pr[B′′(Un) = 0] ≤ 2sµ̄,

where we use Pr[B′′(Un) = 0] = Pr[B′(Un) = 0] ≤ Pr[B(Un) = 0] + sq ≤ 2µ̄ in the last inequality.
Hence,

L1,k+1(B
′) ≤ O(1)k ·

(n
k

)k/2
·

n∑
i=1

∑
v∈V ′

i

(
µ(B′

→v) · log

(
2

µ(B′
→v)1/k

)k/2

· B̂′′
v→({i})

)

≤ O

(
n

k

(
1 +

log(ns/µ̄)

k

))k/2

sµ̄.

12



Therefore, we have

L1,k+1(B) ≤ L1,k+1(B −B′) + L1,k+1(B
′)

≤ O(1)k · sµ̄ ·
(
n

k

(
1 +

log(ns/µ̄)

k

))k/2

≤ O(1)k · sµ̄ ·
(
n

k

(
1 +

log(n/µ̄)

k

))k/2

,

where the last inequality is because if s ≥
√
n, then the conclusion directly follows from Lemma 22;

so we can assume s ≤
√
n.

Theorem 6 now follows from Theorems 20 and 21.

Proof of Theorem 6. The first bound L1,k(B) ≤ Pr[B(Un) = 1] · (w − 1)k directly follows from

Theorem 20. We now show that Theorem 21 implies the second bound L1,k(B) ≤ s·O((n log n)/k)
k−1
2 .

Let µ̄ := Pr[B(Un) = 0]. As the function x 7→ x log(2/x1/k)
k−1
2 is increasing for x ∈ [0, 1], we have

µ̄

(
1 +

log(n/µ̄)

k

) k−1
2

= µ̄

(
log n

k
+ log

(
2

µ̄1/k

)) k−1
2

≤ 2 max

{
µ̄

(
log n

k

) k−1
2

, µ̄ log

(
2

µ̄1/k

) k−1
2

}
≤ 2(log n)

k−1
2 .

Hence, by Theorem 20,

L1,k(B) ≤ s · µ̄ ·O

(
n

k

(
1 +

log(n/µ̄)

k

)) k−1
2

≤ s ·O
(
n log n

k

) k−1
2

.

We now prove Proposition 7. This is a direct consequence of a result of B lasiok, Ivanov, Jin,
Lee, Servedio and Viola:

Theorem 24 (Theorem 24 of [BIJ+21]). For all positive integers n and k where k ≤ n, there is a
symmetric F2-polynomial p(x1, . . . , xn) of degree a power of two in [

√
kn, 8

√
kn] such that

Mk(p) :=

∣∣∣∣∣∑
|S|=k

p̂(S)

∣∣∣∣∣ ≥ (e−k/2)

(
n

k

)1/2

.

Their result is stated for L1,k(p), but the proof holds without modification for Mk(p).

Proof of Proposition 7. Given n and k, let p(x1, . . . , xn) be the F2-symmetric polynomial in The-
orem 24. As observed in [BIJ+21], as a consequence of a result of Bhatnagar, Gopalan, and
Lipton [BGL06], p can be computed by a permutation branching program B of width 16

√
kn. As∑

|S|=k B̂(S) =
∑

v∈Vacc

∑
|S|=k B̂→v(S), the conclusion follows by an averaging argument.

We end this section by proving the L1,k bounds for generalized group products. To do so, we
recall the formal statement of the composition theorem of [BIJ+21].

Theorem 25 (Theorem 31 in [BIJ+21]). Suppose F and G are closed under negation of their
outputs. Let g1, . . . , gm ∈ G and let f ∈ F , where F is closed under restrictions. Suppose that for
every 1 ≤ k ≤ K, we have
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1. L1,k(f) ≤ Pr[f(Um) = 1] · aouter · bkouter for every f ∈ F , and

2. L1,k(g) ≤ Pr[g(Uℓ) = 1] · ainner · bkinner for every g ∈ G.

Then for every function h ∈ F ◦ G, we have that

L1,K(h) ≤ Pr[h(Umℓ) = 1] · aouter · (ainnerbinnerbouter)
K .

Proof of Corollary 16. An (m, ℓ,G)-product can be computed by the disjoint composition of a
width-|G| permutation branching program and arbitrary Boolean functions on ℓ bits, where both
classes are closed under negation of their outputs and restrictions. Note that applying the map
f 7→ 2f − 1 to a {0, 1}-valued function f only affects its L1,k by at most a factor of 2. So we can
apply Theorem 25 to Theorem 6 and Lemma 22.

3 Coin theorems and pseudorandom generators

In this section, we prove our coin problem bounds for regular and permutation branching programs
(Corollaries 8 and 9 and Claim 10), and construct PRGs for permutation branching programs
(Corollary 9 and Theorem 13) and generalized group products (Corollary 17).

We start with Corollary 8.

Proof of Corollary 8. Let B be a regular branching program. We identify B with its multilinear
extension. By linearity of expectation and Theorem 6, we have∣∣E[B(Xδ)] −E[B(X0)]

∣∣ =
∣∣B(δ⃗) −B(⃗0)

∣∣
≤

n∑
k=1

δk
∑
|S|=k

∣∣B̂(S)
∣∣

≤ δL1,1(B) +

n∑
k=2

δkL1,k(B)

≤ δs +

n∑
k=2

δk min{wk, s ·O(
√

n log n))k−1}

≤ δs + δ2 ·O
(

min
{
w2, s

√
n log n

})
,

where the last inequality is because when δ ≤ αmax{1/w, 1/
√
n log n}, then at least one of the

summations
∑

k(δw)k and
∑

k O(δ
√
n log n)k is a geometric sum with ratio at most 1/2, and thus

is bounded by twice of its first term.

Corollary 9 follows from applying a result of Avishay Tal establishing that L1,1 bounds imply
coin problem bounds for classes that are closed under restrictions to Theorem 6.

Lemma 26 (Lemma 3.2 in [Agr20]). Let F be a function class that is closed under restrictions.
Then for every f ∈ F ,∣∣E[f(Xδ)] −E[f(X0)]

∣∣ ≤ ln
( 1

1 − δ

)
L1,1(F) ≤ δ

1 − δ
L1,1(F).
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We now prove Claim 10. The idea is similar to proof idea behind Proposition 7. Here we give
a self-contained argument. We approximate the Majority function on some n = Θ(1/δ2) bits by
computing it correctly on inputs of Hamming weights between n/2 + Θ(

√
n) and n/2 − Θ(

√
n).

This can be implemented by counting their Hamming weights modulo Θ(
√
n) and hence can be

done using a permutation program of width Θ(
√
n).

Proof of Claim 10. Let n := 32/δ2 and m := 64/δ. Consider the function f : {−(m− 1), . . . ,m} →
{0, 1} defined by f(ℓ) := 1 if and only if ℓ ≥ m/4. We first construct the permutation program B,
which on inputs x where

∑
i xi ∈ ℓ + 2mZ for some ℓ ∈ {−(m− 1), . . . ,m}, outputs B(x) := f(ℓ).

By counting modulo 2m, this can be computed with width 2m and at least m/2 accept states. By
the Chernoff bound,

Pr[B(Xδ) = 0] ≤ Pr

[∣∣∣ n∑
i=1

(Xδ)i

∣∣∣ ≥ m

]
+ Pr

[ n∑
i=1

(Xδ)i < m/4

]
≤ 1/20.

Similarly, Pr[B(X0) = 1] ≤ 1/20. Therefore, E[B(Xδ)] −E[B(X0)] ≥ 9/10.
We now modify B by choosing s of its at most m many accept states uniformly at random,

then letting B accept only at these s states and reject the rest of them. It follows by an averaging
argument that there exists a choice of s accepting states such that the modified program B′ satisfies

E[B′(Xδ)] −E[B′(X0)] ≥ (s/m) · (9/10) ≥ sδ/1000.

We now construct PRGs for bounded width permutation branching programs and generalized
group products. We will use the following result that constructs PRGs from Fourier growth bounds
using the “polarizing random walk framework.”

Theorem 27 (Theorem 1.3 in [CHHL19]). Let F be a function class on n bits that is closed under
restrictions. Suppose L1,k(F) ≤ bk for some b ≥ 1. Then there exists an explicit pseudorandom
generator for F with seed length b2 ·O(log(n/ϵ))(log(1/ϵ) + log log n) and error ϵ.

Corollaries 12 and 17 then follow from applying Theorem 27 to Theorem 6 and Corollary 16,
respectively.

We prove Theorem 13 by approximately sampling δ-biased coins. To do this efficiently, we follow
the approach in [HLV18]. Recall that H(x) = x log( 1x) + (1−x) log( 1

1−x) denotes the binary entropy
function. For two distributions X and Y , we use ∥X − Y ∥1 to denote their total variation distance.

Lemma 28. Given δ > 0, there is some s = H(1/2 + 0.499δ)n + o(n) and a polynomial-time
computable function f : {0, 1}s → {−1, 1}n such that ∥Xδ − f(Us)∥1 ≤ δ/100.

As its proof is a only a slight modification of the one in [HLV18], we defer it to the end of this
section. To construct our PRG, it suffices to sample a distribution close to Xδ using Lemma 28.

Proof of Theorem 13. Let f : {0, 1}s → {−1, 1}n be the function obtained from Lemma 28 with the
given δ, where

s ≤ H(1/2 + 0.499δ)n + o(n) + O(log(1/δ)) =
(
H(1/2 + 0.499δ) + o(1)

)
n.

Let B : {−1, 1}n → {0, 1} be a permutation branching program with a single accept state. Then∣∣E[B(Un)] −E[B(f(Us))]
∣∣ ≤ ∣∣E[B(Un)] −E[B(Xδ)]

∣∣+
∣∣E[B(Xδ)] −E[B(f(Us))]

∣∣
≤
∣∣E[B(Un)] −E[B(Xδ)]

∣∣+ δ/100 (Lemma 28)

≤ δ

1 − δ
+

δ

100
(Corollary 9),

proving the theorem.
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It remains to prove Lemma 28. We will use a lemma in [HLV18] enabling us to approximately
sample distributions.

Lemma 29 (Lemma 36 in [HLV18]). Let D be a distribution on [m]. Suppose that given i ∈ [m] we
can compute in time polynomial in O(logm) the cumulative distribution Pr[D ≤ i]. Then there is
a polylog(mt)-time computable function f such that given any t ≥ 1, f uses s = ⌈log(mt)⌉ bits to
sample an element from the support of D such that ∥f(Us) −D∥1 ≤ 1/t.

We will also bound above the binomial coefficients in terms of the entropy function.

Fact 30. For every ρ > 0 we have

log

(
n

⌈n(1/2 + ρ)⌉

)
≤ (1 + o(1))n ·H(1/2 + ρ).

We now prove the lemma, by giving an appropriate sampling procedure:

Proof of Lemma 28. Let X ′
δ as the distribution over {0, 1}n, where the coordinates are independent

and each coordinate is 1 with probability 1/2 + δ/2 and 0 otherwise. Our sampling procedure below
will sample a distribution D over {0, 1}n that is close to X ′

δ (over {0, 1}n), then apply xi 7→ 2xi − 1
to each coordinate xi of D to sample the target distribution over {−1, 1}n.

Consider the following procedure for sampling a string x from X ′
δ. First sample the Hamming

weight i of x according to Binomial(n, 1/2 + δ/2), where each weight i ∈ {0, . . . , n} is chosen with
probability

(
n
i

)
(1/2 + δ/2)i(1/2 − δ)n−i. Then given i ∈ {0, . . . , n}, sample x uniformly from the set

of strings with weight exactly i. By performing both steps in an approximate manner, we obtain f .
To do this, we apply Lemma 29 to sample the weight i from a distribution D (over {0, . . . , n}) that

is within δ/300 in total variation distance to Binomial(n, 1/2 + δ/2), which costs O(log n+ log(1/δ))
bits. Given i ∼ D, if i < ⌈n(1/2 + 0.499δ)⌉ then we return the all 0s string; otherwise, we apply
Lemma 29 to sample from the set of strings of Hamming weight i ≥ ⌈n(1/2 + 0.499δ)⌉.

As D is (δ/300)-close to |X ′
δ|, for every sufficiently large n, we have

Pr
[
D < ⌈n(1/2 + 0.499δ)⌉

]
≤ Pr

[
|X ′

δ| < ⌈n(1/2 + 0.499δ)⌉
]

+ δ/300 < δ/150.

Here, we use Fact 30 to bound the log of the description size of the universe, i.e. the number of
strings of some Hamming weight i ≥ ⌈n(1/2 + 0.499δ)⌉, by

log

(
n

⌈n(1/2 + 0.499δ)⌉

)
≤ (1 + o(1))H(1/2 + 0.499δ)n = H(1/2 + 0.499δ)n + o(n).

Furthermore, Haramaty, Lee, and Viola show (in the proof of [HLV18, Lemma 35]) that we can
sample from the distribution of strings of length n with Hamming weight i in time poly(n). Thus,
the total number of random bits required to sample a distribution within δ/100 in total variation
distance to Xδ is at most s = H(1/2+0.499δ) ·n+o(n)+o(n)+O(log(1/δ)), and f can be computed
in polynomial time as desired.
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