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Abstract. A seminal result in learning theory characterizes the PAC learnability of
binary classes through the Vapnik-Chervonenkis dimension. Extending this charac-
terization to the general multiclass setting has been open since the pioneering works
on multiclass PAC learning in the late 1980s. This work resolves this problem: we
characterize multiclass PAC learnability through the DS dimension, a combinatorial
dimension defined by Daniely and Shalev-Shwartz (2014).

The classical characterization of the binary case boils down to empirical risk
minimization. In contrast, our characterization of the multiclass case involves a
variety of algorithmic ideas; these include a natural setting we call list PAC learning.
In the list learning setting, instead of predicting a single outcome for a given unseen
input, the goal is to provide a short menu of predictions.

Our second main result concerns the Natarajan dimension, which has been a
central candidate for characterizing multiclass learnability. This dimension was
introduced by Natarajan (1988) as a barrier for PAC learning. He furthered showed
that it is the only barrier, provided that the number of labels is bounded. Whether
the Natarajan dimension characterizes PAC learnability in general has been posed
as an open question in several papers since. This work provides a negative answer:
we construct a non-learnable class with Natarajan dimension 1.

For the construction, we identify a fundamental connection between concept
classes and topology (i.e., colorful simplicial complexes). We crucially rely on a
deep and involved construction of hyperbolic pseudo-manifolds by Januszkiewicz
and Świątkowski. It is interesting that hyperbolicity is directly related to learning
problems that are difficult to solve although no obvious barriers exist. This is
another demonstration of the fruitful links machine learning has with different areas
in mathematics.
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1. Introduction

Many important machine learning tasks require classification into many target
classes: in image object recognition, the number of classes is the number of possible
objects. In language models, the number of classes scales with the dictionary size.
In protein folding prediction, the goal is to predict the 3D structures of proteins
based on their 1D amino sequence. These are real-world tasks that do not admit an a
priori reasonable bound on the number of classes. Multiclass classification problems,
therefore, have been attracting interest both on the theoretical side and on the practical
side; for further reading we refer to the introduction of [Daniely and Shalev-Shwartz,
2014] and references within.

The theoretical understanding of multiclass learnability, however, is still lacking:
even in the basic Probably Approximately Correct (PAC) setting [Valiant, 1984],
learnability is well-understood only when the number of classes is bounded (see
e.g. [Natarajan, 1989, Ben-David, Cesabianchi, Haussler, and Long, 1995, Shalev-
Shwartz and Ben-David, 2014, Daniely, Sabato, Ben-David, and Shalev-Shwartz,
2015a]).

The fundamental theorem of PAC learning asserts the equivalence between binary
classification and finiteness of the Vapnik-Chervonenkis (VC) dimension [Vapnik and
Chervonenkis, 1968, 1974, Blumer, Ehrenfeucht, Haussler, and Warmuth, 1989]. The
works of Natarajan and Tadepalli [1988] and Natarajan [1989] extended Valiant’s PAC
framework to the multiclass setting. They identified two natural extensions of the
VC dimension: the Natarajan dimension and the Graph dimension. The Natarajan
dimension serves as a lower bound on the sample complexity of PAC learning, and the
Graph dimension serves as an upper bound [Natarajan and Tadepalli, 1988, Natarajan,
1989]. When the number of classes is bounded (|Y| <∞), both dimensions characterize
PAC learnability. In the unbounded case, however, Natarajan [1988] showed that finite
Graph dimension does not characterize PAC learnability; he identified a PAC learnable
class with infinite Graph dimension (see also Example 8 below). Natarajan [1989]
asked whether the Natarajan dimension characterizes learnability, and explained why
standard uniform convergence techniques are not sufficient to resolve this question.

In the 1990s, Ben-David, Cesabianchi, Haussler, and Long [1995] and Haussler and
Long [1995] introduced a rich combinatorial framework for defining dimensions in the
multiclass setting. This framework captures as special cases many other dimensions,
including the Natarajan and Graph dimensions, the Pseudo-dimension [Pollard, 1990,
Haussler, 1992], and Vapnik’s dimension [Vapnik, 1989]. Within this framework,
Ben-David, Cesabianchi, Haussler, and Long [1995] exactly identified those dimensions
(called distinguishers) that characterize PAC learnability when the number of classes
is bounded. This framework, however, does not capture learnability when the number
of classes is unbounded, and they left this as an open problem.

More recently, a sequence of works studied general principles that guide learning in
the multiclass setting [Rubinstein, Bartlett, and Rubinstein, 2006, Daniely, Sabato,
and Shalev-Shwartz, 2012, Daniely and Shalev-Shwartz, 2014, Daniely, Sabato, Ben-
David, and Shalev-Shwartz, 2015a, Daniely, Schapira, and Shahaf, 2015b]. These
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works revealed a stark contrast between a bounded and an unbounded number of
labels. One important example is that the celebrated empirical risk minimization
(ERM) principle ceases to apply when the number of labels is unbounded [Daniely
and Shalev-Shwartz, 2014].

Algorithmic ideas of Haussler, Littlestone, and Warmuth [1994] and Rubinstein,
Bartlett, and Rubinstein [2006] lead Daniely and Shalev-Shwartz [2014] to identify
a universal family of transductive learning rules called one-inclusion graph (OIG)
algorithms. Universality means that every learnable class can be learned by OIG
algorithms. This universality and the combinatorial structure of OIG algorithms
guided them to a new dimension. We call this new dimension the Daniely-Shalev-
Shwartz (DS) dimension. They proved that finite DS dimension is a necessary condition
for PAC learnability. But they too left the full characterization of learnability open.

Remark. We use standard terminology from PAC learning and standard measurability
assumptions (see e.g. the textbook [Shalev-Shwartz and Ben-David, 2014] and references
within). All the relevant dimensions are defined and discussed in Section 2.

1.1. Results. Our main result is that the DS dimension characterizes PAC learnability
in the multiclass setting.

Theorem A (Learnability ≡ Finite DS Dimension). The following are equivalent for
a concept class H ⊆ YX :

– The class H is PAC learnable.
– The DS dimension of H is finite.

We complement this result by refuting the conjecture that the Natarajan dimension
characterizes learnability.

Theorem B (Learnability 6≡ Finite Natarajan Dimension). Finite Natarajan dimen-
sion does not characterize PAC learnability.

The two theorems follow from more informative results as we describe next. Because
Daniely and Shalev-Shwartz [2014] proved that finite DS dimension is a necessary
condition for PAC learnability, Theorem A follows from the following algorithmic
result.

Theorem 1. Let H ⊆ YX be an hypothesis class with DS dimension d <∞.
Realizable Case: There is a learning algorithm Areal for H with the following guar-

antees. For every H-realizable distribution D, every δ > 0 and every integer
n, given an input sample S ∼ Dn, the algorithm Areal outputs an hypothesis
h = Areal(S) such that1

Pr
(x,y)∼D

[h(x) 6= y] ≤ Õ

(
d3/2 + log(1/δ)

n

)
with probability at least 1− δ over S.

1The Õ notation conceals polylog(n, d) factors. Logarithms in this text are always in base two.
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Agnostic Case: There is a learning algorithm Aagn for H with the following guar-
antees. For every distribution D, every δ > 0 and integer n, given an input
sample S ∼ Dn, the algorithm Aagn outputs an hypothesis h = Aagn(S) such
that

Pr
(x,y)∼D

[h(x) 6= y] ≤ LD(H) + Õ

(√
d3/2 + log(1/δ)

n

)
with probability at least 1− δ, where LD(H) = infg∈H Pr(x,y)∼D[g(x) 6= y].

Because finite DS dimension is a necessary condition for learnability, Theorem B
boils down to the following statement.

Theorem 2. There exists a concept class H ⊆ YX with Natarajan dimension 1 and
an infinite DS dimension.

1.2. Roadmap. In Section 2, we define the Natarajan dimension and the DS dimen-
sion. We also introduce the reader to the DS dimension and its basic properties. The
central goal is to explain the important links between the three fundamental concepts:
learnability, one-inclusion graphs, and the DS dimension.

In Section 3, we review the shifting mechanism. Shifting is a combinatorial technique
used by Haussler [1995] to analyze OIG algorithms in the binary setting. Rubinstein,
Bartlett, and Rubinstein [2006] later extended shifting to analyze OIG algorithms in
the multiclass setting. The multiclass setting introduces subtleties and difficulties
compared to the binary setting (see Examples 19 and 20 below). To overcome these
difficulties, we introduce a new combinatorial dimension, the exponential dimension,
which might be interesting in its own right.

Section 4 contains the proof of the equivalence between finite DS dimension and
PAC learnability. The section begins with an overview of the main challenges that
arise and the algorithmic ideas used to overcome them. Specifically, we introduce and
discuss the notion of list PAC learning, which we believe should be of independent
interest.

In Section 5 we prove that the Natarajan dimension does not characterize PAC
learnability. This section has two parts. One part describes a general and basic
connection between concept classes and properly colored simplicial complexes. The
second part uses a deep and beautiful construction by Januszkiewicz and Świątkowski
[2003] of a simplicial complex that exactly meets our needs. We provide a simplified
and high-level exposition to their construction.

2. The DS Dimension and One-inclusion Graphs

The prime purpose of this section is to build the bridge between the DS dimension
and learnability. We start with an introduction to the DS dimension, and a description
of some of its simple properties. We continue with a description of the one-inclusion
graph algorithm. The section concludes with the story of the “duality” that links
between the two.
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2.1. Dimensions and Pseudo-cubes. All dimensions we consider follow a similar
mechanism. The main part is defining a notion of “shattering” that captures some
local complexity of H ⊆ YX . For S ∈ X n, we consider the projection H|S of H to
S, and say that H shatters S if H|S is “complex” in some appropriate sense. The
dimension is then defined as the maximum size (n) of a shattered sequence (if H
shatters arbitrarily large sets then the dimension is defined to be ∞).

Notation. We consider sequences in X n instead of subsets of X , because typi-
cally inputs to learning problems are sequences not sets. For h : X → Y and
S = (x1, . . . , xn) ∈ X n, the projection h|S of h to S is thought of as the map from [n]
to Y defined by i 7→ h(xi). The projection of H to S is

H|S = {h|S : h ∈ H} ⊆ Yn.
We sometimes think of Yn as words of length n over the alphabet Y.

The first and most well-known dimension is the VC dimension. It is defined only
for binary classification problems.

Definition 3 (VC dimension [Vapnik and Chervonenkis, 1968]). We say that S ∈ X n

is VC-shattered by H ⊆ {0, 1}X if H|S = {0, 1}n. The VC dimension dV C(H) is the
maximum size of a VC-shattered sequence.

When |Y| > 2, there are many ways to extend the VC dimension. One of the first
extensions of the VC dimension to the multiclass setting is the Natarajan dimension.
The relevant shattering is “containing a copy of the Boolean cube”.

Definition 4 (Natarajan dimension [Natarajan, 1989]). We say that S ∈ X n is
N-shattered by H ⊆ YX if there exist f, g : [n] → Y such that for every i ∈ [n] we
have f(i) 6= g(i), and

H|S ⊇ {f(1), g(1)} × {f(2), g(2)} × . . .× {f(n), g(n)}.
The Natarajan dimension dN(H) is the maximum size of an N-shattered sequence.

What is the “correct analog” of the Boolean cube for larger alphabet sizes? There
are many possible answers. The starting point of the definition of the DS dimension
is viewing the Boolean cube as a graph. The vertex-set of the graph is {0, 1}d. The
edges of the graph are defined as follows. For every vertex v ∈ {0, 1}d and for every
direction i ∈ [d], there is a (single) neighbor u of v in direction i (that is, u(i) 6= v(i)
and u(j) = v(j) for all j 6= i). This perspective can be naturally applied to non-binary
concept classes.

Definition 5 (Pseudo-cube). A class H ⊆ Yd is called a pseudo-cube of dimension d
if it is non-empty, finite and for every h ∈ H and i ∈ [d], there is an i-neighbor g ∈ H
of h (i.e., g(i) 6= h(i) and g(j) = h(j) for all j 6= i).

When Y = {0, 1}, the two notions “Boolean cube” and “pseudo-cube” coincide:
The Boolean cube {0, 1}d is of course a pseudo-cube. Conversely, every pseudo-cube
H ⊆ {0, 1}d is the entire Boolean cube H = {0, 1}d. When |Y| > 2, the two notions
do not longer coincide. Every copy of the Boolean cube is a pseudo-cube, but there are
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pseudo-cubes that are not Boolean cubes; see Figure 3 for an example. The example
in the figure uses a dual perspective. The functions (words) in the class are the edges
of the graph, and the alphabet symbols are the vertices of the graph. This dual
perspective is important and useful. We discuss it in more detail in Section 5.

a c

b

d

ab

cb

cd

ad

1 3

5

2

6 4

12

32

34

54

56

16

Figure 1. A 2-dimensional pseudo-cube (on the right) that is not isomorphic to
the 2-dimensional Boolean cube (on the left). The labels Y are the vertices (4
label on the left, and 6 labels on the right). The words in H ⊂ Y2 are the edges
(4 words on the left, and 6 words on the right). For each word, the circle vertex
appears as the first symbol, and the square appears as the second symbol.

The DS dimension is defined by containing pseudo-cubes (the original definition
uses a slightly different language, but it is equivalent).

Definition 6 (DS dimension [Daniely and Shalev-Shwartz, 2014]). We say that
S ∈ X n is DS-shattered by H ⊆ YX if H|S contains an n-dimensional pseudo-cube.
The DS dimension dDS(H) is the maximum size of a DS-shattered sequence.

How different are pseudo-cubes than Boolean cubes? Or, more formally, are there
d-dimensional pseudo-cubes with Natarajan dimension < d? The hexagon in Figure 3
is a 2-dimensional pseudo-cube whose Natarajan dimension is 1. There are, in fact,
many other such constructions, even in the 2-dimensional case.

The following example provides a complete description of 2-dimensional pseudo-
cubes with Natarajan dimension 1 using the language of graph theory. We omit the
proof because in Section 5 we derive generalizations to arbitrary dimensions.

Example 7. For every bipartite graph G = (L,R,E) the set

B(G) :=
{

(u, v) ∈ L×R : {u, v} ∈ E
}
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is a 2-dimensional pseudo-cube if and only if G contains no leaves. Conversely, for
every B ⊆ Y2, the bipartite graph

G(B) :=
(
L = Y × {0}, R = Y × {1}, E =

{
{(y0, 0), (y1, 1)} : (y0, y1) ∈ B

})
contains no leaves if and only if B is a pseudo-cube. The claim is that a 2-dimensional
pseudo-cube B ⊆ Y2 has Natarajan dimension 2 iff the corresponding bipartite graph
G(B) has a 4-cycle.

The above demonstrates that 2-dimensional pseudo-cubes are rather simple combi-
natorial objects. The landscape in higher dimensions is significantly richer. Figure 2
depicts a 3-dimensional pseudo-cube with Natarajan dimension 1. This pseudo-cube
arises from a triangulation of the plane; a hint towards the topology that is used in
Section 5 to prove Theorem 2.

�

�

�

�

⊃

⊃

>

>

Figure 2. An example of a 3-dimensional pseudo-cube with Natarajan dimension
1. The words in the pseudo-cube are the triangles (there are 54 of them). The
labels are the vertices (there are 3·54

6
= 27 of them). The vertices are colored by

3 colors: circle, triangle and square. In each word, the circle vertex appears as
the first symbol, the triangle vertex as the second, and the square vertex as the
third. Opposite sides of the hexagon are identified, as the picture indicates. The
pseudo-cube property holds because each triangle has three neighboring triangles
that are obtained by switching one vertex from each color. The Natarajan
dimension is 1 because there is no square (a cycle of length four) in the graph so
that its vertices have alternating colors. For more details, see Section 5.

The condition that pseudo-cubes are finite is surprisingly important. Without it,
the DS dimension does not characterize learnability, as the following example shows.

Example 8. There is an infinite learnable class Htree over X = N so that for each
x ∈ X and h ∈ Htree, there is g ∈ Htree that agrees with h on all points besides x. But
the DS dimension of this class is 1, so it is learnable (by our main result). This class
can be thought of as a directed tree whose edges are directed towards the root; Figure 3
illustrates a similar class for the case X = [3]. The root is the all-zeros function.



8 BRUKHIM, CARMON, DINUR, MORAN, AND YEHUDAYOFF

(0, 0, 0)

(1, 0, 0) (0, 2, 0) (0, 0, 3)

(4, 0, 0) (1, 5, 0) (1, 0, 6) (7, 2, 0) (0, 8, 0) (0, 2, 9) (10, 0, 3) (0, 11, 3) (0, 0, 12)

(13, 0, 0) (4, 14, 0) (4, 0, 15) ...
......

...

Figure 3. An example of an infinite class Htree ⊆ YX with X = [3] and Y = N.

Each h in the tree has X in-going edges; for each x ∈ X , there is an edge towards h
from the function that is equal to h on X \ {x}, and is equal to a new and unique
alphabet symbol at x. Every alphabet symbol y ∈ Y has a depth; it is the minimum
distance from the root of a word that y appears in. The DS dimension is less than
two for the following reason. For every S ∈ X 2 and every finite H0 ⊂ Htree|S, we can
choose y ∈ Y with maximum depth among all symbols that appear in H0. Let h0 be an
element in H0 that contains y. The vertex h0 does not have two neighbors, so H0 is
not a pseudo-cube.

2.2. The One-Inclusion Graph. This subsection introduces an important combina-
torial abstraction of learning algorithms. The idea is to translate a learning problem
to the language of graph theory.

Definition 9 (One-inclusion Graph [Haussler, Littlestone, and Warmuth, 1994, Ru-
binstein, Bartlett, and Rubinstein, 2006]). The one-inclusion graph of H ⊆ Yn is a
hypergraph G(H) = (V,E) that is defined as follows.2 The vertex-set is V = H. For
each i ∈ [n] and f : [n] \ {i} → Y , let ei,f be the set of all h ∈ H that agree with f on
[n] \ {i}. The edge-set is

(1) E =
{

(ei,f , i) : i ∈ [n], f : [n] \ {i} → Y , ei,f 6= ∅
}
.

We say that the edge (ei,f , i) ∈ E contains the vertex v, and write v ∈ (ei,f , i), if
v ∈ ei,f . The size of the edge (ei,f , i) is defined to be |(ei,f , i)| := |ei,f |.

Remark. The edge-set consists of pairs (e, i), where e is a set of vertices and i is
the direction of the edge. It is convenient that the “name” of an edge also tells us its
direction. Edges could be of size one, and each vertex v is contained in exactly n edges.
This is not the standard structure of edges in hypergraphs, but we use this notation
because it provides a better model for learning problems.

The one-inclusion graph leads to a simple but useful toy model for transduction in
machine learning.

2We use the term “one-inclusion graph” although it is actually a hypergraph.
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Example 10 (Toy Model). The learning game is played over a one-inclusion graph
(V,E). The input to the problem is an edge. The input edge e is generated by first
choosing a vertex v∗ from some unknown distribution over V , and then choosing e to
be a uniformly random edge containing v∗. The goal is to output a vertex u that is
equal to v∗ with as high probability as possible.

Learning algorithms in this toy model are orientations.

Definition 11. An orientation of the hypergraph (V,E) is a mapping σ : E → V
such that σ(e) ∈ e for each edge e ∈ E.

Every (deterministic) learning algorithm defines an orientation, and vice versa. The
success probability of the algorithm is determined by the out-degrees of the orientation.
The out-degree of v ∈ V in σ is
(2) outdeg(v;σ) = |{e : v ∈ e and σ(e) 6= v}|.
The maximum out-degree of σ is
(3) outdeg(σ) = sup

v∈V
outdeg(v;σ).

There is a certain duality between orientations and the DS dimension, as the following
two lemmas demonstrate. This duality is the basic link between the DS dimension
and learnability.

Lemma 12. If H ⊆ Yd has DS dimension d, then outdeg(σ) ≥ d
2
for every orientation

σ of G(H).

Lemma 13. If H ⊆ Yd+1 has DS dimension d, then there exists an orientation σ of
G(H) with outdeg(σ) ≤ d.

Proof of Lemma 12. We prove the stronger assertion that if H ⊆ Yd is a pseudo-cube
then every orientation σ of H satisfies that outdeg(σ) ≥ d

2
. In a pseudo-cube, each h

has a neighbor in each of the d directions, and every edge e ∈ E has size |e| ≥ 2 so
that |e| − 1 ≥ |e|

2
. Even the average out-degree is at least d

2
: for every orientation σ,

1

|V |
∑
v∈V

outdeg(v;σ) =
1

|V |
∑
e∈E

|e| − 1

≥ 1

|V |
∑
e∈E

|e|
2

=
1

2|V |
· d|V | = d

2
.

This finishes the proof because the maximum is at least the average. �

Proof of Lemma 13. We start by analyzing the case thatH is finite (similarly to [Daniely
and Shalev-Shwartz, 2014]). The orientation is constructed inductively and greedily
as follows. The base of the induction is the case |H| = 1. In this case, all edges are
oriented towards the single vertex, so the claim trivially holds. For the inductive
step, assume |H| > 1. Let G = (V,E) be the one-inclusion graph associated with
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H. Because the DS dimension of H is d, there must be h ∈ H so that the size of
{e ∈ E : h ∈ e, |e| > 1} is at most d. Let H′ be H after deleting h. By definition, the
DS dimension of H′ is at most d. Let G ′ = (V ′, E ′) be the hyper-graph associated
with H′. Edges in E ′ are obtained from edges in E by deleting h. There is at least one
singleton edge of size 1 that contains h in E. This edge does not appear in E ′. By the
induction hypothesis, there is an orientation σ′ : E ′ → V ′ with maximum out-degree
at most d. Every edge in E ′ corresponds to an edge in E. The only edges in E that
do not have counterparts in E ′ are the singleton edges that contain h. Let σ : E → V
extend σ′ as follows. Every edge in E that has a counterpart in E ′ is directed in σ as
in σ′. All other (singleton) edges are directed towards h. The out-degree of vertices in
G ′ does not change, and the out-degree of h is at most d. So, the out-degree of σ is at
most d as required.

The case when H is infinite is handled using a compactness argument. Because we
could not find a proper reference, we provide the short (but not entirely trivial) proof
in Appendix B.

�

2.3. The One-Inclusion Graph Algorithm. The one-inclusion graph captures
a model for transduction in machine learning (Example 10). A key observation
of Haussler, Littlestone, and Warmuth [1994] is that this model captures an essential
ingredient of general PAC learnability; see also [Rubinstein, Bartlett, and Rubin-
stein, 2006, Daniely and Shalev-Shwartz, 2014, Alon, Hanneke, Holzman, and Moran,
2021]. In a nutshell, good orientations of the one-inclusion graph yield good learning
algorithms.

Algorithm 1 The one-inclusion algorithm AH for H ⊆ YX

Input: An H-realizable sample S =
(
(x1, y1), . . . , (xn, yn)

)
.

Output: A hypothesis AH(S) = hS : X → Y .

For each x ∈ X , the value hS(x) is computed as follows.
1: Consider the class of all patterns over the unlabeled data H|(x1,...,xn,x) ⊆ Yn+1.
2: Find an orientation σ of G(H|(x1,...,xn,x)) that minimizes the maximum out-degree.

3: Consider the edge in direction n+ 1 defined by S; let
e = {h ∈ H|(x1,...,xn,x) : ∀i ∈ [n] h(i) = yi}.

4: Let h′ = σ((e, n+ 1)).
5: Set hS(x) = h′(n+ 1).

The one-inclusion graph (OIG) algorithm AH is presented in Algorithm 1. The
algorithm gets as input a realizable training sample S = ((x1, y1), . . . , (xn, yn)) as well
as an additional test point x. Its goal is to provide a good prediction for the label of x.
The main idea is to translate this problem to the toy model. Use the unlabelled data
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x1, . . . , xn and x to build the one-inclusion graph of H|(x1,...,xn,x). The labels y1, . . . , yn
now define an edge in the graph. An orientation of the graph provides the prediction
for the label of x.

The crucial point is that an orientation with small maximum out-degree yields small
error. This follows by a simple and clever leave-one-out argument (see e.g. [Haussler,
Littlestone, and Warmuth, 1994]). The argument exploits the underlying symmetry
as we now explain.

Let S ∼ Dn be the input sample and let (x, y) ∼ D be the test point (chosen
independently of S). We can generate the joint distribution of (S, (x, y)) in a different
way. We can choose S ′ ∼ Dn+1 and independently choose I from the uniform
distribution U(n+ 1) on [n+ 1]. Let

S ′−I = ((x′1, y
′
1), . . . , (x

′
I−1, y

′
I−1), (x

′
I+1, y

′
I+1), . . . , (x

′
n+1, y

′
n+1))

be the sample S ′ after deleting its I entry. The distribution of (S ′−I , (x
′
I , y
′
I)) is identical

to that of (S, (x, y)).

Fact 14 (Leave-one-out). Let D be a distribution over a set Z and let n > 0 be an
integer. For every event E ⊆ Zn+1,

Pr
(S,Z)∼Dn+1

[
(S,Z) ∈ E

]
= Pr

(S′,I)∼Dn+1×U(n+1)

[
(S ′−I , S

′
I) ∈ E

]
.

The one-inclusion graph together with the leave-one-out argument lead to a formal
connection between good orientations and PAC prediction error.

Proposition 15. Let D be an H-realizable distribution and let n > 0 be an integer.
Let M be an upper bound on the maximum out-degree of all orientations chosen by
AH. The prediction error can be bounded as

Pr
(S,(x,y))∼Dn+1

[
hS(x) 6= y

]
≤ M

n+ 1
,

where hS = AH(S).

Proof. By Fact 14,
Pr
[
hS(x) 6= y

]
= Pr

[
hS′−I

(x′I) 6= y′I
]
.

The prediction error is small, as long as the maximum out-degree is small: for every
fixed S ′ = ((x′1, y

′
1), . . . , (x

′
n+1, y

′
n+1)),

Pr
I

[
hS′−I

(x′I) 6= y′I
]

=
1

n+ 1

n+1∑
i=1

1
[
hS′−i

(x′i) 6= y′i
]

=
1

n+ 1

n+1∑
i=1

1
[
σ(ei) 6= y′i

]
=

outdeg(y′;σ)

n+ 1
,

where y′ = (y′1, . . . , y
′
n+1) is a vertex the one-inclusion graph, and ei is the edge in the

i’th direction containing y′. �
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The final piece we present in this section is that a bound on the DS dimension leads
to non-trivial prediction guarantees for PAC learning. This rather weak prediction
capability is the starting point of our general PAC learning algorithm. It will be
significantly enhanced in Section 4 below.

Claim 16. Let H ⊆ YX be so that d = dDS(H) < ∞. Let AH be Algorithm 1. For
every H-realizable sample S ′ = ((x′1, y

′
1), . . . , (x

′
d+1, y

′
d+1)), there exists i ∈ [d+ 1] such

that hS′−i
(x′i) = y′i, where hS′−i

= AH(S ′−i).

Proof. Let H′ = H|(x′1,...,x′d+1)
. Think of y′ = (y′1, . . . , y

′
d+1) as a vertex in G(H′). Let

σ denote the orientation that minimizes the maximum out-degree of G(H′) chosen
by AH. Lemma 13 implies that the maximum out-degree of σ is at most d. Let
ei be the edge in the i’th direction containing y′. For every i ∈ [d + 1], we have
hS′−i

(x′i) 6= y′i ⇔ σ(ei) 6= y′. So,
d+1∑
i=1

1
[
hS′−i

(x′i) 6= y′i
]

=
d+1∑
i=1

1
[
σ(ei) 6= y′

]
= outdeg(y′;σ) ≤ d.

It follows that there must exist i such that hS′−i
(x′i) = y′i. �

3. Shifting and Orientations

In this section we use a powerful combinatorial technique called shifting to derive
good orientations. This links the general discussion of one-inclusion graphs from the
previous section, with the learning algorithm we use to prove Theorem A in the next
section. The main result of this section is that the out-degree of optimal orientations
can be controlled by the Natarajan dimension and the number of labels.3

Lemma 17. Let H ⊆ [p]n be a class with Natarajan dimension dN <∞. Then, there
exists an orientation σ of G(H) with maximum out-degree

outdeg(σ) ≤ 20dN log p.

The key technique we use is shifting [Haussler, 1995, Rubinstein, Bartlett, and
Rubinstein, 2006]. Shifting is a way to simplify the structure of a hypothesis class,
while controlling important properties. Intuitively, it is the operation of “pushing a
concept class downward”. Think of [p] as totally ordered by the standard order on N.
The set [p]n becomes a poset with the partial order h ≤ g iff h(i) ≤ g(i) for all i.

Definition 18 (Shifting). Let H ⊆ [p]n and let i ∈ [n]. The shifting operator in the
i’th direction Si maps H to its shifted version Si(H) as follows. Shifting is first defined
on edges. For f : [n] \ {i} → [p], let ef be the collections of h ∈ H that agree with f
on [n] \ {i}. The shifting Si(ef ) is obtained by “pushing ef downward”; namely, Si(ef )
is the collection of all g ∈ [p]n that agree with f on [n] \ {i} and 1 ≤ g(i) ≤ |ef |. The
shifting of H is the union of all shifted edges

Si(H) =
⋃
f

Si(ef ) ⊆ [p]n.

3Here and below we did not attempt to optimize the constants.
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Let us provide a different view point on this important operation. Fix j 6= i, and
partition all edges in the j’th direction according to their projection to [n] \ {i, j}.
Fix f ∈ H|[n]\{i,j}, and consider all vertices that agree with f on [n] \ {i, j}. Encode
this data by the p× p Boolean matrix Mf defined by Mf(a, b) = 1 iff adding a, b to
f in positions i, j leads to a word in H. The 1-entries in the matrix correspond to
words in H that agree with f . Every row in the matrix corresponds to the (possibly
empty or singleton) set of words that differ in the j’th coordinate. Rows with at least
one 1-entry correspond to edges in the one-inclusion graph. The matrix offers a nice
viewpoint on shifting. Shifting is performed by pushing all the 1-entries “upwards”.
Here is an example of shifting six words over an alphabet of size four:

1 1

1
1 1 1

 =⇒


1 1 1
1 1

1


Repeatedly applying the shifting operator in various directions leads to a fixed point
H∗ of these operators; that is, Si(H∗) = H∗ for all i. This must happen in a finite
number of steps, because when a change is made the total sum of all entries strictly
decreases. The fixed points of shifting are classes that are closed downwards (that is,
if h is in a fixed-point H∗ ⊆ [p]n and g ≤ h then g ∈ H∗).

In the binary setting, Haussler [1995] proved that shifting does not increase the VC
dimension, and that it does not decrease the number of edges in the one-inclusion graph.
This allows to elegantly bound from above the edge density by the VC dimension.

In the multiclass setting, Rubinstein, Bartlett, and Rubinstein [2006] used the
Pollard dimension [Pollard, 1990] to control the behavior of multiclass shifting; the
Pollard dimension provides a natural mechanism for moving from the multiclass setting
to the binary setting. But the Pollard dimension and other standard dimensions can
grow during shifting; see Example 19 below. In addition, the number of edges and
their total size can decrease; see Example 20.

Example 19 (Dimensions Increase).

(1, 1) (1, 1)
(1, 0) (0, 0)
(0, 1) =⇒ (0, 1)
(2, 0) S1 (1, 0)
(0, 2) (0, 2)

Before shifting all three dimensions—Natarajan, DS and Pollard—are 1. After shifting
they are 2.

Example 20 (Edges Decrease).

(2, 2) (0, 2)
(1, 1) =⇒ (0, 1)
(1, 0) S1 (0, 0)
(2, 0) (1, 0)
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Before shifting, the three non-singleton edges are {(2, 2), (2, 0)}, {(1, 1), (1, 0)}, and
{(1, 0), (2, 0)}, and the sum of their sizes is 6. After shifting, there are two non-
singleton edges {(0, 0), (0, 1), (0, 2)} and {(0, 0), (1, 0)}, and the sum of their sizes is 5.
In the binary case, the sum of the sizes of edges is equivalent to the average degree,
and it does not decrease during shifting.

These examples show that the analysis of multiclass shifting is not a direct extension
of the arguments in the binary case. We now identify two quantities that are similar
to VC dimension and average degree, but can be controlled during shifting.

Because multiclass shifting is “complex”, we seek the simplest possible dimension so
that we can keep track of it.

Definition 21 (Exponential Dimension). We say that S ∈ X n is E-shattered by
H ⊆ YX if |H|S| ≥ 2n. The exponential dimension dE(H) is the maximum size of an
E-shattered sequence.

The following claim shows that the exponential dimension is not increased during
shifting.

Claim 22 (Shifting Does Not Increase Projections). Let H ⊆ [p]n and let i ∈ [n]. For
every S ∈ [n]k, ∣∣Si(H)|S

∣∣ ≤ ∣∣H|S∣∣.
Proof. Without loss of generality, assume that S has k distinct entries. Recall that
H|S is a subset of [p]k. We assume that k > 1; the proof when k = 1 is similar. If i
does not appear in S, shifting does not change the projection. If i appears in S, argue
as follows. Let S ′ be S after deleting i, so that H|S′ is a subset of [p]k−1. For each
f ∈ H|S′ , let ef be the set of h ∈ H|S that agree with f on [k − 1], so that

|H|S| =
∑
f

|ef |.

Let e′f be the set of h ∈ Si(H)|S that agree with f on [k − 1]. Because H|S′ is equal
to Si(H)|S′ , we similarly have

|Si(H)|S| =
∑
f

|e′f |.

For fixed f , the size |e′f | is equal to the maximum size of an edge in the i’th direction
of H whose elements agree with f . This holds because there is an edge in the i’th
direction of Si(H) of size |e′f | whose elements agree with f , and the sizes of edges do
not change during shifting. It follows that |ef | ≥ |e′f |.

�

Corollary 23. For every H ⊆ [p]n and i ∈ [n],

dE(Si(H)) ≤ dE(H).

We would like to control the structure of edges during shifting. The most obvious
measure to keep track of is the average degree (with respect to non-singleton edges).
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Definition 24 (Average Degree). Let G(H) = (V,E) be the one-inclusion graph of
H ⊆ [p]n. The average degree of H is

avd(H) =
1

|V |
∑
v∈V

deg(v) =
1

|V |
∑

e∈E:|e|>1

|e|,

where deg(v) = |{e ∈ E : v ∈ e, |e| > 1}|.

Example 20 shows that the number of edges and average degree may decrease during
shifting (which is bad for our purposes). The correct measure to keep track of turns
out to be the following.

Definition 25 (Shifting Average Degree). Let G(H) = (V,E) be the one-inclusion
graph of H ⊆ [p]n. Define

avd′(H) =
1

|V |
∑
e∈E

(|e| − 1).

Claim 26 (Shifting Does Not Decrease avd′). For every H ⊆ [p]n and i ∈ [n],

avd′(Si(H))) ≥ avd′(H).

Proof. Since |V | does not change during shifting, we only need to record the changes
in the edges. Let i denote the direction of shifting. The sizes of all edges in the i’th
direction do not change during shifting. We need to understand the behavior in the
other directions. We shall use the perspective explained after Definition 18. Fix j 6= i,
and partition all edges in the j’th direction according to their projection to [n] \ {i, j}.
Fix f ∈ H|[n]\{i,j}, and consider all vertices that agree with f on [n] \ {i, j}. Encode
this data by the p× p Boolean matrix Mf defined by Mf (a, b) = 1 iff adding a, b to f
in positions i, j leads to a word in H. The example we saw earlier helps to digest the
scenario we are operating in (shifting six words over an alphabet of size four):

1 1

1
1 1 1

 =⇒


1 1 1
1 1

1


The sum of |e| − 1 over all edges e in the j’th direction that agree with f can be
expressed as the total number of 1-entries in the matrix minus the number of non-zero
rows. This is true for H as well for Si(H). The total number of 1-entries remains fixed.
The number of non-zero rows can not increase during shifting, because the number of
non-zero rows after shifting is equal to the maximum number of 1-entries in a single
column. It follows that this sum over |e| − 1 can not decrease, as claimed. �

The control of the exponential dimension and of avd′ allows to bound the average
degree.

Proposition 27 (Average Degree is Bounded by Exponential Dimension). For every
H ⊆ [p]n,

avd(H) ≤ 4dE(H).
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Proof. Apply shifting on H until a fixed point H∗ is reached. Because
avd(H) ≤ 2avd′(H) ≤ 2avd′(H∗) ≤ 2avd(H∗),

it suffices to prove that avd(H∗) ≤ 2dE(H∗). This holds by induction. The induction
base |H∗| = 1 trivially holds. The induction step is justified as follows. Let h0 be the
concept in H∗ so that no concept in H∗ is larger than h0 with respect to the natural
partial order. Let |h0| be the number of entries that are larger than 1 in h0. The
fixed point property of H∗ implies that it is closed downwards. There are 2|h0| words
under h0 in H∗. It follows that deg(h0) ≤ |h0| ≤ dE(H∗). Remove h0 from H∗. This
removal does not increase the exponential dimension, and the resulting class is still
closed downwards. The inductive assumption completes the proof, because the sum of
the degrees is reduced by at most 2deg(h0). �

The bound on the average degree immediately allows to build good orientations.

Corollary 28 (Exponential Dimension Leads to Orientations). For every H ⊆ [p]n,
there is an orientation of G(H) with maximum out-degree at most 4dE(H).

Proof. Proposition 27 implies that every induced sub-graph of G(H) has a vertex of
degree at most 4dE(H). The beginning of the proof of Lemma 13 produces the needed
orientation; the orientation is constructed “greedily” by picking a vertex of degree at
most 4dE(H), removing it from the graph and proceeding recursively. �

The last piece of the puzzle is to relate the exponential dimension to the Natarajan
dimension. This is achieved via a generalization of Sauer’s lemma by Haussler and
Long [1995].

Lemma 29 (Controlling the Exponential Dimension). For every H ⊆ [p]n with
dN = dN(H) and dE = dE(H) <∞,

dE ≤ 5dN log(p).

Proof. Corollary 5 in [Haussler and Long, 1995] says that for every S ⊆ [n] of size m,
the size of H|S is at most

dN∑
i=1

(
m

i

)(
p

2

)i
≤
(p2em

2dN

)dN
.

By definition, the exponential dimension satisfies

2dE ≤
(p2edE

2dN

)dN
.

This implies the lemma because p ≥ 2. �

Remark. Corollary 28 and Lemma 29 imply Lemma 17.

4. Learnability ≡ Finite DS Dimension

Here we prove the characterization of multiclass PAC learnability via the DS
dimension (Theorem 1). Our main contribution is algorithmic. We develop a learning
algorithm for any class H with finite DS dimension.
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4.1. Outline. The starting point is the OIG algorithm by Haussler, Littlestone, and
Warmuth [1994]; see Section 2.3 above for a reminder. The finiteness of the DS
dimension translates to a non-trivial guarantee on the OIG algorithm (as we saw in
Claim 16). The output hypothesis of this algorithm has expected prediction error at
most 1− 1

d+1
. This error is pretty high, but the crucial point is that it is uniformly

bounded away from 1. The OIG algorithm forms a kind of a (very) weak PAC learner.
It is tempting to try to improve the error by boosting. But standard boosting

turns out to be useless in our context. The traditional assumption for boosting in
the binary setting requires error below 1

2
. The above error guarantee is too weak

and does not meet the minimal requirements for boosting. And even if multiclass
boosting was available, known techniques have sample complexity that scales with
log|Y|; see [Schapire and Freund, 2012, Brukhim, Hazan, Moran, and Schapire, 2021].
This factor could be infinite in our setting. To circumvent this obstacle we introduce
the framework of list PAC learning.

List PAC learning. In the standard PAC setting, the goal is to provide a single
prediction on an unseen data point. In list PAC learning, the goal is to provide a
short menu of predictions. Given a sample S ∼ Dn from a realizable D, the goal is to
output a menu µ that maps elements of X to a small subset of Y so that y ∈ µ(x)
with high probability over a new test point (x, y) ∼ D. List PAC learning is discussed
in greater detail in Section 4.2.

Rather than boosting the weak OIG algorithm to a strong PAC learner, we use it
to derive a list PAC learning algorithm. We show that every class H with a finite
DS dimension admits a list PAC learner (see Algorithm 2). This list-learner gathers
information from several OIG algorithms to produce a good menu. Its analysis is based
on the leave-one-out symmetrization argument. The list-learner allows to eliminate
the vast majority of a priori possible labels. Instead of all of Y, we can safely use
the menu µ(x) as the “local alphabet for x”. Menus can be thought of as tools for
alphabet reduction. Once we have a list PAC learner, it is natural to try to reduce
the learning task to one in which the number of labels is bounded.

Did we just reduce the infinite alphabet case to the finite case? The short answer is
no. Even with a good menu µ, the subclass H|µ = {h ∈ H : ∀x ∈ X h(x) ∈ µ(x)} of H
may be completely useless. For example, let H ⊆ {0, 1, 2}N be the set of all functions
h such that |h−1({1, 2})| < ∞, and let µ be the menu such that µ(x) = {1, 2} for
all x ∈ N. The menu-subclass H|µ is just empty. At the same time, every finitely
supported distribution D with labels in {1, 2} is both realizable by H and consistent
with µ. This simple example indicates that in order to restrict to a subclass of H
without losing essential information, at least some knowledge on the support of the
target distribution is needed. Learning the support of a distribution, however, is a
much harder task than PAC learning.

Let us make a quick comment. In this work, list PAC learning serves as a tool for
proving Theorem 1. However, we think it is a natural setting and interesting in its
own right (and we prove further motivation in Section 4.2).
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Figure 4. An illustration of Support Vector Machine in 2D as a sample compres-
sion scheme. The realizable sample S consists of negative and positive points.
The algorithm outputs a separating line that maximizes the margin. This line is
determined by the support vectors (circled).

List PAC Learning ⇒ PAC Learning. Our solution is based on the fact that
the OIG algorithm is exactly suitable for situations in which the learning task is not
defined by a concept class, but by a set of allowable samples. The main property of
OIG algorithms is their locality. To make a prediction on x, they just use the part of
H that is relevant to the training data S, and do not require any global access to H.

An alternative way to model learning with a menu is via partial concept classes [Alon,
Hanneke, Holzman, and Moran, 2021]. Instead of all maps in H that are consistent
with the menu µ, we can consider all partial maps that agree with both the class H
and the menu µ. We chose not to use this formalism here in order to use as standard
language as possible. The partial concept class perspective does not really help to
solve the problem. The focus of Alon, Hanneke, Holzman, and Moran [2021] was
on binary-classification, which is significantly simpler than the multiclass setting.
Generalizing the analysis of the one-inclusion graph from the binary setting to the
multiclass setting turns out to be a subtle (and somewhat confusing) task. Natural
attempts to do so fail; see Section 3 for a full discussion.

Sample Compression Schemes. The algorithm we develop is best thought of as a
sample compression scheme [Littlestone and Warmuth, 1986]. A sample compression
scheme (Definition 35) is an abstraction of a common property to many learning
algorithms; see Figure 4. It can be viewed as a two-party protocol between a compresser
and a reconstructor. Both players know the underlying concept classH. The compresser
gets as input an H-realizable sample S. The compresser picks a small subsample S ′
of S and sends it to the reconstructor. The reconstructor outputs an hypothesis h.
The correctness criteria is that h needs to correctly classify all examples in the input
sample S.

One advantage of using the sample compression schemes framework is that the
proofs are typically cleaner, because in contrast to the probabilistic nature of the PAC
framework, sample compression is a deterministic task. At the same time, sample
compression schemes are known to represent good PAC learning algorithms [Littlestone
and Warmuth, 1986].
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Classical sample compression algorithms usually boil down to a simple one-shot
encoding scheme (e.g. Figure 4). Our compression scheme is more involved and is
comprised of two main components. The first component is a variant of sample
compression that fits into the list-learning framework (Definition 38). The second
component incorporates the menu derived by the first component together with a
minimax-based sample compression as in [David, Moran, and Yehudayoff, 2016]. All
of this is described in Section 4.4.

A high-level outline of the full algorithm is presented in Figure 5, after all the
needed ingredients are prepared and the subtleties are discussed.

4.2. List PAC learning. List PAC learning is a model for providing a short menu
of likely predictions. It extends the standard PAC model by allowing the learning
algorithm more freedom.

Relaxing the demand of a single output to a list of outputs is a common and useful
paradigm in computer science. One notable example is the notion of list-decoding in
coding theory, which is important both as a tool and as a goal.

Let us start with a few examples for list learning. In medical contexts, list-learning
can offer physicians a menu of likely diagnoses. In technical contexts, list-learning can
provide a short menu of possible solutions that are meant to assist clients. List-learning
can also provide the menu of preferences of consumers. One can easily imagine other
scenarios where list-learning is useful.

Our main motivation for developing this model is reasoning on the first component
of our multiclass learning algorithm. But this basic model naturally fits into many
scenarios, and we plan to investigate it further in future works.

The goal of list PAC learning is to compute good menus.

Definition 30 (p-menu). A menu of size p ∈ N is a function µ : X → {Y ⊆ Y : |Y | ≤
p}.

List PAC learning is the following natural version of standard PAC learning.

Definition 31 (List PAC Learner). An algorithm A with sample size n and list size
p is a list PAC learner with success probability α > 0 for the concept class H ⊆ YX if
for every H-realizable distribution D,

Pr
(S,(x,y))∼Dn+1

[
y ∈ µS(x)

]
≥ α,

where µS = A(S) is always a p-menu.

Remark. In the “noisy” case, when the label y has entropy given x, list learning can
potentially lead to zero error even though in the standard PAC setting zero error is
not achievable.

The main result of this section is the development of a list PAC learner for every
class of finite DS dimension (see Algorithm 2). The list PAC learner can be thought
of as a brute-force extension of the one-inclusion learning rule.



20 BRUKHIM, CARMON, DINUR, MORAN, AND YEHUDAYOFF

Algorithm 2 List PAC learner LH,t for H ⊆ YX with dDS(H) = d and t ∈ N
Input: Data S ∈ (X × Y)n where n = d+ t.
Output: A p-menu µS for p =

(
n
t

)
.

1: Let S1, . . . , Sp denote all subsamples of S of size d.
2: Let hSi

= AH(Si) denote the hypothesis output of Algorithm 1 on input sample
Si.

3: Return the menu defined by
µS(x) =

{
hS1(x), . . . , hSp(x)

}
.

Proposition 32 (Finite DS Dimension implies List PAC Learning). Let H ⊆ YX be
a class with DS dimension d < ∞ and let t ∈ N. The algorithm LH,t is a list PAC
learner for H with sample size n = d + t, list size p =

(
n
t

)
and success probability

α = t+1
d+t+1

.

Proof. Let µS = LH,t(S) be the menu generated by the algorithm with data S. By
the leave-one-out symmetrization argument (Fact 14),

Pr
(S,(x,y))∼Dn+1

[
y ∈ µS(x)

]
= Pr

(S′,I)∼Dn+1×U([n+1]])

[
y′I ∈ µS′−I

(x′I)
]
.

It hence suffices to show that every realizable sample S ′ of size n+ 1 satisfies

(4) Pr
I∼U([n+1]])

[
y′I ∈ µS′−I

(x′I)
]
≥ t+ 1

d+ t+ 1
.

Let us call an index i ∈ [n + 1] good if y′i ∈ µS′−i
(x′i). We need to show that there

are at least t+ 1 good indices. By Claim 16, at least one of the indices in [d+ 1] is
good. Denote this good index by i1. Again, by Claim 16, at least one of the indices in
[d+ 2] \ {i1} is good. Denote this good index by i2. Repeat this process to obtain the
needed t+ 1 good indices. �

4.3. Learning Natarajan Classes FromMenus. We now move towards the second
component of our algorithm. The objective is to use the good menu that was generated
by the first component to effectively reduce the number of labels. The algorithm we
develop in this sub-section is a weak PAC learner, but under a strong assumption.
Several such weak learners will be combined later on to get the full sample compression
scheme.

The learning algorithm now has two pieces of knowledge: the underlying class H
and the menu µ. Trusting that the first component delivered on its promise, it assumes
that the data is consistent with the menu. This is captured by the following definition.

Definition 33 (Menu Realizability). A sample S ∈ (X × Y)n is realizable by the
menu µ if y ∈ µ(x) for every (x, y) in S. A distribution D over X × Y is realizable by
µ if for every m ∈ N, a random sample S ∼ Dm is realizable by µ with probability 1.

This definition captures the ideal scenario that we have a menu that completely
captures the unknown distribution D. It is basically impossible to generate a single
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menu that captures all of D. Nevertheless, this idealization is a useful sub-goal that
we need to deal with later on.

Algorithm 3 One-inclusion algorithm AH,µ for a class H and menu µ

Input: A sample S =
(
(x1, y1), . . . , (xn, yn)

)
realizable by H and µ.

Output: A hypothesis hS : X → Y .

For each x ∈ X , the value hS(x) is computed as follows.
1: Consider the class H′ ⊆ Yn+1 of all patterns on the unlabelled data that are

realizable by both H and µ. That is, it is the set of all h ∈ H|(x1,...,xn,x) so that
h(n+ 1) ∈ µ(x) and h(i) ∈ µ(xi) for i ∈ [n].

2: Find an orientation σ of G(H′) that minimizes the maximum out-degree.
3: Consider the edge in direction n+ 1 that is consistent with S. Let

e =
{
h ∈ H′ : ∀i ∈ [n] h(i) = yi

}
.

4: Let h′ = σ((e, n+ 1)).
5: Set hS(x) = h′(n+ 1).

The main result of this sub-section is a PAC learning algorithm for menu-realizable
distributions (Algorithm 3). The sample complexity is controlled by the size of the
menu µ as well the Natarajan dimension of H. This is pretty good news because we
controlled the size of the menu, and the Natarajan dimension is the smallest among
all dimensions.

Proposition 34 (PAC Learning Given a Menu). LetH ⊆ YX be a class with Natarajan
dimension dN <∞ and let µ be a p-menu. For every distribution D over X × Y that
is realizable by both H and by µ, and for all integers n > 0,

Pr
(S,(x,y))∼Dn+1

[
hS(x) 6= y

]
≤ 20dN log(p)

n
,

where hS = AH,µ(S).

The proposition is not the end of the story. The menu µ generated by the first
component allows to make good list-predictions, but it has no chance to capture all of
the unknown distribution D. It is extremely unlikely that D is realizable by µ. The
removal of this realizability assumption is postponed to the next section.

The high-level idea behind the proof of the proposition is to use the p-menu to
reduce the label-set from the unbounded Y to a label-set of size p. This is beneficial
because PAC learning with p many labels can be achieved with sample complexity
order dN log(p). In fact, any proper ERM algorithm with this sample complexity is a
PAC learner.

Trying to implement this strategy raises a subtle challenge. The task of learning a
distribution realizable by a class H and a menu µ cannot be reduced to PAC learning
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the sub-class H|µ of H that is consistent with the menu. The sub-class H|µ could even
be empty; see Section 4.1 for a simple example.

The solution is based on the unique locality feature of the OIG algorithm. To make
a prediction on an unseen data point x ∈ X , the OIG algorithm just uses x and the
unlabelled part of the sample S. This local view of X suffices to make a prediction.

Proof of Proposition 34. Let D be a distribution that is realizable by H and µ. By
the leave-one-out symmetrization argument (Fact 14),

Pr
(S,(x,y))∼Dn+1

[
hS(x) 6= y

]
= Pr

(S′,I)∼Dn+1×U(n+1)

[
hS′−I

(x′I) 6= y′I
]
,

where hS = AH,µ(S). It therefore suffices to show that for every sample S ′ that is
realizable by H and µ,

(5) Pr
I∼U(n+1)

[
hS′−I

(x′I) 6= y′I
]
≤ 20dN log(p)

n
.

Fix S ′ that is realizable byH and µ for the rest of the proof. The classH′ = H|(x′1,...,x′n+1)

constructed by the algorithm AH,µ for S ′−I and x′I is the same for all values of I. The
class H′ is realizable by µ. The Natarajan dimension of H′ is at most that of H.
Denote by σ the orientation of G(H′) that the algorithm chooses. Lemma 17 tells us
that the maximum out-degree of σ is at most 20dN log(p). Let y′ denote the vertex in
G(H′) defined by y′1, . . . , y′n+1. Finally,

Pr
I∼U(n+1)

[
hS′−I

(x′I) 6= y′i
]

=
outdeg(y′;σ)

n+ 1
≤ 20dN log(p)

n+ 1
. �

4.4. The Algorithm. We are ready to describe the full algorithm. It is convenient
to think of it as a sample compression scheme.

Definition 35 (Sample Compression Scheme [Littlestone and Warmuth, 1986]). Let
H ⊆ YX and let r ≤ n be integers. An n→ r sample compression scheme consists of
a reconstruction function

ρ : (X × Y)r → YX

such that for every H-realizable S ∈ (X × Y)n, there exists S ′ ∈ (X × Y)r whose
elements appear in S such that for every (x, y) in S we have h(x) = y, where h = ρ(S ′).

The main goal of this section is to construct a sample compression scheme for classes
with finite DS dimension.

Theorem 36 (DS Classes are Compressible). Let H ⊆ YX be a class with DS
dimension dDS <∞ and Natarajan dimension dN . For every integers n, t > 0, there
exists an n→ r sample compression scheme for H with

r ≤

(
dDS + t+ 1

t+ 1
(dDS + t) + 103dN log

((
dDS + t+ 1

t+ 1

)
log(2n)

))
log(2n).
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When dDS and t are thought of as constants and n as tending to infinity, the value
of r becomes r ≤ Õ(( (dDS+t)

2

t
+ dDSt) log n). For t = dd1/2DSe, this becomes

r ≤ Õ(d
3/2
DS log n).

As we explain in the next section, a standard “compression implies generalization”
argument implies that Õ(d

3/2
DS) samples are sufficient for PAC learning.

The sample compression scheme consists of two components. The first component
provides list-learning guarantees. It produces a good menu that is passed to the
second component. The second component is a regular sample compression scheme
but only for menu-realizable samples. To accommodate this mechanism, we introduce
two variants of sample compression schemes.

Definition 37 (List Sample Compression Scheme). An n→ r list sample compression
scheme with menu size p consists of a reconstruction function

ρ : (X × Y)r → {Y ⊆ Y : |Y | ≤ p}X

such that for every H-realizable S ∈ (X × Y)n, there exists S ′ ∈ (X × Y)r whose
elements appear in S such that for every (x, y) in S we have y ∈ µ(x), where µ = ρ(S ′).

Definition 38 (Sample Compression Scheme for a Menu). An n → r sample com-
pression scheme for a class H and a menu µ consists of a reconstruction function

ρ : (X × Y)r → YX

such that for every S ∈ (X × Y)n that is realizable by both H and µ, there exists
S ′ ∈ (X × Y)r whose elements appear in S such that for every (x, y) in S we have
h(x) = y, where h = ρ(S ′).

The following two lemmas summarize the two components of the construction.

Lemma 39 (List Sample Compression Scheme). Let H ⊆ YX be a class with DS
dimension dDS <∞. For every integers n, t > 0, there exists an n→ r1 list sample
compression scheme for H with menu size p, where

r1 ≤
dDS + t+ 1

t+ 1
(dDS + t) log(2n)

and

p ≤
(
dDS + t+ 1

t+ 1

)
log(2n).

Lemma 40 (Sample Compression Given a Menu). Let H ⊆ YX be a class with
Natarajan dimension dN <∞ and let µ be a p-menu. For every integer n > 0, there
exists an n→ r2 sample compression scheme for H and µ with

r2 ≤ 103dN log(p) log(2n).

The two lemmas, which are proved below, complete the proof of Theorem 36.
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High-level Outline of the Algorithm

realizable case over H with d = dDS(H) <∞

Input: A sample S ∈ (X × Y)n.
1: Find m′ ≈

√
d log n subsamples S ′1, . . . , S ′m′ of S, each of size d, so that the menu µ

of size p ≈ 2
√
d ·m′ they define realizes S.

2: Using the menu µ, find m′′ ≈ log n subsamples S ′′1 , . . . , S ′′m′′ of S, each of size
≈ d3/2, so that the majority vote h over the m′′ functions they define correctly
classifies S.

Output: The function h : X → Y .

input S

subsample S ′

menu µ subsample S ′′

output h

ρ1

ρ2

Figure 5. The outline of the algorithm. The m′ subsamples in step one are found
using the OIG algorithm of the class H. The m′′ subsamples in step two are
found using the OIG algorithm of the class H and the menu µ.

Proof of Theorem 36. The high-level outline is presented in Figure 5. Let S be an
H-realizable sample of size n. Lemma 39 tells us that there is a reconstruction ρ1 that
produces p-menus, and a sequence S ′ of r1 examples from S such that S is µ-realizable
where µ = ρ1(S

′). Lemma 40 applied to H and µ implies that there is a reconstruction
ρ2, and a sequence S ′′ of r2 examples from S such that ρ2(S ′′) correctly classifies
the entire sample S. The composition of the two schemes is an n→ r1 + r2 sample
compression scheme for H. �

The List Compression Scheme.

Proof of Lemma 39. We begin by describing the reconstruction function ρ1. Let
` = bdDS+t+1

t+1
log(2n)c. Given an H-realizable sample S ′ of size r1 = (dDS + t)`,
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partition it into ` contiguous subsequences S ′1, . . . , S ′`, each of size dDS + t. Define
µ = ρ(S ′) as

µ(x) =
⋃̀
j=1

µj(x),

where µj(x) = LH(S ′j) is the
(
dDS+t

t

)
-menu outputted by Algorithm 2 on input

sample S ′j. The menu µ has list-size p ≤
(
dDS+t+1

t+1

)
log(2n).

It remains to show that there is S ′ so that the reconstruction on S ′ achieves its
goal. The sample S ′ is chosen via the probabilistic method. Let U denote the uniform
distribution over the n examples in S and let α = t+1

dDS+t+1
. By Proposition 32 applied

to the distribution U , for a random sample S ′1 ∼ UdDS+t, in expectation at least αn of
the examples (xi, yi) in S satisfy

yi ∈ µ1(xi),

where µ1 = LH,t(S ′1). In particular, there exists S ′1 for which the above holds. Remove
from S all examples (xi, yi) such that yi ∈ µ1(xi) and repeat the same reasoning on
the remaining sample. This way at each step j we find a sample S ′j and a menu
µj = LH,t(S ′j) that covers at least an α-fraction of the remaining examples. After
` steps, all examples in S are covered because (1 − α)`n < 1. Setting S ′ to be the
concatenation of S ′1, . . . , S ′` finishes the proof. �

Learning From a Menu.

Proof of Lemma 40. We begin by describing the reconstruction function ρ2. Let
` = b8 log(2n)c and m = d100dN log(p)e. Given a sequence of r2 = m` examples S ′
that are realizable by H and µ, partition it into ` contiguous sub-sequences S ′1, . . . , S ′`,
each of size m. Define h(x) = ρ2(S

′) as

h(x) = plurality
(
h1(x), . . . , h`(x)

)
where hj = AH,µ(S ′j) is the hypothesis outputted by Algorithm 3 on input sample
S ′j, and plurality(y1, . . . , y`) is the label that appears most frequently (breaking ties
arbitrarily).

It remains to explain how to choose S ′ from a sample S that is realizable by H and
µ. The existence of S ′ follows from the probabilistic method. This time we also rely
on von Neumann’s minimax theorem [von Neumann, 1928].

We first claim that there exists a distribution P over sequences T of size m with
elements from S such that for every example (x, y) in S,

(6) Pr
T∼P

[
hT (x) 6= y

]
≤ 1

4
,

where hT = AH,µ(T ). Consider a zero-sum game between two players Minnie and Max.
Max’s pure strategies are examples (x, y) in S. Minnie’s pure strategies are sequences T
of m elements from S. The payoff matrix L is defined by L(x,y),T = 1hT (x)6=y. Let Q
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be a mixed strategy of Max. Namely, Q is a distribution over examples in S. The
distribution Q is realizable by both H and µ. Proposition 34 implies

Pr
(T,(x,y))∼Qm+1

[
hT (x) 6= y

]
≤ 20dN log(p)

m
≤ 1

4
.

In words, for every mixed strategy of Max, there is a strategy for Minnie with cost at
most 1

4
. By the minimax theorem, there is a mixed strategy for Minnie that guarantees

cost at most 1
4
for every strategy of Max. This mixed strategy is the required P .

The existence of S ′ can finally be proved. Let S ′1, . . . , S ′` be i.i.d. samples from P.
Standard concentration of measure implies that for each (x, y) ∈ S,

Pr
[1

`

∑̀
j=1

1hS′
j
(x) 6=y ≥

1

2

]
≤ exp

(
− `

8

)
<

1

n
.

The union bound implies that with positive probability, for every (x, y) in S we have
1
`

∑`
j=1 1hS′

j
(x)6=y <

1
2
. In particular, there exist S ′1, . . . , S ′` such that the plurality vote

over the hS′1 , . . . , hS′` correctly classifies all of S. The concatenation is the required
S ′. �

4.5. Wrapping-up.

Proof of Theorem 1. Theorem 36 with t = dd1/2e states the existence of an n → r
sample compression scheme forH where r ≤ O(d3/2 log(n)). The analysis of the sample
compression scheme relies on previous results on multiclass compression. Theorems
3.1 and 3.3 in [David, Moran, and Yehudayoff, 2016] imply that if H admits an n→ r
sample compression scheme, then the same compression scheme is a learning rule Areal
with the following guarantee. For every H-realizable distribution D, every δ > 0 and
every integer n > 0, with probability at least 1−δ over S ∼ Dn, the output hypothesis
h = Areal(S) satisfies

(7) Pr
(x,y)∼D

[
h(x) 6= y

]
≤ O

(
r log

(
n
r

)
+ log(1/δ)

n

)
.

In the agnostic case, they prove the existence of a related learning rule Aagn with
the following guarantee. For every distribution D, every δ > 0, and every integer
n > 0, with probability at least 1− δ over sampling S ∼ Dn, the output hypothesis
h = Aagn(S) satisfies

�(8) Pr
(x,y)∼D

[
h(x) 6= y

]
≤ LD(H) +O

(√
r log

(
n
r

)
+ log(1/δ)

n

)
.

5. Learnability 6≡ Finite Natarajan Dimension

The goal of this section is to prove that the Natarajan dimension does not charac-
terize PAC learnability (Theorems B and 2). That is, to construct a concept class H
that has Natarajan dimension 1 but DS dimension ∞.
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5.1. Outline. The class H lives between two opposing conditions. On one hand,
there should be no non-trivial copy of the Boolean cube inside H. On the other hand,
it should contain pseudo-cubes of arbitrary large dimension. Pseudo-cubes of large
dimension imply that learning H is difficult. No copies of the Boolean cube indicates
that “locally H looks like it is easy to learn”. The barrier to learning H is not local
but global. An analogy is a graph of large girth and large chromatic number; locally
the graph is 2-colorable, and the coloring-difficulty stems from a global obstacle.

Our goal is, essentially, to find pseudo-cubes of arbitrary large dimension that do
not contain any non-trivial copy of the Boolean cube. The proof begins by translating
the problem from the realm of concept classes to the realm of simplicial complexes
(see Section 5.2). We show that any concept class can be identified with a colorful
simplicial complex (and vice versa).

What about the pseudo-cube condition and the Natarajan dimension in the realm of
simplicial complexes? The pseudo-cube conditions turns out to be quite natural; it is
reminiscent of the notion of a pseudo-manifold. The Natarajan dimension 1 condition
is almost identical to the flag-no-square condition; this condition was studied in many
works as a local combinatorial criteria for hyperbolicity.

As the abstract of [Januszkiewicz and Świątkowski, 2003] indicates, simplicial
complexes in the spirit we need were conjectured not to exist (by Moussong), or
at least to require difficult number theory (by Gromov). However, Januszkiewicz
and Świątkowski [2003] built a simplicial complex that exactly meets our needs (see
Section 5.3).

The difficulty of the construction explains the fact that Natarajan’s question was
open for so many years. For example, for d = 2, the smallest concept class with
Natarajan dimension 1 we know of has size 6; see Figure 3. For d = 3, the size grows
to 54; see Figure 2. For d = 4, the size jumps to 118, 098. This large complex is
not the complex suggested in [Januszkiewicz and Świątkowski, 2003]. The high-level
structure of the construction is similar, but the complex we found is smaller. We found
the construction and verified it with a computer (using [GAP, 2021]). See Section 9
of [Januszkiewicz and Świątkowski, 2003] for more details on the “complexity” of their
construction.

5.2. Pseudo-cubes and Simplicial Complexes. We begin with a brief introduc-
tion to simplicial complexes. Simplicial complexes are combinatorial abstractions of
triangulations of topological spaces. A family C of finite subsets of a set V is called
a simplicial complex if it is downward closed. That is, for every f ∈ C, if g ⊂ f
then g ∈ C. A member of C is called a simplex or a face. The dimension of a face
f ∈ C is defined to be dim(f) = |f | − 1 and the dimension of the complex C is
dim(C) = maxf∈C dim(f). A simplicial complex is called pure if all of its maximal
faces have the same dimension. The 1-skeleton of a simplicial complex C is a graph
whose vertices are the elements of V and whose edges are all the 1-dimensional faces
of C. Every face in C thus corresponds to a clique in its 1-skeleton.

We also need our complexes to be properly colored. A proper coloring of a complex
C is a proper coloring of the 1-skeleton of C with dim(C) + 1 colors. That is, it is an
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assignment r : V → [dim(C) + 1] such that r(u) 6= r(v) for every distinct u, v so that
{u, v} ∈ C.

Our first goal in this subsection is to express the notion “pseudo-cube” in the
language of simplicial complexes. This is captured by the following definitions. We
say that a complex C satisfies replacement if for every simplex f ∈ C and for every
vertex v ∈ f there exists a vertex u 6= v such that (f \ {v}) ∪ {u} ∈ C.

Definition 41 (Good Complex). A simplicial complex C is good if it is finite, pure,
has a proper coloring, and satisfies replacement.

The following proposition summarizes the equivalence between pseudo-cubes and
good simplicial complexes. Figure 2 may help in digesting this equivalence.

Proposition 42 (Concept Classes ≡ Good Complexes). For every d-dimensional
good complex C and a proper coloring r of C, there is a (d+ 1)-dimensional pseudo-
cube B = B(C, r). Conversely, for every d-dimensional pseudo-cube B, there is a
(d− 1)-dimensional good simplicial complex C = C(B).

Remark. The pseudo-cube B(C, r) and the complex C(B) are explicitly constructed
in the proof.

Proof. Good complex =⇒ pseudo-cube. Let C be a good d-dimensional complex over
V and let r : V → [d+ 1] be a proper coloring of C. We define a (d+ 1)-dimensional
pseudo-cube B ⊆ V d+1 as follows. Each face f ∈ C of maximum size |f | = d+1 defines
the word (v1, . . . , vd+1) ∈ B such that for each i ∈ [d + 1], the vertex vi ∈ f is the
unique vertex in f with color r(vi) = i. It remains to verify that B is a pseudo-cube.
The class B is finite because C is finite. For every (v1, . . . , vd+1) ∈ B and i ∈ [d+ 1],
the following holds. The set {v1, . . . vd+1} is a face in C. By the replacement property,
there exists u 6= vi such that {v1, . . . vi−1, u, vi+1, . . . vd+1} is a face in C. Because r is
a proper coloring, it must be that r(u) = i. So, (v1, . . . vi−1, u, vi+1, . . . vd+1) is in B as
well.

Pseudo-cube =⇒ good complex. Given a d-dimensional pseudo-cube B ⊆ Yd, define
a simplicial complex C as follows. The vertex-set of C consists of all (y, i) ∈ Y × [d] so
that y appears as the i’th letter of some word in B. Each (y1, . . . , yd) ∈ B defines the
maximal face {(yi, i) : i ∈ [d]} of C. It remains to verify that C is good. The complex
C is finite because B is finite. The complex C is pure and all its maximal faces have
dimension d − 1. Consider the coloring r : V → [d] defined by r((y, i)) = i. It is a
proper coloring because all faces contain at most one vertex of each color. Because B
is a pseudo-cube, for each i ∈ [d] there exists a word (y1, . . . , yi−1, y

′
i, yi+1, . . . , yd) ∈ B

with y′i 6= yi. In other words, C satisfies the replacement property. �

The remaining of this section is about translating the Natarjan dimension condition
to the language of simplicial complexes. A square v0 → v1 → v2 → v3 → v0 in a
simplicial complex C is a sequence of four distinct vertices that form a cycle of length
four in the 1-skeleton of C.
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Proposition 43 (Natarajan Dimension for Colored Complex). Let C be a d-dimensional
good complex and let r be a proper coloring of C. Let B = B(C, r) be the pseudo-cube
that is defined by C, r. The two following properties are equivalent:

(1) There exists a square v0 → v1 → v2 → v3 → v0 in C such that r(v0) = r(v2)
and r(v1) = r(v3).

(2) The Natarajan dimension of B is at least 2.

Proof. First, assume that there exists a square v0 → v1 → v2 → v3 → v0 in C such
that i := r(v0) = r(v2) and j := r(v1) = r(v3). Because r is proper, we know i 6= j.
Without loss of generality, assume i < j. It suffices to show that B|{i,j} contains all 4
patterns

(v0, v1), (v2, v1), (v0, v3), (v2, v3).

This follows because each of the patterns (va, vb) for a ∈ {0, 2} and b ∈ {1, 3}
corresponds to an edge {va, vb} in C. This edge is contained in a maximal d-dimensional
face fa,b ∈ C. By the definition of B, the face fa,b corresponds to a word in B which
realizes the pattern (va, vb) on {i, j}.

In the other direction, assume that the Natarajan dimension of B is at least 2. Let
i < j be a pair of coordinates such that there exist labels v0, v1, v2, v3 such that the
following 4 patterns belong to B|{i,j}:

(v0, v1), (v2, v1), (v0, v3), (v2, v3).

The definition of B thus implies that r(v0) = r(v2) = i, that r(v1) = r(v3) = j, and
that {v0, v1}, {v1, v2}, {v2, v3}, {v3, v0} ∈ C. So, v0 → v1 → v2 → v3 → v0 is the
desired square. �

Typically, simplicial complexes are not colorful. So, it is helpful to have a version of
Proposition 43 that does not require a proper coloring. An empty square in a simplicial
complex C is a square v0 → v1 → v2 → v3 → v0 so that both {v0, v2} and {v1, v3} are
not edges in the 1-skeleton of C. In other words, an empty square is a square so that
the induced graph on its vertices is the same square (somewhat confusingly this is
also known as a full square in some contexts).

Corollary 44 (Natarajan Dimension for Complex). If there are no empty squares in
a good simplicial complex C of dimension d then for every proper coloring r of C, the
Natarajan dimension of B(C, r) is at most 1.

Proof. By Proposition 43, if the Natarajan dimension of B(C, r) is at least 2, then there
is a square v0 → v1 → v2 → v3 → v0 in C such that r(v0) = r(v2) and r(v1) = r(v3).
Because r is a proper coloring, the square must be empty. �

5.3. The Simplicial Complex. The goal of this section is to state the construction
by Januszkiewicz and Świątkowski [2003] of the simplicial complexes we need.

How can we build a complex C, that is pure, has a proper coloring and satisfies
replacement? This is quite easy, and we shall return to it below. The reason is that
we did not insist that C is finite. The challenge is to have all these properties in a
finite object.
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A baby version of this difficulty appears already in graph theory. It is fairly easy to
build an infinite regular tree, but constructing finite regular graphs is more challenging.
Group theory provides a fundamental and powerful mechanism to “fold” the infinite
tree to a finite regular graph. If the infinite tree is thought of as a Cayley graph of
some group F , and N is a normal subgroup of F of finite index, then the “modulo N ”
operation allows to fold the tree to a finite graph. Many useful constructions of finite
graphs are obtained via this mechanism.

Coming back to an infinite complex that is pure, properly colored and satisfies
replacement, we can simply start with a face of dimension d, connect it to d + 1
new faces by adding new vertices, and keep going indefinitely. This construction
corresponds to an infinite regular tree (see also Example 8). It is easy to build, but
utterly useless for us. The real difficulty is to “fold” it to be finite. What does “fold”
even mean? The solution is again algebraic, but it uses the more abstract language of
coset complexes.

Let F be a group (finite or infinite). A coset of a subgroup H ≤ F is a set of the
form gH = {gh : h ∈ H}. The coset complex defined by subgroups H1, . . . , Hd ≤ F is
the simplicial complex C = CF (H1, . . . , Hd) that is defined as follows. The vertices of
C are the cosets of the groups H1, . . . , Hd, and a set of cosets σ is a simplex in C if
and only if the intersection of all cosets in σ is non-empty: σ ∈ C ⇐⇒

⋂
L∈σ L 6= ∅.

Stated differently, the complex is the nerve of the set of all cosets.
The following theorem states the existence of the coset complexes we need.

Theorem 45 (Januszkiewicz and Świątkowski [2003]). For every integer d > 1, there
exists a finite group F , and d subgroups H1, . . . , Hd ≤ F such that the following hold:

(1) For every i ∈ [d], we have (∩j 6=iHj) \Hi 6= ∅.
(2) The coset complex CF (H1, . . . , Hd) does not contain empty squares.

Theorem 45 is a consequence of a deep construction by Januszkiewicz and Świątkowski
[2003] which combines tools and ideas from algebra and topology that are beyond
the scope of our work. In Appendix A we formally derive Theorem 45 using results
stated in [Januszkiewicz and Świątkowski, 2003]. It is rather a formality, because
all ideas are already in that paper, but the exact result we need, unfortunately, is
not explicitly stated. This derivation is not self-contained and uses concepts that are
defined in [Januszkiewicz and Świątkowski, 2003].

Nevertheless, let us provide a simplified and high-level description of their approach.
The proof of Theorem 45 is by induction on d. The group F is generated by d
involutions Z = {z1, . . . , zd}. The involution condition z2 = 1 corresponds to having
a single neighbor in each coordinate in the corresponding concept class. This is a
strong version of the pseudo-cube condition. The subgroup Hi is generated by the
d− 1 involutions Z \ {zi}.

How can we apply induction? Imagine that each Hi plays the role of F . So, Hi is
finite group and it has d− 1 subgroups that yield a pseudo-cube of dimension d− 1.
These d − 1 subgroups of Hi are generated by Z \ {zi, zj} for each j ∈ [d] \ {i}. In
other words, we have d constructions for dimension d− 1 that are somehow “glued
together using algebra”.
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All these finite groups naturally live inside one big group F . This group F is the
free product of the Hi’s modulo the “obvious” relations that are there because e.g. z1
is the same inside H2 and inside H3 (i.e., F is the free product with amalgamation).
The group F , however, is infinite. We obtain an infinite simplicial complex CF =
CF(H1, . . . , Hd). Again, an infinite object that we need to make finite. To do so, we
need to carefully identify a normal subgroup of F of finite index, so that after we
divide by it “everything still works”. Where should we look for this magical subgroup?

One key idea is to replace the no empty square condition by a stronger algebraic
condition that the groups Hi and their subgroups satisfy. This condition is called
extra retractibility. It states the existence of certain homomorphisms between various
subgroups of the Hi’s. Isolating the extra retractibility condition is a major and
difficult step. Even verifying that extra retractibility implies the no empty square
condition is not at all trivial. But the real question is: what did we gain from this
algebraic move?

The gain is that we can try to prove that the infinite complex CF is again extra
retractible. This is not the end of the story, but it is a start. Proving that CF is extra
retractible uses topology as well as the “universality” of free products. Topological
properties of the complex CF (e.g., it is connected and simply connected) allow
to represent it in a “non-obvious” way. The inductive hypothesis shows that extra
retractibility “locally holds” on CF . Universality now implies that it also holds globally,
due to the topological properties.

The infinite complex is extra retractible. So what? The algebraic nature of extra
retractibility serves as a guide in the search for the magical normal subgroup. Extra
retractibility states the existence of certain homomorphisms (to finite groups). We
can identify a finite index subgroup K of F that is contained in all kernels of these
homomorphisms. Taking the normal core N =

⋂
g∈F gKg−1 yields a normal subgroup

of finite index (!) that is contained in “all kernels”. This latter property of N tells us
that even after we divide by it, extra retractibility still holds. We can finally choose
F = F/N and complete the inductive step.

Let us return to the main goal of this section, deducing the needed concept class
from the construction of Januszkiewicz and Świątkowski [2003].

Proposition 46 (There is a Good Complex with No Empty Squares). Let F and
H1, . . . , Hd be as in Theorem 45. The coset complex C = CF (H1, . . . , Hd) has dimen-
sion d− 1, is good and has no empty squares.

Proof. Because F is finite, C is finite as well.
Let us prove that C is pure of dimension d−1. If σ is a face, then there is g ∈

⋂
L∈σ L.

Because every two distinct cosets of the same subgroup are disjoint, the face σ is of
the form {gHi : i ∈ I} for some I ⊆ [d]. The face σ is contained in the maximal face
{gHi : i ∈ [d]} which has dimension d− 1.

There is a straightforward proper coloring of C with d colors. Color each vertex of
the form gHi by the color i. This is a coloring because a subset of a group can be a
coset of at most one subgroup. This is a proper coloring because two distinct cosets
of the same subgroup are disjoint.
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Finally, we prove that C satisfies replacement. Let σ ∈ C. As above, we can write
σ = {gHi : i ∈ I} for some I ⊆ [d]. Consider a vertex gHk inside σ. By construction
of C, let z ∈ (∩j 6=kHj) \Hk. For every j 6= k, we have gzHj = gHj. Because z 6∈ Hk,
we can conclude gzHk 6= gHk. It follows that (σ \ {gHk}) ∪ {gzHk} = {gzHi : i ∈ I}
is also a face.

�

5.4. Wrapping up.

Proof of Theorem 2. Theorem 45, Proposition 46 and Corollary 44 imply that for
every d, there exists a d-dimensional pseudo-cube Bd ⊆ Y Xd

d where |Xd| = d with
Natarajan dimension 1. We may assume that the label-sets Yd’s are pairwise disjoint,
and that the domains Xd’s are pairwise disjoint.

Construct the “disjoint union” of all these classes. Let X =
⋃
dXd. Each h ∈ Bd is

a partial map on X because it is defined only on Xd. Let ? be a new label such that
? /∈

⋃
d Yd. Extend each such h by setting it to be ? outside Xd. Denote by Hd the

collection of extensions of maps in Bd. Finally, let

H =
⋃
d

Hd.

By construction, the DS dimension of H is at least d for every integer d because it
contains a copy of Bd.

It remains to prove that the Natarajan dimension of H is 1. It is at least 1 because
|H| ≥ 2. The last thing to verify is that the Natarajan dimension is less than 2. Let
x1, x2 ∈ X be a pair of distinct points and assume towards contradiction that {x1, x2}
is N-shattered by H. If x1 ∈ Xd1 and x2 ∈ Xd2 for d1 6= d2, then every function h ∈ H
satisfies that ? ∈ {h(x1), h(x2)} and therefore {x1, x2} is not N-Shattered by H. The
last remaining case is that x1, x2 ∈ Xd for the same d. In this case, every function
h ∈ H \Hd satisfies that h(x1) = h(x2) = ? and there is no function h ∈ H such that
{h(x1), h(x2)} = {?, y} for y 6= ?. It follows that {x1, x2} must be N-shattered by Hd

which is a contradiction because the Natarajan dimension of Bd is 1. �
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Appendix A. The Simplicial Complex

This parts explains how to deduce Theorem 45 from the results that are stated
in [Januszkiewicz and Świątkowski, 2003]. This appendix uses definitions and theorems
from that paper. The key idea is to construct a development Ld of an extra retractible
complex of finite groups on the poset {0, 1}[d]; see Section 6 in [Januszkiewicz and
Świątkowski, 2003]. The complex of groups consists of a monotone mapping from
subsets of [d] to finite groups. Each A ⊆ [d] is assigned a finite group FA such that
FA ≤ FB whenever A ⊆ B. Extra retractibility further implies that

∀A,B ⊆ [d] FA ∩ FB = FA∩B(9)
F∅ = {1}(10)

Equation 9 follows from Propositions 3.2 and 4.1 in [Januszkiewicz and Świątkowski,
2003]. Equation 10 follows because an extra retractible complex of groups is reduced;
see Definitions 4.4 and 5.8 in Januszkiewicz and Świątkowski [2003].

In the construction, the groups are generated by involutions. For each i ∈ [d] the
group F{i} is {1, zi} where z2i = 1. To prove Theorem 45, we set

F = F[d] and Hi = F[d]\{i}.
With these choices, the development Ld is isomorphic to the coset complex C =
C(H1, . . . , Hd).

To justify Item 1, we shall prove that zi ∈ (∩j 6=iHj) \Hi. Because zi ∈ F{i} and by
Equation 9,

F{i} ∩Hi = F{i} ∩ F[d]\{i} = F∅ = {1} =⇒ zi /∈ Hi.

On the other hand, for j 6= i,

zi ∈ F{i} ⊆ F[d]\{j} = Hj.

Finally, Proposition 5.12 in [Januszkiewicz and Świątkowski, 2003] asserts that C
contains no empty squares.

Appendix B. Orientations for infinite graphs

Here we complete the proof of Lemma 13 for infinite graphs. Let G = (V,E) be the
one-inclusion graph of H. Let Z be the set of pairs z = (v, e) ∈ V × E so that v ∈ e.
Let K = {0, 1}Z . Tychonoff’s theorem says that K is compact with respect to the
product topology.
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An orientation corresponds to choosing for each e ∈ E a single v ∈ V . In other
words, each orientation can be thought of as an element of K, where κ(v,e) = 1 means
that e is oriented towards v, and κ(v,e) = 0 means that e is not oriented towards v.

For every v ∈ V , let Av ⊆ K be the set of all κ ∈ K so that there are at most d
edges e 3 v so that κ(v,e) = 0. For j ∈ [d+ 1], let Bv,j ⊆ K be the set of all κ ∈ K so
that for the edge e = ej that is in the j’th direction of v, there is at most one u so
that κ(u,e) = 1.

The complement of the set Av is open because it is {κ ∈ K : ∀i ∈ [d+ 1] κ(v,ei) = 0},
where ei is the edge in the i’th direction of v. The complement of the set Bv,j is open
because it is the union over all sets {w1, w2} of two vertices that are contained in
e = ej of {κ ∈ K : κ(w1,e) = κ(w2,e) = 1}. The set Σv = Av ∩

⋂
j∈[d+1]Bv,j is hence

closed.
We now claim that for every finite U ⊂ V the set

⋂
v∈U Σv is non-empty. The

finite hyper-graph GU that G(H) induces on U has an orientation σ with maximum
out-degree at most d. The orientation σ defines an element κ in

⋂
v∈U Σv as follows.

There are two types of edges: edges in G(H) that correspond to edges in GU , and edges
that “disappear” with the projection to U . The former type of edges are oriented in κ
exactly as in σ. The latter type of edges are edges e that contain at most one vertex
in U and possibly other vertices outside U . If e contains a single vertex u from U
then orient e towards u, and otherwise orient e to an arbitrary element (not in U).

Compactness now implies that the intersection of all the Σv’s is non-empty. In
particular, there is κ∗ in

⋂
v∈V Σv. This κ∗ can be thought of as a partial orientation,

because every edge e contains some vertex (and so there is at most one u ∈ e so
that κ∗(u,e) = 1). For each v ∈ V , there are at most d edges e 3 v so that κ∗(v,e) = 0.
Complete κ∗ to a full orientation σ∗ by arbitrarily orienting all edges that are not
oriented in κ∗. The out-degree of σ∗ is still at most d, because the final move from κ∗

to σ∗ does not increase out-degrees.
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