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Abstract6

To date, we know only a few handcrafted quantified Boolean formulas (QBFs) that are hard for7

central QBF resolution systems such as Q-Res and QU-Res, and only one specific QBF family to8

separate Q-Res and QU-Res.9

Here we provide a general method to construct hard formulas for Q-Res and QU-Res. The10

construction uses simple propositional formulas (e.g. minimally unsatisfiable formulas) in combination11

with easy QBF gadgets (Σb
2 formulas without constant winning strategies). This leads to a host of12

new hard formulas, including new classes of hard random QBFs.13

We further present generic constructions for formulas separating Q-Res and QU-Res, and for14

separating Q-Res and LD-Q-Res.15
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1 Introduction20

The main objective in proof complexity is to study the size of proofs in different formal21

proof systems. Proof complexity has its origins in computational complexity [27] with many22

important connections to other fields, in particular to logic [26,33] and solving [22]. For the23

latter, proof complexity provides the main theoretical tool to assess the strength of modern24

solving methods.25

The main objective in proof complexity – and often also the most challenging – is to show26

lower bounds to the size of proofs and to obtain separations between different calculi. For27

this, specific formula families are needed on which the lower bounds are demonstrated. In28

propositional proof complexity and in particular for propositional resolution – arguably the29

best studied system, not least because of its tight connections to SAT solving [4, 8, 22,36] –30

there is a vast literature on hard formulas stemming from diverse areas such as combinatorics31

(e.g. [21, 29]), graph theory [39], logic [32], random formulas [7], and many more [33,37].32

In comparison, proof complexity of quantified Boolean formulas (QBF) is at an earlier33

stage. As in the propositional domain, QBF resolution systems received key attention, of34

which Q-Resolution (Q-Res, [31]) and QU-Resolution (QU-Res, [40]) are the most important35

base systems. They augment the propositional resolution system by a simple universal36

reduction rule allowing to eliminate certain universal variables from clauses.37

As in SAT, QBF resolution systems are intricately connected to QBF solving (cf. [18] for38

a recent overview), with Q-Res and its extension long-distance Q-Resolution (LD-Q-Res, [5])39

corresponding to quantified conflict-driven clause learning (QCDCL) (cf. [14, 18,34,41]).40

In contrast to the multitude of hard formulas for propositional resolution, we are somewhat41

short of interesting QBF families that are amenable to a proof-theoretic study. Only a handful42

of QBF families (and their modifications) have been used for lower bounds and separations43

in the QBF literature. The most prominent of these are arguably the KBKF formulas from44

the very first article [31] that introduced Q-Res. The other ‘notorious’ QBF families are the45
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2 Classes of Hard Formulas for QBF Resolution

equality formulas [11], the parity formulas [15], and the CR formulas [30]. Together these46

more or less comprise the formula toolbox of QBF proof complexity and are used for almost47

all of the known separations.48

It would thus be desirable to have more interesting and natural QBFs that can be shown49

to be hard for Q-Res or QU-Res. More such QBFs would not only be valuable for proof50

complexity, but also for solving where they can be used as benchmarks to compare different51

solving techniques.152

It is also not so easy to tap into the fund of hard propositional formulas. While the53

existentially quantified version of each CNF that is hard for propositional resolution is54

trivially also hard for Q-Res and QU-Res, we are rather interested in ‘genuine’ QBF hardness55

that stems from quantifier alternations and not from the propositional base system.256

Our Contributions. Our contributions can be summarised as follows.57

(1) Hard QBFs for Q-Res and QU-Res. We introduce a generic construction to obtain58

large classes of QBFs that are hard for Q-Res and QU-Res. The construction uses two key59

ingredients: (i) suitable propositional base formulas and (ii) simple QBF gadgets. The60

propositional base formula needs to have a sufficiently large set of clauses that we identify61

as ‘critical’, e.g. all minimally unsatisfiable formulas meet that requirement. Otherwise, the62

base formulas can be quite simple (and in particular can be easy for propositional resolution).63

The QBF gadget must be a false Σb
2 formula without a constant winning strategy for the64

universal player in the evaluation game for QBFs. Otherwise, the gadgets can again be quite65

simple.66

We then combine the propositional base formula with the QBF gadgets in a rather67

straightforward way to obtain Σb
3 QBFs that require exponential-size proofs in Q-Res and68

QU-Res. The lower bound follows by the size-cost lower-bound technique [11] that always69

yields ‘genuine’ QBF lower bounds, i.e., our construction yields ‘genuinely’ hard QBFs in the70

sense discussed above.71

We illustrate our method with a couple of examples. These include the equality for-72

mulas [11] (which actually inspired our construction), new circle, equivalence, and XOR73

formulas, as well as a large class of random QBFs.74

(2) Separations between Q-Res and LD-Q-Res. We show that our construction above75

yields QBFs that exponentially separate the systems Q-Res and LD-Q-Res, if the propositional76

base formulas are easy for propositional resolution and the QBF gadgets are easy for Q-Res.77

These conditions are met by all our examples above.78

This should be welcome news as we previously knew of only very few formulas (essentially79

KBKF, equality, and parity) that separate Q-Res from LD-Q-Res [11, 15,23,28].80

(3) Separations between Q-Res and QU-Res. To obtain separations between Q-Res81

and QU-Res, we first modify the Σb
3 prefix of the QBFs constructed in (1) to an unbounded82

‘interleaved’ prefix. These ‘interleaved’ QBFs become easy for Q-Res (while still retaining83

hardness for treelike Q-Res), but a further ‘tail’ construction (inspired by KBKF) modifies84

them into QBFs that become hard for Q-Res, yet easy for QU-Res.85

In comparison to our quite transparent method in (1) above, the technical details of86

these constructions are somewhat more involved. Yet again we obtain a large class of87

1 A track of crafted formulas was introduced into QBFEval 2020 and a tool to generate the mentioned
QBF families was presented in [19].

2 A formal framework for ‘genuine’ QBF hardness was introduced in [17]. All the mentioned QBF
examples – KBKF, equality, and parity – are genuinely hard in this sense.
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Figure 1 The simulation order of QBF proof systems mentioned in this article and our contri-
butions to formulas for lower bounds and separations. A B : A simulates B + exponential
separation; A B : A and B are incomparable; A B : B does not simulate A.

QBFs separating Q-Res and QU-Res. Previously, the KBKF formulas were the only known88

separating example [10,31,40]. Interestingly, all formulas we construct in (3) have unbounded89

quantifier complexity, which we know must be the case for a separation of QU-Res from90

Q-Res [12, 25].91

The simulation order of the proof systems mentioned in this paper as well as pointers to92

the relevant results are shown in Figure 1.93

Organisation. We start in Section 2 with preliminaries on QBF and the relevant proof94

systems. Section 3 contains our generic construction of hard QBFs together with a couple of95

examples. QBFs separating LD-Q-Res from Q-Res and of QU-Res from Q-Res are constructed96

in Sections 4 and 5, respectively. We conclude in Section 6 with some open questions.97

2 Preliminaries98

A CNF (conjunctive normal form) is a conjunction of disjunctions of literals. The disjunctions99

are called clauses. A literal l is a propositional variable x or its negation x, we write vars(l) = x.100

QBFs. A quantified Boolean formula (QBF) in closed prenex form ϕ = P · φ consists101

of a quantifier prefix P and a propositional formula φ, called the matrix. The prefix is102

a series of quantifiers Q ∈ {∀,∃}, each followed by a set of variables. For a closed QBF103

(which we only consider here), P quantifies exactly the variables occurring in φ. Thus, for104

P = Q1X1Q2X2 . . . QnXn, the matrix φ is a formula in variables
⋃

i∈[n] Xi and we write105

vars(P · φ) = vars(φ) =
⋃

i∈[n] Xi. As there are no free variables in a closed QBF, it is either106

true or false. We write vars∃(φ) for the set of existential variables in P · φ and vars∀(φ) for107

those associated with ∀. A QCNF is a QBF with a CNF matrix.108

An assignment assigns truth values to variables. We denote by vα the value of a variable109

v under an assignment α. We write ⟨V ⟩ for the set of all possible assignments to V ,110

⟨χ⟩ = ⟨vars(χ)⟩ for the assignments of a propositional formula χ and ⟨ϕ⟩ = ⟨P · φ⟩ = ⟨φ⟩ for111

those of a QBF ϕ = P · φ. A clause C or a (propositional) formula χ can be restricted by an112

assignment α: C↾α := {v ∈ C | vα = 0} ∪ {v ∈ C | vα = 1} and χ↾α := {C↾α | C ∈ χ}.113

Closed QBFs can be viewed as a game between an existential and a universal player114

generating a total assignment [38]. The players assign truth values to all variables in the order115

of the quantifier prefix (the existential player chooses the values for existential variables, the116

universal player those for universals). The existential player wins, if the generated assignment117
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Axiom

Q-Res

QU-Res

LDQ-Res

∀Red

C
C1 ∪ {x} C2 ∪ {x}

C1 ∪ C2

C1 ∪ {x} C2 ∪ {x}
C1 ∪ C2

C1 ∪ {x} C2 ∪ {x}
C∗

1 ∪ C∗
2 ∪ U∗

C ∪ {u}
C

C is a non-tautologous clause in the matrix φ.

C1 ∪ C2 is non-tautologous; x ∈ vars∃(ϕ).

C1 ∪ C2 is non-tautologous.
l∗ = l ∨ l, {l∗} = {l, l} for any literal l;
C∗

1 = C1 \ (C1 ∩ C2); C∗
2 = C2 \ (C1 ∩ C2);

U∗ = {u∗ | u ∈ vars(C1 ∩ C2)}; x ∈ vars∃(ϕ);
C1 ∪ C2 does not contain any existential tau-
tologies; any u ∈ vars(U∗) is quantified right of
x in P.
u ∈ vars∀(ϕ) and quantified right of each
existential variable in C regarding P.

Figure 2 Rules of the QBF proof systems Q-Res, QU-Res and LD-Q-Res for a QBF ϕ = P.φ.

satisfies the matrix; otherwise the universal player wins. For a closed QBF, there is always a118

winning strategy for one of the two players. We call this game the assignment game.119

A countermodel is a winning strategy for the universal player. We define strategy size in120

accordance with [9]:121

▶ Definition 1 (Strategy Size ρ [9]). Let ϕ be a false QBF. We refer to the smallest cardinality122

of the range of a countermodel for ϕ as the strategy size ρ(ϕ) of ϕ.123

Proof systems. Resolution (Res) is a refutational proof system for propositional formulas124

with only two inference rules: For a input formula χ, we can derive any C ∈ χ as an axiom125

and from two Clauses C1 ∪ {x}, C2 ∪ {x} we can derive the resolvent C1 ∪ C2 by Resolution126

over the pivot x.127

Q-Res [31] transfers Resolution from propositional logic to QBF. It uses the resolution rule128

(Q-Res) which only allows existential pivots and forbids tautologous resolvents. Universal129

variables are eliminated by universal reduction (∀Red). The rules are given in Figure 2.130

QU-Res [40] extends the weaker system Q-Res by allowing resolution also over universal131

pivots in its resolution rule QU-Res. Nevertheless Q-Res is refutationally sound and complete.132

LD-Q-Res [5] is an extension of Q-Res which allows long-distance resolution steps under133

certain conditions (see Figure 2 for the definition of the resolution rule LDQ-Res), allowing134

tautological resolvents. The ∀Red rule is modified such that merged universal literals from135

long distance steps can also be reduced under the same conditions as usual universal variables.136

The size of a proof π, denoted |π|, is the number of clauses in π. A proof system S137

p-simulates a system S′, if every S′ proof can be transformed in polynomial time into an S138

proof of the same formula.139

3 Construction of Hard Formulas for QU-Res140

We start by recalling the lower-bound technique for QU-Res via cost from [11].141

▶ Definition 2 (Cost). We consider all countermodels for a false QBF ϕ and determine142

for each of them the largest range on a single universal block. The minimum over these143

cardinalities is the cost of ϕ.144
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For Σb
3 formulas (i.e., with only one universal block), cost coincides with strategy size145

(Definition 1). Cost is an absolute lower bound for proof size in QU-Res (and Q-Res):146

▶ Theorem 3 ( [11]). Let ϕ be a false QCNF. Then QU-Res refutations of ϕ have size at147

least cost(ϕ).148

The equality formulas from [11] have exponential cost and are therefore hard for QU-Res:149

▶ Definition 4 (Equality formulas [11]). For n ∈ N we define the nthequality formula as150

EQn = ∃x1 . . . xn∀u1 . . . un∃t1 . . . tn ·

 ⋃
i∈[n]

{
{xi, ui, ti}, {xi, ui, ti}

}∪{{t1, . . . , tn}} . (1)151

We take the equality formulas as a starting point and then subsequently generalize152

their construction. The underlying principle of the equality formulas is to enforce a unique153

universal winning strategy of exponential size. In the case of equality, the winning strategy is154

to assign ui = xi. The formulas can be understood as being based on a simple propositional155

formula consisting of the clause {t1, . . . , tn} and unit clauses {t1}, . . . , {tn}, into which this156

exponential size winning strategy is injected through adding the x and u variables.157

Based on this intuition, we outline a general construction for hard QBFs, comprising the158

following steps:159

Find a family (χi)i∈N of propositional formulas whose nthmember χn has at least n critical160

clauses (we define that notion in Definition 5).161

Find QBF gadgets (defined in Definition 9) that enforce exponential strategy size.162

Connect the two components such that any winning strategy has exponential range and163

forces the existential player to lose on the propositional formula.164

3.1 Suitable Propositional Formulas165

Let us first formally define the afore mentioned critical clauses:166

▶ Definition 5 (critical clauses). For an unsatisfiable propositional formula χ we call a clause167

C ∈ χ critical, if χ \ {C} is satisfiable. We call a set C ⊆ χ critical, if any C ∈ C is critical.168

Note that for a minimally unsatisfiable formula, every subset of clauses is critical.169

We now have a look at some suitable propositional formula families. We will denote the170

critical clauses by C = {Ci | i ∈ [n]} and by D = {Di | i ∈ [|χn| − n]} the remaining clauses.171

The subset of critical clauses can be chosen in more than one way, but for each example we172

make a specific choice that we will also use later in the construction of the hard QBFs.173

The underlying propositional formulas from the equality formulas are:174

▶ Example 6 (Simple Contradiction). SCn = {D1} ∪
⋃

i∈[n]{Ci} with D1 = {t1, . . . , tn} and175

Ci = {ti} for i ∈ [n]. Note that SCn is minimally unsatisfiable.176

In addition, we consider two further running examples.177

▶ Example 7 (Implication Chain). ICn =
⋃

i∈[n]{Ci} with Ci = {ti−1, ti} for i ∈ [1, n − 2]178

and Cn−1 = {t0}, Cn = {tn−2}. In this minimally unsatisfiable formula we set D = ∅.179

▶ Example 8 (Equivalence Chain). ECn =
(⋃

i∈[n]{Ci, Di}
)

∪ {Dn+1, Dn+2} with Ci =180

{ti−1, ti}, Di = {ti−1, ti} for i ∈ [n] and Dn+1 = {t0, tn}, Dn+2 = {t0, tn}. Note that even181

though the formula is minimally unsatisfiable, we can choose a large set D.182
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3.2 QBF Gadgets183

We now define the second ingredient of our construction, the QBF gadgets:184

▶ Definition 9 (QBF Gadget). A QBF gadget is a false Σb
2 QBF ϕ = P · φ with only185

non-constant winning strategies, i.e., there is no strategy to falsify ϕ that uses only one fixed186

assignment to the variables in the universal block.187

In fact, it is not necessary to restrict gadgets to Σb
2 formulas, but it is sufficient for our188

purposes and simplifies constructions and proofs.189

The equality formulas can be understood to use the equality gadget:190

▶ Example 10 (Equality Gadget). EQ = ∃x∀u · {{x, u}, {x, u}}.191

Note that the gadget is equivalent to ∃x∀u · x ̸↔ u, so the unique winning strategy for192

the universal player is u = x. Therefore it is a QBF gadget.193

To see more clearly, how the equality formulas are composed from the gadget and the194

propositional base formulas SCn, we could restate (1) as195

∃x1 · · ·xn∀u1 · · ·un∃t1 · · · tn ·

(
n∧

i=1
((xi ↔ ui) → t̄i)

)
∧

(
n∨

i=1
ti

)
. (2)196

The formulas (1) are then simply a transformation of (2) into CNF. Note that the gadget is197

not inserted into all clauses, but only into the chosen set of critical clauses of SCn.198

The equality gadget is arguably the simplest QBF gadget and except for ∃x∀u · x ↔ u199

the only one in two variables. Nevertheless, it is easy to construct many further gadgets. As200

an example, we consider the XOR gadget ∃x1x2∀u · (x1 ⊕ x2) ̸↔ u, which has the unique201

winning strategy u = x1 ⊕ x2.202

▶ Example 11 (XOR Gadget). XOR = ∃x1x2∀u·203

{{x1, x2, u}, {x1, x2, u}, {x1, x2, u}, {x1, x2, u}}.204

It is also possible to construct gadgets with more than one universal variable, e.g. by205

using functions with more than one (logical) output variable (e.g. a half adder). We will use206

this approach to get random gadgets in Section 3.5.207

3.3 Hard Formulas for QU-Res208

We now want to combine the described propositional formulas with QBF gadgets.209

We need a QBF gadget for each clause in a sufficiently large set of critical clauses. As210

we intend to construct families of hard QBFs, for any n ∈ N we first collect a sequence of211

n QBF gadgets whose variables are pairwise disjoint. The simplest way to obtain such a212

sequence is to choose n instances of the same gadget for each n ∈ N. Another possibility213

would be to insert different gadgets into the critical clauses, e.g. we could choose them from214

the previously mentioned examples.215

We define the product φ×C of a formula φ and a clause C as φ×C := {D∪C | D ∈ φ}.216

Our first main result follows:217

▶ Theorem 12. Let Φn = (ϕi)i∈[n] = (∃Xi∀Ui · φi)i∈[n] be a sequence of variable disjoint218

QBF gadgets and χn a propositional formula with a set C = {C1, . . . , Cn} of critical clauses219
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and a set D of remaining clauses. Set Tn = vars(χn) and let χn have no common variables220

with
⋃

i∈[n](Xi ∪ Ui). Then221

χΦ
n = ∃X1 . . . Xn∀U1 . . . Un∃Tn

 ⋃
i∈[n]

{φi × {Ci}}

 ∪ D222

requires QU-Res refutations of size at least 2n.223

We first show that the following holds:224

▶ Lemma 13. Let Φn, χn, and χΦ
n be as described in Theorem 12. Then any winning strategy225

for χΦ
n is a combination of winning strategies of the used gadgets in Φn.226

Proof. Obviously, χΦ
n is false: It is sufficient to combine the winning strategies of the gadgets227

(these are variable-disjoint and false). The existential player then has to satisfy the formula228

χn by assigning the variables in Tn, but he cannot succeed because χn is unsatisfiable.229

We now consider an arbitrary winning strategy S for χΦ
n . We first argue that S must230

falsify each gadget: If it would satisfy the matrix φi of a gadget ϕi, it would also satisfy231

all clauses φi × {Ci} in χΦ
n stemming from φi. This relieves the existential player from the232

burden of having to satisfy all the clauses in C. By not satisfying Ci (because the concerned233

clauses are already satisfied), he can find a satisfying assignment for the remaining clauses234

in χn, since Ci is critical. Since all variables from χn are quantified in the last block, the235

existential player can react accordingly. Thus, he succeeds in satisfying the matrix of χΦ
n ,236

which means that S is not a winning strategy.237

So let us assume that S falsifies the matrix of each gadget. Then S contains a winning238

strategy for each gadget contained in χΦ
n , which, due to their variable disjointness, implies239

the claim of the lemma. ◀240

Proof of Theorem 12. We know from Lemma 13 that any winning strategy S for χΦ
n is241

composed of winning strategies for the single gadgets. As the n gadgets in χΦ
n do not have242

constant winning strategies and are variable disjoint, the combination of winning strategies243

must have range at least 2n, i.e., χΦ
n has cost ≥ 2n. By Theorem 3 this implies QU-Res244

refutations of size at least 2n. ◀245

In this way, we get a large collection of formulas that are hard for QU-Res (and hence246

also for Q-Res). The constructed formulas all have a Σb
3 prefix, which is the result of using247

Σb
2 gadgets. The Σb

3 case is probably also the most natural setting as the size-cost technique248

from Theorem 3 essentially works for Σb
3 formulas. However, as mentioned, the restriction249

to Σb
2-gadgets is not necessary (we then only have to give some thought on how to suitably250

compose the prefix and define the non-constant property) This also allows the construction251

of formulas with more complex prefixes (incl. unrestricted).252

3.4 Examples253

Let us look at some example formulas which can be constructed using the propositional base254

formulas and the equality gadget, all of them exponentially hard for QU-Res.255

▶ Example 14 (Equality Formulas [11]). The equality formulas (Definition 4) arise from256

applying the equality gadgets to the simple contradiction formulas: EQn = SCEQ
n .257
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▶ Example 15 (Circle Formulas). Consider now the application of equality gadgets to the258

implication chain formulas. For n > 1 we obtain the QBFs259

ICEQ
n =∃x1, . . . , xn∀u1, . . . , un∃t0, . . . , tn−2·260 (

n−2⋃
i=1

{
{ui, xi, ti−1, ti}, {ui, xi, ti−1, ti}

})
261

∪
{

{un−1, xn−1, t0}, {un−1, xn−1, t0}, {un, xn, tn−2}, {un, xn, tn−2}
}

.262
263

▶ Example 16 (Equivalence Formulas). Instead of the implication chain, we can also use the264

equivalence chain EC. Applying equality gadgets on these formulas, we get265

ECEQ
n = ∃x1 . . . xn∀u1 . . . un∃t0 . . . tn ·

 ⋃
i∈[n]

{Ci,1, Ci,2, Di}

 ∪ {Dn+1, Dn+2}266

with clauses Ci,1 = {xi, ui, ti−1, ti}, Ci,2 = {xi, ui, ti−1, ti}, Di = {ti−1, ti} for i ∈ [n] and267

Dn+1 = {t0, tn}, Dn+2 = {t0, tn}.268

We would argue that the circle and equivalence formulas are almost as canonical and269

intuitive as the already familiar equality formulas.270

▶ Example 17 (XOR Formulas). We combine the XOR gadgets (Example 11) with SC:271

SCXOR
n =∃x1

1x
2
1 . . . x

1
nx

2
n∀u1 . . . un∃t1 . . . tn·272  ⋃

i∈[n]

{
{x1

i , x
2
i , ui, ti}, {x1

i , x
2
i , ui, ti}, {x1

i , x
2
i , ui, ti}, {x1

i , x
2
i , ui, ti}

}273

∪ {t1, . . . , tn}.274
275

3.5 Random Formulas276

Using our construction, it is also quite straightforward to obtain various random QBFs. For277

this we construct gadgets from Boolean functions. We need the following notion:278

▶ Definition 18 (F -satisfying Assignment). For X = {x1, . . . , xa}, U = {u1, . . . , ub} and a279

function F : ⟨X⟩ → ⟨U⟩ we call an assignment α ∈ ⟨X ∪ U⟩ F -satisfying iff F (xα
1 . . . x

α
a ) =280

uα
1 . . . u

α
b .281

▶ Definition 19 (Fa,b-Gadget). An Fa,b-gadget is built from a non-constant Boolean function282

F : {0, 1}a → {0, 1}b as follows: We introduce sets of variables X = {x1, . . . , xa} and U =283

{u1, . . . , ub}. Consider F as function from ⟨X⟩ to ⟨U⟩. For any F -satisfying assignment α284

we add the clause {v | vα = 0} ∪ {v | vα = 1}. We call the following QBF an Fa,b-gadget:285

RGF
a,b = ∃x1 . . . xa∀u1, . . . ub · {{v | vα = 0} ∪ {v | vα = 1} | α is F -satisfying}.286

We check that Fa,b-gadgets satisfy the required properties:287

▶ Lemma 20. Let RGF
a,b be an Fa,b-gadget based on a Boolean function F : {0, 1}a → {0, 1}b

288

as described in Definition 19. Then RGF
a,b is a QBF gadget.289

Proof. Obviously, any such QBF is a Σb
2 formula. To argue for its falsity, let us consider290

the assignment game: First, the existential player assigns the X-variables. Let α be the291
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F -satisfying extension of the chosen assignment to X ∪U , i.e., F (xα
1 . . . x

α
a ) = uα

1 . . . u
α
b . The292

strategy of the universal player is now to assign U according to α. This will falsify the293

clause {v | vα = 0} ∪ {v | vα = 1} and thus the whole QBF. Thus the strategy following F294

is apparently a winning strategy. The non-constancy is also clear as the function F is not295

constant: Suppose, there was a constant winning strategy and {lu1 , . . . , lub } was its negation296

pattern on {u1, . . . , ub} (i.e. lui = ui iff ui is assigned 0 in the strategy and lui = ui else). A297

winning strategy always falsifies a clause, so for every possible assignment to the existential298

variables, there needs to be a clause containing the inverse negation pattern of this assignment299

and {lu1 , . . . , lub }. Since every clause is based on a F -satisfying assignment (by definition), we300

see that F is constant, which violates the assumptions. ◀301

There are (2b)(2a) − 2b different non-constant functions with a inputs and b outputs. Each302

of them leads to an Fa,b-gadget. Such a gadget uses 2a clauses, containing a+ b literals each.303

For the construction of random formulas, we need multiple gadgets. A possible procedure304

to construct sequences of random gadgets is to set lower and upper bounds for a, b, for each305

i ∈ [n] choose parameters ai, bi randomly within the bounds and then obtain a Fai,bi -gadget306

from a randomly chosen non-constant function F : {0, 1}ai → {0, 1}bi (repeating this process307

for each index n ∈ N).308

We also want to randomly choose the propositional base formulas. Each clause of a309

minimally unsatisfiable formula is critical, so we focus on generating minimally unsatisfiable310

formulas. A full characterization of minimally unsatisfiable 2-CNFs was recently given in [3]311

(see also [1, 2]). We can use this characterization to obtain the propositional part of our312

construction (thereby restricting ourselves to 2-CNFs). This includes the ICn formulas (the313

implication chain formulas), but not the SCn formulas (simple contradiction formulas).314

The work [1] also describes a generation procedure for special minimally unsatisfiable315

formulas that are 2-CNFs with deficiency one (exactly one clause more than the number316

of variables). Using the approach described there with a small modification (allowing C1317

and C2 to contain more than one literal) enables us to generate unsatisfiable deficiency one318

formulas (which are not necessarily 2-CNFs):319

▶ Lemma 21. Consider the following construction method:320

Start with F0 := {⊥}. Repeat the following steps for i = 1, . . . , n:321

Choose a clause C ∈ Fi−1 at random (set C := {} if Fi−1 = ⊥).322

Choose C1 and C2 with C1 ∪ C2 = C.323

Build Fi = Fi−1 \ {C} ∪ {C1 ∪ {v}} ∪ {C2 ∪ {v}} for some v /∈ vars(Fi−1).324

The formulas constructed according to this method are minimally unsatisfiable.325

Proof. We show this by induction: Clearly, F0 = {⊥} is minimally unsatisfiable. No we326

consider Fi+1. To get Fi+1 from Fi we choose a new variable v, a clause C ∈ Fi (or C = {}327

for F1) and a decomposition C1 ∪ C2 = C. Now we replace C by C1 ∪ {v} and C2 ∪ {v}. At328

this point it is very easy to modify a proof of resolution for Fi to one for Fi+1: We just have329

to replace any axiom C by the resolution from C1 ∪ {v} and C2 ∪ {v} to C. Thus we already330

know that Fi+1 is unsatisfiable.331

Now, to show minimality, have a look at the single clauses. We distinguish two cases:332

Suppose first, we omit a clause D ∈ Fi \ {C} from Fi+1. We know from induction that Fi333

is minimally unsatisfiable, thus Fi \ {D} is satisfiable. A satisfying assignment to Fi \ {D}334

satisfies C = C1 ∨ C2, i.e. it satisfies at least one of C1 and C2 resp. C1 ∪ {v} and C2 ∪ {v}.335

The second can easily be satisfied by extending the assignment to v (with the appropriate336

value). The resulting assignment satisfies Fi+1 \ {D}.337
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For the second case, suppose we omit w.l.o.g C1 ∪ {v} (the case of omitting C2 ∪ {v}338

is analogous). We know by induction that there is a satisfying assignment to Fi \ {C}.339

Extending this assignment by v = 0 satisfies C2 ∪ {v} and thus Fi+1 \ {C1 ∪ {v}}. ◀340

Now SCn can be obtained in this way.341

Combining random QBF gadgets (according to Lemma 20) with random minimally342

unsatisfiable formulas, we get random QBFs, which are hard for QU-Res by Theorem 12:343

▶ Proposition 22. Let Φn = (ϕi)i∈[n] be a sequence of random (ai, bi)-gadgets, χn a random344

minimally unsatisfiable formula with n clauses and Tn = vars(χn). Then any QU-Res345

refutation of χΦ
n (constructed as in Theorem 12) has length at least 2n.346

Let us briefly compare our random QBFs with the hard random formulas presented in [11].347

The formulas in [11] resemble our formulas, but with one major difference: the QBFs in [11]348

are only false and hard with high probability. In contrast, we construct QBFs that are always349

hard and false by design. The random formulas from [11] can be understood to be based350

on the SC formulas. To this they add a random construction that is akin to a QBF gadget,351

but only yields one with high probability. Note that in our construction here, we can choose352

both the propositional base formulas and the QBF gadgets randomly.353

Finally, let us give a specific construction for random QBFs.354

▶ Example 23 (Random SC). To keep the example as simple as possible, we again resort to355

the SC formulas. As we assemble the gadgets, we will set a and b fixed at a = 2, b = 1, instead356

of randomly choosing these parameters. Thus, all gadgets will be random F1,2-gadgets. There357

are 24 − 2 = 16 such gadgets (resp. functions) from which we can choose. We construct358

SCRG
n as follows: Let (Fi)i∈[n] be a sequence of randomly chosen non-constant functions359

Fi : {0, 1}2 → {0, 1} for i ∈ [n] and RGn = (RGFi
2,1)i∈[n] the sequence of the associated360

gadgets in variables x1
i , x

2
i and ui each, i.e. RGFi

2,1 = ∃x1
ix

2
i ∀ui · φi. We build361

SCRG
n = ∃x1

1x
2
1 . . . x

1
nx

2
n∀u1 . . . un∃t1 . . . tn ·

 ⋃
i∈[n]

{
φi × {ti}

} ∪ {{t1, . . . , tn}} .362

These formulas have n clauses with four literals each (three from the gadget and one from a363

critical clause in SCn) and the additional clause with all the positive t literals.364

Their hardness follows directly from Proposition 22 and the construction of SCRG
n :365

▶ Corollary 24. Any QU-Res refutation of SCRG
n has size at least 2n.366

4 Formulas Separating Q-Res and LD-Q-Res367

We now prove that most of our constructed QBFs, including all the explicit examples and368

the random formulas, separate Q-Res and LD-Q-Res. This requires just one further natural369

condition, namely that the propositional base formulas have polynomial-size propositional370

resolution refutations and the QBF gadgets have polynomial-size Q-Res refutations.371

In fact, instead of LD-Q-Res we can even use a weaker system, so-called reductionless372

LD-Q-Res [13,20,35], which is a strict fragment of LD-Q-Res [13]. This system allows merging373

as in LD-Q-Res but no universal reduction, i.e., any refutation ends with a purely universal374

clause. In other words, it includes LD-Q-Res refutations in which all universal reductions375

occur at the end of the derivation.376
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▶ Theorem 25. For n ∈ N let Φn be sequences of QBF gadgets with polynomial-size Q-Res377

refutations and χn propositional formulas with polynomial-size resolution refutations. Let378

Φn = (ϕi)i∈[n] = (∃Xi∀Ui · φi)i∈[n] and χn = C ∪ D with critical clauses C = {C1, . . . , Cn},379

additional clauses D, Tn = vars(χn) and vars(χn) ∩
(⋃

i∈[n]{Xi ∪ Ui}
)

= ∅. Then χΦ
n (as in380

Theorem 12) has polynomial-size refutations in reductionless LD-Q-Res.381

Proof. We consider the formula χΦ
n . Let Rn be polynomial-size resolution refutations of χn382

and S1, . . . , Sn polynomial-size LD-Q-Res refutations3 of the gadgets ϕ1, . . . , ϕn. Let S′
i be383

as Si, but without the final universal reduction steps. Let U∗
i be the set of (possibly merged)384

universal variables in the last clause of the resulting derivation. We can enlarge every clause385

in S′
i by Ci and get a derivation S∗

i of Ci ∪ U∗
i from ∃Xi∀Ui∃Tn · φi × {Ci}. Now we can386

enlarge every Ci in Rn by U∗
i . This extension runs through the entire proof4 and we obtain387

a reductionless LD-Q-Res derivation R∗
n of

⋃
i∈[n] U

∗
i , which we can complete to a refutation388

by universal reduction. The composition of the proof is shown in Figure 3. ◀389

By Theorem 12 (the formulas are hard for QU-Res) and Theorem 25 (which provides390

short LD-Q-Res refutations) the following holds:391

▶ Corollary 26. The formulas χΦ
n from Theorem 25 separate QU-Res from (reductionless)392

LD-Q-Res.393

φ1 × {C1} . . . φn × {Cn}

C1 ∪ U∗
1 . . . Cn ∪ U∗

n D

⋃
i∈[n] U

∗
i

{}

S∗
1 S∗

n

∀red

R∗
n

Figure 3 Polynomial-size LD-Q-Res refuta-
tions for χΦ

n .

Note that all examples from Section 3.4394

satisfy the required conditions and are there-395

fore separating formulas. Furthermore the ran-396

dom formulas from Section 3.5 are based on397

either propositional 2-CNFs, which are known398

to have short resolution refutations, or a defi-399

ciency one formula constructed with the proce-400

dure described there, which at the same time401

provides a polynomial-size resolution refutation402

(viewed backwards, each step of the algorithm403

can be transformed into a resolution step with404

the newly introduced variable as a pivot). Thus405

all the random formulas separate QU-Res from406

reductionless LD-Q-Res.407

For the next insight we need a result from [16]:408

▶ Theorem 27 ( [16]). For any QBF ϕ, if π is a treelike P+∀red proof of ϕ (where P is a409

propositional proof system), then |π| ≥ ρ(ϕ) (where ρ(ϕ) is the strategy size from Definition 1).410

This implies that all the formulas we have constructed so far, including the random QBFs,411

are hard for all tree-like P+∀red systems.412

▶ Corollary 28. If χΦ
n is a QBF as described in Theorem 12, then any refutation of χΦ

n in413

treelike P+∀red systems has length at least 2n.414

3 Note that for Σb
2-formulas the systems Q-Res and LD-Q-Res are equivalent. A Q-Res refutation of such

a formula is just a resolution refutation of the restriction of the formula to its existential variables with
some reductions, which can be moved towards the beginning of the proof (since the universal block is
rightmost). Allowing merging, we can move the reductions to the end without any problems.

4 There can not be any conflicts in form of tautologous resolvents, since the U∗
i are pairwise variable

disjoint.
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This leads to an interesting fact:415

▶ Proposition 29. Treelike reductionless LD-Q-Res is not simulated by treelike QBF extended416

Frege systems (EF+∀red).417

Proof. The polynomial-size reductionless LD-Q-Res refutations shown in the proof of Theo-418

rem 25 are treelike, as long as the resolution refutation of the propositional formula and the419

reductionless LD-Q-Res refutation of the gadgets are (it is easy to find examples for both).420

Since EF+∀red is the extension of propositional extended Frege by universal reduction and421

all the formulas we constructed have exponential strategy size, the results immediately follow422

from Theorems 25 and 27. ◀423

This is surprising because reductionless LD-Q-Res itself is not a very strong proof system;424

certainly the treelike variant is not either. Reductionless LD-Q-Res does not even simulate425

Q-Res (the two systems are in fact incomparable [35]). This is interesting to contrast with426

the recent simulation of LD-Q-Res (and even stronger systems) by QBF Frege [24]. The427

simulation there is quite non-trivial and highly dag-like. Proposition 29 above means that it428

cannot be strengthened to a tree-preserving simulation.429

5 Construction of Separating Formulas between Q-Res and QU-Res430

We now want to construct QBFs that separate Q-Res and QU-Res. As an intermediate step,431

we will build QBFs that are easy for Q-Res but have exponential strategy size. We will use432

the equality QBFs from the previous sections as running example, and, in fact, only change433

the prefix (and add some conditions on the underlying propositional formulas for the general434

case). We will then use such false QBFs with exponential strategy size and short Q-Res435

refutations to construct a large class of formulas to separate Q-Res from QU-Res.436

5.1 Formulas with Exponential Strategy Size and Short Q-Res437

Refutations438

{xi, ui, ti} {t1, . . . , ti} {xi, ui, ti}

{t1, . . . , ti−1, xi, ui} {t1, . . . , ti−1, xi, ui}

{t1, . . . , ti−1, xi} {t1, . . . , ti−1, xi}

{t1, . . . , ti−1}

in
du

ct
io

n
on

i
=
n
,.
..
,1

Figure 4 Polynomial-size Q-Res refutation of ilSCEQ
n .

First we will look at Examples 14,439

16, and 17 from Section 3.4 and show440

how to obtain formulas from them441

that are easy for Q-Res but still have442

exponential strategy size. The key443

point here is the prefix – while we444

leave the matrix unchanged, we re-445

sort the Σb
3 prefix into an unrestricted446

prefix. Roughly speaking, we do this447

by arranging the ‘crucial’ variables448

of each critical clause into a separate449

existential block to the right of the450

variables of the associated gadget, and451

the remaining propositional variables into the leftmost existential block. In most of the452

examples already given, it is intuitively easy to identify the ‘crucial’ variables of a clause; in453

the general case, this is somewhat more involved5, as is to determine the appropriate order of454

5 They are in fact the pivots of certain resolution steps in special resolution refutations of the propositional
formula.



A. Schleitzer, O. Beyersdorff 13

the critical clauses (i.e., of their variables in the prefix), which is not arbitrary. We therefore455

only verify the desired properties for Examples 14, 16, and 17 from Section 3.4 here, further456

details are given in Section 5.2.457

We start with the equality formulas. These were already modified in the desired way to458

the interleaved equality formulas [11], which have the same matrix as the equality formulas,459

but with an interleaved prefix (this also inspired our general construction). We adopt the460

name ‘interleaved’ also for our other examples and denote the interleaved variant of a Σb
3-QBF461

χΦ
n by ilχΦ

n . We will give short Q-Res refutations for each example.462

▶ Example 30 (Interleaved Equality [11]). We build ilSCEQ
n from SCEQ

n by reordering the463

prefix in a natural way according to the indices:464

SCEQ
n = ∃x1 . . . xn∀u1 . . . un∃t1, . . . , tn · ψ465

ilSCEQ
n = (∃x1∀u1∃t1) . . . (∃xn∀un∃tn) · ψ466

ψ =
⋃

i∈[n]

{{ti, xi, ui}, {ti, xi, ui}} ∪ {t1, . . . , tn}.467

468

The Q-Res refutation shown in Figure 4 follows closely the resolution proof of SCn.469

▶ Example 31 (Interleaved Equivalence). The prefix of ilECEQ
n equals the one of interleaved470

equality, additionally quantifying t0 existentially in the leftmost block.471

ECEQ
n = ∃x1 . . . xn∀u1 . . . un∃t0 . . . tn · ψ472

ilECEQ
n = ∃t0(∃x1∀u1∃t1) . . . (∃xn∀un∃tn) · ψ473

ψ =

 ⋃
i∈[n]

{Ci,1, Ci,2, Di}

 ∪ {Dn+1, Dn+2}474

475

with Clauses476

Ci,1 = {xi, ui, ti−1, ti}
Di = {ti−1, ti} i ∈ [n]

Ci,2 = {xi, ui, ti−1, ti}

Dn+1 = {t0, tn} Dn+2 = {t0, tn}.

477

The Q-Res refutation (see Figure 5) is structurally similar to the resolution proof for ECn478

here as well, although it can be seen quite clearly that only one side of the proof is blown up479

by the refutations of the gadgets, which is due to the choice of the critical clauses.480

We now consider using XOR gadgets:481

▶ Example 32 (Interleaved XOR). For ilSCXOR
n , the existential blocks in the prefix each482

comprise two existential variables, as specified by the XOR gadget. The matrix remains the483

same as for SCXOR
n :484

SCXOR
n =∃x1

1x
2
1 . . . x

1
nx

2
n∀u1 . . . un∃t1 . . . tn · ψ485

ilSCXOR
n =(∃x1

1x
2
1∀u1∃t1) . . . (∃x1

nx
2
n∀un∃tn) · ψ486

ψ =

 ⋃
i∈[n]

{
{x1

i , x
2
i , ui, ti}, {x1

i , x
2
i , ui, ti}, {x1

i , x
2
i , ui, ti}, {x1

i , x
2
i , ui, ti}

}487

∪ {t1, . . . , tn}.488
489

The Q-Res refutations are made slightly more complex by the gadgets, but even here the490

structure of the resolution proof of SC shines through, as you can see in Figure 6.491
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{xi, ui, ti−1, ti} {t0, ti} {xi, ui, ti−1, ti} {ti−1, ti} {t0, ti}

{xi, ui, t0, ti−1} {xi, ui, t0, ti−1}

{xi, t0, ti−1} {xi, t0, ti−1}

{t0, ti−1} {t0, ti−1}

{t0} {t0}

{}

in
du

ct
io

n
on

i
=
n
,.
..
,1

Figure 5 Polynomial-size Q-Res refutation of ilECEQ
n .

{x1
i , x

2
i , ui, ti} {x1

i , x
2
i , ui, ti} {t1, . . . , ti} {x1

i , x
2
i , ui, ti} {x1

i , x
2
i , ui, ti}

{t1, . . . , ti−1,

x1
i , x

2
i , ui}

{t1, . . . , ti−1,

x1
i , x

2
i , ui}

{t1, . . . , ti−1,

x1
i , x

2
i , ui}

{t1, . . . , ti−1,

x1
i , x

2
i , ui}

{t1, . . . , ti−1,

x1
i , x

2
i }

{t1, . . . , ti−1,

x1
i , x

2
i }

{t1, . . . , ti−1,

x1
i , x

2
i }

{t1, . . . , ti−1,

x1
i , x

2
i }

{t1, . . . , ti−1, x
1
i } {t1, . . . , ti−1, x1

i }

{t1, . . . , ti−1}

in
du

ct
io

n
on

i
=
n
,.
..
,1

Figure 6 Polynomial-size Q-Res refutation of ilSCXOR
n .
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Note, that all the universal reductions in the Q-Res refutations shown in Figures 4–6492

comply with the rules thanks to the variable order in the prefixes.493

It is readily verified that the interleaved formulas inherit exponential strategy size from494

their Σb
3 origins. While the winning strategies of the universal player are no longer unique495

for the interleaved formulas, the existential player can nevertheless continue to force a game496

that corresponds to the winning strategy of the associated Σb
3 formulas, i.e., ui = xi for all497

i ∈ [n] in the case of equality gadgets and ui = x1
i ⊕ x1

i for all i ∈ [n] in the case of XOR498

gadgets. Thus, the interleaved formulas retain exponential strategy size.499

Note that the circle formulas ICEQ
n from Example 15 can not be modified this way – there500

are not even enough propositional t variables to build the prefix accordingly6.501

Although we need the interleaved formulas mainly as a basis for separating Q-Res and502

QU-Res, they also have some noteworthy property, which follows from Theorem 27 together503

with the fact that all these formulas have exponential strategy size:504

▶ Proposition 33. The formulas from Examples 30–32 (and all other formulas with short505

Q-Res refutations and exponential strategy size) separate treelike from dag-like Q-Res.506

5.2 General Construction of Formulas as in Section 5.1507

While we show in Section 5.1 that certain variants of the previously introduced examples508

satisfy the required conditions, in the following we will give a general construction for such509

formulas that are easy for Q-Res but have exponential strategy size. We will use the same510

ingredients as in Section 3. In fact, we only have to change the prefix and some requirements511

to the underlying propositional formulas and QBF gadgets. This approach is consistent512

with the relationship between the examples in Section 3.4 and those in Section 5.1 (e.g the513

conventional equality formulas from [11] and interleaved equality).514

Knowing this construction will enable us later to perform the construction in Section 5.3515

on this basis and thus to find further separating formulas between Q-Res and QU-Res.516

We are familiar with exponential strategy size from Section 3, and we will reuse the517

procedure described there, refining our requirements to the propositional base formula as518

well as to the QBF gadget and reordering the prefix. To get short Q-Res refutations of the519

constructed formula, in addition to gadgets with short proofs, of course we need to use a520

propositional base formula with short resolution refutations. In fact, the condition is more521

complicated:522

▶ Definition 34 (refutation and assignment preserving formulas). Let χn be a propositional523

formula with at least n clauses and short resolution proofs.524

With respect to a set C of critical clauses and a short refutation π of χn, we call a525

resolution step in π involving a clause from C a C-step and we call χn (C, π)-refutation526

preserving, if C, π satisfy the following properties:527

(i) For any C ∈ C there is exactly one C-step in π using C as axiom.528

(ii) Every C-step resolves a clause from C with a clause from D = χn \ C or a derived clause.529

(iii) The pivots of the C-steps are pairwise different.530

(iv) Any resolvent of a C-step contains no pivot which is used in an earlier C-step.531

6 The modification becomes straightforward if we choose D = {{t0}, {tn}} and Ci = {ti−1, ti} as clauses
of IC′

n for i ∈ [n] instead of the definition from Example 7 (note that the formula family remains the
same, only the indices of the formulas shift and the partition in C- and D-clauses changes).



16 Classes of Hard Formulas for QBF Resolution

Now let π be as described. We denote by R = (C,D, p) a resolution step with parent532

clauses C and D over the pivot variable p. Let R1, . . . , Rn be the sequence of C-steps in533

π and C1, . . . , Cn, p1, . . . , pn the according sequences of parent clauses from C respective534

pivot variables. Now let ti = pn+1−i and C∗
i = Cn+1−i for i ∈ [n] (so the sequence of535

t-variables is exactly the one of p-variables in reverse order, as with C∗- and C-clauses).536

Let further T = vars(χn), T0 = T \ {t1, . . . , tn}, Ti = Ti−1 ∪ {ti} for i ∈ [n], α0 ∈ ⟨T0⟩ an537

assignment to the variables from T0 and let αi ∈ ⟨Ti⟩ be like αi−1 on their common variables538

and additionally assigning a truth value to ti for i ∈ [n]. Let α = (α0, . . . , αn) be built up539

from α0 as described. We call χn αC,π-preserving if C∗
i ↾αi−1

is critical in χn↾αi−1
for any540

i ∈ [n].541

▶ Definition 35 (ilχΦ
n ). Let χn be a (C, π)-refutation preserving and αC,π-preserving proposi-542

tional formula with |C| = n and D = χn \ C. Let t1, . . . , tn and C∗
1 , . . . , C

∗
n be the sequences543

of pivot variables and C-parent clauses of resolution C-steps in π (i.e., in reverse order) and544

T0 = vars(χn) \ {t1, . . . , tn}. Let further Φn = (ϕi)i∈[n] = (Pi · φi)i∈[n] be a sequence of QBF545

gadgets. We define546

ilχΦ
n =∃T0(P1∃t1) . . . (Pn∃tn)·547 ⋃

i∈[n]

[φi × {C∗
i }] ∪ D.548

549

▶ Lemma 36. For n ∈ N let Φn be a sequence of n QBF gadgets and χn a propositional550

formula with polynomial-size resolution refutations. Let χn be (C, π)-refutation preserving551

with |C| ≥ n. Then ilχΦ
n has polynomial-size Q-Res refutations.552

Proof. Let Φn = (ϕi)i∈[n] = (Pi ·φi)i∈[n] be a sequence of QBF gadgets, χn (C, π)-refutation553

preserving with polynomial-size resolution refutations, D = χn \ C, C∗
1 , . . . , C

∗
n and t1, . . . , tn554

the sequences of axioms and pivots as described above and T0 = vars(χn) \ {t1, . . . , tn}. We555

consider the C-steps performed in π and show, that the resolvents can be derived in only a556

few more steps using axioms from ilχΦ
n and Q-Res.557

Let C∗
i be an axiom from C and D an axiom from D or a derived clause, where C∗

i and D558

are resolved with each other in π to the resolvent E. ti is the pivot element to this resolution559

step. ilχΦ
n contains φi × {C∗

i } instead of C∗
i . By first resolving all clauses of φi × {C∗

i } with560

D, we obtain φi ×{E}, thereby eliminating the pivot ti. Since ϕi and χn are variable disjoint561

and all the T -variables are existential, this is easily possible. Since χn is (C, π)-refutation562

preserving, E does not contain any variable tj with j > i. Now we can use the refutation563

of φi (note that its size is constant since the size of the gadget is independent from n) by564

extending each clause in it by E. Since φi × {E} only contains variables from Pi and T ,565

reduction steps within the derivation could – corresponding to the prefix – only be blocked566

by variables tj , j ≥ i. However, these are not contained in φi × {E}. So at the end of the567

derivation we get the clause E instead of the empty clause – as desired.568

Figure 7 illustrates the procedure using an equality sub-formula Pi.φi = ∃xi∀ui ·569

{{xi, ui}, {xi, ui}}.570

In this way we can replace all resolution steps that use an axiom from C. We get the571

same resolvents with only a few more steps (since the φi have short Q-Res refutations) and572

can connect the rest of π. Overall, we get a Q-Res refutation for ilχΦ
n of the same order of573

magnitude (as π). This method can be found in the Q-Res refutations of all examples from574

Section 5.1. ◀575
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▶ Lemma 37. For n ∈ N let Φn be a sequence of n QBF gadgets and χn a propositional576

formula with polynomial-size resolution refutations. Let χn be αC,π-preserving with |C| ≥ n.577

Then ilχΦ
n has exponential strategy size.578

Proof. We can use a similar argumentation as in Theorem 12 to show, that any winning579

strategy for ilχΦ
n is based on a combination of winning strategies for the ϕi formulas (but580

we have to take into account that the prefix does not collect the T -variables at the end and581

therefore need the αC,π-preserving property.).582

Let χn be αC,π-preserving with respect to a critical set C with size |C| = n and a resolution583

refutation π and let Φn = (ϕi)i∈[n] = (Pi · φi)i∈[n] be a sequence of QBF gadgets. It is584

obvious, that assigning ui according to a winning strategy for ϕi for each i ∈ [n] is a universal585

winning strategy on ilχΦ
n with exponential size (since the gadgets are non-constant). We586

assume (for contradiction), there is a winning strategy S assigning ui different from any587

winning strategy for ϕi for some i ∈ [n] (we consider the smallest i with this property).588

Then all clauses from φi × {C∗
i } are satisfied (since φi is satisfied). We assume that the589

existential player has followed αi−1 on T0 and t1, . . . , ti−1. But since χn is αC,π-preserving,590

we knowC∗
i ↾αi−1

is critical in χn↾αi−1
. That means χn↾αi−1

\ {C∗
i ↾αi−1

} is satisfiable with591

some assignment α′ to the remaining variables ti, . . . , tn. Since the clauses φi × {C∗
i } are592

already satisfied by the universal assignment, the existential player wins the assignment game593

with α′ and an arbitrary assignment to the remaining existential variables. Thus S is not a594

winning strategy. ◀595

C∗
i ∪ {xi, ui} D C∗

i ∪ {xi, ui}

E ∪ {xi, ui} E ∪ {xi, ui}

E ∪ {xi} E ∪ {xi}

E

Figure 7 Q-Res derivation of the resolvent E from EQ×∗
i .

The formulas for simple con-596

tradiction and equivalence chain597

from Section 3 are refutation and598

αC,π-preserving, where the naming599

of the clauses identifies C and D600

and the related π and α should be601

obvious. While interleaved equal-602

ity formulas ( [11]) are an instan-603

tiation of ilχΦ
n -formulas already604

known from literature, we present605

some new examples in Section 5.1.606

▶ Theorem 38. For n ∈ N let Φn607

be a sequence of n QBF gadgets608

and χn a propositional formula with polynomial-size resolution refutations. Let χn be (C, π)-609

refutation preserving and αC,π-preserving with |C| ≥ n. Then ilχΦ
n separate tree-like from610

dag-like Q-Res.611

Proof. This follows immediately from Lemmas 37 and 47 and Proposition 33. ◀612

5.3 Separating Formulas613

In the second step we will use the QBFs with short Q-Res refutations and exponential strategy614

size to construct separating formulas between Q-Res and QU-Res. Our method is inspired by615

the structure of the KBKF formulas [31]. We first define the concept of target clauses.616

▶ Definition 39 (Target Clauses). For a false QBF ϕ = P · φ let F be a set of clauses such617

that the existential player has a strategy to never lose on clauses from ϕ\F in any assignment618

game (regardless of the strategy chosen by the universal player), i.e., the existential player619

will always lose on clauses in F . We call F a set of target clauses.620
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Notice that F is in general not unique. It is always possible to choose F = φ. Based on621

this, the construction is remarkably simple:622

▶ Definition 40 (Tail Construction). Let ϕ = P · φ be a false QBF with universal variables623

vars∀(ϕ) = {u1, . . . , un} and {e1, . . . , en} ∩ vars(ϕ) = ∅. Let further F be a set of target624

clauses for ϕ. Then we call625

ϕ∗ =P∗ · φ∗

=P∃e1 . . . en ·

 ⋃
C∈φ\F

{C}

 ∪

( ⋃
C∈F

{C ∪ {ei : i ∈ [n]}}

)
∪

 ⋃
i∈[n]

{{ui, ei}, {ui, ei}}

626

the tailed version ϕ∗ of ϕ.627

Although the choice of F = φ will not significantly increase the size of the resulting formula,628

i.e., we always have |ϕ∗| = O(|ϕ|), it makes sense to choose F as small as possible. These629

tailed formulas have exactly the properties we aim for (if we choose a suitable ϕ):630

▶ Theorem 41. Let ϕ∗
n be tailed versions of formulas ϕn as described in Definition 40, where631

ϕn requires super-polynomial strategy size, but has polynomial-size Q-Res refutations. Then632

ϕ∗
n separates Q-Res from QU-Res, i.e., ϕ∗

n requires super-polynomial size Q-Res refutations,633

but has polynomial-size QU-Res refutations.634

We will split the proof of Theorem 41 into two parts, first showing hardness for Q-Res of635

the constructed formula and afterwards constructing short QU-Res proofs.636

To show this, we modify ϕ∗ once more, similarly as described in [6] for the KBKF formulas.637

That is, we use new variables v1, . . . , vn and put them into the formula as copies of the638

universal variables u1, . . . , un. While Balabanov, Widl, and Jiang create ∀uivi from each ∀ui639

in the prefix, we group the universal copies in a (possibly additional) universal quantification640

block to the right of P (and to the left of the existential tail variables), similarly as in [11],641

i.e., P∗ = P∃e1 . . . en becomes P ′ = P∀v1 . . . vn∃e1 . . . en. In addition, the occurrences of ui642

in the matrix are effectively doubled, i.e., φ′ contains for each clause C ∈ φ∗ the extended643

clause C ∪ {vi : ui ∈ C} ∪ {vi : ui ∈ C}.644

▶ Definition 42 (ϕ′). For any QBF ϕ∗ = P∗ ·φ∗ constructed from a QBF ϕ = P ·φ following
Definition 40 we define

ϕ′ = P ′ · φ′ = P∀v1 . . . vn∃e1 . . . en ·

 ⋃
C∈φ∗

C ∪ {vi : ui ∈ C} ∪ {vi : ui ∈ C}

 .

Moving the universal variable copies to the right into a common universal block can only645

shorten QU-Res refutations, since it might enable additional universal reductions, but can646

never block a reduction previously possible. We then use Theorem 3 to show that ϕ′ requires647

long QU-Res proofs. To do so, we first show:648

▶ Lemma 43. Let ϕ∗ be a QBF constructed from ϕ following Definition 40 and let ϕ′ be as649

described in Definition 42. Then in the assignment game for ϕ′ the existential player can650

force the universal player to651

(i) follow a winning strategy for ϕ on u1, . . . , un and652

(ii) assign vi = ui for every i ∈ [n].653
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Proof. We first show (i). Consider the assignment game on P. If the universal player does654

not use a winning strategy on ϕ, he will lose on ϕ. Thus the assignment α constructed on655

P satisfies φ and thus all the clauses
⋃

C∈ϕ {C ∪ {ei : i ∈ [n]} ∪ {vi | ui ∈ C} ∪ {vi | ui ∈ C}},656

because these are just weakenings of clauses from φ. The remaining clauses are657 ⋃
i∈[n] {{ui, vi, ei}, {ui, vi, ei}}, which can easily be satisfied by ei = 1 for i ∈ [n]. Hence the658

existential player wins the assignment game.659

For (ii) again we consider the game on P and assume that the existential player plays660

according to his strategy on ϕ to only lose on clauses in F . Since F is a target set, we661

know that such a strategy exists. Let α be the assignment constructed on P (by both the662

existential and the universal player). By definition of target clauses α does not falsify any663

clause C ∈ φ \ {F}; these are also part of ϕ∗. α also satisfies the corresponding clauses in ϕ′,664

which are {C ∪ {vi | ui ∈ C} ∪ {vi | ui ∈ C} | C ∈ φ \ {F}}. Thus, the remaining clauses are665

those resulting from C ∈ F ,
⋃

C∈F {C ∪ {ei : i ∈ [n]} ∪ {vi | ui ∈ C} ∪ {vi | ui ∈ C}} and666

the additional clauses
⋃

i∈[n] {{ui, vi, ei}, {ui, vi, ei}}. Now assume towards a contradiction667

that the universal player assigns vj ̸= uj for some j ∈ [n] (let j be the first index for668

which this applies). Then the existential player can assign ej = 0 without falsifying any669

of these clauses. This immediately satisfies every clause originating from a clause in F .670

All the clauses {uj , vj , ej}, {uj , vj , ej} with j < i are already satisfied and thus only the671

clauses {uj , vj , ej}, {uj , vj , ej} with j > i remain. But now the existential player can win the672

assignment game by simply assigning ej = 1 for each j > i. ◀673

▶ Lemma 44. Let ϕ, ϕ∗, and ϕ′ be as in Lemma 43. Then QU-Res proof size of ϕ′ is at674

least ρ(ϕ).675

Proof. According to Lemma 43 the universal player has to assign u1, . . . , un according to676

a ϕ-strategy and vi = ui for i ∈ [n]. Thus the cost of ϕ′ is at least ρ(ϕ), because the677

whole strategy is pooled in the last universal block. Now we can use the cost/size argument678

(Theorem 3) and obtain that proof size of ϕ′ in QU-Res is at least ρ(ϕ). ◀679

We can now prove the lower bound for ϕ∗, following an approach described in [11].680

{u1, e1} {u1, e1} . . . {un, en} {un, en}

{e1} . . . {en} C ∪ {e1, . . . , en}

C for all C ∈ φ \ F C for all C ∈ F

short Q-Res
refutation for ϕn

Figure 8 Polynomial-size QU-Res refutations for ϕ∗.

681

▶ Lemma 45. Let ϕ∗ = P∗ ·φ∗ be682

a QBF constructed from ϕ = P ·φ683

according to Definition 40. Then684

proof size of ϕ∗ in Q-Res is at least685

1
2ρ(ϕ).686

Proof. Suppose that proof size687

of ϕ∗ in Q-Res was smaller than688

1
2ρ(ϕ) and let π be such a short689

Q-Res refutation. To obtain the690

empty clause all universal vari-691

ables must be reduced by universal692

reduction in π (there is no other693

option, which is the decisive differ-694

ence to QU-Res). But then we can construct a Q-Res proof π′ for ϕ′ by just doubling all695

reduction steps in π in the sense of introducing an additional reduction step for vi as soon696

as ui is reduced. That is always possible, because vi is never quantified left from ui. The697

remainder of the proof can be left unchanged, since the variable copies (vi, vi) cannot cause698

any tautologies that would not also be caused by the originals (ui, ui). The proof constructed699
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in this way remains in the same order of magnitude as the original one, more precisely700

|π′| ≤ 2|π| < ρ(ϕ) in contradiction to the above observation of Lemma 44. Thus any Q-Res701

refutations for ϕ∗ has size at least 1
2ρ(ϕ). ◀702

Lemma 45 in combination with the conditions from Theorem 41 (i.e., exponential strategy703

size of ϕn) implies Q-Res-hardness of ϕ∗
n:704

▶ Corollary 46 (ϕ∗
n is Hard for Q-Res). Let ϕ∗

n be tailed versions constructed from ϕn following705

the rules and conditions from Theorem 41. Then ϕ∗
n is hard for Q-Res.706

Let us now prove the upper bound stated in Theorem 41:707

▶ Lemma 47 (ϕ∗
n has Short QU-Res Refutations). If ϕ∗

n are QBFs constructed from ϕn708

following the rules and conditions from Theorem 41, then ϕ∗
n has short QU-Res refutations.709

Proof. ϕn = P · φn has by assumption short Q-Res proofs. ϕ∗
n additionally contains the710

clauses {ui, ei} and {ui, ei} for all i ∈ [n], from which we can get all the unit clauses711

{ei}, i ∈ [n] in only n universal resolution steps (available in QU-Res). We then remove all712

the ei literals from the clauses originated from F in |F | · n resolution steps. Together with713

the unchanged clauses from φn \ F we now have all clauses from φn and can proceed with714

the short Q-Res refutation of ϕn. The proof of ϕn is extended by (|F | + 1) · n ≤ (|φn| + 1) · n715

steps. Therefore we get a polynomial-size QU-Res refutation of ϕ∗
n. The composition of the716

proof is shown in Figure 8. ◀717

Proof of Theorem 41. The theorem follows from Corollary 46 and Lemma 47. ◀718

5.4 Examples719

We illustrate our construction on the interleaved equality formulas from [11], which we720

already discussed in Section 5.1:721

▶ Example 48 (Tailed Equality). We first need suitable formulas, on which we can use the722

tail construction:723

ϕn = (∃x1∀u1∃t1) . . . (∃xn∀un∃tn) ·

 ⋃
i∈[n]

{
{xi, ui, ti}, {xi, ui, ti}

} ∪ {{t1, . . . , tn}} .724

As mentioned in Section 5.1, these are exactly the ilSCEQ
n -formulas, i.e., they have expo-725

nential strategy size and short Q-Res refutations. Thus, (ϕi)i∈N meets the requirements for726

constructing separating formulas according to the above method. The existential player727

has a strategy to satisfy all clauses except for {xn, un, tn}, {xn, un, tn} and {t1, . . . , tn} in728

any game (by just setting ti = 0 for i < n). With un = xn we get the following possible729

assignments:730

xn = un = 1, tn = 1 falsifies {xn, un, tn},731

xn = un = 0, tn = 1 falsifies {xn, un, tn} and732

xn = un, tn = 0 falsifies {t1, . . . , tn}.733

The remaining two clauses are satisfied in each case. Thus there are three possibilities for a734

minimal set F of target clauses, containing one of these three clauses. The most intuitive735

choice for F is F = {{t1, . . . , tn}}. The tail construction then leads to the following formulas,736
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separating Q-Res and QU-Res:737

ϕ∗
n =tl SCEQ

n =(∃x1∀u1∃t1) . . . (∃xn∀un∃tn)∃e1 . . . en·738  ⋃
i∈[n]

{
{xi, ui, ti}, {xi, ui, ti}, {ui, ei}, {ui, ei}

}739

∪ {{t1, . . . , tn, e1, . . . , en}} .740
741

Interestingly, the KBKF formulas [31] correspond to the tail construction (they actually742

inspired our construction):743

▶ Example 49 (KBKF). The KBKF formulas presented in [31] are defined as744

ϕ∗
n = KBKFn = ∃y0(∃y1y

′
1∀u1) . . . (∃yny

′
n∀un)∃yn+1 . . . yn+n ·

⋃
i∈[0...2n]

{Ci, C
′
i}745

where the matrix clauses are defined as follows:746

C0 = {y0} C ′
0 = {y0, y1, y′

1}747

Ck = {yk, uk, yk+1, y′
k+1} C ′

k = {y′
k, uk, yk+1, y′

k+1}748

Cn = {yn, un, yn+1, . . . , yn+n} C ′
n = {y′

n, un, yn+1, . . . , yn+n}749

Cn+t = {ut, yn+t} C ′
n+t = {ut, yn+t}750

751

with 1 ≤ k < n and 1 ≤ t ≤ n. We now immediately see, that some parts of the formula752

equal those constructed in Section 5. Especially the variables yn+1, . . . , yn+n correspond to753

those called e1, . . . , en in Section 5, which make up the tail. We examine the basic formula,754

whose modification according to the tail construction leads to the KBKF formulas:755

ϕn = ∃y0(∃y1y
′
1∀u1) . . . (∃yny

′
n∀un) ·

⋃
i∈[0...n]

{Ci, C
′
i}756

with757

C0 = {y0} C ′
0 = {y0, y1, y′

1}758

Ck = {yk, uk, yk+1, y′
k+1} C ′

k = {y′
k, uk, yk+1, y′

k+1}759

Cn = {yn, un} C ′
n = {y′

n, un}760

761
762

for 1 ≤ k < n.763

ϕn is also a false QBF and the existential player can force the universal player to follow764

the same strategy as in KBKF: setting uk = y′
k for each k ∈ [n]. (Note that this is not765

a unique winning strategy, since the existential player could leave the universal player a766

wide range of freedom in assigning the universal variables.) To force the universal player767

assigning variables according to the KBKF-strategy, the existential player will assign y0 = 0768

and y′
k ̸= yk in every round k ∈ [n]. The last remaining clauses are Cn = {yn, un} and769

C ′
n = {y′

n, un}, and every so constructed assignment falsifies exactly one of them: yn = 0,770

y′
n = 1 = un falsifies Cn and yn = 1, y′

n = 0 = un falsifies C ′
n; in each case the other clause771

is satisfied. Thus it is sufficient for the set F of target clauses to contain one of the two772

clauses. For KBKF F = {Cn, C
′
n} was chosen (which is not minimal), which makes the tail773

construction generating just the KBKF formulas. Polynomial-size Q-Res refutations of ϕn774

are shown in Figure 9.775
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Cn C ′
n

{yn} {y′
n}

Ck {yk+1} {y′
k+1} C ′

k

{yk, uk} {y′
k, uk}

{yk} {y′
k}

{y1} {y′
1} C ′

0

{y0} C0

{}

induction on
k = n− 1, . . . , 1

Figure 9 Polynomial-size Q-Res refutation of the base formulas ϕn of KBKFn.

Hence (ϕi)i∈N has exponential strategy size and short Q-Res refutations, thus satisfying776

the conditions of the tail construction. It follows immediately, that the KBKF formulas777

separate Q-Res from QU-Res.778

As an aside we see that F can be minimized, i.e., the negative literals yn+1, . . . , yn+n can779

be removed from one of the clauses Cn or C ′
n without affecting the separation property.780

6 Conclusion and Open Problems781

While our construction of hard formulas in Section 3 yields a large class of hard QBFs, it782

does not allow to generate all hard QBFs. One apparent limitation is that we only produce783

Σb
3 formulas. While this is arguably the most interesting case, it would be worthwhile to784

explore systematically how to construct hard QBFs with higher quantifier complexity. While785

it is easy to derive such formulas from Σb
3 QBFs by just adding further dummy quantifiers,786

‘more natural’ constructions appear of interest.787

A related question is which exact class of formulas can be generated by our construction.788

As we always import hardness via the size-cost method, one might aim for a construction789

that yields all such formulas. We do not achieve this yet, as one can even find Σb
3-formulas790

with high costs that do not stem from our method. Of course there are also further sources791

of hardness. E.g. the parity formulas [15] are hard for QU-Res, but have small cost. Finding792

general constructions for other QBF families, where hardness does not originate from cost,793

also appears interesting for future work.794
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