
Lower bounds for Polynomial Calculus with extension
variables over finite fields

Russell Impagliazzo ∗

UC San Diego
russell@cs.ucsd.edu

Sasank Mouli †

UC San Diego
galivenk@ucsd.edu

Toniann Pitassi ‡

Columbia University
tonipitassi@gmail.com

Abstract

For every prime p > 0, every n > 0 and κ = O(log n), we show the existence
of an unsatisfiable system of polynomial equations over O(n log n) variables of degree
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)
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1 Introduction

Propositional proof complexity, started by the seminal work of Cook-Reckhow [CR79]
is a field of study analogous to Boolean circuit complexity, and asks the following ques-
tion: given a formal proof system dealing with propositional formulae, what Boolean
tautologies are hard to prove in this system? The ultimate goal of this program is to
come up with tautologies that are hard for any proof system that has a polynomial
time verifier, hence showing that coNP 6⊆ NP. So far progress has been made only
for proof systems which are restricted in their capacity to reason, such as Resolution
[Hak85],[BSW99] and Bounded-depth Frege [Ajt94], [PBI93],[KPW95].

The next frontier is to obtain lower bounds for the system AC0[p]-Frege. Since for
the analogous circuit model, Razborov [Raz87] and Smolensky [Smo87] obtained lower
bounds through connections to algebraic objects, this suggests the study of Algebraic
Proof Systems. Beame et.al. [BIK+96] introduced and showed lower bounds for the
algebraic proof system Nullstellensatz where lines are low degree polynomials over a
field. Clegg et. al [CEI96] introduced the algebraic system Polynomial Calculus(PC),
which is a dynamic generalization of Nullstellensatz. Lower bounds for Polynomial
Calculus were obtained in many works (e.g., [Raz98, BGIP01, AR01, GL10, MN15]).

After what seemed to be reasonable progress with Algebraic Proof Systems, progress
towards the frontier of AC0[p]-Frege is still stalled for various reasons. For one, the
proof systems described above are not strong enough to simulate AC0[p]-Frege. Also,
the lower bound techniques used for the above lower bounds are based on random
restrictions, and it is well known that modular counting gates are immune to such
techniques. Therefore, we need to aim towards lower bounds for systems strong enough
to simulate AC0[p]-Frege. We also need lower bound techniques that are not just
random-restriction based. On both fronts, there has been recent progress. Grigoriev
and Hirsch [GH03] introduced the proof system constant-depth PC and showed that it
simulates AC0[p]-Frege at a proportional depth. Raz and Tzameret [RT08] showed that
constant-depth PC at depth 3 over the field of Rational numbers surprisingly simulates
the semi-algebraic proof system Cutting Planes with bounded coefficients. [IMP20]
obtained many more surprising results, and showed that Depth-43-PC (over a large
enough extension of a finite field Fp) simulates AC0[q]-Frege for a different prime q,
Cutting Planes with unbounded coefficients, and also the Sum-of-Squares proof system.
They also showed that Depth-d-PC simulates TC0-Frege at a proportional depth. It
therefore makes sense to aim for lower bounds for the stronger system Depth-d-PC,
for increasingly large constants d. In this direction, Sokolov [Sok20] obtained lower
bounds for the system PC over F3 where extension variables of the form zi = 2xi − 1
are allowed to be introduced (hence making them take values in the set {+1,−1}).

In this work, we generalize the methods of Sokolov to show lower bounds for PC
with up to N2−ε extension variables which can depend on up to κ = O(logN) original
variables (where N is the number of variables in the tautology). [Ale21] obtained
stronger lower bounds for Polynomial Calculus with extension variables over the reals,
but since we work over finite fields our results are incomparable. Also, their tautology
is a variant of subset sum with large coefficients, which cannot be defined well over
finite fields.

Theorem 1 (high-end). There is a family of CNF tautologies ψN,κ,M on N variables
with poly(N) clauses of width O(logN) so that for any M = Npolylog(N) and κ ≥ 1,
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and prime p, there is a function S(N) ∈ 2Ω(N/polylog(N)) so that any PC refutation of
ψN,κ,M together with any M κ-local extensions over Fp requires size S(N).

Theorem 2 (low-end). For the same family of tautologies above, for any prime p,
there are 0 < α, β, γ < 1, with γ < 1− α− β so that, for M = N1+α, κ = βlogN , and
S = exp(Nγ), any PC refutation of ΦN together with any M κ-local extensions over
Fp requires size S(N).

1.1 Related Work

Our primary goal in this work is to prove lower bounds for low-depth IPS refutations for
unsatisfiable CNF formulas, over finite fields, since this is the setting where algebraic
lower bounds are closely connected to proving lower bounds for AC0[p]-Frege systems,
a major and longstanding open problem in proof complexity.

The work that inspired us and that is most related to our result is the recent paper
by Sokolov [Sok20], proving exponential lower bounds on the size of PC refutations of
CNF formulas over F3, where the variables take on values in {1,−1}. We generalize
Sokolov’s result to hold over any finite field, even with the addition of superlinear
many extension variables, each depending arbitrarily on a small number of original
variables. Thus our result can be alternatively viewed as making progress towards
proving exponential lower bounds for depth-3 IPS, for a family of CNF formulas.

We note that for more general unsatisfiable polynomial equations that are not
translations of CNF formulas, several recent papers prove much stronger results over
the rationals (but are incomparable to our main result). First, [FSTW21] proved lower
bounds for subsystems of IPS by restricted classes of circuits, including low-depth
formulas, multilinear formulas and read-once oblivious branching programs. Secondly,
Alekseev [Ale21] proved exponential lower bound on the bit complexity of constant-
depth IPS proofs over the rationals, and a recent paper by Andrews and Forbes [AF21]
proves quasipolynomial lower bounds on the circuit size of constant-depth IPS proofs
for a different family of formulas, over the rationals. However, for a variety of reasons,
all of these lower bounds do not imply nontrivial lower bounds in the propositional
setting and thus they are incomparable to our main result. First, these results do not
hold in the setting of finite fields. Secondly, the particular choice of hard polynomials
are inherently nonboolean: [FSTW21, Ale21] use the subset sum principle which when
translated to a propositional statement is no longer hard, and the hard polynomials in
[AF21] have logarithmic depth.

1.2 Our Result: Proof Overview

The standard way of proving size lower bounds for PC for an unsatisfiable formula F for
Boolean-valued variables dates back to the celebrated superpolynomial lower bounds
for Resolution [Hak85, BSW99], where the basic tool is to reduce size lower bounds to
degree lower bounds (or in the case of Resolution, size to clause-width) by way of either
a general size-depth tradeoff, or by a more general random restriction argument. At a
high level, both methods iteratively select a variable that occurs in a lot of high-degree
terms, set this variable to zero (to kill off all high-degree terms containing it), while
also ensuring (possibly by setting additional variables) that F remains hard to refute
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after applying the partial restriction. After applying this size-to-degree reduction, the
main technical part is to prove degee lower bounds for the restricted version of F .

Unfortunately over the {−1, 1} basis, the size to degree reduction breaks down.
In fact, no generic reduction to degree can exist since random XOR instances over
this basis require linear degree but have polynomial size PC refutations over GF2.
Moreover, we lacked any method for proving PC lower bounds for unsatisfiable CNFs
over the basis {−1, 1}. and more generally over an arbitrary linear transformation of
the variables. In [IMP20], we highlighted this as an open problem, noting that it is
a necessary step toward proving superpolynomial AC0[2]-Frege lower bounds, a major
open problem in proof complexity.

Recently, Sokolov [Sok20] made significant progress by proving exponential lower
bounds for PC (as well as for SOS) for random CNF formulas over the domain {−1, 1},
by developing new formula-specific techniques to reduce size to degree over this domain.
As this is the starting point for our work, we begin by describing the main method in
[Sok20] for reducing size to degree for certain families of formulas over {−1, 1}.

Let Π be an alleged PC refutation of F of small size which includes the axioms
w2 = 1 for all variables w. The first step in Sokolov’s argument is to show how to
remove all high degree terms containing a particular variable w, provided that w is
irrelevant – meaning that it does not occur in any of the initial polynomials other
than the equation w2 = 1. Intuitively, we want to show that if our unsatisfiable
system of polynomial equations doesn’t contain w, then we should be able to eliminate
w altogether from the refutation. To show this, Sokolov writes each line q in the
refutation as q0 + q1w, and proves by induction that if we replace each line q by the
pair of lines q0, q1, then it is still a valid refutation of F (and no longer contains w).
While the split operation removes w from the proof, it doesn’t kill off high degree terms.
The crucial insight is that although this doesn’t directly kill off high degree terms, a
slightly different measure of degree (called quadratic degree) can be used instead, since
removing w via the split operation removes all high quadratic degree terms that w
contributed to, and secondly low quadratic degree implies low ordinary degree. The
second and easier step in Sokolov’s argument uses specific expansion properties of F to
shows that for any variable w, there exists a small restriction ρ (to some of the other
variables) such that w becomes irrelevant under ρ.

Our main theorem significantly generalizes Sokolov’s lower bound by proving ex-
ponential lower bounds for an unsatisfiable CNF formulas F , even when we allow the
axioms P to contain superlinear many extension axioms, provided that each has small
support. Note that the variables of F are Boolean, but the extension variables are
not restricted to being Boolean. In particular, they may be nonsingular, meaning that
setting the variable to zero falsifies one of the initial polynomials. Intuitively, a non-
singular variable w cannot be set to 0, so we will handle them in a similar manner to
Sokolov, by first isolating w, and then generalizing the split operation in order to kill
off all large quadratic degree terms that contain w. However, dealing with a general
set of extension axioms presents new technical challenges that we address next.

Our first idea is to design the unsatisfiable formula F carefully so that we can force
variables to be irrelevant in a more modular way. Specifically, let F ′(x1, . . . , xn) be an
expanding unsatisfiable k-CNF formula with m = O(n) clauses, such that any subset
of m′ = εn clauses is unsatisfiable and requires proofs of large PC degree. We define
an unsatisfiable formula F (based on F ′) that intuitively states that there is a subset
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S of m′ = εm clauses of F ′ (as chosen by new selector variables y) that is satisfiable.
We will prove lower bounds on the set of constraints F ∪ E, where E is an arbitrary
set of extension axioms satisfying the conditions mentioned earlier. In order to make
a variable of F ′ irrelevant, we will simply make sure that our eventual assignment to
the selector variables (y) avoids constraints of F ′ that contain this variable.

A second challenge that we face (that doesn’t come up in Sokolov’s proof) is that
extension variables start off as either singular or nonsingular, but can change status
after applying a restriction. For example, suppose E includes the extension axiom
z = x1x2− x1. Then z is singular (since we can set x1 = x2 = 0), but if we set x1 = 1,
then z becomes nonsingular. In order to deal with this dynamically changing status of
variables, our notion of quadratic degree must pay attention to which category each of
the extension variables is in at any particular time, and make sure that we do not lose
progress that was made earlier due to variables changing from singular to nonsingular.
Fortunately we observe that variables can only change unidirectionally, from singular
to nonsingular, and this is crucial for arguing that we can iteratively kill off large
quadratic degree terms with respect to both types of variables in a particular order so
that we continually make progress.

Finally, we also have to generalize Sokolov’s split operation, which was previously
defined only for {−1, 1} variables. We give a generalization of how to do the split for
arbitrary valued variables.

2 Preliminaries

Definition 1 (Polynomial Calculus). Let Γ = {P1 · · · Pm} be a set of polynomials in
variables {x1 · · ·xn} over a field F such that the system of equations P1 = 0 · · · Pm = 0
has no solution. A Polynomial Calculus refutation of Γ is a sequence of polynomials
R1 · · · Rs where Rs = 1 and for every ` in {1 · · · s}, R` ∈ Γ or is obtained through one
of the following derivation rules for j, k < `

R` = αRj + βRk for α, β ∈ F

R` = xiRk for some i ∈ {1 · · ·n}
The size of the refutation is

∑s
`=1 |R`|, where |R`| is the number of monomials in

the polynomial R`. The degree of the refutation is max` deg(R`).

Definition 2 (PC with extension variables). Let Γ = {P1 · · · Pm} be a set of polyno-
mials in variables {x1 · · ·xn} over a field F such that the system of equations P1 = 0
· · · Pm = 0 has no solution. Let z1 · · · zk be new variables defined over {x1 · · ·xn}
by zj = Qj(x1 · · ·xn). A refutation of PC with extension variables z1 · · · zk of Γ is a
Polynomial Calculus refutation of the set Γ′ = {P1 · · ·Pm, z1 − Q1, · · · , zk − Qk} of
polynomials over {x1 · · ·xn} and {z1 · · · zk}.

The size of such a refutation is the size of the Polynomial Calculus refutation of Γ′

Definition 3 (Refutation of a k-CNF in Polynomial Calculus). Since we are working
with Polynomial Calculus, a tautology in clausal form has to be translated into a set
of polynomials over a field. We work over Fp for p > 3 and use the standard PCR
translation of CNFs into polynomials: for each variable x occuring in the CNF, we have
two associated variables x and x̄ (representing x and its negation respectively). Each
clause C is converted into an associated monomial in the natural way. For example, if
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C = (x1∨¬x2∨x3), then the corresponding polynomial is x̄1x2x̄3 = 0. In addition, for
every variable w,w, we include the boolean axioms w2−w = 0, w2−w = 0, as well as
the axiom ww = 0. .

3 The Hard Formulas

We distinguish between the case p = 2 and the case p > 2, and concentrate on the
latter. This is because the case p = 2 does not require any new technical ideas, and
we can pick from a large number of known hard tautologies for this case, such as
random CNF ’s. Over F2, every extension variable is zero-one valued, and so standard
size-degree tradeoffs pertain even with respect to extension variables. Also, k-local
extension variables can change the degree by at most a factor of k. Since to use the
size-degree tradeoffs , the degree must be at least the square root of the number of
variables, this immediately gives a lower bound tolerating close to a quadratic number
of local extension variables for any tautology requiring linear degree, giving us our
claimed results.

Note, however, that over any field with p > 2, the Tseitin tautologies require linear
degree but have polynomial sized proofs with a linear number of extension variables,
so high degree is not sufficient when p > 2. So in this case, we need a new type of hard
tautology. Below, we describe these tautologies.

We start with any unsatisfiable CNF formula such that

a) Any small set of variables appear in a small fraction of the axioms

b) Any large enough subset of axioms is unsatisfiable, and requires linear PC degree
to refute.

For concreteness, we fix the following unsatisfiable CNF obtained by generating suffi-
ciently many random parities.

First we’ll show that a random regular bipartite graph has good boundary expan-
sion. This has been used implicitly in other works ([CS88], [BKPS02]), but we could
not find a clean statement to cite, so for completeness we state and prove it here. Let
G = (L,R,E) be a bipartite graph, and let A ⊆ R. The boundary for A, ∂(A), is the
set of vertices x in L so that |N(x)∩A| = 1, i.e., vertices with a unique neighbor in A.
A bipartite graph is (d, k) regular if every vertex in L has degree d and every vertex in
R has degree k. In this case, for n = |L|,m = |R|, we have dn = km.

Theorem 3. Let d, k, n,m be positive integers with dn = km, k ≥ 12 . Then with
high probability for a random (d, k) regular bipartite graph with |L| = n, |R| = m, for
all A ⊂ R , |A| < n/(e6k2), we have ∂(A) ≥ k|A|/2 .

Proof. Let N(A) be all the neighbors of A. Since the total degrees of vertices in A
is k|A|, and each element of N(A) − ∂(A) is contingent on two such edges, k|A| ≥
2(|N(A)| − |∂(A)|) + |∂(A), or ∂(A) ≥ 2|N(A)| − k|A|. We will show that with high
probability for all such A, |N(A)| > 3k|A|/4, and hence ∂(A) ≥ k|A|/2.

If not, there are sets A ⊂ R and B ⊂ L so that N(A) ⊆ B and |B| = 3k|A|/4. We
will bound the probability that this is true for fixed sets A,B and then take a union
bound. We can view picking a random (d, k) bipartite graph as picking a random
matching between d half-edges adjacent to each x ∈ L and k such half-edges adjacent
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to each y ∈ R; if a half edge for x is matched to a half-edge for y, it forms an edge
between x and y.

We can form this matching by going through the half edges for nodes in R and for
each randomly selecting an unmatched half-edge for some node in L. We start with
the edges for A in an arbitrary order. If we condition on all previous neighbors for A
being in B, the number of half-edges left still available for B is less than d|B|, whereas
the number for B stays at exactly d(n − |B|). Thus, the conditional probability that
the next edge formed is also in B is at most |B|/n, and we do this for each of k|A|
edges, meaning the probability that all neighbors are in B is at most (|B|/n)k|A|.

Now, for a fixed |A| and setting |B| = 3k|A|/4, we take the union bound over all
subsets A and B. This gives a total probability of failure for some set A of size a as :(

m

a

)(
n

3ka/4

)
(3ka/4n)ka

≤ (em/a)a(4en/3ka)3ka/4(3ka/4n)ka

≤ (em/a)a(e3ka/n)ka/4 = (ekn/da)a(e3ka/n)ka/4 = (e3k/4+1ak/4−1kk/4+1/dnk/4−1)a

Since we are assuming a < n/(e6k2), the base in the above expression is at most

e3k/4+1(n/e6k2)k/4−1kk/4+1/dnk/4−1

= e7−3k/4k3−k/4/d

which for k ≥ 12 is bounded below e−2, meaning the probability of such a bad set
existing is exponentially small in a, and the probability of such a bad set existing for
any a is less than 1/2.

Definition 4. For a Boolean vector X = {x1, . . . , xn}, we define Ln,m,k1,k(X) to
be a distribution over k-CNF formulas over n variables X = {x1, . . . , xn} obtained
by selecting m parities, where each parity is represented by a node on the right of a
bipartite graph G(L,R) with left degree bounded by k1 and right degree bounded by k
chosen uniformly at random from all such graphs.

Lemma 1. Let Fn,k be a tautology given by AX = b over variables X = {x1, . . . , xn}
where A is the adjacency matrix of a graph drawn at random from Ln,m,k1,k where
m = 10n, for large enough constants k1, k > 0, and b is chosen randomly. Then the
following hold with high probability for a small enough ε > 0:

a) Any subset of a (1− ε)-fraction of the equations in Fn,k is unsatisfiable

b) Any subset of a (1− ε)-fraction of the equations in Fn,k requires PC degree c2(n)
to refute, for some c2 > 0.

Proof. a) The probability that a set of (1 − ε)10n random parities (i.e. for a random
choice of b) is satisfiable is at most 2−9n for a small enough ε. The probability that
any such subset of Fn,k is satisfiable is therefore at most 2(−n(9−10H(ε))), which is
exponentially small for a small enough ε.

b) This follows directly from [AR01], Theorem 3.8 and Theorem 4.4, since by The-
orem 3 the graph with adjacency matrix A has good expansion with high probability.

7



We now want to compose Fn,k with a function we call SELECT, which encodes a
complete bipartite graph such that nodes on the left represent equations of Fn,k of which
a large enough subset is selected by the nodes on the right. In order to eliminate an
equation from being selected on the right, we add it to a running list of bad equations,
and reduce the proof by the set of assertions stating that no node on the right can
be assigned this equation. Conversely, by substituting a complete assignment for the
variables of SELECT, we would like to be able to select sufficiently many equations
from any large enough subset on the left.

We now define our tautology below.

Definition 5. Let Fn,k(X) = {Ei | i ∈ [m]} and ε be as in Lemma 1, m = 10n, m′ =
(1− ε/2)m and Let Y = {yij , i ∈ [m′], j ∈ [logm]} and let Yi be defined appropriately.
For bits b1 · · · blogm let Yi 6= b1 · · · blogm represent the formula

∏
j(yij − bj ⊕ 1). Then

FSELn,k is the following set of clauses in O(n) variables X ∪ Y .

Yi 6= b1 · · · blogm ∨ Eb1···blogm
Yi 6= b1 · · · blogm ∨ Yi′ 6= b1 · · · blogm

for i 6= i′

In the above definition, we refer to the variables Yi = yi1 · · · yi logm as the ith pigeon.
Thus the axioms can be interpreted as the following two statements:

1. If the ith pigeon maps to the string b1 · · · blogm for any i, the equation Eb1···blogm
is true.

2. For any b1 · · · blogm and indices i, i′, either the ith pigeon does not map to it or
the i′th pigeon does not map to it.

Since we are working with Polynomial Calculus, the above CNF formula has to be
translated into a set of polynomials, as described in Definition 3.

Definition 6. A locality κ extension variable is a new variable z together with a single
polynomial defining constraint z = q(wi1 , ..wik) for some polynomial q and κ original
variables wi1 , . . . , wik ∈ X ∪ Y .

Definition 7. Let ψN,κ,M (W ) denote the unsatisfiable formula FSELn,k with M extension
axioms Z of locality κ, and where W = X ∪ Y ∪ Z, and |W | = N .

4 The Lower Bound

4.1 Technical Proof Overview.

We start with a PC refutation Π of ψN,κ,M (W ) over Fp. Conventionally, proof size lower
bounds are reduced to degree lower bounds, a single step of which involves finding a
variable that occurs in a large fraction of high degree terms of the proof and setting
it to zero. In our setting, if the latter turns out to be an extension variable, z with
extension axiom z = f(X,Y ) it may be nonsingular meaning that setting z = 0 will
falsify the extension axiom for z. In this case, we cannot simply eliminate the high
degree terms containing z by setting z = 0. Sokolov [Sok20] introduced quadratic
degree as a measure to be used instead of degree in such cases and showed that a
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refutation of low quadratic degree can be turned into one of low degree. Quadratic
degree essentially measures the maximal degree of the square of each polynomial P
occurring in the proof. Sokolov also introduced an operation Split that acts on a proof
line by line in order to to reduce quadratic degree in the special case of nonsingular
variables that always take on values in ±1.

In our case, we have to deal with the case of both singular as well as nonsingular
variables, and where the nonsingular variables can depend arbitrarily on a logarithmic
number of original variables. To accomplish this, we give a procedure that reduces
reduce both ordinary degree (for singular variables occurring in the proof) as well as
quadratic degree (for nonsingular variables).

The first phase of our procedure deals with eliminating the set S of all high singular
degree terms – that is, terms that contain many singular variables. This is handled in
a standard way, by finding a singular variable w occurring in many terms of S, and
applying the restriction σ which sets w = 0. Then in order to ensure that the properties
of the tautology remain intact after applying σ, we maintain a list B of “bad” axioms
and modify the formula and proof (using X-cleanup, Y-cleanup and Lemma 10) so
that the selector variables cannot map to any axiom in B. In this case, we add to B
any axiom that is affected by σ and modify the proof so that the Y -variables avoid
mapping to any axiom in B.

In the second more difficult phase of our procedure deals with removing all terms
of large quadratic degree from the proof. Assume that w is some nonsingular variable
occuring in many terms of high quadratic degree. Since all variables in X ∪ Y are
singular, w must be an extension variable z with corresponding extension axiom z =
f(X,Y ). First, we apply a partial assignment σ to all but one X-variable of f(X,Y ) so
that f(X,Y )|σ reduces to a linear function of a single X-variable, x (extension variables
that only depend on the selector variables Y are inconsequential since we substitute a
complete assignment to the variables Y at the end of our procedure). After applying σ
(which sets a small number of both X and Y variables), we apply cleanup procedures
to get rid of all axioms that were affected by σ, and also those that contain x. As in the
first phase, this involves updating our list B of bad axioms, and as well as modifying
the proof, using X-cleanup, Y-cleanup procedures together with Lemma 10.

Now that the axioms are free of both x and z, our main technical contribution
(Lemma 9) significantly generalizes Sokolov’s Split operation in order to eliminate z
from the proof (thus making z irrelevant). This in turn yields a near-constant factor
reduction in the number of large quadratic degree terms. By iterating this process,
we obtain a refutation of a reduced version of ψN,κ,M (X) of low quadratic degree.
Crucially, our procedure for reducing quadratic degree does not increase the singular
degree, and thus at the end of the second phase, we have extracted a proof (of a reduced
but still hard formula) that has low singular degree as well as low quadratic degree.
Then by Lemma 3, this in turn implies a proof of small overall degree.

Finally, we argue that we can substitute an assignment for the selector variables Y
(since each step adds only a small number of axioms to the bad set B, and therefore
the total size of B is at most a constant fraction of the original axioms) in order to
obtain a low degree refutation of a large subset of Fn,k, which gives us a contradiction.
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4.2 Quadratic Degree, and Removing Irrelevant Variables

Definition 8 (Singular degree). For an extension variable z, we say that it is singular
if it can take the value zero. Else we say that it is non-singular (any non-extension
variable w is singular by default since w2 = w holds). By Lemma 2 below, a nonsingular
variable implies zp−1 = 1. For a term t, let the singular degree sing(t) denote the
number of singular variables in t.

Lemma 2. For z non-singular, we can derive zp−1 = 1 from the extension axiom for
z.

Proof. Let q be any multi-linear polynomial in the original variables and let z = q be
the defining equation for z. Look at qp−1(X,Y ) . Since q is never 0 mod p for Boolean
inputs, this is always equal to 1 for Boolean inputs. But since every function from
Boolean inputs to the field has a unique representation as a multi-linear function, when
we make qp−1 multi-linear, it must be the identically 1 polynomial. Then zp−1 = qp−1

is derivable from the defining axiom, which means zp−1 − 1 is derivable.

Definition 9. For a term t and a variable w (or its negated version w̄), deg(t, w) is
equal to the degree of w in t. Note that since we are over a finite field of characteristic
p, deg(t, w) ≤ p. If w is nonsingular, then wp−1 = 1(modp), so deg(t, w) ≤ p− 1. For
a term t the overall degree of t, deg(t), equals

∑
w∈W deg(t, w).

The next definition is a generalization/modification of Sokolov’s definition of quadratic
degree for the more general scenario where the proof contains both singular and non-
singular variables.

Definition 10 (Quadratic degree). For a pair of terms t1, t2, and a variable w (or its
negated version w̄), we define the weight of w with respect to t1 and t2, Qdeg(t1, t2, w) as
follows. If w ∈ X∪Y , then Qdeg(t1, t2, w) = 1 if w occurs in at least one of t1 or t2; if w
is an extension variable, then Qdeg(t2, t2, w) = 1 if and only if deg(t1, w) 6= deg(t2, w).
The overall weight of the pair t1, t2, Qdeg(t1, t2), is equal to

∑
w∈W Qdeg(t1, t2, w).

The weight of a polynomial P is equal to the maximum weight over all pairs (t1, t2)
such that t1, t2 ∈ P . The quadratic degree of P is defined as the maximum weight
of P . For a proof Π, the quadratic degree is the maximum quadratic degree over all
polynomials P ∈ Π.

Definition 11 (Q). For a polynomial P , Q(P ) = {(t1, t2)|t1, t2 ∈ P}. For a pair of
polynomials P1 and P2, Q(P1, P2) = {(t1, t2)|t1 ∈ P1, t2 ∈ P2 or vice versa}. Q(Π) =
∪P∈ΠQ(P ).

Definition 12 (Hd). For a proof Π, Hd(Π) denote the set of pairs (t1, t2) of high
quadratic degree. That is, Hd(Π) is the set of pairs of terms (t1, t2) such that t1, t2 both
occur in P for some polynomial P ∈ Π, and Qdeg(t1, t2) ≥ d.

Observation 1. Substitution does not raise the quadratic degree, i.e. if P is a poly-
nomial, x is a variable occuring in it and a ∈ Fp then the quadratic degree of P|x=a is
at most that of P .

Proof. This follows from the fact that for any two terms t1, t2 ∈ P , Qdeg(t1, t2, w)
remains unchanged if w is different from x, and decreases if w = x.

10



The following is a generalized version of the argument from [Sok20] that shows how
to convert a proof with low quadratic degree to one with low degree.

Lemma 3. If a set of unsatisfiable polynomials F of degree d0 has a PC refutation of
quadratic degree and singular degree at most d, then it has a PC refutation of degree
O(pmax(d, d0)).

Proof. We first observe that for any two terms t1, t2, deg(t1t
p−2
2 ) ≤ p · (Qdeg(t1, t2) +

sing(t1) + sing(t2)). This is due to the following. Note that any singular variable that
appears in either t1 or t2 appears in t1t

p−2
2 with degree at most p. Thus, the degree

of singular variables in t1t
p−2
2 is at most p times sing(t1) + sing(t2). For a nonsin-

gular extension variable z that occurs in t1 and t2 such that deg(t1, z) = deg(t2, z),
deg(t1t

p−2
2 , z) = Qdeg(t1, t2, z) = 0. Any other nonsingular variable that occurs in at

least one of t1 and t2 has deg(t1t
p−2
2 , x) ≤ p− 1 and Qdeg(t1, t2, x) = 1. Therefore the

degree of nonsingular variables in t1t
p−2
2 is at most p− 1 times Qdeg(t1, t2).

From the above observation, it suffices to prove the following: Let F be a set
of unsatisfiable polynomials of degree d0 with a PC refutation, Π, over Fp. Further
suppose that for every polynomial P ∈ Π, and for every pair of terms t1, t2 ∈ P ,
deg(t1t

p−2
2 ) < d. Then F has a PC refutation of degree max(3pd, d0). Since by our

assumption the degree of singular variables is at most d, below we construct a refutation
by multiplying each line of the original refutation by non-singular variables to lower
their degree to at most 2pd, which suffices to prove the statement.

For a term t in the proof, let A(t) denote the subterm consisting of only non-singular
variables. Then clearly we have A(t)p−1 = 1. Note that we also have deg(A(t1)p−2t2) ≤
pd for any two terms t1, t2 by our assumption. For every line Pj in the refutation, we
pick a term tj ∈ Pj and define P ′j = A(tj)

p−2Pj . Note that degP ′j ≤ pd. We now show
that each P ′j can be derived in degree max(2pd, d0). If Pj is one of the axioms, we mul-

tiply by A(tj)
p−2 to get P ′j , and this takes degree max(pd, d0). If Pj = xiPj1 for j1 < j,

we choose tj such that tj = xitj1 . Then we have P ′j is equal to xiP
′
j1

if xi is singular, and
equal to P ′j1 otherwise. Finally, let Pj = Pj1 + Pj2 for j1, j2 < j. We pick an arbitrary

term tj ∈ Pj . Then we have P ′j = A(tj)
p−2A(tj1)P ′j1 +A(tj)

p−2A(tj2)P ′j2 . We now show

that deg(A(tj)
p−2A(tj1)) ≤ pd and deg(A(tj)

p−2A(tj2)) ≤ pd to conclude the proof.
Since every term in Pj appears in one of Pj1 , Pj2 , let tj ∈ Pj1 without loss of generality.
Then we have that tj , tj1 both appear in Pj1 and thus is deg(A(tj)

p−2A(tj1)) ≤ pd. If
tj2 ∈ Pj i.e. it is not canceled in the sum Pj1 +Pj2 , then we have tj , tj2 both appear in
Pj and hence deg(A(tj)

p−2A(tj2)) ≤ pd. If tj2 6∈ Pj , this implies that it was canceled
in the sum Pj1 + Pj2 and therefore tj2 ∈ Pj1 and deg(A(tj)

p−2A(tj2)) ≤ d.

Lemma 4. Let Π be a proof and let z be an extension variable such that the corre-
sponding extension axiom implies the line zk − 1 = 0 for some positive integer k < p.
Let Π′ be the proof obtained by reducing each line of Π by zk − 1 = 0. Then we have
|Hd(Π′)| ≤ |Hd(Π)| for any d ≥ 0.

Proof. Since the extension axiom for z implies zk − 1, z is nonsingular. Consider a
polynomial P ∈ Π and a pair of terms (t1, t2) that occur in P . If wt(t1, t2, z) = 0, then
the weight will still be 0 after reducing by zk = 1, and thus |Hd(Π′)| ≤ |Hd(Π)|.

Lemma 5. Let a, b ∈ F∗p such that ` is the least positive integer less than p with a` = b`.
Let P be a polynomial in Fp[X] and let z be an extension variable that occurs in P
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such that the corresponding extension axiom implies the line (z− a)(z− b) = 0. Then,
for any two distinct non-negative integers `1, `0 < ` there exists a unique polynomial
R = R1z

`1 +R0z
`0 such that R = P mod (z − a)(z − b).

Proof. Since R = P mod (z − a)(z − b), we have R(a) = P (a) and R(b) = P (b), and
therefore it is sufficient to show that there is a unique solution to this pair of equations.

Suppose that `0 < `1. We have

∣∣∣∣a`1 a`0

b`1 b`0

∣∣∣∣ = a`0b`0(b`1−`0 − a`1−`0). Since `1 − `0 < `,

this matrix is non-singular over Fp and therefore the system of equations

R1a
`1 +R0a

`0 = P (a)

R1b
`1 +R0b

`0 = P (b)

has a unique solution.

Definition 13 (Splitz,`1,`0). For a polynomial P and a variable z such that the identity
(z − a)(z − b) = 0 holds, and integers `1, `0 such that `0 < `1 and a`1−`0 6= b`1−`0,
let R = R1z

`1 + R0z
`0 be the unique polynomial given by the previous lemma such

that R = P mod (z − a)(z − b). Splitz,`1,`0(P ) is defined as the pair of polynomials
{R1, R0}. For a proof Π, we define Splitz,`1,`0(Π) to be the set of lines Splitz,`1,`0(P )
for all P ∈ Π.

Lemma 6. Let P be a polynomial of the form P`−1z
`−1+· · ·+P0. Then for `0 < `1 < `,

Splitz,`1,`0(P ) = {R1, R0} where

R1 = P`1 +
∑

i<`,i 6=`0

c1iPi

R0 = P`0 +
∑

i<`,i 6=`1

c0iPi

for some constants c1i, c0i ∈ Fp.

Proof. This is easily verified from the definition of Splitz,`1,`0 .

Lemma 7. Let z be a variable that occurs in a proof Π but does not occur in any
axioms except for (z − a)(z − b) = 0. Then, for any `1 and `0 such that `0 < `1
and a`1−`0 6= b`1−`0, Splitz,`1,`0(Π) is a valid refutation and can be derived without
increasing the size of Hd(Π) or the singular degree of Π.

Proof. Let Pj = Pj(k−1)z
k−1 + · · ·+Pj2z

2 +Pj1z+Pj0 be the jth line in the refutation

Π, where k is the least integer such that the identity zk − 1 = 0 holds (this is without
loss of generality by Lemma 4). We view Pj as a univariate polynomial in z over the
appropriate ring. Let Rj(z) = Rj1z

`1 +Rj0z
`0 be a polynomial such that Pj(z) = Rj(z)

mod (x− a)(x− b). Then we have Pj(a) = Rj(a) and Pj(b) = Rj(b), thus by Lemma
5 Rj(z) is uniquely given by(

Rj1
Rj0

)
=

(
a`1 a`0

b`1 b`0

)−1(
Pj(a)
Pj(b)

)
We now proceed to show by induction that the set of lines {Rj1, Rj0} is a valid

derivation. For the base case, note that all of the axioms of Φ are either free of z or
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eliminated as a result of reducing by (z − a)(z − b), and hence their Split versions are
derivable, Now for a line Pj = αPj1 +βPj2 for some j1 and j2 less than j and α, β ∈ Fp,
then we have that Rj1 = αRj11 + βRj21 and therefore by induction we have a proof
of Rj1 (similarly for Rj0). If Pj = wPj′ for some j′ < j and some variable w distinct
from z, we have that Rj1 = wRj′1 (similarly for Rj0). Lastly, if Pj = zPj′ , we have(

Rj′1
Rj′0

)
=

(
a`1 a`0

b`1 b`0

)−1(
Pj′(a)
Pj′(b)

)
from which we need to derive

(
Rj1
Rj0

)
=

(
a`1 a`0

b`1 b`0

)−1(
Pj(a)
Pj(b)

)
=

(
a`1 a`0

b`1 b`0

)−1(
aPj′(a)
bPj′(b)

)
=

(
a`1 a`0

b`1 b`0

)−1(
a 0
0 b

)(
a`1 a`0

b`1 b`0

)(
Rj′1
Rj′0

)
.

Lemma 8. Let Π be a proof and let z be an extension variable that does not occur in
any of the axioms except the identity (z− a)(z− b) = 0 for some a, b ∈ F∗p and occurs1

in at least an ε fraction of pairs (t1, t2) in Hd(Π) for an arbitrary integer d ≥ 0.
Then there exist integers `1, `0 < p such that the size of Hd(Splitz,`1,`0(Π)) is at most
(1− ε/p2) times the size of Hd(Π).

Proof. The arguments below hold for Hd(Π) for any d, so for simplicity we show the
proof for H0(Π) = Q(Π). For a line P ∈ Π, let Qz(P ) and Q¬z(Π) be subsets of Q(P )
with wt(t1, t2, z) = 1 and wt(t1, t2, z) = 0 for all (t1, t2) ∈ Qz(P ) and (t1, t2) ∈ Q¬z(P )
respectively. By Lemma 4, we assume without loss of generality that Π is reduced by
z`−1 = 0 where ` > 0 is the least such integer. Let P = P`−1z

`−1+· · ·+P2z
2+P1z+P0

and Qij(P ) = Q(Piz
i, Pjz

j) for i, j < `. Then we have

Qz(P ) = ti<jQij(P )

Q¬z(P ) = ∪iQ(Pi)

where t denotes disjoint union. This is because by the definition of Qij(P ), for any
pair (t1, t2) ∈ Qij(P ) we have that zi ∈ t1 and zj ∈ t2 or vice versa. Therefore, for
two pairs (i1, j1) and (i2, j2) such that i1 6= j1 and i2 6= j2 and {i1, j1} 6= {i2, j2}, we
have that Qi1j1(P )∩Qi2j2(P ) = ∅. Note that this property also extends to ∪PQij(P ).
Since Q(Π) = ∪P∈ΠQ(P ), we have

Qz(Π) = ∪P ti<j Qij(P ) = ti<j ∪P Qij(P ) (1)

Q¬z(Π) = ∪P ∪i Q(Pi)

and therefore

1We say that a variable z occurs in a pair (t1, t2) if wt(t1, t2, z) 6= 0.
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Q(Π) =
(
ti<j ∪PQij(P )

)
t
(
∪P ∪iQ(Pi)

)
|Q(Π)| =

∑
i<j

| ∪P Qij(P )|+ | ∪P ∪iQ(Pi)| (2)

Let us now evaluate a similar expression for Q(Splitz,`1,`0(Π)). Let Q0
ij(P ) =

Q(Pi, Pj) . Note that |∪PQ0
ij(P )| ≤ |∪PQij(P )|. Then since by Lemma 6 Splitz,`1,`0(P )

consists of lines of the form

R1(P ) = P`1 +
∑

i<`,i 6=`0

c1iPi

R0(P ) = P`0 +
∑

i<`,i 6=`1

c0iPi

for some constants c1i, c0i ∈ Fp, we have

Q(Splitz,`1,`0(Π)) = ∪PQ(Splitz,`1,`0(P ))

= ∪P (Q(R1(P )) ∪Q(R0(P )))

⊆ ∪P
(
∪`0 6=i<j 6=`1 Q0

ij(P )
)
∪
(
∪i Q(Pi)

)
=
(
∪`0 6=i<j 6=`1 ∪PQ0

ij(P )
)
∪
(
∪P ∪iQ(Pi)

)
Therefore, we have that

|Q(Splitz,`1,`0(Π))| ≤
∑

`0 6=i<j 6=`1

| ∪P Q0
ij(P )|+ | ∪P ∪iQ(Pi)| (3)

≤
∑

`0 6=i<j 6=`1

| ∪P Qij(P )|+ | ∪P ∪iQ(Pi)| (4)

≤ |Q(Π)| − | ∪P Q`0`1(P )| (5)

where the last bound follows from equation 2. Now, by our assumption, since Qz(Π)
is at least an ε fraction of Q(Π) we have from equation 1 by an averaging argument
that for some `0 < `1 < `, ∪PQ`0`1(P ) is at least a ε/p2 fraction of Q(Π). For such
`0, `1 from equation 5 we have |Q(Splitz,`1,`0(Π))| ≤ (1− ε/p2)|Q(Π)|.

Below we prove a slightly more complex version of the previous lemma.

Lemma 9. Let Π be a proof, x ∈ X and let z = αx+ β be a variable such that x, z do
not occur in any other axioms except x2 = x, with z occurring in at least an ε fraction
of the vectors in Hd(Π), for some α, β ∈ F∗p and any integer d ≥ 0. Then there exist
a refutation Π′ such that the size of Hd(Π′) is at most (1 − ε/3p2) times the size of
Hd(Π).

Proof. The proof is by a simple case analysis followed by appealing to the previous
lemma. Once again we only show the case of H0(Π) = Q(Π). Let Qz(P ) be the subset
of Q(P ) with wt(t1, t2, z) = 1 for all (t1, t2) ∈ Qz(P ). Firstly, note that substituting
x = α−1(z − β) in the identity x2 = x we get (z − a)(z − b) = 0 for some a, b ∈ Fp. If
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either a or b is zero, then we can set z = 0 by setting x appropriately to eliminate all
terms in Q(Π) containing z. Therefore we assume that a, b ∈ F∗p, i.e. z is not singular.

By Lemma 4, we assume without loss of generality that Π is reduced by z` − 1 = 0
where ` > 0 is the least such integer. Then each line P of Π is of the form

P = (P ′`−1z
`−1 + · · ·+ P ′2z

2 + P ′1z + P ′0) + x(P ′′`−1z
`−1 + · · ·+ P ′′2 z

2 + P ′′1 z + P ′′0 )

+ x̄(P ′′′`−1z
`−1 + · · ·+ P ′′′2 z

2 + P ′′′1 z + P ′′′0 )

We define the following subsets of Q(Π): (note that since x ∈ X, Qdeg(x, x, x) = 1)

Qzx = ∪P ti<j Q(P ′iz
i, xP ′′j z

j) ∪Q(xP ′′i z
i, P ′jz

j) ∪Q(xP ′′i z
i, xP ′′j z

j)

Qzx̄ = ∪P ti<j Q(P ′iz
i, x̄P ′′′j z

j) ∪Q(x̄P ′′′i z
i, P ′jz

j) ∪Q(x̄P ′′′i z
i, x̄P ′′′j z

j)

Qzxx̄ = ∪P ti<j Q(xP ′′i z
i, x̄P ′′′j z

j) ∪Q(x̄P ′′′i z
i, xP ′′j z

j)

Qz = ∪P ti<j Q(P ′iz
i, P ′jz

j)

and observe that

Qz(Π) = Qzx tQzx̄ tQzxx̄ tQz (6)

Now, if |Qzx tQzxx̄(Π)| ≥ ε|Q(Π)|/3, then we set x = 0 to obtain a refutation Π1,
for which it is easy to see that

Qz(Π1) = Qzx̄ tQz
Q¬z(Π1) ⊆ Q¬z(Π)

and therefore |Q(Π1)| ≤ (1−ε/3)|Q(Π)|. Otherwise, if |Qzx̄tQzxx̄(Π)| ≥ ε|Q(Π)|/3
then we similarly set x = 1 and obtain a refutation Π1 with |Q(Π1)| ≤ (1− ε/3)|Q(Π)|.

If both of the above don’t hold, then we have |Qzx tQzx̄ tQzxx̄(Π)| ≤ 2ε|Q(Π)|/3
and from equation 6 and our assumption we have |Qz| ≥ ε|Q(Π)|/3. Let `0 < `1 be
indices (that exist by an averaging argument) such that ∪PQ(P ′`0z

`0 , P ′`1z
`1) is of size

at least ε|Q(Π)|/3p2. We now substitute x = α−1(z−β) in Π and apply Splitz,`0,`1 . It
is easy to see that this replaces each line P of Π with two lines of the form

R1(P ) = P ′`1 +
∑

i<`,i 6=`0

c′1iP
′
i +

∑
i<`

c′′1iP
′′
i

R0(P ) = P ′`0 +
∑

i<`,i 6=`1

c′0iP
′
i +

∑
i<`

c′′1iP
′′
i

for some constants c′1i, c
′
0i, c

′′
1i, c

′′
0i ∈ Fp. By an analysis similar to the previous

lemma we can show that

|Q(Splitz,`0,`1(Π))| ≤ |Q(Π)| − | ∪P Q(P ′`0z
`0 , P ′`1z

`1)|
≤ (1− ε/3p2)|Q(Π)|.
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Lemma 10. Let Π be a refutation and let Yi 6= b1 . . . blogm ∨ Eb1...blogm be one of its
axioms. Then there exists another valid refutation Π′ with the latter axiom replaced by
the axiom Yi 6= b1 . . . blogm ≡

∏
j(yij − bj ⊕ 1) = 0, such that the quadratic degree and

singular degree of Π′ are at most those of Π.

Proof. Note that the axiom Yi 6= b1 . . . blogm∨Eb1...blogm can be derived from the axiom∏
j(yij−bj⊕1) = 0. We construct Π′ as follows. We first derive the former axiom from

the latter in Π′. Besides this derivation, Π′ involves the same steps as Π′. Note that
since this derivation only involves PCR monomials, this does not raise the quadratic
degree of Π′. Also, its singular degree is not more than that of Π.

4.3 Proof of Main Theorem

Theorem 4. Any PC refutation of ψN,κ,M (W ) is of size at least 2
Ω
(

n2

κ22κ(M+n log(n))

)
.

Proof. Let Π be a refutation of ψN,κ,c(W ) of size at most 2γn
2/(κ22κ(M+n log(n))) for

a small enough constant γ. Given an alleged PC refutation Π, Algorithm 1 (defined
below) will apply a sequence of restrictions and cleanup steps in order to produce a
refutation Π′′ of a restricted version of ψN,κ,c(W ) with the property that both the
singular as well as the quadratic degree of Π′′ are at most d. The algorithm contains
two while loops, the first of which iteratively removes all terms of high singular degree,
and the second iteratively removes all pairs of terms of high quadratic degree. From
Π′′, we will apply a further restriction to all of the remaining unset Y variables, to
extract a refutation of a subset of m′ equations from Fn,k of low degree, contradicting
the degree lower bound given in Lemma 1. Recall that Fn,k is defined over variables
X and we pick a subset of these equations by matching pigeons Yi to equations in Fn,k
through a complete bipartite graph. We initialize a bad list B of bit strings b1 . . . blogm

to empty (where each such bit string indexes an equation Eb1...blogm of Fn,k). This bad
list will contain all of the equations that were affected by either of the above while
loops.

We will first analyze the first while loop (lines 5-15). Initially S is initialized to the
set of all terms in the proof of singular degree greater than d. Let M ′ = M + n log(n).
This loop kills off terms in S until S is empty, by iteratively picking a variable w
that, by an averaging argument, occurs in at least a d/M ′ fraction of terms in S.
There are two cases depending on whether w ∈ X ∪ Y (the first case) or whether
w ∈ Z. In the first case, we apply the restriction w = 0 and call X-cleanup(w = 0)
or Y-cleanup(w = 0) depending on whether w ∈ X or w ∈ Y . This eliminates the
contribution to high singular degree from terms containing w, and hence obtains a
(1 − d/M ′)-factor reduction in the size of S. In the second case, w is an extension
variable, defined by w = f(X,Y ) for some polynomial f that depends on at most κ
variables from X ∪ Y . Since w is singular, there exists an assignment σ = σX ∪ σY
such that f(σ) = 0. We apply the restriction σ to the proof, thus eliminating all
terms containing w, which causes a (1− d/M ′)-factor reduction in the number of high
singular degree terms. Next, we run subroutines X-cleanup(σX) and Y-cleanup(σY )
(described below) to get rid of all axioms that were affected by the restriction σ.
without affecting the other axioms. By repeating the above for − log |S|/ log(1−d/M ′)
≈ M ′ log |S|/d ≤ O(γ)n/κ2κ iterations (where |S| = 2γn

2/κ22κM ′
), we eliminate all

terms in S from the proof and thus obtain a refutation of singular degree less than d.
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Input: A refutation Π of ψN,κ,M
Output: A refutation Π′ with quadratic and singular degree less than d

1 d← νn/κ, where ν is a sufficiently small constant.
2 M ′ ←M + n log(n).
3 S ← the set of all terms in the proof of singular degree greater than d
4 B ← ∅.
5 while S is non empty do
6 Pick a variable w that, by an averaging argument, occurs in at least d/M ′

fraction of terms in S
7 if w ∈ X ∪ Y then
8 Substitute w = 0
9 Call X-cleanup(w = 0) or Y-cleanup(w = 0) depending on whether w ∈ X

or w ∈ Y
10 end
11 if w is an extension variable, defined by w = f(X, Y ) then
12 Let σ = σX ∪ σY be an assignment to the variables of f such that f(σ) = 0
13 Substitute σ
14 Call X-cleanup(σX) and Y-cleanup(σY )

15 end

16 end
17 H ← the set of all pairs of terms in the proof of quadratic degree greater than d
18 while H is non empty do
19 Pick a variable w that, by an averaging argument, occurs in at least d/M ′

fraction of terms in H
20 if w ∈ X ∪ Y then
21 Substitute w = 0
22 Call X-cleanup(w = 0) or Y-cleanup(w = 0) depending on whether w ∈ X

or w ∈ Y
23 end
24 if w is an extension variable, defined by w = f(X, Y ) then
25 Let σ = σX ∪ σY be an assignment to the variables of f such that

f(σ) = αx+ β for some x ∈ X (exists since we substitute a complete
assignment for Y eventually and hence extension variables that depend only
on Y are inconsequential)

26 Substitute σ
27 Call X-cleanup(σX ∪ {x = 0}) and Y-cleanup(σY )
28 Split on w using Lemma 9

29 end

30 end

Algorithm 1: Eliminating high quadratic and singular degree terms from the proof
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The processes X-cleanup(σX) and Y-cleanup(σY ) increase the size of the bad list
B by only O(|σ|) = O(κ) per call, since each X-variable occurs in at most k1 = O(1)
clauses, and each clause has size k = O(1)). Therefore the total size of B at the end
of the first while loop is at most O(γ)n/2κ.

Let Π′ be the (modified) proof after exiting the first while loop. Before entering
the second while loop (lines 18-29), we initialize H to be equal to Hd(Π′), the set of all
pairs of terms of Π′ of quadratic degree greater than d. Note that H may be different
than the original set of bad pairs, since during the execution of the first while loop,
some extension variables that were originally singular may become nonsingular. In this
second loop, we will kill off all pairs from H by iteratively picking a variable w that
contributes to the weight of at least a d/M ′ fraction of pairs in H.

There are two cases depending on whether w ∈ X ∪ Y or w ∈ Z. In the first
case (w ∈ X ∪ Y ), we apply the restriction w = 0 and call X-cleanup(w = 0) or Y-
cleanup(w = 0) depending on whether w ∈ X or w ∈ Y respectively. This eliminates
the contribution to high quadratic degree from terms containing w, and hence obtains
a (1 − d/M ′)-factor reduction in the size of H. In the second case, w is an extension
variable defined by extension axiom w = f(X,Y ) where f depends on at most κ
variables from X ∪ Y . We can assume that z depends on at least one X-variable since
at the end of the procedure we will set all Y -variables to constants, and therefore
extension variables that only depend on Y variables will be inconsequential. Thus,
there there exists an assignment σ = σX ∪ σY such that f(σ) = αx + β for some
α, β ∈ Fp and x ∈ X. We apply σ to the proof, and then call the subroutines X-
cleanup(σX ∪{x = 0}) and Y-cleanup(σY ) to get rid of all axioms that were affected
by σ and also those that contain x. Now that the axioms are free of x and w, we Split
on w using Lemma 9, which causes a (1− d/3p2M ′)-factor reduction in the number of
high quadratic degree terms. By repeating the above for − log |H|/ log(1 − d/3p2M ′)
≈ p2M ′ log |H|/d ≤ O(γ)n/κ2κ iterations (where |H| = 22γn2/κ22κM ′

), we eliminate all
terms in H from the proof and thus obtain a refutation of quadratic degree less than d.
Since one call to X-cleanup(σX) and Y-cleanup(σY ) increases the size of the bad list
B by only O(|σ|) = O(κ) per call, the total size of B upon termination of Algorithm 1
is at most O(γ)n/2κ.

Let Π′′ denote the modified proof upon termination of Algorithm 1. We claim that
the singular degree as well as the quadratic degree of Π′′ is at most d. This is because
the first while loop gets rid of all terms of high singular degree, and neither the first or
second subroutine creates new variables of high singular degree since substitution can
only turn singular variables to nonsingular and not the other way around. Similarly, the
second while loop gets rid of all pairs of terms of high quadratic degree, and this second
while loop does not create new terms of high quadratic degree, since by Observation 1
substitution does not increase the quadratic degree.

Note that out of the m′ = (1− ε/2)m pigeons, there are at least a m′ −O(γ)n/2κ

pigeons still alive (i.e. not removed by the operations Y-cleanup), since we run for
O(γ)n/κ2κ many iterations, and in each iteration at most κ pigeons are affected by any
extension variable. Since |B| ≤ O(γ)n/2κ, the number of untouched equations available
for the pigeons to map to is m−O(γ)n/2κ. We now substitute for the remaining pigeons
Yi so that we select a subset of at least (1 − ε)m unsatisfiable equations ϕ not in B
from Fn,k and obtain a refutation of them of quadratic degree at most d and singular
degree at most d (assuming γ is small enough). By Lemma 3, this implies a refutation
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of ϕ of degree at most O(p)d. Now, for all surviving extension variables we substitute
them with their definitions in terms of the variables X. Note that since the extension
variables are degree κ polynomials this raises the degree to at most O(p)κd. Since
d = νn/κ, for sufficiently small ν, we end up with a refutation of ϕ of degree less than
c2n, contradicting Lemma 1.

For the cleanup operations to work properly, recall that |B| = O(γ)n/2κ always
holds conditioned on each cleanup operation increasing B only by O(κ) (for a small
enough constant γ).

Input: A partial assignment σ to the variables X
1 for Every x ∈ X that occurs in σ do
2 for Every equation Eb1...blogm from Fn,k that x occurs in do

3 Add Eb1...blogm to the list B

4 for Every i ∈ [m′] do
5 Use Lemma 10 to replace the axiom Yi 6= b1 . . . blogm ∨ Eb1...blogm by

Yi 6= b1 . . . blogm ≡
∏
j(yij − bj ⊕ 1) = 0

6 end

7 end

8 end

Algorithm 2: X-cleanup

X-cleanup(σ) Correctness. Suppose x ∈ X is a variable that occurs in σ. We
first add all the equations in Fn,k that x occurs in to the list B. By Lemma 1 this is k1

many equations. We now proceed to eliminate all axioms that contain x. For every such
equation Eb1...blogm from Fn,k, which appears in the axiom Yi 6= b1 . . . blogm ∨Eb1...blogm
for every i, we use Lemma 10 to replace the latter by Yi 6= b1 . . . blogm ≡

∏
j(yij − bj ⊕

1) = 0 for every i. That is, we assert that no pigeon maps to the equation Eb1...blogm and
hence it stands eliminated. By Lemma 10 this does not raise the quadratic/singular
degree of the proof. We do this for all such x. Note that we have maintained the
property that one call to this process adds O(|σ|) entries to the bad list B.

Input: A partial assignment σ to the variables Y
1 for Each i such that yij ∈ Yi is a variable that appears in σ for some j do
2 Pick an assignment b1 . . . blogm to yi1 · · · yi logm such that the variables that

appear in σ are set consistently, and b1 . . . blogm does not appear in the bad list
B (this is possible since the size of B is small enough; see paragraph below)

3 Apply b1 . . . blogm to yi1 · · · yi logm; this turns the axiom
Yi 6= b1 · · · blogm ∨ Eb1···blogm into Eb1···blogm = 0

4 Let σX be a partial assignment to the X-variables such that σX satisfies Eb1···blogm
5 Substitute σX and add any equation that contains a variable from σX to the bad

list B
6 Add b1 . . . blogm to the bad list B

7 end

Algorithm 3: Y-cleanup
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Y-cleanup(σ) Correctness. Let i be an index such that yij ∈ Yi is a variable
that appears in σ for some j. For each such index i, our plan is to map the ith pigeon
comprising of variables yi1 · · · yi logm to some equation Eb1···blogm that is not on the
bad list B, and then satisfy the latter. Firstly, note that only κ variables from Yi can
appear in σ (since extension variables that Y-cleanup is called on depend on only
κ variables and hence the size of σ is bounded by κ). Therefore, there are at least
m/2κ values that the binary string yi1 · · · yi logm can be set to, given that some of
these variables are already set by σ. Since the size of the set B is always O(γ)n/2κ,
there exists an assignment b1 . . . blogm to yi1 · · · yi logm such that the variables that
appear in σ are set consistently, and b1 . . . blogm does not appear in the bad list B.
We apply the assignment b1 . . . blogm to yi1 · · · yi logm. Note that this turns the axiom
Yi 6= b1 · · · blogm ∨ Eb1···blogm into Eb1···blogm = 0 (i.e. selects the equation Eb1···blogm).
We now get rid of it as follows. Since b1 · · · blogm is not on the bad list B, the equation
Eb1···blogm is untouched, i.e. none of its variables have been set before. Let σX be a
partial assignment to the X-variables such that σX satisfies Eb1···blogm . We substitute
σX and add any equation that contains a variable from σX to the bad list B. Finally,
we add b1 . . . blogm to the bad list B. Note that we have maintained the property that
one call to this process adds only a O(|σ|) number of entries to the bad list B since
the equations Fn,k contain only k variables per equation.
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