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Abstract

We prove that for every 3-player (3-prover) game, with binary questions and answers and
value < 1, the value of the n-fold parallel repetition of the game decays polynomially fast to 0.
That is, for every such game, there exists a constant c > 0, such that the value of the n-fold
parallel repetition of the game is at most n−c.

Along the way to proving this theorem, we prove two additional parallel repetition theorems
for multiplayer (multiprover) games, that may be of independent interest:

Playerwise Connected Games (with any number of players and any Alphabet
size): We identify a large class of multiplayer games and prove that for every game with value
< 1 in that class, the value of the n-fold parallel repetition of the game decays polynomially
fast to 0.

More precisely, our result applies for playerwise connected games, with any number of players
and any alphabet size: For each player i, we define the graph Gi, whose vertices are the possible
questions for that player and two questions x, x′ are connected by an edge if there exists a vector
y of questions for all other players, such that both (x, y) and (x′, y) are asked by the referee with
non-zero probability. We say that the game is playerwise connected if for every i, the graph Gi

is connected.
Our class of playerwise connected games is strictly larger than the class of connected

games that was defined in [DHVY17] and for which exponentially fast decay bounds are
known [DHVY17]. For playerwise connected games that are not connected, only inverse Acker-
mann decay bounds were previously known [Ver96].

Exponential Bounds for the Anti-Correlation Game: In the 3-player anti-
correlation game, two out of three players are given 1 as input, and the remaining player is
given 0. The two players who were given 1 must produce different outputs in {0, 1}. We prove
that the value of the n-fold parallel repetition of that game decays exponentially fast to 0. That
is, there exists a constant c > 0, such that the value of the n-fold parallel repetition of the game
is at most 2−cn. Only inverse Ackermann decay bounds were previously known [Ver96].

The 3-player anti-correlation game was studied and motivated in several previous works. In
particular, Holmgren and Yang gave it as an example for a 3-player game whose non-signaling
value (is smaller than 1 and yet) does not decrease at all under parallel repetition [HY19].
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1 Introduction

We study multiplayer games and their behavior under parallel repetition. In a k-player game G, a
referee samples questions x = (x1, . . . , xk) from some distribution Q. Then, for each j ∈ [k], the
jth player is given the question xj , based on which they give back an answer aj . The referee then
declares if the players win or not based on the evaluation of a predicate V (x1, . . . , xk, a1, . . . , ak).
The value val(G) of the game G is defined to be the maximum winning probability for the players,
where the maximum is over all possible strategies (functions mapping questions to answers) of the
players.

A very basic operation on a game G is to consider its parallel repetition, in which the players
are asked to play many independent copies of the game in parallel. More formally, in the n-fold
parallel repetition G⊗n, the referee draws questions (x1i , . . . , x

k
i ) from Q, independently for each

i ∈ [n]. Then, for each j ∈ [k], the jth player is given the questions (xj1, . . . , x
j
n), based on which

they answer back (aj1, . . . , a
j
n). The referee says that the players win if for every i ∈ [n], the predicate

V (x1i , . . . , x
k
i , a

1
i , . . . , a

k
i ) evaluates to win.

A natural question is to study how the value of the game G⊗n behaves as a function of n, the
number of parallel repetitions [FRS94]. It is not hard to see that val(G⊗n) ≥ val(G)n, since the
players can achieve value val(G)n in the game G⊗n by simply repeating an optimal strategy for the
game G independently in all the n coordinates. It also seems that this should be optimal, and that
val(G⊗n) ≤ val(G)n. However, this turns out not to be the case, and there are games such that
val(G⊗n) is exponentially larger than val(G)n [For89, Fei91, FV02, Raz11]. Hence, it is interesting
to study the behavior of val(G⊗n) for games G with val(G) < 1.

The special case of 2-player games is very well understood, and it was proven by Raz [Raz98]
that if val(G) < 1, then the value of G⊗n decays exponentially in n; that is, val(G⊗n) ≤ 2−Ω(n),
with the constants depending on the base game G. There have been improvements in the constants
[Hol09, Rao11, BRR+09, RR12], and we even know tight results based on the value of the initial
game [DS14, BG15]. These results on 2-player games have found many applications, in particular
in the theory of interactive proofs [BOGKW88], PCPs and hardness of approximation [BGS98,
Fei98, H̊as01], geometry of foams [FKO07, KORW08, AK09], quantum information [CHTW04],
and communication complexity [PRW97, BBCR13, BRWY13]. The reader is referred to this survey
[Raz10] for more details.

The case of general k-player multiplayer games is still open. The only general result, by Ver-
bitsky [Ver96], says that if val(G) < 1, then val(G⊗n)→ 0 as n→∞. This result uses the density
Hales-Jewett theorem as a black box, and gives bounds of the form 1

α(n) , where α is an inverse

Ackermann function [FK91, Pol12]. Apart from being interesting in its own right, studying parallel
repetition of multiplayer games has some applications. For example, it is known that a strong
parallel repetition theorem for a particular class of multiplayer games implies super-linear lower
bounds for Turing machines in the non-uniform model [MR21]. Also (as mentioned by [DHVY17]),
the technical limitations that arise when analyzing games with more than two players seem very
similar to the ones we encounter when studying direct sum and direct product questions for multi-
party number-on-forehead communication complexity (which is related to lower bounds in circuit
complexity). Therefore, studying parallel repetition for multiplayer games may lead to progress in
these areas.

Although we know very little about general multiplayer games, there has been some recent
progress on special classes of multiplayer games:

1. Dinur, Harsha, Venkat and Yuen [DHVY17] extend the two player techniques of [Raz98,
Hol09] and show that any connected game satisfies an exponentially small bound on the value
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of parallel repetition (and this includes all games for which exponentially small bounds were
previously known). The class of connected games is defined as follows: Define the graph HG ,
whose vertices are the ordered k-tuples of questions to the k-players, and there is an edge
between questions x and x′ if they differ in the question to exactly one of the k players, and
are the same for the remaining k − 1 players. The game is said to be connected if the graph
HG is connected.

2. The GHZ game [GHZ89] is defined as follows: The referee samples the questions (x1, x2, x3)
uniformly at random from {0, 1}3 such that x1 ⊕ x2 ⊕ x3 = 0. The players answer back with
a1, a2, a3 ∈ {0, 1}, and are said to win if a1 ⊕ a2 ⊕ a3 = x1 ∨ x2 ∨ x3. It has been shown that
any game with the same distribution as the GHZ game satisfies an inverse polynomial bound
on the value of parallel repetition [HR20, GHM+21].

1.1 Our Results

We prove that for every 3-player game, with binary questions and answers and value < 1, the value
of the n-fold parallel repetition of the game decays polynomially fast to 0.

Theorem 1.1. Let G be a 3-player game such that val(G) < 1 and each question and answer is in
{0, 1}. Then, there exists a constant c > 0, such that val(G⊗n) ≤ n−c.

In the proof of Theorem 1.1, we show that from the perspective of studying the behaviour of
val(G⊗n) as a function of n, every 3-player game G with binary questions and answers, is equivalent
to, or can be reduced to, a game in one of the following five classes:

1. 2-Player Games: As mentioned above, exponentially small bounds on the value of the
parallel repetition of games in this class have been known for a long time.

2. Playerwise Connected Games: This is a new class of games that we define and study in
this work and we prove polynomially small bounds on the value of the parallel repetition of
games in this class.

3. The GHZ Game: (and other games with the same query distribution): As mentioned above,
polynomially small bounds on the value of the parallel repetition of games in this class were
recently proved.

4. The Anti-Correlation Game: (and other games with the same query distribution and
binary answers): The 3-player anti-correlation game is defined as follows: The referee samples
the questions (x1, x2, x3) uniformly at random from {0, 1}3 such that x1 + x2 + x3 = 2 (that
is, two out of three players are given 1 as input, and the remaining player is given 0). The two
players who were given 1 must produce different outputs in {0, 1}. We prove exponentially
small bounds on the value of the parallel repetition of that game (and all other games with
the same query distribution and binary answers).

5. Games over the Set of Questions {(0, 0, 0), (0, 1, 0), (1, 0, 0), (1, 1, 1)}: We prove polyno-
mially small bounds on the value of the parallel repetition of games in this class.

We note that the reduction to these five classes of games works more generally for all 3-player
games with binary questions and arbitrary length of answers, except that we need to extend Class 4
so that it contains games with arbitrary length of answers. Note also that for all other classes,
the bounds that we have hold more generally for games with arbitrary length of answers. This
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means that improving the bounds that we prove for Class 4 so that they hold for arbitrary length
of answers (or even proving weaker, polynomially small, bounds for that case) would imply that
Theorem 1.1 holds more generally, for games with arbitrary answer length.

We note also that the three new bounds that we prove in this work, the bounds for Class 2,
Class 4 and Class 5, are each proved by a completely different proof method. Next we elaborate
on each of these three classes.

1.1.1 The Anti-Correlation Game (Class 4)

In the hilarious essay “Test Your Telepathic Skills”, Uri Feige tells the fictional story of the “amazing
Tachman family”, who astonished the team at FEXI (the Foolproof Experiments Institute) with
their telepathic skills, by playing incredibly well the 3-fold parallel repetition of the 3-player anti-
correlation game [Uri Feige, 1995]1. Feige showed that the value of the 3-player anti-correlation
game, played in parallel 3 times, is 2

3 , exactly the same as the value of the original game.
More than two decades later, Holmgren and Yang proved that while the, so called, non-signaling

value, of the 3-player anti-correlation game is strictly smaller than 1, it does not decrease at all
under parallel repetition [HY19]. This gave a surprising first example for a total failure of parallel
repetition in reducing the value of a game, in any model of multiplayer games.

Hazla, Holenstein and Rao studied games with the same query distribution as the anti-
correlation game [HHR16] and showed barriers on proving parallel repetition theorems for such
games using a technique known as the forbidden subgraph bounds [FV02].

The anti-correlation game can also be presented as a “pigeonhole-principle” game, where 2
out of 3 pigeons are chosen randomly and each of them needs to choose 1 out of 2 pigeonholes,
without communicating between them, so that the two chosen pigeons end in 2 different pigeonholes.
This may occur in situations when 3 players share 2 identical resources (such as 2 communication
channels to an external party): Two (randomly chosen) players (out of the three players) need to
use one of the two resources each and there is no communication between the players. Another
description of the game, the one that was presented by Feige, can be viewed as a matching game:
The 3 players try to output 3 different answers X,Y, Z, where two of the players, chosen randomly,
can only output Y or Z and the remaining player can only output X or Z.

Although the 3-player anti-correlation game has been around for more than two and a half
decades, no bound on the value of its parallel repetition was previously known (other than Verbit-
sky’s general inverse Ackermann bound on the value of the parallel repetition of every game [Ver96]).
In this work, we prove that the value of the n-fold parallel repetition of the 3-player anti-correlation
game decays exponentially fast to 0. (We also extend this bound to all other games with the same
query distribution and binary answers).

Theorem 1.2. Let G be the 3-player anti-correlation game (or any other game with the same query
distribution and binary answers). Then, there exists a constant c > 0, such that val(G⊗n) ≤ 2−cn.

In light of the above mentioned result by Holmgren and Yang [HY19], Theorem 1.2 also implies
an example for a 3-player game where the value of the parallel repetition of the game behaves
completely differently for classical strategies versus non-signaling strategies. Namely, while parallel
repetition doesn’t decrease the non-signalling value of the game at all, it does decrease the classical
value of the game exponentially fast to 0.

1https://www.wisdom.weizmann.ac.il/∼feige/tachman.html (Feige’s description of the game is somewhat different
than ours and is described below).
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Techniques: The techniques that we use for the proof of Theorem 1.2 are, to the best of our
knowledge, completely new in the context of parallel repetition and are different than the techniques
used in all previous works. In particular, we don’t use here the usual embedding paradigm, that
is used in almost all previous works, where one tries to embed a copy of the original game in the
set of success of the players on some set of coordinates. Instead, our proof shows a local to global
property of the strategy of each player. Very roughly speaking, we prove that if the players win the
parallel repetition game with sufficiently high probability, then there exists a fixed (large) set of
coordinates and a fixed global constant strategy for each of the players, that doesn’t depend on the
input for the player at all, and such that the global strategies win the parallel repetition game with
a sufficiently high probability, on almost all the coordinates in the fixed set of coordinates. This
leads to a contradiction since fixed global strategies are, in particular, independent between the
different coordinates. We note also that this is the first inverse exponential bound on the parallel
repetition of any 3-player game that is not connected (in the sense of [DHVY17])2.

1.1.2 Playerwise Connected Games (Class 2)

We define the class of playerwise connected games as follows: For each player j, we define the
graph Hj

G , whose vertices are the possible questions for player j, and two questions xj and x′j are
connected by an edge if there exists a vector y of questions for all other players, such that both
(xj , y) and (x′j , y) are asked by the referee with non-zero probability. We say that the game is
playerwise connected if for every j, the graph Hj

G is connected.
We prove polynomially small bounds on the value of the parallel repetition of any game in this

class:

Theorem 1.3. Let G be a playerwise connected game such that val(G) < 1 (with any number of
players and any Alphabet size). Then, there exists a constant c > 0, such that val(G⊗n) ≤ n−c.

Theorem 1.3 gives an inverse polynomial bound on the value of parallel repetition for many
games for which the previously best known bound was inverse Ackerman.

Our class of playerwise connected games is related to the above mentioned class of connected
games that was studied by Dinur, Harsha, Venkat and Yuen and for which exponentially small
bounds were established [DHVY17]. Observe that every connected game is also playerwise con-
nected (the graph Hj

G is simply the projection of the graph HG in the jth direction). The vice-versa
is however not true:

Example 1.4. The following 3-player game is playerwise connected, but not connected: The referee
samples (x, y, z) uniformly from S = {(0, 0, 0), (1, 0, 0), (0, 1, 0), (0, 0, 1), (1, 1, 1)} and gives x, y, z
to the three players respectively. The players give answers a, b, c ∈ {0, 1} respectively. The players
win if the following condition holds: a+ b+ c = 1 ⇐⇒ x+ y + z ̸= 3.

We note that the set S of possible questions, from Example 1.4, is the only set with 3 players
and binary questions that gives a game that is playerwise connected but not connected (up to a
change of names). When the number of players is larger than 3, or the question’s Alphabet size is
larger than 2, there are many additional examples.

Example 1.5. Fix a random 3-CNF formula φ = (C1, . . . , Cm), with m clauses, over d variables.
This is generated by sampling m times independently and uniformly from the set of all (2d)3 = 8d3

possible clauses.

2or reduces to a connected game
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A 3-player game G is defined by this formula φ as follows: The referee samples r ∈ [m] uniformly
and gives the variables corresponding to the literals in Cr to the 3 players respectively (with each
player getting one variable). The players answer back values for the variables they get, and the
referee declares that the players win if these values satisfy the clause Cr.

Then, it is not hard to show (see Appendix C) that with high probability:

1. If m = ω(d), the value of the game is close to 7/8, and hence less than 1.

2. If m = ω(d2 log d), the graph HG is connected, and we get val(G⊗n) = 2−Ω(n) by [DHVY17].
Furthermore, if m = o(d2), the graph HG is not connected, and [DHVY17] is not applicable.

3. If m = ω(d1.5
√
log d), the game G is playerwise connected, and val(G⊗n) = n−Ω(1) by Theorem

1.3. Furthermore, if m = o(d1.5), the game G is not playerwise connected.

Note that the ω and o bounds on m are with respect to d→∞. Once the formula φ is fixed, we
think of m and d as constants and the Ω bounds on the value of parallel repetition are with respect
to n→∞.

Remark. The above example is also interesting when compared to the works on refutation of
random 3-CNFs, where different regimes of the parameter m lead to different consequences. It is
known that with high probability:

1. If m = Ω(d1.5), there is a polynomial time algorithm for refuting the random 3-CNFs [FO07].

2. If m = Ω(d2/ log d), resolution provides polynomial size witnesses for refutation. On the other
hand, it fails to provide short witnesses when m = O(d1.5−ϵ) [CS88].

3. If m = Ω(d1.4), there exist polynomial size witnesses for refutation, based on spectral approach
[FKO06].

In both cases, there is a polynomial gap in d between the base assumption m = ω(d) and the regime
of best known results.

Techniques: Our proof of Theorem 1.3 relies on information-theoretic techniques, extending the
ideas of [Raz98, Hol09, DHVY17]. In particular, we use here the usual embedding paradigm and
condition on a dependency breaking event, as in many previous works. However, these techniques
heavily rely on the game being connected and thus the result of [DHVY17] applies only to connected
games3 and we are not aware of any previous work that applies these techniques to games that are
not connected. We hence need to deviate from these techniques at a crucial point. Very roughly
speaking, at a crucial place in the proof where the connectivity of the game is necessary, our key idea
is to replace the distribution of the game with a connected distribution and we carefully analyze
how this change affects the rest of the proof.

1.1.3 Support {(0,0,0), (0,1,0), (1,0,0), (1,1,1)} (Class 5)

We consider 3-player games where the set of possible questions for the 3 players is:
{(0, 0, 0), (0, 1, 0), (1, 0, 0), (1, 1, 1)}, and we prove polynomially small bounds on the value of the
parallel repetition of any game in this class:

3or disjoint unions of connected games
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Theorem 1.6. Let G be a 3-player game where the possible questions for the 3 players are:
(0, 0, 0), (0, 1, 0), (1, 0, 0), (1, 1, 1), and such that val(G) < 1 (with any length of answers). Then,
there exists a constant c > 0, such that val(G⊗n) ≤ n−c.

Theorem 1.6 is necessary for the proof of Theorem 1.1 and we believe that the proof technique
is interesting and might be useful for other games.

Techniques: The techniques that we use for the proof of Theorem 1.6 are, to the best of our
knowledge, new. Very roughly speaking, we consider the possible pairs of answers (a, b) by Player 1
and Player 2 on questions (1, 1) for these two players. We distinguish between pairs (a, b) for which
Player 3 has an answer c such that the referee accepts the answers (a, b, c) on questions (1, 1, 1) and
pairs (a, b) for which Player 3 has no answer c such that the referee accepts the answers (a, b, c) on
questions (1, 1, 1). Intuitively, if the pair (a, b) is of the second type, that is, no answer c causes the
referee to accept on (1, 1, 1), the pair (a, b) cannot be used too often by Player 1 and Player 2, and
we are able to make this intuition precise by conditioning on a carefully and inductively defined,
but possibly exponentially small, product event between the inputs of Player 1 and Player 2. Very
roughly speaking, when all pairs (a, b) of the second type are used with negligible (polynomially
small) probability when conditioning on our product event, we are able to essentially reduce the
parallel repetition game to parallel repetition of a 2-player game with value < 1, played by Player 1
and Player 2 on a subset of the coordinates and conditioned on the product event between the
inputs of Player 1 and Player 2 that we defined. We then rely on the fact that bounds for 2-player
games also hold when conditioning the inputs of the two players on a product event between the
two players. The final bound that we obtain is inverse polynomial, rather than inverse exponential,
because we must take into account the answers (a, b) of the second type that are still used with
polynomially small probability. We do that using a union bound and it’s crucial here that the
2-player game that we reduce to is only played on a small subset of the coordinates so that we can
apply a union bound over these coordinates.

2 Overview

2.1 Organization

For the problem of parallel repetition for all three-player games on binary alphabets, the following
results were known prior to our work (Section 3.4).

1. For three-player games in which there are some two players whose inputs are in a bijective
correspondence, we may treat these players as identical, and thus reduce the problem to
showing parallel repetition for two-player games. The Parallel Repetition Theorem of [Raz98]
shows that parallel repetition decreases the value of two-player games exponentially fast
(Theorem 3.11).

2. There is a class of games known as connected (or expanding) games for which [DHVY17]
showed an exponential decay on the parallel repetition value (Theorem 3.12). A k-player
game is said to be connected if the (k − 1)-connection graph is connected. This graph is
defined as follows: the vertices are the elements in the support of the query distribution and
the edges are between every pair of elements that agree on the questions to all but one player
(Definition 3.9).
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3. For any game (with value less than one) for which the query distribution has support
{(0, 0, 0), (1, 1, 0), (1, 0, 1), (0, 1, 1)}, [HR20, GHM+21] showed that parallel repetition de-
creases the value at least polynomially fast (Theorem 3.13).

In this work, we study all three-player binary-alphabet games that do not fall into the above
categories. In Section 8, we classify all such games. It turns out that there are essentially three
such classes of games.

1. Games whose query distribution has support {(0, 1, 1), (1, 0, 1), (1, 1, 0)}. Of these games, the
anti-correlation game is the most interesting one. In this game, the players who receive one
need to output distinct bits (Definition 4.1). We prove an exponential decay on the parallel
repetition value of this game in Section 4 (Theorem 4.2). In Section 7, we show that this
implies a similar result for all games with binary outputs whose query distribution has the
same support as the anti-correlation game (Theorem 7.1).

2. Games whose query distribution has support {(0, 0, 0), (0, 1, 0), (1, 0, 0), (1, 1, 1)}. We refer to
the uniform distribution on these four points as the four-point AND distribution. In Section 5,
we show that parallel repetition for such games decreases the value at least polynomially fast
(Theorem 5.1). We remark that our result holds even if the answers are from an arbitrary
alphabet.

3. Games whose query distribution has support {(0, 0, 0), (0, 0, 1), (0, 1, 0), (1, 0, 0), (1, 1, 1)}.
Such games fall into an even more general class of games which we call playerwise connected
games; these are k-player games in which the projection of the (k − 1)-connection graph on
every player is connected (Definition 3.10). We show in Section 6 that parallel repetition for
this class of games decreases the value at least polynomially fast (Theorem 6.1). We remark
that our result holds even if the answers are from an arbitrary alphabet.

2.2 The Anti-Correlation Game

In the three-player anti-correlation game G, a random pair of players are given 1 as input, and the
remaining player is given 0. To win, the two players who are given 1 must produce different outputs
in {0, 1}, and the output of the player who is given 0 does not matter. We present an overview
of the proof of Theorem 4.2 which shows that the parallel repetition of the anti-correlation game
decreases the value exponentially fast. The details are presented in Section 4.

Let Q denote the joint input distribution for all the players in the game G, and let X, Y , and
Z respectively denote the first, second, and third player’s inputs in the game G⊗n. Let f, g, h :
{0, 1}n → {0, 1}n be any strategy that wins the n-wise repeated game G⊗n with probability α > 0.
Our goal is to prove that α ≤ e−Ω(n).

The players’ inputs are fully determined by the inputs of any pair of players by the equation
Xi + Yi + Zi = 2 for all i ∈ [n]. We will say “(f, g, h) wins on (x, y)” as short-hand for “(f, g, h)
wins on (x, y, z) where zi = 2− xi − yi for each i”.

Winning Implies Self-Agreement on Correlated X, X ′: We first consider a distribution
in which X,X ′, Y are random variables with both (X,Y ) and (X ′, Y ) distributed like Q⊗nX,Y , and
with X and X ′ conditionally independent given Y . More explicitly, this distribution is sampled as
follows:

1. Sample an n-bit string Y according to Q⊗nY . That is, for each i ∈ [n] independently sample
Yi = 1 with probability 2/3, and Yi = 0 otherwise.
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2. Independently sample X and X ′ from the conditional distribution of the first player’s input
in G⊗n given that the second player’s input is Y . That is, for each i ∈ [n], if Yi = 0, set
Xi = X ′i = 1. Otherwise, independently sample Xi, X

′
i ← {0, 1} uniformly at random.

By the assumption that (f, g, h) wins with probability α, we know that (f, g, h) wins on (X,Y )
with probability α, and (f, g, h) wins on (X ′, Y ) with probability α. Because of how (X,Y ) and
(X ′, Y ) are correlated, we show that (f, g, h) must simultaneously win on both (X,Y ) and (X ′, Y )
with probability at least α2. Thus,

Pr
X,X′

[
Pr
Y

[
(f, g, h) wins on (X,Y ) and on (X ′, Y )

]
≥ α2/2

]
≥ α2/2. (1)

Now suppose that X and X ′ are such that PrY
[
(f, g, h) wins on (X,Y ) and on (X ′, Y )

]
≥ α2/2.

We have Pr[Yi = 1|X,X ′] = 1/3 for i such that Xi = X ′i = 1, and all such Yi are conditionally
independent given X, X ′. Also, if Xi = X ′i = 1 and f(X)i ̸= f(X ′)i, then the only way (f, g, h)
can win on (X,Y ) and on (X ′, Y ) is if Yi = 0, because if Yi = 1 then the win conditions require
that f(X)i ̸= g(Y )i ̸= f(X ′)i. Combining these two facts implies that f(X)i ̸= f(X ′)i for at most
log2/3(α

2/2) = O(log(1/α)) coordinates i with Xi = X ′i = 1.
This shows that when X, X ′, and Y are sampled as above, it holds with poly(α) probability

that:

1. (Approximate Self-Agreement): For all but at most O(log 1/α) values of i ∈ [n], if Xi = X ′i =
1 then f(X)i = f(X ′)i.

2. (Winning): (f, g, h) wins on (X,Y ) and on (X ′, Y ).

A similar argument gives an analogous statement, where the Winning property is replaced by
a property that we call Winning’, requiring that (f, g, h) has probability at least α/2 of winning in
G⊗n conditioned on the first player’s input being X ′ (Claim 4.6).

We say that (X,X ′) is good if it satisfies Approximate Self-Agreement and Winning’.

Constructing a strategy for G⊗n′
: We next use the fact that (X,X ′) is good with poly(α)

probability to show that if there exists a strategy (f, g, h) that wins G⊗n with probability α, then
there exists a strategy (f ′, g′, h′) for G⊗n′

(with n′ ≥ Ω(n)) such that:

• f ′ is a constant function, and

• (f ′, g′, h′) wins in all but O(log(1/α)) coordinates of G⊗n′
with probability poly(α).

(See Proposition 4.3 for a formal statement.) The main idea is that (X,X ′) can be equivalently
sampled as follows:

1. Sample each bit of Xi independently such that Xi = 1 with probability 2/3.

2. Sample a set S ⊆ [n] by independently including each i ∈ [n] with probability 1/4.

3. For i ∈ S, set X ′i = Xi. For all other i, sample X ′i such that X ′i = 1 with probability 2/3.

The point of this alternative sampling process is that conditioned on any value of X and S, the

distribution of X ′−S is Q
⊗n−|S|
X . In contrast, the distribution of X ′ given X is not Q⊗nX because of

the correlation between X and X ′.
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We will first condition on random values of X, S, and X ′T , where T = S ∪ {i : Xi = 0}. This
ensures that

Pr
X,S,X′

T

[
Pr
X′

−T

[
(X,X ′) is good

]
≥ poly(α)

]
≥ poly(α).

Also, the conditional distribution of X ′−T given any values of X, S, and X ′T is just the first player’s

input distribution in G⊗n−|T |. This means that we can view f as inducing a first-player strategy
f ′ on Gn′

for n′ = n− |T | by fixing the appropriate part of f ’s input to X ′T . Note that n′ = Ω(n)
with overwhelming probability.

Part of (X,X ′) being good means that (f, g, h) has poly(α) probability of winning on (X ′, Y ′)
when Y ′ is sampled from the distribution of the second player’s input in G⊗n conditioned on the
first player’s input being X ′. We split the sampling of Y ′ into two parts: Y ′T and Y ′−T . We show
that we can sample and fix Y ′T , and use it to define g′ and h′ analogously to f ′ (for h′ implicitly
defining Z ′T such that (Z ′T )i = 2−(X ′T )i−(Y ′T )i), such that with poly(α) probability over the choice
of (X ′−T , Y

′
−T ):

• (f ′, g′, h′) wins on (X ′−T , Y
′
−T ), and

• (X,X ′) is good. In particular, since X−T is the all-ones string, we have that f ′(X ′−T )i =
f(X ′)i = f(X)i for all but O(log 1/α) values of i /∈ T for which (X ′−T )i = 1.

This implies that up to a difference in its outputs for O(log 1/α) coordinates, f ′ might as well be
the constant function that always outputs f(X)−T .

We could in principle continue onwards, eventually finding a smaller n′′ (still Ω(n)) such that
G⊗n′′

has a strategy (f ′′, g′′, h′′) that wins in all but O(log 1/α) coordinates with probability poly(α),
but consists only of constant functions. This is a contradiction unless α ≤ e−Ω(n). For simplicity,
however, we instead directly show that when f ′ is a constant function, the strategy (f ′, g′, h′)
must lose in a constant fraction of the coordinates with all but exponentially small probability
(Proposition 4.10). This implies that α is e−Ω(n).

2.3 Four-Point AND Distribution

We present a technical overview of the proof of Theorem 5.1 which shows an inverse polynomial
bound for the parallel repetition value for the four-point AND distribution. The details can be
found in Section 5.

We first note the following observation about the set of points S :=
{(0, 0, 0), (0, 1, 0), (1, 0, 0), (1, 1, 1)}. Let G be any game on S with value less than one and
fix any strategy (f, g, h) for the players for one copy of the game G. Observe that whenever Charlie
receives 1, he knows that the inputs of Alice and Bob are 1. Consider the following two cases.

• Case A: Suppose the answers of Alice and Bob on input 1 are such that there is no answer
that Charlie can give to satisfy the predicate, then the strategy loses on the input (1, 1, 1).

• Case B: On the other hand, suppose the answers of Alice and Bob on input 1 are such
that there exists an answer for Charlie that satisfies the predicate, then we can assume
that Charlie answers this on input 1. Since the value of the game is less than one and
this strategy succeeds on (1, 1, 1), the strategy must fail on one of the remaining three points
{(0, 0, 0), (0, 1, 0), (1, 0, 0)}. For these points, Charlie’s input is fixed to zero and in particular,
his answer is also fixed. Therefore, the predicate V when restricted to these inputs, induces
a predicate Ṽ which depends only on the inputs and outputs of Alice and Bob. The game
G thus defines a two-player game on the uniform distribution S̃ := {(0, 0), (0, 1), (1, 0)} with
predicate Ṽ .
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Next, we consider the n-fold parallel repetition of the game.

Pre-processing the game. Let Q be the uniform distribution over S and let P = Q⊗n. We will
always maintain a product event of the form E = E1 × E2 × {0, 1}n on the players inputs where
E1 is a subset of Alice’s inputs and E2 is a subset of Bob’s inputs. We begin by showing that we
can assume without loss of generality that conditioned on a large product event across Alice’s and
Bob’s inputs, all coordinates satisfy a property similar to case B with high probability, otherwise,
we would get exponential decay of the parallel repetition value. For each i ∈ [n], let L̃i denote the
event that Alice and Bob receive 1 in the i-th coordinate and their answers are such that there
is no answer for Charlie that satisfies the predicate. Let W̃i denote the complement of L̃i. For
S ⊆ [n], let WS denote the event that the players win the game in coordinate i for all i ∈ S. Note
that whenever L̃i happens, the players lose in the i-th coordinate. Thus,

Pr[W[n]] ≤ Pr[W̃1] · Pr[W̃2|W̃1] · · ·Pr[W̃n|W̃1, . . . , W̃n−1]. (2)

While there exists a coordinate i ∈ [n] such that Pr[L̃i|E] is significant, i.e., Pr[L̃i|E] ≥ 1/n4δ for
some small constant δ > 0, we will try to condition on W̃i and proceed. (To ensure that we maintain
a product event across Alice and Bob, we will also randomly fix their inputs and answers in the i-th
coordinate and update E based on this fixing and proceed.4) If this conditioning process happens
more than n5δ times, then Equation (2) implies that the probability of winning all coordinates is

at most (1− 1/n4δ)n
5δ ≤ exp(−Ω(nδ)). It suffices to study the other case, that is, this conditioning

process happens at most n5δ times.

Reduction to a two-player game. We are left with a product event E of the form E1 ×E2 ×
{0, 1}n of measure at least exp(−Ω(n5δ)) such that for all i ∈ [n], we have Pr[L̃i|E] ≤ 1/n4δ and we
will show that the probability of winning all coordinates when the inputs are drawn from P |E is
at most n−Ω(δ) (essentially Lemma 5.2). Let Ai be the set of answers ai such that with significant
probability (namely, more than 1/n2δ probability over P |E ), Alice’s input in i-th coordinate is 1 and
her output in the i-th coordinate is ai. Define Bi for Bob similarly. Since Alice’s and Bob’s inputs
are independent under P and E is a product event across Alice and Bob, and Pr[L̃i|E] ≤ 1/n4δ, it
follows that for every pair of answers of Alice and Bob in Ai × Bi, there is an answer that Charlie
can give so that the predicate is satisfied when all players get 1. Define a product event Gi across
Alice and Bob which is true if and only if whenever Alice and Bob get input 1 in the i-th coordinate,
they answer from Ai × Bi (Definition 5.3). A union bound implies that

Pr[Gi|E] ≥ 1− |A|
n2δ
− |B|

n2δ
≥ 1−O(n−δ). (3)

We now randomly fix an input z ∈ {0, 1}n to Charlie. Let K denote the set of coordinates that
are zero in z, and let m denote |K|. With all but exponentially small probability, m = Ω(n). We
also randomly fix the inputs x−K , y−K to Alice and Bob in coordinates outside K. Pick a random
subset S ⊆ K of size mϵ for some constant 0 < ϵ < δ. We have (in expectation over z, x−K , y−K):

Pr[WS |E] ≤ Pr[∨i∈S¬Gi|E]

+ Pr[∧i∈SGi ∧WS |E, z, x−K , y−K ]
(4)

The first term Pr[∨i∈S¬Gi|E] is at most O(n−δ+ϵ) by Equation (3) and a union bound. To analyze
the second term, we will define a two-player game G̃ such that the probability of winning the

4This can be done since W̃i and L̃i depend only on the inputs and answers to Alice and Bob in the i-th coordinate.
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coordinates in S in the m-fold parallel repetition of G̃ is exactly the second term in the R.H.S. of
Equation (4). For now, we will define a game G̃i for each i ∈ [n]. Although these games can be
different for different i ∈ [n], there are only finitely many possibilities for G̃i and we simply restrict
our attention to the game that appears in most number of coordinates. The query distribution
for G̃i is the uniform distribution on S̃ = {(0, 0), (1, 0), (1, 1)}. The predicate Ṽi is Ṽi(x, y, a, b) :=
V (x, y, 0, a, b, h(z)i)∧ (x = 1 =⇒ a ∈ Ai)∧ (y = 1 =⇒ b ∈ Bi) (Definition 5.6). Note that the value
of G̃i is less than one (Claim 5.7). To see this, given any strategy (f̃ , g̃) for G̃ with value one, there
is a strategy h̃ for Charlie on input 1 such (f̃ , g̃, h̃) succeeds on (1, 1, 1), since when Alice answers
from Ai on input 1 and Bob from Bi on input 1, there is an answer Charlie can give on input 1
to satisfy the predicate. Define the strategy h̃ to output h(z)i when Charlie receives 0. We know
that (f̃ , g̃, h̃) must fail on one of the remaining points in {(0, 0, 0), (0, 1, 0), (1, 0, 0)}. This implies
that (f̃ , g̃) falsifies the predicate Ṽi at the corresponding point in S̃. We use two-player parallel
repetition techniques and show that for a random S ⊆ K of size mϵ, the probability of winning
the m-fold parallel repetition of the two-player game in coordinates in S is at most exp(−Ω(mϵ))
(see Lemma 5.8). We remark that we are able to apply two-player parallel repetition techniques
even though the measure of E could be smaller than exp(−Ω(|S|)), and this is because the set
S was chosen randomly. Thus, the second term in the R.H.S. of Equation (4) is bounded by
exp(−Ω(mϵ)) = exp(−Ω(nϵ)). This completes the proof overview.

2.4 Playerwise Connected Games

We present an overview of the proof of Theorem 6.1 which shows an inverse polynomial bound on the
parallel repetition value of all playerwise connected games. The details are in Section 6. We focus
on the case of the uniform distribution Q over S := {(0, 0, 0), (1, 0, 0), (0, 1, 0), (0, 0, 1), (1, 1, 1)}.
Let P = Q⊗n. For a random variable W , we use PW to denote the distribution of W where the
probability space is P . We use (X,Y, Z) to denote inputs of the three players for the game G⊗n.

Our proof builds on the framework of the Parallel Repetition Theorem from [Raz98, Hol09,
DHVY17]. We now describe this framework. Let G be a game whose query distribution is Q and
whose value is less than one. Consider its n-fold parallel repetition. Using an inductive argument,
it suffices to show that for every large product event E = E1 × E2 × E3 across the players’ inputs
to the n-fold game G⊗n, when the inputs are drawn from the distribution P |E, there exists some
hard coordinate i ∈ [n], meaning that the probability of winning the game in the i-th coordinate
is 1 − ϵ for some constant ϵ > 0. Since the event E has large measure, it cannot reveal too much
information about too many coordinates, and hence the distribution of the marginal of P |E on
the i-th coordinate is similar to the original distribution Q for most i ∈ [n]. It then suffices to
show a way for the players to approximately embed the inputs they receive for the original game
G, into the i-th coordinate of the inputs to the n-fold game drawn according to the distribution
P |E. In order to do this, they need to be able to sample the remaining n − 1 coordinates of the
inputs according to the correct distribution. To do this, as in [Raz98, Hol09, DHVY17], we define
a dependency breaking random variable R as follows. The random variable R (Definition 6.2) for
each copy i ∈ [n] of the game, independently, chooses two players uniformly at random and samples
the inputs to those players according to the distribution induced by P |E. Let (xi, yi, zi) ∈ supp(Q).
If the players can jointly sample from PR−i|E,xi,yi,zi , then since R breaks the correlation between
the player’s inputs, any player can independently sample the rest of their own input given R−i.
Note that each player only knows one of xi, yi and zi and it is not evident how the players can
jointly sample from PR−i|E,xi,yi,zi . Ideally, one would like to show that PR−i|E,xi,yi,zi is close to
some global distribution for all (xi, yi, zi) ∈ supp(Q); in such a case, the global distribution would
be PR−i|E . We denote this by PR−i|E ≈ PR−i|E,xi,yi,zi . This would mean that the players only need
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to sample from a global distribution PR−i|E and this can be done using shared randomness. Prior
works [Raz98, Hol09, DHVY17] showed that PR−i|E,xi,yi,zi ≈ PR−i|E,xi,yi , but it is not clear if this
suffices to prove the desired result.

In our work, we show that for the query distribution Q, we have PR−i|E ≈ PR−i|E,xi,yi,zi for all
(xi, yi, zi) ∈ supp(Q) (Lemma 6.4). (We prove a similar result for all playerwise connected games.)
By choosing parameters appropriately and by Bayes’ Rule, it will suffice to show that

PXi,Yi,Zi|r−i,E ≈ PXi,Yi,Zi|E for most r−i ∼ PR−i|E . (5)

The key idea we use is to modify the distribution of P in the i-th coordinate as follows. Let Γ be a
product distribution over {0, 1}3 such that the marginal on each player’s input agrees with that of
Q. The idea is to consider the distribution P−iΓ, which is a product of n independent distributions,
where the distribution in the i-th coordinate is Γ and the distribution in every other coordinate
is Q. We can recover the original distribution P from P−iΓ by conditioning on some event that
depends on the i-th coordinate (and possibly on some additional randomness).

Note that (P−iΓ)X,Y,Z|r−i
is a product distribution across the inputs of the players, since R is

a correlation breaking random variable and since the distribution of P−iΓ in the i-th coordinate
was a product distribution to begin with. Since E = E1 × E2 × E3 is a product event, the i-th
coordinate of (P−iΓ)X,Y,Z|r−i,E has a product distribution across the players. Finally, since the
marginal of Γ on any player’s input agrees with that of Q, we have

(P−iΓ)Xi,Yi,Zi|r−i,E = (P−iΓ)Xi|r−i,E1 × (P−iΓ)Yi|r−i,E2 × (P−iΓ)Zi|r−i,E3

= PXi|r−i,E1 × PYi|r−i,E2 × PZi|r−i,E3 for all r−i.
(6)

To study the distribution PXi|r−i,E1 , we will study the distribution PXi,Yi,Zi|r−i,E1 and show that
it is close to Q (Lemma 6.9). The support of the latter distribution is contained in S. Ob-
serve that the distribution PYi,Zi|r−i,E1,Xi=xi

is exactly the uniform distribution over {(yi, zi) ∈
{0, 1}2 : (xi, yi, zi) ∈ supp(Q)} for all xi ∈ {0, 1}.5 This implies that the probabilities assigned by
PXi,Yi,Zi|r−i,E1 to all points in S of the form (1, ∗, ∗) are identical, and similarly, the probabilities
assigned to all points in S of the form (0, ∗, ∗) are identical (Lemma 6.11). To conclude that the
probabilities assigned to (0, 0, 0) and (1, 0, 0) are close for most r−i ∼ PR−i|E1 , we use techniques
similar to [Raz98, Hol09, DHVY17] (Lemma 6.10). We thus show that the probabilities assigned
to all points in S are similar and hence the distribution of PXi,Yi,Zi|r−i,E1 is close to Q for most
r−i ∼ PR−i|E1 . This along with a similar argument for the second and third terms in the R.H.S. of
Equation (6) (and the fact that the marginals of Γ on any player agree with that of Q) implies that

PXi|r−i,E1 ≈ (P−iΓ)Xi for most r−i ∼ PR−i|E1

PYi|r−i,E2 ≈ (P−iΓ)Yi for most r−i ∼ PR−i|E2

PZi|r−i,E3 ≈ (P−iΓ)Zi for most r−i ∼ PR−i|E3

(7)

Let us pretend for now that Equation (7) actually holds for most r−i ∼ PR−i|E . If so, this, along
with Equation (6) would imply that

(P−iΓ)Xi,Yi,Zi|r−i,E ≈ (P−iΓ)Xi,Yi,Zi for most r−i ∼ PR−i|E .

5To see this, note that the distribution PXY Z|r−i
is a product distribution across coordinates where the marginal

in the i-th coordinate is simply the uniform distribution over S. Once we condition on Xi = xi for any xi ∈ {0, 1},
the distribution PY,Z|r−i,Xi=xi

is still a product distribution across coordinates and in the i-th coordinate is exactly

the uniform distribution over {(yi, zi) ∈ {0, 1}2 : (xi, yi, zi) ∈ S}. If we further condition on E1, it only affects the
distribution of inputs in coordinates other than i.
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We now condition both sides of the above equation on an event Ti such Γ|Ti = Q. Note that
Ti depends only on the inputs in coordinate i and some additional shared randomness. (See
Section 6.2.2 for details.) This implies that

PXi,Yi,Zi|r−i,E ≈ PXi,Yi,Zi for most r−i ∼ PR−i|E .

This along with the fact that the distribution of PXi,Yi,Zi|E is close to Q for most coordinates i ∈ [n]
completes the proof of Equation (5), under the incorrect assumption that the distribution of r−i in
Equation (7) was PR−i|E . To fix this, we use the property that for any random variable G, we have

P [G = g|E] ≤ P [G = g|E1] · P [E1]
P [E] ≤ P [G = g|E1] · 1

P [E] . This allows us to connect probabilities

over P |E and probabilities over P |E1, P |E2 and P |E3 (Lemma 6.13). This is the place where we
incur a loss of 1

P (E) and as a result, our bound only holds for polynomially large events.

3 Preliminaries

Let N = {1, 2, . . .} be the set of all natural numbers. For each n ∈ N, we use [n] to denote the set
{1, 2, . . . , n}.

We will mostly follow [Hol09, DHVY17, HR20] for notation.

3.1 Probability Distributions

We will use calligraphic letters to denote sets, capital letters to denote random variables and small
letters to denote values.

Let P be a distribution (with the underlying finite set clear from context). For a random
variable X, we use PX to denote the distribution of X, that is, PX(x) = P (X = x). For random
variables X and Y , we use PXY to denote the joint distribution of X and Y . For an event E with
P (E) > 0, we use PX|E to denote the distribution of X conditioned on the event E, given by

PX|E(x) =
P (X = x ∧ E)

P (E)
.

Suppose R is a random variable, and r is such that PR(r) > 0. We will frequently use the shorthand
PX|r to denote the distribution PX|R=r.

Let PX and QX be distributions over a set X . The L1-distance (or ℓ1-norm) between PX and
QX is defined as ∥PX −QX∥1 =

∑
x∈X |PX(x)−QX(x)|.

We will also be using the following facts:

Fact 3.1. (Chernoff Bounds, see [MU05] for reference) Let X1, . . . , Xn ∈ {0, 1} be independent
random variables each with mean µ, and let X =

∑n
i=1Xi. Then, for all δ ∈ (0, 1), it holds that

Pr [X ≤ (1− δ)µn] ≤ e−
δ2µn

2 ,

Pr [X ≥ (1 + δ)µn] ≤ e−
δ2µn

3 .

Pr [X − µn ≥ δn] ≤ e−2δ
2n.

Fact 3.2. Let PX and QX be probability distributions over a set X , and let W ⊆ X be an event
such that PX(W ), QX(W ) > 0. Then,∥∥PX|W −QX|W

∥∥
1
≤ 2

QX(W )
· ∥PX −QX∥1
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Proof. See Appendix A.1.

Fact 3.3. Let P be a probability distribution, and let X be a random variable over a set X , and let
E be any event with P (E) > 0. Let α > 0 be arbitrary, and let T = {x ∈ X : P (E |x) ≥ α · P (E)} .
Then, it holds that

P (X ∈ T |E) > 1− α.

Proof. See Appendix A.1.

Fact 3.4. Let P be a probability distribution, and let X be a random variable over a set X , and let
E be any event. Then, there exists x ∈ X such that P (E |X = x) ≥ P (E).

3.2 Multiplayer Games

Definition 3.5. (Multiplayer Game) A k-player game G is a tuple G = (X ,A, Q, V ), where the
question set X = X 1 × · · · × X k, and the answer set A = A1 × · · · × Ak are finite sets, Q is a
probability distribution over X , and V : X ×A → {0, 1} is a predicate.

Definition 3.6. (Game Value) Let G = (X ,A, Q, V ) be a k-player game.
For a sequence

(
f j : X j → Aj

)
j∈[k] of functions, define the function f = f1× · · · × fk : X → A

by f
(
x1, . . . , xk

)
=
(
f1(x1), . . . , fk(xk)

)
. We use the term product functions to denote functions

f defined in this manner.
The value val(G) of the game G is defined as

val(G) = max
f=f1×···×fk

Pr
X∼Q

[V (X, f(X)) = 1] ,

where the maximum is over all product functions f = f1 × · · · × fk. The functions (f j)j∈[k] are
called player strategies.

Fact 3.7. The value of the game is unchanged even if we allow the player strategies to be random-
ized, that is, we allow the strategies to depend on some additional shared and private randomness.

Definition 3.8. (Parallel Repetition of a game) Let G = (X ,A, Q, V ) be a k-player game. We
define its n-fold repetition as G⊗n = (X⊗n,A⊗n, P, V ⊗n). The sets X⊗n and A⊗n are defined to
be the n-fold product of the sets X and A with themselves respectively. The distribution P is the
n-fold product of the distribution Q with itself, that is, P (x) =

∏n
i=1Q(xi). The predicate V ⊗n is

defined as V ⊗n(x, a) =
∧n

i=1 V (xi, ai).
Note that we use the notation X⊗n instead of the standard notation X n so as to avoid confusion

with the sets X 1, . . . ,X k.

Following the notation in [DHVY17], we use subscripts to denote the coordinates in the parallel
repetition, and superscripts to denote the players. For example, for i ∈ [n] and j ∈ [k], we will use
xji to refer to the question to the jth player in the ith repetition of the game. Similarly, xi will refer
to the vector of questions to the k players in the ith repetition, and xj will refer to the vector of
questions received by the jth player over all repetitions. We use x−j to refer to the questions to all
players except the jth player, and use x−i to refer to the questions in all coordinates except the ith

coordinate.
When we are dealing with 3 player games, we will not be using superscripts to refer to different

players, and rather use the notation G = (X × Y × Z, A× B × C, Q, V ). That is, we use X ,Y,Z
in place of X 1,X 2,X 3 and A,B, C in place of A1,A2,A3.

We will use the notation A ≲ B (resp. ≳) to mean that A ≤ c · B (resp. A ≥ c · B) for some
constant c > 0. For our purposes, we will allow the constant to depend on the size of the (initial)
game being considered, but not on the number of repetitions.
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3.3 Playerwise Connected Games

We will particularly be interested in a special class of games, which we refer to as playerwise
connected games. Before we define this class, we recall the following definition:

Definition 3.9. ((k − 1)-connection graph [DHVY17]) Let G = (X ,A, Q, V ) be a k-player game,
and let S ⊆ X be the support of Q. We define its (undirected) (k − 1)-connection graph HG as
follows. The vertex set of HG is S, and there is an edge between x, y ∈ S if and only if they differ
in the question to exactly one of the players. That is, {x, y} is an edge if and only if there exists
j ∈ [k] such that x−j = y−j and xj ̸= yj.

We say that a game G is connected if the graph HG is connected.

We will define a game to be playerwise connected if the projection of the above graph with
respect to each of the players is connected. This is formally defined as follows:

Definition 3.10. (Playerwise Connected Game) Let G = (X ,A, Q, V ) be a k-player game, and let

S ⊆ X be the support of Q. We assume that for all j ∈ [k], and for all xj ∈ X j, the j
th

player is
given the question xj with positive probability.

For every j ∈ [k], we define the graph Hj
G as the graph with vertex set X j, with an edge between

xj , yj ∈ X j if and only if there exists x−j ∈ X−j such that both (x−j , xj) ∈ S and (x−j , yj) ∈ S.
We say that the game G is playerwise connected if Hj

G is connected for each j ∈ [k].
Note that the assumption on G in the above definition is without loss of generality, because we

can simply remove each xj which occurs with zero probability, without affecting the game in any
meaningful way.

3.4 Previously Known Results

We state the known results on parallel repetition that will be useful for us.

Theorem 3.11. (Parallel Repetition for 2-Player Games [Raz98]) Let G = (X × Y,A× B, Q, V )
be a 2-player game such that val(G) < 1. Then, there exists a constant c = c(G) > 0 such that for
every n ∈ N, it holds that val(G⊗n) ≤ 2−cn.

Theorem 3.12. (Parallel Repetition for Connected Games [DHVY17]) Let G be a connected k-
player game (see Definition 3.9) such that val(G) < 1. Then, there exists a constant c = c(G) > 0
such that for every n ∈ N, it holds that val(G⊗n) ≤ 2−cn.

Theorem 3.13. (Parallel Repetition for The GHZ Game [HR20, GHM+21]) Let G = (X × Y ×
Z, A×B×C, Q, V ) be a 3-player game with X = Y = Z = {0, 1}, and Q the uniform distribution

over S = {(0, 0, 0), (1, 1, 0), (1, 0, 1), (0, 1, 1)} =
{
(x, y, z) ∈ {0, 1}3 : x⊕ y ⊕ z = 0

}
, and such that

val(G) < 1. Then, there exists a constant c = c(G) > 0, such that for every n ∈ N, it holds that
val(G⊗n) ≤ n−c.

3.5 Some Results on Multiplayer Games

3.5.1 Restriction to Uniform Distributions

We state a lemma from [FV02], which shows that it suffices to prove parallel repetition in the
case when the game’s distribution is the uniform distribution over its support. For the sake of
completeness, we also include a short proof.
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Lemma 3.14. Let G = (X ,A, Q, V ) be a k-player game such that val(G) < 1, and let S ⊆ X
be the support of Q. Let G̃ = (X ,A, U, V ), where U is the uniform distribution over S. Let
v : N ∪ {0} → [0, 1] be the function defined by v(n) = val(G̃⊗n), for every n ∈ N ∪ {0}, with the
convention v(0) = 1. Then,

(a) v(1) = val(G̃) < 1.

(b) There exists a constant β > 0 such that val(G⊗n) ≤ 2v(⌊βn⌋) for all n ∈ N.

Proof. See Appendix A.2.

3.5.2 A Restriction on Predicates

We show that to prove parallel repetition, it suffices to assume that the game has the following
property: If some input yj for the jth player completely determines the input y to all the players,
then on input y, the game’s predicate does not depend on the answer aj given by the jth player.

A recursive application of the next lemma shows that we can assume the aforementioned prop-
erty.

Lemma 3.15. Let G = (X ,A, Q, V ) be a k-player game. Suppose y ∈ X , j ∈ [k] are such that y
is the unique input with Q(y) > 0 that has yj as the input to the jth player. Then, there exists a
predicate V ′ such that the game G′ = (X ,A, Q, V ′) satisfies:

(a) For every a, b ∈ A with a−j = b−j, it holds that V ′(y, a) = V ′(y, b).

(b) For every n ∈ N, it holds that val(G⊗n) ≤ val(G′⊗n).

(c) val(G′) = val(G).

Proof. See Appendix A.2.

3.5.3 An Inductive Parallel Repetition Criterion

We state a parallel repetition criterion from [Raz98, HR20]. For the sake of completeness, we also
include a proof.

Definition 3.16. Let G = (X ,A, Q, V ) be a k-player game, and let Q′ be some distribution over
X . We define G |Q′ to be the game G |Q′ = (X ,A, Q′, V ).

Definition 3.17. Let G = (X ,A, Q, V ) be a k-player game, and G⊗n = (X⊗n,A⊗n, P, V ⊗n) be its
n-fold repetition. For each i ∈ [n], we define the value of the ith coordinate of G⊗n, denoted by
vali(G⊗n), to be the value of the game (X⊗n,A⊗n, P, V ′), where V ′(x, a) = V (xi, ai).

Lemma 3.18. Let G = (X ,A, Q, V ) be a k-player game, and G⊗n = (X⊗n,A⊗n, P, V ⊗n) be its
n-fold repetition. Suppose that there exists a constant ϵ > 0, and a non-increasing function ρ : N→
[0, 1] such that ρ(n) ≥ 2−O(n), and for every n ∈ N, and every product event E = E1 × · · · × Ek ⊆
(X 1)⊗n × · · · × (X k)⊗n = X⊗n with P (E) ≥ ρ(n), there exists a coordinate i ∈ [n] such that
vali(G⊗n | (P |E)) ≤ 1− ϵ. Then, there exists a constant c > 0 such that val(G⊗n) ≤ ρ(n)c for every
n ∈ N.

Proof. See Appendix A.2.
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4 The Anti-Correlation Game

In this section, we will focus on the following game.

Definition 4.1 (The Anti-Correlation Game). The anti-correlation game, which we denote as G =
({0, 1}3 , {0, 1}3 , Q, V ), is a 3-player game in which the query distribution Q is uniform over the
set {(0, 1, 1), (1, 0, 1), (1, 1, 0)} of strings of hamming-weight 2, and the win predicate V : {0, 1}3 ×
{0, 1}3 → {0, 1} is defined so that V ((x, y, z), (a, b, c)) = 1 if and only if ⟨(x, y, z), (a, b, c)⟩ =
xa+ yb+ zc = 1.

In words, a random pair of players receive 1, and these players must produce different bits.
If V ((x, y, z), (a, b, c)) = 1, we say that (a, b, c) wins on (x, y, z).

We will denote this game by G, and denote its query distribution by Q (i.e. the uniform
distribution on

{
(0, 1, 1), (1, 0, 1), (1, 1, 0)

}
. Observe that the value of this game is 2/3. We will

show that parallel repetition exponentially decays the value of this game.

Theorem 4.2. Let G be the anti-correlation game as in Definition 4.1. Then, there exists a
constant c > 0 such that for every n ∈ N, it holds that val(G⊗n) ≤ exp(−c · n).

We will let Q⊗n denote the query distribution of G⊗n, with X, Y , and Z respectively being
random variables corresponding to the first, second, and third player inputs in the game G⊗n.

4.1 Winning Strategies Imply Partially Constant Winning Strategies

We first claim that:

Proposition 4.3. Suppose the value of G⊗n is α for α4 ≥ 32e−n/72. Then there exist n′ ≥ n/6, a
string a ∈ {0, 1}n′

, and functions g′, h′ : {0, 1}n′ → {0, 1}n′
such that with at least α4/16 probability

when sampling (x, y, z)← Q⊗n
′
, (ai, g

′(y)i, h
′(z)i) wins on (xi, yi, zi) for all but 5 ln(1/α)+5 values

of i ∈ [n′].

Proof. Let f, g, h : {0, 1}n → {0, 1}n be a strategy that wins G⊗n with probability α.
We now define a probability space that induces a correlated distribution on (X, X̃), with both

X and X̃ individually distributed according to Q⊗nX .

The probability space P. Let P be obtained by the following process:

1. Sample Y ← Q⊗nY .

2. Independently sample random variables (X,Z) and (X̃, Z̃) such that P
[
X = x, Z = z|Y =

y
]
= P

[
X̃ = x, Z̃ = z|Y = y

]
= Q⊗nX,Z|Y (x, z|y).

Claim 4.4. In P,
{
(Xi, X̃i)

}
are i.i.d., and for each i, we have

P[Xi = xi, X̃i = x̃i] =

{
1/6 if (xi, x̃i) ∈

{
(0, 0), (0, 1), (1, 0)

}
1/2 if (xi, x̃i) = (1, 1).

Proof. If xi = 0 or x̃i = 0, the only way we can have Xi = xi and X̃i = x̃i is if Yi = 1. Thus for
such (xi, x̃i), we have

P[Xi = xi, X̃i = x̃i] = P[Yi = 1] · P[Xi = xi, X̃i = x̃i|Yi = 1]

=
2

3
· 1
4
=

1

6
.
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P[Xi = X̃i = 1|Yi = 1] = 1
4 as above, but additionally P[Xi = X̃i = 1|Yi = 0] = 1. Thus in

total P[Xi = X̃i = 1] = 2
3 ·

1
4 + 1

3 = 1
2 .

Definition 4.5 (Approximate Consistency). For any x, x̃ ∈ {0, 1}n and f : {0, 1}n → {0, 1}n, we
say that f is approximately consistent on x and x̃ if for all but 5 ln(1/α)+5 values of i ∈ [n], it holds
that if xi = x̃i = 1, then f(x)i = f(x̃)i.

Claim 4.6. It holds with probability at least α2/2 over (x, x̃)← PX,X̃ that:

• f is approximately consistent on x and x̃, and

• P
[(
f(X̃), g(Y ), h(Z̃)

)
wins on (X̃, Y, Z̃)

∣∣∣X̃ = x̃
]
≥ α2/4.

Proof. Let W denote the event that
(
f(X), g(Y ), h(Z)) wins on (X,Y, Z), and let W̃ denote the

event that
(
f(X̃), g(Y ), h(Z̃)

)
wins on (X̃, Y, Z̃).

We first have

P[W, W̃ ] = E
y←PY

[
P[W, W̃ |Y = y]

]
= E

y←PY

[
P[W |Y = y]2

]
((X,Z) and (X̃, Z̃) conditionally i.i.d. given Y )

≥ E
y←PY

[
P[W |Y = y]

]2
= P[W ]2

= α2. (8)

Then, we have

P
[
P[W, W̃ |X, X̃] ≥ α2/4 and

P[W̃ |X̃] ≥ α2/4

]

≥ P
[
P[W, W̃ |X, X̃] ≥ α2/4 and

P[W, W̃ |X̃] ≥ α2/4

]

≥ P[W, W̃ ] · P
[
P[W, W̃ |X, X̃] ≥ α2/4 and

P[W, W̃ |X̃] ≥ α2/4

∣∣∣∣W, W̃

]

≥ α2 · P
[
P[W, W̃ |X, X̃] ≥ α2/4 and

P[W, W̃ |X̃] ≥ α2/4

∣∣∣∣W, W̃

]
(Eq. (8))

= α2 ·
(
1− P

[
P[W, W̃ |X, X̃] < α2/4 or

P
[
P[W, W̃ |X̃] < α2/4

∣∣∣∣W, W̃

])

≥ α2 ·
(
1− 2 · 1

4

)
(Eq. (8), Fact 3.3, and a union bound)

= α2/2.

Finally, we show that whenever P[W, W̃ |X, X̃] ≥ α2/4, f is approximately consistent on X and
X̃. Let ∆ = ∆(X, X̃) denote the set i ∈ [n] for which Xi = X̃i = 1 and f(X)i ̸= f(X̃)i. In order
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for W ∧ W̃ to occur, it must hold for every i ∈ ∆(X, X̃) that Yi = 0; otherwise we would have
f(X)i ̸= f(Y )i and f(X̃)i ̸= f(Y )i, implying that f(X)i = f(X̃)i.

On the other hand {Yi}i∈[n] are conditionally independent given X, X̃. The conditional distri-

bution of Yi given Xi = X̃i = 1 can be computed as

P[Yi = 1|Xi = X̃i = 1] =
P[Yi = 1] · P[Xi = X̃i = 1|Yi = 1]

P[Yi = 0] · P[Xi = X̃i = 1|Yi = 0] + P[Yi = 1] · P[Xi = X̃i = 1|Yi = 1]

=
(2/3) · (1/4)

(1/3) · 1 + (2/3) · (1/4)

=
1

3
,

so P[W, W̃ |X, X̃] ≤ (2/3)|∆(X,X̃)|. Thus when P[W, W̃ |X, X̃] ≥ α2/4, we must have |∆(X, X̃)| ≤
2 ln(1/α)+ln(4)

ln(1.5) ≤ 5 ln(1/α) + 5, which means that f is approximately consistent on X and X̃.

The probability space C. Let C be obtained by the following process:

1. Sample X ← Q⊗nX .

2. Sample a set S ⊆ [n] by including i in S with probability 1/4, independently for each i ∈ [n].

3. For i ∈ S, set X̃i = Xi.

4. For i /∈ S, sample X̃i ← QX (independently).

5. Sample Ỹ , Z̃ such that

C
[
Ỹ = ỹ, Z̃ = z̃|S = s,X = x, X̃ = x̃

] def
= Q⊗nY,Z|X(ỹ, z̃|x̃).

Claim 4.7. CX,X̃ = PX,X̃ and CX̃,Ỹ ,Z̃ = PX̃,Y,Z̃ .

Proof. We start by showing CX,X̃ = PX,X̃ . It is clear from their definitions that in both P and C,{
(Xi, X̃i)

}
i∈[n] are i.i.d., so it suffices to show for each i that CXi,X̃i

= PXi,X̃i
. By Claim 4.4, we

need to show that

C[Xi = xi, X̃i = x̃i] =

{
1/6 if (xi, x̃i) ∈

{
(0, 0), (0, 1), (1, 0)

}
1/2 if (xi, x̃i) = (1, 1).

For xi = x̃i, we have

C[Xi = xi ∧ X̃i = x̃i] = C[Xi = xi] ·
(
C[i ∈ S] + C[i /∈ S] · C[X̃i = x̃i|i /∈ S]

)
= C[Xi = xi] ·

(1
4
+

3

4
·QX(x̃i)

)
=

{
1
2 if xi = x̃i = 1
1
6 if xi = x̃i = 0.

We also have

C[Xi = 0 ∧ X̃i = 1] = C[Xi = 0] · C[i /∈ S] · C[X̃i = 1]

=
1

3
· 3
4
· 2
3

=
1

6
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and similarly C[Xi = 1 ∧ X̃i = 0] = 1/6.
We now show that CX̃,Ỹ ,Z̃ = PX̃,Y,Z̃ . It is immediate from the definition of P that PX̃,Y,Z̃ is

just Q⊗nX,Y,Z . Similarly, CX̃,Ỹ ,Z̃ = CX̃ · CỸ ,Z̃|X̃ = Q⊗nX ·Q⊗nY,Z|X = Q⊗nX,Y,Z .

Let G denote the event that f is approximately consistent on X and X̃ and
(
f(X̃), g(Ỹ ), h(Z̃)

)
wins on (X̃, Ỹ , Z̃).

Claim 4.8. C[G] ≥ α4/8.

Proof. Let A denote the event that f is approximately consistent on X and X̃, and let B denote
the event that

(
f(X̃), g(Ỹ ), h(Z̃)

)
wins on (X̃, Ỹ , Z̃). Note that A depends only on X and X̃, while

B depends only on X̃, Ỹ , and Z̃. We want to show that C[A ∧B] ≥ α4/8.
We have

C[A ∧B] = E[1A · 1B]
= E

[
1A · E[1B|X, X̃]

]
(A depends only on X, X̃)

= E
[
1A · C[B|X, X̃]

]
≥ α2

4
· C
[
1A · C[B|X, X̃] ≥ α2/4

]
(Markov)

=
α2

4
· C
[
1A · C[B|X̃] ≥ α2/4

]
(Ỹ , Z̃ independent of X given X̃)

=
α2

4
· C
[
A ∧ C[B|X̃] ≥ α2/4

]
≥ α4/8 (Claims 4.6 and 4.7),

where E denotes expectation in C.

Claim 4.9. There exists a set s ⊆ [n] and a string x ∈ {0, 1}n such that if we define t
def
= {i ∈ [n] :

i ∈ s ∨ xi = 0}, then |t| ≤ 5n/6 and there exist strings x̃t, ỹt, z̃t ∈ {0, 1}|t| such that

C[G|X = x, S = s, X̃t = x̃t, Ỹt = ỹt, Z̃t = z̃t] ≥ α4/16,

where the left-hand side is well-defined (i.e. the event conditioned on has non-zero probability).

Proof. Recall S is a random set generated by including i in S independently with probability 1/4
for each i ∈ [n], and X is distributed like Bernoulli(2/3)n. Thus by Chernoff bounds,

C
[
|S| ≥ n/3

]
≤ e−2·(1/3−1/4)

2·n = e−n/72

and
C
[∣∣{i : Xi = 0}

∣∣ ≥ n/2
]
≤ e−2·(1/2−1/3)

2·n = e−n/18.

Thus with all but e−n/72 + e−n/18 probability, |T | ≤ n/3 + n/2 = 5n/6.
Together with Claim 4.8, this implies that

C[G ∧ |T | ≤ 5n/6] ≥ α4/8− e−n/18 − e−n/72 ≥ α4/8− 2 · e−n/72

≥ α4/16. (because α4 ≥ 32e−n/72)

By Fact 3.4 there exist fixed values x ∈ {0, 1}n and s ⊆ [n] such that

C
[
G ∧ |T | ≤ 5n/6

∣∣X = x, S = s
]
≥ α4/16.
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Fix such an x and s. By construction t
def
= {i ∈ [n] : i ∈ s ∨ xi = 0} must satisfy |t| ≤ 5n/6.

Applying Fact 3.4 again, there must also exist values x̃t, ỹt, z̃t ∈ {0, 1}|t| such that

C
[
G
∣∣X = x, S = s, X̃t = x̃t, Ỹt = ỹt, Z̃t = z̃t

]
≥ α4/16.

We are now in a position to finish the proof of Proposition 4.3. Let x, s, t, x̃t, ỹt, and z̃t

be as guaranteed by Claim 4.9, and let n′
def
= n − |t|. Since |t| ≤ 5n/6, n′ ≥ n/6. Define f ′ :

{0, 1}n′ → {0, 1}n′
to be the function that on input x′ ∈ {0, 1}n′

outputs f(x̃t, x
′)[n]\t,

6 and define

g′, h′ : {0, 1}n′ → {0, 1}n′
analogously. Let a ∈ {0, 1}n′

denote f(x)[n]\t.

Suppose G holds, X = x, S = s, X̃t = x̃t, Ỹt = ỹt, and Z̃t = z̃t. By the definition of G,(
f(X̃)i, g(Ỹ )i, h(Z̃)i

)
wins on (X̃i, Ỹi, Z̃i) for all i ∈ [n]. In particular(

f ′(X̃−t)i, g
′(Ỹ−t)i, h

′(Z̃−t)i
)
wins on

(
(X̃−t)i, (Ỹ−t)i, (Z̃−t)i

)
for all i ∈ [n′]. (9)

But f ′(X̃−t)i = ai for all but 5 ln(1/α) + 5 of the values of i ∈ [n′] for which (X̃−t)i = 1. This
follows from the approximate consistency of f on X and X̃, and the fact that X[n]\t = x[n]\t = 1n

′
.

For all other i (that is, i for which (X̃−t)i = 0), the value of f ′(X̃−t)i is irrelevant to whether or not(
f ′(X̃−t)i, g

′(Ỹ−t)i, h
′(Z̃−t)i

)
wins on

(
(X̃−t)i, (Ỹ−t)i, (Z̃−t)i

)
. Thus for all but 5 ln(1/α) + 5 values

of i ∈ [n′], (
ai, g

′(Ỹ−t)i, h
′(Z̃−t)i

)
wins on

(
(X̃−t)i, (Ỹ−t)i, (Z̃−t)i

)
(10)

To complete the proof of Proposition 4.3, we simply note that

C
[
G
∣∣X = x, S = s, X̃t = x̃t, Ỹt = ỹt, Z̃t = z̃t

]
≥ α4/16 (Claim 4.9)

and that

CX̃−t,Ỹ−t,Z̃−t|X=x,S=s,X̃t=x̃t,Ỹt=ỹt,Z̃t=z̃t
= Q⊗n

′
(Definition of C).

4.2 Strategies with Constant Functions Can’t Win

Proposition 4.10. For any n ∈ N, any a ∈ {0, 1}n, and any functions g, h : {0, 1}n → {0, 1}n,

Pr
(x,y,z)←Q⊗n

[
(ai, g(y)i, h(z)i) wins on (xi, yi, zi) for more than 0.99n values of i ∈ [n]

]
≤ 3·e−10−7·n.

Proof. Let Wi denote the event that (ai, g(y)i, h(z)i) wins on (xi, yi, zi), and let W denote the event
that Wi holds for at least 0.99n values of i ∈ [n]. Let E denote the event that there are at least
0.1n coordinates i ∈ [n] where yi = zi = 1 (and xi = 0).

By a Chernoff bound, Pr(x,y,z)←Q⊗n [E] ≥ 1− e−2(1/3−1/10)
2n ≥ 1− e−0.1n. By a union bound,

Pr
(x,y,z)←Q⊗n

[
W ∧ E

]
≥ Pr[W ]− e−0.1n. (11)

When W and E both hold, there must exist at least .05n coordinates i for which Wi holds and
yi = zi = 1, meaning that g(y)i ̸= h(z)i, which in turn means that either:

• For at least 0.025n coordinates i, yi = 1 and g(y)i = ai; or

• For at least 0.025n coordinates i, zi = 1 and h(z)i = ai.

6Here we define (x̃t, x
′) as the n-bit string whose ith bit is (x̃t)i if i ∈ t and is x′

i otherwise, where we view the
bits of x̃t and x′ as respectively indexed by t and by [n] \ t.
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Thus it must either hold that

Pr
(x,y,z)←Q⊗n

[
W and for at least 0.025n coordinates i, yi = 1 and g(y)i = ai

]
≥ 1

2
·
(
P [W ]− e−0.1n

)
(12)

or

Pr
(x,y,z)←Q⊗n

[
W and for at least 0.025n coordinates i, zi = 1 and h(z)i = ai

]
≥ 1

2
·
(
P [W ]− e−0.1n

)
(13)

Suppose it is Eq. (13) that holds. In fact this supposition is without loss of generality because
X, Y , and Z are interchangeable in the definition Q⊗n.

Consider any z such that Iz
def
=
{
i ∈ [n] : zi = 1 and h(z)i = ai

}
satisfies |Iz| ≥ 0.025n. The

distribution of XIz conditioned on Z = z is uniform on {0, 1}|Iz |. However, W can happen only if
Xi = 0 for all but 0.01n values of i ∈ Iz. Thus by a Chernoff bound,

P
[
W
∣∣Z = z

]
≤ e−2·(0.0025)

2·0.025·n ≤ e−10
−7·n.

Since this holds for every such z, we must have

Pr
(x,y,z)←Q⊗n

[
W and for at least 0.025n coordinates i, zi = 1 and h(z)i = ai

]
≤ e−10

−7n.

This contradicts Eq. (13) unless P [W ] ≤ 2 · e−10−7·n + e−0.1n ≤ 3 · e−10−7·n.

4.3 Parallel Repetition for the Anti-Correlation Game

We now complete the proof of Theorem 4.2.

Proof of Theorem 4.2. Let n be sufficiently large, and let f, g, h : {0, 1}n → {0, 1}n be any strategy
for G⊗n. If (f, g, h) wins G⊗n with probability α satisfying α > e−10

−9·n (which in particular means
that α4 ≥ 32e−n/72), then by Proposition 4.3, there exists n′ ≥ n/6 and a strategy f ′, g′, h′ :
{0, 1}n′ → {0, 1}n′

for G⊗n′
, with f ′ a constant function, such that (f ′, g′, h′) wins on all but at

most 5 ln(1/α) + 5 < 0.01n′ coordinates of G⊗n′
with probability at least α4/16 > 3 · e−10−7·n′

,
contradicting Proposition 4.10.

5 Four Point AND Distribution

This section is devoted to the proof of the following theorem:

Theorem 5.1. Let G = (X × Y × Z, A × B × C, Q, V ) be a 3-player game with X = Y =
Z = {0, 1}, and Q the uniform distribution over S = {(0, 0, 0), (1, 0, 0), (0, 1, 0), (1, 1, 1)} ={
(x, y, z) ∈ {0, 1}3 : z = x ∧ y

}
, and such that val(G) < 1. Then, there exists a constant c =

c(G) > 0, such that for every n ∈ N, it holds that val(G⊗n) ≤ n−c.

For the rest of this section, we fix 3-player game G satisfying the theorem hypothesis, and a
large enough n ∈ N. Note that we prove the theorem only for large enough n, as the theorem
trivially holds for small n, for a sufficiently small constant c > 0. By Lemma 3.15, we also assume
that the predicate V , on player inputs (1, 1, 1), does not depend on the answer given by the 3rd

player. Let D ⊆ A× B be the set of pairs of answers of player 1 and player 2, that lose the game
G when the players get inputs (1, 1, 1).
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Consider the game G⊗n = ((X × Y × Z)⊗n , (A×B×C)⊗n, P, V ⊗n), and suppose that (X,Y, Z)
is the random variable denoting the inputs to the three players in G⊗n. Let f : {0, 1}n → A⊗n, g :
{0, 1}n → B⊗n, h : {0, 1}n → C⊗n denote a set of optimal strategies for the three players respec-
tively, and let (A,B,C) = (f(X), g(Y ), h(Z)) be the random variables denoting the answers given
by the players.

For each S ⊆ [n], let WS be the event of winning all coordinates i ∈ S. Let W = W[n] be the
event of winning all the coordinates.

Before we prove the theorem, we state the main technical lemma required for the proof, which
is then proved later.

Lemma 5.2. Let δ = 1
100 . Suppose E = E1 × E2 × {0, 1}n is a product event on the inputs of the

players, with P (E) ≥ 2−n
10δ

. Also suppose that for each i ∈ [n], there exist sets Ai ⊆ A,Bi ⊆ B
such that the following hold:

(a) D ⊆ (A× B) \ (Ai × Bi).

(b) P (Xi = 1 ∧Ai ̸∈ Ai |E) ≤ n−δ and P (Yi = 1 ∧Bi ̸∈ Bi |E) ≤ n−δ.

Then, it holds that P (W |E) ≤ n−δ/3.

Next, assuming this lemma, we complete the proof of Theorem 5.1.

Proof of Theorem 5.1. Let δ = 1
100 be as in Lemma 5.2, and let m = ⌈n5δ⌉. We will show that for

every k ∈ [m] ∪ {0}, and every product event E = E1 × E2 × {0, 1}n with P (E) ≥ 2−n
4δ(m−k), it

holds that P (W |E) ≤ vk, where vk = max
{
n−δ/3,

(
1− n−4δ

)k
+ n−4δ

}
. Assuming this, the case

m = k, with E = {0, 1}n × {0, 1}n × {0, 1}n gives us

P (W ) ≤ max

{
n−δ/3,

(
1− n−4δ

)n5δ

+ n−4δ
}
≤ max

{
n−δ/3, n−3δ

}
= n−δ/3,

which completes the proof.
We prove the above claim by induction on k. The base case k = 0 holds trivially as v0 ≥(

1− n−4δ
)k

= 1. Next, we suppose that the claim holds for k − 1, for some 1 ≤ k ≤ m, and we
prove it for k.

Let E = E1 × E2 × {0, 1}n be any event with P (E) ≥ 2−n
4δ(m−k) ≥ 2−n

10δ
. Recall that

D ⊆ A× B is the set of pairs of answers of player 1 and player 2, that lose the game G on inputs
(1, 1, 1). For each i ∈ [n], let L̃i denote the event ((Xi, Yi, Zi) = (1, 1, 1)) ∧ ((Ai, Bi) ∈ D), and let
W̃i be the complement event of L̃i.

We consider the following cases:

1. Suppose that for every i ∈ [n], it holds that P
(
L̃i |E

)
≤ n−4δ.

Consider any fixed i ∈ [n]. Then, for every (ai, bi) ∈ D, we have that

n−4δ ≥ P ((Ai, Bi) = (ai, bi) ∧ (Xi, Yi, Zi) = (1, 1, 1) |E)

= P (Xi = 1 ∧Ai = ai |E) · P (Yi = 1 ∧Bi = bi |E) ,

where the equality follows from the fact that PXY = PX × PY is a product distribution, the
product structure of E, and that Zi is a deterministic function of Xi, Yi. Hence, for every
(ai, bi) ∈ D, either P (Xi = 1 ∧Ai = ai |E) ≤ n−2δ or P (Yi = 1 ∧Bi = bi |E) ≤ n−2δ.
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We define
Ai =

{
ai ∈ A : P (Xi = 1 ∧Ai = ai |E) > n−2δ

}
,

Bi =
{
bi ∈ B : P (Yi = 1 ∧Bi = bi |E) > n−2δ

}
.

Then, for each (ai, bi) ∈ D, it holds that either ai ̸∈ Ai or bi ̸∈ Bi. Also, by a union bound,
we have that

P (Xi = 1 ∧Ai ̸∈ Ai |E) ≤ |A| · n−2δ ≤ n−δ,

P (Yi = 1 ∧Bi ̸∈ Bi |E) ≤ |B| · n−2δ ≤ n−δ.

Hence, we have that A1,B1, . . . ,An,Bn satisfy the hypothesis in Lemma 5.2, and so
P (W |E) ≤ n−δ/3 ≤ vk.

2. Let i ∈ [n] be such that P (L̃i|E) ≥ n−4δ. That is, P (W̃i|E) ≤ 1− n−4δ.

Let T = ((Xi, Yi, Zi), (Ai, Bi)). Then, the event W̃i depends deterministically on T . Let T
be the set of all t that satisfy the event W̃i, and let T ′ ⊆ T consist of all t ∈ T such that
P (t |E) ≥ 2−n

4δ
. Then, we have that

P (W |E) = P
(
W ∧ W̃i |E

)
=
∑
t∈T

P (t |E)P (W |E, t)

=
∑
t∈T ′

P (t |E)P (W |E, t) +
∑

t∈T \T ′

P (t |E)P (W |E, t)

≤
∑
t∈T ′

P (t |E)P (W |E, t) +
∣∣T \ T ′∣∣ · 2−n4δ

≤
∑
t∈T ′

P (t |E)P (W |E, t) + 4 |A| |B| · 2−n4δ

Now, for any t ∈ T ′, the event E ∧ (T = t) is a product event on the inputs of player 1 and

player 2, and it holds that P (E, t) ≥ 2−n
4δ(m−k) · 2−n4δ

= 2−n
4δ(m−(k−1)). Hence, using the

induction hypothesis, we get

P (W |E) ≤
∑
t∈T ′

P (t |E) · vk−1 + 4 |A| |B| · 2−n4δ

≤ P
(
W̃i |E

)
· vk−1 + 4 |A| |B| · 2−n4δ

≤
(
1− n−4δ

)
· vk−1 + 4 |A| |B| · 2−n4δ

≤ vk.

The remainder of this section is devoted to the proof of Lemma 5.2, which we assumed to
complete the proof of Theorem 5.1.

We recall that D ⊆ A× B is the set of pairs of answers of player 1 and player 2, that lose the
game G on inputs (1, 1, 1).

Let δ = 1
100 . We will work with a fixed product event E = E1×E2×{0, 1}n with P (E) ≥ 2−n

10δ
,

and sets A1, . . . ,An ⊆ A and B1, . . . ,Bn ⊆ B such that for all i ∈ [n]:

(a) D ⊆ (A× B) \ (Ai × Bi).
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(b) P (Xi = 1 ∧Ai ̸∈ Ai |E) ≤ n−δ and P (Yi = 1 ∧Bi ̸∈ Bi |E) ≤ n−δ.

Definition 5.3. For any i ∈ [n], we define G(i) to be the event

(Xi ̸= 1 ∨Ai ∈ Ai) ∧ (Yi ̸= 1 ∨Bi ∈ Bi) .

For any subset S ⊆ [n], we define G(S) to be the event
∧
i∈S

G(i).

Lemma 5.4. For every S ⊆ [n], it holds that P (¬G(S) |E) ≤ 2 |S| · n−δ.

Proof. This follows from a union bound on property (b).

Definition 5.5. For any z ∈ {0, 1}n, we define K ′z = {i ∈ [n] : zi = 0}, and m′z = |K ′z|. Also, we
define Kz ⊆ K ′z to be a subset of the largest possible size such that (Ai,Bi, h(z)i) are the same for
each i ∈ Kz, and let mz = |Kz|.

5.1 Fixed Input For Player 3

Throughout this subsection, we will consider a fixed input z ∈ {0, 1}n for player 3. Let K ′ =
K ′z, m′ = m′z, K = Kz, m = mz be as in Definition 5.5.

We will also consider fixed inputs x−K , y−K ∈ {0, 1}[n]\K to player 1 and player 2 in coordinates
[n] \K, and assume that the following hold:

(a) m′ ≥ n
2 , and hence m ≥ cn, for c = 1

2·2|A|+|B|·|C| .

(b) P (E|z, x−K , y−K) ≥ 2−n
11δ ≥ 2−m

12δ
.

Under these assumptions, we will prove a result, namely Lemma 5.9, which we will need for the
proof of Lemma 5.2.

Definition 5.6. For every i ∈ K, we define a 2-player game G̃i as follows:

1. The inputs (x̃i, ỹi) are distributed uniformly over the set S̃ = {(0, 0), (0, 1), (1, 0)}.

2. The players give answers ãi ∈ A and b̃i ∈ B respectively.

3. The predicate Ṽi is given by

Ṽi

(
(x̃i, ỹi), (ãi, b̃i)

)
= V

(
(x̃i, ỹi, 0), (ãi, b̃i, h(z)i)

)
∧ (x̃i ̸= 1 ∨ ãi ∈ Ai) ∧

(
ỹi ̸= 1 ∨ b̃i ∈ Bi

)
.

Observe that this game is actually the same for all i ∈ K, and hence we will simply denote it by G̃.

Claim 5.7. val(G̃) < 1.

Proof. Consider any i ∈ K. Suppose for the sake of contradiction that val(G̃i) = 1. Let f̃i : {0, 1} →
A, and g̃i : {0, 1} → B be winning strategies of player 1 and player 2. Let h̃i : {0, 1} → C satisfy
h̃i(0) = h(z)i.

By the definition of the predicate Ṽi, it must hold that f̃i(1) ∈ Ai and g̃i(1) ∈ Bi. Then, by
property (a), the answers (f̃i(1), g̃i(1)) ̸∈ D, and hence must win the game G on player inputs
(1, 1, 1). This fact, along with how the predicate Ṽi is defined, shows that the strategies f̃i, g̃i, h̃i
win the game G with probability 1, which is a contradiction.
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Lemma 5.8. For any constant ϵ ∈ (0, 1), it holds that

E
S
[P (WS ∧G(S) |E, z, x−K , y−K)] ≤ 2−m

ϵ/2
,

where the expectation is over uniformly random S ⊆ K of size ⌊mϵ⌋.

Proof. Observe that when z, x−K , y−K are fixed, the distribution PXKYK |z,x−K ,y−K
of the remaining

inputs is exactly the same as the input distribution of the game G̃⊗m. Furthermore, the product
structure of E = E1 × E2 × {0, 1}n implies that the distribution PXKYK |E,z,x−K ,y−K

is the same

as the distribution of game G̃⊗m, when inputs drawn conditioned on Ẽ = Ẽ1 × Ẽ2, where Ẽ1 ={
xK : (xK , x−K) ∈ E1

}
⊆ {0, 1}m, and Ẽ2 =

{
yK : (yK , y−K) ∈ E2

}
⊆ {0, 1}m.

Under this identification, we also get strategies f̃ : {0, 1}m → A⊗m and g̃ : {0, 1}m → B⊗m
for the game G⊗m given by f̃(xK) = f(xK , x−K)K and g̃(yK) = g(yK , y−K)K respectively. Given
how the predicate Ṽ for the game G̃ is defined, we have that for any subset S ⊆ K, the probability
P (WS ∧G(S) |E, z, x−K , y−K) equals the probability that f̃ , g̃ win the coordinates corresponding
to S, of the game G̃⊗m, when the input distribution conditioned on Ẽ.

Hence, by Claim 5.7 and Proposition B.2, we get that for all ϵ ∈ (0, 1), it holds that

E
S
[P (WS ∧G(S) |E, z, x−K , y−K)] ≤ 2−m

ϵ/2
,

where the expectation is over uniformly random S ⊆ K of size ⌊mϵ⌋. We used that under the input

distribution of G̃⊗m, the event Ẽ has measure P (E|z, x−K , y−K) ≥ 2−m
12δ

, and 12δ ∈ (0, 1).

Lemma 5.9. For any constant ϵ ∈ (0, 1), it holds that

E
S
[P (W ∧G(S) |E, z, x−K , y−K)] ≤ 2−n

ϵ/8
,

where the expectation is over uniformly random S ⊆ [n] of size ⌊nϵ⌋.

Proof. Let S ⊆ [n] of size ⌊nϵ⌋ be chosen uniformly at random.
Then, the quantity ES [P (W ∧G(S) |E, z, x−K , y−K)] is at most

P
(
|S ∩K| ≤ mϵ/2

)
+ E

S

[
P (W ∧G(S) |E, z, x−K , y−K)

∣∣ |S ∩K| ≥ mϵ/2
]
.

We bound the two terms on the right hand side as follows:

(a) Recall that m ≥ cn, for a constant c > 0. Then,

P
(
|S ∩K| ≤ mϵ/2

)
≤ P

(
|S ∩K| ≤ nϵ/2

)
≤

(
m
⌊nϵ/2⌋

)(n−m+⌊nϵ/2⌋
⌊nϵ⌋

)(
n
⌊nϵ⌋
)

≤ n⌊n
ϵ/2⌋ ·

(
n−m+ ⌊nϵ/2⌋

n

)⌊nϵ⌋

≤ en
ϵ/2 lnn ·

(
1− c

2

)nϵ/2

≤ 2−n
ϵ/2

.
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(b) Observe that the distribution of a uniformly random subset S ⊆ [n] of size ⌊nϵ⌋, conditioned
on |S ∩K| ≥ mϵ/2, is the same as the following. We choose T ⊆ K of size ⌊mϵ/2⌋ uniformly
at random, and then T ′ ⊆ [n] \ T of size ⌊nϵ⌋ − ⌊mϵ/2⌋ uniformly at random, and then let
S = T ∪ T ′. Then, by Lemma 5.8, we can bound the second term as

E
T,T ′

[
P
(
W ∧G(T ∪ T ′) |E, z, x−K , y−K

)]
≤ E

T
[P (WT ∧G(T ) |E, z, x−K , y−K)] ≤ 2−m

ϵ/4
.

Combining the above, we get that the desired quantity is at most 2−n
ϵ/2

+2−m
ϵ/4 ≤ 2−n

ϵ/8
.

5.2 Completing the Proof

Let T be the random variable given by T = (Z,X−KZ
, Y−KZ

), let T1 =
{
(z, x−Kz , y−Kz) : m

′
z ≤ n

2

}
,

and let T2 =
{
(z, x−Kz , y−Kz) : P (E | z, x−Kz , y−Kz) ≤ 2−n

11δ
}
.

Lemma 5.10.
P (T ∈ T1 |E) ≤ 2−n/20.

Proof. By Fact 3.1, it holds that

P
(
m′Z ≤

n

2

)
≤ e−

( 1
3)

2
( 3
4)n

2 = e−n/24 ≤ 2−n/19.

This gives us

P (T ∈ T1 |E) ≤
P
(
m′Z ≤

n
2

)
P (E)

≤ 2−n/19

2−n10δ ≤ 2−n/20.

Lemma 5.11.
P (T ∈ T2 |E) ≤ 2−n

10δ
.

Proof. The left hand side equals

∑
t∈T2

P (t |E) =
∑
t∈T2

P (E | t)P (t)

P (E)
≤
∑
t∈T2

2−n
11δ

P (t)

2−n10δ ≤ 2−n
11δ

2−n10δ ≤ 2−n
10δ

.

Proof of Lemma 5.2. Observe that

P (W |E) =
∑
t

P (t|E) · P (W |E, t)

≤
∑

t̸∈T1∪T2

P (t|E) · P (W |E, t) + P (T ∈ T1 |E) + P (T ∈ T2 |E)

≤
∑

t̸∈T1∪T2

P (t|E) · P (W |E, t) + 2−n/20 + 2−n
10δ

.

We used Lemma 5.10 and Lemma 5.11 for the last inequality.
Let ϵ = δ/2, and let S ⊆ [n] be a uniformly random subset of size ⌊nϵ⌋. By Lemma 5.9, we

know that for each t ̸∈ T1 ∪ T2, it holds that

P (W |E, t) = E
S
[P (W ∧G(S) |E, t) + P (W ∧ ¬G(S) |E, t)] ≤ 2−n

ϵ/8
+ E

S
[P (¬G(S) |E, t)] .
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Hence, by Lemma 5.4, we get∑
t̸∈T1∪T2

P (t|E) · P (W |E, t) ≤ 2−n
ϵ/8

+ E
S
[P (¬G(S) |E)] ≤ 2−n

ϵ/8
+ 2nϵ−δ = 2−n

δ/16
+ 2n−δ/2.

Putting everything together, we get

P (W |E) ≤ 2−n
δ/16

+ 2n−δ/2 + 2−n/20 + 2−n
10δ ≤ n−δ/3.

6 Playerwise Connected Games

In this section, we will prove the following theorem:

Theorem 6.1. (Parallel Repetition for Playerwise Connected Games) Let G be a playerwise con-
nected k-player game such that val(G) < 1. Then, there exists a constant c = c(G) > 0 such that
for every n ∈ N, it holds that val(G⊗n) ≤ n−c.

We will follow the proof outline described in Section 2.4. We fix a k-player game G =
(X ,A, Q, V ) such that val(G) < 1, and Q is the uniform distribution over its support S ⊆ X .
Consider the game G⊗n = (X⊗n,A⊗n, P, V ⊗n) for any large enough n ∈ N. Let X be the random
variable denoting the inputs to the players in the game G⊗n. Let E = E1 × · · · ×Ek ⊆ X⊗n be an
arbitrary product event such that P (E) ≥ n−δ, where δ = 0.4.

Following [Raz98, Hol09, DHVY17], we define our dependency breaking random variable vari-
able R as follows.

Definition 6.2. For each i ∈ [n], define Ri = (Di,Mi), where Di ∈ [k] is chosen uniformly at
random, and Mi = X−Di

i . Define R = (R1, . . . , Rn).
We will use PR to denote the distribution of R, ignoring the fact that the definition of R uses

randomness additional to that coming from P .

Next, we state two important lemmas, which are proved in Section 6.1. The expectations in
these lemmas are with respect to the uniform distribution over i ∈ [n].

Lemma 6.3.

E
i∈[n]

∥∥PXi|E − PXi

∥∥
1
≲

√
1

n
log2

1

P (E)
.

Lemma 6.4.

E
i∈[n]

E
xi∼PXi|E

∥∥PR−i|xi,E − PR−i|E
∥∥
1
≲

1

P (E)

√
1

n
log2

1

P (E)
.

We remark that proving the above lemma without the 1/P (E) factor would show that the value
of the repeated game decays exponentially.

The following claim from [DHVY17] follows from the definition of the random variable R.

Claim 6.5. (Dependency Breaking Property) For each i ∈ [n], and for each xi, r−i, it holds that

PX|xi,r−i
= PX1|r−i,x1

i
× · · · × PXk|r−i,xk

i
.

Since E = E1 × · · · × Ek is a product event, it further holds that

PX|xi,r−i,E = PX1|r−i,x1
i ,E

1 × · · · × PXk|r−i,xk
i ,E

k .
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Lemma 6.6. There exists a constant ϵ > 0 such that

E
i∈[n]

[
vali(G⊗n | (P |E))

]
≤ 1− ϵ.

Proof. Consider the following (randomized) strategy for the game G. The k players get an input y
sampled from Q, with the jth player getting yj , for each j ∈ [k].

1. Using shared randomness, the players sample i ∈ [n] uniformly, and sample r−i ∼ PR−i|E .
Let (f j)j∈[k] be a strategy that achieves value vali(G⊗n | (P |E)) (the players can decide on
such strategies for each i ∈ [n] beforehand).

2. For each j ∈ [k], the jth player samples xj ∼ P
Xj |r−i,X

j
i =yj ,Ej , and outputs the ith coordinate

of f j(xj) as an answer.

Let Ii(x) be the indicator random variable for the event that the optimal strategy for the ith

coordinate wins on questions xi. Then, the value obtained by the above strategy is

∑
y

Q(y) · E
i∈[n]

∑
r−i

P (r−i|E) ·
∑
x

∏
j∈[k]

P
(
xj |r−i, X

j
i = yj , Ej

)
· Ii(x)


= E

i∈[n]

∑
y,r−i,x

Q(y) · P (r−i|E) · P (x|r−i, Xi = y,E) · Ii(x) (Claim 6.5)

≥ E
i∈[n]

∑
y,r−i,x

P (Xi = y|E) · P (r−i|E) · P (x|r−i, Xi = y,E) · Ii(x)−O

(√
δ log2 n

n

)
(Lemma 6.3)

≥ E
i∈[n]

∑
y,r−i,x

P (Xi = y|E) · P (r−i|E,Xi = y) · P (x|r−i, Xi = y,E) · Ii(x)−O

(
nδ ·

√
δ log2 n

n

)
(Lemma 6.4)

= E
i∈[n]

∑
x

P (x|E) · Ii(x)−O

(
nδ ·

√
δ log2 n

n

)

= E
i∈[n]

[
vali(G⊗n | (P |E))

]
−O

(
nδ ·

√
δ log2 n

n

)
.

By Fact 3.7, this value must be at most val(G) < 1, and the choice δ = 0.4 and ϵ = 1−val(G)
2 > 0

gives the desired result for large enough n.

The above lemmas together prove our main theorem.

Proof of Theorem 6.1. Let G be any playerwise connected k-player game with val(G) < 1. Com-
bining Lemma 3.14, Lemma 3.18, and Lemma 6.6 (along with the probabilistic method), we get
that there exists a constant c > 0 such that for large enough n, it holds that val(G⊗n) ≤ n−c. The
result then holds for all n ∈ N by making the constant c > 0 small enough.

6.1 Technical Lemmas

In this section, we will prove Lemma 6.3 and Lemma 6.4.
First, we state the following lemma from [Raz98, Hol09].

Lemma 6.7. Let PV = PV1 × · · · ×PVn be a product distribution over a set V⊗n, and W an event.
Then,

1

n

n∑
i=1

∥∥PVi|W − PVi

∥∥
1
≲

√
1

n
log2

1

PV (W )
.
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Proof. See Appendix B for a proof sketch.

Proof of Lemma 6.3. Applying Lemma 6.7 to the distribution PX = PX1 ×· · ·×PXn and the event
E gives the desired result.

Now, we state the main lemma of this section.

Lemma 6.8.

E
i∈[n]

E
r−i∼PR−i|E

∥∥PXi|r−i,E − PXi

∥∥
1
≲

1

P (E)

√
1

n
log2

1

P (E)
.

Next, we prove Lemma 6.4, assuming the above lemma.

Proof of Lemma 6.4. The equations in Lemma 6.3 and Lemma 6.8, along with the triangle inequal-
ity give that

E
i∈[n]

E
r−i∼PR−i|E

∥∥PXi|r−i,E − PXi|E
∥∥
1
≲

1

P (E)

√
1

n
log2

1

P (E)
.

By Bayes’ rule, it holds that for every i ∈ [n],

E
r−i∼PR−i|E

∥∥PXi|r−i,E − PXi|E
∥∥
1
=
∥∥PXi,R−i|E − PXi|E · PR−i|E

∥∥
1
= E

xi∼PXi|E

∥∥PR−i|xi,E − PR−i|E
∥∥
1
.

Substituting this in the above inequality, we get the desired result.

The remainder of this section is devoted to the proof of Lemma 6.8.

6.2 Proof of The Main Lemma

6.2.1 Conditioning For a Single Player

Fix some j ∈ [k]. We show that a stronger version of Lemma 6.8 holds in the case we are conditioning
only on Ej (by which we mean the event Xj ∈ Ej), instead of conditioning on E.

Lemma 6.9.

E
i∈[n]

E
r−i∼PR−i|Ej

∥∥PXi|r−i,Ej − PXi

∥∥
1
≲

√
1

n
log2

1

P (Ej)
.

To prove the above lemma, we will need the following lemmas.

Lemma 6.10. Let HG be the (k − 1)-connection graph (see Definition 3.9). Suppose there is an
edge between y, z ∈ S in the jth direction, that is, y−j = z−j and yj ̸= zj. Then,

E
i∈[n]

E
r−i∼PR−i|Ej

∣∣P (Xi = y|r−i, Ej
)
− P

(
Xi = z|r−i, Ej

)∣∣ ≲√ 1

n
log2

1

P (Ej)
.

Proof. For any r, applying Lemma 6.7 to the distribution PX|r = PX1|r×· · ·×PXn|r, and the event
Ej gives that

E
i∈[n]

∥∥PXi|r,Ej − PXi|r
∥∥
1
≲

√
1

n
log2

1

P (Ej |r)
.
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Taking expectation over r ∼ PR|Ej , we get that

E
r∼P

R|Ej

E
i∈[n]

∥∥PXi|r,Ej − PXi|r
∥∥
1
≲ E

r∼P
R|Ej

√
1

n
log2

1

P (Ej |r)
.

We simplify the two sides of the above equation separately.

Right-hand side: The function
√
log2(·) is concave over the domain [1,∞), and hence by using

Jensen’s inequality, we get

E
r∼P

R|Ej

√
1

n
log2

(
1

P (Ej |r)

)
≤

√√√√ 1

n
log2

(
E

r∼P
R|Ej

1

P (Ej |r)

)
≤

√
1

n
log2

1

P (Ej)
.

Left-hand side:

E
r∼P

R|Ej

E
i∈[n]

∥∥PXi|r,Ej − PXi|r
∥∥
1
= E

i∈[n]
E

r∼P
R|Ej

∥∥PXi|r,Ej − PXi|r
∥∥
1

= E
i∈[n]

E
r−i∼PR−i|Ej

E
ri∼PRi|r−i,E

j

∥∥PXi|r,Ej − PXi|r
∥∥
1
.

We know that with probability 1/k (independent of everything else), Ri = (j,X−ji ). Hence,
the above quantity is at least 1/k times the following:

E
i∈[n]

E
r−i∼PR−i|Ej

E
x−j
i ∼PX

−j
i

|r−i,E
j

∥∥∥PXi|x−j
i ,r−i,Ej − P

Xi|x−j
i ,r−i

∥∥∥
1

= E
i∈[n]

E
r−i∼PR−i|Ej

E
x−j
i ∼PX

−j
i

|r−i,E
j

∥∥∥PXj
i |x

−j
i ,r−i,Ej − P

Xj
i |x

−j
i

∥∥∥
1

= E
i∈[n]

E
r−i∼PR−i|Ej

∑
xi

P
(
x−ji |r−i, E

j
)
·
∣∣∣P (xji |x−ji , r−i, E

j
)
− P

(
xji |x

−j
i

)∣∣∣
= E

i∈[n]
E

r−i∼PR−i|Ej

∑
xi

∣∣∣P (xi|r−i, Ej
)
− P

(
x−ji |r−i, E

j
)
P
(
xji |x

−j
i

)∣∣∣
≥ E

i∈[n]
E

r−i∼PR−i|Ej

∣∣P (Xi = y|r−i, Ej
)
− P

(
Xi = z|r−i, Ej

)∣∣ .
The last inequality follows from the triangle inequality applied to the terms corresponding
to xi = y and xi = z. We use the observation that since y−j = z−j , and PXi is the uniform
distribution over S, the second quantity inside the bracket is equal in the cases xi = y and
xi = z.

Combining the left-hand side and the right-hand side, we get the desired result.

Lemma 6.11. Let y, z ∈ S be such that yj = zj. Then, for each i ∈ [n], and each r−i, it holds that

P
(
Xi = y|r−i, Ej

)
= P

(
Xi = z|r−i, Ej

)
.

Proof. Fix any i ∈ [n] and r−i. If P
(
Xj

i = yj |r−i, Ej
)
= 0, then both quantities are zero. If not,

we observe that since PXi is the uniform distribution over S, and that we are conditioning only on
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Ej , it holds that

P
(
Xi = y|r−i, Ej

)
= P

(
Xj

i = yj |r−i, Ej
)
· P
(
X−ji = y−j |Xj

i = yj , r−i, E
j
)

= P
(
Xj

i = yj |r−i, Ej
)
· P
(
X−ji = y−j |Xj

i = yj
)

= P
(
Xj

i = yj |r−i, Ej
)
· 1

|{w ∈ S : wj = yj}|
.

A similar expression is valid for z, and equals the above one since yj = zj .

Proof of Lemma 6.9. Since our game G is playerwise connected (see Definition 3.10), the graph Hj
G

is connected. This fact, along with Lemma 6.10, and Lemma 6.11 gives that for any y, z ∈ S,

E
i∈[n]

E
r−i∼PR−i|Ej

∣∣P (Xi = y|r−i, Ej
)
− P

(
Xi = z|r−i, Ej

)∣∣ ≲√ 1

n
log2

1

P (Ej)
.

Now, by the above inequalities, along with the fact that PXi is the uniform distribution over S,

E
i∈[n]

E
r−i∼PR−i|Ej

∥∥PXi|r−i,Ej − PXi

∥∥
1
≲

√
1

n
log2

1

P (Ej)
.

6.2.2 The General Case

We know that Q is the uniform distribution over its support S ⊆ X = X 1 × · · · × X k. Let
Γ be the distribution over X , which equals the product of marginals of Q. That is, Γ(y) =
Q(y1)Q(y2) . . . Q(yk), for each y ∈ X . For each i ∈ [n], let P−iΓ be the distribution over X⊗n given
by (P−iΓ)(x) = P (x−i)Γ(xi).

Observation 6.12. The distribution Γ has support X .

Proof. For each j ∈ [k], the graph Hj
G is connected, and hence each question to each player occurs

with positive probability under Q (also see the remark after Definition 3.10).

We show that Lemma 6.8 holds when the distribution P is replaced by P−iΓ. Note that the
conditional distributions in the next lemma are well-defined since for any event W , if P (W ) > 0,
then P−iΓ(W ) > 0. This is because by Observation 6.12, we can write Γ as a non-trivial convex
combination of Q and some other distribution over X .

Lemma 6.13.

E
i∈[n]

E
r−i∼PR−i|E

∥∥(P−iΓ)Xi|r−i,E − (P−iΓ)Xi

∥∥
1
≲

1

P (E)

√
1

n
log2

1

P (E)
.

Proof. Fix some i ∈ [n]. By the definition of the random variable R, and the fact that Γ is a
product distribution, it holds that

(P−iΓ)X|r−i
= (P−iΓ)X1|r−i

× · · · × (P−iΓ)Xk|r−i
.

Since E = E1 × · · · × Ek is a product event, we get

(P−iΓ)X|r−i,E = (P−iΓ)X1|r−i,E1 × · · · × (P−iΓ)Xk|r−i,Ek .
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In particular, this implies that

(P−iΓ)Xi|r−i,E = (P−iΓ)X1
i |r−i,E1 × · · · × (P−iΓ)Xk

i |r−i,Ek .

Also, since Γ is a product distribution, we know that (P−iΓ)Xi = (P−iΓ)X1
i
× · · · × (P−iΓ)Xk

i
.

This gives us

E
i∈[n]

E
r−i∼PR−i|E

∥∥(P−iΓ)Xi|r−i,E − (P−iΓ)Xi

∥∥
1

≤
∑
j∈[k]

E
i∈[n]

E
r−i∼PR−i|E

∥∥∥(P−iΓ)Xj
i |r−i,Ej − (P−iΓ)Xj

i

∥∥∥
1

=
∑
j∈[k]

E
i∈[n]

E
r−i∼PR−i|E

∥∥∥PXj
i |r−i,Ej − P

Xj
i

∥∥∥
1
.

The equality (P−iΓ)Xj
i |r−i,Ej = P

Xj
i |r−i,Ej uses the following facts:

1. The distribution Γ has the same marginals as Q.

2. The distribution over the variables X−ji is irrelevant for the distribution (P−iΓ)Xj
i |r−i,Ej . This

is because we are conditioning only on Ej (rather than E), and R−i has no dependence on
the variables X−ji .

Observe that for each j ∈ [k], and each r−i

P (r−i|E) =
P (r−i, E)

P (E)
≤

P
(
r−i, E

j
)

P (E)
= P

(
r−i|Ej

)
·
P
(
Ej
)

P (E)
.

Using this, we get that the above expression is at most∑
j∈[k]

P
(
Ej
)

P (E)
E

i∈[n]
E

r−i∼PR−i|Ej

∥∥∥PXj
i |r−i,Ej − P

Xj
i

∥∥∥
1

≤
∑
j∈[k]

P
(
Ej
)

P (E)
E

i∈[n]
E

r−i∼PR−i|Ej

∥∥PXi|r−i,Ej − PXi

∥∥
1

≲
∑
j∈[k]

P
(
Ej
)

P (E)
·

√
1

n
log2

1

P (Ej)
(Lemma 6.9)

≲
1

P (E)

√
1

n
log2

1

P (E)

(
for each j ∈ [k], P (E) ≤ P

(
Ej
)
≤ 1
)
.

Proof of Lemma 6.8. By Observation 6.12, we know that there exists a constant γ > 0 such that
for each y ∈ X , Γ(y) ≥ γ.

For each i ∈ [n], we define a random variable Ti over the set {0, 1}, depending only on Xi (and

additional randomness), as follows. For each xi ∈ X , we define Pr [Ti = 1|Xi = xi] =
γQ(xi)
Γ(xi)

∈ [0, 1].
By Lemma 6.13, we know that

E
i∈[n]

E
r−i∼PR−i|E

∥∥(P−iΓ)Xi|r−i,E − (P−iΓ)Xi

∥∥
1
≲

1

P (E)

√
1

n
log2

1

P (E)
.

36



Conditioning on the event Ti = 1, by Fact 3.2 we get that

E
i∈[n]

E
r−i∼PR−i|E

∥∥PXi|r−i,E − PXi

∥∥
1
≲

2

γ
· 1

P (E)

√
1

n
log2

1

P (E)
,

which completes the proof. Note that technically we apply Fact 3.2 to the product of the distribution
P and the distribution from which the extra randomness for (Ti)i∈[n] is coming.

We used the following facts:

1.

(P−iΓ)(Ti = 1) =
∑
xi∈X

Γ(xi) ·
γQ(xi)

Γ(xi)
= γ > 0.

2. The distribution (P−iΓ)|Ti=1 equals the distribution P , since for each x ∈ X⊗n,

(P−iΓ) (X = x|Ti = 1) =
(P−iΓ) (Ti = 1|X = x) · (P−iΓ) (X = x)

(P−iΓ) (Ti = 1)

=
1

γ
·
(
γQ(xi)

Γ(xi)
· P (x−i)Γ(xi)

)
= P (x−i)Q(xi) = P (x).

3. For each r−i such that P (r−i|E) > 0,

(P−iΓ)(Ti = 1|r−i, E) ≥ (P−iΓ)(Ti = 1, r−i, E)

≥ (P−iΓ)(r−i, E|Ti = 1) · (P−iΓ)(Ti = 1)

= P (r−i, E) · γ
> 0.

7 Hamming Weight One Distribution with Binary Outputs

In this section, we analyze parallel repetition for three-player games with inputs drawn uniformly
from the set S = {(1, 0, 0), (0, 1, 0), (0, 0, 1)} of hamming-weight one inputs, and having binary
outputs. Formally, we prove the following theorem:

Theorem 7.1. Let G = (X ×Y ×Z,A×B×C, Q, V ) be a 3-player game with X = Y = Z = A =
B = C = {0, 1}, and Q the uniform distribution over S = {(1, 0, 0), (0, 1, 0), (0, 0, 1)}, and such that
val(G) < 1. Then, there exists a constant c = c(G) > 0, such that for every n ∈ N, it holds that
val(G⊗n) ≤ 2−cn.

Proof. By Lemma 3.15, it suffices to consider the case when the predicate V only depends on
the answers of the two players that receive the input 0. The predicate V is then given by three
predicates V1(b, c), V2(a, c), V3(a, b), where a, b, c ∈ {0, 1} denote the outputs of the players when
they receive input 0. We will think of these predicates as given by 3 tables, as shown in the figure.

We will do a case analysis over all predicates in the following manner:

Case 1: At least one of the rows or columns in some table has all 0s. This is analyzed in
Section 7.1.

Case 2: Each row and column in each table has at least one 1. This is analyzed in Section 7.2.
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c = 0 c = 1

b = 0 ∗ ∗
b = 1 ∗ ∗

V1

c = 0 c = 1

a = 0 ∗ ∗
a = 1 ∗ ∗

V2

b = 0 b = 1

a = 0 ∗ ∗
a = 1 ∗ ∗

V3

In either case, we prove the theorem only for large enough n, as the theorem trivially holds for
small n, for a sufficiently small constant c > 0.

Remark. Another way to view this predicate is to think of it as a tripartite graph G = (W1 ∪W2 ∪
W3, E), with each Wi having 2 vertices, corresponding to player answers 0 and 1 (on input 0). The
accepting answer pairs in V1 correspond to the edges E ∩ (W2 ×W3), and similarly V2 corresponds
to E ∩ (W1 ×W3), and V3 corresponds to E ∩ (W1 ×W2).

7.1 Case 1 Analysis

We consider the case when at least one of the rows or columns in some table has all 0s. By using
symmetry among the players and possibly using the transformation a 7→ 1− a, we can assume this
is the row labelled by a = 1 in V3. More precisely, we assume V3(a, b) ≤ I [a = 0], where we use I
to denote the indicator operator.

Next, we prove an exponential parallel repetition bound, assuming that the predicate V is such
that val(G) < 1.

Consider the n-fold repeated game G⊗n = ((X × Y × Z)⊗n , (A× B × C)⊗n , P, V ⊗n), and sup-
pose that (X,Y, Z) is the random variable denoting the inputs to the three players in G⊗n. Let
the functions f, g, h : {0, 1}n → {0, 1}n denote a set of optimal strategies for the three players
respectively. Let W = {(x, y, z) ∈ S⊗n |V (x, y, z, f(x), g(y), h(z)) = 1} denote the event of winning
the game. Let α = P (W ), and for the sake of contradiction, assume that α ≥ 2−ϵn for some small
enough constant ϵ > 0 (to be specified later).

Let E = {(x, y, z) ∈W |P (W |x) ≥ α/2} denote the sub-event of W that remains after removing
negligible inputs (with respect to W ) of the first player. Then, it holds that

(a) P (E) ≥ α/2.

(b) For each x such that P (E|x) > 0, it holds that P (E|x) = P (W |x) ≥ α/2.

Now, consider any fixed input x for player 1, and suppose αx = P (E|x) > 0 (and hence
αx ≥ α/2). Let Sx = {i ∈ [n] : xi = 0, f(x)i = 1}, and sx = |Sx|. Then, for each y, z such that
(x, y, z) ∈ E, and for each i ∈ Sx, it must hold that yi = 1, zi = 0 (by the assumed condition on V3).
In particular, this implies that αx ≤ (1/2)sx , since after conditioning on xi = 0, the inputs (yi, zi)
equal (0, 1) or (1, 0) each with probability 1/2. Hence, we get that sx ≤ log2 (1/αx) ≤ log2 (2/α).

The above argument shows that the strategy (0n, g, h), where 0n denotes the constant all zeros
function, wins at least n− log2 (2/α) ≥ 3n/4 (for small enough ϵ) coordinates when the input lies
in E, which happens with probability at least α/2.

Next, we consider the 2-player game G̃, which naturally arises when we think of the first player’s
answer to be fixed to 0 in G. It is defined formally as follows:

1. The inputs (p̃, q̃) are distributed uniformly over the set S̃ = {(0, 0), (0, 1), (1, 0)}.

2. The players give answers b̃, c̃ ∈ {0, 1}.

3. The predicate Ṽ is given by Ṽ
(
(p̃, q̃), (b̃, c̃)

)
= V

(
(1− p̃− q̃, p̃, q̃), (0, b̃, c̃)

)
.

38



The following are easy to verify:

(a) val(G̃) ≤ val(G) ≤ 2/3.

(b) With probability at least α/2, the strategy (g, h) wins at least 3n/4 coordinates in G̃⊗n.

By standard concentration bounds on 2-player parallel repetition (see Proposition B.3), we know
that for any strategy, the probability of winning at least 3n/4 coordinates in G̃⊗n is at most 2−δn,
where δ > 0 is an absolute constant. Hence, it must hold that α/2 ≤ 2−δn, which is a contradiction
for small enough ϵ > 0.

We remark that the strong result of Proposition B.3 is not really needed here, and we only
use it for brevity. A case analysis on the possible predicates makes this more evident: each of the
resulting games turns out to be very easy to analyze once the answer for player 1 is fixed to all
zeros.

7.2 Case 2 Analysis

Suppose that each row and column in each table has at least one 1. Then, in each table, at least
one of the two diagonals (indexed by the {(0, 0), (1, 1)} or {(1, 0), (0, 1)} entries) has all 1s. By
possibly using the transformations a 7→ 1 − a and b 7→ 1 − b, we can assume that the diagonal
indexed by the {(0, 0), (1, 1)} entries has all 1s, in both V1 and V2. More precisely, we assume that
V1(b, c) ≥ I [b = c] and V2(a, c) ≥ I [a = c], where we use I to denote the indicator operator. Further,
we assume that the predicate V is such that val(G) < 1.

Now, if V3(0, 0) = 1 then (a, b, c) = (0, 0, 0) is a strategy that wins on all points in S, and
val(G) = 1. Similarly, if V3(1, 1) = 1 then (a, b, c) = (1, 1, 1) wins on all points in S. Hence, it must
hold that V3(0, 0) = V3(1, 1) = 0. Since we assumed each row in V3 has at least one 1, it holds that
V3(a, b) = I [a ̸= b].

At this point, it is not hard to show that all the remaining ∗ entries must be zero:

• If V1(0, 1) = 1, then (a, b, c) = (1, 0, 1) wins on all points in S.

• If V1(1, 0) = 1, then (a, b, c) = (0, 1, 0) wins on all points in S.

• If V2(0, 1) = 1, then (a, b, c) = (0, 1, 1) wins on all points in S.

• If V2(1, 0) = 1, then (a, b, c) = (1, 0, 0) wins on all points in S.

Hence, the three predicates are given by V1(b, c) = I [b = c], V2(a, c) = I [a = c] and V3(a, b) =
I [a ̸= b].

Applying the transformation c 7→ 1−c, the predicate V is given by V1(b, c) = I [b ̸= c], V2(a, c) =
I [a ̸= c] and V3(a, b) = I [a ̸= b]. This is exactly the anti-correlation game, an exponential parallel
repetition decay bound for which is proven in Section 4 (see Theorem 4.2). Note that in Section 4, we
think of the input as uniform over {(0, 1, 1), (1, 0, 1), (1, 1, 0)}, which is easily seen to be equivalent.

8 Three Player Games over Binary Alphabet

8.1 The Main Theorem

In this section, we prove the following main result:
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Theorem 8.1. Let G = (X ×Y ×Z,A×B×C, Q, V ) be a 3-player game with X = Y = Z = A =
B = C = {0, 1}, and such that val(G) < 1. Then, there exists a constant c = c(G) > 0, such that
for every n ∈ N, it holds that val(G⊗n) ≤ n−c.

Proof. By Lemma 3.14, it suffices to only consider the case when the distribution Q is the uniform
distribution over its support S ⊆ {0, 1}3. Also notice that we only need to analyze S up to symmetry
among the 3 players, and up to symmetry of the inputs 0 and 1 (that is, up to symmetries of the
cube {0, 1}3).

When G is connected, Theorem 3.12 provides an inverse exponential bound val(G⊗n) = 2−Ω(n).
Therefore we only need to consider the case when G is not connected, or equivalently, the graph HG
(see Definition 3.9) is not connected. Notice that the graph HG is the subgraph of the cubical graph
{0, 1}3 induced by S. Since HG is not connected, there must be a smallest connected component
S ′ ⊆ S in HG of size 1 or 2.

If |S ′| = 2, by symmetry assume that S′ = {(1, 1, 0), (1, 1, 1)}. Then S \ S′ is contained in
{(0, 0, 0), (0, 0, 1)}, which implies that the input (x, y, z) always satisfies x = y. This means that
the game G is essentially a two-player game, where an inverse exponential decay bound is known
by Theorem 3.11.

If |S ′| = 1, by symmetry assume that S′ = {(1, 1, 1)}. Then S \ S′ is contained in
{(0, 0, 0), (1, 0, 0), (0, 1, 0), (0, 0, 1)}, and we perform a case analysis in below:

1. |S| ≤ 2. Then G always degenerates to a two-player game, similar to the case of |S ′| = 2
above.

2. |S| = 3. To avoid degeneracy it must hold that (0, 0, 0) /∈ S, so by symmetry we only consider
S = {(1, 0, 0), (0, 1, 0), (1, 1, 1)}, or equivalently, S = {(1, 0, 0), (0, 1, 0), (0, 0, 1)}. The specific
game of interest, the anti-correlation game, was studied in Section 4. The general game with
binary outputs was analyzed in Section 7, where we proved an inverse exponential decay
bound (see Theorem 7.1).

3. |S| = 4 and (0, 0, 0) ∈ S. By symmetry we consider S = {(0, 0, 0), (1, 0, 0), (0, 1, 0), (1, 1, 1)}.
We proved an inverse polynomial decay bound for this four-point AND distribution in Sec-
tion 5 (see Theorem 5.1).

4. |S| = 4 and (0, 0, 0) /∈ S, that is, S = {(1, 0, 0), (0, 1, 0), (0, 0, 1), (1, 1, 1)}. This is equivalent
to the support of the GHZ game, and and an inverse polynomial decay bound is known (see
Theorem 3.13)

5. |S| = 5, that is, S = {(0, 0, 0), (1, 0, 0), (0, 1, 0), (0, 0, 1), (1, 1, 1)}. In particular, the game G is
playerwise connected (see Definition 3.10), and we proved inverse polynomial decay bounds
for all playerwise connected games in Section 6 (see Theorem 6.1).

8.2 A General Game on Hamming Weight One Input

We observe that Theorem 8.1 works for arbitrary answer lengths in all cases except when the
support S has |S| = 3 with all disjoint points, for example, S = {(1, 0, 0), (0, 1, 0), (0, 0, 1)}.

Next, we describe a very simple family of 3-player games {Gk}k∈N, such that proving a bound
on the value of parallel repetition for games in this family will extend Theorem 8.1 to all games
with X = Y = Z = {0, 1}, and arbitrary answer sets A,B, C.
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Definition 8.2. For every k ∈ N, we define a 3-player game Gk = (X ×Y×Z,Ak×Bk×Ck, Q, Vk),
with X = Y = Z = {0, 1}, and Q the uniform distribution over S = {(1, 0, 0), (0, 1, 0), (0, 0, 1)}, as
follows:

(a) Ak = Bk = {0, 1}k, and Ck = [k].

(b) For all (x, y, z) ∈ S, and (a, b, c) ∈ A× B × C,

Vk ((x, y, z), (a, b, c)) =


(ai ∧ bi)i∈[k] = 0k, if (x, y, z) = (0, 0, 1)

ac = 1, if (x, y, z) = (0, 1, 0)

bc = 1, if (x, y, z) = (1, 0, 0)

.

It is an easy check that val(Gk) = 2/3. For every n ∈ N, we define ρk(n) = val(G⊗nk ).

Proposition 8.3. Let G = (X×Y×Z,A×B×C, Q, V ) be a 3-player game with X = Y = Z = {0, 1},
and Q the uniform distribution over S = {(1, 0, 0), (0, 1, 0), (0, 0, 1)}, and such that val(G) < 1.
Then, for every n ∈ N, it holds that val(G⊗n) ≤ ρk(n), where k = max {|A| , |B| , |C|}.

Proof. Let G be a game as specified. Without loss of generality, we assume that A = B = C = [k].
By Lemma 3.15, it also suffices to assume that the predicate V only depends on the answers of
the two players that get input 0. We observe that since val(G) < 1, for every a, b ∈ [k], if it
holds that V ((0, 0, 1), (a, b, ∗)) = 1, then for every c ∈ [k], it holds that V ((0, 1, 0), (a, ∗, c)) ∧
V ((1, 0, 0), (∗, b, c)) = 0

We consider the game G⊗n = ((X × Y × Z)⊗n , (A× B × C)⊗n , P, V ⊗n). Let f, g, h : {0, 1}n →
[k]n be optimal strategies for the game G⊗n.

We define strategies fk : {0, 1}n → A⊗nk , gk : {0, 1}n → B⊗nk , hk : {0, 1}n → C⊗nk , for the game
G⊗nk , as follows: For every x, y, z ∈ {0, 1}n, and every i ∈ [n], we define

fk(x)i = (V ((0, 1, 0), (f(x)i, ∗, c)))c∈[k] ,

gk(y)i = (V ((1, 0, 0), (∗, g(y)i, c)))c∈[k] ,
hk(z)i = h(z)i.

It is clear (from the above observation about G) that if the strategies f, g, h win the game G⊗n
on an input (x, y, z), then the strategies fk, gk, hk also win the game G⊗nk on input (x, y, z). This
shows that ρk(n) = val(G⊗nk ) ≥ val(G⊗n).

A Preliminary Lemmas

A.1 Probability Facts

Proof of Fact 3.2.∥∥PX|W −QX|W
∥∥
1
=
∑
x∈W

∣∣∣∣ PX(x)

PX(W )
− QX(x)

QX(W )

∣∣∣∣
≤
∑
x∈W

∣∣∣∣ PX(x)

PX(W )
− PX(x)

QX(W )

∣∣∣∣+ ∑
x∈W

∣∣∣∣ PX(x)

QX(W )
− QX(x)

QX(W )

∣∣∣∣
≤ PX(W ) · |PX(W )−QX(W )|

PX(W ) ·QX(W )
+

1

QX(W )
· ∥PX −QX∥1

≤ 2

QX(W )
· ∥PX −QX∥1 .
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Proof of Fact 3.3.

P (X ̸∈ T |E) =
∑
x ̸∈T

P (X = x |E) =
∑
x ̸∈T

P (E |x)
P (E)

· P (X = x) <
∑
x ̸∈T

α · P (X = x) ≤ α.

A.2 Multiplayer Game Results

Proof of Lemma 3.14. It is easy to see that v(1) = val(G̃) < 1, since any strategy that wins with
probability 1 with respect to U also wins with probability 1 with respect to Q, since they have the
same support S.

Observe that we can write Q = γU + (1 − γ)Q′, for some constant γ ∈ (0, 1], and for some
distributionQ′ over S. Equivalently, drawing a sample fromQ can be thought of as the following two
step process: First, we toss a coin that lands heads with probability γ and tails with probability 1−γ.
If the coin lands heads, we draw a sample from U , and else we draw a sample from Q′. In a similar
manner, drawing n times independently from Q can be thought of as first tossing n such coins, and
then choosing n samples based on the values of the coin tosses. Let Z = (Z1, . . . , Zn) ∈ {0, 1}n be
a random variable denoting the values of these coins. Then, for each i ∈ [n], independently, Zi is 1
with probability γ and 0 with probability 1− γ.

We wish to bound the value of the game G⊗n. For this, we can assume that each of the players
is also given Z as input, since this can only increase the game’s value. Now, consider any fixed
value z ∈ {0, 1}n, and let m = |z| be the number of coordinates of z that are ones. Observe that
conditioned on the event Z = z, the value of the game is at most v(m). This holds because the
players can simply embed a copy of the game G̃⊗m in the m coordinates corresponding to the ones
in z, and use shared randomness to sample the remaining n−m coordinates from Q′ independently.

Hence, we get that for a small enough constant β > 0,

val(G⊗n) ≤
n∑

m=0

Pr [|Z| = m] · v(m)

≤ Pr
[
|Z| ≤ γn

2

]
· 1 + 1 · v

(⌊γn
2

⌋)
(v is non-increasing)

≤ e−γn/8 + v
(⌊γn

2

⌋)
(Fact 3.1)

≤ 2v(⌊βn⌋) (v(n) ≥ v(1)n, v(1) = val(G̃) < 1).

Proof of Lemma 3.15. For every x ∈ X , a ∈ A, we define

V ′(x, a) =

{
maxb∈A:b−j=a−j {V (y, b)} , x = y

V (x, a), o/w
.

The first property follows directly from the definition, and the second property simply follows from
the fact V (x, a) ≤ V ′(x, a) for every x ∈ X , a ∈ A.

For the third property, it suffices to observe that in the game G, when the jth player gets input
yj , they know the entire input y, and hence also the answers a−j of the remaining players. Hence,
they are able to answer an optimal aj such that V (x, a) = V ′(x, a).

Proof of Lemma 3.18. Fix any n ∈ N, and let ρ = ρ(n). Consider the repeated game G⊗n =
(X⊗n,A⊗n, P, V ⊗n), and let f = f1 × · · · × fk : X⊗n → A⊗n be a product strategy for the players
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that achieves the game value val(G⊗n). Let X be the random variable denoting the inputs to the
players in the game G⊗n, and let A = f(X) be the random variable denoting the players’ answers.

We define a sequence of random variables J1, . . . , Jn ∈ [n], and Z1, . . . , Zn ∈ X ×A as follows.
For each i ∈ [n], we define Ji ∈ [n] \ {J1, . . . , Ji−1} to be a coordinate with the lowest winning
probability, conditioned on the value of (Z1, . . . , Zi−1). Then, we define Zi = (XJi , AJi). For each
i ∈ [n], let Wi be the event that the players win in coordinate Ji.

Let m = min
{⌊

log2(1/ρ)
log2(8|X ||A|)

⌋
, n
}
. Assume m > 0, as else the desired result holds trivially

for a small enough constant c > 0. We claim that for each integer ℓ ∈ [m], it holds that
P (W1 ∧ · · · ∧Wℓ) ≤ (1− ϵ/2)ℓ. In that case, there exists a constant c > 0 such that

val(G⊗n) = P (W1 ∧ · · · ∧Wn) ≤ P (W1 ∧ · · · ∧Wm) ≤ (1− ϵ/2)m ≤ ρc.

We prove the claim by induction on ℓ. For each ℓ ∈ [m], let W[ℓ] = ∩i∈[ℓ]Wi, and let Z[ℓ] =

(Z1, . . . , Zℓ). The base case ℓ = 1 follows by applying the lemma hypothesis to the event E = X⊗n.
For the inductive step, let ℓ ∈ [m − 1] be such that P

(
W[ℓ]

)
≤ (1− ϵ/2)ℓ. Further, we assume

that P
(
W[ℓ]

)
≥ (1/2)ℓ+1, or else the inductive step holds trivially in this case. Observe that the

event W[ℓ] depends deterministically on the value of Z[ℓ]. Let T be the set of all such tuples z[ℓ] of
questions and answers that win on all coordinates in [ℓ], and T ′ ⊆ T consist of those z[ℓ] ∈ T such

that P
(
Z[ℓ] = z[ℓ]

)
≥ ρ. Then,

P
(
Wℓ+1|W[ℓ]

)
=
∑

z[ℓ]∈T
P
(
Wℓ+1|Z[ℓ] = z[ℓ]

)
·
P
(
Z[ℓ] = z[ℓ]

)
P
(
W[ℓ]

)
≤

∑
z[ℓ]∈T ′

(1− ϵ) ·
P
(
Z[ℓ] = z[ℓ]

)
P
(
W[ℓ]

) +
∑

z[ℓ]∈T \T ′

1 ·
P
(
Z[ℓ] = z[ℓ]

)
P
(
W[ℓ]

) (by lemma hypothesis)

= (1− ϵ) + ϵ ·
∑

z[ℓ]∈T \T ′

P
(
Z[ℓ] = z[ℓ]

)
P
(
W[ℓ]

)
as

∑
z[ℓ]∈T

P
(
Z[ℓ] = z[ℓ]

)
P
(
W[ℓ]

) = 1


≤ (1− ϵ) + ϵ · ρ |T \ T

′|
P
(
W[ℓ]

)
≤ (1− ϵ) + ϵ · ρ |X |

ℓ |A|ℓ

(1/2)
ℓ+1

(
as |T ′ \ T | ≤ |T | ≤ |X |ℓ |A|ℓ

)
≤ 1− ϵ/2 (by choice of m) .

Hence, P
(
W[ℓ+1]

)
= P

(
W[ℓ]

)
· P
(
Wℓ+1|W[ℓ]

)
≤ (1− ϵ/2)ℓ · (1− ϵ/2) = (1− ϵ/2)ℓ+1 .

B 2-player Parallel Repetition

In this section, we state some useful results from 2-player parallel repetition.

Lemma B.1. (Lemma 6.7 restated) Let PV = PV1 × · · · × PVn be a product distribution over a set
V⊗n, and W an event. Then,

1

n

n∑
i=1

∥∥PVi|W − PVi

∥∥
1
≲

√
1

n
log2

1

PV (W )
.

Proof Sketch. For two distributions P and Q over a set Ω, the relative entropy (also known as

the KL divergence) between P and Q is defined as D(P ∥ Q) =
∑

ω∈Ω P (ω) log2
P (ω)
Q(ω) , with the

convention that 0 · log2 0 = 0 · log2 0
0 = 0.
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Observe that

D(PV |W ∥ PV ) =
∑

v∈V⊗n

PV (v|W ) log2
PV (v|W )

PV (v)
≤ log2

1

PV (W )
.

Also,

1

n
·D(PV |W ∥ PV ) ≥

1

n

n∑
i=1

D(PVi|W ∥ PVi) ≳
1

n

n∑
i=1

∥∥PVi|W − PVi

∥∥2
1
≥

(
1

n

n∑
i=1

∥∥PVi|W − PVi

∥∥
1

)2

.

For the first inequality, we used that relative entropy satisfies a super-additive property when the
second distribution is a product distribution. The second inequality is an application of Pinsker’s
inequality, which says that the L1-distance between two distributions is at most

√
2 ln 2 times the

square root of relative entropy.

The next result is essentially the core of all known (information-theoretic) proofs of 2-player
parallel repetition. For the sake of completeness, we give a rough proof sketch. The reader is
referred to the proofs in [Raz98, Hol09] for details.

Proposition B.2. [Raz98] Let G = (X × Y,A× B, Q, V ) be a 2-player game with val(G) < 1. Let
n ∈ N be large enough, and consider the game G⊗n =

(
(X × Y)⊗n , (A× B)⊗n , P, V

)
. Suppose

E = E1 × E2 ⊆ X⊗n × Y⊗n is a product event with P (E) ≥ 2−n
δ
, for some constant δ ∈ (0, 1).

Let f : X⊗n → A⊗n, and g : Y⊗n → B⊗n be any strategies for the 2-players.
For any S ⊆ [n], let WS be the event that the players win all the coordinates indexed by S.

Then, for every constant ϵ ∈ (0, 1), it holds that ES [P (WS |E)] ≤ 2−n
ϵ/2

, where the expectation is
over uniformly random S ⊆ [n] of size ⌊nϵ⌋.

Proof Sketch. Let c ∈ (0, 1) be such that val(G) = 1 − c, and let η = 1 − c
2 . The main result that

goes into the proof is Theorem 1.2 in [Raz98], which says the following: When conditioning on a
large product event (with measure 2−o(n)), a random coordinate has winning probability at most η
in expectation. We note that [Raz98] only talks about the existence of a hard coordinate, but the
proof also shows that a random coordinate is hard in expectation.

We show that ES [P (WS |E)] ≤ k · ηk, where the expectation is over uniformly random S ⊆ [n]
of size k ≤ ⌊nϵ⌋, by induction on k.

The case k = 1 follows directly from the above statement from [Raz98].
For the case k + 1, we first fix an arbitrary set S = {i1, . . . , ik} and observe the following:

• If P (WS |E) ≤ ηk+1, then Ei∈[n]\S
[
P (WS∪{i}|E)

]
≤ ηk+1 also.

• If P (WS |E) ≥ ηk+1 ≥ 2−(k+1), then by the above statement from [Raz98] (note that k = o(n)),
we get Ei∈[n]\S

[
P
(
W{i} |E,WS

)]
≤ η. We remark that while conditioning on E,WS is not

necessarily a product event, we can rather condition on E and typical questions and answers
of the players in coordinate S, as these deterministically determine WS (this uses a similar
argument as the proof of Lemma 6.6).

This gives us ES∪{i}
[
P
(
WS∪{i} |E

)]
≤ ηk+1+ η ·ES [P (WS |E)] ≤ (k+1) · ηk+1 by induction.

We will also state a concentration bound on the parallel repetition of 2-player games.

Proposition B.3. [Rao11] Let G = (X × Y,A× B, Q, V ) be a 2-player game with val(G) ≤ 1− ϵ,
for some ϵ > 0. Then, for any constant 0 < δ < ϵ, and any player strategies, the probability that the

players win at least (1−ϵ+δ) fraction of the coordinates in the game G⊗n is at most 2
−Ωϵ

(
δ3n

log2|A||B|

)
,

where the constant in the exponent may depend on ϵ.
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C Random 3-CNF Example

Here, we prove the claims in Example 1.5.

1. Suppose m = ω(d). Fix any constant ϵ > 0. Consider any fixed strategy for the players
(which consists of three functions [d] → {0, 1}). The number of possible clauses on which
this strategy loses is exactly d3 (out of the possible 8d3 clauses). Hence, by Fact 3.1, the
probability (over the random 3-CNF φ) that this strategy wins the game G with value at
least 7/8 + ϵ is at most 2−Ω(ϵ2 m). By a union bound over the possible player strategies, we
get

Pr
φ

[
val (G) ≥ 7

8
+ ϵ

]
≤ (2d)3 · 2−Ω(ϵ2 m) = o(1).

In particular, with high probability, it holds that val(G) < 1.

By a similar argument, with probability 1−o(1), any fixed strategy has value at least 7/8− ϵ,
and in particular val (G) ≥ 7/8− ϵ.

2. Consider the graph H with vertex set [d]3, with edges between vertices v and v′ if they differ
in exactly one coordinate. The graph HG (based on a random φ) is then the induced subgraph
of this graph obtained by choosing m vertices uniformly and independently.

(a) Suppose m = ω(d2 log d). For each x ∈ [d], construct a bipartite graph Kx on the vertex
sets [d] and [d], such that for each chosen vertex (x, y, z) in HG , there is an edge (y, z)
in Kx. Let kx be the number of chosen vertices (x, y, z), which is at least m

2d = ω(d log d)
with probability 1 − o(d−1) by Fact 3.1. On the other hand, when kx is fixed, the kx
edges are uniformly randomly chosen in Kx, therefore by Erdós-Renyi the graph Kx is
connected with probability 1− o(d−1) (see e.g. [Pal64] ).

That means with probability 1−o(1), the induced subgraphs of HG on vertices {(x, y, z)}
are connected for all fixed x ∈ [d] (the edges of Kx are connected since the vertices are
connected). From the proof in item 3a below we also know that H1

G is connected with
probability 1− o(1), thus overall HG is connected with probability 1− o(1).

(b) Suppose m = o(d2). The probability that the first chosen vertex is isolated in HG equals(
1− 3(d−1)

d3

)m−1
≥ 1− 3(m−1)(d−1)

d3
= 1− o(1). In this case, the graph HG must not be

connected.

3. (a) Suppose m = ω(d1.5
√
log d). We make the following deductions:

• First, we can assume that for each player j, the graph Hj
G contains all vertices in

[d], since the probability of it not happening is at most 3d · (1− 1/d)m = o(1).

• Therefore, it suffices to prove the claim when a subset of exactly m/2 vertices in H
are chosen, for the more vertices of HG there are, the more likely the graphs Hj

G are
connected when their vertex sets are fixed to [d].

• Furthermore, it suffices to prove the claim when each vertex in H is chosen indepen-
dently with probability p = m

4d3
= ω(d−1.5

√
log d), as when less than m/2 vertices

are chosen (which happens with probability 1 − o(1) by Fact 3.1), we can always
randomly choose a superset of size m/2 instead.

• Now with each vertex independently chosen, for each player j the graph Hj
G is now a

random intersection graph G(d, d2, p) as defined in [Sin96], and there it was proved
to be connected with probability 1−o(1). A union bound on the players shows that
G is playerwise connected with probability 1− o(1).
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(b) Suppose m = o(d1.5), and let (x0, y0, z0) denote the first chosen vertex in HG . We show
that with high probability, the vertex x0 is isolated in H1

G , and hence the game G is not
playerwise connected.

Observe that x0 is not isolated in H1
G if and only if one of the following holds:

• There exists x ∈ [d]\{x0} such that (x, y0, z0) is chosen. This occurs with probability

1−
(
1− d−1

d3

)m−1 ≤ (d−1)(m−1)
d3

= o(1).

• There exists x ∈ [d] \ {x0}, and (y, z) ∈ [d]2 \ {(y0, z0)} such that both (x, y, z) and
(x0, y, z) are chosen. This occurs with probability at most

(d− 1) ·
(
d2 − 1

)
·

(
1−

(
1− 1

d3

)m−1
−
(
1− 1

d3

)m−1
+

(
1− 2

d3

)m−1
)

≤ d3 ·
(
1−

(
1− m− 1

d3

)
−
(
1− m− 1

d3

)
+

(
1− 2(m− 1)

d3
+

2(m− 1)2

d6

))
= d3 · 2(m− 1)2

d6
≤ 2m2

d3
= o(1).
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