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Abstract

Quantified conflict-driven clause learning (QCDCL) is one of the main solving approaches for
quantified Boolean formulas (QBF). One of the differences between QCDCL and propositional
CDCL is that QCDCL typically follows the prefix order of the QBF for making decisions.

We investigate an alternative model for QCDCL solving where decisions can be made in arbitrary
order. The resulting system QCDCLANY is still sound and terminating, but does not necessarily
allow to always learn asserting clauses or cubes. To address this potential drawback, we additionally
introduce two subsystems that guarantee to always learn asserting clauses (QCDCLUNI-ANY) and
asserting cubes (QCDCLEXI-ANY), respectively.

We model all four approaches by formal proof systems and show that QCDCLUNI-ANY is expo-
nentially better than QCDCL on false formulas, whereas QCDCLEXI-ANY is exponentially better than
QCDCL on true QBFs. Technically, this involves constructing specific QBF families and showing
lower and upper bounds in the respective proof systems.

We complement our theoretical study with some initial experiments that confirm our theoretical
findings.

1 Introduction

SAT solving was revolutionised in the late 1990s by the advent of conflict-driven clause learning (CDCL),
which has since been the dominating paradigm in propositional SAT solving [23, 24, 35]. A few years
later, the CDCL approach was lifted to the computationally even harder setting of quantified Boolean
formulas (QBF) in the form of quantified CDCL (QCDCL) [36]. Though a number of competing ap-
proaches to QBF solving exist (cf. [7] for a recent overview), QCDCL is one of most competitive.
State-of-the-art implementations include DepQBF [21] and Qute [27].

In comparison to the propositional case, QCDCL poses additional technical challenges, stemming
from partitioning the variables into existential and universal (SAT can be viewed as using only existential
variables) and the dependencies between the variables imposed by the quantifier prefix. The presence
of universal variables entails additional rules for unit propagation (universal reductions), while the vari-
able dependencies imposed by the prefix are typically observed by decision heuristics in the sense that
QCDCL follows the prefix order in decision making. The latter is arguably the most severe restriction
when transitioning from CDCL to QCDCL. Another difference between CDCL and QCDCL arises from
the fact that unlike in SAT, a satisfying assignment to the QBF matrix does not imply that the QBF is
true. Instead, this is witnessed by additionally learning cubes (i.e., conjunctions of literals, also called
terms) and producing a cube verification for true QBFs.

Though CDCL and QCDCL are very efficient in practice and in particular on industrial instances
(cf. [31] for an overview of QBF solving applications and [15, 22] for experimental studies of solver
performance), their success and their inherent limitations are not at all well-understood from a theoretical
perspective. The main theoretical approach is through proof complexity [9]. For SAT it is known that
CDCL—viewed as a non-deterministic procedure—is equivalent to propositional resolution [1, 3, 29].
In particular, resolution refutations can be efficiently extracted from CDCL runs, whereby lower bounds
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for resolution proof size imply lower bounds for CDCL running time. However, when using CDCL
with practical decision heuristics such as VSIDS [25], the model becomes exponentially weaker than
resolution [34].

The situation is even more intricate in QBF. Again, from QCDCL runs, proofs can be efficiently
extracted in the format of long-distance Q-Resolution [2, 36].1 However, QCDCL—even as a non-
deterministic procedure—is exponentially weaker than long-distance Q-Resolution and exponentially
incomparable to the simpler system of Q-Resolution [6]. Thus it is very interesting, both from a theo-
retical and practical perspective, to gauge the precise power of QCDCL.

In this paper we introduce and investigate QCDCL models that drop the requirement of making
variable decisions along the prefix order. Though it has been recently shown that following the prefix
order in QCDCL is not needed for correctness2, existing prefix-relaxing techniques do not exploit this as
much as they could. Dependency schemes [20, 28, 30, 32] work with the assumption that the prefix has
to be observed, but notice that certain parts (often called spurious dependencies) can be relaxed in pre-
processing. With dependency learning [27], a more recent, orthogonal technique, instead of calculating
dependencies upfront the solver assumes independence until it runs into a problem, from which it learns
a dependency on the fly (dependency learning can be combined with schemes [26]). These strategies
are executed differently: with dependency schemes the solver can fully rely on the relaxed prefix and
use it for decisions, propagation, and clause/cube learning alike; with dependency learning the solver
can only use the relaxed prefix for decisions and propagation and must learn clauses and cubes with the
original prefix in order to detect dependencies. However, both approaches share the restriction that once
dependencies are found, decisions must respect them.

Our contributions. We propose a new QCDCL model where decisions can ignore quantification en-
tirely; only propagation and clause/cube learning use the prefix information.

When suggesting a new model for solving, there are at least two possible approaches: (1) to give
a formal account of the model, prove its correctness, and theoretically quantify the gains on running
time; or (2) provide an implementation and experimentally evaluate its practical performance. In this
paper, our main focus is to contribute towards (1). While we also perform some initial proof-of-concept
experiments, an extensive practical evaluation of the competitiveness of the approach is left for future
work (cf. the conclusion).3

Specifically, our contributions are as follows:

1. Formal proof complexity models for QCDCL using arbitrary decisions. We provide a formal proof-
complexity model for QCDCL with arbitrary decisions. This follows a recent line of research to for-
malise and rigorously analyse QCDCL from a proof complexity perspective [6, 8].

Our most general model QCDCLANY allows arbitrary decisions. Care has to be taken to ensure
that we can always learn new clauses and cubes, as otherwise termination of proof search is no longer
guaranteed. We ensure this by adding a simple new constraint condition (NCC), which forbids making
decisions that immediately falsify a clause or satisfy a cube (which is already trivially impossible in
prefix-observing QCDCL).

A potential further drawback of not following prefix order is that we can no longer guarantee to learn
asserting clauses or cubes. In order to address this, we introduce two subsystems of QCDCLANY—termed
QCDCLUNI-ANY and QCDCLEXI-ANY—that allow to always learn asserting clauses and cubes, respectively.
We prove that all three systems are sound, complete, and terminating.

2. Exponential separations between the QCDCL models. The main contribution of this paper lies
in proving that both QCDCLUNI-ANY and QCDCLEXI-ANY allow for exponentially shorter proofs than the
prefix-following QCDCL model. The resulting simulation order is depicted in Figure 1.

1For practical solving, more succinct proof checking formats are used, both for CDCL [13] and QCDCL [14].
2It is needed for QDPLL [10, 12], but not for QCDCL (cf. also [6]).
3It appears to us that in SAT solving, theoretical analysis has so far been mainly carried out in retrospect, after practical

solving developments had already taken place. However, we also see a case for theoretical research providing a-priori guidance
for practical developments.
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To show this we construct two QBF families that exponentially separate the systems. Both employ
general constructions—using a ‘twin’ and a ‘reverse’ construction—that could potentially be used for
further formulas. Technically, we use the recently developed lower bound approach via the gauge of
QBFs [8]. However, different from previous work [6, 8], which only considered clause learning, our
lower bounds work against a more realistic QCDCL system that uses both clause and cube learning.
Interestingly, the separation of QCDCLUNI-ANY from QCDCL works on false QBFs, while the separation
of QCDCLEXI-ANY from QCDCL uses true QBFs. The latter is the first dedicated QBF proof-complexity
lower bound on true formulas.4 In fact, we provide a general method how to transform hardness of false
QBFs into hardness of true formulas.

3. Proof-of-concept experiments. Though this is not our main focus, we provide initial experiments that
confirm our theoretical findings. These experiments are only meant to illustrate that our approach is in
principle superior to plain QCDCL, without considering the impact of other techniques like preprocess-
ing or dependency learning, etc. (cf. the discussion of future work in the conclusion).

Organisation. The remainder of this paper is organised as follows. We start in Section 2 with reviewing
QBF preliminaries. In Sections 3 and 4 we introduce and formally model the new QCDCL versions.
Their proof-complexity analysis and the separations are proven in Section 5. Section 6 describes our
proof-of-concept experiments and Section 7 outlines further work.

2 Preliminaries

QCDCLUNI-ANY QCDCLEXI-ANY

QCDCL

QCDCLANY

Figure 1: Hasse diagram of the simulation
order of QCDCL proof systems. Solid lines
represent p-simulations and exponential sepa-
rations. Waved lines represent p-simulations,
for which separations are not known.

Propositional and quantified formulas. Variables x
and negated variables x̄ are called literals. We denote
the corresponding variable as varpxq :“ varpx̄q :“ x.

A clause is a disjunction of literals. A unit clause p`q
is a clause that consists of only one literal. The empty
clause consists of zero literals, denoted pKq. We some-
times interpret pKq as a unit clause with the ‘empty lit-
eral’ K. A clause C is called tautological if t`, ¯̀u Ď C
for some literal `. If C is a set of literals with the same
property, then we will also call it tautological.

A cube is a conjunction of literals. We define a unit
cube of a literal `, denoted by r`s, and the empty cube
rJs with ‘empty literal’ J. A cube D is contradictory
if t`, ¯̀u Ď D for some literal `. If C is a clause or
a cube, we define varpCq :“ tvarp`q : ` P Cu. The
negation of a clause C “ `1 _ . . . _ `m is the cube
 C :“ C :“ ¯̀

1 ^ . . .^ ¯̀
m. We will sometimes interpret clauses and cubes as sets of literals on which

we can perform set-theoretic operations.
A (total) assignment σ of a set of variables V is a non-tautological set of literals such that for all

x P V there is some ` P σ with varp`q “ x. A partial assignment σ of V is an assignment of a
subset W Ď V . A clause C is satisfied by an assignment σ if C X σ ‰ H. A cube D is falsified by σ if
 DXσ ‰ H. A clause C that is not satisfied by σ can be restricted by σ, defined asC|σ :“

Ž

`PC,¯̀Rσ `.
Similarly we can restrict a non-falsified cube D as D|σ :“

Ź

`PDzσ `. Intuitively, an assignment sets all
its literals to true.

A CNF (conjunctive normal form) is a conjunction of clauses and a DNF (disjunctive normal
form) is a disjunction of cubes. We restrict a CNF (resp. DNF) φ by an assignment σ as φ|σ :“
Ź

CPφ non-satisfied C|σ (resp. φ|σ :“
Ž

DPφ non-falsified D|σ). For a CNF (DNF) φ and an assignment σ,
if φ|σ “ H, then φ is satisfied (falsified) by σ.

4Also in SAT, basically all lower bounds are for unsatisfiable formulas.
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A QBF (quantified Boolean formula) Φ “ Q ¨ φ consists of a propositional formula φ, called the
matrix, and a prefix Q. A prefix Q “ Q11V1 . . .Q1sVs consists of non-empty and pairwise disjoint sets of
variables V1, . . . , Vs and quantifiers Q11, . . . ,Q1s P tD,@u with Q1i ‰ Q1i`1 for i P rs´ 1s. For a variable
x in Q, the quantifier level is lvpxq :“ lvΦpxq :“ i, if x P Vi. For lvΦp`1q ă lvΦp`2q we write `1 ăΦ `2,
while `1 ďΦ `2 means `1 ăΦ `2 or `1 “ `2.

For a QBF Φ “ Q ¨ φ with φ a CNF (DNF), we call Φ a QCNF (QDNF). We define CpΦq :“ φ
(resp. DpΦq :“ φ). Φ is an AQBF (augmented QBF), if φ “ ψ _ χ with CNF ψ and DNF χ. Again we
write CpΦq :“ ψ and DpΦq :“ χ.

We restrict a QCNF (QDNF) Φ “ Q ¨ φ by an assignment σ as Φ|σ :“ Q|σ ¨ φ|σ, where Q|σ is
obtained by deleting all variables from Q that appear in σ. Analogously, we restrict an AQBF Φ “

Q ¨ pψ _ χq as Φ|σ :“ Q|σ ¨ pψ|σ _ χ|σq.
If L is a set of literals (e.g., an assignment), we can get the negation of L, which we define as

 L :“ L :“ t¯̀| ` P Lu.

(Long-distance) Q-resolution and Q-consensus. Let C1 and C2 be two clauses (cubes) from a QCNF
(QDNF) or AQBF Φ. Let ` be an existential (universal) literal with varp`q R varpC1q Y varpC2q. The
resolvent of C1 _ ` and C2 _ ¯̀over ` is defined as

pC1 _ `q
`
’Φ pC2 _ ¯̀q :“ C1 _ C2

(resp. pC1 ^ `q
`
’Φ pC2 ^ ¯̀q :“ C1 ^ C2q.

Let C :“ `1 _ . . . _ `m be a clause from a QCNF or AQBF Φ such that `i ďΦ `j for all i ă j,
i, j P rms. Let k be minimal such that `k, . . . , `m are universal. Then we can perform a universal
reduction step and obtain

red@ΦpCq :“ `1 _ . . ._ `k´1.

Analogously, we perform existential reduction on cubes. Let D :“ `1 ^ . . . ^ `m be a cube of a
QDNF or AQBF Φ with `i ďΦ `j for all i ă j, i, j P rms. Let k be minimal such that `k, . . . , `m are
existential. Then redDΦpDq :“ `1 ^ . . .^ `k´1.

If it is clear that C is a clause or a cube, we can just write redΦpCq or even redpCq, if the QBF Φ
is also obvious. We will write redpΦq “ redΦpΦq, if we reduce all clauses and cubes of the AQBF Φ
according to its prefix.

As defined by Kleine Büning et al. [19], a Q-resolution (Q-consensus) proof π from a QCNF
(QDNF) or AQBF Φ of a clause (cube) C is a sequence of clauses (cubes) π “ pCiq

m
i“1, such that

Cm “ C and for each Ci one of the following holds:

• Axiom: Ci P CpΦq (resp. Ci P DpΦqq;

• Resolution: Ci “ Cj
x
’Φ Ck with x existential (universal), j, k ă i, and Ci non-tautological

(non-contradictory);

• Reduction: Ci “ red@ΦpCjq (resp. Ci “ redDΦpCjq) for some j ă i.

We call C the root of π. [2] introduced an extension of Q-resolution (Q-consensus) proofs to
long-distance Q-resolution (long-distance Q-consensus) proofs by replacing the resolution rule by

• Resolution (long-distance): Ci “ Cj
x
’ Ck with x existential (universal) and j, k ă i. The

resolvent Ci is allowed to contain tautologies such as u _ ū (resp. u ^ ū), if u is universal
(existential). If there is a universal (existential) u P varpCjq X varpCkq, then we require x ăΦ u.

A Q-resolution (Q-consensus) or long-distance Q-resolution (long-distance Q-consensus)
proof from Φ of the empty clause pKq (the empty cube rJs) is called a refutation (verification) of Φ. In
that case, Φ is called false (true). We will sometimes interpret π as a set of clauses (or cubes).

A proof system S p-simulates a system S1, if every S1 proof can be transformed in polynomial time
into an S proof of the same formula.
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3 Our QCDCL models

To analyse the complexity of QCDCL procedures, we need to fully formalise them as proof systems.
This approach was initiated in [6] and [8], and we follow that framework. We will only sketch this
formalization here. For the full details, see the appendix.

We store all relevant information of a QCDCL run in trails. Since QCDCL uses several runs and
potentially also restarts, a QCDCL proof will typically consist of many trails.

Definition 3.1 (trails). A trail T for a QCNF or AQBF Φ is a (finite) sequence of pairwise distinct literals
from Φ, including the empty literals K and J. Each two literals in T have to correspond to pairwise
distinct variables from Φ. In general, a trail has the form

T “ ppp0,1q, . . . , pp0,g0q; d1, pp1,1q, . . . , pp1,g1q; . . . ; dr, ppr,1q, . . . , ppr,grqq, (1)

where the di are decision literals and ppi,jq are propagated literals. Decision literals are written in
boldface. We use a semicolon before each decision to mark the end of a decision level. If one of the
empty literals K or J is contained in T , then it has to be the last literal ppr,grq. In this case, we say that
T has run into a conflict.

Trails can be interpreted as non-tautological sets of literals, and therefore as (partial) assignments.
We write x ăT y if x, y P T and x is left of y in T . Furthermore, we write x ďT y if x ăT y or x “ y.

As trails are produced gradually from left to right in an algorithm, we define T ri, js for i P t0, . . . , ru
and j P t0, . . . , giu as the subtrail that contains all literals from T up to (and excluding) ppi,jq (resp. di,
if j “ 0) in the same order. Intuitively, T ri, js is the state of the trail before we assigned the literal at
the point ri, js (which is ppi,jq or di).

Each propagated literal ppi,jq P T belongs to an antecedent clause (if ppi,jq is existential) or an
antecedent cube (if ppi,jq is universal) from Φ, which we call anteT pppi,jqq. At the point where ppi,jq was
propagated in T , we need that anteT pppi,jqq had become unit, hence redΦpanteT pppi,jqq|T ri,jsq “ pppi,jqq
if ppi,jq is existential, and redΦpanteT pppi,jqq|T ri,jsq “ rp̄pi,jqs, if ppi,jq is universal.

We state some general facts about trails and antecedent clauses/cubes one should keep in mind.

Remark 3.2. Let T be a trail, ` P T a propagated literal and A :“ anteT p`q.

• If ` is existential, then ` P A and for each existential literal x P A with x ‰ ` we need x̄ ăT `.

• If ` is universal, then ¯̀P A and for each universal literal u P A with u ‰ ¯̀we need u ăT `.

Definition 3.3 (natural trails). We call T a natural trail for the formula Φ, if for each i P rrs the formula
redpΦ|T ri,0sq does not contain unit or empty constraints. Furthermore, the formula Φ|T ri,js must not
contain empty constraints for each i P rrs, j P rgis, except ri, js “ rr, grs. Intuitively, we require that
decisions are only made if and only if there are no more propagations on the same decision level left.
Also, conflicts must be detected immediately if there are any.

An essential element of QCDCL is clause and cube learning. This guarantees to make ‘progress’
after each trail (at least under some conditions that we will specify later).

Definition 3.4 (learnable constraints). Let T be a trail for Φ of the form (1) with ppr,grq P tK,Ju.
Starting with anteT pKq (resp. anteT pJq) we reversely resolve over the antecedent clauses (cubes) that
were used to propagate the existential (universal) variables, until we stop at some arbitrarily chosen
point. The clause (cube) we so derive is a learnable constraint. We denote the set of learnable constraints
by LpT q.

We can also learn cubes from trails that did not run into conflict. If T is a total assignment of
the variables from Φ, then we define the set of learnable constraints as the set of cubes LpT q :“
tredDΦpDq|D Ď T and D satisfies CpΦqu.

A more formal description:
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Let T be a trail for Φ of the form

T “ ppp0,1q, . . . , pp0,g0q; d1, pp1,1q, . . . , pp1,g1q; . . . ; dr, ppr,1q, . . . , ppr,grqq,

that has run into a conflict. We define LpT q as the sequence of learnable constraints

LpT q :“ pCpr,grq, . . . , Cpr,1q, . . . , Cp0,g0q, . . . , Cp0,1qq,

in which the clauses or cubes Cpi,jq are recursively defined as:
If ppr,grq “ K, then

• Cpr,grq :“ red@Φ pantepKqq.

• For i P t0, . . . , ru, j P t1, . . . , gi ´ 1u, if p̄pi,jq P Cpi,j`1q and ppi,jq existential, then

Cpi,jq :“ red@Φ

ˆ

Cpi,j`1q

ppi,jq
’ red@Φ

`

antepppi,jqq
˘

˙

,

otherwise Cpi,jq :“ Cpi,j`1q.

• For i P t0, . . . , r ´ 1u, if p̄pi,giq P Cpk,1q and ppi,giq existential, then

Cpi,giq :“ red@Φ

ˆ

Cpk,1q
ppi,giq

’ red@Φ
`

antepppi,giqq
˘

˙

otherwise Cpi,giq :“ Cpk,1q where k :“ minti ă h ď r| gh ą 0u (note that always gr ą 0).

If ppr,grq “ J, then

• Cpr,grq :“ redDΦpantepJqq.

• For i P t0, . . . , ru, j P t1, . . . , gi ´ 1u, if ppi,jq P Cpi,j`1q and ppi,jq universal, then

Cpi,jq :“ redDΦ

ˆ

Cpi,j`1q

ppi,jq
’ redDΦ

`

antepppi,jqq
˘

˙

,

otherwise Cpi,jq :“ Cpi,j`1q.

• For i P t0, . . . , r ´ 1u, if ppi,giq P Cpk,1q and ppi,giq universal, then

Cpi,giq :“ redDΦ

ˆ

Cpk,1q
ppi,giq

’ redDΦ
`

antepppi,giqq
˘

˙

,

otherwise Cpi,giq :“ Cpk,1q where k :“ minti ă h ď r| gh ą 0u.

If T has assigned all literals, but does not run into a conflict, then LpT q is the set of learnable cubes

LpT q :“ tredDΦpDq|D Ď T and D satisfies CpΦqu.

In QCDCL, our goal is to make ‘progress’ in each run/trail. Thus, we have to ensure that we can
always learn new clauses or cubes from a constructed trail. Since we want to work with QCDCL models
that do not necessarily follow the prefix order for decision making, it is not guaranteed that we can even
learn new constraints from each trail. As we will show later, we need the following condition to prevent
such a situation, which could easily lead to a loop in practical solving.

Definition 3.5. A trail T for a formula Φ fulfils the New Constraint Condition (NCC for short), if for
each decision di the formula redpΦ|T ri,0sYtdiuq does not contain the empty clause or cube.

Intuitively, this means that a decision must not lead to a conflict immediately. It will become clear
later, why we can always find a decision that does not violate the NCC. In fact, classical QCDCL
automatically fulfils this condition.

We will now formally define our four QCDCL proof systems, namely QCDCL, QCDCLANY, QCDCLUNI-ANY,
and QCDCLEXI-ANY.
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Definition 3.6 (QCDCL proof systems). Let S be one of QCDCL, QCDCLANY, QCDCLUNI-ANY, QCDCLEXI-ANY.
An S proof ι from a QCNF Φ “ Q ¨ φ of a clause or cube C is a (finite) sequence of triples

ι :“ rpTi, Ci, πiqsmi“1,

whereCm “ C, each Ti is a trail for Φi that fulfils the NCC, eachCi P LpTiq is one of the constraints we
can learn from each trail and πi is the long-distance Q-resolution or long-distance Q-consensus
proof from Φi of Ci we obtain by performing the steps in Definition 3.4. If necessary, we set πi :“ H.
We will denote the set of trails in ι as Tpιq.

The AQBFs Φi are defined as follows:

Φ1 :“ Q ¨ pCpΦq _Hq

and

Φj`1 :“

"

Q ¨ ppCpΦjq ^ Cjq _DpΦjqq if Cj is a clause,
Q ¨ pCpΦjq _ pDpΦjq _ Cjqq if Cj is a cube,

for j “ 1, . . . ,m´ 1.
The four systems differ from each other in the way decisions are made. We extend the definition of

natural trails with decision rules that belong to the corresponding system S. A natural trail T for a
formula Ψ that fulfils the following rules for S is called a natural S trail:

• QCDCL: For each decision di we have that lvΨ|T ri,0spdiq “ 1. I.e., decisions are level-ordered.

• QCDCLANY: Decisions can be made arbitrarily as long as the NCC is fulfilled.

• QCDCLUNI-ANY: For each existential decision literal di we need that lvΨ|T ri,0spdiq “ 1. In other
words, an existential decision di can only be made if all universal variables that are quantified
left of di were already assigned in T . Universal decisions can be made in any order as long as
the NCC is fulfilled.

• QCDCLEXI-ANY: For each universal decision literal di we need that lvΨ|T ri,0spdiq “ 1. In other
words, a universal decision di can only be made if all existential variables that are quantified left
of di were already assigned in T . Existential decisions can be made in any order as long as the
NCC is fulfilled.

We require that T1 is a natural S trail and for each 2 ď i ď m there is a point rai, bis such that
Tirai, bis “ Ti´1rai, bis and TizTirai, bis has to be a natural S trail for Φi|Tirai,bis. This process is called
backtracking. If Ti´1rai, bis “ H, then this is also called a restart.

If C “ Cm “ pKq, then ι is called an S refutation of Φ. If C “ Cm “ rJs, then ι is called an S
verification of Φ. The proof ends once we have learned pKq or rJs.

IfC is a clause, we can stick together the long-distance Q-resolution derivations from tπ1, . . . , πmu
and obtain a long-distance Q-resolution proof from Φ of C, which we call Rpιq. Similarly, if C is a
cube, we can stick together the long-distance Q-consensus derivations and obtain a long-distance
Q-consensus proof Rpιq from Φ of C.

The size of ι is defined as |ι| :“
řm
i“1 |Ti|. Obviously, we have |Rpιq| P Op|ι|q.

Our formalisation above is based on [6, 8]. However, since in the present paper cube learning is al-
ways included, our plain model QCDCL now includes clause and cube learning (while in [6,8], QCDCL
denotes a system with just clause learning, but without learning cubes).

The concept behind the two models QCDCLUNI-ANY and QCDCLANY was already introduced in [6]
(albeit defined slightly differently, they were called QCDCLASS-R-ORD

RED and QCDCLANY-ORD
NO-RED in those pa-

pers). However, since we include cube learning now, our models here match practical solving much
better.
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Remark 3.7. In QCDCL, decision making can never violate the NCC if we create the trails ‘naturally’
(cf. Definition 3.3).

Proof. If we made a level-ordered decision di and get a conflict immediately afterwards on a clause
(w.l.o.g.) C “ anteT pKq, then di must have been existential (otherwise we could have reduced d̄i in
order to get a conflict before) and we would need d̄i P C. Furthermore, there must exist at least one
universal literal u P C that was reduced while propagating K, otherwise C would have been a unit
clause before we made the decision di. However, the reduction must have been blocked before deciding
di, otherwise we could have used this reduction to propagate d̄i. That means u was quantified left of
di, but this is a contradiction since the decision di was level-ordered. Hence, deciding the leftmost
unassigned literal according to the prefix order, we will never violate the NCC.

We still have to make sure to fulfil NCC when backtracking, though. We will explain later how this
is achieved.

The next result states simulations between systems, cf. Figure 1. They all follow by definition.

Proposition 3.8. Each QCDCL proof is also a QCDCLUNI-ANY and QCDCLEXI-ANY proof, and each
QCDCLUNI-ANY or QCDCLEXI-ANY proof is also a QCDCLANY proof.

4 Learning asserting constraints

We recall the notion of an asserting clause (or cube). The concept originates from SAT solving [24], but
directly lifts to QBF [12,36]. Intuitively, asserting constraints are learnable constraints that become unit
after backtracking. We give a more liberal definition as we do not refer to specific asserting constraints
(such as UIP clauses). For the proofs, we refer to the appendix.

Definition 4.1 (asserting constraints). Let T be a trail for a QCNF Φ that contains r decision literals. A
clause (cube) C P LpT q is called asserting, if there exists some point ri, js such that red@ΦpC|T ri,jsq is a
unit clause (resp. redDΦpC|T ri,jsq is a unit cube). Furthermore, we require that we backtrack by at least
one decision level, i.e., i ă r or j “ 0.

Learning asserting clauses might be advantageous as it guarantees new unit propagations after back-
tracking to a suitable point. In addition, asserting clauses are always new.

Proposition 4.2. If T is a trail in a QCDCLUNI-ANY (resp. QCDCLEXI-ANY) proof of a formula Φ, and if
K P T (resp. J P T ), then there exists a new asserting or empty clause (cube) C P LpT q.

Furthermore, if C is non-empty, there exists a point ri, js in the trail to which we can backtrack after
learning C such that the NCC continues to hold.

Proof. We will show the case for conflicts on clauses for QCDCLUNI-ANY proofs, the QCDCLEXI-ANY case
is completely dual.

Let the trail T look like

T “ ppp0,1q, . . . , pp0,g0q; d1, pp1,1q, . . . , pp1,g1q; . . . ; dr, ppr,1q, . . . , ppr,grqq.

Then the sequence of learnable clauses is

LpT q “ pCpr,grq, . . . , Cpr,1q, . . . , Cp1,g1q, . . . , Cp1,1q, Cp0,g0q, . . . , Cp0,1qq.

We can assume that there exists at least one existential decision literal di such that d̄i is contained in
some C P LpT q. Otherwise, the rightmost clause in LpT q is empty since it contains negated decisions
or universal literals only, which will be reduced to the empty clause pKq.

Let k P rrs be maximal such that an existential d̄k is contained in some clause from LpT q. Let
pp`,mq P T be the propagated (non-empty) literal directly right of dk in T and set D :“ Cp`,mq. Note
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that pp`,mq does not need to be on the same decision level as dk. Such a pp`,mq must exist by the NCC.
We will show that D is asserting.

We consider the trail T at the point rk, 0s, that means right before dk was decided. We will prove
that E :“ red@ΦpD|T rk,0sq “ pd̄kq.

If there is an existential literal d̄k ‰ y P E, then ȳ cannot have been assigned in T rk, 0s, hence
we have dk ăT ȳ. But that means ȳ had to be a decision, otherwise it would have been resolved away
during clause learning. But this is a contradiction to the maximality of k. We conclude that such a y
cannot exist.

Let us now assume there is a universal literal u P E. Then we need u ăΦ dk since it was not
reduced during clause learning. But T was a trail in a QCDCLUNI-ANY proof, hence lvΦ|T rk,0spdkq “ 1
and therefore ū P T rk, 0s. Then we get u R E, contradiction. Thus such a u cannot exist, and E is in
fact a unit clause.

We can backtrack to the point rk, 0s (i.e., before we made the decision dk) an will not hurt the NCC
since the only new clause we have learned can only propagate the non-empty literal d̄k.

At the end, we have to show that D is new. In fact, if D was already known, we would get a conflict
directly after deciding dk, which would violate the NCC. Thus, D must be a new clause.

A similar result holds for the any-order model, albeit with the difference that we might not be able
to learn asserting constraints. But at least we can guarantee to learn a new clause/cube.

Proposition 4.3. If T is a trail in a QCDCLANY proof for a formula Φ, that has run into a conflict or in
which we assigned all variables, then LpT q contains a new clause or cube that is not contained in Φ.
Further, if C is non-empty, there exists a point ri, js in the trail to which we can backtrack after learning
C such that the NCC continues to hold.

Proof. Case 1: T runs into a conflict.
Let the trail T look like

T “ ppp0,1q, . . . , pp0,g0q; d1, pp1,1q, . . . , pp1,g1q; . . . ; dr, ppr,1q, . . . , ppr,grqq.

Then the sequence of learnable clauses is

LpTiq “ pCpr,grq, . . . , Cpr,1q, . . . , Cp1,g1q, . . . , Cp1,1q, Cp0,g0q, . . . , Cp0,1qq.

By the NCC, we have that gr ą 1. We will show that Cpr,1q (which is the clause/cube we get after
resolving over ppr,gr´1q, . . . , ppr,1q) is a new clause (cube).

Assume not. Consider the restricted clause (cube) E :“ Cpr,1q|Tirr,1s. Suppose that there is an
existential (universal) literal x P E Ď Cpr,1q. That means that x is contained in at least one antecedent
clause (cube) after (and including) ppr,1q. In particular, we need x̄ P T (resp. x P T ). Because x is
still contained in Cpr,1q, it cannot have been resolved away during learning, hence x̄ P T rr, 1s (resp.
x P T rr, 1s). This is a contradiction to the definition of E.

We conclude that E can only contain universal (existential) literals, hence red@ΦpEq “ pKq (resp.
redDΦpEq “ rJs). But then we would have got a conflict directly after dr, which is impossible by the
NCC. That means that Cpr,1q must a new clause (cube).

We can backtrack to the point where we undo the rightmost existential (universal) literal in T that
is contained in Cpr,1q. At this point, Cpr,1q will not become unit since it still includes at least this one
literal.

Case 2: T does not run into a conflict, but we assigned all variables in T .
Assume that we cannot find such a C. Then there exists a C P LpT q such that C P DpΦaq, where

Φa is the current formula for T . That means there exists a cube E Ď T such that redDΦa
pEq “ C and E

satisfies CpΦaq. In particular, we have redDΦa
pC|T q “ rJs, which means that T should have run into a

conflict. This is a contradiction.
We can backtrack to the point where we undo the rightmost universal literal in T , that is contained

in C. Then C will just propagate this universal literal and not an empty one. If this point is on the last
decision level, we can alternatively restart.
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Remark 4.4. To illustrate the importance of the NCC, we give an example of a QCDCLANY trail—
violating the NCC—from which we cannot learn a new clause. Consider the trail T “ px,Kq for the
false QCNF @uDx ¨ pu _ xq ^ pu _ x̄q ^ pū _ xq ^ pū _ x̄q. The trail violates the NCC, as we got a
conflict directly after the decision x. The only learnable clause is anteT pKq “ ū_ x̄, which is obviously
already known.

Another example illustrates the case where we can learn a new clause but no asserting clause. Let
the trail be U :“ px, y; u, z̄,Kq for the false QCNF @uDx, y, z ¨ px̄_ yq ^ px_ yq ^ pu_ ȳ_ z̄q ^ pū_
ȳ _ z̄q ^ pu_ ȳ _ zq ^ pū_ ȳ _ zq. There are two new clauses we could learn: ū_ ȳ or ū_ x̄. None
of the two can become unit after backtracking since we used the decision heuristic for QCDCLEXI-ANY,
although we followed the NCC.

As a special case we obtain for our base model QCDCL the following situation.

Corollary 4.5. [Folklore, cf. [20]] If T is a trail in a QCDCL proof for a formula Φ, that has run into a
conflict, then LpT q contains an asserting or empty clause or cube. If T has not run into a conflict, but
we have assigned all variables in T , then LpT q contains at least a new cube C.

Furthermore, if C is non-empty, there exists a point ri, js in the trail to which we can backtrack after
learning C such that the NCC continues to hold.

asserting clauses only new clauses
asserting cubes QCDCL QCDCLEXI-ANY

only new cubes QCDCLUNI-ANY QCDCLANY

Figure 2: Overview of guaranteed learnable constraints
after a trail conflict in the corresponding models.

Figure 2 provides an overview of the
four systems and their ability to learn assert-
ing clauses and cubes. As a consequence
of always learning new constraints, we infer
that our models are all complete and termi-
nating proof methods.

Theorem 4.6. QCDCL, QCDCLANY, QCDCLUNI-ANY

and QCDCLEXI-ANY are sound and complete
proof systems.5 Additionally, as long as we follow the rules of decision making (especially the NCC), we
will always learn the empty clause or cube at some point, no matter what decisions were made.

Proof. By Propositions 4.2 and 4.3 as well as Corollary 4.5 we conclude that from each trail (that has
either run into a conflict or assigned all variables) we can always learn a new clause or cube. Note that
these results have to be interpreted in the context of Proposition 3.8.

Since a given formula only consists of finitely many variables, we can only learn finitely many new
clauses and cubes. We finish the proof as soon as we learn the empty clause or cube, which will happen
at some point. Therefore all four systems are complete.

The soundness results from the fact that from each QCDCL, QCDCLANY, QCDCLUNI-ANY and QCDCLEXI-ANY

proof ι we can extract a long-distance Q-resolution or long-distance Q-consensus proof Rpιq for
the same formula.

5 Separations of QCDCL systems

In this section, we will exponentially separate our three new models—where decisions do not necessarily
follow the prefix order—from the plain model QCDCL. We omit some of the proofs, which can be found
in the appendix in detail. We will use the gauge lower bound technique, introduced in [8], which we
will first review. This technique works on Σb

3 QCNFs. To ease notation, we will assume that prefixes of
Σb

3 QCNFs have the form DX@UDT , for sets of literals X,U, T , and we will use the notions of X-, U -
and T -variables and -literals. Further, we define certain types of clauses:

5I.e., they are proof systems for the language of false and true QBFs in the setting of [11]. Technically, in order not to
trivialise the notion of such a proof system, we could consider proof systems for the language L of the marked union of true
and false QBFs, i.e., L “ t0Φ | Φ is a false QBFu Y t1Φ | Φ is a true QBFu. In this way, L is still PSPACE complete.
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• X-clauses consist of X-literals only (analogously we define U-clauses and T-clauses),

• XT-clauses consist of at least one X- and at least one T -literal, but no U -literals,

• XUT-clauses consist of at least one X-, U - and T -literal, respectively.

The gauge lower bound method works for a specific class of Σb
3 QCNFs with the XT-property.

Definition 5.1 ([6]). We say that Φ fulfills the XT-property, if CpΦq contains no XT-clauses, no T-clauses
that are unit (or empty) and no two T-clauses from CpΦq are resolvable.

The XT-property extends to entire QCDCL proofs, as stated in the next lemma.

Lemma 5.2 ([6]). If Φ is a Σb
3 QCNF that fulfills the XT-property, then it is not possible to derive

XT-clauses or new T-clauses via long-distance Q-resolution from Φ.

The gauge lower-bound method from [8] uses the next two notions of fully reduced and primitive
proofs (they were implicit in [8] and stated explicitly in [5]).

Definition 5.3 (fully reduced proofs [5,8]). A long-distance Q-resolution refutation π of a QCNF Φ is
fully reduced, if for each clause C P π that contains universal literals that are reducible, the reduction
step is performed immediately and C is not used otherwise in the proof.

Fully reduced proofs are not much of a limitation. In fact, all long-distance Q-resolution proofs
that we extract from a QCDCL run are already fully reduced by default. Also, we can always shorten a
given long-distance Q-resolution proof by making it fully reduced.

Definition 5.4 (primitive proofs [5, 8]). A long-distance Q-resolution proof π from a Σb
3 formula is

primitive, if there are no two XUT-clauses in π that are resolved over an X-variable.

Unlike the fully reduced property, not all proofs extracted from QCDCL are primitive, in general.
Our lower bound method will not work for all QCDCL proofs, but needs fully reduced primitive

Q-resolution proofs, which are better suited for a proof-complexity analysis. Later, the challenge will
be to show that certain extracted proofs from QCDCL are primitive. Note that fully reduced primitive
long-distance Q-resolution proofs are always Q-resolution proofs.

The main measure for the lower bound technique is the gauge of a formula, defined in [8].

Definition 5.5 ([8]). Let Φ be a Σb
3 QCNF with prefix DX@UDT . We define WΦ as the set of all Q-

resolution proofs π from Φ of X-clauses Cπ, such that π consists of resolutions over T -literals and
reductions only. We define gaugepΦq :“ mint|Cπ| : Cπ is the root of some π PWΦu.

Intuitively, gaugepΦq is the minimal number of X-literals that are piled up during the process of
deriving an X-clause without using resolutions over X-literals. In other words: to get rid of all T -
literals from Φ, we have to pile up at least gaugepφq many different X-literals.

All notions we introduced so far are combined into the following lower bound method:

Theorem 5.6 ([8]). Each fully reduced primitive Q-resolution refutation of a Σb
3 QCNF Φ that fulfils

the XT-property has size 2ΩpgaugepΦqq.

Proof. We refer to the notion of quasi level-ordered proofs from [8] (there is no need to define this here).
In that paper, it is explained how we can transform a QCDCL refutation of a formula that fulfils the
XT-property into a quasi level-ordered Q´ resolution refutation in polynomial time via an algorithm.
However, the input proof does not need to be a QCDCL proof necessarily. It suffices that this proof
is fully reduced and it does not contain an X-resolution over two XUT-clauses (these are the only two
properties that were needed for proving Theorem 2 in [8]). In other words, this algorithm can be used
to transform fully reduced primitive Q-resolution refutations into quasi level-ordered Q-resolution
refutations in polynomial times.

The lower bound then follows from Theorem 5 of [8].

Our goal is to find formulas that separate QCDCL from QCDCLUNI-ANY and QCDCL from QCDCLEXI-ANY,
respectively. We start with the latter.
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5.1 Separation on true formulas

The advantage of QCDCLEXI-ANY (compared to QCDCL) is to decide existential literals out of order while
still learning asserting cubes. Since cubes are important for verifications of true formulas, it makes sense
to use true QBFs for the separation.

First, we discuss two generic modifications for QBFs. The twin construction doubles all universal
variables. For all clauses with universal variables a copy is created in the twin variables.

Definition 5.7 (twin formulas). Let Φ “ DX@UDT ¨ CpΦq be a QCNF. Let U “ tu1, . . . , umu and let
v1, . . . , vm be variables not occuring in Φ. Then the twin formula of Φ is the QCNF TwinΦ defined as

TwinΦ :“ DX@pU Y tv1, . . . , vmuqDT ¨ CpΦq ^
ľ

CPCpΦq

Cru1{v1, . . . , um{vms,

where ui{vi indicates that all occurrences of ui are substituted by vi.

The second modification is the reversion of a formula.

Definition 5.8. If Φ “ Q1V1Q2V2 . . .QkVk ¨
Źm
j“1Cj is a QCNF with Qi P tD,@u and disjoint sets of

variables Vi for i “ 1, . . . , k, then the reversion RevpΦq of Φ is the QCNF

Q11V1Q12V2 . . .Q1kVk@wDc1, . . . , cm ¨ pc̄1 _ . . ._ c̄mq ^
m
ľ

j“1

ľ

`PCj

p¯̀_ w _ cjq ^ p¯̀_ w̄ _ cjq

where Q1i “ @ if Qi “ D, and Q1i “ D if Qi “ @, and w, c1, . . . , cm are new variables not contained in
Φ.

It is easy to prove that there exists a duality between the truth values of Φ and RevpΦq.

Lemma 5.9. If Φ is a QCNF, then RevpΦq is true if and only if Φ is false.

Proof. Case 1: Φ is false.
Then there exists a winning strategy for the universal player of Φ. We will show that RevpΦq has an

existential winning strategy.
The existential player for RevpΦq can just follow the universal winning strategy for Φ. That means

there is at least one clause Cj P CpΦq which is falsified by this strategy. Then the clauses ¯̀_ w _ cj
and ¯̀_ w̄ _ cj for each ` P Cj are satisfied (for this particular j) by this strategy. Note that it does not
matter how w was assigned. Therefore, the existential player for this modified formula can just set cj to
true and all the other ci to false.

Case 2: Φ is true.
This case is analogous to Case 1. The universal player for the modified RevpΦq version follows

the existential winning strategy for Φ. Then the universal player can set w to true (it does not matter,
actually). For each j P t1, . . . ,mu the clause Cj is satisfied, hence at least one literal ` P Cj is set to
true. Therefore for each cj , the clause ¯̀_ w̄ _ cj becomes the unit clause pcjq at some point under this
strategy. That means the existential player for RevpΦq has to set each cj to true, falsifying the clause
c̄1 _ . . ._ c̄m.

We now have constructed a universal winning strategy for RevpΦq.

We will use the reversion to lift hardness from false to true QCNFs. To verify a true formula, we
need to create a proof using cubes. We will show that RevpΦq is designed such that its initial cubes
are basically the negated axiom clauses of Φ. Thus, a verification of RevpΦq can be transformed into a
refutation of Φ.

Our reversion was inspired by the notion of the negation from [18]. The only change we made is
adding the variable w. We did this to prevent a direct connection between an X- or U -block and an
auxiliary variable cj from the last block. Our lower bound technique is based on the fact that on certain
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formulas we cannot have direct connections (hence: cannot directly propagate) between outer and inner
quantifier blocks. The added variable w helps to maintain this property.

The next two results shows how we can transform verifications of RevpΦq into refutations of Φ by
interpreting the cubes from the verification as negated clauses of a refutation.

Lemma 5.10. Let Φ “ Q ¨
Źm
j“1Cj be a QCNF and let σ be an assignment that satisfies CpRevpΦqq.

Then there exists some C P CpΦq with C Ď σ.

Proof. Since we have to satisfy the clause pc̄1 _ . . ._ c̄mq, there is some j P rms with c̄j P σ. Then the
clauses ¯̀_w _ cj and ¯̀_ w̄ _ cj have to be satisfied for each ` P Cj . We do not need to assign w, but
we need to set each ` to false, hence Cj Ď σ.

Proposition 5.11. If Φ is a false QCNF and ρ is a long-distance Q-consensus verification of RevpΦq,
then ρ can be transformed into a fully reduced long-distance Q-resolution refutation π of Φ with
|π| ď |ρ|.

More precisely, for each clause C P π there is a cube C 1 P ρ with C Ď C 1. Furthermore, for each
two clauses C,D that are resolved in π, the corresponding cubes C 1, D1 are resolved in ρ, as well.

Proof. By Lemma 5.10, for each initial cube D P ρ there is a clause C P CpΦq with redDRevpΦqpCq Ď D
(note that the assignment from Lemma 5.10 can still be reduced). We substitute each initial cube D with
its corresponding redDRevpΦqpCq and shorten the proof, if necessary (i.e., delete redundant resolutions and
reductions). We receive a subproof π1 Ď ρ, that is still a verification.

After that, we negate all cubes in π1 and receive a proof π that consists of clauses. If we interpret
π as a proof for Φ (or redpΦq to be precise), all resolutions and reductions are still sound because the
quantifiers were flipped, as well.

We can assume that in π we will reduce as soon as possible, otherwise we could shorten the proof
even more. Obviously, the last clause in π has not received any additional literals, therefore π is a
long-distance Q-resolution refutation of Φ.

For our next results, we need an even stronger property than the XT-property: We require, that
clauses from the formula contain at least one U - and T -literal.

Lemma 5.12. If Φ is a Σb
3 QCNF, in which all clauses contain at least one U - and T -literal, then Φ

fulfils the XT-property.

Proof. Obviously, Φ does not contain any XT- or T-clauses and therefore the XT-property is fulfilled.

We combine the results above and obtain a new lower bound technique for true formulas, which
builds on the gauge technique for false formulas.

Theorem 5.13. Let Φ be a false Σb
3. Additionally, let all clauses C P CpΦq contain at least one U - and

one T -literal. If the QCNF TwinΦ needs fully reduced primitive Q-resolution refutations of size s, then
QCDCL verifications for RevpTwinΦq also need size s.

Proof. Let ι be a QCDCL verification for RevpTwinΦq. We will show that there exists a fully reduced
primitive Q-resolution refutation π for TwinΦ with |π| ď |Rpιq|.

Let π be the long-distance Q-resolution refutation of TwinΦn as described in Proposition 5.11.
Then π is fully reduced. We will show that π is primitive.

Assume not. Then there are two XUT-clauses B1, B2 P π that are resolved over some x P X . By
the construction of π described in Proposition 5.11, we can find two cubes D1, D2 P Rpιq such that
varpDiq X U ‰ H and varpDiq X T ‰ H for i “ 1, 2 which are resolved over x. One of these cubes
was an antecedent cube for x in some trail T P Tpιq, say D1 “ anteT pxq (that means x̄ P D1).

In particular, there is some T -literal t P D1 such that t ăT x because D1 must become unit.
Remember that t is universal in RevpTwinΦq and we can only reduce cubes existentially. Then either t
was a regular decision, or a propagation.
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Case 1: t was decided.
This is only possible if all U -variables were assigned before. Hence, for each u P U there is a literal

`u with varp`uq “ u and `u ăT t ăT x. Because decisions have to be level-ordered in QCDCL, all `u
had to have been propagated.

Let `u be the leftmost U -literal in T . Consider its antecedent clause A :“ anteT p`uq.

Claim. If `u is the leftmost U -literal in T , then there exists an i P t1, . . . ,mu such that ci P
varpanteT p`uqq (where c1, . . . , cm are the variables from RevpTwinΦq as in Definition 5.8).

Proof of the claim. Assume not. We will show that A :“ anteT p`uq has to contain at least two different
U -literals.

Assume thatA only contains oneU -literal, namely `u itself. Let Φ consist of the clausesC1, . . . , Cm1

and let TwinΦ consist of the clauses C1, . . . , Cm with m ą m1. We can assume that `u is a copy of a
literal from Φ by the construction of a twin formula. In particular, `u (and ¯̀

u) cannot be contained in the
clauses C1, . . . , Cm1 .

Let ρ be the long-distance Q-resolution derivation of A that was constructed in ι, but not used for
Rpιq since verifications can only make use of cubes. By assumption, A does not contain any ci or c̄i.
However, each axiom clause from RevpTwinΦq includes at least one ci or c̄i. Hence, we have to resolve
over these variables somehow. In particular, we need c̄1 _ . . . _ c̄m P ρ since this is the only axiom
clause where these variables occur in a negative polarity.

We will now construct another long-distance Q-resolution derivation ρ1 by substituting c̄1_ . . ._
c̄m with c̄1 _ . . ._ c̄m1 in ρ and gradually deleting all redundant clauses. In particular, all clauses from
RevpTwinΦq that contain `u or ¯̀

u will be deleted because the corresponding ci is missing. Let A1 be
the last clause in ρ1, hence ρ1 is a long-distance Q-resolution proof of A1 from RevpΦq. Obviously,
we get A1 Ď A and `u R A1 as well as ci, c̄i R A1 for all i “ 1, . . . ,m. Since `u was the only U -literal
in A, the clause A1 cannot have any U -literals. Therefore A1 is a clause consisting of universal literals
only. Reducing A1 universally gives us the empty clause pKq, which means that we can extend ρ1 to a
refutation of RevpΦq. But this is a contradiction to the fact that RevpΦq is a true formula (by Lemma
5.9).

That shows that A must contain more than one U -literal. Let `u ‰ z P A be another U -literal. Then
we need z̄ ăT `u since z is existential. However, this contradicts the choice of `u, which finishes the
proof.

We want to create a contradiction by applying the claim, for which we need to show that A does not
contain any literal from tcr, c̄r| r “ 1, . . . ,mu.

Assume that there is such a literal. That means we can find the leftmost literal c P tcr, c̄r| r “
1, . . . ,mu in T , hence c ăT `u ăT t ăT x. Now, c cannot have been a decision since decisions
must be level-ordered. That means that c has been propagated by an antecedent clause F :“ anteT pcq.
Because c was leftmost, F cannot be the clause c̄1_ . . ._ c̄m. It is easy to see that F then has to contain
either w or w̄ by the structure of a reversion (see Definition 5.8). W.l.o.g. let w P F . Then we need
w̄ ăT c ăT `u. Because of the quantification order, w̄ cannot be a decided literal. Hence w̄ must have
been propagated by some antecedent cube E :“ anteT pw̄q. Let ρ be the subproof of E from Rpιq. Then
there exists an initial cube G P ρ with w P G, which is not getting resolved away in ρ. Furthermore, G
is also an initial cube in Rpιq. By Lemma 5.10, there exists some H P CpTwinΦq such that H Ď G.
Since each clause of Φ contains a U -literal, there is such a U -literal v P H Ď G and also v P E because
it cannot be resolved or reduced away. This means we need v ăT w̄ ăT `u, which is a contradiction to
the choice of `u.

We have now shown that A does not contain any cr, c̄r, r P t1, . . . ,mu. However, this is impossible
by our claim. We conclude that Case 1 cannot occur.

Case 2: t was propagated.
Consider the antecedent cube J :“ anteT ptq. Let τ be the subproof of J in Rpιq. Then the first

cubes in τ were (reduced) satisfying assignments for RevpTwinΦnq. At least one of these initial cubes
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in τ contains t̄ which will not get resolved away since it appears in J . Let I P τ be an initial cube with
t̄ P I that does not get resolved away in τ . By Lemma 5.10, there exists a clause K P CpTwinΦnq such
that K Ď I . By our assumption, K contains at least one U - and one T -literal. But then also I contains
at least one U -literal `. Because ` is blocked by t̄ all the time, it does not get reduced away in τ , hence
` P J .

Due to ` ăRevpTwinΦnq t, we need ` ăT t in order for J to become unit. W.l.o.g. let ` be the
leftmost U -literal in T (the fact that ` P J is not important anymore from this point on). Because of
x ăRevpTwinΦnq `, the literal ` cannot be a regular decision. That means it must have been propagated.

We can repeat the argument from Case 1. We conclude that such an ` does not exist. Thus Case 2
does not occur and we get a contradiction regarding our assumption that π was not primitive.

We now construct specific QBFs that meet the conditions of Theorem 5.13. We already know from
[8] that the equality formulas Eqn of [4] have linear gauge and therefore need exponential-size fully
reduced primitive Q-resolution refutations. However, not all clauses from Eqn contain a U -literal. We
modify the formulas by adding an artificial U -literal p to the relevant clauses:

Definition 5.14. The QCNF ModEqn consists of the prefix Dx1, . . . , xn@u1, . . . , un, pDt1, . . . , tn and the
matrix xi _ ui _ ti, x̄i _ ūi _ ti, p_ t̄1 _ . . ._ t̄n, p̄_ t̄1 _ . . ._ t̄n for i “ 1, . . . , n.

Neither this nor the Twin modification changes the gauge of the formulas. Hence we get:

Proposition 5.15. It holds gaugepTwinModEqnq “ n. Therefore, TwinModEqn needs exponential-size
fully reduced primitive Q-resolution refutations.

Proof. Since all axiom clauses contain T -literals, we have to get rid of them somehow. The only four
clauses that contain T -literals in a negative polarity are the clauses p_ t̄1 _ . . ._ t̄n, p̄_ t̄1 _ . . ._ t̄n,
q _ t̄1 _ . . ._ t̄n and q̄ _ t̄1 _ . . ._ t̄n, where q is the copy of p. Hence, we have to use at least one of
them in order to derive an X-clause. In particular, we have to resolve over each ti. The only four clauses
in which ti occurs in a positive polarity are xi _ ui _ ti, x̄i _ ūi _ ti, xi _ vi _ ti and x̄i _ v̄i _ ti,
where vi is the copy of ui. In each case we will pile up xi or x̄i for each resolution over ti. Therefore,
our X-clause at the end will contain at least n different X-literals.

Hence gaugepTwinModEqnq “ n. The second claim then follows from Theorem 5.6.

The lower bound for the true QBFs then follows with Theorem 5.13.

Corollary 5.16. RevpTwinModEqnq needs exponential-size QCDCL verifications.

We now use a direct construction to show that RevpTwinModEqnq is easy for QCDCLEXI-ANY.

Proposition 5.17. RevpTwinModEqnq has polynomial-size QCDCLEXI-ANY verifications.

Proof. Let us first list all the clauses of TwinModEqn. It consists of the prefix

Dx1, . . . , xn@u1, . . . , un, p, v1, . . . , vn, qDt1, . . . , tn

and the matrix

Cpi,1q :“ xi _ ui _ ti C1 :“ p_ t̄1 _ . . ._ t̄n

Cpi,2q :“ x̄i _ ūi _ ti C2 :“ p̄_ t̄1 _ . . ._ t̄n

Cpi,3q :“ xi _ vi _ ti C3 :“ q _ t̄1 _ . . ._ t̄n

Cpi,4q :“ x̄i _ v̄i _ ti C4 :“ q̄ _ t̄1 _ . . ._ t̄n

for i “ 1, . . . , n.
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Then the true QCNF RevpTwinModEqnq consists of the prefix

@x1, . . . , xnDu1, . . . , un, p, v1, . . . , vn, q@t1, . . . , tn, wDM,

with M :“ tcpi,jq, cj | i “ 1, . . . , n, j “ 1, . . . , 4u, and the matrix

E :“
n
ł

i“1

4
ł

j“1

c̄pi,jq _
4
ł

k“1

c̄k

x̄i _ w _ cpi,1{3q ūi _ w _ cpi,1q v̄i _ w _ cpi,3q

x̄i _ w̄ _ cpi,1{3q ūi _ w̄ _ cpi,1q v̄i _ w̄ _ cpi,3q

xi _ w _ cpi,2{4q ui _ w _ cpi,2q vi _ w _ cpi,4q

xi _ w̄ _ cpi,2{4q ui _ w̄ _ cpi,2q vi _ w̄ _ cpi,4q

t̄i _ w _ cpi,1{2{3{4q

t̄i _ w̄ _ cpi,1{2{3{4q

p̄_ w _ c1 p_ w _ c2 q̄ _ w _ c3 q _ w _ c4

p̄_ w̄ _ c1 p_ w̄ _ c2 q̄ _ w̄ _ c3 q _ w̄ _ c4

ti _ w _ c1{2{3{4

ti _ w̄ _ c1{2{3{4

for i “ 1, . . . , n, where variables like cpi,1{3q decode two versions of this clause: One clause with cpi,1q
and the other with cpi,3q (analogously with cpi,2{4q, cpi,1{2{3{4q and c1{2{3{4).

Let us now construct a polynomial size QCDCLEXI-ANY verification. At first, we would like to learn
the cubes

Dpi,1q :“ x̄i ^ ūi ^ t̄i

Dpi,2q :“ xi ^ ui ^ t̄i

D1 :“ p̄^ t1 ^ . . .^ tn

for i “ 1, . . . , n. In order to learn Dpi,1q, we will make (level-ordered) decisions that satisfy all literals
from Dpi,1q, but falsify all the other Dpi1,1q for i1 ‰ i. For example, we set xi, ui and ti to false, and
we can assign all the other variables left of w arbitrarily. Note that until we reach w, we will never
make any propagations since w or w̄ is blocking them. After having decided all variables left of w,
we will decide w and potentially trigger some propagations. However, the variable cpi,1q will never be
propagated because all clauses containing it are already satisfied. After this we will set cpi,1q to false and
all the remaining variables to true.

We now have satisfied the clause E. Furthermore, we have set all cpi1,jq and ck to true except cpi,1q.
Hence we have satisfied all clauses except the four clauses containing cpi,1q. But these two clauses were
already satisfied because we have satisfied the cube Dpi,1q with the decisions left of w.

Let Tpi,1q be the trail we have constructed now. We can extract the cube

x̄i ^ ūi ^ t̄i ^ c̄pi,1q ^
ľ

pi1,jqPprnsˆr4sqztpi,1qu

cpi1,jq ^
4
ľ

k“1

ck,

which, as an assignment, already satisfies all clauses from RevpTwinModEqnq. This cube can be exis-
tentially reduced to Dpi,1q, which is the cube we learn from Tpi,1q. Analogously, we can learn the cubes
Dpi,2q for i “ 1, . . . , n via some analogue trails Tpi,2q.

It remains to learn the cubeD1, which represents the clauseC1 P CpTwinModEqnq. We will construct
a trail T1 which includes (level-ordered) decisions that satisfy D1. But now we have to make sure not to
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trigger propagations via Dpi,1q or Dpi,2q since we must not set ti to false. This can be done by setting all
xi to false and all ui to true. Then we can set p to false and all ti to true. The remaining variables left
of w can again be decided arbitrarily. Then we set w to true and potentially trigger some propagations
of cpi,jq or ck, which is not a problem since c1 will never be propagated (the clauses containing c1 are
already satisfied). Then we set c1 to false and all remaining variables can be set to true.

As with T pi, 1q, we have satisfied all clauses from RevpTwinModEqnq. We can extract the cube

p̄^ t1 ^ . . .^ tn ^ c̄1 ^

n
ľ

i“1

4
ľ

j“1

cpi,jq ^
4
ľ

k“2

ck,

from T1, which already satisfies the matrix and can be existentially reduced to D1.
We will now define the cubes

Ri :“ x̄i ^ ūi ^ p̄^
n
ľ

k“i`1

puk ^ ūkq ^
i´1
ľ

`“1

t`

Li :“ xi ^ ui ^ p̄^
n
ľ

k“i`1

puk ^ ūkq ^
i´1
ľ

`“1

t`

for i “ 2, . . . , n´1. We will construct trails Un´1,Vn´1, . . . ,U2,V2 with which we will gradually learn
the clauses Rn´1, Ln´1, . . . , R2, L2.

We start with

Un´1 :“ pp̄; x̄1; ū1, t1; . . . ; x̄n´1; ūn´1, tn´1, t̄n, x̄n,Jq

with antecedent cubes

anteUn´1ptjq “ Dpj,1q

anteUn´1pt̄nq “ D1

anteUn´1px̄nq “ Dpn,2q

anteUn´1pJq “ Dpn,1q

for j “ 1, . . . , n´ 1. We learn the cube Rn´1 “

ˆ

´

Dpn,1q
xn
’ Dpn,2q

¯ tn
’ D1

˙

tn´1

’ Dpn´1,1q.

Analogously, by flipping some polarities, we construct the trail Vn´1 and learn the cube

Ln´1 “

ˆ

´

Dpn,1q
xn
’ Dpn,2q

¯ tn
’ D1

˙

tn´1

’ Dpn´1,2q.

Note that Rn´1 will not interfere with the assignments in Vn´1.
Assume we have already learned the clauses Rn´1, Ln´1, . . . , Ri, Li for some i P t3, . . . , n ´ 1u.

Then we can construct the following trail:

Ui´1 :“ pp̄; x̄1; ū1, t1; . . . ; x̄i´1; ūi´1, ti´1, xi,Jq

with antecedent cubes

anteUi´1ptjq “ Dpj,1q

anteUi´1pxiq “ Ri

anteUi´1pJq “ Li

for j “ 1, . . . , i´1. We learn the cubeRi´1 “

´

Li
xi
’ Ri

¯ ti´1

’ Dpi´1,1q. Analogously, we can construct

the trail Vi´1 and learn Li´1 “

´

Li
xi
’ Ri

¯ ti´1

’ Dpi´1,2q.
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After having learned the cubes Rn´1, Ln´1, . . . , R2, L2, we construct two more trails, namely

U1 :“ pp̄; x̄1; ū1, t1, x2,Jq

with antecedent cubes

anteU1pt1q “ Dp1,1q

anteU1px2q “ R2

anteU1pJq “ L2,

from which we learn rx̄1s “

´

L2

x2
’ R2

¯ t1
’ D1,1, and the trail

V1 :“ px1; p̄; u1, t1, x2,Jq

with antecedent cubes

anteV1px1q “ rx1s

anteV1pt1q “ Dp1,2q

anteV1px2q “ R2

anteV1pJq “ L2,

from which we learn the empty cube rJs “ redDRevpTwinModEqnq

ˆ

´

L2

x2
’ R2

¯ t1
’ Dp1,2q

˙

x1
’ rx1s.

All in all, we have constructed a QCDCLEXI-ANY verification using the 4n´ 1 trails

Tp1,1q, . . . , Tpn,1q, Tp1,2q . . . , Tpn,2q, T1,Un´1,Vn´1, . . . ,U1,V1.

Corollary 5.18. QCDCL and QCDCLEXI-ANY are exponentially separated on true formulas.

5.2 Separation on false formulas

For separating QCDCL and QCDCLUNI-ANY, we recall the completion principle CRn of [17].

Definition 5.19 ([17]). The false QCNF CRn consists of the prefix DX@UDT with

X :“ txpi,jq| i, j P rnsu, U :“ tuu, T :“ tai, bi| i P rnsu

and the matrix

xpi,jq _ u_ ai x̄pi,jq _ ū_ bj ā1 _ . . ._ ān b̄1 _ . . ._ b̄n

for i, j “ 1, . . . , n.

For the lower bound, we will use the modification TwinCRn. As we show, cube learning becomes
rather useless with the Twin modification. This fact helps us to ensure that QCDCL refutations of
TwinCRn are primitive, and thus we can apply the gauge lower-bound method.

Similarly as in Proposition 5.15 we can compute the gauge.

Lemma 5.20. It holds gaugepTwinCRnq “ n.

Proof. For the derivation of an X-clause we need at least one of the clauses ā1_ . . ._ ān or b̄1_ . . ._ b̄n
since we have to get rid of all T -literals. In particular, w.l.o.g. we have to resolve over each ai. For this,
we need one of the clauses xpi,jq _ u _ ai or xpi,jq _ v _ ai for each i. That means for each i we will
pile up at least one xpi,jq for some j. Therefore gaugepTwinCRnq “ n.
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The main work is to check that QCDCL refutations of TwinCRn are primitive.

Proposition 5.21. If ι is a QCDCL refutation of TwinCRn, then Rpιq is fully reduced and primitive.

Proof. It suffices to show that Rpιq is primitive. Assume not.
Then there exists two XUT-clauses C,D P Rpιq that are resolved over an X-literal, say x. One

of these two clauses has to be the antecedent clause of x by the definition of clause learning, say C “
anteT pxq for some trail T P Tpιq. Let t1 P C be one of the T -literals. We want to show, that there exists
a U -literal w with w ăT x.

Assume that no suchw exists. SinceC had to become unit at the propagation of x, we need t̄1 ăT x.
The literal t̄1 cannot be a decision in T , since this would mean that we assigned all U -variables earlier
in the trail, which contradicts our assumption. Hence t̄1 must have been a propagation.

Starting with i “ 1, we define Fi :“ anteT pt̄iq. Now, Fi cannot contain U -literals since we cannot
falsify these literals before assigning t̄i. Because of the XT-property (and Lemma 5.2), Fi cannot contain
X-literals, as well (otherwise it would be an XT-clause). But if the XT-property is fulfilled, we cannot
derive unit T-clauses, therefore Fi has to contain at least one additional T -literal, say ti`1 P Fi.

This argument can be repeated for each i P N, which means we could find an infinite amount of
T -literals t̄i that must be all contained in T , which is obviously not possible. This shows that our
assumption was false and we can indeed find such a U -literal w ăT t̄1 ăT x.

W.l.o.g. let w be the first (leftmost) U -literal in T . Define A :“ anteT pwq. Clearly, A is a cube. We
will show that A contains at least two different U -literals. Then, since w was the first U -literal in T , A
cannot become unit until at least one U -literal was assigned, which would be a contradiction.

Now, A is a cube that was derived during cube learning from cubes that represent satisfying (partial)
assignments of the matrix of TwinCRn. Let D be a cube that satisfies the matrix of TwinCRn. Because
we have to satisfy the clauses ā1 _ . . ._ ān and b̄1 _ . . ._ b̄n, there exists an r P rns with ār P D and
an s P rns with b̄s P D. Furthermore, we have to satisfy the clauses xpr,sq _ u _ ar, xpr,sq _ v _ ar,
x̄pr,sq_ ū_ bs and x̄pr,sq_ v̄_ bs. That means we have to assign u in some polarity. W.l.o.g. let u P D.
Then we have to set xpr,sq to false, hence x̄pr,sq P D. In order to satisfy xpr,sq _ v _ ar, we have to set v
to true, as well. Therefore we get v P D.

We conclude, that u P D if and only if v P D, and analogously ū P D if and only if v̄ P D. This
means that we will never be able to resolve such two learned cubes in ι since we cannot create universal
tautologies in cubes. In particular, we have proven that A contains at least two U -literals, which leads to
a contradiction as described above.

Applying Theorem 5.6 then yields the lower bound.

Corollary 5.22. TwinCRn needs exponential-sized QCDCL refutations.

On the other hand, TwinCRn is easy for QCDCLUNI-ANY. Basically, we can simulate the Q-resolution
refutation of CRn from [16], because we can decide universal literals out of order.

Proposition 5.23. TwinCRn has polynomial-sized QCDCLUNI-ANY refutations.

Proof. For each k “ 1, . . . , n we construct the trail

Tk :“ px̄p1,kq; . . . ; x̄pn,kq; ū, a1, . . . , an,Kq

with antecedent clauses

anteTkpaiq “ xpi,kq _ u_ ai, anteTkpKq “ ā1 _ . . ._ ān,

for i “ 1, . . . , n.
Resolving ā1_ . . ._ ān over each anteTkpaiq gives us the clause Ek :“ xp1,kq_ . . ._ xpn,kq, which

we will learn. Note that the trails and the learned clauses will not affect each other, hence the order
in which we construct these n trails does not matter. Next, we construct the trails U1, . . . ,Un´1 (in

19



that order). From each Uk we learn the clause Ck :“ ū _ bk. While constructing Uk, we assume that
C1, . . . , Ck´1 were already learned. Then, Uk looks as follows:

Uk :“ pu, b1, . . . , bk´1; v; b̄k, x̄p1,kq, . . . , x̄pn,kq,Kq

with antecedent clauses

anteUk
pbjq “ Cj , anteUk

px̄pi,kqq “ x̄pi,kq _ ū_ bk, anteUk
pKq “ Ek,

for i “ 1, . . . , n and j “ 1, . . . , k ´ 1. Resolving Ek over each anteUk
px̄pi,kqq leads to the learnable

clause Ck. Having learned the clauses C1, . . . , Cn´1, we continue with the trail V , which will be the last
one. It looks as follows:

V :“ pu, b1, . . . , bn´1, b̄n, x̄p1,nq, . . . , x̄pn,nq,Kq

with antecedent clauses

anteVpbjq “ Cj , anteVpb̄nq “ b̄1 _ . . ._ b̄n, anteVpx̄pi,nqq “ x̄pi,nq _ ū_ bn,

anteVpKq “ En,

for i “ 1, . . . , n and j “ 1, . . . , n´ 1. Since we only made a universal decision, we can learn the empty
clause pKq from V by resolving over everything.

Thus we constructed a QCDCLUNI-ANY refutation using 2n` 1 trails.

Corollary 5.24. QCDCL and QCDCLUNI-ANY are exponentially separated on false formulas.

We combine both separations into our main result:

Theorem 5.25. a) QCDCLUNI-ANY is exponentially stronger than QCDCL on false formulas.

b) QCDCLEXI-ANY is exponentially stronger than QCDCL on true formulas.

c) QCDCLANY is exponentially stronger than QCDCL both on false and true formulas.

Besides TwinCRn, we can find further separations between QCDCL and QCDCLUNI-ANY. The QCNFs
MirrorCRn were introduced in [5] as a modification of CRn, where it was shown that the formula is hard
for several variants of QCDCL, including our base model QCDCL. It is notable that the matrix of
MirrorCRn is unsatisfiable, and therefore we will never perform cube learning.

Definition 5.26. The false QCNF MirrorCRn consists of the prefix

Dxp1,1q, . . . , xpn,nq@uDa1, . . . , an, b1, . . . , bn

and the matrix

xpi,jq _ u_ ai ā1 _ . . ._ ān

x̄pi,jq _ ū_ bj b̄1 _ . . ._ b̄n

xpi,jq _ ū_ āi a1 _ . . ._ an

x̄pi,jq _ u_ b̄j b1 _ . . ._ bn for i, j P rns.

Proposition 5.27 ([5]). MirrorCRn needs exponential-sized QCDCL refutations.

Proposition 5.28. MirrorCRn has polynomial-sized QCDCLUNI-ANY refutations.
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Proof. At first, we will derive the clauses Ak :“ xp1,kq _ . . . _ xpn,kq for each k “ 1, . . . , n. Suppose,
we have already learned A1, . . . , Ak´1. We construct the trail Tk as follows:

Tk :“ px̄p1,kq; . . . ; x̄pn,kq; ū, a1, . . . , an,Kq

with

anteTkpaiq “ xpi,kq _ u_ ai

anteTkpKq “ ā1 _ . . ._ ān

for i “ 1, . . . , n. From this trail we can learn Ek by resolving over all ai and then we restart.
Our next goal is to learn the clauses Bk :“ ū_ bk for each k “ 1, . . . , n´ 1. We now suppose that

we have already learned A1, . . . , An and B1, . . . , Bk´1. We construct the trail Uk as follows:

Uk :“ pu, b1, . . . , bk´1; b̄k, x̄p1,kq, . . . , x̄pn,kq,Kq

with

anteUk
pbjq “ Bj

anteUk
px̄pi,kqq “ x̄pi,kq _ ū_ bk

anteUk
pKq “ Ak

for j “ 1, . . . , k ´ 1 and i “ 1, . . . , n. We learn Bk by resolving Ak over all xpi,kq. After this we
backtrack back to the point where we decided b̄k.

Our last trail, from which we plan to learn the empty clause, looks as follows:

Un :“ pu, b1, . . . , bn,Kq

with

anteUnpbjq “ Bj

anteUnpKq “ b̄1 _ . . ._ b̄n.

We resolve over all bj and obtain pKq.

Corollary 5.29. MirrorCRn is hard for QCDCL, but easy for QCDCLUNI-ANY.

6 Experiments

One of the aspirations of proof complexity is to explain and predict solver behaviour, in particular
running time. In this section, we evaluate how well our proof-complexity results transfer to the ‘real
world’ of QCDCL implemented in a solver.

For our experiments we picked the QCDCL solver Qute [27], and implemented each of the afore-
mentioned QCDCL variants—QCDCLUNI-ANY, QCDCLEXI-ANY, and QCDCLANY (Qute could already run
in a mode that corresponds to QCDCL). In order to ensure compliance with the NCC (Definition 3.5),
we needed to adapt some of Qute’s internal data structures, and so for the sake of a fair comparison we
also report on a version called QCDCL3: algorithmically plain QCDCL but with the new data structures
that are required for the other variants (up to 3 watched literals rather than the usual 2, hence the name).

We evaluated each QCDCL variant on the first 100 formulas from each separation family—TwinCR,
MirrorCR, and RevpTwinModEqnq—running the solver with a time limit of 600 seconds on each indi-
vidual formula on a machine with two 16-core Intel® Xeon® E5-2683 v4@2.10GHz CPUs and 512GB
RAM running Ubuntu 20.04.3 LTS on Linux 5.4.0-48, organizing the computation with the help of GNU
Parallel [33].
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Figure 3: Performance on TwinCRn (above) and MirrorCRn (below). Legends are sorted best-to-worst.

In Figures 3 and 4 we plot running times of the different QCDCL versions as a function of n.
Any gaps in the plotted lines indicate the solver timed out at 600 seconds for that particular formula.
In general, the proof complexity results are closely mirrored in solver performance, though there is
occasionally a bit of surprise.

In Figure 3, we see that for TwinCR the configuration QCDCLUNI-ANY is best and scales reasonably
well up to n “ 100. But there are also gaps—for some reason the solver’s heuristics appear to be
fooled for some particular formulas and fail to navigate towards the short proof. Overall, QCDCLUNI-ANY

manages to solve 87 out the first 100 TwinCR formulas. QCDCLANY, which should theoretically be at
least as good as QCDCLUNI-ANY, comes a distant second and fails to solve anything beyond n “ 16.
QCDCLEXI-ANY appears to be off to a good start, but also quickly loses breath solving nothing after
n “ 10. The two vanilla variants QCDCL and QCDCL3 scale exponentially all the way as they should.

The picture on the related MirrorCR formulas (Figure 3 below) is boring in comparison and perfectly
corresponds to our theoretical results. The two variants that have short proofs—QCDCLUNI-ANY and
QCDCLANY—are also fast in practice, and everything else is dead exponential.

Finally, RevpTwinModEqq in Figure 4 paint a picture somewhat similar to TwinCR, though with a
different set of peculiarities. The best variant is QCDCLEXI-ANY, and unlike QCDCLUNI-ANY on TwinCR, it
solves all formulas up to n “ 100 very fast. The second best is QCDCLANY, but once again it drops out
relatively early (last solved is n “ 26) in spite of its theoretical superiority. An interesting thing seems
to happen to QCDCLUNI-ANY, which appears to be helplessly off to an exponential path, but somehow
recovers and solves n “ 15, 16 fast, only to completely drop out afterwards. The two vanilla variants
QCDCL and QCDCL3 are again dead exponential, as they should be.

The recurring theme in Figures 3 and 4 is that the theoretically strongest system QCDCLANY is
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outperformed by the specialized version for each formula type. One appealing explanation would be that
the specialized systems QCDCLUNI-ANY and QCDCLEXI-ANY profit from their ability to guarantee learning
asserting clauses and cubes respectively. But this does not appear to be the real reason: QCDCLANY also
(like QCDCLUNI-ANY) learns almost exclusively asserting clauses on TwinCR (96% on average, more than
99% in over 70% of cases), and similarly QCDCLANY (like QCDCLEXI-ANY) learns almost exclusively
asserting cubes on RevpTwinModEqq (98% on average, more than 99% in over 70% of cases). Thus,
the advantage of the specialized systems is unlikely to be explicable solely by the quantity of asserting
constraints, but rather by their quality. This is also supported by the erratic performance of several of the
variants on both TwinCR and RevpTwinModEqq—it appears that in many cases, there is a short run, but
it is hard for the solver to discover. Investigating this properly will probably require much more detailed
experiments, which we leave to future work.
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Figure 4: Running time in seconds on RevpTwinModEqnq. The legend is sorted from best downwards.

7 Conclusion

We have laid the theoretical foundations for new flavours of QCDCL with the ability to ignore all quan-
tification order for decisions. In this paper we focused on proof complexity, showing exponential ad-
vantage for the new systems over vanilla QCDCL. We complemented this with a proof-of-concept im-
plementation in Qute, which validates the feasibility of our approach. Our preliminary experiments on
crafted formulas already raise some interesting questions about poor solver performance on theoretically
easy formulas.

In future work we plan to significantly advance on the practical front. This means polishing and
possibly improving the implementation technically, and performing an extensive experimental evalu-
ation: on industrial formulas from recent QBF Evaluations (both PCNF and circuits), combining the
approaches presented here with other state-of-the-art techniques like Qute’s native dependency learning
(and possibly dependency schemes), and using preprocessors, to name a few. We would also like to dive
deeper into the analysis of how learning asserting constraints affects solver performance.
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[6] Olaf Beyersdorff and Benjamin Böhm. Understanding the relative strength of QBF CDCL solvers
and QBF resolution. In Proc. Innovations in Theoretical Computer Science (ITCS), pages 12:1–
12:20, 2021.

[7] Olaf Beyersdorff, Mikolás Janota, Florian Lonsing, and Martina Seidl. Quantified boolean for-
mulas. In Armin Biere, Marijn Heule, Hans van Maaren, and Toby Walsh, editors, Handbook of
Satisfiability, Frontiers in Artificial Intelligence and Applications, pages 1177–1221. IOS Press,
2021.
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