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Abstract

The sum of the absolute values of the Fourier coefficients of a function f : Fn
2 → R is called

the spectral norm of f . Green and Sanders’ quantitative version of Cohen’s idempotent theorem
states that if the spectral norm of f : Fn

2 → {0, 1} is at most M , then the support of f belongs to
the ring of sets generated by at most ℓ(M) cosets, where ℓ(M) is a constant that only depends
on M .

We prove that the above statement can be generalized to approximate spectral norms if and
only if the support of f and its complement satisfy a certain arithmetic connectivity condition.
In particular, our theorem provides a new proof of the quantitative Cohen’s theorem for Fn

2 .

1 Introduction

Let G = Fn
2 be the Boolean cube, and Ĝ ∼= Fn

2 be its Pontryagin dual. For a character χ ∈ Ĝ, the
corresponding Fourier coefficient of a function f : G → R is defined as

f̂(χ) := E
x∈G

[f(x)χ(x)].

The sum of the absolute values of the Fourier coefficients is called the algebra norm or spectral
norm of f , and is denoted by

∥f∥A := ∥f̂∥1 =
∑
χ∈Ĝ

|f̂(χ)|.

The term algebra norm is explained by the inequality ∥fg∥A ≤ ∥f∥A∥g∥A. This norm arises
naturally in theoretical computer science in connection to learning theory, and it has been studied
for several complexity classes of Boolean functions [STV17, KM93, TWXZ13, GTW21, Tal17,
MRT19]. These studies are often motivated by the existence of efficient learning algorithms for the
classes of Boolean functions that have small algebra norms [KM93]. Furthermore, in recent years,
tail bounds in the Fourier L1 norm have also become essential in constructing pseudo-random
generators [CHHL19, RSV13, FK18] and separating quantum and classical computation [RT19,
Tal20, BS21].

For a set A ⊆ G, let 1A denote the indicator function of A. The set of Boolean functions
that satisfy ∥f∥A = O(1) are fully characterized by an important theorem in harmonic analysis,
Cohen’s idempotent theorem. The base case of this characterization is described through the
following simple proposition that characterizes the set of contractive Boolean functions, i.e. those
with ∥f∥A ≤ 1.
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Proposition 1 (Folklore, see [GS08a, Proposition 1.2]). A nonempty set A ⊆ G satisfies ∥1A∥A ≤ 1
if and only if A is a coset of a subgroup of G, in which case ∥1A∥A = 1.

It is possible to apply set operations to cosets and construct more sophisticated Boolean func-
tions with algebra norm O(1). Recall that a ring of sets on G is a subset of P(G) that includes G,
and is closed under complements and (finite) intersections and (finite) unions. We say A ⊆ G has
coset complexity at most ℓ if it belongs to the ring of sets generated by at most ℓ cosets.

It is straightforward to show that if A has coset complexity at most ℓ, then ∥1A∥A ≤ 3ℓ (see
Lemma 1). The quantitative version of Cohen’s idempotent theorem states that the converse is
essentially true.

Theorem 1 (Quantitative Cohen’s theorem for Fn
2 [Coh60, GS08a]). If A ⊆ G satisfies ∥1A∥A ≤

M , then A belongs to the ring of sets generated by at most ℓ cosets where ℓ = ℓ(M) depends only
on M .

The term “idempotent” essentially refers to the assumption that f = 1A is Boolean, which is
equivalent to f2 = f . We should remark that Cohen’s original theorem [Coh60] is concerned with
locally compact Abelian groups of infinite size. The quantitative version of the theorem, which is
also applicable to finite groups, is due to Green and Sanders [GS08b, GS08a]. We will discuss this
in more detail in Section 1.1.

Approximate algebra norm: Our goal is to extend Theorem 1 to the set of Boolean functions
with small approximate algebra norms. For any error parameter ϵ > 0, the ϵ-approximate algebra
norm of f : G → R is defined as

∥f∥A,ϵ := inf{∥g∥A : ∥f − g∥∞ ≤ ϵ}.

We remind the reader that despite what the notation might suggest, ∥ · ∥A,ϵ is not a norm. We will
always assume ϵ ∈ [0, 12) as for Boolean functions, the range ϵ ≥ 1

2 is trivial and uninteresting.
Approximate norms, in general, are important in the theory of computation as they capture

various notions of randomized query and communication complexity. For example, approximate
algebra norms are closely related to the notions of randomized parity decision tree complexity and
the randomized communication complexity of the so-called xor-lifts1. More precisely, the gaps
between these parameters are at most exponential, with no dependencies on the dimension n. We
refer the reader to [STV17, KLMY21, HHH21] for more details.

Boolean functions that have small approximate algebra norms have been studied by Méla [M8́2]
and Host, Méla, and Parreau [HMP86] under the concept of ϵ-quasi-idempotents. Méla proved
in [M8́2] (see also [GS08a, Proposition 7.1]) that the assertion of Cohen’s idempotent theorem
remains true under the weaker assumption that ∥1A∥A,ϵ ≤ M provided that M ≤ c| log ϵ| where c
is a universal constant, and the logarithm, here and throughout the paper, is in base 2.

On the other hand, Hamming balls of radius 1 show that the requirement M ≤ c| log ϵ| for some
universal constant c is necessary as for Bk = {x ∈ {0, 1}k :

∑k
i=1 xi ≤ 1} and 0 < ϵ < 1

2 , we have
(see Lemma 3)

∥1Bk
∥A ≥

√
k

2
and ∥1Bk

∥A,ϵ ≤ 5| log ϵ|.

1The xor-lift of a function f : Fn
2 → R is the function f⊕ : Fn

2 × Fn
2 → R defined as (x, y) 7→ f(x+ y).
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These bounds show that the functions 1Bk
can have arbitrarily large coset complexity, while their

approximate algebra norm is uniformly bounded by a constant that depends only on ϵ. Therefore,
any potential extension of Cohen’s theorem to approximate algebra norm needs to overrule the
possibility of containing “affine copies” of arbitrarily large 1Bk

. This is achieved through the
notion of affine connectivity.

Definition 1 (Affine connectivity). We say that a set A ⊆ G is k-affine connected if a0, a0 +
a1, . . . , a0 + ak ∈ A implies that at least one of the following holds:

• The vectors a0, a0 + a1, . . . , a0 + ak are linearly dependent;

• There exists T ⊆ {1, . . . , k} with |T | ≥ 2 such that a0 +
∑

i∈T ai ∈ A.

Remark 1. Definition 1 means that no restriction of A to a k-dimensional coset is a copy of Bk. Note
also that by the change of variables b0 = a0 and bi = a0 + ai for i = 1, . . . , k, one can equivalently
define k-affine connectivity as the condition that for every linearly independent b0, b1, . . . , bk ∈ A,
there exists S ⊆ {0, 1, . . . , k} such that |S| > 1 is odd and

∑
i∈S bi ∈ A.

Our contribution: We prove that if ∥1A∥A,ϵ is small, then ∥1A∥A is small if and only if both A
and Ac are k-affine connected for a small k.

Theorem 2 (Main theorem). For every k,M ∈ N and ϵ ∈ [0, 12), there exists ℓ = ℓ(k,M, ϵ) ∈ N
such that the following holds. If A ⊆ G satisfies ∥1A∥A,ϵ ≤ M , then

(i) either A or Ac is not k-affine connected, in which case ∥1A∥A ≥
√
k
2 ;

(ii) or both A and Ac are k-affine connected, in which case A has coset complexity at most ℓ. In
particular, ∥1A∥A ≤ 3ℓ.

Remark 2. Our proof results in the bound ℓ(k,M, ϵ) ≤ Tower2

(
O( Mk

1−2ϵ)
)
, where Tower2(m) denotes

the tower of exponentiation with base 2 and height m.

Remark 3. Theorem 2 implies Theorem 1: If ∥1A∥A ≤ M , then by Theorem 2 (i), both A and
Ac are O(M2)-affine connected, and thus one can apply Theorem 2 (ii) to conclude Theorem 1.

However, the best known upper bound [San19] for Theorem 1 is only 2O(M3+o(1)), while this proof
results in a tower-type bound.

Remark 4. The k-affine connectedness by itself does not imply that ∥ · ∥A is small, and thus it is
also essential that in Theorem 2, we assume ∥1A∥A,ϵ ≤ M . For example, consider the quadratic
function f : Fn

2 → F2 for even n defined as f(x) = x1x2 + x3x4 + . . .+ xn−1xn where the additions
are in F2. Since f is a quadratic function, it satisfies

∑
S⊆[4]

f

(
a0 +

∑
i∈S

ai

)
≡ 0. (1)

for all a0, . . . , a4 ∈ Fn
2 . It follows from Equation (1) that supp(f) and supp(f)c are both 4-affine

connected. On the other hand, since f is of high rank, by standard Gauss sum estimates [GW11,
Lemma 3.1] or a direct calculation, one can easily verify that ∥f∥A = Θ(2n/2).
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1.1 Historical remarks and the general picture

Proposition 1 is a special case of the Kawada-Itô theorem [KI40, Theorem 3], which dates back
to 1940. Kawada and Itô characterized idempotent probability measures on compact groups as the
normalized Haar measures of compact subgroups. This theorem was rediscovered independently
by Wendel [Wen54] in the context of harmonic analysis. Later, Rudin [Rud59a, Rud59b], trying
to extend this result to all idempotent measures on locally compact Abelian groups, showed that
any such measure is concentrated on a compact subgroup. Finally, Cohen [Coh60], building on the
works of Helson [Hel53] and Rudin [Rud59a], obtained a full description of idempotent measures
on locally compact Abelian groups. Numerous extensions and refinements of Cohen’s theorem have
been discovered since [Lef72, Hos86, GS08b, Run07, San11, San20, San21].

To state Cohen’s original theorem in full generality, we need a few definitions: Let G be a
locally compact group, and let Ĝ be its Pontryagin dual (which is also a locally compact Abelian
group). Let M(G) be the algebra of all bounded regular Borel measures on G, where multiplication
is defined by convolution. Let B(Ĝ) denote the Fourier–Stieltjes algebra of Ĝ, which is the set of
all µ̂ : Ĝ → C for all µ ∈ M(G) endowed with the norm ∥µ̂∥

B(Ĝ)
:= ∥µ∥. This norm is well-defined

since the choice of µ is unique. If Ĝ is a finite Abelian group, then B(Ĝ) is the set of all functions
on Ĝ, and ∥ · ∥

B(Ĝ)
coincides with the algebra norm: ∥f∥

B(Ĝ)
= ∥f∥A.

Note that if µ ∈ M(G) is idempotent (i.e. µ ∗ µ = µ), then µ̂2 = µ̂, so µ̂(χ) ∈ {0, 1} for all
χ ∈ Ĝ. Hence the problem of characterizing all idempotent measures in M(G) is equivalent to
finding all subsets A ⊆ Ĝ with 1A ∈ B(Ĝ).

We say that a set A ⊆ G has coset complexity at most ℓ ∈ N if it belongs to the ring of sets
generated by at most ℓ open cosets. The coset complexity of A is defined to be infinite if no such
ℓ exists.

Theorem 3 (Cohen’s idempotent theorem [Coh60]). Let G be a locally compact Abelian group. A
set A ⊆ G satisfies 1A ∈ B(G) if and only if the coset complexity of A is finite.

We refer the interested readers to [Rud90, Chapter 3] for more details. Cohen’s theorem left
open whether the coset complexity of A is uniformly bounded from above by a function of ∥1A∥B(G).
Moreover, it gave no information for finite groups. Five decades later, Green and Sanders [GS08b,
GS08a], using modern tools from additive combinatorics, proved a stronger quantitative version of
Cohen’s theorem that resolved the uniformity question. Their result can be applied to finite groups
as well. It states that if ∥1A∥B(G) ≤ M , then the coset complexity of A is at most ℓ(M), where
ℓ(·) is a universal function that does not depend on the choice of the underlying group G. They
first proved the special case of this theorem for the groups Fn

2 , and afterwards generalized it to all
locally compact Abelian groups in [GS08b]. The bounds obtained in these two papers were later
improved by Sanders [San19, San20].

Cohen’s theorem has been generalized to non-Abelian locally compact groups in [Lef72, Hos86],
and the quantitative version of the non-Abelian idempotent theorem was also established by
Sanders [San11].

It seems conceivable that with a proper generalization of the notion of affine connectivity,
Theorem 2 can similarly be generalized to all locally compact Abelian groups, or even all locally
compact groups. We defer this to future research.
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1.2 Notation

For a positive integer n, we use [n] to denote {1, . . . , n}. We denote the complement of a set S
by Sc. We will use the standard asymptotic notations of O(·),Ω(·),Θ(·), o(·), ω(·). Sometimes, we
shall add subscripts to these notations to indicate that the constants involved depend on these
parameters. For example, Oϵ(1) means bounded from above by a constant that depends only on ϵ.

For integers s > 0, t ≥ 0, let Towers(t) be defined recursively as Towers(t) = sTowers(t−1) with
the base case Towers(0) = 1. For s > 1, let log∗s(m) be the smallest integer t ≥ 0 such that
Towers(t) ≥ m.

Throughout the article, G always denotes Fn
2 . We consider G as both a group and a vector

space over F2. We denote by 0 ∈ Fn
2 the zero vector. For i = 1, . . . , n, let ei ∈ G denote the i-th

standard vector.
The additive energy of a set A ⊆ G is defined as

E(A) = |{(a1, a2, a3, a4) ∈ A4 : a1 + a2 = a3 + a4}| = |G|3
∑
a∈G

|1̂A(a)|4. (2)

For sets A,B ⊆ G and c ∈ G, we define

A+ c = {a+ c : a ∈ A},

and
A+B = {a+ b : a ∈ A, b ∈ B}.

We often identify G ∼= Ĝ via the bijection that maps a ∈ G to the character χa(x) := (−1)a
tx.

We will use the notation f̂(a) := f̂(χa).
The convolution of two functions f1, f2 : G → R is defined as

f1 ∗ f2(x) = E
y∈G

[f1(x− y)f2(y)].

For a subgroup W ⊆ G, we define µW : G → R as µW : x 7→ |G|
|W |1W (x) so that

f ∗ µW (x) = E
y∈G

[f(x− y)µW (y)] = E
y∈W+x

[f(y)] = E[f |W + x].

The annihilator of W is defined as

W⊥ = {r ∈ Ĝ | rta = 0 for all a ∈ W}.

Note that convolution with µW corresponds to the projection of the Fourier expansion to W⊥:

f ∗ µW (x) =
∑

a∈W⊥

f̂(a)χa(x). (3)

We call a subset of G a coset if it is a coset of some subgroup of G. For a subgroup W ⊆ G,
we identify the quotient space G/W ≡ W⊥. We denote the cosets of W by W + a, and whenever
such a notation is used, it is always assumed that W is a subgroup and a ∈ G.

Given a function f : G → R and a coset W + a ⊆ G, we often identify f |W+a with the function
on W , defined as w 7→ f(w + a). Note that for w ∈ W , we have

f(w + a) =
∑
b∈W

∑
c∈W⊥

f̂(b+ c)χb+c(w + a) =
∑
b∈W

χb(a)
∑

c∈W⊥

f̂(b+ c)χc(a)

χb(w).
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Hence with this notation

f̂ |W+a(b) = χb(a)
∑

c∈W⊥

f̂(b+ c)χc(a) for all b ∈ W. (4)

Finally, sometimes it will be more convenient to work with a slight variant of the algebra norm
that excludes the principal Fourier coefficient. For a function g : G → R, define

∥g∥A := ∥g − E[g]∥A =
∑
χ ̸=0

|ĝ(χ)|.

For a function defined on a subgroup W ⊆ G, we write A(W ) in the subscript to emphasize the
domain of the function.

1.3 Proof overview

Before giving an overview of the proof of Theorem 2, we discuss Green and Sanders’ proof of
Theorem 1. It follows a similar high-level approach as Cohen’s proof [Coh60], but uses results from
additive combinatorics to obtain effective bounds.

Green and Sanders’ proof of Theorem 1: The proof uses a strong induction which requires
generalizing the statement from Boolean functions to almost integer-valued functions. For ϵ ∈ [0, 12),
a function f : G → R is called ϵ-integer-valued if ∥f − h∥∞ ≤ ϵ for an integer-valued function h.

Let f : G → R be an ϵ-integer-valued function with ∥f∥A ≤ M . By Equation (3), for every
subgroup W ⊆ G, we have

∥f∥A = ∥f ∗ µW ∥A + ∥f − f ∗ µW ∥A. (5)

The main step of the proof is establishing the existence of a subgroup W and a small δ > 0 such
that

(i) ∥f ∗ µW −
∑c

i=1±1W+ai∥∞ ≤ ϵ+ δ where c = Oδ,M,ϵ(1);

(ii) ∥f ∗ µW ∥A ≥ 1
2 .

By (i) f ∗ µW is approximated by a sum that involves only Oδ,M,ϵ(1) cosets. On the other hand,
since f and f ∗ µW are ϵ- and (ϵ + δ)-integer-valued respectively, their difference f − f ∗ µW is
(2ϵ+ δ)-integer-valued. Moreover, by (ii) and Equation (5), we have ∥f − f ∗ µW ∥A ≤ M − 1

2 , and
with this decrease in the algebra norm, we can apply the induction hypothesis to f − f ∗ µW to
complete the proof.

The M = O(| log ϵ|) requirement: In order to decrease M to M − 1
2 , we increased the “error

parameter” from ϵ to 2ϵ + δ. Repeating this process inductively for 2M steps will decrease the
algebra norm to the base case ∥f∥A ≤ 1

2 . However, for a meaningful approximation, we need to
ensure that the error parameter never exceeds 1

2 . Since the error parameter is more than doubled

at each step, it is essential to require ϵ = 2−Ω(M) initially.
The requirement that ϵ = 2−Ω(M) is not just an artifact of Cohen’s proof. Méla [M8́2] con-

structed an example on a certain Abelian group which illustrates that this requirement is necessary.
In Lemma 3 we show that an analogous result holds for Fn

2 .
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Overview of proof of Theorem 2: Theorem 2 assumes that A and Ac are k-affine connected
and ∥1A∥A,ϵ ≤ M . These two assumptions suffice to guarantee the existence of a subgroup W with
certain desired properties, similar to those used by Green and Sanders:

• Affine connectivity implies the existence of a coset V +a such that |V +a| ≈ |A| ≈ |(V +a)∩A|.

• The assumption ∥1A∥A,ϵ ≤ M allows us to “regularize” V to a large subgroup W ⊆ V such
that every coset of W is either almost contained in A or has almost no intersection with A.

These parts of the proof closely follow Green and Sanders’ proof of Theorem 1.
The primary issue preventing us from further emulating the proof of Theorem 1 is that f−f ∗µW

is only (2ϵ + δ)-integer valued. Since we cannot afford a doubling in the error parameter, we
depart from Cohen’s approach. Instead, we employ a completely new induction that focuses on A’s
connectivity.

Let us reformulate the definition of affine connectivity in a slightly different language. Let
X := {0} ⊆ G, and r := k + 1. By Remark 1, A is k-affine connected if and only if for every
x1, . . . , xr ∈ A \ X one of the following holds:

(i) There exists a set S ⊆ [r] such that
∑

i∈S xi ∈ X .

(ii) There exists a set S ⊆ [r] such that |S| > 1 is odd and
∑

i∈S xi ∈ A \ X .

The proof of Theorem 2 is by induction on r and M . Throughout the argument, X always
remains a union of O(1) cosets. The coset complexity of A ∩ X can be shown to be small by
applying an induction on M to A’s restrictions to each individual coset in X .

The main component of the proof is to establish that it suffices to add O(1) cosets to X to
reduce r. We present the details of this double induction in Section 3.2.

2 Basic facts

In this section, we state a few standard facts that will be used later in the proof of Theorem 2.
The following lemma shows that if the coset complexity of A is small, then 1A can be expressed as
a ±1-linear combination of indicator functions of a few cosets, and thus ∥1A∥A = O(1).

Lemma 1. If A ⊆ G has coset complexity at most ℓ, then 1A can be expressed as

1A =

t∑
i=1

ϵi1Wi+ai , (6)

for cosets Wi + ai ⊆ G, ϵi ∈ {−1, 1}, and t ≤ 3ℓ. In particular, ∥1A∥A ≤ 3ℓ.

Proof. Suppose A belongs to the ring of sets generated by V1 + b1, . . . , Vℓ + bℓ. Each atom of this
ring is of the form ⋂

i∈S
(Vi + bi) ∪

⋂
j∈Sc

(Vj + bj)
c,

for S ⊆ [ℓ]. Notice that 1(Vj+bj)c = 1 − 1Vj+bj , and the intersection of two cosets is a coset.
Therefore we can express the indicator function of such an atom as a sum of ±1-linear combination
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of indicator functions of at most 2|S
c| = 2ℓ−|S| cosets. Summing over all the atoms in A, we conclude

that 1A can be expressed as such a sum with the number of terms at most∑
S⊆[ℓ]

2ℓ−|S| = (1 + 2)ℓ = 3ℓ.

Our next goal is to estimate the algebra norm and the approximate algebra norm of the Ham-
ming ball of radius 1. Our proof of the upper bound on the approximate algebra norm of 1Bk

closely follows the argument of Méla [M8́2].
We first need to state a simple lemma from approximation theory. The proof uses Chebyshev’s

classical characterization of best approximation by polynomials. Let C([a, b]) denote the set of all
real-valued continuous functions on the interval [a, b] equipped with the L∞ norm (i.e., supremum
of absolute value). A k-dimensional subspace V ⊆ C([a, b]) is said to satisfy Chebyshev’s condition
if every function in V has at most k − 1 distinct zeros in [a, b] (See [Riv90, Definition 2.9]).

Chebyshev’s classical theorem states that if V satisfies Chebyshev’s condition, and S ⊆ [a, b] is
a closed set (e.g., finite), then v0 ∈ V is the best L∞-approximation on S of a given f ∈ C(S)\V if
and only if the following holds: there exist points x1 < . . . < xk+1 in S such that |f(xi)− v0(xi)| =
∥f − v0∥L∞([a,b]) for all i, and

f(xi)− v0(xi) for i = 1, . . . , k + 1,

alternate in sign [Riv90, Theorem 2.10].

Lemma 2. Let m > 1 be an integer, and let ηi := cos
(

m−i
2m−1π

)
for i ∈ [m]. There exists a function

σ : [m] → R such that

(i)
∑m

i=1 ηiσ(i) = 1,

(ii)
∑m

i=1 η
2k−1
i σ(i) = 0 for every 2 ≤ k ≤ m,

(iii)
∑m

i=1 |σ(i)| ≤ 2m− 1.

Proof. Let V be the linear span of x3, x5, . . . , x2m−1 over the reals. Every function in V is an
odd polynomial and thus has at most m − 2 zeros in (0,∞). Since dim(V ) = m − 1, V satisfies
Chebyshev’s condition on any interval [a, b] for 0 < a < b < ∞.

Let T2m−1(x) = a1x+ a3x
3 + . . .+ a2m−1x

2m−1 be the Chebyshev polynomial of the first kind
of degree 2m− 1. Since a1 = (−1)m(2m− 1) (see [Riv90, Section 1.1]), the function

q(x) := x+
(−1)m−1

2m− 1
T2m−1(x)

is in V . We claim that q(x) is the best L∞-approximation on S = {η1, . . . , ηm} of f(x) = x by
functions in V . By the trigonometric definition of the Chebyshev polynomial, it can be seen that
0 < η1 < . . . < ηm = 1 are the extrema points of T2m−1 and the signs of f(x)−q(x) = (−1)m

2m−1 T2m−1(x)
on these points alternate. Hence, we can apply Chebyshev’s theorem and conclude that q(x) is the
best L∞-approximation of f(x) = x on {η1, . . . , ηm} by functions in V . Since

max
i∈[m]

|q(ηi)− ηi| =
1

2m− 1
max
i∈[m]

|T2m−1(ηi)| =
1

2m− 1
,
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we conclude that

min
c3,c5,...,c2m−1∈R

max
i∈[m]

∣∣c3η3i + c5η
5
i + . . .+ c2m−1η

2m−1
i − ηi

∣∣ ≥ 1

2m− 1
.

Hence, by linear programming duality, the solution to the following optimization problem is at least
1

2m−1 , which after normalization yields the desired σ.

max
m∑
i=1

σ(i)ηi

subject to
m∑
i=1

σ(i)η2k−1
i = 0 for every 2 ≤ k ≤ m

m∑
i=1

|σ(i)| ≤ 1.

In the next lemma, we show a separation in the algebra norm and the approximate algebra
norm of the Hamming ball of radius 1. We show that the algebra norm tends to infinity as k grows,
while the approximate algebra norm remains bounded by a constant that depends only on ϵ.

Lemma 3. Let Bk ⊆ {0, 1}k be the set of all x ∈ {0, 1}k with
∑k

i=1 xi ≤ 1, and let ϵ ∈ (0, 12). We
have √

k

2
≤ ∥1Bk

∥A ≤
√
k + 1 and ∥1Bk

∥A,ϵ ≤ 5| log ϵ|.

Proof. The upper bound ∥1Bk
∥A ≤ 2k/2∥1Bk

∥2 =
√
k + 1 is immediate from Cauchy-Schwarz

inequality and Parseval’s identity. To prove the lower bound on ∥1Bk
∥A, note that for y ∈ G, we

have 1̂Bk
(y) = 2−k

(
1 +

∑k
i=1(−1)yi

)
. Hence

∥1Bk
∥A = E

z∈{−1,1}k

[∣∣∣∣∣1 +
k∑

i=1

zi

∣∣∣∣∣
]
≥ E

z∈{−1,1}k

[∣∣∣∣∣
k∑

i=1

zi

∣∣∣∣∣
]
≥ 1

2

 E
z∈{−1,1}k

∣∣∣∣∣
k∑

i=1

zi

∣∣∣∣∣
2
1/2

=

√
k

2
,

where the first inequality uses the fact that
∑k

i=1 zi is a symmetric random variable, and the second
inequality is an application of Khintchine’s inequality.

To prove the upper bound on ∥1Bk
∥A,ϵ, for a ∈ Fk

2 and s ∈ [−1, 1], define

0 ≤ ĝs(a) := 2−k

(
k∏

i=1

(1 + s(−1)ai)

)
= 2−k

∑
x∈Fk

2

s|x|χa(x),

where |x| denotes the Hamming weight of x. Let gs(x) =
∑

a∈Fk
2
ĝs(a)χa(x). It is also straightfor-

ward to verify that gs(x) = s|x|. By positivity of the Fourier coefficients ĝs(a), we have

∥gs∥A = gs(0) = 1 for all s ∈ [−1, 1]. (7)

9



Moreover, substituting s = ϵ gives∥∥∥∥gϵ − (1− ϵ)1{0}

ϵ
− 1Bk

∥∥∥∥
∞

≤ ϵ.

This shows ∥1Bk
∥A,ϵ ≤ 2/ϵ, but this upper bound can be further strengthened.

For s ∈ [0, 1], define hs : Fk
2 → R as

hs(x) :=
gs(x)− g−s(x)

2
=

{
s|x| if |x| is odd
0 if |x| is even . (8)

By Equation (7),

∥hs∥A ≤ ∥gs∥A + ∥g−s∥A
2

= 1 for all s ∈ [0, 1]. (9)

Let σ : [m] → R and ηi = cos
(

m−i
2m−1π

)
for i ∈ [m] be as defined in Lemma 2, where m = ⌈| log ϵ|⌉.

Define h : Fk
2 → R as

h(x) = 2
m∑
i=1

σ(i)h ηi
2
(x).

Note that

• If |x| is even, then by Equation (8), h(x) = 0.

• If |x| = 1, then hs(x) = s, and thus by Lemma 2 (i), h(x) = 2
∑m

i=1
ηiσ(i)

2 = 1.

• If |x| ≤ 2m− 1 is odd, then by Lemma 2 (ii),

h(x) = 2
m∑
i=1

σ(i)
(ηi
2

)|x|
= 0.

• If |x| ≥ 2m+ 1 is odd, then by Lemma 2 (iii) and the triangle inequality,

h(x) = 2
m∑
i=1

σ(i)
(ηi
2

)|x|
≤ 21−|x|

m∑
i=1

|σ(i)| ≤ 2−2m(2m− 1) ≤ 2−m ≤ ϵ.

Hence
∥∥(h+ 1{0})− 1Bk

∥∥
∞ ≤ ϵ. Finally note that by Equation (9), we have

∥h∥A ≤ 2

m∑
i=1

|σ(i)|∥h ηi
2
(x)∥A ≤ 2

m∑
i=1

|σ(i)| ≤ 2(2m− 1) ≤ 4|log ϵ|.

We conclude that
∥1Bk

∥A,ϵ ≤ 1 + ∥h∥A ≤ 5| log ϵ|.

Lemma 3, combined with Lemma 1, shows that the coset complexity of 1Bk
is Ω(log k), while

its ϵ-approximate algebra norm is at most 5|log ϵ|. This illustrates that the assertion of Theorem 1
is not necessarily true under the weaker assumption that ∥1A∥A,ϵ ≤ M if M ≥ 5| log(ϵ)|.
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3 Proof of Theorem 2

We present the proof of Theorem 2 in two parts. In Section 3.1, we prove the existence of a
subgroup W that satisfies the properties that will be used in the main induction. The main
induction is presented in Section 3.2.

3.1 Part I: Finding a “good” subgroup W

We first prove two lemmas (Lemma 4 and Lemma 5) that establish the existence of a coset V + a
such that |V + a| ≈ |A| ≈ |(V + a) ∩A|.

Lemma 4. Suppose A ⊆ G has coset complexity at most ℓ. There exists a coset V + a ⊆ G such
that

|V + a| ≥ 2−ℓ|A| and V + a ⊆ A.

Proof. The proof is by a simple induction on ℓ. The base case ℓ = 1 is trivial as A must be a coset
or the complement of a coset in this case. For ℓ > 1, suppose that A belongs to the ring generated
by V1 + b1, . . . , Vℓ + bℓ. Note that both A ∩ (Vℓ + bℓ) and A ∩ (Vℓ + bℓ)

c have coset complexity at

most ℓ− 1, and one of them has size larger than |A|
2 . Applying the induction hypothesis to this set

completes the proof.

Recall that E(A) denotes the additive energy of A. The following lemma is essentially from
[San19]. Its proof is based on several fundamental results in additive combinatorics.

Lemma 5. If A ⊆ G satisfies E(A) ≥ ϵ|A|3, then there exists a coset V + a with

|V + a| ≥ 2−O(| log ϵ|3+o(1))|A| and |A ∩ (V + a)| ≥ 2−O(| log ϵ|1+o(1))|V + a|.

Proof. By the Balog-Szemerédi-Gowers theorem [TV10, Theorem 2.31] there is a subset A′ ⊆ A
such that |A′| ≥ ϵO(1)|A| and |A′ +A′| ≤ ϵ−O(1)|A′|. Now we can apply [San19, Proposition 2.2] to
conclude the existence of the desired coset V + a.

The following lemma is an adaptation of [GS08a, Lemma 3.4]. It says that if ∥f∥A ≤ M ,
then every subgroup V can be regularized to a slightly smaller subgroup W such that f has small
variance on all cosets of W .

Lemma 6. Suppose f : G → R satisfies ∥f∥A ≤ M , and let V ⊆ G be a subgroup and δ > 0 be a
parameter. There exists a subgroup W ⊆ V such that dim(W ) ≥ dim(V )− M

δ and Var[f |W + c] ≤
δM for every c.

Proof. If a function g : Fk
2 → R satisfies ∥g∥A ≤ M and |ĝ(r)| ≤ δ for all r ̸= 0, then

Var[g] =
∑
r ̸=0

|ĝ(r)|2 ≤ δ∥g∥A ≤ δM.

By [GS08a, Lemma 3.4], there exists a subgroup W ⊆ V such that dim(W ) ≥ dim(V ) − M
δ ,

and for every r ̸∈ W⊥, ∑
r′∈W⊥+r

|f̂(r′)| ≤ δ. (10)
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For c ∈ W⊥, define g : W → R as g(y) := f(y+ c), and note that by Equation (4), for every r ∈ W ,

ĝ(r) =
∑

t∈W⊥

f̂(r + t)χt(c).

In particular, we have ∥g∥A(W ) ≤ ∥f∥A ≤ M , and moreover by Equation (10), we have |ĝ(r)| ≤ δ
for every r ̸= 0. It follows that Var[f |W + c] = Var[g] ≤ δM as desired.

The following corollary is the conclusion of this section. It shows that if the assumptions of
Lemma 4 or Lemma 5 hold, then one can find the desired subgroup W with the properties that are
needed in the proof of Theorem 2.

Corollary 1. Let M ≥ 1
2 , ϵ1, ϵ2 > 0, ϵ ∈ [0, 12), and δ < min{1/2, ϵ2} be parameters. Suppose

A ⊆ G, and g : G → R satisfies ∥1A − g∥∞ ≤ ϵ and ∥g∥A ≤ M . If there exists a coset V + a with

|V + a| ≥ ϵ1|A| and |A ∩ (V + a)| ≥ ϵ2|V |,

then there exists a subgroup W ⊆ V such that

(i) E[1A|W + c] ≤ δ or E[1A|W + c] ≥ 1− δ for every c.

(ii) The set
FW = {c ∈ W⊥ : E[1A|W + c] ≥ 1− δ}

satisfies 1 ≤ |FW | ≤ 2
5M2

(1−2ϵ)2δ /ϵ1.

(iii) If FW ̸= W⊥, then ∥g|W+c∥A(W ) ≤ ∥g∥A − 1−2ϵ−2δ
2 for every c.

Proof. By Lemma 6, there exists a subgroup W ⊆ V such that dim(W ) ≥ dim(V ) − 4M2

(1−2ϵ)2δ
and

Var[g|W + c] ≤ (1−2ϵ)2δ
4 for every c. We prove that W is the desired subgroup.

We first prove that (i) is satisfied. Let α = E[g|W + c]. If α ≤ 1
2 , then since ∥1A − g∥∞ ≤ ϵ, we

have

Var[g|W + c] = E
x∈W+c

[|g(x)− α|2] ≥ Pr
x∈W+c

[x ∈ A](1− ϵ− α)2 ≥ Pr
x∈W+c

[x ∈ A]

(
1

2
− ϵ

)2

,

which shows

E[1A|W + c] ≤
(
1

2
− ϵ

)−2

·Var[g|W + c] ≤ δ.

Similarly if α ≥ 1
2 , then E[1− 1A|W + c] ≤ δ.

For (ii), we first prove the lower bound by contradiction. Suppose the contrary that |FW | = 0,
then by (i), we have

|A ∩ (W + c)| ≤ δ|W | (11)

for every c ∈ W⊥. By our choice of δ, summing Equation (11) over all cosets W + c in V + a
gives |A ∩ (V + a)| ≤ δ|V | < ϵ2|V |, which is a contradiction. For the upper bound on |FW |, as
E[1A|W + c] ≥ 1− δ for any c ∈ FW , we have

|A| ≥
∑
c∈FW

|A ∩ (W + c)| ≥ |FW | · (1− δ)|W |,
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which yields the desired upper bound

|FW | ≤ |A|
(1− δ)|W |

≤ 1

1− 1/2
· |A|
|V |

· |V |
|W |

≤ 2× 2
4M2

(1−2ϵ)2δ

ϵ1
≤ 2

5M2

(1−2ϵ)2δ

ϵ1
,

where the last inequality uses the fact that M ≥ δ.
To prove (iii), note that by Equation (4), we have

∥g|W+c∥A(W ) =
∑

b∈W\{0}

∣∣∣∣∣∣
∑

r∈W⊥

ĝ(b+ r)χr(c)

∣∣∣∣∣∣ .
By the triangle inequality, we obtain the following inequality relating ∥g∥A and ∥g|W+c∥A(W ):

∥g|W+c∥A(W ) ≤
∑

b∈W\{0}

∑
r∈W⊥

|ĝ(b+ r)| =
∑

b∈W,r∈W⊥

(b,r) ̸=(0,0)

|ĝ(b+ r)|−
∑

r∈W⊥\{0}

|ĝ(r)| = ∥g∥A−
∑

r∈W⊥\{0}

|ĝ(r)|.

It remains to show that the last sum is at least 1−2ϵ−2δ
2 . By (i) and (ii), assuming FW ̸= W⊥, there

exist c1, c2 ∈ W⊥ such that E[g|W + c1] ≥ 1 − ϵ − δ and E[g|W + c2] ≤ ϵ + δ. Therefore, by the
triangle inequality,

1− 2ϵ− 2δ ≤ E[g|W + c1]− E[g|W + c2] =
∑

r∈W⊥

ĝ(r)[χr(c1)− χr(c2)] ≤ 2
∑

r∈W⊥\{0}

|ĝ(r)|.

This completes the proof of (iii).

Remark 5. Corollary 1 (iii) is one of the new ideas in the proof of Theorem 2. Switching from ∥ ·∥A
to ∥ · ∥A guarantees a significant decrease in the norm on every coset of W .

3.2 Part II: Induction

In this section, we finish the proof of Theorem 2 by presenting the main inductive argument, which
is the principal novelty of our proof. We start by strengthening the induction hypothesis through
the following definition.

Definition 2. Let m, k ∈ N, and 0 ≤ ϵ < 1
2 be parameters. We say that A ⊆ G and g : G → R

satisfy the property Pk,ϵ(m) if

(i) both A and Ac are k-affine connected, and

(ii) ∥1A − g∥∞ ≤ ϵ and ∥g∥A ≤
(
1−2ϵ
4

)
m.

Moreover, if t, r ∈ N with r ≤ k + 1, and |A| ≤ |G|
2 , then we say that A and g satisfy the property

P ′
k,ϵ(m, r, t) if (i) and (ii) hold, and additionally there exists X =

⋃t
i=1 (Wi + ai) where every Wi+ai

is a coset in G and the following conditions are satisfied:

(iii) ∥g|Wi+c∥A(Wi) ≤
(
1−2ϵ
4

)
(m− 1) for every i ∈ [t] and every c ∈ G.

(iv) For every x1, . . . , xr ∈ A \ X , either

13



(a) there exists a set S ⊆ [r] such that |S| > 1 is odd and
∑

i∈S xi ∈ A \ X ; or,

(b) there exists a nonempty S ⊆ [r] such that
∑

i∈S xi ∈ X .

Remark 6. Note that if A and g satisfy Pk,ϵ(m) and |A| ≤ |G|
2 , then taking X = {0} shows

that A and g satisfy P ′
k,ϵ(m, k + 1, 1). Indeed, with these parameters, (iii) is trivially satisfied as

∥g|{c}∥A({0}) = 0 for all c ∈ G, and (iv) is equivalent to the assumption that A is k-affine connected.

Similarly, if |A| > |G|
2 , then Ac and 1− g satisfy P ′

k,ϵ(m, k + 1, 1).

The following lemma is the core of the proof of Theorem 2.

Lemma 7 (Main lemma). Let ϵ,m, r, k, t be as in Definition 2. If A ⊆ G and g : G → R satisfy
Pk,ϵ(m), then the coset complexity of A is at most

ℓk,ϵ(m) := Tower4

(
(m− 1)k + 1 + log∗4

(
1

1− 2ϵ

)
+O(1)

)
.

If A and g satisfy P ′
k,ϵ(m, r, t), then the coset complexity of A is at most

ℓk,ϵ(m, r, t) :=


1 m = 1, r ≤ k
ℓk,ϵ(m) r = k + 1, t = 1
Tower4 (r + log∗4max {t, ℓk,ϵ(m− 1)}) otherwise.

Proof of Lemma 7. By Remark 6, it suffices to only prove the second part of the lemma that
concerns P ′

k,ϵ(m, r, t). The proof is by an induction on the two parameters m and r.

Base of induction m = 1: If m = 1, then ∥g∥A ≤ 1−2ϵ
4 , which implies ∥g − E[g]∥∞ ≤ 1−2ϵ

4 .
Combining with ∥1A − g∥∞ ≤ ϵ, we have

∥1A − E[g]∥∞ ≤ 1 + 2ϵ

4
<

1

2
.

Since E[g] is a constant and |A| ≤ |G|
2 , we have A = ∅. Hence, A has coset complexity 1, which is

at most ℓm,k(m, r, t) in both cases of r ≤ k and r = k + 1.

The case r = 1,m > 1: In this case, by (iv), we have A ⊆ X , and by (iii), we have

∥g|Wi+ai∥A(Wi) ≤
(
1− 2ϵ

4

)
(m− 1),

for every Wi+ai ⊆ X . Hence, for every i ∈ [t], we can apply the induction hypothesis to A|Wi+ai +
ai ⊆ Wi and conclude that A|Wi+ai has coset complexity at most ℓk,ϵ(m − 1). Taking the union
over all Wi + ai shows that the coset complexity of A is at most t× ℓk,ϵ(m− 1). By the inequality
xy ≤ 4max(x,y), which is valid for all positive x, y, we have

t× ℓk,ϵ(m− 1) ≤ Tower4 (1 + log∗4max {t, ℓk,ϵ(m− 1)}) = ℓk,ϵ(m, 1, t),

as desired.
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The case r > 1,m > 1: Consider Definition 2 (iv). Since there are at most 2r choices for S and
two choices (a) and (b), one of the following must hold:

• Case I: There exists an odd d ∈ [3, r] such that

Pr
x1,...,xd∈A\X

[x1 + . . .+ xd ∈ A \ X ] ≥ 1

2r+1
.

• Case II: There exists a d ∈ [r] such that

Pr
x1,...,xd∈A\X

[x1 + . . .+ xd ∈ X ] ≥ 1

2r+1
.

Claim 1. In Case I, there exists a coset V + a such that

|V + a| ≥ 2−kK |A \ X | and |(A \ X ) ∩ (V + a)| ≥ 2−kK |V |, (12)

where K = O(1) is a universal constant.

Proof. Consider a fixation of x4, . . . , xd that maximizes the probability. We conclude that with
c = x4 + . . .+ xd, we have

Pr
x1,x2,x3∈A\X

[x1 + x2 + x3 ∈ (A \ X ) + c] ≥ 1

2r+1
,

which translates to

E
x1,x2,x3∈G

[1A\X (x1)1A\X (x2)1A\X (x3)1A\X (x1 + x2 + x3 + c)] ≥ 1

2r+1

(
|A \ X |
|G|

)3

.

Substituting the Fourier transform of 1A\X , we obtain

1

2r+1

(
|A \ X |
|G|

)3

≤
∑
a∈G

|1̂A\X (a)|4χa(c) ≤
∑
a∈G

|1̂A\X (a)|4.

Hence, by Equation (2), the additive energy of A \ X is large:

E(A \ X ) ≥ |A \ X |3

2r+1
. (13)

We apply Lemma 5 with ϵ = 2−r−1 ≥ 2−k−2 to conclude the existence of a coset V + a with

|V + a| ≥ 2−kK |A \ X | and |(A \ X ) ∩ (V + a)| ≥ 2−kK |V |,

where K = O(1) is a universal constant.

We would like to obtain a similar statement for Case II. Unfortunately, this will require an
application of the induction hypothesis, and it is the cause of the tower-type bound in our final
result.
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Claim 2. In Case II, there exists a coset V + a such that

|V | ≥ 2−ℓk,ϵ(m−1)−t

t2r+1
|A \ X | and |(A \ X ) ∩ (V + a)| = |V |. (14)

Proof. Considering the structure of X , there exists an i ∈ [t] such that

Pr
x1,...,xd∈A\X

[x1 + . . .+ xd ∈ Wi + ai] ≥
1

t2r+1
.

Hence, there exists at least one choice of x2, . . . , xd ∈ A \ X such that

Pr
x1∈A\X

[x1 ∈ Wi + a+ x2 + . . .+ xd] ≥
1

t2r+1
.

Consequently, there exists c ∈ G such that

Pr
x∈A\X

[x ∈ Wi + c] ≥ 1

t2r+1
,

or equivalently

|(A \ X ) ∩ (Wi + c)| ≥ |A \ X |
t2r+1

. (15)

This by itself does not provide much information about A \X as Wi+ c could be much larger than
A \ X . However, we have made progress by the decrease in ∥ · ∥A: by (iii), we have

∥g|Wi+c∥A(Wi) ≤
(
1− 2ϵ

4

)
(m− 1),

and thus we can apply the induction hypothesis to the restriction of A to Wi+ c to describe its full
structure. More precisely, the coset complexity of A|Wi+c is at most ℓk,ϵ(m − 1). Since the coset
complexity of X is at most t, it follows that the coset complexity of (A \ X ) ∩ (Wi + c) is at most
ℓk,ϵ(m− 1) + t. By applying Lemma 4, we find a coset V + a ⊆ Wi + c such that

|V | ≥ 2−ℓk,ϵ(m−1)−t|(A \ X ) ∩ (Wi + c)| and V + a ⊆ A \ X .

Combining with Equation (15), we have

|V | ≥ 2−ℓk,ϵ(m−1)−t

t2r+1
|A \ X | and |(A \ X ) ∩ (V + a)| = |V |.

Let ϵ1 := 2−ℓk,ϵ(m−1)−t−log(t)−kK ≤ min(2−kK , 2
−ℓk,ϵ(m−1)−t

t2r+1 ) and ϵ2 := 2−kK so that by Equa-
tion (12) and Equation (14), in both Case I and Case II, there exists a coset V + a with

|V | ≥ ϵ1|A \ X | and |(A \ X ) ∩ (V + a)| ≥ ϵ2|V |.

Now we are in a position to apply Corollary 1 to A \ X . For δ := min(1−2ϵ
8 , ϵ2), by applying

Corollary 1, we find a subgroup W such that
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• E[1A\X |W + c] ≤ δ or E[1A\X |W + c] ≥ 1− δ for every c ∈ G.

• Since ∥g∥A ≤ ∥g∥A + 1 ≤ 2m, the set

FW = {c ∈ W⊥ : E[1A\X |W + c] ≥ 1− δ}

satisfies 1 ≤ |FW | ≤ 2
20m2

(1−2ϵ)2δ /ϵ1. Furthermore, since |A \ X | ≤ |A| ≤ |G|/2, we have
FW ̸= W⊥.

• For every c ∈ G, we have

∥g|W+c∥A(W ) ≤ ∥g∥A − 1− 2ϵ− 2δ

2
≤ ∥g∥A − 1− 2ϵ

4
. (16)

Fix an arbitrary c0 ∈ FW , and let γ := 2−2k

t . We will focus on y ∈ W + c0. Recall that

X =
⋃t

i=1(Wi + ai). For i ∈ [t], define

Ei :=

{
a ∈ W⊥

i : Pr
y∈W+c0

[y ∈ Wi + ai + a] ≥ γ

}
.

Since the sets Wi + ai + a are all disjoint (for different a ∈ W⊥
i ), we have |Ei| ≤ 1/γ.

Now we are ready to set up for the inductive step that will decrease r. Define

X ′ = X ∪ (W + FW ) ∪ (W + FW + c0) ∪
t⋃

i=1

(Wi + Ei).

Note that

X ′ =
t′⋃
i=1

(W ′
i + a′i),

where W ′
i ∈ {W1, . . . ,Wt} ∪ {W} for all i ∈ [t′], and

t′ ≤ t+ 2|FW |+
t∑

i=1

|Ei|

≤ t

(
1 +

1

γ

)
+

2× 2
20m2

(1−2ϵ)2δ

ϵ1

≤ t+ t222k + 2
1+ 20m2

(1−2ϵ)2
× 8

ϵ2(1−2ϵ)
+ℓk,ϵ(m−1)+t+log(t)+kK

≤ t+ t222k + 2
1+ 160m22k

K

(1−2ϵ)3
+ℓk,ϵ(m−1)+t+log(t)+kK

≤ 22max{t,ℓk,ϵ(m−1)}, (17)

where we assumed that theO(1) term in the definition of ℓk,ϵ is chosen so that ℓk,ϵ(m−1) significantly
dominates all the terms that do not involve t.

Claim 3. The pair A and g satisfies P ′
k,ϵ(m, r − 1, t′) as witnessed by X ′.
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Proof. Conditions (i) and (ii) of Definition 2 are trivially satisfied as A and g are not altered, and
X ′ is a union of t′ cosets. Condition (iii) is satisfied because either W ′

i ∈ {W1, . . . ,Wt}, or W ′
i = W ,

and in the latter case (iii) is satisfied by Equation (16).
It remains to verify (iv). Consider x1, . . . , xr−1 ∈ A\X ′ ⊆ A\X . For every nonempty S ⊆ [r−1],

let aS =
∑

i∈S xi. If neither (a) nor (b) hold, then

aS ̸∈ A \ X ′ for every S ⊆ [r − 1] where |S| > 1 is odd; (18)

aS ̸∈ X ′ for every nonempty S ⊆ [r − 1]. (19)

We will establish the existence of an xr ∈ (A \ X ) ∩ (W + c0) such that x1, . . . , xr−1, xr violate
both (a) and (b) for A and X , and thus contradict our initial assumption. Pick y ∈ W uniformly
at random, and set xr = y + c0. We have the following:

• Since c0 ∈ FW , we have Pr[xr ̸∈ A \ X ] = Pry[y + c0 ̸∈ A \ X ] ≤ δ.

• For every nonempty even-size S ⊆ [r − 1], since aS ̸∈ W + FW + c0 ⊆ X ′, we have aS + c0 ̸∈
W + FW , and thus by the definition of FW ,

Pr
y
[y + c0 + aS ∈ A \ X ] ≤ δ.

• For every nonempty S, since aS ̸∈ Wi+Ei ⊆ X ′, by applying the union bound over the cosets
in X , we have

Pr
y
[y+ c0 + aS ∈ X ] ≤ tmax

i∈[t]
Pr
y
[y+ c0 + aS ∈ Wi + ai] = tmax

i∈[t]
Pr
y
[y+ c0 ∈ Wi + ai + aS ] ≤ tγ.

We apply the union bound to the above statements. Since δ+2r−1δ+2r−1tγ < 2r2−kK+2r−12−2k <
1, with positive probability there exists a y ∈ W such that for xr = y + c0,

• xr ∈ A \ X .

• For every nonempty even-size S ⊆ [r − 1], we have xr +
∑

i∈S xi ̸∈ A \ X .

• For every nonempty S ⊆ [r − 1], xr +
∑

i∈S xi ̸∈ X .

These together with (18) and (19) show that the sequence x1, . . . , xr violates (a) and (b) for A and
X , which is a contradiction.

To finish the proof of Lemma 7, we can apply the induction hypothesis to A and X ′. By (17)
the coset complexity of A at most

ℓk,ϵ(m, r − 1, t′) ≤ ℓk,ϵ(m, r − 1, 4max(t,ℓk,ϵ(m−1)))

= Tower4 ((r − 1) + 1 + log∗4max (t, ℓk,ϵ(m− 1))) = ℓk,ϵ(m, r, t).

Finally, we finish the proof of Theorem 2.
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Proof of Theorem 2. Theorem 2 (i) is an immediate corollary of Lemma 3. To prove Theorem 2 (ii),
by assumption, A and Ac are k-affine connected and there exists g : G → R such that ∥1A−g∥∞ ≤ ϵ

and ∥g∥A ≤ M . Hence, A and g satisfy Pk,ϵ (m) for m =
⌈

4M
1−2ϵ

⌉
and by Lemma 7, the coset

complexity of A is at most

ℓk,ϵ(m) = Tower2

(
O

(
Mk

1− 2ϵ

))
.

4 Concluding remarks and open problems

We conclude the paper with some suggestions for future research:

• Can Theorem 2 be extended to all locally compact Abelian groups, or more generally to all
locally compact groups? As we discussed in Section 1.1, we believe this is possible.

• Is the tower type bound in Theorem 2 necessary or is it an artifact of our proof? Note that
for Theorem 1, Sanders’ bound in [San19] is only exponential in O(M3+o(1)).

• What can be said about the structure of the sets A ⊆ G that have small approximate algebra
norm if we do not assume affine connectivity? The following conjecture from [HHH21] remains
open.

Conjecture 1. If A ⊆ G satisfies ∥1A∥A,ϵ ≤ M , then there is a coset V + a ⊆ G of
codimension at most ℓ = OM,ϵ(1) such that V + a ⊆ A or V + a ⊆ Ac.

Note that by Theorem 2 and Lemma 4, such a coset V + a exists if we further assume that
A and Ac are O(1)-affine connected.

• Theorem 2 belongs to a more general program that aims to characterize the functions that
have complexity O(1) in various natural communication and query models. As we dis-
cussed earlier, the approximate algebra norm, randomized parity decision tree complex-
ity, and randomized communication complexity of the xor-lift are exponentially equiva-
lent [STV17, KLMY21, HHH21]. Therefore, Theorem 2 and Conjecture 1 are steps towards
achieving such a characterization for the randomized parity decision tree model and the ran-
domized communication complexity of the xor-lifts.

Another possible application of Theorem 2 in this program is a potential characterization
of the xor-lifts with communication complexity O(1) in the unbounded-error model of Pa-
turi and Simon [PS86]. We conjecture that those are precisely the xor-lifts of the Boolean
functions that have coset complexity O(1). We intend to investigate this problem in future
works.
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