
Matrix Polynomial Factorization via Higman Linearization

V. Arvind* Pushkar S Joglekar†‡

Abstract

In continuation to our recent work [AJ22] on noncommutative polynomial factorization, we
consider the factorization problem for matrices of polynomials and show the following results.

• Given as input a full rank 3 × 3 matrix " whose entries "8 9 are polynomials in the free
noncommutative ring F@ 〈G1 , G2 , . . . , G=〉, where each "8 9 is given by a noncommutative
arithmetic formula of size at most B, we give a randomized algorithm that runs in time
polynomial in 3, B, = and log2 @ that computes a factorization of " as a matrix product
" = "1"2 · · ·"A , where each 3 × 3 matrix factor "8 is irreducible (in a well-defined
sense) and the entries of each "8 are polynomials in F@ 〈G1 , G2 , . . . , G=〉 that are output as
algebraic branching programs. We also obtain a deterministic algorithm for the problem
that runs in poly(3, =, B, @).

• A special case is the efficient factorization of matrices whose entries are univariate poly-
nomials in F[G]. When F is a finite field the above result applies. When F is the field of
rationals we obtain a deterministic polynomial-time algorithm for the problem.

Keywords: Noncommutative Polynomials, Arithmetic Circuits, Factorization, Identity test-
ing.

1 Introduction

Let F〈-〉 denote the free noncommutative polynomial ring in variables - = {G1 , G2 , . . . , G=} over
a field F. The elements of F〈-〉 are noncommutative polynomials: finite F-linear combinations of
monomials (words) over the variables -.

Definition 1.1 (Matrix Polynomials). For a positive integer 3, a 3 × 3 matrix " ∈ F〈-〉3×3 over the
noncommutative polynomial ring F〈-〉 is a matrix polynomial. Equivalently, we can consider " as an
element of the ring F3×3〈-〉 of noncommutative polynomials whose coefficients are from the scalar matrix
ring F3×3.

In this paper we study the problem of factorization of matrix polynomials in F〈-〉3×3 with the
aim of designing efficient algorithms. To the best of our knowledge, this is the first algorithmic
study of the problem from the viewpoint of obtaining polynomial-time algorithms for it.

Themathematics that underlies such factorizations in noncommutative rings is a general theory
of the so-called free ideal rings due to Cohn [Coh06]. The matrix ring F〈-〉3×3 for 3 > 1, unlike the

*Institute of Mathematical Sciences, Chennai, India, email: arvind@imsc.res.in
†Vishwakarma Institute of Technology, Pune, India, email: joglekar.pushkar@gmail.com
‡Author would like to thank SERB for the funding through the MATRICS project, File no. MTR/2018/001214

1

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Report No. 42 (2022)

polynomial ring F〈-〉 itself, is not a domain because it contains zero divisors (and even nilpotent
elements). However, Cohn’s factorization theory applies to full matrices: a matrix " ∈ F〈-〉3×3 is
full if it cannot be expressed as a product

" = ��

of matrices � ∈ F〈-〉3×A and � ∈ F〈-〉A×3, where A < 3. In other words, a full matrix in F〈-〉3×3
has noncommutative rank 3. We note here that the problem of computing noncommutative rank has
received a lot of attention in recent years [GGdOW20, IQS18].

Amatrix* ∈ F〈-〉3×3 is aunit if it is invertible inF〈-〉3×3. That is, there is amatrix*′ ∈ F〈-〉3×3
such that **′ = *′* = �3. Analogous to the usual setting of commutative unique factorization
domains, we are interested in the factorization of non-units that are full matrices in F〈-〉3×3. A full
non-unit matrix " ∈ F〈-〉3×3 is an atom if " = �� implies either � or � is a unit.1

Elements � ∈ F〈-〉3×3 and � ∈ F〈-〉3′×3′ are called stable associates or simply associates if there
are positive integers C and C′ such that 3 + C = 3′ + C′ and units %, & ∈ F〈-〉(3+C)×(3+C) such that
� ⊕ �C = %(� ⊕ �C′)&. Notice that if � and � are full non-unit matrices that are stable associates
then � is atom if and only if � is atom [Coh06].

Let " ∈ F〈-〉3×3 be a full non-unit matrix polynomial. By a complete factorization2 of " we
mean expressing " as a product of matrix polynomials

" = "1"2 · · ·"A ,

where each "8 ∈ F〈-〉3×3 is an atom.
As thefirst result in thispaper,we consider the factorizationofmatrixpolynomials" ∈ F〈-〉3×3

over a finite field F = F@ where the entries of " are given as input by noncommutative arithmetic
formulas of size B and we obtain a poly(3, B, log2 @) time randomized algorithm (we also obtain
a deterministic poly(3, B, @) time). Indeed, the only place where we require randomness is for
univariate polynomial factorization over large characteristic fields F@ .

Unfortunately, we do not have a similar result for matrix polynomials when the underlying
field F = Q because the above method is based on Ronyai’s algorithm for computing a nontrivial
common invariant subspace for a collection of matrices which is not known to have an efficient
algorithm over rationals [Rón87, FR85]. However, the approach works for factorization of matrix
polynomials over the univariate ring Q[G].

Before we proceed we recall some basic definitions. Let F be any field and - = {G1 , G2 , . . . , G=}
be a set of = free noncommuting variables. Let -∗ denote the set of all free words (which are
monomials) over the alphabet - with concatenation of words as the monoid operation and the
empty word & as identity element. The free noncommutative ring F〈-〉 consists of all finite F-linear
combinations of monomials in -∗, where the ring addition + is coefficient-wise addition and the
ring multiplication ∗ is the usual convolution product.

For 5 ∈ F〈-〉 let 5 (<) ∈ F denote the coefficient of monomial < in 5 . We can write 5 =∑
< 5 (<)<. The degree of a monomial < ∈ -∗ is its length, and the degree deg 5 of a polynomial

5 ∈ F〈-〉 is the degree of a largest degree monomial in 5 with nonzero coefficient.

1Following Cohn [Coh06] we refer to such matrices as atoms rather than irreducibles.
2F〈-〉3×3 is not a UFD in the usual sense, nevertheless factorization in F〈-〉3×3 is unique under stable associativity

as shown in [Coh06]. However, in the current work we are not interested in this aspect, our goal is simply to find any
factorization of given matrix polynomial into atoms

2

For further required background on Cohn’s factorization theory we refer the reader to our
recent arxiv paper [AJ22] on which the present work is based. Cohn’s texts [Coh06, Coh11] contain
a comprehensive treatment.

1.1 Overview of the results

We show the following results.

1. Given a full non-unit matrix polynomial" ∈ F@ 〈-〉3×3, where each of its entries"8 9 is given
as input by a noncommutative arithmetic formula of size B, a factorization" = "1"2 · · ·"A

can be computed in randomized time poly(B, log2 @, |- |), where each "8 ∈ F@ 〈-〉3×3 is an
atom whose entries are output as algebraic branching programs (of size poly(B, log2 @, |- |)).
We also obtain a deterministic poly(B, @, |- |) time algorithm for the problem.

2. For a univariate matrix polynomial " ∈ Q[G]3×3 that is a full non-unit matrix we give a de-
terministic time poly(3, B) time algorithm to compute factorization" = "1"2 · · ·"A where
each "8 ∈ Q[G]3×3 is an atom and B bounds the bit complexity of the rational coefficients of
the matrix entries "8 9 ∈ Q[G], 1 ≤ 8 , 9 ≤ 3.

To the best of our knowledge, these are the first algorithmswith polynomially bounded running
time for the above problems.

Remark 1.2. We note that for univariate matrix polynomials over finite fields the first result yields a ran-
domized poly(B, log2 @, |- |) time algorithm and a deterministic poly(B, @, |- |) time algorithm. However,
over rationals we do not have an analogous efficient algorithm for factorizing matrix polynomials inQ〈-〉3×3
ever for 3 = 1. As explained in [AJ22] the approach to factorization we use breaks down over Q because the
problem of computing nontrivial common invariant subspaces of a collection of rational matrices is at least
as hard as factoring square-free integers [FR85].

The algorithm for matrix polynomial factorization uses the same strategy as we did for non-
commutative polynomial factorization [AJ22]. We briefly outline it.

• Higman linearization Given a non-unit matrix polynomial" ∈ F〈-〉3×3, where each entry
is input by a noncommutative formula, we transform it into a linear matrix ! such that
" ⊕ � = %!&, where %, &, ! ∈ F〈-〉A×A for A = $(32B), % is upper triangular with all 1’s
diagonal, & is lower triangular with all 1’s diagonal, and ! is a full non-unit linear matrix.

• Linear Matrix Factorization Next, we factorize the linear matrix ! as a product of atomic
linear factors using our algorithm described in [AJ22]. This algorithm is based on ideas from
Cohn’s factorization theory [Coh06] and uses Ronyai’s algorithm for computing common
invariant subspaces of a collection of matrices over finite fields [Rón90].

• Recovering the factors of " This part requires a new algorithm but similar to the case
of a single polynomial [AJ22]. The factor recovery algorithm is based on an algorithm for
trivializing a matrix product relation of the form �� = 0, where � ∈ F@ 〈-〉B×A is a linear
matrix and � ∈ F@ 〈-〉A×C is a matrix of polynomials. We efficiently compute an invertible

3

matrix # ∈ F@ 〈-〉A×A such that #−1 is also in F@ 〈-〉A×A (which means # is a unit in the ring
F@ 〈-〉A×A). Then �� = 0 can be recast as (�#)(#−1�) = 0 which is trivialized by # in the
following sense: for every index 8 ∈ [A] either the 8Cℎ column of �# is zero or the 8Cℎ row of
#−1� is zero. Using this algorithm repeatedly we are able to recover the factorization of "
from the factorization of !.

Plan of the paper. In Section 2 we present the algorithm for factorization of matrix polynomials
over the noncommutative ring F@ 〈-〉. In Section 3 we present a deterministic polynomial time
algorithm for factorization of matrix polynomials over the commutative polynomial ring Q[G].

2 Factorization of matrix polynomials over F@〈-〉
In this section we prove the main theorem showing a randomized polynomial-time algorithm for
factorization of full non-unit matrices over F@ 〈-〉. As explained in the introduction, the algorithm
strategy has three broad steps:

(a) Higman linearization of the input matrix polynomial " which produces a linear matrix !
which is an associate of ". The input matrix " is assumed of full noncommutative rank
(hence ! will also be of full rank).

(b) Factorization of the linearmatrix ! byusingCohn’s factorization theory to reduce theproblem
to computation of a common invariant subspace for a collection of scalar matrices over F@
which can be solved in randomized polynomial-time using Ronyai’s algorithm [Rón90].

(c) The efficient recovery of the factors of " from the factors of !.

The same strategy was used in [AJ22] for the factorization of noncommutative polynomials.
The algorithms for the first two steps (a) and (b) for matrix polynomials follow from the results
in [AJ22]. Efficient computation of Higman linearization works for matrix polynomials as well
[GGdOW20].

Theorem 2.1. [GGdOW20, Proposition A.2] Let " ∈ F〈-〉=×= such that "8 , 9 is computed by a non-
commutative arithmetic formula of size at most B and bit complexity at most 1. Then, for ℓ = $(B), in time
poly(B, 1) we can compute the matrices %, & and ! in F〈-〉(=+ℓ)×(=+ℓ) of Higman’s linearization such that(

" 0
0 �ℓ

)
= %!&.

Moreover, the entries of the matrices % and & as well as %−1 and &−1 are given by polynomial-size algebraic
branching programs which can also be obtained in polynomial time.

Noncommutative linearmatrix factorization is already dealtwith in [AJ22] asmentioned above.

Theorem 2.2. [AJ22] On input a full and right (or left) monic linear matrix ! = �0 +
∑=
8=1 �8G8 where

�8 ∈ F3×3 for 8 ∈ [=], there is a randomized polynomial time poly(=, 3, log2 @) algorithm to compute a
factorization ! = �1�2 · · · �A , where each �8 is a linear matrix atom. Furthermore, there is a deterministic
time poly(=, 3, @) algorithm for the problem.

4

Remark 2.3. We explain the above theorem statement in detail. The linear matrix ! is called right monic if
the matrix [�1�2 · · ·�=] has full row rank [Coh06]. As explained in [AJ22], the factorization problem for
full linear matrices can be reduced to the factorization of full and right monic linear matrices. Furthermore,
the factorization algorithm for linear matrices in [AJ22] is based on Ronyai’s common invariant subspace
algorithm, and that reduction requires �0 to be invertible. Transforming ! to fulfill this property will, in
general, requires a blow-up in the matrix dimension. This is achieved by first finding a matrix substitution
G8 ← "8 such that !("1 , "2 , . . . , "=) is invertible. This can be computed in deterministic polynomial
time using the noncommutative rank algorithm of [IQS18] (specifically, see Section 1.2 in [IQS18])3, where
"8 are matrices of dimension A = poly(B, 3). Then, the substitution G8 ← .8 +"8 , where each .8 is A × A
matrix of fresh noncommuting variables, results in a blown-up A3× A3 linear matrix !′ whose constant term
�′0 is now invertible. The linear matrix factorization algorithm in [AJ22] (Theorem 2.2) finds a complete
factorization of !′ and, in polynomial time, recovers from it a complete factorization of !.

In summary, we observe that in fact the linear matrix factorization algorithm of [AJ22] is really a
deterministic polynomial-time reduction to the problem of univariate polynomial factorization over F@ .
Hence, we have a randomized poly(=, 3, log2 @) time algorithm for it and, alternatively, a deterministic time
poly(=, 3, @) time-bounded algorithm.

The new contribution is in step (c) for recovering the factorization of " from the factorization
of the linear matrix !. We now proceed to describe this algorithm.

2.1 Trivialization of matrix relations

For matrices � ∈ F〈-〉3×A and � ∈ F〈-〉A×B the condition

�� = 0

is called amatrix relation [Coh06]. A unit" ∈ F〈-〉A×A is said to trivialize thematrix relation �� = 0
if for every index 8 , 1 ≤ 8 ≤ A either the 8Cℎ column of the matrix �" is all zeros or the 8Cℎ row of
the matrix "−1� is all zeros.

The existence of " is proved using an argument about bases for finite-dimensional modules
in Cohn’s book [Coh06]. However, a natural algorithmic problem is the complexity of computing
the matrix unit ". For matrices over fields (finite fields or Q) " can be found in polynomial time
using standard linear algebraic computation. In [AJ22] we give a deterministic polynomial-time
algorithmwhen � ∈ F〈-〉3×A is a linear matrix and� ∈ F〈-〉A×1 is a column vector of polynomials,
where the underlying field is a finite field. The algorithm computes " and its inverse "−1 in
F〈-〉A×A such that their entries are given by polynomial-size algebraic branching programs.

For the problem of matrix factorization considered in this paper, we require a generalization of
this to the case when � is a linear matrix and � is a matrix of polynomials. A simple trick allows
us to adapt the algorithm of [AJ22].

Lemma 2.4. Let � ∈ F〈-〉:×ℓ be a linear matrix and �̃ ∈ F〈-〉ℓ×< be a matrix polynomial with entries of
�̃ are given by algebraic branching programs such that ��̃ = 0. Then, in deterministic polynomial time we
can compute a invertible matrix # ∈ F〈-〉ℓ×ℓ such that

3In [AJ22] we used a different result [DM17] for this purpose which, in randomized polynomial time, gives such a
matrix substitution with entries of matrices from possibly some extension field of F@ . However, in [IQS18] such a matrix
substitution is obtained in deterministic polynomial time. Moreover, it can be ensured that the entries of the obtained
matrices reside in F@ itself even for small @, at the cost of slightly larger dimensional matrix substitution.

5

• For 1 ≤ 8 ≤ ℓ either the 8Cℎ column of �# is all zeros or the 8Cℎ row of #−1�̃ is zero.

• Each entry of # is a polynomial of degree at most ℓ 2 and is computed by a polynomial size ABP, and
also each entry of #−1 is computed by a polynomial size ABP.

Proof. Let �̃8 denotes the 8Cℎ column of �̃ for 8 ∈ [<]. Let E ∈ F〈-〉ℓ×1 be a column of polynomials
defined as, E =

∑<
8=1 �̃8H

8 where H ∉ - is a fresh noncommuting variable. We clearly have, ��̃ = 0
if and only if ��̃8 = 0 for all 8 ∈ [<] if and only if �E = 0.

To keep the paper self-contained we reproduce the algorithm from [AJ22]. We describe it as a
recursive procedure Trivialize that takes matrix � and column vector E as parameters and returns
a matrix # as claimed in the statement. The key additional point to note is that the variable H
occurs only in E and not in �, and the construction of# is such that its entries are only polynomials
in variables used in �.

Procedure Trivialize(� ∈ F〈-〉:×ℓ , E ∈ F〈-〉ℓ×1)

1. If 3 = 1 then (since �E = 0 iff either � = 0 or E = 0 because the ring F〈-〉 has no zero divisors)
return the identity matrix.

2. If 3 > 1 then

3. write � = �0 + �1, where �0 is a scalar matrix and �1 is the degree 1 homogeneous part of
�. Let 4 be the degree of the highest degree nonzero monomials in the polynomial vector E,
and let < be a nonzero degree 4 monomial. Let E(<) ∈ Fℓ×1

@ denote its (nonzero) coefficient
in E. Then �E = 0 implies �1E(<) = 0. Let)0 ∈ Fℓ×ℓ@ be a scalar invertible matrix with first
column E(<) obtained by completing the basis.

(a) If �0E(<) = 0 then the first column of �)0 is zero.

(b) Otherwise, �)0 has first column as the nonzero scalar vector �E(<) = �0E(<). Suppose
8Cℎ entry of �E(<) is a nonzero scalar . With column operations we can drive the 8Cℎ

entry in all other columns of �)0 to zero. Let the resulting matrix be �)0)1 (where the
matrix)1 is invertible as it is a product of elementary matrices corresponding to these
column operations, each of which is of the form Col8 ← (Col8 +Col1 ·0 +

∑
8 8G8)).

Notice that �)0)1 is still linear.

(c) As �E = (�)0)1)()−1
1)−1

0 E), and in the 8Cℎ row of �)0)1 the only nonzero entry is which
is in its first column, we have that the first entry of)−1

1)−1
0 E is zero.

4. Let �′ ∈ F〈-〉:×(ℓ−1) obtained by dropping the first column of �)0)1. Let E′ ∈ F〈-〉(ℓ−1)×1 be
obtained by dropping the first entry of)−1

1)−1
0 E. Note that �′ is still linear.

5. Recursively call Trivialize(�′ ∈ F〈-〉:×(ℓ−1) , E′ ∈ F〈-〉(ℓ−1)×1). and let the matrix returned by
the call be)2 ∈ F〈-〉(ℓ−1)×(ℓ−1).

6. Putting it together, return the matrix)0)1(�1 ⊕)2).

Now, since E =
∑<
8=1 �̃8H

8 , for all 9 ∈ [ℓ], we have 9Cℎ entry of E is equal to 0 if and only if 9Cℎ

entry of all the columns �̃8 is equal to zero for 8 ∈ [<]. Consequently we get, 9Cℎ entry of E is equal

6

to 0 iff 9Cℎ row of �̃ is all zero for all 9 ∈ [ℓ]. So the matrix # satisfies the required property, namely
for 1 ≤ 8 ≤ ℓ either the 8Cℎ column of �# is all zeros or the 8Cℎ row of #−1�̃ is all zero.

To complete the proof, we note that a highest degree monomial < of the vector E such that
its (scalar) coefficient vector E(<) ≠ 0 is easy to compute in deterministic polynomial time when
each polynomial E8 is given by a noncommutative algebraic branching program: we can use the
PIT algorithm of Raz and Shpilka [RS05] to find the coefficient of < in each E8 to obtain the vector
E(<). Now, for the recursive call we require �′ to be also a linear matrix and each entry of the
new polynomial vector E′ to have a small ABP. The matrix �′ is linear because �)0)1 is a linear
matrix: because �)0 is linear and its first column is scalar, and each column operation performed
by)1 is scaling the first column of �)0 by a linear form and subtracting from another column of
�)0. Regarding the polynomial vector E′, each entry of it has a small ABP because)−1

0 is scalar
and the entries of the matrix)−1

1 have ABPs of polynomial size because)1 (and hence also)−1
1)

is a product of units which correspond to elementary column operations. Finally, we note that)1
is a product of at most ℓ − 1 linear matrices each corresponding to a column operation, and # is
an iterated product of ℓ such matrices. Hence, each entry of # as well as #−1 is a polynomial of
degree at most ℓ 2 and is computable by a small ABP. �

2.2 Factor extraction algorithm

We first recap the overall algorithm to see where the factor extraction algorithm will fit in. For
an input " ∈ F〈-〉3×3, which is a full matrix whose entries are computed by noncommutative
arithmetic formulas, we apply Higman linearization [GGdOW20] to compute in polynomial time
the following (

" 0
0 �

)
= %!&, (1)

where ! is a full linear matrix, % is an upper triangular matrix will all ones diagonal, & is
a lower triangular matrix with all ones diagonal and the entries of % and & are computed by
noncommutative ABPs.

Next, we apply the linear matrix factorization algorithm of [AJ22] to ! and compute a complete
factorization as

! = !1!2 · · · !C ,

where each !8 is a linear matrix atom. The factor extraction algorithm will find a complete
factorization of the matrix " = "1"2 · · ·"C as a product of C matrix atoms. It is based on the
following lemma which will allow us to recover the factors one by one.

Lemma 2.5 (Factor Extraction Lemma). Let " ∈ F〈-〉<×< be a matrix polynomial and + ∈ F〈-〉:×:
be a unit with (

" *

0 +

)
= %��, (2)

such that

• * ∈ F〈-〉<×: is a matrix polynomial, � ∈ F〈-〉ℓ×ℓ is a full linear matrix that is a non-unit,
% ∈ F〈-〉ℓ×ℓ is upper triangular with all 1’s diagonal, and � ∈ F〈-〉ℓ×ℓ is a full non-unit matrix
which is also an atom, where ℓ = < + :.

7

• The entries of ",*,+, %, � are all given as input by algebraic branching programs and the linear
matrix � is given explicitly.

Then we can compute in deterministic polynomial time a nontrivial factorization " = � · � of the matrix
" where both � and � are full non-unit matrices and, moreover, the matrix � is an atom.

Proof. Let

� =

(
21 23
22 24

)
and � =

(
31 33
32 34

)
,

written as 2 × 2 block matrices where 21, 31 are < × < blocks and 24 and 34 are : × : blocks. By
dropping the first < rows of the matrix in the left hand side of Equation 2 and the first < row of %
we get

(0 +) = (0 %′)��,

where %′ is also an upper triangular matrix with all 1’s diagonal. Equating the block consisting of
the first < columns on both sides we have

0 = (0 %′)
(
21 23
22 24

) (
31
32

)
, which implies that

0 = %′(22 24)
(
31
32

)
, and hence

0 = (22 24)
(
31
32

)
, since %′ is invertible.

Since (22 24) ∈ F〈-〉:×ℓ is a matrix with linear entries and
(
31
32

)
∈ F〈-〉ℓ×< is a matrix of

polynomials which are given by ABPs as input, this is a matrix relation to which we can apply the
trivializing algorithm of Lemma 2.4. The trivializing algorithm computes a unit # whose entries
are all given by ABPs such that for 1 ≤ 8 ≤ ℓ , either the 8Cℎ column of (2′2 2′4) = (22 24)# is all zero

or the 8Cℎ row of
(
3′1
3′2

)
= #−1

(
31
32

)
is all zero.

Since� is a fullmatrix, thematrix#−1� is also full which implies
(
3′1
3′2

)
has at least< non-zero

rows as stated in the Claim below.

Claim 2.6. The ℓ × < matrix
(
3′1
3′2

)
has at least < non-zero rows.

As at least < rows of the matrix
(
3′1
3′2

)
are nonzero, it follows that at least < columns of (2′2 2′4)

are all zeros because the matrix # trivializes the relation (that is, for every 8 ∈ [ℓ]we have either 8Cℎ

column of (2′2 2′4) is all zero or the 8Cℎ row of
(
3′1
3′2

)
is all zeros). Hence, there exists a permutation

matrix Π such that the first < columns of (2′2 2′4)Π are all zeros and the first < rows of Π−1
(
3′1
3′2

)
are all nonzero.

8

Consider the matrices �′′ = �#Π =

(
2′′1 2′′3
2′′2 2′′4

)
and �′′ = Π−1#−1� =

(
3′′1 3′′3
3′′2 3′′4

)
. Let

% =

(
%1 ∗
0 %2

)
,

where both %1 and %2 are upper triangular matrices with all ones diagonal. Then, we have

%−1
(
" *

0 +

)
=

(
%−1

1 " ∗
0 %−1

2 +

)
=

(
2′′1 2′′3
2′′2 2′′4

) (
3′′1 3′′3
3′′2 3′′4

)
,

where 2′′2 is all zero block of size : × < and 3′′1 is matrix of size < × < such that all rows of 3′′1 are
non-zero. By looking at (2, 2)Cℎ block in the above equation, we can see that 2′′4 and 3′′4 are units as
%−1

2 + is a unit. Now observing (2, 1)Cℎ matrix block in the above equation, we get 3′′2 is all zero as
2′′4 is a unit. Clearly, we have %−1

1 " = 2′′1 · 3
′′
1 . Now, since � and � are non-units (by assumption),

the matrices �′′ and �′′ are also non-units. Therefore, 2′′1 is not a unit for otherwise �′′ would be
a unit. Similarly, 3′′1 is not a unit. It follows that " = %12

′′
1 3
′′
1 is a nontrivial factorization of ",

noting that %1 is a unit (being upper triangular with all ones diagonal).
Furthermore, since � is an atom and �′′ = Π#−1� where both Π and # are units in F〈-〉3×3

it follows that �′′ is also an atom. As �′′ =
(
3′′1 3′′3
0 3′′4

)
and 3′′4 is invertible, we get(

�< 0
0 (3′′4)−1

)
· �′′ =

(
3′′1 3′′3
0 �:

)
.

Now applying suitable row operations to the matrix (�< ⊕ (3′′4)−1)�′′ we can drive 3′′3 to zero. So
we have,(�< ⊕ (3′′4)−1)�′′ = (3′′1 ⊕ �:) for a unit, . Hence 3′′1 is an associate of �′′ and therefore
3′′1 is an atom because �′′ is an atom.

Thus, we conclude that the above algorithm computes a nontrivial factorization of " as

" = � · �

where � = %−1
1 2′′1 is a full non-unit matrix, and � = 3′′1 is an atom, and %1 is a unit. �

2.3 The Factorization Algorithm

We now put everything together and describe the factorization algorithm.

Theorem 2.7. Let F〈-〉 = F@ 〈-〉 and let " ∈ F〈-〉3×3 be a matrix of noncommutative polynomials
where each of its entries "8 9 is given by an arithmetic formula of size at most B as input instance. Then
there is a poly(B, log @) time randomized algorithm that outputs a complete factorization of " as a product
" = "1"2 · · ·"A such that each matrix factor "8 is an atom, and the entries of the matrix factors are
output as algebraic branching programs. Moreover, there is also a deterministic poly(B, @) time deterministic
algorithm for the problem.

Proof. Given " ∈ F〈-〉3×3 as input, we apply Higman linearization followed by the linear matrix
factorization algorithm stated in Theorem 2.2 (see [AJ22] for details) to obtain the factorization

" ⊕ �B = %�1�2 . . . �A*

9

where each linear matrix �8 is an atom, the matrix % is upper triangular with all 1’s diagonal, and
thematrix* is a unit. Moreover, the entries of % and* are given by algebraic branching programs.

We will now apply Lemma 2.5 to extract the factors of " (one by one from the right).
For the first step, let � = �1�2 · · · �A−1 and � = �A* in Lemma 2.5. The proof of Lemma 2.5

yields the matrix #A = #Π such that both matrices �′′ = %�1�2 · · · �A−1#A and �′′ = #−1
A �A* has

the first 3 column all zeros except the top left 3 × 3 block of entries 2′′1 and 3′′1 which yields the
nontrivial factorization " = 2′′1 3

′′
1 , where 3′′1 = "A is an atom. Renaming 2′′1 as �A we have from

the structure of �′′: (
�A ∗
0 +A

)
= %(�1�2 · · · �A−2)(�A−1#A).

Setting � = �1�2 · · · �A−2 and � = �A−1#A in Lemma 2.5 we can compute the matrix #A−1 using
which we will obtain the next factorization �A = �A−1"A−1, where "A−1 is an atom by Lemma 2.5.
Note that Lemma 2.5 is applicable as all conditions are met by the matrices in the above equation
(note that the matrix +A will be a unit).

Continuing thus, at the 8Cℎ stage we will have " = �A−8+1"A−8+1"A−8+2 · · ·"A after obtaining
the rightmost 8 irreducible factors by the above process. At this stage we will have(

�A−8+1 ∗
0 +A−8+1

)
= %(�1�2 · · · �A−8−1)(�A−8#A−8+1),

where +A−8+1 is a unit and all other conditions are satisfied for application of Lemma 2.5.
Thus, after A stages we will obtain the complete factorization of the input matrix " as

" = "1"2 · · ·"A ,

where each factor "8 is an atom.

Running Time Analysis

The Higman Linearization of " is computed in deterministic polynomial time. For the resulting
linear matrix ! = �0 +

∑=
8=1 �8G8 , as explained in Remark 2.3, its factorization as a product of linear

matrix atoms can be computed in randomized poly(B, =, 3, log2 @) time as well as in deterministic
poly(B, =, 3, @) time.

For the rest of the running time, it suffices to note that the matrix # computed in Lemma 2.5
is a product of degree at most 32 many linear matrices (corresponding to the column operations).
Thus, at the 8Cℎ of the above iteration, the sizes of the ABPs for the entries of#A−8+1 are independent
of the stages. Hence, the overall randomized algorithm has running time poly(B, =, 3, log2 @). The
deterministic factorization algorithm has running time poly(B, =, 3, @). �

3 Factorization of matrices over Q[G]
In this section we describe a deterministic polynomial-time algorithm for the factorization of full
non-unit matrices with univariate polynomial entries over rationals (i.e., the matrix entries are

10

from Q[G]). As there is only one variable G, the noncommutative ring F〈G〉 coincides with the
commutative ring F[G]. Thus, over a finite field F = F@ we note that the algorithm of the previous
section also solves matrix factorization over F@[G] as a special case.

Our technique is essentially the same: we first transform the inputmatrix" into a linearmatrix
! by Higman linearization (see Theorem 2.1). We obtain(

" 0
0 �ℓ

)
= %!&.

where %, & and ! are matrices with entries from Q[G].
Asmentioned in the introduction, the problemof factorization ofmultivariate noncommutative

polynomials overQ (i.e., over the free noncommutative ringQ〈-〉) is not amenable to our approach
[AJ22] because the problem of computing a nontrivial common invariant subspace for a set of
matrices over Q seems intractable in general [Rón87]. However, in the univariate case we need to
compute a nontrivial invariant subspace for a single rational matrix which can be done efficiently
using basic linear algebra. This gives us a deterministic polynomial-time algorithm for factorizing
matrix polynomials over Q[G].

In the first subsection below we will present an efficient trivializing algorithm for the matrix
relation �� = 0 where � ∈ Q[G]3×A is a univariate linear matrix and � ∈ Q[G]3×B is a matrix of
univariate polynomials over rationals. In the next subsection we will present the algorithm for
factorization of linear matrices ! in one variable G over Q.

3.1 Trivializing matrix relations algorithm over Q

Let � ∈ Q[G]3×A and * ∈ Q[G]A×B be given as input such that �* = 0, where � is a linear matrix.
We describe a polynomial-time algorithm for computing an invertible matrix # such that:

1. The matrix # ∈ Q[G]A×A is a unit: det# is a nonzero scalar (equivalently #−1 is a matrix with
polynomial entries).

2. The matrix relation (�#)(#−1*) = 0 is trivialized: for each 8 ∈ [A] either the 8Cℎ column of
�# is all zeros or the 8Cℎ row of #−1* is all zeros.

We note that the algorithmwe have already described in Section 2.1 solves the problem over F@
in the multivariate case. That algorithm performs a polynomial number of arithmetic operations
over F@ . However, working over Q we need to additionally control the binary encoding lengths
of the matrix coefficients that will result from the repeated column operations. As such it is not
clear to us that the above-mentioned algorithm over F@ has this additional property when we use
it for Q. However, we present direct a polynomial-time algorithm for this problem over Q in the
univariate case.

Let � = �′ + �′′G ∈ Q[G]3×A . The heart of the trivialization algorithm is to first efficiently
transform � into a suitable normal form (which we refer to as T-normal form). It turns out that once
we have the matrix � in T-normal form it is easy to compute a trivializing matrix # as required.
We will first define the T-normal form and show that if the linear matrix � is in T-normal form, the
trivializingmatrix# can be computed in polynomial time (taking into account the binary encoding

11

lengths of all integers involved). Then we will give a polynomial-time algorithm to transform �

into T-normal form.
Let � ∈ Q[G]3×: be a linear matrix and let �8 denote the 8Cℎ column of �, 1 ≤ 8 ≤ :. Writing

� = �′ + �′′G, where �′, �′′ ∈ Q3 × :, for 1 ≤ 8 ≤ : we have

�8 = �
′
8 + �

′′
8 G,

where �′
8
and �′′

8
are the 8Cℎ columns of �′ and �′′, respectively. The 8Cℎ column �8 of � is a scalar

column if all the entries of �8 are scalars (i.e. �′′8 = 0) otherwise it is a non-scalar column.
Encoding sizes. For an integer 0, the encoding size of 0 (denoted as b(0)) is the number of bits
required to express 0 in binary. For a rational number A = 0

1
, 1 ≠ 0, the encoding size of A is b(A) =

max(b(0), b(1)). Extending this further, for a univariate polynomial 5 = 00+ 01G+ . . .+ 0CGC ∈ Q[G],
we define the binary encoding size of 5 as b(5) = C · maxC

8=0 b(08). For an univariate polynomial
matrix � ∈ Q[G]3×: , the encoding size of � is, b(�) = :3 ·max1≤8≤3,1≤ 9≤: b(�8 , 9) where �8 , 9 is the
(8 , 9)Cℎ entry of �.

Let � be a 3 × : matrix. For index sets � ⊆ [3], � ⊆ [:], let �(� , �) denote the submatrix of �
with rows from � and columns from �.

Definition 3.1. [T-normal form]A linear matrix � = [0 � �] ∈ Q[G]3×A is said to be in T-normal form
if its columns are partitioned into the three parts, as indicated, such that:

• The first set of columns of � is all zeros, followed by the second set � of scalar columns, and then the
third set � = �′ + �′′G consists of non-scalar columns.

• The matrix [� �′′] is of full column rank.

Before we proceedwe note that, analogous to Section 2.1, it is convenient to transform the given
matrix relation �* = 0 into another relation �D = 0 where D is a column vector whose entries are
bivariate polynomials in Q[G, H], where H is a fresh commuting variable.

For a matrix* ∈ Q[G]A×B , we define the column vector D ∈ Q[G, H]A×1 as

D =

B∑
9=1

* 9H
9 ,

where* 9 , 1 ≤ 9 ≤ B are the B columns of the matrix* . We note that �* = 0 if and only if �D = 0.
We also have the following.

Lemma 3.2. A matrix # ∈ Q[G]A×A trivializes the relation (�#)(#−1*) = 0 if and only if it trivializes
the relation (�#)(#−1D) = 0.

We first show that the relation�D = 0 is easy to trivialize for a linear matrix� ∈ Q[G]3×A which
is in T-Normal form.

Lemma 3.3. Let � ∈ Q[G]3×A be a linear matrix in T-normal form and D ∈ Q[G, H]A be a column vector
of polynomials given as input such that the matrix relation �D = 0 holds. Then there is a polynomial
(poly(3, A, b(�), b(D))) time deterministic algorithm to compute a full rank matrix # ∈ Q[G]A×A such that
b(#) ≤ poly(3, A) · b(�), the matrix #−1 ∈ Q[G]A×A (i.e., # is a unit in the ring Q[G]A×A), and the relation
(�#)(#−1D) = 0 is trivialized.

12

Proof. Let � = [0 � �] and �1 , �2 and �3 be the column indices of the three parts: 0, � and �

witnessing that � is in T-normal form. The columns of � are linearly independent. So there is a
subset of row indices � ⊆ [:] such that �[� , �2] is a full rank square submatrix of �. Hence, each
column �(� , 9), 9 ∈ �3 of the corresponding submatrix of � can be expressed as

�(� , 9) =
∑
8∈�2
(0 98 + 1 98G)�(� , 8), 9 ∈ �3

where 0 98 and 1 98 are rational numbers. We can compute these numbers 0 98 and 1 98 by Cramer’s
rule. Hence, b(0 98), b(1 98) ≤ poly(:, =)b(�) for all column indices 9 ∈ �3.

Now let # be 3 × 3 column transformation matrix which implements the column operations
�9 =

∑
8∈�2(0 98 + 1 98G)�8 for all column indices 9 ∈ �3. We note the following.

Claim 3.4. # is an A × A upper triangular matrix with all diagonal entries 1 and

#8 , 9 = −(0 9 ,8 + 1 9 ,8G) for 8 ∈ �2 and 9 ∈ �3.

Furthermore, #−1 ∈ Q[G]A×A and can be efficiently computed.

After performing these column operations we have the matrix � = �# = [0 � �], where � is
zero on all the rows indexed by �. Let #−1D = F = [F1 F2 . . . FA]) . The row indices of F can be
correspondingly partitioned into [A] = �1 t �2 t �3. We denote the corresponding subvectors of F
by F�1 , F�2 and F�3 . Since �(� , �3) = 0 and �(� , �1) = 0 it follows that

�(� , �2)F�2 = 0.

As �(� , �2) = �(� , �2) is an invertible scalar matrix it follows that the subvector F�2 = 0. Therefore,
we have

�F = �F�3 = 0.

Now, consider the submatrix � = �′ + �′′G of �. Since the matrix � = [0 � �] is in T-normal form,
the matrix [� �′′] has full column rank where � = �′+ �′′G and both �′ and �′′ are scalar matrices.
Now, since � is obtained from � and � by the column operations defined by # notice that the
matrix [� �′′] is also of full column rank because the columns of �′′ are

�′′9 = �
′′
9 +

∑
8∈�2

1 98�8 , for all 9 ∈ �3.

Hence �′′ is full column rank. Let ⊂ [3] be row indices such that �′′[, �3] is an invertible
submatrix of �′′. Then the submatrix �[, �3] of the linear matrix � is also invertible in the field
of fractions Q(G). Therefore, �F�3 = 0 forces F�3 = 0.

Putting it together, wehave shown that thematrix# trivializes the relation�E = (�#)(#−1D) =
0. This completes the proof. �

Now we describe a polynomial-time algorithm that transforms the input linear matrix � =

�′ + �′′G into a linear matrix � in T-normal form.

Lemma 3.5. Given as input a linear matrix � = �′+�′′G ∈ Q[G]:×3 in deterministic time poly(:, 3, b(�))
we can compute a matrix " ∈ Q[G]3×3 such that

13

• � = �" is in T-normal form.

• The 3× 3 matrix", which is a product of elementary column operation matrices, is a unit inQ[G]3×3
(i.e., it has nonzero scalar determinant).

Proof. We describe the algorithm along with the correctness of each step, side by side.

Input � = �′ + �′′G ∈ Q[G]:×3.

1. By permuting the columns of � write it as [0 � �], consisting of a block of 0 columns followed
by a block of scalar columns � and then the columns containing the linear submatrix �.

2. By performing column operations on � we can drive all linearly dependent columns to zero
and move such columns to the left. Thus the block of columns � can be assumed to be
linearly independent.

3. Let � = �′ + �′′G, with �′ and �′′ scalar.

(a) while the matrix [� �′′] is not full column rank do
(b) Let {�8 | 8 ∈ �} ∪ {�′′9 | 9 ∈ �} be a dependent set of columns. Then for some 90 ∈ � there

are scalars 8 , � 9 ∈ & such that �′′
90
G =

∑
9∈�\{ 90} � 9�

′′
9
G +∑

8∈� 8�8G.
(c) Applying the corresponding column operations we can drive �′′

90
to zero. Note that dur-

ing this process, the scalar part of � 90 will also get updated as �′
90
← �′

90
+∑

9∈�\{ 90} � 9�
′
9
.

(d) � := � ∪ {�′
90
} and �′′ := �′′ \ {�′′

90
}.

(e) If �′
90
is linearly dependent on � we can drive it to zero.

(f) end-while

In order to see the correctness, notice that each time the while loop executes the number of
columns in �′′ decreases and the number of columns in the submatrix [0 �] increases: if �′

90
is

linearly independent of � then it is included in � and the number of columns of � (all linearly
independent) increases or we can drive �′

90
to zero using columns operations with the columns of

�. Therefore, the number of times the while loop executes is bounded by 3. Hence the overall
number of arithmetic operations performed is also bounded by poly(:, 3). Now we analyze the
growth of the coefficients of the matrices � and � as the algorithm iterates. Note that whenever
we express certain column as linear combination of some other columns, using Cramer’s rule we
can polynomially bound all the coefficients involved in the linear combination. Now, the only step
in which a column changes and is used again is when the column �′

90
gets modified in the process

of driving the column �′′
90
to zero, and then the modified column �′

90
is used again as part of the set

�. Crucially, we note that the columns of � do not cause the change in coefficients of �′
90
. It is only

modified by the coefficients � 9 , 9 ∈ � \ { 90} because in the linear combination the columns �8 , 8 ∈ �
are multiplied by 8G. Thus, it follows the encoding sizes of all rational numbers involved in the
matrix [0 � �] at any stage of the computation remains polynomially bounded in b(�). Finally, we
note that the matrix " is a product of poly(3) many elementary matrices, corresponding to the
elementary column operations. Since the entries of [0 � �] has polynomially bounded encoding
size in all stages of the computation, the rational entries in each such elementary matrix also has
encoding size polynomially bounded in b(�). This completes the proof of the lemma. �

14

Putting it together we have show the following.

Theorem 3.6. Given the matrix product relation �* = 0, where � ∈ Q[G]3×A is a linear matrix and
* ∈ Q[G]A×B is a matrix of polynomials, in deterministic polynomial time (in bit complexity) we can
compute an invertible matrix # ∈ Q[G]3×3 such that its inverse #−1 ∈ Q[G]3×3 such that the matrix
product (�#)(#−1*) = 0 trivializes the relation �* = 0.

3.2 Univariate linear matrix factorization over Q

The goal of this subsection is a deterministic polynomial-time algorithm that takes as input a full
rank linear matrix ! = �0 + �1G ∈ Q[G]3×3 and computes a complete factorization of !. We will
require two conditions on ! before we proceed with the algorithm.

Definition 3.7. A linear matrix ! = �0 + �1G is calledmonic if the matrix �1 is invertible.4

Lemma 3.8. Given a full linear matrix ! = �0 + �1G ∈ Q[G]3×3 that is not monic we can compute,
in deterministic polynomial (in 3 and b(�)) time, units *,*′ ∈ Q[G]3×3 and scalar invertible matrices
(, (′ ∈ Q3×3 such that

1.

*!(=

(
, 0
0 �ℓ

)
,

where, is a full monic linear matrix and ℓ > 0.

2.

(′!*′ =

(
, ′ 0
0 �ℓ ′

)
,

where, ′ is a full monic linear matrix and ℓ ′ > 0.

Proof. We will prove only the first part, the second part follows symmetrically. We first compute
the T-normal form of the transpose matrix !) = �)0 +�

)
1 G by applying the algorithm of Lemma 3.5.

This yields the T-normal form
!)" = [� �]

where thematrix" ∈ Q[G]3×3 is a unit: in the T-normal form notice that there are no zero columns
as ! is full rank, and the scalar matrix [� �′′] is full rank where � = �′ + �′′G. Let � ∈ Q3×4 . We
note that 3 > 4 > 0 as ! is a non-unit but not monic. We apply the following sets of row/column
operations on the matrix [� �]:

• Swap the columns of [� �] to get [� �].

• Since� is a 3×4matrix of rank 4, we can permute the rows and transform [� �] to
(
�̂1 �̂1
�̂2 �̂2

)
such that the 4 × 4 scalar matrix �̂2 is full rank.

4The notions of right and left monic, defined in the multivariate setting [Coh06, AJ22], coincide in the univariate case
which we refer to as simply monic here.

15

• Using the invertible 4 × 4 scalar submatrix �̂2 we can perform column operations that drives

the submatrix �̂2 to zero to obtain
(
�̂3 �̂1
0 �̂2

)
. Notice that these column operations will be

realized by post-multiplication with a matrix unit # ∈ Q[G]3×3 whose entries are linear in G.

Moreover, writing �̂3 = �̂
′
3 + �̂′′3 G, we note that the matrix

(
�̂′′3 �̂1
0 �̂2

)
has full column rank

as [�′′ �] has full column rank.

• Next, with scalar row operations we can use �̂2 to drive �̂1 to zero to obtain
(
�̂3 0
0 �̂2

)
.

• Finally, with scalar row and column operations we can drive �̂2 to the identity matrix �4 to

obtain
(
�̂3 0
0 �4

)
.

Putting it together, we have

(1!
)"(2#(3 =

(
�̂3 0
0 �4

)
,

where (1 , (2 , (3 are invertible scalar matrices, and" and # are matrix units. Since*) = "(2#(3
is also a matrix unit, by again taking transpose we obtain the required

*!(=

(
, 0
0 �4

)
where, = �̂)3 and (= ()1 . To see that, is monic it suffices to note that the transformation # is
essentially equivalent to performing column operations on the full rank scalar matrix [��′′]which
cannot lower the column rank of the resulting matrix. This completes the proof of the part one,
for second part, we start with the linear matrix ! itself, instead of !) and carry out all the steps
symmetrically.

�

Thus, it suffices to solve the factorization problem for full and monic linear matrices.
Let ! = �0 + �1G ∈ Q[G]3×3 be a full and monic linear matrix. Notice that det ! ∈ Q[G] is a

univariate degree-3 polynomial which is not identically zero as ! is a full linear matrix. Therefore,
for some 8 ∈ [3 + 1] the matrix �0 +�18 is invertible. Thus, replacing G by G + 8 we can assume that
�0 is also invertible. We can rewrite the linear matrix as ! = (−�0�

−1
1 − G�3)(−�

−1
1). Therefore,

setting � = −�0�
−1
1 , the problem is equivalent to computing the factorization of � − G�3, where

� ∈ Q3×3 is an invertible matrix.

Factorization of linear matrix � − G�

It turns out that using standard linear algebra [HK71] we can efficiently compute a complete
factorization of � − G�3.

Theorem 3.9. Given as input an invertible matrix � ∈ Q3×3 there is an algorithm that computes a complete
factorization of � − G�3 into a product of linear matrix atoms in deterministic time poly(3, b(�)).

16

Proof. The determinant det(� − G�3) is the characteristic polynomial "�(G) of �. Using the LLL
algorithm we first compute the complete factorization of "�(G) over Q

"� = 5
31

1 5
3A

2 · · · 5
3C
C ,

where each 58 is a distinct irreducible factor. The algorithm works in two phases.

In this first phase, we compute the minimal polynomial <�(G) ∈ Q[G] of � and also factorize it
using the LLL algorithm to get

<�(G) = 5
41

1 5
42

2 · · · 5
4C
C .

By standard linear algebra [HK71] each 48 > 0.
The algorithm computes a basis for each of the following C subspaces of Q3:

+8 = {E ∈ Q3 | 58(�)48 (E) = 0}, 1 ≤ 8 ≤ C.

The subspace +8 consists of precisely those vectors that are annihilated by 5
48
8
. Since the different

58 are relatively prime we have the following direct sum decomposition

Q3 = +1 ⊕ +2 ⊕ · · · ⊕ +C .

Furthermore, since each +8 is an �-invariant subspace, by choosing a basis for Q3 a union of bases
for +1 , +2 , . . . +C , in that order, and writing the linear matrix � − G�3 in that basis we obtain the
following block diagonal form (essentially, the primary decomposition theorem [HK71]):

)(� − G�3))−1 =

©«

!1 0 0 . . . 0
0 !2 0 . . . 0
0 0 !3 . . . 0

. . .

0 0 0 . . . !C

ª®®®®®®¬
. (3)

The above matrix clearly factorizes as a product of C linear matrices of the form

©«

� 0 0 . . . 0
0 � 0 . . . 0

. . . !8 . . . 0

0 0 0 . . . 0
0 0 0 . . . �

ª®®®®®®®¬
.

Thus, it suffices to now consider the factorization of each linear matrix !8 which is also of the form
!8 = �8 − G�=8 , where =8 = 38 · deg 58 is the dimension of the subspace +8 .

We now describe Phase 2 of the algorithm. Notice that the characteristic polynomial and
minimal polynomial of �8 are 5 388 and 5

48
8

respectively, where 58 is an irreducible polynomial. At
this point we will need some linear algebra about the matrices whose characteristic polynomial is
the power of an irreducible polynomial.

17

Let � ∈ Q=×= be a matrix with "� = 5 ℓ and minimal polynomial 5 4 , where 5 ∈ Q[G] is
irreducible of degree :. Then ℓ : = =. We define subspaces

* 9 = {D ∈ Q= | 5 9(�)D = 0} for 1 ≤ 9 ≤ 4.

By definition* 9 is the subspace of vectors annihilated by 5 9(�). We note that

*1 ⊂ *2 ⊂ · · ·*4 = Q
= ,

where each * 9 is a proper subspace of * 9+1 for 1 ≤ 9 < 4 [HK71]. Furthermore, each * 9 is a
�-invariant subspace because � · ,(�) = ,(�)� for any polynomial ,. For each 9 < 4 we can
alternatively describe* 9+1 as

* 9+1 = {D ∈ Q= | 5 (�)D ∈ * 9}. (4)

Also,
*1 = {D ∈ Q= | 5 (�)D = 0}.

Thus � restricted to*1 has bothminimal polynomial and characteristic polynomial 5 (G). Similarly,
for each 9 < 4 the polynomial 5 (G) is both theminimal and characteristic polynomial of � restricted
to the quotient space* 9+1/* 9 , 1 ≤ 9 < 4, where the quotient vector space* 9+1/* 9 consists of vectors
of the form D +* 9 , D ∈ * 9+1 and * 9 is the zero element of the vector space. Let �1 = dim*1 and
�9+1 = dim(* 9+1/* 9). Then dim* 9 = �1 + �2 + · · · + �9 , 9 ≤ 4.

Claim 3.10. The �-invariant subspace *1 is a direct sum of �1/: many �-invariant :-dimensional sub-
spaces.

Proof of Claim 3.10. To see this claim we note that for any nonzero vector D ∈ *1 the so-called cyclic
subspace spanned by the cyclic basis {D, �D, �2D . . . , �:−1D} is a �-invariant subspace of *1 and we
can repeatedly pick such subspaces until the whole of *1 is covered. Thus, *1 has a good basis
which is the union of �1/: many such cyclic bases, each of size :. With respect to this good basis
the matrix � restricted to*1 is block diagonal with �1/: many blocks, each of size : × :. �

We generalize this claim to define a good basis for the quotient space * 9+1/* 9 . The matrix
� − G� will be easy to factorize when expressed in terms of the basis consisting of the union of the
good bases obtained for the quotient spaces* 9+1/* 9 .

Claim 3.11. For the quotient space * 9/* 9−1 , 9 ≥ 2 there is a collection of �9/: pairwise disjoint sets of :
vectors

ℬ98 = {D98 , �(D98), . . . , �:−1(D98)}, 1 ≤ 8 ≤ �9/:

such that

1. ℬ98 ∪* 9−1 spans a subspace* 98 of* 9 of dimension : + dim* 9−1 for each 8.

2. * 98 ∩* 98′ ⊆ * 9−1 for all 8 ≠ 8′.

3. The quotient space * 9/* 9−1 is a direct sum of the quotient spaces * 98/* 9−1, each of which is a
:-dimensional subspace

4. The bases ℬ|〉 can all be computed in deterministic polynomial time.

18

Proof of Claim 3.11. The proof is quite similar to the proof of the previous claim. For any vector
D ∈ * 9 * 9−1 the subset of : vectors {D, �D, . . . , �:−1D} are linearly independent of* 9−1. Together
with * 9−1 they will give a subspace of * 9 of dimension : + �9−1. We can keep finding such a
cyclic subsets of : vectors as long as we have a proper subspace of * 9 . Thus, we will obtain
�9/: many such cyclic subsets ℬ98 as claimed. The construction of these bases is in deterministic
polynomial time. As defined in the claim we have the subspaces* 98 defined by these bases. Since
5 is irreducible, any two distinct subspaces can intersect only in * 9−1. Thus, the quotient spaces
* 98/* 9−1 give a direct sum decomposition of the quotient space* 9/* 9−1. �

We define a new basis B obtained by putting together the good bases for each * 9 , 1 ≤ 9 ≤ 4 in
that order. With respect to this basis the matrix � − G�ℓ will assume the following form

)1(� − G�ℓ))−1
1 =

©«

!′1 0 0 . . . 0
∗ !′2 0 . . . 0
∗ ∗ !′3 . . . 0

. . .

∗ ∗ ∗ . . . !′4

ª®®®®®®¬
(5)

where the blocks below the diagonal blocks marked by ∗ could contain nonzero linear forms, but
the blocks above the diagonal blocks are all zeros. Each block !′

9
, 9 ≥ 2 corresponds to the quotient

space* 9/* 9−1 and, by choice of a good basis, the block !′
9
itself will be block diagonal with blocks

of size : each (�9/: many blocks). This yields a factorization of � − G�= as a product of ℓ = =/:
many linear matrix factors which are atoms by using the following factorization repeatedly(

� 0
� �

)
=

(
� 0
0 �

)
·
(
� 0
� �

)
·
(
� 0
0 �

)
. (6)

In the above equation, if thematrix on the left is a full non-unit linearmatrix then the first and third
factors are full non-unit linear matrices. The middle factor is actually a unit and can be absorbed
with either the first or the third factor.

To summarize we present below the steps of the linear matrix factorization algorithm.

Input: matrix � − G�, where � ∈ Q3×3 is full rank.

1. Compute the characteristic andminimal polynomials "�(G) =
∏C

8=1 5
38
8

and<�(G) =
∏C

8=1 5
48
8

of � with the factorization structure as stated above.

Phase 1 Compute bases for the subspaces

+8 = {E ∈ Q3 | 5 488 (�) = 0}.

and take their union in that order as the new basis. Then Q3 = ⊕C
8=1+8 and w.r.t. the new

basis the matrix �− G� is in block diagonal form where the 8Cℎ block on the diagonal is of the
form �8 − G� which has characteristic polynomial 5 38

8
and minimal polynomial 5 48

8
.

Phase 2 for each 1 ≤ 8 ≤ C do

2. Call procedure GoodBasis(�8)which returns a good basis B8 corresponding to �8 .

19

3. Find the matrix representation of � − G� w.r.t. the basis ∪C
8=1B8 .

4. Compute factorization of this matrix by repeated application of Equation 6.

Procedure GoodBasis(�);

(a) Let "� = 5 ℓ and <� = 5 4 , 5 is degree : irreducible. Suppose � is = × =. Then = = :ℓ .
(b) Find tower of subspaces *1 ⊂ *2 ⊂ · · · ⊂ *4 = Q= such that * 9 is annihilated by

5 9 , 1 ≤ 9 ≤ 4.
(c) Let ℭ9 be some basis for each subspace * 9 computed in the above process such that

ℭ9 ⊂ ℭ9+1 for all 9.

(d) ℭ0 = ∅.
(e) for each 1 ≤ 9 ≤ 4 do
(f) B9 = ℭ9−1.

(g) while B9 does not span* 9 do

(h) pick a vector D ∈ ℭ9 that is not in span of B9 and include {D, �D, . . . , �:−1D} in B9 .

(i) end-while.

(j) return B =
⋃4
9=1B9 .

Running time analysis. It is evident from the algorithm description that the total number of
field operations is polynomially bounded in the dimension 3 of the matrix �. We now argue that
the encoding sizes of the rational numbers involved in the computation are all also polynomially
bounded. The basis changematrix) used in Phase 1 (see Equation 3) has entries of polynomial en-
coding size as it is standard Gaussian elimination. In Phase 2, the calls to Procedure GoodBasis(�8)
for each 8 are essentially independent of each other. Thus, it suffices to analyze one call to Procedure
GoodBasis(�). Again, the computation of some basis ℭ� for * 9 , 1 ≤ 9 ≤ 4 is by standard Gaussian
elimination. Hence the encoding size b(ℭ9) is polynomially bounded for each 9. The computation
of the good basis B9 for the quotient space * 9/* 9−1 is done using only ℭ9 and ℭ9−1. It follows that
for each 9 we have b(B9) is polynomially bounded, and hence b(B) is polynomially bounded.

�

3.3 The Factorization Algorithm for Matrices over Q[G]

Theorem 3.12. Let " ∈ Q[G]3×3 be a matrix of univariate polynomials over rationals where each entry
of matrix " is a polynomial of degree at most �. Then there is a poly(3, �, b(")) time deterministic
algorithm that outputs a complete factorization of" as a product" = "1"2 · · ·"A such that each matrix
factor "8 is an atom whose entries are polynomials in Q[G] of degree at most �.

Proof. Given " as input, we apply Higman linearization followed by the monicity algorithm of
Lemma 3.8 (second part) and the linear matrix factorization algorithm of Theorem 3.9 to obtain
the factorization

" ⊕ �B = %(′�1�2 . . . �A*
′&

20

where each linear matrix �8 is an atom, the matrix % is upper triangular with all 1’s diagonal, the
matrix & is lower triangular with all 1’s diagonal, the matrix (′ is a scalar invertible matrix and*′

is a unit. By absorbing (′ in �1 and setting* = *′& we can without loss of generality assume that
the factorization has the following form

" ⊕ �B = %�1�2 . . . �A*

where * is a unit. Moreover, the entries of % and * are all polynomials in Q[G] of degree at
most �.

We will now apply Lemma 2.5 to extract the factors of " (one by one from the right).
For the first step, let � = �1�2 · · · �A−1 and � = �A* in Lemma 2.5. The proof of Lemma 2.5

yields the matrix #A = #Π such that both matrices �′′ = %�1�2 · · · �A−1#A and �′′ = #−1
A �A* has

the first 3 column all zeros except the top left 3 × 3 block of entries 2′′1 and 3′′1 which yields the
nontrivial factorization " = 2′′1 3

′′
1 , where 3′′1 = "A is an atom. Renaming 2′′1 as �A we have from

the structure of �′′: (
�A ∗
0 +A

)
= %(�1�2 · · · �A−2)(�A−1#A).

Setting � = �1�2 · · · �A−2 and � = �A−1#A in Lemma 2.5 we can compute the matrix #A−1 using
which we will obtain the next factorization �A = �A−1"A−1, where "A−1 is an atom by Lemma 2.5.
Note that Lemma 2.5 is applicable as all conditions are met by the matrices in the above equation
(note that the matrix +A will be a unit).

Continuing thus, at the 8Cℎ stage we will have " = �A−8+1"A−8+1"A−8+2 · · ·"A after obtaining
the rightmost 8 irreducible factors by the above process. At this stage we will have(

�A−8+1 ∗
0 +A−8+1

)
= %(�1�2 · · · �A−8−1)(�A−8#A−8+1),

where +A−8+1 is a unit and all other conditions are satisfied for application of Lemma 2.5.
Thus, after A stages we will obtain the complete factorization of the input matrix " as

" = "1"2 · · ·"A ,

where each factor "8 is an atom.

Running Time Analysis

The Higman Linearization of " is computed in deterministic polynomial time. For the resulting
linear matrix ! = �0 + �1G, by Theorem 3.9 its factorization as a product of linear matrix atoms
can be computed in deterministic time poly(3, �, b(!)).

Given factorization of ! into atoms, we extract atomic factorization of the input polynomial
matrix" as discussed above. At each stage we invoke Lemma 2.5 to extract an atomic factor of"
from right. There are total A stages, A ≤ �, where� is an upper bound on the degree of polynomial
entries of ". To see the bound A ≤ �, note that the degree of det " is bounded by � and as for
each atomic factor"8 of", we have degree of det "8 at least 1. Consequently, A is upper bounded

21

by �. So clearly, we can find complete factorization of " into atoms in polynomially many field
operations.

Now we show that the overall bit complexity of the algorithm is polynomially bounded. A
crucial point to note is, the trivialization matrix #9 at any stage (computed by the trivialization
algorithm of Theorem 3.6), only depends upon � = �1�2 · · · �9−1, so the bit complexity of #9 and
#−1
9

is polynomially bounded. Clearly, the extracted atomic factor #−1
9
�9#9+1 has polynomially

bounded bit complexity. Moreover, the extracted factors play no role at all in the subsequent
computation. This proves that the overall bit complexity of the algorithm is upper bounded by
poly(3, �, b(")). This completes the proof of the theorem.

�

References

[AJ22] VikramanArvind and Pushkar S. Joglekar. On efficient noncommutative polynomial
factorizationviahigman linearization. Electron.ColloquiumComput. Complex., page 63,
2022.

[Coh06] P. M. Cohn. Free Ideal Rings and Localization in General Rings. New Mathematical
Monographs. Cambridge University Press, 2006.

[Coh11] P. M. Cohn. Introduction To Ring Theory. Springer, 2011.

[DM17] Harm Derksen and Visu Makam. Polynomial degree bounds for matrix semi-
invariants. Advances in Mathematics, 310:44–63, 2017.

[FR85] Katalin Friedl and Lajos Rónyai. Polynomial time solutions of some problems in
computational algebra. In Robert Sedgewick, editor, Proceedings of the 17th Annual
ACM Symposium on Theory of Computing, May 6-8, 1985, Providence, Rhode Island, USA,
pages 153–162. ACM, 1985.

[GGdOW20] Ankit Garg, Leonid Gurvits, Rafael Mendes de Oliveira, and Avi Wigderson. Oper-
ator scaling: Theory and applications. Found. Comput. Math., 20(2):223–290, 2020.

[HK71] K. Hoffman and R. Kunze. Linear Algebra. Pearson, 1971.

[IQS18] Gábor Ivanyos, Youming Qiao, and K. V. Subrahmanyam. Constructive non-
commutative rank computation is in deterministic polynomial time. Comput. Com-
plex., 27(4):561–593, 2018.

[Rón87] Lajos Rónyai. Simple algebras are difficult. In Alfred V. Aho, editor, Proceedings of the
19th Annual ACM Symposium on Theory of Computing, 1987, New York, New York, USA,
pages 398–408. ACM, 1987.

[Rón90] Lajos Rónyai. Computing the structure of finite algebras. J. Symb. Comput., 9(3):355–
373, 1990.

[RS05] Ran Raz and Amir Shpilka. Deterministic polynomial identity testing in non-
commutative models. Computational Complexity, 14(1):1–19, 2005.

22
ECCC ISSN 1433-8092

https://eccc.weizmann.ac.il

