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Abstract

We prove that for every 3-player (3-prover) game G with value less than one, whose query
distribution has the support S = {(1, 0, 0), (0, 1, 0), (0, 0, 1)} of hamming weight one vectors, the
value of the n-fold parallel repetition G⊗n decays polynomially fast to zero; that is, there is a
constant c = c(G) > 0 such that the value of the game G⊗n is at most n−c.

Following the recent work of Girish, Holmgren, Mittal, Raz and Zhan (STOC 2022), our
result is the missing piece that implies a similar bound for a much more general class of multi-
player games: For every 3-player game G over binary questions and arbitrary answer lengths,
with value less than 1, there is a constant c = c(G) > 0 such that the value of the game G⊗n is
at most n−c.

Our proof technique is new and requires many new ideas. For example, we make use of the
Level-k inequalities from Boolean Fourier Analysis, which, to the best of our knowledge, have
not been explored in this context prior to our work.
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1 Introduction

Our main object of study is multiplayer (multiprover) games. A k-player game G consists of k
players who are playing against a referee. The game begins by the referee sampling a k-tuple of
questions (x1, . . . , xk) from some global distribution Q. The referee then gives the question xj to
the jth player, for each j ∈ [k], based on which they give back an answer aj . Finally, the referee
evaluates a predicate V ((x1, . . . , xk), (a1, . . . , ak)) and says that the players win if and only if the
predicate evaluates to true. The value val(G) of the game is defined to be the maximum winning
probability for the players. Note that the probability here is over the randomness used by the
referee to sample (x1, . . . , xk) ∼ Q, and the maximum is over the strategies used by the players.

Given a game G with value val(G) < 1, it is natural to consider the parallel repetition of the game
G, defined as follows: In the n-fold repetition G⊗n of the game G, the referee independently samples
questions for n copies of the game G; that is, the referee samples (x1i , . . . , x

k
i ) ∼ Q independently

for i ∈ [n]. Then, the referee simultaneously gives questions xj1, . . . , x
j
n to the jth player, for each

j ∈ [k], who then gives back answers aj1, . . . , a
j
n. The players are said to win the game if for each

i ∈ [n], the predicate V ((x1i , . . . , x
k
i ), (a

1
i , . . . , a

k
i )) evaluates to true.

With the above definition of the n-fold repeated game G⊗n, it is interesting to study the behavior
of val(G⊗n) with respect to n, and the initial parameters of the game G [FRS94]. Observe that
val(G⊗n) ≥ val(G)n, since any strategy that achieves value val(G) in the game G, when repeated
independently for all copies i ∈ [n], achieves the value val(G)n in the game G⊗n. While one would
expect such an inequality to be tight, this is far from true; there are games such that val(G⊗n)
is exponentially larger (with respect to n) compared to val(G)n. The crucial reason why this can
happen is that in the game G⊗n the players are allowed to correlate their answers among different
copies i ∈ [n] of the game. That is, it is not necessary (and not optimal) for every player’s answer
for the ith copy of the game to depend only on the ith question they receive.

Nevertheless, Raz [Raz98] proved that for any 2-player game G with val(G) < 1, it holds that
val(G⊗n) = 2−Ω(n). This, and related techniques and results, turned out to be sufficient for a
large number of applications: in the theory of interactive proofs [BOGKW88], PCPs and hardness
of approximation [BGS98, Fei98, H̊as01], geometry of foams [FKO07, KORW08, AK09], quantum
information [CHTW04], and communication complexity [PRW97, BBCR13, BRWY13]. The reader
is referred to this survey [Raz10] for more details. There have been many subsequent improvements
that improve the constants in the bounds, and even get better bounds based on the value val(G)
of the initial game [Hol09, Rao11, BRR+09, RR12, DS14, BG15].

The case of 2-player games, hence, is fairly well-understood with regards to the operation
of parallel repetition. On the other hand, despite much effort, the general question of parallel
repetition for multiplayer games remains wide open. The only general bound, by [Ver96], that
applies to all k-player games, says that if val(G) < 1, then val(G⊗n) ≤ 1

α(n) , where α(n) is a

function which grows like the (extremely slowly growing) inverse Ackermann function. The weak
bounds here result from a black-box use of the Density Hales-Jewett Theorem [FK91, Pol12] from
extremal combinatorics.

While there are some known potential applications of bounds on parallel repetition of multi-
player games, for example, [MR21] show a connection between parallel repetition and super-linear
lower bounds for non-uniform Turing machines, we believe that the notion of parallel repetition is
so basic that it deserves attention in its own right. As mentioned by [DHVY17], there are many
problems in complexity theory that are inherently high dimensional, and which share this sudden
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difficulty of being tractable beyond dimension two. For example, whereas direct sum and direct
product theorems are known for two-party communication complexity, no such results are known
for multiparty communication complexity in the number-on-forehead model (which is deeply related
to proving new lower bounds in circuit complexity), for seemingly similar reasons to why there has
not been much progress on multiplayer parallel repetition.

Recent work, however, has made some progress on proving parallel repetition bounds for some
special classes of multiplayer games:

1. Connected Games: Dinur, Harsha, Venkat and Yuen [DHVY17] consider games which
satisfy a certain connectedness property and show that the value of any such game satisfies
an exponential decay bound under parallel repetition: if val(G) < 1 then val(G⊗n) = 2−Ω(n).
A k-player game G is said to have this connectedness property if the graph HG defined as
follows is connected: The vertices of the graph are all the possible k-tuples of questions to
the players (which are asked with non-zero probability), and there is an edge between two
such k-tuples if they differ in the question to exactly one of the k-players.

The proof for these games uses information theoretic techniques, and builds on the works on
2-player games by [Raz98, Hol09].

2. The GHZ Games: [HR20, GHM+21] show that any game G over the set of questions{
(x, y, z) ∈ {0, 1}3 : x+ y + z = 0 (mod 2)

}
satisfies a polynomial bound on the value of par-

allel repetition: if val(G) < 1 then val(G⊗n) = n−Ω(1). For such games, all vertices in the
graph HG (as defined above in point 1) are isolated, and the techniques of [DHVY17] fail to
be applicable.

The known proofs for this case use Fourier analytic techniques that crucially rely on the fact
that the inputs to the players define a linear subspace of F3

2.

3. A recent work [GHM+22] considers the problem of parallel repetition for 3-player games in
which each player is asked a binary question. They do a case analysis of all such games and
divide the general problem into the following cases:

(a) Connected games or games that are essentially 2-player games: An exponential decay
bound is known [Raz98, DHVY17].

(b) Games over the question set of the GHZ game (see point 2): A polynomial decay bound
is known.

(c) Games over the question set
{
(x, y, z) ∈ {0, 1}3 : x+ y + z ̸= 2

}
: They show that such

games fall into a class of games which they call playerwise connected games, a
generalization of the class of connected games. Informally, a game G is said to be
playerwise connected if the projection of the graph HG onto each of the k-players is
connected. They show that any playerwise connected game satisfies a polynomial decay
bound in the value of parallel repetition: if val(G) < 1 then val(G⊗n) = n−Ω(1).

(d) Games over the question set
{
(x, y, z) ∈ {0, 1}3 : z = xy

}
: They call this the four-point

AND distribution, and show that any such game satisfies a polynomial bound in the
value of parallel repetition.
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(e) Games over the set of questions S = {(1, 0, 0), (0, 1, 0), (0, 0, 1)} of hamming-weight one:
They do not prove a general bound for games in this class, but rather only for games
where the answers given by each of the three players is also binary. Under this extra
assumption, they are in fact able to prove an exponential decay bound under parallel
repetition.

A very interesting game which they consider is the anti-correlation game defined as
follows: The referee samples the questions (x1, x2, x3) ∈ S uniformly at random, and
the two players who receive the input 0 must produce different outputs in {0, 1}. This
game has the special property that while its non-signalling value is less than 1, the
non-signalling value does not decrease at all under parallel repetition [HY19].

The main topic of interest of the current paper are games described above in point 3e, that is,
all games over the question set S = {(1, 0, 0), (0, 1, 0), (0, 0, 1)}. The work [GHM+22] shows that
any bounds for a special subclass of such games qualitatively translate to the same bounds for all
games in this class. In particular, polynomial decay bounds for the value of parallel repetition for
the following subclass of games implies polynomial decay bounds for all games over the question
set S = {(1, 0, 0), (0, 1, 0), (0, 0, 1)}:

Definition 1.1. Let k ∈ N, and let S = {(1, 0, 0), (0, 1, 0), (0, 0, 1)}. We define a 3-player game Gk

on 3 players Alice, Bob and Charlie as follows:

1. The referee samples (x, y, z) ∈ S uniformly at random, and gives x, y, z to the three players
respectively.

2. The players answer a ∈ {0, 1}k , b ∈ {0, 1}k , c ∈ [k] respectively.

3. The winning predicate is defined as:

Vk((x, y, z), (a, b, c)) =


bc = 0, if (x, y, z) = (1, 0, 0)

ac = 0, if (x, y, z) = (0, 1, 0)

∀i ∈ [k], ai + bi ≥ 1, if (x, y, z) = (0, 0, 1)

.

In other words, two randomly chosen players receive 0 as input and the third player gets a 1 as
input. The predicate only depends on the two players who get 0 as input, and only those two
players play the game. If Charlie and Alice (or Bob) are playing, Charlie must point to an index
where Alice (or Bob) outputs 0. On the other hand, if Alice and Bob are playing, they must each
output k-bit strings such that the bit-wise-OR of the two strings is the all 1s string.

Our main result is a polynomial decay bound on the parallel repetition for all games in the
above subclass:

Theorem 1.2. There exists an absolute constant c > 0 such that the following holds: For every
k ∈ N, and for every sufficiently large n ∈ N, it holds that val(G⊗n

k ) ≤ n−c, where the game Gk is
as defined in Definition 1.1.

Based on the previous discussion, combined with the works [Raz98, DHVY17, HR20, GHM+21,
GHM+22], our theorem implies the following:
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Theorem 1.3. Let G be any 3-player game over binary questions, and arbitrary finite length
answers, such that val(G) < 1. Then, there exists a constant c = c(G) > 0, such that for every
n ∈ N, it holds that val(G⊗n

k ) ≤ n−c.

We remark that Hazla, Holenstein and Rao [HHR16] consider games over the same question set
S = {(1, 0, 0), (0, 1, 0), (0, 0, 1)}, and show barriers for proving parallel repetition bounds for such
games using the forbidden subgraph method [FV02]. Our result builds new techniques that do not
fit into the above framework, and are able to bypass these barriers.

Next, in Section 1.1, we give an overview of the proof of Theorem 1.2. We note that our proof
introduces several new ideas, which we believe are very general and can possibly extend to much
larger classes of games. For example, in one of the steps, we use Fourier Analysis over the boolean
hypercube, and in particular the Level-k inequalities; to the best of our knowledge, such use in the
context of parallel repetition is new.

1.1 Proof Overview

Fix some k ∈ N and consider the n-fold repeated game G⊗n
k (see Definition 1.1). We’ll use the

term coordinate to mean a tuple (i, j) with i ∈ [n] and j ∈ [k], that indexes an answer for Alice or
Bob. Recall that in each copy of the game Gk, only the two players who receive input 0 affect the
winning predicate, and we say that they are the ones who play.

The high-level intuition is as follows: In order to win, Alice and Bob cannot both answer 0
at the same coordinate. On the other hand, suppose that they indeed only answer 0 in two fixed
disjoint subsets of coordinates each of their own, then Charlie’s answer in each copy of the game
Gk actually reveals which player he is playing with, which is too much information for Charlie to
have.

We note, however, that this intuition is too simplistic and the actual proof is much more
complicated, because in each coordinate only two out of the 3 players play. Nevertheless, our proof
can be viewed as a rigorous execution of the intuition, by finding a large enough product event
E1 ×E2 on Alice’s and Bob’s inputs in which the above presumption holds true. More specifically,
to prove by contradiction we assume that the winning probability is at least n−c (where c > 0 is a
small constant), and the proof is carried out in three steps:

Remove coordinates that Alice and Bob lose (Section 4). We remove the coordinates
where Alice and Bob both play and simultaneously output 0 with non-negligible (at least n−O(c))
probability, by fixing their inputs and outputs in these coordinates. The fixing of outputs gives rise
to the product event E1×E2 on the remaining coordinates. We need to ensure that the probability
of both E2 and the winning event W remain n−O(c), while the rounds of removal are few so that
E1 is also not extremely small. This is done by a potential function argument that tracks both
P (E2|E1) and P (W |E1, E2), while the latter has higher weight than the former in the potential
function. The potential function is non-decreasing, and increases by a non-negligible amount every
time we exclude the losing part by fixing, thus guaranteeing the above-mentioned requirements as
the probabilities cannot exceed 1.

We remark that proving a similar bound with only P (W |E1, E2) being n−O(c), and P (E1, E2)

being 2−nO(c)
is not too hard. However for the latter part of our proof, we need that P (E2|E1) is

also at least n−O(c). Hence, when removing coordinates, we fix the inputs and outputs in a very
delicate manner, and analyze the evolution of potential function accordingly.
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Establish independence of Alice’s and Bob’s answers (Section 5). Now that in each
coordinate, Alice and Bob rarely both simultaneously output 0, we would like to strengthen the
claim so that in each coordinate either Alice or Bob answers 0 with negligible probability. In other
words, in each coordinate their answers are close to being independent. For a fixed coordinate, we
consider Alice’s output as a boolean function of her input, and the average of her output given
Bob’s input is exactly the sum of Fourier coefficients in the subcube where Bob receives 1. If we
take average over any large event for Bob, then every Fourier coefficient, except the first one, will
contribute negligibly to the result, meaning Bob answering 0 is close to being independent of Alice’s
answer.

This is not true, of course, unless Bob receives 1 with small enough probability. Fortunately
the first step does not depend on the query distribution, and therefore we can change the query
distribution at the very beginning, from uniform to the one where (0, 1, 0) has probability close
to (but still polynomially larger than) 1/n. It turns out that the change of distribution does not
affect the parallel repetition property. With the right distribution, we bound the contributions of
the Fourier coefficients as claimed above using Level-k inequalities.

Bound winning probability for Charlie (Section 6). The previous steps indicate that Alice
and Bob each owns a fixed set of coordinates where they output 0 with non-negligible probabilities,
and the two sets are disjoint. Now consider an input (x, y, z). Among the copies of games where
Charlie needs to answer (Charlie receives 0), let G1 (and G2) be the copies where Charlie’s answer
points at a coordinate that Alice (and Bob) owns. On the other hand, in each coordinate they do
not own, Alice and Bob output 0 with only negligible probability, so let B1 (and B2) be the copies
where Alice’s (and Bob’s) answer string contains 0 outside the coordinates they own. Note that
B1 depends only on x, B2 depends only on y, while G1 and G2 depend only on z.

In order to win, G1 ∪B1 have to cover all the copies that Alice plays with Charlie, which is the
1’s in y, and G2∪B2 have to cover all the copies that Bob plays with Charlie, which is the 1’s in x.
But for a typical input (x, y, z), where both |x| and |z| are close to n/2, G1 and B1 intersect with
the 1’s in y in proportion to their sizes. That means G1 has to cover almost all the copies that
Charlie plays, and thus G2 ∪B2 is not large enough to cover the 1’s in x, as G1 and G2 are disjoint
while B1 and B2 are negligibly small. This contradicts the fact that the winning probability is
high, even conditioned on E1 × E2.

2 Preliminaries

We use log to denote the logarithm under base 2, with the convention that log 0 = −∞. Let
N = {1, 2, . . .} be the set of natural numbers. For every n ∈ N, let [n] be the set {1, 2, . . . , n}.

For every x ∈ {0, 1}n, i ∈ [n] and S ⊆ [n], we use xi ∈ {0, 1} to denote the bit on index i, and
xS ∈ {0, 1}|S| to denote the substring of x on S. Let 1(x) ⊆ [n] be the set of indices i where xi = 1,
and let |x| = |1(x)| be the Hamming weight of x. We also define a partial order on {0, 1}n such
that x ≥ y if and only if xi = 1 whenever yi = 1.

For a random variable X, we use supp(X) to denote its support. We define a fixing of the
random variable X to be an event that assigns X to be some fixed value in supp(X). We equate
every subset E ⊆ supp(X) to an event on X. We use P (E) to denote the probability of an event
E under the distribution P .
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Lemma 2.1 (Chernoff Bounds, see [MU05]). Let X1, . . . , Xn ∈ {0, 1} be independent random
variables each with mean µ, and let X =

∑n
i=1Xi. Then, for all δ ∈ (0, 1), it holds that

Pr[X ≤ (1− δ)µn] ≤ e−
δ2µn

2 ,

Pr[X ≥ (1 + δ)µn] ≤ e−
δ2µn

3 .

Lemma 2.2. Let P be a distribution and A,B be two events such that P (A ∧B) > 0. Let X be a
random variable with finite support, and let X = {x : P (X = x|B) > 0}, and let x0 ∈ X be a fixed
element such that P (X = x0) ≥ δ.

For each x ∈ X , we define Φ(x) = logP (A|B,X = x) + 1
2 logP (B|X = x), and let Φ =

logP (A|B) + 1
2 logP (B) < 0.

Then, for every 0 < ε < 1, it holds that either

Φ(x0) ≥ Φ− ε,

or

P

(
X ∈ X ∧ Φ(X) ≥ Φ+

1

8
δε

)
≥ 22Φ · 1

4
δ2ε

Proof. By Jensen’s inequality, we have

P (A|B)2 · P (B) =

(∑
x∈X

P (X = x|B) · P (A|B,X = x)

)2

· P (B)

≤
∑
x∈X

P (X = x|B) · P (A|B,X = x)2 · P (B)

=
∑
x∈X

P (X = x) · P (A|B,X = x)2 · P (B|X = x).

Suppose that Φ(x0) < Φ− ε, which implies that

P (A|B,X = x0)
2 · P (B|X = x0) < P (A|B)2 · P (B) · 2−2ε

≤ P (A|B)2 · P (B) · (1− ε/4).

On the other hand, since δ, ε ≤ 1 we have log(1 + δε/4) ≥ δε/4, and thus in order to satisfy
Φ(x) ≥ Φ+ 1

8δε it suffices to have

P (A|B,X = x)2 · P (B|X = x) ≥ P (A|B)2 · P (B) · (1 + δε/4). (1)

Let X1 ⊂ X be the set of x ∈ X , x ̸= x0 that satisfies (1). Since P (A|B,X = x)2 ·P (B|X = x) ≤ 1,
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we have

P

(
X ∈ X ∧ Φ(X) ≥ Φ+

1

8
δε

)
≥
∑
x∈X1

P (X = x) · P (A|B,X = x)2 · P (B|X = x)

=
∑
x∈X

P (X = x) · P (A|B,X = x)2 · P (B|X = x)− P (X = x0) · P (A|B,X = x0)
2 · P (B|X = x0)

−
∑

x/∈X1,x ̸=x0

P (X = x) · P (A|B,X = x)2 · P (B|X = x)

≥ P (A|B)2 · P (B)
[
1− P (X = x0) · (1− ε/4)− P (X ̸= x0) · (1 + δε/4)

]
≥ P (A|B)2 · P (B) · 1

4
δ2ε.

2.1 Fourier Analysis

For every x, y ∈ {0, 1}n, let x · y be their inner product in Z. Given a function f : {0, 1}n → R, let
f̂ : {0, 1}n → R be its Fourier coefficients, defined as

f̂(u) =
1

2n

∑
x∈{0,1}n

(−1)x·uf(x).

We will use the following equation on the sum of the Fourier coefficients in a subcube, which follows
from Plancherel’s theorem: For every y ∈ {0, 1}n, we have∑

u≤y

f̂(u) =
1

2n−|y|

∑
x·y=0

f(x).

We will also use the following version of the Level-k inequality:

Lemma 2.3. Let f : {0, 1}n → {−1, 0, 1} be a function with 1
2n
∑

x |f(x)| = α. Then for every
k ∈ N, ∑

|u|=k

|f̂(u)| ≤ (2en ·max{1, ln(1/α)})k/2 · α.

Proof. Since there are at most nk many u with |u| = k, we have∑
|u|=k

|f̂(u)| ≤ nk/2
√∑

|u|=k

f̂(u)2.

Therefore it suffices to prove that∑
|u|=k

f̂(u)2 ≤ (2e ·max{1, ln(1/α)})k · α2.

When k ≤ 2 ln(1/α), it follows from the original Level-k inequality (see [O’D14, Section 9.5]).
When k > 2 ln(1/α), we also have∑

u∈{0,1}n
f̂(u)2 =

1

2n

∑
x∈{0,1}n

f(x)2 = α ≤ ekα2 ≤ (2e ·max{1, ln(1/α)})k · α2.
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2.2 Multi-player Games

The notations we use here follows mostly from [GHM+22].

Definition 2.4. (Multiplayer Game) A k-player game G is a tuple G = (X ,A, Q, V ), where the
question set X = X 1 × · · · × X k, and the answer set A = A1 × · · · × Ak are finite sets, Q is a
probability distribution over X , and V : X ×A → {0, 1} is a predicate.

Definition 2.5. (Game Value) Let G = (X ,A, Q, V ) be a k-player game. The value val(G) of the
game G is defined as

val(G) = max
f1,...,fk

Pr
X∼Q

(
V (X, (f1(X1), . . . , fk(Xk))) = 1

)
,

where the maximum is over all sequence of functions
(
f j : X j → Aj

)
j∈[k], which we call player

strategies.

We note that the value of the game is unchanged even if we allow the player strategies to
be randomized, that is, we allow the strategies to depend on some additional shared and private
randomness.

Definition 2.6. (Parallel Repetition of a game) Let G = (X ,A, Q, V ) be a k-player game. We
define its n-fold repetition as G⊗n = (X⊗n,A⊗n, P, V ⊗n). The sets X⊗n and A⊗n are defined to
be the n-fold product of the sets X and A with themselves respectively. The distribution P is
the n-fold product of the distribution Q with itself, that is, P (X = x) =

∏n
i=1Q(Xi = xi). The

predicate V ⊗n is defined as V ⊗n(x, a) =
∧n

i=1 V (xi, ai).

In this paper we mostly deal with 3-player games, and we use the notation G = (X ×Y×Z,A×
B×C, Q, V ). That is, we use X ,Y,Z in places of X 1,X 2,X 3 and use A,B, C in places of A1,A2,A3.
We also refer to the three players as Alice, Bob and Charlie.

The proof of the following useful lemma is essentially the same as Lemma 3.14 in [GHM+22].

Lemma 2.7. Let G1 = (X ,A, Q1, V ) and G2 = (X ,A, Q2, V ) be two multi-player games where only
the distributions are different. Let λ ∈ [0, 1] be such that for every x ∈ X , Q1(X = x) ≥ λQ2(X =
x). Then for every n ∈ N, it holds that

val(G⊗n
1 ) ≤ e−λn/8 + val(G⊗⌊λn/2⌋

2 ).

Proof. Notice that we can write Q1 = λQ2 + (1− λ)Q′ for some distribution Q′ over X . Let Z =
(Z1, . . . , Zn) ∈ {0, 1}n be i.i.d. Bernoulli random variables such that for each i ∈ [n], independently,
Zi is 1 with probability λ and 0 with probability 1− λ. For each i ∈ [n], we think of the i-th copy
of Q1 as depending on Zi: if Zi = 1 then Q1 is drawn from Q2, otherwise Q1 is drawn from Q′.

In order to bound the value of the game G⊗n
1 , we can assume that each of the players is also

given Z as input, since this can only increase the game’s value. Observe that conditioned on the

event Z = z for any fixed value z ∈ {0, 1}n, the value of the game is at most the value of G⊗|z|
2 .

Thus we have

val(G⊗n) ≤
n∑

m=0

Pr[|Z| = m] · val(G⊗m
2 )

≤ Pr

[
|Z| ≤ λn

2

]
· 1 + 1 · val(G⊗⌊λn/2⌋

2 )

≤ e−λn/8 + val(G⊗⌊λn/2⌋
2 ).
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3 Main Results

Definition 3.1. Let U be the uniform distribution over S = {(1, 0, 0), (0, 1, 0), (0, 0, 1)}. For every
k ∈ N and every distribution Q over S, we define a 3-player game Gk(Q) = (X ×Y ×Z,Ak ×Bk ×
Ck, Q, Vk) with X = Y = Z = {0, 1} as follows:

(a) Ak = Bk = {0, 1}k and Ck = [k].

(b) For all (x, y, z) ∈ S and (a, b, c) ∈ Ak × Bk × Ck,

Vk((x, y, z), (a, b, c)) =


bc = 0, if (x, y, z) = (1, 0, 0)
ac = 0, if (x, y, z) = (0, 1, 0)
∀i ∈ [k], ai + bi ≥ 1, if (x, y, z) = (0, 0, 1)

Theorem 3.2. For every k ∈ N, there exists Nk ∈ N such that for every n ∈ N, n ≥ Nk, it holds
that val(Gk(U)⊗n) ≤ n−1/2000.

Based on the results in [GHM+22, Section 8.2] and our discussions in the introduction, The-
orem 3.2 implies the following bound on the parallel repetitions of 3-player games with binary
inputs:

Theorem 3.3. Let G = (X×Y×Z,A×B×C, Q, V ) be any 3-player game with X = Y = Z = {0, 1},
and such that val(G) < 1. Then there exists a constant c = c(G) > 0 such that for every n ∈ N, it
holds that val(G⊗n) ≤ n−c.

The rest of our paper is devoted to proving Theorem 3.2.

3.1 Change the distribution

In order to prove Theorem 3.2, from now on we assume val(Gk(U)⊗n1) ≥ n
−1/2000
1 for some large

enough n1 ∈ N, and eventually derive a contradiction. The first thing to do is changing the
distribution so that Bob gets input 1 with small probability.

Definition 3.4. Let n = ⌊n1/3⌋ and c = 1/1000. Let Q be the distribution over S such that
(0, 1, 0) has probability n−1+100c, while (1, 0, 0) and (0, 0, 1) both have probability 1

2 − 1
2n

−1+100c

each.

Claim 3.5. val(Gk(Q)⊗n) ≥ n−c.

Proof. Let λ = 2/3, and thus we have 1/3 ≥ λQ((X,Y, Z) = (x, y, z)) for all (x, y, z) ∈ S. Applying
Lemma 2.7 on Gk(U) and Gk(Q) gives

val(Gk(Q)⊗⌊n1/3⌋) ≥ val(Gk(U)⊗n1)− e−λn1/8

≥ n
−c/2
1 − e−n/4 ≥ n−c.

Let P be the distributionQ⊗n, and let (X,Y, Z) ∈ Sn be the random variables that represent the
inputs to the three players under distribution P . Let f, g : {0, 1}n → {0, 1}n×k and h : {0, 1}n →
[k]n be strategies that achieve the value val(Gk(Q)⊗n), and let W be the event that (f, g, h) wins
on the inputs (X,Y, Z), so that we have P (W ) ≥ n−c.
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4 Remove Coordinates with (0, 0) Answers

Lemma 4.1. There exist S ⊆ [n], a fixing F of (XS , YS , ZS), and two events E1 ⊆ X⊗n, E2 ⊆ Y⊗n

for Alice and Bob respectively, such that the following holds:

(a) |S| ≤ n28c and P (E1|F ) ≥ e−n30c
.

(b) P (E2|E1, F ) ≥ n−2c and P (W |E1, E2, F ) ≥ n−c.

(c) For every i /∈ S and j ∈ [k], it holds that

P ((Xi, Yi, Zi) = (0, 0, 1) ∧ fi,j(X) = 0 ∧ gi,j(Y ) = 0|E1, E2, F ) ≤ n−7c.

Proof. Initially let S = ∅ and E1 = X⊗n, E2 = Y⊗n. We iterate the process described below to
update S, F,E1 and E2 until requirement (c) is met. During the process, we examine the potential
function

Φ(E1, E2, F ) = logP (W |E1, E2, F ) +
1

2
logP (E2|E1, F )

= logP (W,E2|E1, F )− 1

2
logP (E2|E1, F ),

and ensure that the potential function Φ(E1, E2, F ) strictly increases for each iteration. Notice
that initially we have

Φ(E1, E2, F ) = logP (W ) ≥ −c log n.

And as long as Φ(E1, E2, F ) ≥ −c log n, requirement (b) is always satisfied.

1. Let i /∈ S, j ∈ [k] be a coordinate such that requirement (c) is violated, that is

P ((Xi, Yi, Zi) = (0, 0, 1) ∧ fi,j(X) = 0 ∧ gi,j(Y ) = 0|E1, E2, F ) > n−7c,

which, with the help of requirement (b), implies that

P ((Xi, Yi, Zi) = (0, 0, 1)|E1, F ) > n−9c, (2)

P (fi,j(X) = 0|E1, F, (Xi, Yi, Zi) = (0, 0, 1)) > n−9c, (3)

P (gi,j(Y ) = 0|E1, E2, F, (Xi, Yi, Zi) = (0, 0, 1), fi,j(X) = 0) > n−7c. (4)

Add i to the set S. The process stops if no such coordinate (i, j) exists.

2. Apply Lemma 2.2 on (Xi, Yi, Zi) over the distribution P conditioned on E1∧F , with ε = n−18c

and δ = n−9c. Since P ((Xi, Yi, Zi) = (0, 0, 1)|E1, E2, F ) > 0, by (2) we have either

Φ(E1, E2, F ∧ (Xi, Yi, Zi) = (0, 0, 1)) ≥ Φ(E1, E2, F )− n−18c,

in which case we update F to F ∧ (Xi, Yi, Zi) = (0, 0, 1) and proceed to step 3; Or there exists
(x, y, z) ∈ {(1, 0, 0), (0, 1, 0)} such that P ((Xi, Yi, Zi) = (x, y, z)|E1, E2, F ) > 0, and

Φ(E1, E2, F ∧ (Xi, Yi, Zi) = (x, y, z)) ≥ Φ(E1, E2, F ) +
1

8
n−27c,

P ((Xi, Yi, Zi) = (x, y, z)|E1, F ) ≥ 22Φ(E1,E2,F ) · 1
8
n−36c,

in which case we update F to F ∧ (Xi, Yi, Zi) = (x, y, z) and iterate back from step 1.
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3. Apply Lemma 2.2 on fi,j(X) over the distribution P conditioned on E1 ∧ F , with ε = n−8c

and δ = n−9c. Since P (fi,j(X) = 0|E1, E2, F ) > 0, by (3) we have either

Φ(E1 ∧ fi,j(X) = 0, E2, F ) ≥ Φ(E1, E2, F )− n−8c,

in which case we update E1 to E1∧fi(X) = 0 and proceed to step 4; Or we have P (fi,j(X) =
1|E1, E2, F ) > 0, and

Φ(E1 ∧ fi,j(X) = 1, E2, F ) ≥ Φ(E1, E2, F ) +
1

8
n−17c,

P (fi,j(X) = 1|E1, F ) ≥ 22Φ(E1,E2,F ) · 1
4
n−26c,

in which case we update E1 to E1 ∧ fi(X) = 1 and iterate back from step 1.

4. Update E2 to E2∧gi,j(Y ) = 1 and iterate back from step 1. Now that F implies (Xi, Yi, Zi) =
(0, 0, 1) and E1 implies fi,j(X) = 0, by the definition of the game (Definition 3.1) we know
that W implies gi,j(Y ) = 1. Therefore, by (4), the increment of potential function in this
step is

Φ(E1, E2 ∧ gi,j(Y ) = 1, F )− Φ(E1, E2, F )

=
1

2
logP (E2|E1, F )− 1

2
logP (E2 ∧ gi,j(Y ) = 1|E1, F )

= − 1

2
logP (gi,j(Y ) = 1|E1, E2, F )

≥ 1

2
P (gi,j(Y ) = 0|E1, E2, F )

≥ 1

2
n−7c.

Depending on the choices, in each iteration the potential function increases by at least either
1
8n

−27c, or 1
8n

−17c − n−18c, or 1
2n

−7c − n−8c − n−18c, which are all lower bounded by 1
8n

−27c.
This means that the potential function is indeed strictly increasing in each iteration, and thus
requirement (b) is met. Since it always holds Φ(E1, E2, F ) ≤ 0, this also means that the process
will eventually stop, and the total number of iterations is at most 8n27c · c log n. In other words,
|S| ≤ 8n27c · c log n ≤ n28c.

Finally, in order to bound P (E1|F ), we prove in below that P (E1|F ) gets multiplied by at least
a factor of n−70c in each iteration. Since initially P (E1|F ) = 1, this implies that eventually after
at most n28c iterations, we have P (E1|F ) ≥ (n−70c)n

28c ≥ e−n30c
. In each iteration, when F gets

updated to F ∧ (Xi, Yi, Zi) = (x, y, z) for some (x, y, z) ∈ S, P (E1|F ) changes by a factor of

P (E1|F, (Xi, Yi, Zi) = (x, y, z))

P (E1|F )
≥ P ((Xi, Yi, Zi) = (x, y, z)|E1, F )

≥ min

{
n−9c, 22Φ(E1,E2,F ) · 1

8
n−36c

}
≥ 1

8
n−38c.

12



The last line is because Φ(E1, E2, F ) ≥ −c log n. Furthermore, if step 3 is executed and E1 gets
updated to E1 ∧ fi,j(X) = b for some b ∈ {0, 1}, P (E1|F ) further changes by a factor of

P (E1 ∧ fi,j(X) = b|F )

P (E1|F )
= P (fi,j(X) = b|E1, F )

≥ min

{
n−9c, 22Φ(E1,E2,F ) · 1

4
n−26c

}
≥ 1

8
n−30c.

The last line is because at step 3, Φ(E1, E2, F ) ≥ −c log n− n−18c ≥ −2c log n. Note that in step 4
only E2 changes and P (E1|F ) does not change. So overall, P (E1|F ) changes by a factor of at least
1
8n

−38c · 1
8n

−30c ≥ n−70c.

Notice that the fixing F is independent of the remaining inputs in [n] \ S. For the rest of the
paper, we change W to the event that (f, g, h) wins the copies of Gk(Q) in [n] \ S, and change
E1, E2, f, g, h to their relevant restrictions to the copies in [n] \ S, under the fixing F . Since
|S| ≤ n28c = o(n), by also changing c from 1

1000 to 1
1000 ·

logn
log(n−|S|) <

1
999 , we can safely assume that

S = ∅ and remove F from the probability conditions, while the distribution Q remains the same
and Lemma 4.1 still holds. This significantly simplifies the discussions later on.

5 Almost Independence of Answers in each Coordinate

Let E1, E2 be specified as in the previous section. In this section, we prove the following lemma:

Lemma 5.1. For every i ∈ [n] and j ∈ [k], at least one of the following holds:

P (Xi = 0 ∧ fi,j(X) = 0|E1, E2) ≤ n−3c,

or
P (Yi = 0 ∧ gi,j(Y ) = 0|E1, E2) ≤ n−3c.

We prove the above lemma using Fourier analysis. Fix some i ∈ [n] and j ∈ [k]. Define
a : {0, 1}n → {−1, 0, 1} over the inputs of Alice as follows: For every x ∈ {0, 1}n,

a(x) =


0 if x /∈ E1,
−1 if x ∈ E1 and xi = 0 and fi,j(x) = 0,
1 otherwise,

and let b(x) = |a(x)|. Let α = 1
2n
∑

x b(x) = b̂(0n).

Proposition 5.2. α ≥ e−n130c
.

Proof. Recalling the distribution Q in Definition 3.4, we have

P (E1) =
∑

x∈{0,1}n

(
1

2
− 1

2
n−1+100c

)|x|(1

2
+

1

2
n−1+100c

)n−|x|
b(x)

≤ (1 + n−1+100c)n · 1

2n

∑
x∈{0,1}n

b(x)

≤ en
100c

α.
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Since P (E1) ≥ e−n30c
, we get α ≥ e−n130c

.

Lemma 5.3. For every event E ⊆ Y⊗n on Y with P (E) > 0, we have

|E[a(X)|E]− â(0n)| ≤ 1

P (E)
· n−1/3α.

Proof. Since P (Xi = 1|Yi = 0) = 1/2, we have

E[a(X)|E] =
∑
y∈E

E[a(X)|Y = y] · P (Y = y|E)

=
∑
y∈E

1

2n−|y|

∑
x·y=0

a(x) · P (Y = y|E)

=
∑
y∈E

∑
u≤y

â(u) · P (Y = y|E)

=
∑

u∈{0,1}n
â(u) · P (Y ≥ u|E).

Using Lemma 2.3 on a, with the fact that ln(1/α) ≤ n130c, we get

|E[a(X)|E]− â(0n)| ≤
∑
u̸=0n

|â(u)| · P (Y ≥ u|E)

≤ 1

P (E)

∑
u̸=0n

|â(u)| · P (Y ≥ u)

≤ 1

P (E)

n∑
ℓ=1

(2en ·max{1, ln(1/α)})ℓ/2 · α · (n−1+100c)ℓ

≤ 1

P (E)
· n−1/3α.

With the exact same proof on b, we can also get

Lemma 5.4. For every event E ⊆ Y⊗n on Y with P (E) > 0, we have

|P (E1|E)− α| =
∣∣∣E[b(X)|E]− b̂(0n)

∣∣∣ ≤ 1

P (E)
· n−1/3α.

In particular, when E = Y⊗n we get P (E1) ≥ (1− n−1/3)α.

Corollary 5.5. For every event E ⊆ Y⊗n on Y with P (E|E1) > 0, we have∣∣∣∣E[a(X)|E1, E]− â(0n)

α

∣∣∣∣ ≤ 1

P (E|E1)
· n−1/4.
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Proof. Since a(x) ̸= 0 only when x ∈ E1, we have∣∣∣∣E[a(X)|E1, E]− â(0n)

α

∣∣∣∣ = ∣∣∣∣E[a(X)|E]

P (E1|E)
− â(0n)

α

∣∣∣∣
≤
∣∣∣∣E[a(X)|E]

P (E1|E)
− â(0n)

P (E1|E)

∣∣∣∣+ ∣∣∣∣ â(0n)

P (E1|E)
− â(0n)

α

∣∣∣∣
≤
∣∣∣∣E[a(X)|E]

P (E1|E)
− â(0n)

P (E1|E)

∣∣∣∣+ ∣∣∣∣ α

P (E1|E)
− 1

∣∣∣∣ (|â(0n)| ≤ α)

≤ 2

P (E1 ∧ E)
· n−1/3α (Lemmas 5.3 and 5.4)

=
1

P (E|E1)
· n−1/3 · 2α

P (E1)

≤ 1

P (E|E1)
· n−1/4. (Lemma 5.4)

Proof for Lemma 5.1. Suppose that

P (Yi = 0 ∧ gi,j(Y ) = 0|E1, E2) > n−3c.

Let E be the event E2 ∧ Yi = 0 ∧ gi,j(Y ) = 0. By argument (c) in Lemma 4.1, we have

P (Xi = 0 ∧ fi,j(X) = 0|E1, E) ≤ n−4c.

Therefore E[a(X)|E1, E] ≥ 1 − 2n−4c. Since P (E2|E1) ≥ n−2c and P (E|E1) = P (E|E1, E2) ·
P (E2|E1) ≥ n−5c, by two applications of Corollary 5.5 (one on the event E and one on the event
E2) we have

E[a(X)|E1, E2] ≥ E[a(X)|E1, E]− 1

P (E2|E1)
· n−1/4 − 1

P (E|E1)
· n−1/4

≥ 1− 2n−4c − (n2c + n5c) · n−1/4

≥ 1− 2n−3c.

This implies that P (Xi = 0 ∧ fi,j(X) = 0|E1, E2) ≤ n−3c.

6 Independence Implies Low Winning Probability

For every i ∈ [n], let

G1,i =
{
j ∈ [k]

∣∣∣ P (Xi = 0 ∧ fi,j(X) = 0|E1, E2) > n−3c
}
,

G2,i =
{
j ∈ [k]

∣∣∣ P (Yi = 0 ∧ gi,j(Y ) = 0|E1, E2) > n−3c
}
.

Then Lemma 5.1 implies that G1,i ∩G2,i = ∅. For each x, y ∈ {0, 1}n, let

B1(x) =
{
i ∈ [n] | xi = 0 ∧ ∃j /∈ G1,i, fi,j(x) = 0

}
,

B2(y) =
{
i ∈ [n] | yi = 0 ∧ ∃j /∈ G2,i, gi,j(y) = 0

}
.
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And for each z ∈ {0, 1}n, let

G1(z) = {i ∈ [n]
∣∣∣ zi = 0 ∧ hi(z) ∈ G1,i},

G2(z) = {i ∈ [n]
∣∣∣ zi = 0 ∧ hi(z) ∈ G2,i}.

Lemma 6.1. Suppose (f, g, h) wins on the inputs (x, y, z). Then at least one of the following holds:

(a) |x| ≤ 2
5n or |z| ≤ 2

5n,

(b) |B1(x)| ≥ n1−c or |B2(y)| ≥ n1−c,

(c) |B1(x)| < n1−c and |B1(x) ∩ 1(y)| ≥ 4n−c · |y|,

(d) |G1(z)| < 1
4n− n1−c and |G1(z) ∩ 1(y)| ≥ (1− 4n−c) · |y|.

Proof. Since G1,i∩G2,i = ∅ for every i, we know that G1(z)∩G2(z) = ∅ for every z. On the other
hand, by the definition of the game (Definition 3.1), in order to win it must hold

1(y) ⊆ G1(z) ∪B1(x) (since xi,hi(z) = 0 when xi = zi = 0)

1(x) ⊆ G2(z) ∪B2(y) (since yi,hi(z) = 0 when yi = zi = 0)

Now suppose none of the items (a) to (d) holds. Since

|y| ≤ |G1(z) ∩ 1(y)|+ |B1(x) ∩ 1(y)|,

it implies that |G1(z)| ≥ 1
4n− n1−c. Therefore we have

|x| ≤ |G2(z)|+ |B2(y)| ≤ n− |z| − |G1(z)|+ |B2(y)| ≤
7

20
n+ 2n1−c,

which contradicts the fact that |x| ≥ 2
5n.

Proposition 6.2. P
(∣∣|X| − n/2

∣∣ ≥ n/10
)
≤ e−n/200. The same holds when replacing X with Z.

Proof. This is a direct application of the Chernoff Bound (Lemma 2.1).

Lemma 6.3. Let m ≥ n1−c, and M : {0, 1}n → 2[n] satisfies M(x) ∩ 1(x) = ∅ for all x ∈ {0, 1}n.
Then we have

P

(
|M(X)| < m ∧ |M(X) ∩ 1(Y )| ≥ 4m

n
· |Y |

)
≤ e−n90c

.

And the same holds when replacing X with Z.

Proof. Fix an x ∈ {0, 1}n with |x| ≤ 3
5n and |M(x)| ≤ m. By Proposition 6.2, this makes for a

probability of P
(
|X| > 3

5n
)
≤ e−n/200.

Since p = P (Yi = 1|Xi = 0) > n−1+100c, by applying Chernoff Bound on the sets [n] \ 1(x) and
M(x) respectively, we have

P
(
|Y | ≤ np

3

∣∣∣ X = x
)
≤ e−np/180 < e−n100c/180,
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P

(
|M(x) ∩ 1(Y )| ≥ 4mp

3

∣∣∣ X = x

)
≤ e−mp/27 < e−n99c/27.

Therefore by union bound,

P

(
|M(X)| < m ∧ |M(X) ∩ 1(Y )| ≥ 4m

n
· |Y |

)
≤ e−n/200 + e−n100c/180 + e−n99c/27

≤ e−n90c
.

Now we can bound the probability for each item in Lemma 6.1, conditioned on E1 ∧E2. Recall
that P (E1 ∧ E2) ≥ e−n30c

n−2c by Lemma 4.1.

(a) By Proposition 6.2 we have

P
(
|X| ≤ 2n/5|E1, E2

)
≤ 1

P (E1 ∧ E2)
· e−n/200 ≤ e−n/300.

Similarly we have P
(
|Z| ≤ 2n/5|E1, E2

)
≤ e−n/300.

(b) For each i ∈ [n], by the definitions of G1,i, G2,i and B1(x), B2(x), using the union bound over
j ∈ [k] we get

P (i ∈ B1(X)|E1, E2) ≤ kn−3c, P (i ∈ B2(Y )|E1, E2) ≤ kn−3c.

Therefore we can bound the expectations of |B1(X)| and |B2(Y )|:

E
[
|B1(X)|

∣∣E1, E2

]
≤ kn1−3c, E

[
|B2(Y )|

∣∣E1, E2

]
≤ kn1−3c.

Thus by Markov’s inequality we have

P
(
|B1(X)| ≥ n1−c

∣∣E1, E2

)
≤ kn−2c, P

(
|B2(Y )| ≥ n1−c

∣∣E1, E2

)
≤ kn−2c.

(c) Applying Lemma 6.3 on B1(X) with m = n1−c, we have

P
(
|B1(X)| < n1−c ∧ |B1(X) ∩ 1(Y )| ≥ 4n−c · |Y |

∣∣∣ E1, E2

)
≤ 1

P (E1 ∧ E2)
· e−n90c ≤ e−n80c

.

(d) Same as (c), but applying Lemma 6.3 on G1(Z) with m = 1
4n− n1−c ≥ n1−c, we get

P
(
|G1(Z)| < 1

4
n− n1−c ∧ |G1(Z) ∩ 1(Y )| ≥ (1− 4n−c) · |Y |

∣∣∣ E1, E2

)
≤ e−n80c

.

Putting everything together by a union bound, we get

P (W |E1, E2) ≤ 2e−n/300 + 2kn−2c + 2e−n80c
< n−c,

as k is a constant and n is sufficiently large. This leads to a contradiction to the result (b) in
Lemma 4.1, which refutes the assumption in Claim 3.5, and thus proves Theorem 3.2.
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