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Abstract

We prove that the proof system OBDD(∧,weakening) is not automatable unless P = NP. The proof
is based upon the celebrated result of Atserias and Muller [5] about the hardness of automatability for
resolution. The heart of the proof is lifting with multi-output indexing gadget from resolution block-
width to dag-like multiparty number-in-hand communication protocol size with o(n) parties, where n
is the number of variables in the non-lifted formula. A similar lifting theorem for protocols with n + 1
participants was proved by Göös et. el. [16] to establish the hardness of automatability result for Cutting
Planes.

1 Introduction

Boolean satisfiability is one of the central problems in Computer Science. Input in this problem is a CNF
formula and the goal is to determine whether it is satisfiable or not. This is a standard example of an
NP-complete problem, and it has been very thoroughly studied. While the consensus is that there is no
polynomial algorithm for satisfiability, contemporary SAT-solvers have been quite successful in solving it for
many instances appearing “in practice”.

SAT-solvers are tightly connected to proof complexity. A propositional proof system is a formal way of
certifying that a CNF formula is unsatisfiable. The execution log of an SAT-solver running on an unsatisfiable
input ϕ can serve as a certificate of unsatisfiability of ϕ. Then SAT-solvers face the following trade-off: on
the one hand, their underlying proof system must be sufficiently strong to have short proofs of all formulas
of interest, on the other hand, it must be sufficiently weak so short proofs can be found fast. This tradeoff
is witnessed by the success of CDCL-solvers, which are based on (subsystems of) resolution that is pretty
weak. Nevertheless, so far SAT-solvers based on stronger proof systems have not enjoyed the widespread
success of resolution-based solvers.

A propositional proof system Π is called automatable (quasi-automatable) if there exists an algorithm E
that given an unsatisfiable CNF ϕ produces a Π-proof of ϕ in time polynomial (quasi-polynomial) in size of
ϕ plus the size of the shortest Π-proof of ϕ.

An example of a non-trivial quasi-automatable proof system is tree-like resolution [7]; it is shown by de
Rezende [13] that under ETH the automation in time nO(logn) is optimal.

However, for many non-trivial proof systems, there are known pieces of evidence that they likely are
not automatable or quasi-automatable. A long line of results on resolution automatability [2, 3, 21, 25] is
concluded with the recent breakthrough result by Atserias and Muller [6] stating that resolution is not
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automatable unless P = NP and not quasi-automatable under a stronger assumption. This result sparked
a series of follow-up results that establish the hardness of automating for many other proof systems; these
results are either based on Atserias-Muller’s result directly or follow their plan closely. If P 6= NP, then the
following proof systems are not automatable:

• Nullstellensatz, Polynomial Calculus, and Sherali-Adams [17];

• Cutting Planes [16];

• Res(2) [15].

Under stronger assumptions one can show non-automatability of Frege systems [8, 9, 23].
We continue this line of research and study the automatability of OBDD-based systems. OBDD (or

ordered binary decision diagram) is a simple but rather expressive way to represent Boolean functions
introduced by Bryant [10]. An OBDD is a very restricted case of a branching program, wherein for all paths
from the source to a sink, variables appear in the same order. However, this restriction allows performing
many important operations with OBDDs very efficiently: testing satisfiability, computing binary operations,
applying restrictions, minimization, and so on. These properties have paved the way for OBDD-based
propositional proof systems introduced by Atserias, Kolaites, and Vardi [4] to serve as a base for OBDD
based SAT-solvers [1, 26].

An OBDD(∧,weakening) refutation of a CNF ϕ is a sequence of OBDDs that query variables in the
same order; the last OBDD in the sequence is identically false and each of those diagrams either represents a
clause of ϕ or follows semantically from two OBDDs that appear earlier in the sequence (formally there are
two rules: by first (∧) we can derive conjunction of two OBDDs and by second (weakening) we can derive
any semantic implication of a single OBDD). This system simulates Resolution and CP∗ (Cutting Planes
with unary coefficients); it has short refutations of unsatisfiable linear systems over F2 [4] and clique-coloring
tautologies [12] (the latter are hard for Cutting Planes [27]).

Atserias-Muller’s approach for establishing hardness of automatability requires proving a lower bound
on the proof size of some specific CNF-formula. Unfortunately the tools for proving lower bounds on
OBDD(∧,weakening) are quite limited and related to monotone circuit complexity. All known lower bound
proofs consist of two steps.

1. To prove the lower bound for a fixed order of variables in OBDDs. Such lower bound was proved by
Atserias et. al. [4]; an exponential lower bound on the size of OBDD(∧,weakening) refutations of
clique-coloring tautologies with a particular order of variables follows from monotone interpolation.

2. To transform a formula that is hard for one order into a formula that is hard for all orders. First
such transformation was devised by Krajićek [22]: formulas are equipped with additional variables
that parameterize a permutation of main variables such that by fixing these additional variables we
can get the initial formula, where variables are permuted by any desired permutation. Segerlind
[28,29] invented a more concise transformation using 2-independent permutation family together with
orification of variables; Segerlind used it to prove that OBDD(∧,weakening) may require exponentially
longer proofs than Res(O(log n)).

Buss et. al. [12] used lifting theorem for dag-like communication by [14] (for the first step) com-
bined with Segerlind’s transformation in order to show that OBDD(∧,weakening) does not simulate
OBDD(∧, reordering).

1.1 Our contribution

Our main result is the following theorem:

Theorem 1.1. There exist a constant α and a polynomially computable function R mapping CNF formulas
to CNF formulas with the following properties. For any 3-CNF ϕ with n variables
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• if ϕ is satisfiable, then R(ϕ) has a resolution refutation of size at most nα;

• if ϕ is unsatisfiable, then any OBDD(∧,weakening) refutation of R(ϕ) has size 2Ω(n).

Since OBDD(∧,weakening) simulates resolution, any automation algorithm for OBDD(∧,weakening)
can be used to solve 3-SAT: if it finds proofs in fixed polynomial time, then the input formula is satisfiable,
otherwise, it is unsatisfiable. Our theorem can be applied for any proof system that simultaneously can be
simulated by OBDD(∧,weakening) and simulates resolution. Among such systems we can mention:

• The proof system OBDD(∧,∃) [4] that uses the projection rule instead of the weakening rule (for
OBDDs the projection rule is a partial case of the weakening rule).

• The system Res(⊕,≤ k) [20] operating with the disjunctions of linear equalities over F2, where all but
k equations depend on one variable. It was shown in [20] that any proof Res(⊕,≤ k) of size S can be
simulated by an OBDD(∧,weakening) proof of size 2O(k)S. So our result implies that automation of
Res(⊕,≤ k) is NP-hard if k ≤ nc for some constant c.

Our technique can be applied to other proof systems as well since the only thing that we use about
OBDDs is that the value of an OBDD of size S can be computed using O(` logS) bits of communication in
the `-party number-in-hand communication model if the partition of variables agrees with the order. For
example, this property holds for k-OBDDs for small k, hence our technique can be applied for proof system
k-OBDD(∧, weakening) [19].

1.2 Technique

The proof consists of two parts:

1. Prove the weaker version of Theorem 1.1, where the lower bound holds only for refutations that consist
of OBDDs in some particular order π.

2. Devise a polynomial-time algorithm that transforms

• formulas with short resolution refutations to formulas with short resolution refutations;

• formulas that are hard for OBDD(∧,weakening) with a specific order to formulas that are hard
for OBDD(∧,weakening) for all orders.

To implement the second part we use Segerlind’s transformation. It almost suits our case, but the
property for resolution works only with an additional condition: if a formula has a short resolution proof
with at most constant number negative literals in every clause (we say that negative width of the proof is
O(1)), then the result of Segerlind’s transformation has a short resolution proof. So we devise an additional
polynomial-time algorithm that transforms

• formulas with short resolution refutations to formulas with short resolution refutations of constant
negative width;

• formulas that are hard for OBDD(∧,weakening) with a specific order to formulas that are hard for
OBDD(∧,weakening) with (another) specific order,

and apply it before Segerlind’s transformation.
The first part is much more involved. The construction is built on the following theorem of Atserias and

Muller.

Theorem 1.2 (Atserias, Muller, 2019 [5]). There exists an algorithm E that given a 3-CNF formula ϕ
produces in polynomial time another CNF formula E(ϕ) such that

• if ϕ is satisfiable, E(ϕ) admits a polynomial-size resolution refutation;
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• if ϕ is unsatisfiable, the shortest refutation of E(ϕ) has size 2|ϕ|
Ω(1)

.

We get our result by applying lifting to E(ϕ). Lifting is a technique to obtain lower bounds for strong
computational models from lower bounds for weaker models. Recently, Garg, et. al. [14] proved two similar
lifting theorems lifting from resolution width to refutation size in (1) any semantic proof system operating
with proof lines of small 2-party communication complexity and (2) cutting planes (precisely it works for
proof systems, where proof lines can be computed by 1-round real communication protocol).

The first lifting theorem (applied to E(ϕ) from Theorem 1.2) seems enticing for us since a function
computable by an OBDD can be computed with small 2-party communication. Unfortunately, we can not
apply this theorem directly since E(ϕ) can have large resolution width even for a satisfiable ϕ so after the
application of lifting the resulting CNF might have only exponential-size OBDD(∧,weakening) refutations.
Göös et. al. [16] face the same problem for Cutting Planes and deal with it by lifting from block-width
instead of the plain width. However the lifting theorem in [14] does not work for block-width, so Göös et. al.
[16] prove a weaker version of it: they lift from resolution block-width to k-dimensional simplex-dags, where
k is the number of variables in the lifted formula plus one. Cutting planes refutations can be converted
to k-dimensional simplex-dags of the same size. However, for OBDD(∧,weakening) refutations, the size is
raised to the power of k, hence we need a lifting theorem for a smaller value of k.

We prove another lifting theorem: we lift from resolution block-width to k-dimensional box dag size,
where k is the size of the largest block in the partition w.r.t. which the block-width is computed plus one.
In our proof, we use the structural properties of rectangles from [14] and extend them to show the structural
properties of boxes.

We also show that OBDD(∧,weakening) refutations with a specific order of variables of size S can be
converted to k-dimensional box dags of size SO(k). In actuality, we prove it for every proof system that
operates with proof lines that can be computed by k party communication protocols in the number-in-hand
model with a small cost.

Further directions. Prove some non-automatability result for OBDD(∧). It does not simulate resolution
[11], so the non-automatability can not be shown in the Atserias-Muller style.

We believe that studying multiparty number-in-hand protocols can be useful outside of the realm of
automatability. This model is weaker than the 2-party variant, hence proving lower bounds may be feasible.
Is it easier to prove a superpolynomial lower bound on the size of randomized multiparty number-in-hand
dag-like protocols than in a two-party case? It is still sufficient to get as a corollary a lower bound for Res(⊕)
(resolution over parities).

2 Preliminaries

Notation. We use the standard notation [n] = {1, . . . , n}. Vars(ϕ) denotes the set of propositional
variables of a formula ϕ. We refer to a uniform distribution over a set X by U(X).

Resolution. A resolution refutation of an unsatisfiable CNF ϕ is a sequence of clauses ending with the
empty clause such that each clause of the sequence is either a clause of ϕ or is derived from the previous
clauses in the sequence with a resolution rule: A∨x B∨¬x

A∨B .
The width of a clause is the number of literals in it, the width of a formula is the maximum width of

a clause in it. The size of a resolution refutation is the number of clauses in it. The width of a resolution
refutation is the largest width of a clause in it.

Let X be a set of propositional variables and U = U1, . . . , Uk be a partition of X. Let us define block-
width of a clause C over variables X as the number of blocks among U1, . . . , Uk that contain variables of C:
|{i ∈ [k] | Vars(C)∩Ui 6= ∅}|. block-width of a resolution refutation is the maximum block-width of a clause
in i5t. For an unsatisfiable CNF ϕ we denote bw(ϕ) as the smallest block-width of a resolution refutation of
ϕ.

Ordered Binary Decision Diagrams. A branching program (BP) is a directed acyclic graph with a
single source and two sinks: 0-sink and 1-sink. Each of the nodes of the BP except the sinks is labeled with
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a variable xi for i ∈ [n] and has two outgoing edges, one labeled with 1 and another with 0. Let us define
the function computed by a BP. For a node u in a BP let fu : {0, 1}n → {0, 1} be a function computed by

it. We then define f0-sink ≡ 0, f1-sink ≡ 1, fu(x) :=

{
fv(x) xi = 0

fw(x) xi = 1
where u is labeled with the variable xi,

v is 0-successor of u and w is the 1-successor of u. Then we define the function computed by the BP itself
as the function computed by its source.

A π-OBDD where π ∈ Sn is a BP computing a function f : {0, 1}n → {0, 1} such that for any path from
the source to a sink each of the node labels appears at most once and the order of the labels appearing in the
path respects π. That is, the labels appearing on the path always have form xπ(i1), xπ(i2), . . . , xπ(ik) where
1 ≤ i1 < i2 < · · · < ik ≤ n.

OBDD refutations. π-OBDD-refutation of a CNF formula ϕ is a sequence of π-OBDDs D1, . . . , Ds such
that Ds computes the identically false function and each Di either computes a clause of ϕ or is obtained
from the previous diagrams in the sequence by one of the rules below.

conjunction rule (∧) Di computes the conjunction of Dj and Dk for j, k < i;

weakening rule Di computes a function implied by Dj where j < i;

projection rule (∃) Di computes a function ∃xf where f is computed by Dj with j < i, and x ∈ Vars(ϕ).

The size of an π-OBDD-refutation is the sum of sizes of all diagrams in it. It is known that the correctness
of a π-OBDD-refutation can be verified in time polynomial in its size and the size of the refuted formula [4].
An OBDD refutation is a π-OBDD refutation for some order π.

Depending on the set of the allowed rules we have several different propositional proof systems: OBDD(∧)
where only the conjunction rule is allowed, OBDD(∧,∃) where the conjunction and the projection rules are
allowed, and OBDD(∧,weakening) where the conjunction and the weakening rules are allowed. Since the
projection rule is a special case of the weakening rule, we do not include both of them simultaneously.

For an unsatisfiable CNF ϕ we denote by π-OBDD(ϕ) the size of the smallest π-OBDD(∧,weakening)
refutation of ϕ and by OBDD(ϕ) the size of the smallest OBDD(∧,weakening) refutation of ϕ.

Proposition 2.1 ([4]). OBDD(∧,∃) (and, thus, OBDD(∧,weakening)) polynomially simulates resolution:
if an unsatisfiable CNF has a resolution refutation of size S, then it has an OBDD(∧,∃) refutation of size
poly(S).

Searchϕ. Searchϕ is the following search problem: given an assignment to the variables of the unsatisfiable
CNF ϕ, find a clause that is falsified by this assignment. Formally it can be defined as a relation {(x,C) |
x ∈ {0, 1}Vars(ϕ); C ∈ ϕ; C(x) = 0}.

Dags solving relations.

Definition 2.2 ([31]). Let F be a family of subsets of a finite set X and S ⊆ X × O be a relation. Let D
be a single-source (which we refer to as root) acyclic graph. We call D an F-dag solving S if for every its
node u there exists a set Ru ∈ F such that:

(root condition) for the root r of the dag Rr = X ;

(leaf condition) for each leaf (sink) ` of the dag there exists o ∈ O such that for all x ∈ R`, (x, o) ∈ S;

(local condition) each inner node u has out-degree 2 and its two descendants v and w satisfy the property
Ru ⊆ Rv ∪Rw.

The size of an F-dag is the number of nodes in it. We denote the smallest size of F-dag solving S by
F-dag(S). We usually identify the nodes of an F-dag with the sets Ru.
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Now we define several special cases of this general definition.

Decision dag. Assume that we have Boolean domain X = {0, 1}n that we view as a set of values of n
propositional variables. A partial assignment is an element of {0, 1, ∗}n, where ∗ means that the correspond-
ing variable is not assigned. Let fix(ρ) = ρ−1({0, 1}) be the set of assigned variables. If fix(ρ) = [n] then ρ
is a full assignment.

Any partial assignment defines a subcube Cube(ρ) = {α ∈ {0, 1}n | ∀i ∈ fix(ρ) : ρ(i) = α(i)} that is the
set of all full assignments agreeing with ρ.

Let S ⊆ {0, 1}n ×O be a relation and F be a set of all subcubes {Cube(ρ) | ρ ∈ {0, 1, ∗}n}, then we call
an F-dag for S a decision dag. We denote the smallest size of a decision dag solving S by dec-dag(S).

Observe that a decision tree is a decision dag: a node u of a decision tree can be labeled with a set
Cube(ρ), where ρ is a partial assignment corresponding to the path from the root to u. Hence, since for any
total relation there exists a decision tree solving it, any total relation has a decision dag as well.

Let U = U1, . . . , Uk be a partition of [n]. A block-width of a decision dag is defined as follows: for a
node labeled with Cube(ρ) we compute |{i ∈ [k] | Ui ∩ fix(ρ) 6= ∅}|, the blockwidth of a decision dag is the
maximum of this value among the nodes. For a relation S we denote the smallest block-width of a decision
dag that solves it as bw(S).

Observe that a resolution refutation of an unsatisfiable CNF ϕ can be converted to a decision dag solving
Searchϕ of the same size: the topology of the dag is the topology of the resolution refutation, a node
corresponding to a clause C is labeled with a set C−1(0) = {x ∈ {0, 1}n | C(x) = 0}. It is easy to see that
this set is a subcube. If C is derived from D and E via a resolution rule then C is implied by the conjunction
of D and E thus C−1(0) ⊆ (D ∧ E)−1(0) = D−1(0) ∪ E−1(0). Clearly the root and the leaf properties of
the constructed decision dag also hold: for a leaf ` labeled with C−1(0) for C ∈ ϕ every point in C−1(0)
falsifies ϕ by definition; the root corresponds to the empty clause so it is labeled with {0, 1}n. The reverse
also holds, one can convert a decision dag solving Searchϕ to a resolution refutation of ϕ of the same size.

Proposition 2.3 ([14]). There exists a resolution refutation of ϕ of size S and block-width b if and only if
there exists a decision dag solving Searchϕ of size S and block-width b .

Box dag. Let S ⊆ X1 × X2 × · · · × Xk × O be a relation. Let F be a set of boxes {A1 × A2 × · · · × Ak |
A1 ⊆ X1, A2 ⊆ X2, . . . , Ak ⊆ Xk}. Then we call an F-dag a box dag.Let U = U1, . . . , Uk be a partition of
[n]. If Xi = {0, 1}Ui for all i ∈ [k], then we denote the class of box dags as box-dagU or box-dagU1,...,Uk

.

Remark 2.4. We can convert a π-OBDD refutation of a formula ϕ of size S to an F-dag for Searchϕ,
where F consists of zero-sets of π-OBDDs of size at most S. In Section 5 we show that if a partition of
variables into k parts agrees with an order π, such a dag can be converted to a box dag of size SO(k).

Automatability. A propositional proof system Π is called automatable if there exists an algorithm AΠ

that given an unsatisfiable CNF ϕ produces its refutation in Π in time polynomial in |ϕ| and the size of the
shortest refutation of ϕ in Π.

3 The outline of the proof of Theorem 1.1

Our starting point is the following theorem that is essentially proved in [17].

Theorem 3.1 (Lemma 2.2 from [17]). For any constant c ≥ 2 there exists a polynomial-time algorithm E
such that given a 3-CNF formula ϕ of size n it produces a O(log n)-CNF formula E(ϕ) such that

• there exists a partition B1, . . . , Bk of the variables of E(ϕ) such that |B1| = |B2| = · · · = |Bk| = O(n)
and k = O(nc+1) and this partition can be computed in polynomial time;

• if ϕ ∈ SAT then E(ϕ) has a resolution refutation π such that |π| = nO(c) and bw(π) = O(1) w.r.t.
partition B1, . . . , Bk;
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• if ϕ 6∈ SAT then any resolution refutation of E(ϕ) has block-width at least nc−1 w.r.t. B1, . . . , Bk.

Notice that the statement of Theorem 3.1 is slightly different from one explicitly stated in [17]. First, it
is not stated that all blocks Bi have equal sizes and their sizes are O(n), but this is clear from the definition
in Section 3.1 of [17]. Second, the theorem is stated and proved only for c = 2 but essentially the same proof
holds for larger c, the only change is that we should reduce from rPHPnc instead of rPHPn2 (see Section 5
of [17] for details).

To prove Theorem 1.1 we follow the plan below:

Lifting with multi-output indexing function In Section 4 we define a block-wise indexing function
Ind`×m and its composition with relations and formulas. In Section 4.1 we will see that if a CNF for-
mula ϕ has short resolution refutation of constant block-width then ϕ ◦ Indn`×m has a short resolution
refutation. In the remainder of Section 4 we show that if a CNF formula ϕ with variables partitioned
into n blocks of size ` requires resolution refutations of block-width at least b, then Searchϕ ◦ Indn`×m
and consequently Searchϕ◦Indn

`×m
requires large (`+ 1)-dimensional box dags.

Making box dags out of π-OBDD refutations In Section 5 we show that if Searchϕ requires k-
dimensional box dags of size S, then it requires π-OBDD(∧,weakening) refutations of size SΩ(1/k)

for some fixed π.

Making all orders hard In Section 6 we adapt Segerlind’s transformation from [29] to show that there
exists a CNF-to-CNF mapping that maps CNF formulas with polynomial resolution size to CNF formu-
las with polynomial resolution size and maps CNF formulas that are hard for π-OBDD(∧,weakening)
with a fixed π to CNF formulas that are hard for OBDD(∧,weakening).

Putting the pieces together In Section 7 we compose Ec with the two mappings above to obtain Theo-
rem 1.1.

4 Lifting with multi-output indexing function

In this section, we prove the lifting theorem for box dags. First, let us formally define the gadget we are
going to lift with.

Definition 4.1 (Block-wise indexing, [16]). Ind`×m : [m]×{0, 1}`×m → {0, 1}` is defined as Ind`×m(x, y) =
(y1,x, y2,x, . . . , y`,x) i.e. given an index x ∈ [m] and a matrix y ∈ {0, 1}`×m, it returns the xth column of
y. For a set R ⊆ [m]n × ({0, 1}`×m)n we define Indn`×m(R) = {(Ind`×m(x1, y1), . . . , Ind`×m(xn, yn)) ∈
{0, 1}n` | (x1, x2, . . . , xn, y1, y2, . . . , yn) ∈ R}.

4.1 Upper bound for lifted formula

Let ϕ =
∧t
i=1 Ci be an unsatisfiable CNF with n` variables that are partitioned into n blocks of size `.

Let us define a CNF ψ = ϕ ◦ Indn`×m. First let us define C ◦ Indn`×m for a clause C. The resulting CNF
formula will compute the function C ◦ Indn`×m = C(Ind`×m(x1, y1), . . . , Ind`×m(xn, yn)). Then we define

ϕ ◦ Indn`×m :=
∧t
i=1

(
Ci ◦ Indn`×m

)
.

Now let us construct a CNF representation of C ◦ Indn`×m. Let zi,j for i ∈ [n], t ∈ [`] be the tth variable
of the ith block of ϕ. Let i1, . . . , ib ∈ [n] be indices of the blocks that are touched by C and let Cj for j ∈ [b]
be the part of variables of C from the ijth block: C = C1 ∨ · · · ∨ Cb. Let Pj := {k ∈ [`] | zij ,k ∈ C} be the
indices (inside a block) of positive literals in Cj and Nj := {k ∈ [`] | ¬zij ,k ∈ C} be the indices of negative
literals in Cj . Then the CNF representation of C ◦ Indn`×m(x1, y1, . . . , xn, yn) consists of clauses of form((∧b

j=1(xij = αj)
)
→
(∨b

j=1

(∨
k∈Pj

yk,αj
∨
∨
k∈Nj

¬yk,αj

)))
for each α1, . . . , αb ∈ [m].

The size of this representation is |ϕ| · mb where b is the largest block-width of a clause in ϕ, so this
representation is short for formulas of constant block-width.
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Theorem 4.2 (the last inequality in Theorem 4 from [16]). Let ϕ be an unsatisfiable CNF with n` variables
that are partitioned into n blocks of size ` such that there exists a resolution refutation of ϕ of size s and
block-width b. Then there exists a resolution refutation of ϕ ◦ Indn`×m of size mO(b) · s.

4.2 Lifting theorem

For a relation S ⊆ ({0, 1}`)n ×O its composition with block-wise indexing is defined as

S ◦ Indn`×m :=

{
(x1, . . . , xn, y1, . . . , yn, o)

xi ∈ [m]; yi ∈ {0, 1}`×m; o ∈ O;
(Ind`×m(x1, y1), . . . , Ind`×m(xn, yn), o) ∈ S

}
.

This is a direct analog of the composition of two functions: we first plug the output of indexing to each
`-bit block of the input of S and then “compute” S on the resulting input.

We assume that m is a power of 2 so the relation S ◦Indn`×m can be viewed as defined on a binary domain
{0, 1}n log2 m+`nm.

Let us define a partition of the input bits of relation S ◦ Indn`×m. Consider an element of the input

domain (x1, . . . , xn, y1, . . . , yn) ∈ [m]n ×
(
{0, 1}`×m

)n
where x1, . . . , xn ∈ [m] and y1, . . . , yn are matrices

in {0, 1}`×m. Let A consist of bits corresponding to of x1, . . . , xn, (in other words A corresponds to the
first n log2m bits of the input), Bj for j ∈ [`] consists of bits corresponding to jth rows of all the matrices
y1, . . . , yn. We are going to imagine that we have ` + 1 parties: Alice who receives the bits A of the input,
Bob1, Bob2, . . . , Bob`, where Bobj receives the bits Bj of the input.

Then let A := {0, 1}A = [m]n be the set of Alice’s inputs and let Bj := {0, 1}Bj = {0, 1}m be the set of
Bobj ’s inputs.

The following theorem is similar with Theorem 8 form [16], but for box dags instead of simplex dags and,
crucially, for a smaller number of parties, `+ 1 instead of n`+ 1.

Theorem 4.3. Let ∆ be a large enough integer constant. Let S ⊆ ({0, 1}`)n × O be a total relation where
` < n

2 and m = (n`)∆. Then mΩ(bw(S)) ≤ box-dagA,B1,...,B`
(S ◦ Indn`×m), where block partition of inputs of

S is the natural partition into n blocks of size `.

Let us outline the proof of Theorem 4.3. The proof is constructive, i.e., we take a box dag B solving
S ◦ Indn`×m and extract from it a decision dag solving S of blockwidth O(log |B|/ logm). The idea is to
split boxes in the box dag into “structured” boxes that naturally correspond to partial assignments from
{0, 1, ∗}n (notice that there is a one-to-one correspondence between partial assignments and subcubes). We
then take the assignments that our structured boxes correspond to and construct a decision dag for S out
of them (we will need some auxiliary partial assignments as well). A first attempt to formulate what this
“structuredness” could mean is the following: a box B is ρ-like if Indn`×m(B) = Cube(ρ). It turns out that
we actually can (with some caveats) partition any box in A × B1 × · · · × B` into boxes that are ρ-like for
some assignments ρ. Unfortunately, we need some additional properties of these boxes to be able to connect
them into a valid decision dag.

Our definition of structured boxes is different from the one given in [16], we formulate it in a different
way reducing the structuredness of boxes to the structuredness of rectangles (2-dimensional boxes) that
is used to prove the lifting theorem in [14]. In Subsection 4.3 we formulate the properties of structured
rectangles that we need, in Subsection 4.4 we define and prove the analogous properties for structured boxes,
in Subsection 4.5 we construct the decision dag solving S.

4.3 Structured Rectangles

Lifting theorems from [14] rely heavily on the notion of structuredness of rectangles. To simplify things we
will not define it explicitly, but instead, state its properties that we are going to use.

Let Rectm,n be the set of subrectangles of [m]n ×
(
{0, 1}1×m

)n
: {A×B | A ⊆ [m]n; B ⊆

(
{0, 1}1×m

)n}.
We are going to define several properties of predicates on Rectm,n×{0, 1, ∗}n i.e. predicates on pairs of form
(rectangle, partial assignment). Let W be a predicate on Rectm,n × {0, 1, ∗}n.
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Definition 4.4. We say that W observes row-structure if W(X × Y, ρ) implies that for all x ∈ X,
Indn1×m({x} × Y ) ⊆ Cube(ρ), and Prx←U(X)

[
Indn1×m({x} × Y ) 6= Cube(ρ)

]
≤ 2

n .

Definition 4.5. We say that W is partitionable if for every X ⊆ [m]n there exist a partition X :=
⊔
j∈J X̃j

and a family {Fj}j∈J , Fj ⊆ [n], and for every R = X × Y ∈ Rectm,n, for every parameter k ≤ n log n there
exists a partition R =

⊔
i∈I Ri, where Ri = Xi × Yi ∈ Rectm,n, a family of assignments {ρi}i∈I , and sets

Xerr ⊆ X,Yerr ⊆ Y such that |Xerr| ≤ mn/2k, |Yerr| ≤ 2mn−k and the following properties hold:

1. for each i one of the following holds:

• W(Ri, ρi) and |fix(ρi)| = O(k/ log n);

• Ri is covered by Xerr ×
(
{0, 1}1×m

)n ∪ [m]n × Yerr.

2. For every i ∈ I there exists j ∈ J such that X̃j = Xi and fix(ρi) = Fj
1.

Definition 4.6. We say that W respects largeness if for all X × Y such that |X| ≥ mn · 0.99 and |Y | ≥
2mn · 0.99 W(X × Y, ∗n) holds.

Theorem 4.7 (Lemma 4.4, Lemma 4.5 from [14]). There exists a constant ∆ such that for any m ≥ n∆ there
exists a predicate W on Rectm,n × {0, 1, ∗}n such that it observes row-structure; is partitionable; respects
largeness2. We say that a rectangle R is ρ-structured iff W(R, ρ) holds.

Although Lemma 4.4 of [14] is not stated in strong enough form to satisfy Definition 4.4, the needed
property is actually proved in Section 9 of [14].

4.4 Structured Boxes

Now let us generalize the notion of structuredness from rectangles to boxes.

Definition 4.8. Let R = X × Y1 × · · · × Y`, where X ⊆ A = [m]n, Yj ⊆ Bj = ({0, 1}1×m)n be a box and
ρ ∈ {0, 1, ∗}n` be a partial assignment. We view ρ as an assignment to variables of input to S ⊆ ({0, 1}`)n×O
that are partitioned into n blocks of size `. Let ρi ∈ {0, 1, ∗}n for i ∈ [`] be the marginal assignment of ρ
assigning the ith variable of each block in the partition of variables of S. We say that R is a ρ-structured
box if for each i ∈ [`] the rectangle X × Yi is ρi-structured.

We now show that our definition of the structuredness satisfies the analogues of conditions from Definitions
4.4, 4.5, and 4.6.

Lemma 4.9. Assume that n > 2`. Let R = X × Y1 × · · · × Y` ⊆ A × B1 × · · · × B` be a ρ-structured box
where ρ ∈ {0, 1, ∗}n`. Then for all x ∈ X, Indn`×m({x} × Y1 × · · · × Y`) ⊆ Cube(ρ) and there exists x ∈ X
such that Indn`×m({x} × Y1 × · · · × Y`) = Cube(ρ).

Proof. If there exist x ∈ X, y1 ∈ Y1, . . . , y` ∈ Y` such that α := Indn`×m(x, y1, . . . , y`) does not agree with ρ,
then there exists i ∈ [`] such that Indn1×m(x, yi) does not agree with ρi which violates Definition 4.4.

Now let us prove the second statement. By Definition 4.4 for each i ∈ [`] we have

Pr
x←U(X)

[
Indn1×m({x} × Yi) 6= Cube(ρi)

]
≤ 2

n
.

Then

Pr
x←U(X)

[
Indn`×m({x} × Y1 × Y2 × · · · × Y`) 6= Cube(ρ)

]
≤

∑̀
i=1

Pr
x←U(X)

[
Indn1×m({x} × Yi) 6= Cube(ρi)

]
≤ 2`

n
< 1.

1This property is not explicitly stated in [14], although it is clear from the Rectangle Scheme that generates the partition:
first X is partitioned and then each part Xi × Y is partitioned separately.

2This property is implicit in [14], see Appendix A for details.
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Lemma 4.10. If R = X×Y1×· · ·×Y` ⊆ A×B1×· · ·×B` is such that |X| ≥ mn ·0.99 and |Yi| ≥ 2mn ·0.99
for each i ∈ [`], then R is ∗n`-structured.

Proof. By Definition 4.6 we have that each of the X × Yi is ∗n-structured which by definition implies ∗n`-
structuredness of R.

Lemma 4.11. Let R = X × Y1 × · · · × Y` ⊆ A × B1 × · · · × B` be an arbitrary box and k ≤ n log n be
a parameter. Then there exist sets Xerr ⊆ A, Y err1 ⊆ B1, . . . , Y

err
` ⊆ B`, a partition R =

⊔
i∈I Ri, and a

family of partial assignments {ρi}i∈I , where Ri = Xi × Y i1 × · · · × Y i` is a box and ρi ⊆ {0, 1, ∗}n` satisfying
the following conditions.

(1) |Xerr| ≤ mn·`
2k , |Y erri | ≤ 2nm−k.

(2) For each i ∈ I at least one of the following statements holds:

• Ri is ρi-structured and ρi assigns O(k/ log n) blocks from the standard partition of [n`] into n
blocks of size `;

• Ri is covered by one of the error sets i.e. Xi ⊆ Xerr or there exists j ∈ [`] such that Y ij ⊆ Y errj .

(3) For each x ∈ X \Xerr there exists a set Ix ⊆ [n`] that is a union of O(k/ log n) blocks (i.e. it either
contains all the indices from a block or none) such that x ∈ Xi implies fix(ρi) ⊆ Ix.

Proof. Consider the partition X =
⊔
j∈J X̃j from Definition 4.5 and a family {Fu}u∈U , Fu ⊆ [n] (both do

not depend on Y ). For each t ∈ [`] apply the partitionable property to X × Yt: let X × Yt =
⊔
iR

(t)
i be the

partition and let X̄err
t , Ȳ errt be the error sets for Definition 4.5. Set Xerr :=

⋃`
t=1 X̄

err
t , Y errt := Ȳ errt . It is

easy to see that property (1) holds.
Now let us construct the partition {Ri}i∈I of R:

• for each X̃j and t ∈ [`] let Zj,t be the set of all rectangles from the partition of X × Yt that have

projection X̃j onto X, in other words Zj,t := {Z ⊆ Yt | ∃i : X̃j × Z = R
(t)
i };

• let {Ri}i∈I consist of boxes X̃j × Z1 × · · · × Z` for all j ∈ J , Z1 ∈ Zj,1, Z2 ∈ Zj,2, . . . , Z` ∈ Zj,`.

First we need to show that {Ri}i∈I is indeed a partition of X × Y1 × · · · × Y`. Consider an arbitrary point
(x, y1, . . . , y`) ∈ X × Y1 × · · · × Y`. Let X̃j be the unique part of {X̃j}j∈J containing x, and for each t ∈ [`]

let Zt be the unique element of Zj,t containing yt. Then X̃j ×Z1× · · ·×Z` is the unique element of {Ri}i∈I
containing (x, y1, . . . , y`).

We now proceed to verify the property (2). Consider i ∈ I and let Ri := Xi × Y i1 × Y i2 × · · · × Y i` . If
it is not covered by error sets, then each of the rectangles Xi × Y it is not covered by the error sets X̄err

t

and Ȳ errt . Thus, all of these rectangles are ρi,t-structured for some assignment ρi,t ∈ {0, 1, ∗}n such that
|fix(ρi,t)| = O(k/ log n). Let ρi ∈ {0, 1, ∗}n` be constructed from ρi,1, . . . , ρi,` as follows ρi(j−1)`+t := ρi,tj .

By Definition 4.5 for each i ∈ I there exists u(i) ∈ U such that fix(ρi,t) = Fu(i) for each t ∈ [`]. Thus, ρi

assigns variables from |Fu(i)| blocks. By Definition 4.5, |Fu(i)| = O(k/ log n). The property (3) holds because

u(i) = u(i′) whenever Xi = Xi′ , i.e., it is the same for all boxes with fixed projection onto X.

4.5 Proof of Theorem 4.3

Recall that the inequality we are to prove is mΩ(bw(S)) ≤ box-dagA,B1,...,B`
(S ◦ Indn`×m). It is equivalent to

bw(S) = O
(
log box-dagA,B1,...,B`

(S ◦ Indn`×m)/ logm
)
.

Consider the smallest box-dagA,B1,...,B`
B solving S ◦ Indn`×m. We construct a decision dag solving S of

block-width O(log |B|/ logm) = O(log |B|/ log n).
Similarly to [14] we first assume that partitions yielded by Lemma 4.11 are always errorless, i.e. Xerr =

Y err1 = · · · = Y err` = ∅. Then we will fix the proof so it works without this assumption, this part of the proof
repeats the argument from Section 5.3 in [14] more or less verbatim so we place it in the Appendix 4.6. We
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apply Lemma 4.11 to each of the boxes in B with some parameter k that we fix later to achieve the needed
lower bound.

Let us construct a decision dag D that solves S. Each node of a decision dag labeled with function f
naturally corresponds to a partial assignment ρf such that Cube(ρf ) = f−1(0). We will identify nodes of a
decision dag with the assignments corresponding to them. That suggests the construction of D: for each of
the nodes of B we apply Lemma 4.11 to it and for each ρ-structured box in the resulting partition add the
node ρ to D. To turn this collection of nodes into a correct decision dag, we need to locate the root, the
leaves, and connect (via auxiliary nodes) the nodes between each other such that the conditions on dags are
met. More precisely, it is sufficient to show that:

1. The partition of the root of B consists of a single ∗n`-structured box.

2. If an o-labeled leaf of B contains a ρ-structured box in its partition, then for every x ∈ Cube(ρ),
(x, o) ∈ S.

3. Suppose a node u in B has direct descendants v1 and v2. Then let ρu1 , . . . , ρ
u
tu be the assignments yielded

by the partition of the box u, ρ
vq
1 , . . . , ρ

vq
tvq

be the assignments yielded by the partition of the box vq

for q ∈ {1, 2}. Then there exists a assignment-labeled dag with sources ρu1 , . . . , ρ
u
tu , leaves ρ

vq
1 , . . . , ρ

vq
tvq

for q ∈ {1, 2} that satisfies the local condition of a decision dag having block-width O(k/ log n).

Proof of 1. By Lemma 4.10 we have that the entire root of B is ∗n`-structured, thus we may assume that
its partition is a single box.

Proof of 2. Let u be an o-labeled leaf of B. Suppose that B = X × Y1 × · · · × Y` is a ρ-structured box in
the partition of u. By Lemma 4.9 there exists x0 such that Indn`×m({x0} × Y1 × · · · × Y`) = Cube(ρ), i.e.
for every α ∈ Cube(ρ) there exist y1, . . . , y` such that (x0, y1, . . . , y`) ∈ B and Indn`×m(x0, y1, . . . , y`) = α.
Then since B is a box-dag for S ◦ Indn`×m, (α, o) ∈ S.

Proof of 3. It is sufficient to construct a separate dag with local property rooted in ρui with leaves from
L := {ρvqp }q∈{1,2}, p∈[tvq ] of block-width O(k/ log n).

Recall that we abuse notation by identifying nodes of a box dag with their underlying boxes. Let
B = X × Y1 × · · · × Y` be a ρui -structured box from the partition of u. And let x ∈ X be such that
Indn`×m({x} × Y1 × · · · × Y`) = Cube(ρui ). By the property of a box-dag, B is covered by the union of boxes
v1 and v2. Thus {x} × Y1 × · · · × Y` is also covered by v1 ∪ v2. Let Iv1

x , I
v2
x ⊆ [n`] be the variable sets from

Lemma 4.11. Let our ρui -rooted decision dag consist of two parts. The first part is a decision tree querying
one by one all variables from Iv1

x ∪ Iv2
x \ fix(ρui ). From each leaf of this decision tree we direct both edges to

one of the nodes of L. Observe that by the part (3) of Lemma 4.11, Iv1
x and Iv2

x are unions of O(k/ log n)
blocks and fix(ρui ) touches O(k/ log n) blocks. Thus block-width of the resulting dag is also O(k/ log n). It
is sufficient to show that for any leaf θ ∈ {0, 1, ∗}n` of the decision tree we can find a node ω in L such that
Cube(ω) ⊇ Cube(θ). Then we can direct both edges from ω to θ.

Consider any leaf of the decision tree θ ∈ {0, 1, ∗}n`. Since Indn`×m({x}× Y1 × · · · × Y`) = Cube(ρui ) and
θ extends ρui (i.e., Cube(θ) ⊆ Cube(ρui )), there exist y1 ∈ Y1, . . . , y` ∈ Y` such that Indn`×m(x, y1, . . . , y`) ∈
Cube(θ). Then consider an ω-structured box B0 from a partition of v1 or v2 for ω ∈ L that con-
tains (x, y1, . . . , y`). Observe that fix(ω) ⊆ Iv1

x ∪ Iv2
x ⊆ fix(θ). The first inclusion holds by the part

(3) of Lemma 4.11, the second holds by the construction of the decision tree. Since by Lemma 4.9,
Indn`×m(x, y1, . . . , y`) ∈ Cube(ω), Cube(ω) and Cube(θ) have a point in common, then fix(ω) ⊆ fix(θ)
implies Cube(ω) ⊇ Cube(θ). That finishes the proof under the errorless assumption.

4.6 Getting rid of the errorless assumption in Theorem 4.3

This section repeats the argument from Section 5.3 in [14] more or less verbatim.
Instead of constructing the decision dag from top to bottom we process the boxes in B in a reverse

topological order i.e. from leaves to the root. This guarantees that whenever a box u is processed, its two
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descendants v and w have already been processed. Next we describe the process of removing error sets from
the boxes.

First, initialize cumulative error sets X̃err, Ỹ err1 , . . . , Ỹ err` := ∅. Then for each box Bi = Xi × Y i1 × · · · ×
Y i` ∈ B in the reverse topological order we do the following

1. If Bi is not a leaf remove all points with error coordinates from the box:

B̄i := Bi ∩

(A \ X̃err)×
∏̀
j=1

(
Bj \ Ỹ errj

) ;

otherwise B̄i := Bi.

2. Let Xerr, Y err1 , . . . , Y err` be the error sets yielded by Lemma 4.11 applied to B̄i.

3. Update X̃err := X̃err ∪Xerr and Ỹ errj := Ỹ errj ∪ Y errj for j ∈ [`].

We refer to B̄i as cleaned boxes. Then we apply the decision dag construction from Section 4.5 to the
partitions of cleaned boxes by Lemma 4.11 where all non-structured boxes in the partition (those covered
by the error sets) are removed. We refer to this partitions as cleaned partitions. We need to show that the
analogues of conditions 1-3 from Section 4.5 still hold:

1. The cleaned partition of the cleaned root box of B consists of a single ∗n`-structured box.

2. If an o-labeled leaf of B contains a ρ-structured box in its cleaned partition, then for every x ∈ Cube(ρ),
(x, o) ∈ S.

3. Suppose a node u in B has direct descendants v1 and v2. Then let ρu1 , . . . , ρ
u
tu be the assignments yielded

by the cleaned partition of the box u, ρ
vq
1 , . . . , ρ

vq
tvq

be the assignments yielded by the cleaned partition

of the box vq for q ∈ {1, 2}. Then there exists an assignment-labeled dag with sources ρu1 , . . . , ρ
u
tu ,

leaves ρ
vq
1 , . . . , ρ

vq
tvq

for q ∈ {1, 2} that satisfies the local condition of a decision dag having blockwidth

O(k/ log n).

Now is time to choose k. If |B| ≥ nn/100, Theorem 4.3 holds since bw(S) = O(n) and m = nO(1), so we
may assume that log2 |B| < n log2 n− log2 100. Now we fix k = log2(100|B|) ≤ n log2 n.

Proof of 1. Since k = log2(100|B|), |X̃err| ≤ mn · 2−k · |B| = mn

100 ; |Ỹ err1 |, . . . , |Ỹ err` | ≤ 2mn · 2−k · |B| = 2mn

100 .
Then the cleaned root box satisfies that conditions of Lemma 4.10, thus the cleaned partition of the root
consists of a single ∗n`-structured box.

Proof of 2. The proof stays the same since B̄i = Bi for every leaf.

Proof of 3. Let X̃err,u, Ỹ err,u1 , . . . , Ỹ err,u` be the error sets at step (2) of the process for a node u of B.

Then for a node v and its children w1, w2 in B, X̃err,wi ⊆ X̃err,v, Ỹ err,wi

j ⊆ Ỹ err,vj for each i ∈ {1, 2}, j ∈ [`].
Recall that the proof of statement 3 with errorless assumption consisted of finding a structured box among
the structured boxes of the partitions of w1 and w2 covering an arbitrary point in a structured box of the
partition of u. Since the cleaned part of u does not intersect error sets of w1 and w2, any its point is covered
by a structured box from w1 or w2 which is sufficient for us. Therefore, the proof with errorless assumption
works without any changes.

5 Making box bags out of π-OBDD refutations

5.1 Number-in-hand multiparty communication

Let us define number-in-hand k party communication protocols. These protocols naturally extend classical
2-party communication (for the formal definition of 2-party protocols we refer to [24]). Let S ⊆ {0, 1}U1 ×
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{0, 1}U2 ×· · ·×{0, 1}Uk ×Y be a relation, where U1, . . . Uk is a partition of [n]. In a number-in-hand k-party
communication protocol ith party receives an element xi ∈ {0, 1}Ui . Then all of these parties take turns
broadcasting 1-bit messages (which depend only on their input and the previously broadcasted messages)
to all other parties. In the end of the protocol all parties must agree on an element y ∈ Y such that
(x1, . . . , xk, y) ∈ S. The cost of the protocol is the maximum number of bits exchanged by the parties.

First we give a formal definition of a number-in-hand protocol. Formally a protocol is a rooted binary
tree where each inner node s is labeled with a function dirs : {0, 1}Ui → {0, 1} for some i ∈ [k], the edges
outgoing of each node are labeled with 0 and 1, and the leaves are labeled with elements of Y . Each node
of the binary tree corresponds to a possible history of communication between the parties, the function
dirs : {0, 1}Ui → {0, 1} corresponds to the decision of the ith party in this configuration. Then each element
x ∈ {0, 1}n uniquely determines a leaf of the protocol tree: let us descend from the root each time going
along the edge labeled with dirs(x|Ui), where s is the current node. We say that a protocol computes S if
for each input x ∈ {0, 1}n the leaf corresponding to it is labeled with y ∈ Y such that (x, y) ∈ S.

As for the classical 2-party communication a number-in-hand communication protocol can be viewed as
a box tree which is a special case of a box-dagU1,...,Uk

. This tree has the same topology as the tree from
the definition of the protocol. Let us label each node s of this tree with a set Us which contains all points
x ∈ {0, 1}n such that s lies on the path between the root and the leaf uniquely determined by x. By induction
from top to bottom one can show that all such labels are actually (U1, . . . , Uk)-boxes. Moreover, if for a
node u with 0-successor v and 1-successor w, if u is labeled with X1 × · · · × Xk, then v is labeled with
X1 × · · · ×Xi−1 × (dir−1

u (0) ∩Xi) ×Xi+1 × · · · ×Xk and w is labeled with X1 × · · · ×Xi−1 × (dir−1
u (1) ∩

Xi)×Xi+1 × · · · ×Xk.

Lemma 5.1. [a generalization of a similar lemma in [31]] Let U1, . . . , Uk be a partition of [n]. Let F be the
class of functions that are computable by k-party number-in-hand communication protocol of cost c w.r.t.
partition U1, . . . , Uk of [n]. Let S ⊆ {0, 1}U1 × · · · × {0, 1}Uk × Y be a relation and let D be a F-dag that
solves it. Then there exists a box-dagU1,...,Uk

D′ of size O(|D| · 23c) that solves S.

Proof. First, observe that for every node u in D, f−1
u (0) can be represented as a disjoint union of at most

2c boxes corresponding to the leaves of the communication protocol solving fu. D′ will consist of the boxes
appearing in the representations of f−1

u (0) for all u ∈ D together with auxiliary nodes connecting these
representations to each other. If r is a root of D, then fr ≡ 0; so its representation as a union of boxes
contains the only box {0, 1}U1 × . . . {0, 1}Uk = {0, 1}n which is the root of D′. For each leaf ` of D labeled
with y we label all boxes in the representation of f−1

` (0) with y in D′.
Now in order to complete the construction we need to connect the boxes from the disjoint representations

to each other such that the local condition is satisfied for each inner node u and its successors v and w. In
order to do this we add auxiliary boxes to the dag.

Let a be an inner node in D and let b and c be its successors. Let A1, . . . , An, B1, . . . , Bm and C1, . . . , Cm
be the boxes in their respective representations. For each Ai let us copy the box-tree for fb, where all the
boxes are replaced with their intersections with Ai, and root it in Ai. All the empty nodes labeled with
empty boxes are removed from the dag, the nodes that lose one of the successors are then replaced with
the remaining successor. For all the leaves of the box-tree for fb labeled with 0 we can find a box Bj that
contains the box in the leaf. Then we redirect all edges to such leaves of the box-tree to a suitable Bj . For all
the leaves labeled with 1 we root a copy of a box-tree for fc with the boxes replaced with their intersections
with the box in the leaf (removing empty boxes as before). By the local property of F-dag all the leaves
of the box-tree for fc labeled with 1 become empty after the intersection with the box in the leaf of the
box-tree for fb. Then we can find Cj containing the box in the leaf of the box-tree of fc; we then redirect
edges to such leaf to Cj . The number of nodes added to D′ per a single box in a disjoint box representation
of a node is at most 22c. Since there are at most 2c boxes in each of these representations |D′| ≤ |D|23c as
required.
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5.2 From box dags to π-OBDDs

Let X be a set of propositional variables of size n, V := (V1, V2, . . . , Vk) be a partition of X: X = V1t· · ·tVk,
and π : [n] → X be a bijection (order on the variables X). We say that a partition V agrees with π if V1

comes first in the order, then goes V2 and so on until Vk.

Theorem 5.2. Let ϕ be an unsatisfiable CNF over variables X. Let π : [n] → X be an order of variables
and V be a partition of X agreeing with π. Let D1, . . . , Dt be a π-OBDD(∧, weakening) refutation of ϕ of
size S. Then box-dagV(Searchϕ) ≤ SO(k).

First, let us prove the following lemma.

Lemma 5.3. Let D be a π-OBDD over variables X computing a function f and V = (V1, . . . , Vk) be a
partition of X that agrees with π. Then there exists a k-party number-in-hand communication protocol
computing f with cost kdlog2 |D|e.

Proof. Let the communicating parties put a pebble in the source of D and move it according to the input
bits. First, the first party moves the pebble, then the second one does, and so on. If the current party does
not know the variable queried in the current node, they broadcast the index of the node where the pebble
is, and then the next party proceeds to move it. Since π agrees with V there will be at most k broadcasts.
The last broadcast is the index of a sink so all the parties know the value of f after the protocol.

Proof of Theorem 5.2. By Lemma 5.3, a π-OBDD refutation of ϕ of size S =
∑t
i=1 |Di| can be viewed as an

F-dag solving Searchϕ (for the diagrams derived via the weakening rule we direct both of the outgoing edges
to the same node), where F is the class of functions that can be computed with cost at most kdlog2 Se by a
k-party number-in-hand communication protocol with input partition V. Then by Lemma 5.1, there exists
a box-dagV of size S · 23k logS = SO(k) solving Searchϕ.

6 Making all orders hard

Let negative width of a resolution refutation be the maximal number of negative literals in a clause of the
refutation.

Theorem 6.1 ([30]). There exists a polynomial-time algorithm T0 that given a CNF ϕ over n variables
returns a CNF-formula T0(ϕ) such that

• for any variable ordering π, π-OBDD(ϕ) ≤ OBDD(T0(ϕ)) (Lemma 14 from [30]);

• If ϕ has a resolution refutation of size s and negative width w, then T0(ϕ) has resolution size at most
s · nO(w), (Corollary 9 and Lemma 12 from [30]).

Lemma 6.2. If a CNF-formula ϕ has a resolution refutation of size s and the size of the smallest π-OBDD
refutation of ϕ is t, then there exists polynomial-time algorithm that given ϕ outputs a formula ϕ′ and a
variable order π′ such that ϕ′ has a resolution refutation of size O(s) and negative width O(1), and the size
of the smallest π′-OBDD refutation of ϕ′ is at least t.

Proof. The construction of ϕ′ is the following. Let x1, . . . , xn be the variables of ϕ. The variables of ϕ′ are
x1, . . . , xn, y1, . . . , yn. For each clause C =

∨
i∈PC

xi ∨
∨
i∈NC

¬xi of ϕ we add a clause C ′ =
∨
i∈PC

xi ∨∨
i∈NC

yi to ϕ′ and for each i ∈ [n] add clauses xi ∨ yi and ¬xi ∨ ¬yi to ϕ′. Let P be the function mapping
C to C ′.

First, we transform a resolution refutation C1, C2, . . . , Cs of ϕ into a resolution refutation of ϕ′ with a
constant negative width. Let us show how to derive clauses P(C1),P(C2), . . . ,P(Cs) from the clauses of ϕ′.
By induction on i we prove that the clauses P(C1), . . . ,P(Ci) can be derived from the clauses of ϕ′ in 2i steps
with negative width 1. The base case is trivial. By the induction hypothesis the clauses P(C1), . . . ,P(Ci−1)
can be derived in 2i−2 applications of resolution. Suppose that Ci = A∨B and it is derived from Cj = A∨x`
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and Ck = B∨¬x`. Then P(Cj) = P(A)∨x` and P(Ck) = P(B)∨y`. First let us resolve P(Ck) and ¬y`∨¬x`
on y` getting P(B) ∨ ¬x` and then resolve it with P(A) on x` getting P(A) ∨ P(B) = P(A ∨ B) = P(Ci).
Observe that the negative width of the resulting refutation is 1.

W.l.o.g. we may assume that π orders the variables as x1, x2, . . . , xn. Consider an order π′ ordering the
variables as x1, y1, x2, y2, . . . , xn, yn. We claim that a π′-OBDD refutation of ϕ′ of size t can be transformed
into a π-OBDD refutation of ϕ of size at most t. Let us apply a substitution y1 := ¬x1; y2 := ¬x2; . . . ; yn :=
¬xn to each of the π′-OBDDs in the refutation of ϕ′. Then observe that the resulting refutation is a π-OBDD
refutation of ϕ: the OBDDs corresponding to the clauses of form xi ∨ y1 or ¬xi ∨ ¬yi compute identical
truth after the substitution which allows us to remove them from the refutation; it is easy to see that the
conjunction rule and the weakening rule are preserved after the substitution.

Then it is sufficient to show that the size of π′-OBDD does not grow after the substitution yi := ¬xi for
any i ∈ [n]. The diagram after the substitution can be obtained from the initial one as follows:

• replace the label of each node querying yi with xi and swap the labels of the edges going out of it; now
it is possible that two consecutive nodes in a path query xi;

• for each α-labeled edge that goes from a node u labeled with xi to a node v labeled with xi redirect it
to the endpoint of the α-labeled edge going out of v.

Clearly after this transformation the number of nodes does not increase and the OBDD after the transfor-
mation computes the function after the substitution.

Corollary 6.3. There exists a polynomial-time algorithm T that given a CNF ϕ over n variables returns a
CNF-formula T (ϕ) such that

• for any variable ordering π, π-OBDD(ϕ) ≤ OBDD(T (ϕ));

• If ϕ has a resolution refutation of size s, then the resolution size of T (ϕ) is at most s · nO(1).

Proof. The new algorithm T first applies the transformation from Lemma 6.2 to a CNF formula and only
then applies the algorithm T0 from Theorem 6.1 to it.

7 Putting the pieces together

Theorem 1.1. There exist a constant α and a polynomially computable function R mapping CNF formulas
to CNF formulas with the following properties. For any 3-CNF ϕ with n variables

• if ϕ is satisfiable, then R(ϕ) has a resolution refutation of size at most nα;

• if ϕ is unsatisfiable, then any OBDD(∧,weakening) refutation of R(ϕ) has size 2Ω(n).

Proof. Let E be the algorithm from Theorem 3.1 with the parameter c = 3, and T be the algorithm from
Corollary 6.3. Let n be the number of variables of ϕ and let nϕ be the number of variables in E(ϕ). Let `ϕ
be the size of the blocks in the block partition in Theorem 3.1, `ϕ = O(n). Then let mϕ = (nϕ`ϕ)∆ where
∆ is from Theorem 4.3 and let

R(ϕ) := T (E(ϕ) ◦ Indnϕ

`ϕ×mϕ
).

Let us first consider the case of ϕ ∈ SAT. Then by Theorem 3.1, E(ϕ) has a resolution refutation π
such that |π| = |ϕ|O(1) and bw(π) = O(1). Then applying Theorem 4.2 we get that there exists a resolution
refutation of E(ϕ) ◦ Indnϕ

`ϕ×mϕ
of size |ϕ|O(1). Then by Corollary 6.3 T (E(ϕ) ◦ Indnϕ

`ϕ×mϕ
) has a resolution

refutation of size |ϕ|O(1).
Let us proceed with the case ϕ 6∈ SAT. Suppose R(ϕ) has a OBDD(∧,weakening) refutation of size S.

Then by Corollary 6.3 the formula E(ϕ) ◦ Indnϕ

`ϕ×mϕ
has a π-OBDD(∧,weakening) refutation of size S for

any variable order π. Then consider the order of variables π0 where the variables of E(ϕ) ◦ Indnϕ

`ϕ×mϕ
are

ordered as follows:
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• All the variables corresponding to the indices in an arbitrary order (denote this set by A);

• All the variables from the first rows of the matrices (denote this set by B1);

• . . .

• All the variables from the `ϕth rows of the matrices (denote this set by B`ϕ).

The size of π0-OBDD(∧,weakening) refutation of E(ϕ)◦Indnϕ

`ϕ×mϕ
is at most S which by Theorem 5.2 implies

that box-dagA,B1,...,B`

(
SearchE(ϕ)◦Indnϕ

`ϕ×mϕ

)
≤ SO(`ϕ+1).

Then the fact that SearchE(ϕ)◦Indnϕ
`ϕ×mϕ

is at least as hard as SearchE(ϕ) ◦ Ind
nϕ

`ϕ×mϕ
and the inequal-

ity box-dagA,B1,...,B`

(
SearchE(ϕ) ◦ Ind

nϕ

`ϕ×mϕ

)
≥ m

Ω(bw(E(ϕ)))
ϕ implied by Theorem 4.3 together imply that

S ≥ m
Ω(bw(E(ϕ))/(`ϕ+1))
ϕ . By Theorem 3.1 using Proposition 2.3 to switch from decision dag to resolution

refutation we have bw(E(ϕ)) = Ω(nc−1) = Ω(n2) which implies that S ≥ m
Ω(n)
ϕ since `ϕ = O(n). This

completes the proof of the theorem since mϕ ≥ 2.

Corollary 7.1. If OBDD(∧,weakening) is automatable then P = NP.

Proof. Let X be an algorithm that automates OBDD(∧,weakening). Given an unsatisfiable CNF ϕ the
algorithm X runs in time O((|ϕ|+ |π|)k), where π is the shortest OBDD(∧,weakening)-refutation of ϕ.

The algorithm solving SAT with this assumption is the following: Consider the following algorithm
solving 3-SAT: given ϕ, run X on R(ϕ) for nkα+1 steps. If in that time it finds a refutation of R(ϕ), then
ϕ ∈ SAT, because if ϕ 6∈ SAT the second part of Theorem 1.1 implies that R(ϕ) does not have polynomial
size OBDD(∧,weakening) refutations. If X does not find a refutation in the given time, then there is no
refutation of size nα which implies that ϕ 6∈ SAT by the first part of Theorem 1.1.
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A ρ-structuredness respects largeness

In this section we verify that the ρ-structuredness property of rectangles from [14] does actually conform to
Definition 4.6.

First let us introduce the definition of ρ-structuredness from [14].
For a random variable x its min-entropy as H∞(x) = log minx

1
Pr[x=x] . For a random variable x taking

values from a set Cn and for I ⊆ [n] let xI be the marginal distribution of x on the coordinates from I.

Definition A.1 (Definition 4.2 in [14], introduced in [18]). A rectangle R := X × Y ⊆ [m]n × {0, 1}mn is
ρ-structured, where ρ ∈ {0, 1, ∗}n if

1. the random variable U(X)fix(ρ) has one-point support, and every z ∈ Indn1×m(R) is consistent with ρ,
that is, Indn1×m(R) ⊆ Cube(ρ);
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2. I ⊆ [n] \ fix(ρ), H∞(U(X)I) ≥ 0.9 log |[m]I | = 0.9|I| logm;

3. Y is large enough: H∞(U(Y )) ≥ mn− n3.

Proposition A.2. For large enough m any rectangle R = X×Y where |X| ≥ mn ·0.99 and |Y | ≥ 2mn ·0.99
is ∗n-structured.

Proof. Since H∞(U(Y )) = log |Y | = mn+ log 0.99 > mn− n3, the property 3 is satisfied. The property 1 is
trivially satisfied since Cube(∗n) = {0, 1}n.

Suppose the property 2 is violated for a non-empty set I (for the empty set it is always true). Let
x ∈ {0, 1}I be the witness of the violation:

Pr
x←U(X)I

[x = x] > m−0.9|I|.

This implies that |XI | < m0.9|I| then |X| < mn−|I|+0.9|I| = mn

m0.1|I| ≤ mn

m0.1 . For m0.1 > 100 this contradicts
the assumption that |X| ≥ 0.99mn.
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