
On the Range Avoidance Problem for Circuits

Hanlin Ren
University of Oxford

hanlin.ren@cs.ox.ac.uk

Rahul Santhanam
University of Oxford

rahul.santhanam@cs.ox.ac.uk

Zhikun Wang
Xi’an Jiaotong University
nocrizwang@gmail.com

April 4, 2022

Abstract

We consider the range avoidance problem (called Avoid): given the description of a circuit
C : {0, 1}n → {0, 1}` (where ` > n), find a string y ∈ {0, 1}` that is not in the range of C. This
problem is complete for the class APEPP that corresponds to explicit constructions of objects
whose existence follows from the probabilistic method (Korten, FOCS 2021).

Motivated by applications in explicit constructions and complexity theory, we initiate the
study of the range avoidance problem for weak circuit classes, and obtain the following results:

1. Generalising Williams’s connections between circuit-analysis algorithms and circuit lower
bounds (J. ACM 2014), we present a framework for solving C -Avoid in FPNP using circuit-
analysis data structures for C , for “typical” multi-output circuit classes C . As an applica-
tion, we present a non-trivial FPNP range avoidance algorithm for De Morgan formulas.
An important technical ingredient is a construction of rectangular PCPs of proximity,
building on the rectangular PCPs by Bhangale, Harsha, Paradise, and Tal (FOCS 2020).

2. Using the above framework, we show that circuit lower bounds for ENP are equivalent
to circuit-analysis algorithms with ENP preprocessing. This is the first equivalence result
regarding circuit lower bounds for ENP. Our equivalences have the additional advantages
that they work in both infinitely-often and almost-everywhere settings, and that they also
hold for larger (e.g., subexponential) size bounds.

3. Complementing the above results, we show that in some settings, solving C -Avoid would
imply breakthrough lower bounds, even for very weak circuit classes C . In particular, an
algorithm for AC0-Avoid with polynomial stretch (i.e., ` = poly(n)) implies lower bounds
against NC1, and an algorithm for NC0

4-Avoid with very small stretch (i.e., ` = n+ no(1))
implies lower bounds against NC1 and branching programs.

4. We show that Avoid is in FNP if and only if there is a propositional proof system that
breaks every non-uniform proof complexity generator. This result connects the study of
range avoidance with fundamental questions in proof complexity.

i

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Report No. 48 (2022)

mailto:hanlin.ren@cs.ox.ac.uk
mailto:rahul.santhanam@cs.ox.ac.uk
mailto:nocrizwang@gmail.com

Contents

1 Introduction 1
1.1 Explicit Constructions . 1
1.2 The Algorithmic Method . 3
1.3 Our Results . 3

1.3.1 An Algorithmic Method for Range Avoidance 5
1.3.2 Equivalences between ENP Circuit Lower Bounds and Non-trivial Derandomi-

sation with Preprocessing . 6
1.3.3 The Role of the Stretch Function . 8
1.3.4 Is Avoid in FNP or FP? . 9
1.3.5 A Rectangular PCP of Proximity . 10

1.4 Technical Overview . 11

2 Preliminaries 15
2.1 The Computational Models . 15
2.2 Machines That Take Advice . 16
2.3 Error-Correcting Codes . 16
2.4 An Almost-Everywhere NTIME Hierarchy with a Refuter 16
2.5 Probabilistically Checkable Proof of Proximity . 17

3 Circuit Avoidance via Hamming Weight Estimation 20
3.1 Proof of Theorem 3.2 . 21

3.1.1 The Speed-Up Algorithm MPCPP . 22
3.1.2 Analysis of MPCPP . 24
3.1.3 The FPNP Range Avoidance Algorithm . 25

3.2 A Non-trivial Avoidance Algorithm for De Morgan Formulas 25
3.3 Avoidance Algorithms for NC0 from CSP Sparsification 26

4 ENP Lower Bounds Are Data Structures 28
4.1 Derandomisation with Preprocessing Implies Circuit Lower Bounds 28

4.1.1 Shaving Logs Implies Lower Bounds, Even with Preprocessing 31
4.2 Technical Preliminaries . 33

4.2.1 Pseudorandom Generators . 33
4.2.2 Elementary Properties of Norm and Inner Product 34
4.2.3 Linear Sum of Circuits . 35
4.2.4 Algorithms for Linear Sum of Circuits . 35
4.2.5 Worst-Case Hardness from PRGs . 37
4.2.6 Hardness Amplification . 37

4.3 Equivalences between Circuit Lower Bounds and Derandomisation with Preprocessing 38

5 On the Limits of (Unconditional) Range Avoidance Algorithms 43
5.1 Breakthrough Lower Bounds from AC0-Avoid . 44
5.2 Breakthrough Lower Bounds from NC0-Avoid . 45

ii

6 The FNP and FP Regimes 46
6.1 Preliminaries . 47
6.2 On Avoidance Algorithms in FNP . 48

6.2.1 Non-uniform Proof Complexity Generators vs APEPP 48
6.2.2 Uniform Proof Complexity Generators vs SAPEPP 49

6.3 On Avoidance Algorithms in FP . 50

7 A Rectangular PCP of Proximity 51
7.1 The Rectangular PCPP in [BGH+05] . 51

7.1.1 The PCPP Verifier . 52
7.1.2 Rectangularity of the PCPP Verifier . 55
7.1.3 Robust Soundness Amplification . 58
7.1.4 Proof of Theorem 7.1 . 60

7.2 Composition and Final Construction . 61
7.2.1 The Final PCPP . 65

References 67

A Omitted Proofs 73
A.1 Proof of Theorem 2.3 . 73
A.2 Proof of Lemma 4.10 . 75
A.3 Proof of Lemma 4.11 . 76
A.4 Proof of Lemma 4.12 . 77
A.5 Proof of Lemma 4.14 . 78
A.6 Proof of Lemma 7.2 . 79

iii

1 Introduction

In this paper, we consider the range avoidance problem, denoted as Avoid:

Problem 1.1 (Range Avoidance Problem, Avoid). Given the description of a circuit C : {0, 1}n →
{0, 1}`, where ` > n, output any string y ∈ {0, 1}` that is not in the range of C. That is, for every
x ∈ {0, 1}n, C(x) 6= y.

The dual weak pigeonhole principle [Kra01, Jeř04] states that if N pigeons are placed into M
holes where M ≥ 2N , then there is an empty hole. This principle implies that Avoid is a total
problem, i.e., it always has a valid solution. But what is the computational complexity of finding
this solution?

This problem was studied in [KKMP21] under the name 1-Empty.1 In their paper, the motiva-
tion was to identify natural total search problems in the polynomial hierarchy, in particular TFΣ2.
Indeed, it is easy to see that Avoid belongs to (the function version of) Σ2, but it is unknown
whether it is in FNP. We may try to solve Avoid by guessing a string y ∈ {0, 1}` as an answer,
but it seems unclear how to verify that y is not in the range of C without using a universal quan-
tifier. Then, [KKMP21] defines a natural subclass of TFΣ2 called APEPP (Abundant Polynomial
Empty Pigeonhole Principle), which is the class of total search problems polynomial-time reducible
to Avoid.

The avoidance problem is also motivated by proof complexity and bounded arithmetic, in par-
ticular, the proof complexity of the dual weak pigeonhole principle. Jeřábek [Jeř04] defined a theory
of bounded arithmetic called APC1 for formalising probabilistic reasoning by incorporating the dual
weak pigeonhole principle as an axiom. Krajíček [Kra01, Kra04] connects the dual weak pigeon-
hole principle to hard candidates for Extended Frege and stronger proof systems, as well as to the
provability of circuit lower bounds.

1.1 Explicit Constructions

Another motivation for studying Avoid, which is more relevant to the current paper, is its
connection to explicit construction problems. The existence of many combinatorial objects, such
as Ramsey graphs, expander graphs, and rigid matrices, are proved by the probabilistic method
[Erd59,Pin73,Val77]. These probabilistic arguments are able to show that a random object has the
desired property with non-zero probability, but are usually unable to explicitly construct such an
object. Indeed, many explicit construction problems, such as deterministically constructing Ramsey
graphs and rigid matrices, are long-standing open questions.

Arguably, for complexity theorists, the most interesting explicit construction problems are circuit
lower bounds. It is well-known that almost every Boolean function on n input bits requires circuits
of size Ω(2n/n) to compute [Sha49], but so far the best lower bound for any explicit function against
general circuits is only 5n [IM02] or 3.1n [FGHK16,LY22], depending on the circuit model.

It was pointed out by Korten [Kor21] that the range avoidance problem nicely captures the
complexity of explicit constructions. Most explicit construction problems fall into the category
where a “non-random” object of length n can be compressed into strictly less than n bits, and
there is an efficient decompression algorithm; see [Kor21, Section 3]. In this case, the problem of
constructing a “random” object lies in APEPP, as it suffices to find an object outside the range of
the decompression algorithm.

1“Empty” stands for “empty pigeonhole principle”; the constant 1 means that the input circuit has stretch at least
one bit, i.e., ` ≥ n+ 1.

1

Example 1.2. Consider, for example, the problem of proving circuit lower bounds. We want to find a
function f : {0, 1}n → {0, 1} that cannot be computed by circuits of size s := 2n/2 (say).

Let TT : {0, 1}O(s log s) → {0, 1}2n

be the circuit that takes as input the description of a size-s circuit,
and outputs the truth table of this circuit. (Here TT denotes truth table.) If we could solve Avoid
on the particular instance TT, then we could find a truth table tt ∈ {0, 1}2n

without size-s circuits,
therefore proving a circuit lower bound. More precisely, solving Avoid for TT in polynomial time is
equivalent to proving a circuit lower bound for E, while solving Avoid for TT in FPNP is equivalent to
proving a circuit lower bound for ENP.

Korten was interested in the structure of APEPP. Indeed, one of the main results in [Kor21]
was that constructing a hard truth table is complete for APEPP under PNP reductions. In other
words, if we could construct a hard truth table in FPNP, then APEPP ⊆ FPNP, which means that
any “typical” explicit construction problem can be solved in FPNP.

We are especially interested in the “easier” regime of APEPP. Let C be a (multi-output) circuit
class, we assume C is also associated with a stretch function `(n) > n such that every circuit in C
maps n bits to `(n) bits. Let C -Avoid be the range avoidance problem for C circuits, we ask:

Question 1.3. For which circuit classes C are the C -Avoid problems easy?

To the best of our knowledge, we are the first to consider the C -Avoid problem for restricted
circuit classes C . We think this is an interesting research direction for the following reasons:

• For an explicit construction problem Π, one could identify the weakest circuit class C such
that Π reduces to C -Avoid. Therefore, progress on Question 1.3 implies progress on explicit
constructions.

• This consideration reveals some new phenomena. For example, even for very weak circuit
classes such as C = NC0, solving the C -Avoid problem (with stretch `(n) := n + no(1))
implies strong lower bounds that are currently out of reach! (See Theorem 1.17.)

There are many interpretations of the word “easy”, but for now, let us think of it as “provably
in FPNP”. Note that if strong enough circuit lower bounds hold, then by [Kor21], every explicit
construction problem is in FPNP. Therefore we insist that the correctness of the avoidance algorithm
does not rely on unproven assumptions.

Why FPNP? There are at least two reasons to study FPNP algorithms for Avoid.

• First, FPNP is one of the most powerful notions of algorithms that we do not know how to
solve Avoid. This is similar to the situation that ENP is one of the biggest complexity classes
for which we have no super-polynomial size circuit lower bounds.2

Actually, Avoid can be solved in FPNP if and only if ENP cannot be computed by 2o(n)-size
circuits [Kor21]. Therefore, if we could solve C -Avoid in FPNP unconditionally for more
and more powerful classes C , we could make progress towards the notorious open problem of
proving circuit lower bounds against the class ENP.

• Second, APEPP has a very nice structure under FPNP reductions. Many reductions among
problems in APEPP are only known to be computable in PNP, such as the reductions among
Avoid for different stretch functions [KKMP21,Kor21] and the APEPP-completeness of finding

2Slightly higher classes, such as ZPENP and MA-E (the exponential-time analogue of MA), are known to require
super-polynomial size circuits [KW98,BFT98].

2

a hard truth table [Kor21]. In this paper, we will see more examples where we can make
progress when considering FPNP algorithms.

For comparison, the structure of APEPP under (say) polynomial-time reductions is less clear.
For example, it is not known if finding a hard truth table is APEPP-complete under polynomial-
time reductions. It is also open whether Avoid ∈ FP or its negation is implied by any
“plausible” assumption in complexity theory (or cryptography).

Note that Avoid can be solved in FZPPNP: simply guess a random string y ∈ {0, 1}` and use
the NP oracle to verify if y is not in the range of the input circuit. Therefore, whether Avoid is in
FPNP is essentially a derandomisation question.

1.2 The Algorithmic Method

Building on his previous work [Wil13], Williams [Wil14] famously proved that NEXP 6⊆ ACC0,
the first non-uniform lower bound against the notorious circuit class ACC0. Interestingly, the lower
bound is proved by an algorithmic method: Williams designed a “non-trivial” satisfiability algorithm
for ACC0 circuits, and then showed that such algorithms imply lower bounds against ACC0. The only
property of ACC0 that Williams uses is that ACC0-SAT has a non-trivial algorithm; the algorithm-
to-lower-bound connection works for any circuit class satisfying some mild technical conditions.

There have been a long line of subsequent developments of the Algorithmic Method [SW13,BV14,
Wil16,Wil18b,COS18,MW20,Wil18a,Che19,CW19,VW20,Vio20,CR20,CLW20,CL21,CLLO21].
A recent highlight is the following result proved in [CLW20]:

Theorem 1.4 ([CLW20], Informal). There is a language in ENP that does not have sub-exponential
size ACC0 circuits on almost every input length.

Thinking of circuit lower bounds as explicit construction problems, [CLW20] gave an FPNP-
explicit construction of hard truth tables against sub-exponential size ACC0 circuits. We can even
formulate Theorem 1.4 in the language of circuit range avoidance:

Theorem 1.5 (Theorem 1.4, Reformulated). Let s(n) := 2n
o(1), TTACC0 : {0, 1}O(s(n) log s(n)) →

{0, 1}2n be the circuit that takes as input the description of a size-s(n) ACC0 circuit, and outputs
its truth table. Then, there is an FPNP algorithm for solving Avoid on the instance TTACC0 .

Recently, the Algorithmic Method has found applications to another problem: constructing
rigid matrices! Alman and Chen [AC19] showed how to construct rigid matrices in FPNP with
parameters much better than previously known constructions; their results were later improved by
[BHPT20,CLW20,HV21,CL21]. The key insight in [AC19] is to treat low-rank matrices as a special
type of circuit class, and the task of constructing rigid matrices reduces to proving average-case
circuit lower bounds against this class.

Given the success of the Algorithmic Method, it is natural to ask the following question:

Question 1.6. Under which conditions can the Algorithmic Method be used to solve general explicit
construction problems, such as Avoid?

1.3 Our Results

In this work, we present new algorithmic and structural results for the range avoidance problem.
Along the way, we obtain a version of the Algorithmic Method that characterises circuit lower
bounds for ENP. We begin by presenting a high-level overview of our results, and then we discuss
each result in detail.

3

An algorithmic method for range avoidance. In our first main result, we present a version
of the Algorithmic Method for solving Avoid. Let C be a multi-output circuit class under some
closure properties. We show that if the Hamming weight estimation problem for C has a non-trivial
data structure, then the range avoidance problem for C circuits can be solved in FPNP. Here, a
data structure for Hamming weight estimation for C has a preprocessing phase and a query phase:
During the preprocessing phase, it is given the description of a C circuit C and produces a data
structure DS in FPNP, i.e., polynomial time with access to an NP oracle. Each query consists of
an input x, and we want to estimate deterministically, with the aid of DS, the Hamming weight of
C(x) in time faster than brute force.

For comparison, the Algorithmic Method for proving circuit lower bounds works as follows. Let
C be a (single-output) circuit class under some closure properties. If there is a non-trivial CAPP
algorithm for C circuits,3 then ENP 6⊆ C . A CAPP algorithm for C can be seen as a Hamming
weight estimation algorithm (without preprocessing) for TTC , where TTC is the multi-output circuit
which takes the description of a C circuit as input and outputs its truth table. Thus, our result is
a generalisation of the Algorithmic Method.

As an application of this result, we show unconditional FPNP algorithms for the range avoidance
problem for De Morgan formulas. In particular, let s = s(n) be a polynomial, C be a function that
maps n input bits to nω(

√
s log s) output bits where each output bit is computed by a De Morgan

formula of size s(n), then our algorithm finds a non-output of C in FPNP.

Circuit lower bounds for ENP are data structures. An easy corollary of our main result is
that in the Algorithmic Method, CAPP data structures for C , even with ENP preprocessing, implies
ENP 6⊆ C .4 In our second main result, we show that this is the “complete” Algorithmic Method for
proving lower bounds for ENP! For strong enough circuit classes C (such as TC0, NC1, or P/poly),
ENP 6⊆ C if and only if it can be proved by a non-trivial CAPP algorithm with ENP preprocessing.

Of course, it would be nicer to obtain a similar equivalence for weaker circuits classes C , namely
those that are unable to compute MAJORITY and perform hardness amplification [GR08, SV10,
GSV18]. We achieve this by considering strong average-case circuit lower bounds and CAPP al-
gorithms with inverse-circuit-size error5: ENP cannot be (1/2 + 1/poly(n))-approximated by C if
and only if there is a non-trivial CAPP algorithm for C with inverse-circuit-size error and ENP

preprocessing.

Range avoidance for smaller stretch implies breakthrough lower bounds. Note that
we ignored the role of the stretch function in the above discussion. Actually, even with “perfect”
Hamming weight estimation data structures, our main result only solves the range avoidance problem
for circuits that maps n input bits to n1+ε output bits, for every constant ε > 0.

How does the stretch function affect the difficulty of (provably) solving Avoid? We show that
solving the range avoidance problem for circuits with small enough stretch implies breakthrough
lower bounds:

3CAPP stands for “circuit acceptance probability problem”. A CAPP algorithm for C is a deterministic algorithm
that takes as input a C circuit C, and outputs an estimation of Prx←{0,1}n [C(x) = 1] within some additive error.

4Here, a CAPP data structure for C with ENP preprocessing is the following data structure: In the preprocessing
phase, we are given the input 1n, and need to produce a data structure DS in 2O(n) time with an NP oracle. In the
query phase, we are given a C circuit C on n input bits, and need to estimate Prx←{0,1}n [C(x) = 1] in non-trivial
time, with the aid of DS. Equivalently, it is a Hamming weight estimation data structure for TTC .

5A CAPP algorithm with inverse-circuit-size error approximates the probability that C accepts a random input
within additive error 1/|C|, where |C| is the size of C.

4

• Solving AC0-Avoid with quasi-polynomial stretch (for a small enough quasi-polynomial) im-
plies super-polynomial lower bounds against NC1.

• Even for the very simple circuit class NC0
4 (where every output bit only depends on four input

bits), solving NC0
4-Avoid with stretch `(n) := n + no(1) implies exponential lower bounds

against NC1 and ⊕L/poly (parity branching programs).

We interpret these results as an indication that it may be difficult to generalise Korten’s results
[Kor21] to restricted circuit classes such as ACC0 or formulas. Korten showed that Avoid reduces to
finding a truth table with large circuit complexity (in PNP); if Formula-Avoid (actually, NC0

4-Avoid)
reduces to finding a truth table with large formula complexity, then formula lower bounds would
imply lower bounds for an even stronger model, namely parity branching programs.

Complexity of range avoidance below FPNP. We also study the complexity of range avoidance
w.r.t. algorithms less powerful than FPNP. As mentioned before, it is unknown whether Avoid ∈
FNP, Avoid ∈ FP, or their negations are implied by any plausible assumptions. As far as we know,
we do not even have a good idea of what the “ground truth” should be! (For comparison, by Korten’s
result [Kor21], if one believes circuit lower bounds, one should also believe Avoid ∈ FPNP.)

It turns out that the statements “Avoid ∈ FNP” and “Avoid ∈ FP” can be characterised by
classical notions in complexity theory. In particular, we connect the existence of FNP algorithms for
Avoid with the security of proof complexity generators, and connect the existence of FP algorithms
for Avoid with a version of time hierarchy theorem with advice.

We now discuss our results in more detail.

1.3.1 An Algorithmic Method for Range Avoidance

Our first main result is a version of the Algorithmic Method for solving the range avoidance
problem. Here, instead of non-trivial circuit-analysis algorithms, we consider data structures with
PNP preprocessing and non-trivial query time.

For a binary string s, let δ(s) denote the relative Hamming weight of s, i.e., the fraction of bits
in s that is equal to 1. For a multi-output circuit class C , let C -HammingHit be the following data
structure problem:

(Preprocessing) Given the description of a C circuit C : {0, 1}n → {0, 1}`, preprocess C in
polynomial time with access to an NP oracle (that is, in PNP), and produce a data structure
DS ∈ {0, 1}poly(`).

(Query) Given a string x ∈ {0, 1}n, distinguish between the case that δ(C(x)) = 1 and the case
that δ(C(x)) < 0.01 in deterministic `/ logω(1) ` time with oracle access to DS.

We show that if we want to solve C -Avoid in FPNP, it suffices to design a data structure for
the C ′-HammingHit problem, where C ′ := NC0 ◦ C . Here, C ′ = NC0 ◦ C means that each output
gate of a C ′ circuit is a function over a constant number of C circuits.

Theorem 1.7 (Main Result 1, Informal). Let C be a (multi-output) circuit class, and C ′ := NC0◦C .
Suppose there is a data structure for the C ′-HammingHit problem with PNP preprocessing and non-
trivial (i.e., `/ logω(1) `) query time. Then C -Avoid is in FPNP.

Remark 1.8. The power of PNP preprocessing for data structures remains to be investigated. Some
examples in the literature where PNP preprocessing seems helpful are:

5

• The currently fastest data structure for the Online Matrix-Vector Multiplication problem achieves
amortised n2/2Ω(

√
logn) query time [LW17]. It is implicit in their paper that if we allow PNP

preprocessing, then the query algorithm can be made worst-case.

• The optimal expander decomposition can be computed in PNP (see e.g., [PT07]). However, in
this case, there are also very good expander decomposition algorithms in deterministic polynomial
time [GRST21].

A note on the stretch functions. It is clear that a non-trivial data structure for HammingHit
is possible only when n < `/ logω(1) `. In the above informal statements, we omitted the stretch
of C and C ′ circuits for simplicity. Actually, even assuming the best possible HammingHit data
structures, Theorem 1.7 could only solve the range avoidance problem for circuits with stretch
`(n) = n1+ε. We refer to Theorem 3.2 for the precise statement of Theorem 1.7.

Application: Range avoidance for De Morgan formulas. We apply our connection to show
a non-trivial FPNP algorithm that solves the range avoidance problem for De Morgan formulas.

Theorem 1.9. Let s(n) be a polynomial, C be the class of multi-output functions where each
output bit is computed by a size-s(n) De Morgan formula, and the number of output bits is at least
` := nω(

√
s log s). Then there is an FPNP algorithm for C -Avoid.

Roughly speaking, Theorem 1.9 is proved by the “quantum method” [Tal17] for De Morgan
formulas: every function computed by a De Morgan formula of size s has approximate degree
O(
√
s log s). By Theorem 1.7, it suffices to solve the HammingHit problem for De Morgan formulas.

In the preprocessing phase, we compute the low-degree polynomials that approximate each output
gate and add them into a single polynomial p of degree O(

√
s log s). In the query phase, we use

nO(
√
s log s) � ` time to evaluate p, which gives a good estimation of the relative Hamming weight.

1.3.2 Equivalences between ENP Circuit Lower Bounds and Non-trivial Derandomisa-
tion with Preprocessing

In our second set of results, we show that circuit lower bounds for ENP and CAPP algorithms
with ENP preprocessing are equivalent. From Theorem 1.7 we know that a non-trivial GapUNSAT
algorithm for C , even with ENP preprocessing, would imply ENP 6⊆ C . We show that for powerful
enough circuit classes C (e.g., TC0, NC1, or P/poly), the converse is also true:

Theorem 1.10 (Main Result 2.1, Informal). Let C ∈ {TC0,NC1,P/poly}. The following are equiv-
alent:

• ENP cannot be computed by polynomial-size C circuits on almost every input length.

• There is a non-trivial GapUNSAT algorithm for C circuits with ENP preprocessing.

For circuit classes C that are less powerful (i.e., that might not be able to efficiently compute
MAJORITY), we show that strong average-case circuit lower bounds against C and CAPP algorithms
for C with inverse-circuit-size error are equivalent:

Theorem 1.11 (Main Results 2.2, Informal). Let C be a “weak” circuit class under some mild
closure properties. The following are equivalent:

• ENP cannot be (1/2 + 1/poly(n))-approximated by C circuits on almost every input length.

6

• There is a non-trivial CAPP algorithm for C circuits with ENP preprocessing and inverse-
circuit-size error.

Actually, we can show equivalences among a lot of notions, including strong average-case lower
bounds for ENP, non-trivial CAPP algorithms with ENP preprocessing, subexponential-time CAPP
algorithms with ENP preprocessing, and ENP-computable PRGs. See Theorems 4.17 and 4.19 for
details.

It is remarkable that although these equivalences do not refer to Avoid, the most natural way of
deriving them seems to go through it. In particular, in the range avoidance problem, it is impossible
to estimate the Hamming weight of an `-output circuit in o(`) time without preprocessing it, so
the preprocessing phase appears naturally. It turns out that adding this preprocessing phase to
the (standard) Algorithmic Method makes it an equivalence!6 Our results are also a rare instance
where a data structure problem (HammingHit or CAPP with preprocessing) plays a crucial role in a
fundamental problem in complexity theory.

One advantage of our equivalence is that it also holds for larger size bounds and the case of
infinitely-often lower bounds:

Theorem 1.12 (Informal). Let C be a “weak” circuit class under some mild closure properties. The
following are equivalent:

• ENP cannot be (1/2 + 1/2n
o(1)

)-approximated by C circuits of size 2n
o(1).

• There is a CAPP algorithm for C circuits of size 2n
o(1) with 2n−n

Ω(1) query time, ENP prepro-
cessing, and inverse-circuit-size error, that works for infinitely many n.

Remark 1.13 (Equivalences between Derandomisation and Lower Bounds).
Equivalences between derandomisation and lower bounds are known in many settings.

• Impagliazzo, Kabanets, and Wigderson [IKW02] showed that NEXP 6⊆ P/poly if and only if there
is a non-deterministic subexponential-time algorithm for CAPP with no(1) bits of advice and error
1/6 that works infinitely often.

• Korten’s result [Kor21] can also be interpreted as an equivalence between derandomisation and
lower bounds: A full derandomisation of the trivial FZPPNP algorithm for Avoid is equivalent to
both ENP 6⊆ SIZE[20.1n] and ENP 6⊆ SIZE[2n/3n].

• Equivalences between derandomisation and uniform lower bounds are also known. Impagliazzo
and Wigderson [IW01] showed that EXP 6= BPP is equivalent to an infinitely-often, subexponen-
tial time derandomisation of BPP on average (BPP ⊆ i.o.-heurDTIME[2n

o(1)

]). Williams [Wil16]
showed that NEXP 6= BPP is equivalent to an infinitely-often, subexponential time nondeterminis-
tic derandomisation of BPP on average, with no(1) bits of advice (BPP ⊆ i.o.-heurNTIME[2n

o(1)

]/no(1)).

In our opinion, compared to the above equivalences, our results have the following features that
make them particularly attractive:

• First, they work in both infinitely-often and almost-everywhere settings; in contrast, [IW01] and
[Wil16] only hold for infinitely-often lower bounds.

• Second, they scale better with large circuit size bounds (such as 2n
o(1)

); no similar equivalences
to [IKW02] for NEXP 6⊆ SIZE[2n

o(1)

] or to [IW01] for EXP 6⊆ BPTIME[2n
o(1)

] are known.

6Note that the proof that adding the ENP preprocessing phase still gives us lower bounds is highly non-trivial and
requires some new ideas. See Section 1.4 for an overview.

7

• Third, they are also true for weaker circuit classes such as formulas or ACC0 circuits; in contrast,
the arguments in [Kor21] does not seem to yield any characterisation of the lower bound ENP 6⊆
Formula[20.1n].

• Finally, our equivalences include both subexponential-time derandomisation and non-trivial de-
randomisation; none of the equivalences above are known to include non-trivial derandomisation.

An interesting corollary of Theorems 1.10 and 1.11 is the following “speed-up” result for deran-
domisation with ENP preprocessing:

Corollary 1.14 (Informal). The following are true:

• If there is a non-trivial GapUNSAT algorithm for TC0 circuits with ENP preprocessing, then
there is a subexponential-time CAPP algorithm for TC0 circuits with ENP preprocessing.

• Let C be a “weak” circuit class under some mild closure properties. If there is a non-trivial
CAPP algorithm for C circuits with ENP preprocessing and inverse-circuit-size error, then there
is a subexponential-time CAPP algorithm for C circuits with ENP preprocessing and inverse-
circuit-size error.

Remark 1.15 (Comparison with Other Speed-Ups in Complexity Theory).
Williams [Wil13] showed that if CAPP has a nondeterministic algorithm with non-trivial running

time, then CAPP also has a nondeterministic subexponential time algorithm. One caveat of this result
is that the speed-up algorithm is only infinitely-often correct, and requires nε bits of advice. Therefore,
the speed-up algorithm does not imply the non-trivial algorithm. In contrast, in Corollary 1.14, the
speed-up algorithms always imply the non-trivial algorithms.

Oliveira and Santhanam [OS17] showed a similar speed-up result in learning theory: a typical circuit
class is “non-trivially learnable” if and only if it is learnable in sub-exponential time. Their result is
proved using the connection between natural proofs and learning [RR97,CIKK16], while our result is a
strengthening of the Algorithmic Method.

1.3.3 The Role of the Stretch Function

The input to Avoid is a circuit C : {0, 1}n → {0, 1}`(n). How does the stretch function `(n)
affect the complexity of Avoid? Clearly, the larger ` is, the easier it is to solve Avoid. But is there
any qualitative difference between (say) `(n) = n+ 1, `(n) = 2n, and `(n) = n100?

Korten [Kor21] suggests that the answer might be no, at least w.r.t. FPNP algorithms. The
range avoidance problem for stretch n+ 1 reduces to the problem of finding a truth table without
20.001n-size circuits in PNP; the latter problem trivially reduces to the range avoidance problem for
some circuit of stretch n100.

However, when we consider C -Avoid for restricted circuit classes C , we show that the answer
is yes! We think this is an interesting phenomenon revealed by the investigation of C -Avoid for
very weak classes C .

Theorem 1.16 (Informal). Suppose that for a small enough quasi-polynomial `(·), AC0-Avoid with
stretch ` is solvable in FPNP. Then ENP 6⊆ NC1.

Theorem 1.17 (Informal). Suppose that NC0
4-Avoid with stretch ` := n+no(1) is solvable in FPNP.

Then ENP does not have subexponential-size formulas and parity branching programs.

Roughly speaking, Theorem 1.16 is proved by the subexponential-size simulation of NC1 circuits
by AC0 circuits [Nep70], and Theorem 1.17 is proved by the randomised encoding techniques of
[IK00, IK02,AIK06].

8

Our results imply that if Korten’s result can be generalised to formula complexity (i.e., Formula-
Avoid reduces to finding a hard truth table w.r.t. formula complexity in PNP), then formula lower
bounds imply parity branching program lower bounds! This raises several interesting open questions:
Is there any fundamental reason that Korten’s techniques do not work for formula complexity?
What is the difference between circuits and formulas that plays a crucial role here? Are these
results connected to the open question of constructing randomised encodings for polynomial-size
circuits [AIK06]? We leave these questions as interesting research directions.

1.3.4 Is Avoid in FNP or FP?

Finally, we turn to the problem of whether Avoid is in FNP or FP.7 We note that the results
in this section involve some technicalities in the stretch functions (see Section 6 for details), but we
ignore this issue in the informal overview. We show that:

Theorem 1.18 (Informal). The following are true:

• There is an FNP algorithm for Avoid if and only if there is a propositional proof system that
breaks every non-uniform proof complexity generator.

• There is an FP algorithm for (a sparse version of) Avoid if and only if a version of time
hierarchy for E holds with near-maximum advice, i.e.,

E 6⊆ i.o.-DTIME[2n+1]/(2n−ω(1)).

Background: proof complexity generators. Let ` > n, a circuit C : {0, 1}n → {0, 1}` is a
proof complexity generator secure against a propositional proof system, if the proof system cannot
efficiently prove any string not in the range of C [ABRW04]. More formally, for every y ∈ {0, 1}`,
the (properly encoded version of the) statement “∀x ∈ {0, 1}n, C(x) 6= y” does not have proofs of
polynomial length, even though the statement is true for most y.

The study of proof complexity generators is partly motivated by the search for explicit tau-
tologies that are hard for strong propositional proof systems such as Extended Frege [Kra04]. It
is also motivated by meta-mathematical questions about circuit lower bounds: are strong circuit
lower bounds efficiently provable in propositional proof systems such as Frege and Extended Frege?
Razborov has made several conjectures supporting the possibility that the truth table generator8 is
secure against Frege [Raz15], while Krajíček has examined the evidence in favour of the truth table
generator being hard even for Extended Frege [Kra04]. In other words, it has been hypothesised
that EF cannot efficiently prove super-polynomial circuit lower bounds for any truth table.

Krajíček [Kra11] has also studied the possibility that some proof complexity generator is secure
against every proof system. Conversely, we could ask: Is there a proof system that can break
every proof complexity generator? This question turns out to be characterised by the statement
Avoid ∈ FNP.

7If the following is true, then we say Avoid ∈ FNP. There is a nondeterministic algorithm that takes a circuit
C : {0, 1}n → {0, 1}` as input, where ` > n, such that the following holds. (1) The algorithm accepts at least one
nondeterministic branch. (2) On every accepting branch, the algorithm outputs a string y ∈ {0, 1}` that is not in the
range of C successfully.

8The truth table generator is the function TT introduced in Example 1.2. If TT is hard for a propositional proof
system, then this proof system cannot efficiently prove circuit lower bounds of any truth table.

9

Discussion: generating Kt-random strings. Along the way, we show that the problem of
generating strings with near-maximum time-bounded Kolmogorov complexity (Kt) is complete for
(the sparse version of) Avoid under polynomial-time reductions.9

Consider the following hypothesis:

Hypothesis 1.19. There is a deterministic polynomial-time algorithm that given (1t, 1n), finds a
string x ∈ {0, 1}n such that Kt(x) is large.

We show that this hypothesis is equivalent to the aforementioned “time-hierarchy” hypothesis.
The plausibility of Hypothesis 1.19 remains to be investigated.

Hypothesis 1.19 is a natural generalisation of circuit lower bounds. If we replace Kt with circuit
complexity, we obtain the statement that truth tables with high circuit complexity can be generated
in deterministic polynomial time, which is equivalent to circuit lower bounds for E. Is there any
formal connection between Hypothesis 1.19 and other hardness assumptions (such as circuit lower
bounds or cryptographic assumptions)? We leave this question for future research.

We also define a proof complexity generator based on Kt, and show that the Kt generator is the
“hardest” proof complexity generator. A proof system breaks every proof complexity generator if
and only if it breaks the Kt generator.

1.3.5 A Rectangular PCP of Proximity

A crucial technical ingredient for proving Theorem 1.7 is a rectangular PCP of proximity (or
rectangular PCPP). Here we introduce the rectangular PCPP and discuss its features in the context
of the Algorithmic Method. We refer the reader to Section 1.4 for the reason that this notion of
PCPP is needed.

PCPs (probabilistically checkable proofs) provide a surprisingly efficient way to verify NP proofs.
The PCP theorem [AS98,ALM+98] states that any NP proof can be converted into a polynomially-
longer PCP such that a verifier can check its validity by only reading a constant number of bits (at
randomly selected locations).

It is often desirable that a PCP has additional properties. One property is shortness: suppose
the original NP instance has length n and the NP proof has length m, then the PCP has length
Õ(n+m). Short PCPs are constructed in [BGH+05,BGH+06,Din07]. Another property is proximity
[BGH+06]: instead of being in the language, we only verify that the input is close to being in the
language. The benefit of proximity is that a super efficient verifier is now possible: instead of seeing
the whole input, the verifier only probes a few bits of both the input string and the proof. We
also want the PCP to have projection queries [BV14], which means the circuit that maps the PCP
randomness to its query indices is a projection (i.e., has the lowest possible circuit complexity).
This is useful in the Algorithmic Method.

The final property we consider is rectangularity, recently introduced in [BHPT20]. In a perfectly
rectangular PCP, the proof is a

√
m×√mmatrix Π, and the PCP randomness seed is partitioned into

two parts: seed.row and seed.col. Each PCP query to the proof matrix is specified by a coordinate
(r, c) (where we want to probe Π[r, c]). Rectangularity means that r only depends on seed.row and
c only depends on seed.col. In other words, the queries of a rectangular PCP is generated as follows:

• First, the verifier reads seed.row and produces (r1, r2, . . . , rq) without seeing seed.col.

• Then, the verifier forgets about seed.row, reads seed.col and produces (c1, c2, . . . , cq).

• The query locations are (r1, c1), (r2, c2), . . . , (rq, cq).
9Again, we emphasize that this result has some technicalities in the stretch.

10

We do not know if perfectly rectangular PCPs exist. We can only construct almost rectangular
PCPs, where the randomness seed also contains a short shared portion seed.shared. The verifier sees
both seed.row and seed.shared while generating (r1, r2, . . . , rq), and sees both seed.col and seed.shared
while generating (c1, c2, . . . , cq).

The motivation for considering rectangular PCPs in [BHPT20] was to construct rigid matrices
(and improve [AC19]). In this paper, we show another application of rectangular PCPs (actually,
PCPs of proximity): they are a crucial ingredient in our Algorithmic Method for range avoidance!

In this paper, we construct a short and almost rectangular PCP of proximity with projection
queries. Here, the input is also a matrix that is queried in a rectangular fashion; see Definition 2.6
for a precise definition.

Theorem 1.20 (Informal). For every constant τ > 0 and functions Winput(n),Wproof(n) satisfying
some technical conditions, NTIME[T (n)] has a τ -almost rectangular PCP of proximity with proof
length T (n) · polylog(T (n)), input matrix width Winput(n), and proof matrix width Wproof(n). Here,
τ -almost rectangularity means that |seed.shared| ≤ τ · |seed|.

Moreover, for fixed seed.shared, the maps from seed.row or seed.col to the query indices (i.e., ri
or ci) are projections, computable in polynomial time given seed.shared.

Remark 1.21 (Comparison with [BHPT20]). Our rectangular PCP of proximity differs from the rect-
angular PCP in [BHPT20] in the following ways.

• The biggest difference is that our construction is a PCP of proximity. As a result, the input is
also treated as a matrix, and its query pattern also has to be rectangular.

• The rectangular PCP in [BHPT20] is smooth, i.e., every bit in the proof is queried with equal
probability. Smoothness is not required in our application, and our rectangular PCPP has no
smoothness guarantee.

• Finally, the input matrix size and the proof matrix size in our rectangular PCPP is flexible, while
the proof matrix in [BHPT20] is

√
m×√m. It is easy to make the proof matrix size flexible, but

more care needs to be taken for the input matrix. (See Section 7.1.2 where we artificially define a
bijection called binHm .) This is quite important as in our application, we need the input matrix
width to be as small as possible!

Remark 1.22 (Comparison with [BV14]). To reduce the circuit complexity “overhead” of the Algorithmic
Method, [BV14] constructed PCPs where the query indices are computable by a projection over seed.
To achieve this property, [BV14] needed to use the PCP in [BS08]. Unfortunately, this PCP needs
polylog(n) queries; even worse, this property is broken when we use PCP composition to reduce query
complexity to O(1).

However, if we allow the queries to depend arbitrarily on a small portion of seed (namely seed.shared),
but has to be a projection over the rest of the bits, then this is also achievable using the PCP in
[BGH+06]. The [BGH+06] PCP has the advantage of being almost rectangular. We are also able to
compose PCPs now, by simply adding the (very short) randomness of the inner PCP into seed.shared.
Thus, the query complexity can be reduced to O(1). It turns out that having such a small portion (i.e.,
seed.shared) does not hurt the Algorithmic Method at all.

1.4 Technical Overview

In this section, we present an overview of the proof of Theorem 1.7.
It is helpful to review the Algorithmic Method for proving ENP lower bounds. Let Lhard ∈

NTIME[2n] \ NTIME[o(2n)] be a hard language constructed by the nondeterministic time hierarchy
theorem [Zák83]. Let V be the PCP verifier of [BGH+06]; here V is an oracle circuit V (−) : {0, 1}r →

11

{0, 1}. This oracle circuit takes PCP randomness as input (so the input length is r = n+O(log n)),
and receives the PCP proof as the oracle.

For a proof oracle π : {0, 1}r → {0, 1}, denote pacc(π) := Prseed←{0,1}r [V
π(seed) accepts]. For

every input x ∈ {0, 1}?:

• If x ∈ Lhard, then there is a proof oracle π such that pacc(π) = 1.

• If x 6∈ Lhard, then for every proof oracle π, we have pacc(π) ≤ 0.01.

Now, suppose that for every input x ∈ Lhard, there is a proof oracle π such that pacc(π) = 1, and
in addition, π can be computed by a C circuit. (Call this assumption the “easy-witness assumption”.)
Moreover, suppose that the GapUNSAT problem for V C can be solved in 2r/rω(1) < o(2n) time.
Then there is a faster nondeterministic algorithm for Lhard as follows. Given an input x, we first guess
a circuit C that computes a valid proof oracle π, and use the GapUNSAT algorithm to distinguish
between the case that pacc(π) = 1 and that pacc(π) ≤ 0.01.

By the nondeterministic time hierarchy theorem, the above speed-up algorithm has to be in-
correct. Therefore, our “easy-witness assumption” has to be false, i.e., there is an input x ∈ Lhard

which does not have valid PCP proofs computable by a small C circuit.

A naïve attempt. Given a circuit C : {0, 1}n → {0, 1}`, our goal is to find a non-output of
C in FPNP. Again, let Lhard ∈ NTIME[`] \ NTIME[o(`)] be the hard language constructed by the
nondeterministic time hierarchy.10 Our “easy-witness” assumption now becomes:

Assumption 1.23. For every x ∈ Lhard, there is a PCP proof for x that is in the range of C.

Now we design a faster nondeterministic algorithm Mfast that tries to solve Lhard. Let QPCP :
{0, 1}` → {0, 1}2|seed| be the circuit such that for every PCP proof π ∈ {0, 1}` and every seed, the
seed-th output of QPCP(π) is the verifier’s output when given π as the PCP proof and seed as the
randomness. (Here we interpret seed as both a random string of length |seed| and an integer in
[2|seed|].) Note that if the PCP is efficient enough, then QPCP is an NC0 circuit. Let C ′(x) :=
QPCP(C(x)). To solve Lhard, it suffices to solve the Hamming weight estimation problem for C ′, i.e.,
distinguish between δ(C ′(x)) = 1 and δ(C ′(x)) ≤ 0.01.

There is a serious problem with this approach: The description length of C is already Ω(`),
therefore it is impossible to solve the Hamming weight estimation problem in o(`) time.

Idea 1: Make copies. Our first idea is simple but crucial: we pick a large enough number
H = poly(`) and make H copies of C. That is, instead of the avoidance problem for C, we consider
the avoidance problem for the circuit

CH(x1, x2, . . . , xH) = (C(x1), C(x2), . . . , C(xH)).

There is a simple FPNP reduction from the avoidance problem of C to the avoidance problem of
CH . Suppose y = (y1, y2, . . . , yH) is not in the range of CH , then we can use the NP oracle to check
whether each yi is in the range of C, and pick the first yi that is not. Hence, it suffices to solve the
avoidance problem for CH .

Now, let Lhard ∈ NTIME[H · `] \ NTIME[o(H · `)]. Let QPCP : {0, 1}H·` → {0, 1}2|seed| be the
NC0 circuit mapping the PCP proof to the verifier’s outputs on each seed. It suffices to design a

10Note that we have not specified the input length for Lhard. We only know that Lhard is in non-deterministic ` time
on this input length. This important issue will be discussed later.

12

HammingHit data structure for the circuit C ′(x) := QPCP(CH(x)). Note that we only need O(`)
bits to describe C ′: QPCP is completely determined by the PCP verifier, and we can use O(`) bits
to describe C. As O(`)� H · `, at least in principle, it could be possible to solve the HammingHit
problem for C ′ in less than H · ` time.

But how do we actually solve the HammingHit problem? We need to exploit the structures of
the circuit QPCP (if any)! What property should the PCP have?

Idea 2: Rectangular PCP. Our second idea is to use rectangular PCPs. In this overview, let
us assume the PCP is perfectly rectangular.

We recall the definition of rectangular PCPs. Here, the PCP proof π is an H×` matrix, and our
easy-witness assumption becomes that every row of π is in the range of C. The PCP randomness
seed is divided into two parts: seed.row and seed.col. The row index of each query only depends on
seed.row, and the column index of each query only depends on seed.col.

We enumerate seed.row. Denote the PCP verifier as V , we want to estimate

Pr
seed.col

[V π(seed.row, seed.col) accepts]. (1)

As seed.row is fixed, we now know q rows r1, r2, . . . , rq such that V π(seed.row,−) will only access
these rows of π. Call these rows πr1 , πr2 , . . . , πrq ∈ {0, 1}`. Let QPCP : ({0, 1}`)q → {0, 1}2|seed.col| be
the NC0 circuit such that for every seed.col, the seed.col-th output of QPCP(πr1 , πr2 , . . . , πrq) is 1 if
and only if V π(seed.row, seed.col) accepts. Let x1, x2, . . . , xq ∈ {0, 1}n, define the following NC0 ◦C
circuit:

C ′(x1, x2, . . . , xq) = QPCP(C(x1), C(x2), . . . , C(xq)).

We guess the strings w1, w2, . . . , wH ∈ {0, 1}n such that the i-th row of π is equal to C(wi). It
is easy to see that

(1) = δ(C ′(wr1 , wr2 , . . . , wrq)).

Therefore, we can use a HammingHit data structure for C ′ to estimate Eq. (1). Note that q is a
constant, and |seed.col| ≈ log `, so C ′ : {0, 1}qn → {0, 1}2|seed.col| is indeed small (instead of only
having a short description).

To summarise, our speed-up algorithm Mfast proceeds as follows. First, we guess the inputs
w1, w2, . . . , wH , (implicitly) construct an H × ` proof matrix π whose i-th row is equal to C(wi),
and hope that π is a valid PCP proof. Then, we estimate the probability that the PCP verifier
accepts. To do so, we enumerate seed.row and use the HammingHit data structure to estimate
Eq. (1). If for any seed.row it happens that (1) ≤ 0.01, then we reject; otherwise, we accept.

Since the query algorithm for HammingHit takes 2|seed.col|/|seed.col|ω(1) time, the time complexity
of Mfast is

2|seed.row| · 2|seed.col|/|seed.col|ω(1) ≤ (H`)/ logω(1) `.

The “right” time hierarchy theorem. The above avoidance algorithm is only correct on in-
finitely many input lengths. The reason is that the nondeterministic time hierarchy in [Zák83]
only works infinitely often, i.e., for any NTIME[o(H`)] machine M , Lhard and M only disagree on
infinitely many input lengths.

To obtain an almost-everywhere avoidance algorithm, we follow the ideas of [CLW20]. The
crucial observation is that Mfast does not guess too many nondeterministic bits. (In the case of the
Algorithmic Method, it only guesses a small circuit encoding the PCP proof; in our case, it only
guesses Hn � H` bits.) There is an almost-everywhere nondeterministic time hierarchy against

13

such machines [FS16]. Let NTIMEGUESS[T (N), g(N)] denote the class of languages decidable by a
nondeterministic machine running in T (N) time and guessing g(N) bits. Then:

Theorem 1.24 ([FS16]). Let T (N) be a time-constructible function such that N ≤ T (N) ≤ 2poly(N).
There is a language Lhard ∈ NTIME[T (N)] \ i.o.-NTIMEGUESS[o(T (N)), N/10].

Since we need to guess Hn bits, we set the input length to be N := 10Hn. We also set T (N)
to be a slightly super-linear function such that T (10Hn) ≈ H`.

There is a small issue: Mfast needs to access the data structure DS for HammingHit. We cannot
compute DS inside Mfast as it needs an NP oracle, therefore our only option is to hardcode DS as
advice forMfast. Fortunately, the above NTIME hierarchy theorem also holds against machines with
N/10 advice bits:

Theorem 1.25. Let T (N) be a time-constructible function such that N ≤ T (N) ≤ 2poly(N). There
is a language Lhard ∈ NTIME[T (N)] \ i.o.-NTIMEGUESS[o(T (N)), N/10]/(N/10).

Note that we only need the HammingHit data structure for the circuit C ′ whose size is in-
dependent of H. By setting H large enough, we can still guarantee that the advice length is
≤ N/10 = Hn/10.11

To complete the description of our FPNP avoidance algorithm, we still need one ingredient from
[CLW20]: a refuter for Theorem 1.25. Given 1N and the code of the machineMfast that attempts to
compute Lhard, as well as the N/10 advice bits, ifMfast runs in o(T (N)) time and uses at most N/10
nondeterministic bits, then the refuter finds an input x ∈ {0, 1}N such that Mfast(x) 6= Lhard(x).
The refuter runs in polynomial time with access to an NP oracle.

Our FPNP avoidance algorithm is as follows. We first compute the HammingHit structure DS in
FPNP. We also compute (the code of) the machine Mfast. Then we use the refuter to find an input
xhard ∈ {0, 1}N such that Mfast(xhard) 6= Lhard(xhard). It follows that in any valid proof matrix of
xhard ∈ Lhard, there is some row that is not in the range of C. We can then simply use the NP oracle
to pick the first such row.

Rectangular PCP of proximity. There is another issue: QPCP depends on the input xhard! As
xhard depends on DS (recall that xhard is found by the refuter, which takes DS as input), we cannot
preprocess C ′ = QPCP ◦ C before we know xhard.

Our solution is to use a rectangular PCP of proximity (henceforth rectangular PCPP). Recall
that a PCPP verifier can only query a small number of bits in both the proof oracle and the input
oracle. (As it does not even have time to read the whole input, its query pattern does not depend
on it.) In a rectangular PCPP, the input oracle is also accessed in a rectangular fashion. There are
three predicates Vtype, Vrow, and Vcol:

• Vtype, without looking at seed, outputs q symbols, where each symbol is either input or proof.12

• Vrow reads seed.row and outputs q row indices r1, r2, . . . , rq.

• Vcol reads seed.col and outputs q column indices c1, c2, . . . , cq.

• For each query i ∈ [q], if the i-th symbol is input, then the i-th query asks the (ri, ci)-th entry
of the input matrix; if the i-th symbol is proof, then the i-th query asks the (ri, ci)-th entry
of the proof matrix.

11In the case of almost rectangular PCPs, we need to hardcode a data structure for every possible value of
seed.shared. It is still possible to set the parameters so that the total length of these data structures is ≤ N/10.

12Note that we consider perfect rectangularity here. In an almost rectangular PCPP, Vtype depends on seed.shared,
but does not depend on seed.row and seed.col.

14

We now revise our speed-up algorithm Mfast for Lhard using rectangular PCPPs. Given an input
x ∈ {0, 1}N ,13 we still guess w1, w2, . . . , wH and construct the PCPP proof matrix π whose i-th
row is C(wi). Also, the input is treated as an H ′ ×W ′ matrix14; let xi be the i-th row of the input
matrix. Now we estimate the probability that V x,π(seed) accepts, where V is the PCPP verifier with
oracle access to x and π. After enumerating seed.row, we have fixed qproof rows in the proof matrix
and qinput rows in the input matrix, where qproof + qinput = q, and the output of V x,π(seed.row,−)

only depends on these rows. Let QPCPP : {0, 1}qproof ·n+qinput·W ′ → {0, 1}2|seed.col| be the circuit that
maps these rows to the verifier’s outputs on each seed.col,15 and

C ′(w1, w2, . . . , wqproof , x1, x2, . . . , xqinput) = QPCPP(C(w1), C(w2), . . . , C(wqproof), x1, x2, . . . , xqinput).

Note that QPCPP does not depend on the input x.
For each seed.row, we feed the corresponding rows in the proof matrix and the input matrix into

C ′, and use the HammingHit data structure to estimate the probability over seed.col that V x,π(seed)
accepts. The total running time is

2|seed.row| · 2|seed.col|/|seed.col|ω(1) < H`/ logω(1) `.

Finally, our FPNP avoidance algorithm is the same as before, except that we use the rectangular
PCPP in the code of Mfast.

2 Preliminaries

We use Un to denote the uniform distribution over {0, 1}n. For a circuit C : {0, 1}n → {0, 1}`,
denote the range of C as

Range(C) := {C(x) : x ∈ {0, 1}n}.
The relative Hamming weight of a string x ∈ {0, 1}`, denoted as δ(x), is the fraction of indices

i ∈ [`] such that xi = 1. For two strings x, y ∈ {0, 1}` of equal length, the relative Hamming distance
between x and y, denoted as δ(x, y), is the fraction of indices i ∈ [`] for which xi 6= yi.

We say a function f : N → N is good if there is a Turing machine that, given the input n (in
binary), outputs the value f(n) (also in binary), and runs in time at most poly(log n, log f(n)).
(This is just a somewhat arbitrary definition of “functions that are not too pathological”.)

2.1 The Computational Models

In this paper, we need to deal with two (nondeterministic) computational models: standard
multi-tape Turing machines (TMs) and Random Access Turing Machines (RTMs). The difference
between TMs and RTMs is the following: for each work tape of an RTM, there is a corresponding
address tape such that the head of the work tape is always in the cell whose index is the contents
of the address tape [GS89]. We need to be careful about which machine model we are using. For
example, the query algorithms for the data structures run in the RTM model, while the highly-
efficient PCPP [BGH+05] uses the TM model.

Let T (n) be a good function, we use NTIMETM[T (n)] and NTIMERTM[T (n)] to denote the set of
languages computable in nondeterministic T (n) time on a multi-tape Turing machine and an RTM
respectively. We need the following result to simulate one machine model by the other efficiently.

13Note that a PCPP could only distinguish between x ∈ L and x being far from L. Thus, we need to apply an
error-correcting code to the input. For simplicity, we still use x to denote the encoded input.

14A technicality here is that we want to set W ′ to be as small as possible, as the size of C′ is proportional to W ′.
It turns out that we can achieve W ′ = n · polylog(`).

15Actually, QPCPP also depends on O(q) parity-check bits. We ignore this technical detail in the overview.

15

Theorem 2.1 ([GS89]).
⋃
c≥1 NTIMETM[n logc n] =

⋃
c≥1 NTIMERTM[n logc n].

By a padding argument, for some absolute constant c ≥ 1, for every good function T (n),

NTIMETM[T (n)] ⊆ NTIMERTM[T (n) logc T (n)],

and NTIMERTM[T (n)] ⊆ NTIMETM[T (n) logc T (n)].

2.2 Machines That Take Advice

Let C be a complexity class and f : N→ N. Denote C/f the class of functions computable by a
C machine with f(n) bits of advice [KL80]. More formally, a language L is in C/f if there is another
language L′ ∈ C and a sequence of “advice” strings

{
αn ∈ {0, 1}f(n)

}
n∈N such that

∀n ∈ N, x ∈ {0, 1}n, x ∈ L ⇐⇒ (1n, x, αn) ∈ L′.

Two instances of the above notation in this paper are:

• NTIMEGUESS[T (n), n/10]/(n/10) (Theorem 2.3): languages computed by a nondeterministic
machine in T (n) time, using n/10 nondeterministic bits and n/10 advice bits.

• DTIME[2n+1]/(2n−cn) (Theorem 6.10): languages computed in deterministic 2n+1 time with
near-maximum (2n − cn) advice bits.

2.3 Error-Correcting Codes

We need the following standard construction of error-correcting codes.

Theorem 2.2 ([Spi96]). There is a GF(2)-linear error-correcting code (Enc,Dec) with constant rate
and constant relative distance. Moreover, both Enc and Dec are computable in linear time.

2.4 An Almost-Everywhere NTIME Hierarchy with a Refuter

We need the almost-everywhere NTIME hierarchy against bounded nondeterminism [FS16],
which has an FPNP refuter as shown in [CLW20]. Let T (n), G(n) be good functions, we define
NTIMEGUESSRTM[T (n), G(n)] to be the class of languages accepted by a nondeterministic RTM in
T (n) time with G(n) nondeterministic bits.

Theorem 2.3 ([FS16,CLW20]). Let c be a large universal constant, T : N→ N be a good function
such that n logc+1 n ≤ T (n) ≤ 2poly(n). There is a language

Lhard ∈ NTIMETM[T (n)] \ i.o.-NTIMEGUESSRTM[T (n)/ logc T (n), n/10]/(n/10).

Moreover, there is an algorithm R (the “refuter”) such that the following holds.

(Input) R receives three inputs (1n,M, α), whereM is a nondeterministic RTM and α ∈ {0, 1}n/10

is an advice string. It is guaranteed that M runs in T (n)/ logc T (n) time and uses at most
n/10 nondeterministic bits; moreover, the description length of M is O(1).

(Output) For every fixedM , every sufficiently large n, and every advice α ∈ {0, 1}n/10, R(1n,M, α)
outputs a string x ∈ {0, 1}n such that M(x;α) 6= Lhard(x).

(Complexity) R runs in poly(T (n)) time with adaptive access to an NP oracle.

For completeness, we include a proof of Theorem 2.3 in Appendix A.1, showing that the time
hierarchy and the refuter could also deal with the N/10 advice bits.

16

2.5 Probabilistically Checkable Proof of Proximity

In this sub-section, we introduce the variants of PCPs that we will use in this paper: PCPs of
proximity (PCPPs), rectangular PCPPs, and PCPPs with randomness-oblivious predicates.

We begin by recalling the formalism of efficient PCPP verifiers. Note that PCPP verifiers are
usually defined for pair languages where each input is split into two parts (xexp, ximp) (see, e.g.,
[BGH+06]). In that setting, the verifier is given xexp explicitly and ximp implicitly (i.e., as an
oracle). When we consider pure languages (i.e., languages where xexp is always the empty string),
we will denote ximp as simply x.

Definition 2.4 (Efficient PCP of Proximity Verifiers). Let r = r(n) and q = q(n) be good functions.
A PCPP verifier VPCPP for a language L with randomness complexity r and query complexity q is
specified by a tuple of machines (Vtype, Vindex, Vdec). Given oracle access to an input x and a proof
π, it verifies whether x ∈ L as follows.

• VPCPP draws a random string seed ∈ {0, 1}r and generates

– (itype[1], itype[2], . . . , itype[q])← Vtype(seed), and

– (i[1], i[2], . . . , i[q])← Vindex(seed).

Here, for each j ∈ [q], itype[j] ∈ {input, proof} indicates whether the j-th query is on the input
oracle x or the proof oracle π. If itype[j] = input, the answer of the j-th query is ansj := xi[j];
if itype[j] = proof, the answer of the j-th query is ansj := πi[j].

• Finally, Vdec(seed, ans1, . . . , ansq) decides whether to accept Π or not.

We say Vdec is the decision predicate of VPCPP, and the size of Vdec (as a circuit) is the decision
complexity of VPCPP.16

We denote the oracle x◦π as Π. Sometimes we also denote x as Πinput and π as Πproof , to empha-
size that they are oracles (rather than strings). We say VPCPPΠ(seed) = 1 if Vdec(seed, ans1, . . . , ansq)
accepts, and VPCPPΠ(seed) = 0 otherwise. (Note that the behaviour of the verifier is completely
deterministic once seed is determined.)

Definition 2.5 (PCP of Proximity for Pure Languages). For functions s, δ : N → [0, 1], a verifier
VPCPP is a PCP of proximity for a pure language L with proximity parameter δ and soundness
error s if the following two condition holds:

Completeness: If x ∈ L, then there is an oracle π such that

Pr
seed←{0,1}r(n)

[VPCPPx◦π(seed) accepts] = 1.

Soundness: If x is δ-far from being in L (that is, for every x′ ∈ L∩ {0, 1}n, the relative Hamming
distance between x and x′ is at least δ), then for every oracle π,

Pr
seed←{0,1}r(n)

[VPCPPx◦π(seed) accepts] < s(n).

16In literature, it is more common to define Vdec as a circuit that only takes ans1, . . . , ansq (but not seed) as inputs.
The circuit Vdec is outputted by the PCPP verifier after seeing seed. However, we find our formulation (where Vdec

takes seed as input) more convenient to use.

17

We will also consider a stronger requirement called robust soundness. Roughly speaking, it
requires that the bits that the decision predicate reads are far from being accepted (instead of only
being rejected), i.e., we need to flip at least a ρ fraction of bits read by the decision predicate in
order to make it accept. Formally:

Robust soundness: If y is δ-far from being in L, then for every oracle π,

Pr
seed←{0,1}r(n)

[∃a ∈ {0, 1}q, s.t. Vdec(seed, a) = 1 and

the relative Hamming distance between ans and a is ≤ ρ] ≤ s.

Here, ρ is the robustness parameter of VPCPP.

Now we define rectangular PCPPs, a crucial technical notion in our proof. Roughly speaking,
a rectangular PCPP treats both its input oracle Πinput and its proof oracle Πproof as matrices and
makes queries in a “rectangular” fashion.

For a perfectly rectangular PCPP, its randomness is divided into a row part and a column part,
where the row indices of the queries only depend on the row part, and the column indices of the
queries only depend on the column part. However, it is unclear whether perfectly rectangular PCPPs
exist. Therefore, we consider a relaxed notion of almost rectangular PCPP, where the randomness
also contains a short shared part that can influence both row indices and column indices.

Definition 2.6 (Rectangular PCP of Proximity). Let Hinput,Winput, Hproof ,Wproof : N→ N be good
functions such that Hinput ·Winput = O(n), and let τ > 0 be a constant. A verifier VPCPP is τ -almost
rectangular with an Hinput ×Winput input oracle, an Hproof ×Wproof proof oracle, row randomness
rrow(n), column randomness rcol(n), and shared randomness rshared(n), if the following holds.

(Randomness) The verifier randomness seed has length r(n) := rrow(n) + rcol(n) + rshared(n). It
consists of three parts

seed.row ∈ {0, 1}rrow(n), seed.col ∈ {0, 1}rcol(n), and seed.shared ∈ {0, 1}rshared(n).

Moreover, rshared(n) ≤ τ · r(n).

(Query generation) There are three functions Vtype, Vrow and Vcol such that the query locations
of VPCPP are generated as follows:

– Let (itype[1], itype[2], . . . , itype[q])← Vtype(seed.shared) where itype[i] ∈ {input, proof} for
all i ∈ [q].

– Let (irow[1], irow[2], . . . , irow[q])← Vrow(seed.row, seed.shared).

– Let (icol[1], icol[2], . . . , icol[q])← Vcol(seed.col, seed.shared).

– For every j ∈ [q]:

∗ If itype[j] = proof, then the j-th query probes the i[j]-th bit of Πproof , where

i[j] := irow[j] ·Wproof + icol[j].

∗ If itype[j] = input, then the j-th query probes the i[j]-th bit of Πinput, where

i[j] := irow[j] ·Winput + icol[j].

18

∗ In the case that itype[j] = input, it might be possible that irow[j] = ⊥ or icol[j] = ⊥
or i[j] 6∈ [0, n). In this case, we assume the j-th query answer is ⊥.

Ideally, the decision predicate of a rectangular PCPP should only depend on seed.shared, i.e., it
should be a “randomness-oblivious predicate” (ROP, [BHPT20]). However, we (as well as [BHPT20])
do not know how to build rectangular PCPPs whose decision predicate does not depend on seed.row
and seed.col at all. It turns out that the following relaxation is achievable: besides seed.shared, the
decision predicate is also allowed to take as input some parity-check bits, where each parity-check
bit is the XOR of a subset of bits in seed.row and seed.col, and this subset can be computed efficiently
from seed.shared.17

Definition 2.7 (PCPP with Randomness-Oblivious Predicates). Let VPCPP be a rectangular
PCPP with decision predicate Vdec. If there are p parity-check functions pc1, pc2, . . . , pcp over seed,
such that each pci is the XOR of some subset of bits in seed, and Dec takes ans := (ans1, ans2, . . . , ansq)
and P := (pc1(seed), pc2(seed), . . . , pcp(seed)) as inputs, then we say VPCPP has a randomness-
oblivious predicate (ROP) with parity-check complexity p. (In other words, if we are given pc1(seed),
pc2(seed), . . . , pcp(seed), then Vdec does not depend on seed.row or seed.col any more.)

Without loss of generality, we may assume that a decision circuit VDec is outputted after VPCPP
sees seed.shared, and each pci is a parity function over seed.row and seed.col.

Remark 2.8. For clarity, we will now present the streamlined procedure of how a rectangular PCPP
with ROP works:

1. Sample shared randomness seed.shared ∈ {0, 1}rshared . Based on it,

(a) Construct a decision predicate circuit VDec := Vdec(seed.shared).

(b) Construct the parity-checks functions

(pc1, . . . , pcp) := (pc1(seed.shared), . . . , pcp(seed.shared)).

Here, each pci is a PARITY function over (a subset of indices in) seed.row and seed.col.

(c) Compute proof types

(itype[1], itype[2], . . . , itype[q]) := Vtype(seed.shared).

2. Sample row randomness seed.row ∈ {0, 1}rrow . Construct proof row locations

(irow[1], irow[2], . . . , irow[q]) := Vrow(seed.row, seed.shared).

3. Sample column randomness seed.col ∈ {0, 1}rcol . Construct proof column locations

(icol[1], icol[2], . . . , icol[q]) := Vcol(seed.col, seed.shared).

4. Compute randomness parity checks PC := (pc1(seed), pc2(seed), . . . , pcp(seed)).

5. Compute ans := (ans1, ans2, . . . , ansq) as in Definition 2.6.

6. Output the result of the computation VDec(ans, PC).

We will rely on the following rectangular PCP of proximity:
17In general, we could define ROP for arbitrary PCPPs: The seed is partitioned into a short aware part and the

rest oblivious part, and Vdec only depends on the aware part and a few parity-check bits over the oblivious part. In
this paper, we only consider ROP for rectangular PCPPs where the aware parts (for ROP) and the shared parts (for
rectangularity) are the same.

19

Soundness error s

Proximity parameter δ

Total randomness log T (n) +O(τ−1 log log T (n))

Shared randomness (τ/2) log T (n) +O(log log T (n))

Row randomness hproof − (τ/4) log T (n)

Column randomness wproof − (τ/4) log T (n)

Query complexity O(1)

Parity check complexity O(1)

Decision complexity polylog(T (n))

Table 1: Parameters of the rectangular PCPP in Theorem 2.9.

Theorem 2.9 (See Theorem 7.11 and Corollary 7.12). The following holds for every constants
τ, s, δ > 0. Let T (n), wproof(n), winput(n), be good functions such that n ≤ T (n) ≤ 2poly(n),
τ log T (n) ≤ wproof(n) ≤ log T (n), and winput(n) ≤ log n. Let

hproof(n) := log T (n) + Θ(τ−1 log log T (n))− wproof(n) and
hinput(n) := dlog ne − winput(n).

Moreover, suppose that for some large enough constant C ≥ 1,

winput(n)

wproof(n)
,
hinput(n)

hproof(n)
≤ 1− C log log T (n)

log T (n)
.

Let Wproof(n) := 2wproof(n), Hproof(n) := 2hproof(n), Winput(n) := 2winput(n), and Hinput(n) := 2hinput(n).
Then NTIMETM[T (n)] has a τ -almost rectangular PCPP with an Hinput(n)×Winput(n) input oracle
and an Hproof(n)×Wproof(n) proof oracle, whose other parameters are specified in Table 1.

Moreover, Vrow and Vcol are projections over seed.row and seed.col respectively, computable in
polynomial time given seed.shared.

3 Circuit Avoidance via Hamming Weight Estimation

Recall that for a string x, δ(x) denotes its relative Hamming weight. Let C be a multi-output
circuit class of stretch ` = `(n), we define the problem C -HammingHit:

Definition 3.1. Let Prep be a preprocessing algorithm, Query be a query algorithm, and ε > 0.
We say (Prep,Query) is an FPNP data structure for C -HammingHit with error 1− ε, if the following
are true:

(Preprocessing) Let C : {0, 1}n → {0, 1}` be a C circuit and 〈C〉 be its description, Prep(〈C〉) runs
in deterministic polynomial time with access to an NP oracle, and produces a string DS of
length poly(`).

(Query) For every query x ∈ {0, 1}n, Query(x) runs in deterministic `/ logω(1) ` time with random
access to DS and outputs a bit b. For every query x ∈ {0, 1}n, if δ(C(x)) = 1 then Query(x) =
1; while if δ(C(x)) ≤ ε then Query(x) = 0.

Note that the above definition allows polynomial preprocessing time (with an NP oracle) and
non-trivial query time (i.e., `/ logω(1) `).

In this section, we prove our main technical theorem: to solve C -Avoid in FPNP, it suffices to
design an FPNP data structure for C ′-HammingHit, where C ′ := NC0 ◦ C .

20

Theorem 3.2. For every constant ε > 0, there is a constant d > 0 such that the following holds. Let
C be a circuit class, and ` = `(n) be a good function such that `(n) > nγ for some constant γ > 1.
Suppose that for some constant η < γ/8, there is an FPNP data structure for C ′-HammingHit with
error 1− ε, where C ′ is the class of NC0

d ◦C circuits with n · polylog(`) inputs and `1−η · polylog(`)
outputs. Then there is an FPNP algorithm for C -Avoid with stretch `(n).

3.1 Proof of Theorem 3.2

Let ε > 0 be some constant, and d be a large constant that depends on ε.18 Assume that there
is an FPNP data structure (Prep,Query) for C ′-HammingHit with error ε, where C ′ is the class of
NC0

d ◦ C circuits from n · polylog(`) inputs to `1−η outputs.

Set up. Without loss of generality, we may assume that ` is a power of 2. Actually, let `′ be the
largest power of 2 that is ≤ `, we can discard all but the first `′ output gates of the input circuit C.

Let c > 0 be a constant such that the length of the data structure outputted by Prep(〈C ′〉) is
always at most `c, where C ′ is any circuit in C ′. Let

τ := 4η/(c+ 2),

wproof := log `, Wproof := 2wproof = `,

hproof := (c+ 1) log `, Hproof := 2hproof = `c+1,

N := 10Hproof · n,
T :=Hproof ·Wproof/polylog(`).

As long as ` ≥ n · polylog(n), it follows that T ≥ N · polylog(N). Thus we can use Theorem 2.3
to construct a language

Lhard ∈ NTIMETM[T] \ i.o.-NTIMEGUESSRTM[T/polylog(T), N/10]/(N/10).

Next we will construct an RTM called MPCPP that attempts to solve Lhard in nondeterministic
time T/polylog(T) with N/10 nondeterministic guess bits and N/10 advice bits. Note that by the
time hierarchy theorem, MPCPP has to fail to compute Lhard on some input. Our plan is to utilise
the failure of MPCPP to find a non-output of C.

Before describing MPCPP, we need the rectangular PCPP (Theorem 2.9) for the following lan-
guage

Lenc := {Enc(x) : x ∈ Lhard},
where we fix an error correcting code (Enc,Dec) as in Theorem 2.2. Suppose that a string of length
N is encoded (via Enc) into a string of length Ñ = O(N). We set the following parameters:

hinput :=

(
1− Θ(log log T)

log T

)
hproof , Hinput := 2hinput =Hproof/polylog(`),

winput := dlog Ñe − hinput, Winput := 2winput =n · polylog(`).

By Theorem 2.9, there is a PCPP verifier VPCPP for Lenc with oracle access to Π := Enc(x) ◦π,
tosses r := log T +O(τ−1 log log T) random coins, makes q := O(1) queries to Π, and either accepts

18Here, d depends on the query complexity of the rectangular PCPP in Theorem 2.9 with soundness ε. It follows
from the composition theorem (Section 7.2) that d does not depend on τ . Actually, d is the query complexity of the
inner PCPP ([Mie09]) with soundness ε, which is independent from τ .

21

or rejects. Recall that ε is one minus the error tolerance of our HammingHit data structure, and
let δ be the relative distance of the code in Theorem 2.2. The PCPP verifier has soundness error
ε, proximity parameter δ, proof oracle size Hproof ×Wproof , input oracle size Hinput ×Winput, and is
τ -almost rectangular. We can verify that the technical conditions in Theorem 2.9 are indeed true.
In particular:

• τ log T (n) ≤ τ(wproof(n) + hproof(n))
≤ τ(c+ 2) log ` ≤ log ` = wproof(n);

• winput(n)

wproof(n)
≤ logN − (1−Θ(log log `/ log `))(c+ 1) log `+O(1)

log `

≤ log n+O(log log `)

log `
< 1− Ω(1).

3.1.1 The Speed-Up Algorithm MPCPP

Now we define the algorithm MPCPP that attempts to compute Lhard. We say an Hproof×Wproof

matrix π is easy w.r.t. C, if every row of M is in the range of C. The algorithm makes the following
“easy-witness” assumption, namely that every x ∈ Lhard has a PCPP proof which is easy w.r.t. C.
We will see that this assumption is the only reason that MPCPP computes Lhard incorrectly.

Assumption 3.3. For every x ∈ Lhard, there is a proof matrix π ∈ {0, 1}Hproof×Wproof such that:

(Completeness) For every seed ∈ {0, 1}r, VPCPPEnc(x)◦π(seed) accepts.

(Easiness) For every row πi of π, there exists a string wi such that πi = C(wi).

On input x ∈ {0, 1}N , we guess Hproof strings w1, w2, . . . , wHproof
∈ {0, 1}n. Let π be the

Hproof ×Wproof proof matrix where for each i ∈ [Hproof], the i-th row of π is equal to C(wi). Let
Π := Enc(x) ◦ π, and recall that the input oracle (i.e., Enc(x)) is an Hinput ×Winput matrix. Now,
our goal is to estimate the following quantity in T/ logω(1) T time (note that we do not even have
time to construct Π explicitly):

pacc := Pr
seed←{0,1}r

[VPCPPΠ(seed) accepts].

Actually, it suffices to distinguish between the case that pacc = 1 and the case that pacc ≤ ε.
We enumerate seed.shared. Let

(itype[1], itype[2], . . . , itype[q]) :=Vtype(seed.shared),

(icol[1], icol[2], . . . , icol[q]) :=Vcol(seed.col, seed.shared).

Since seed.shared is fixed now, itype[·] is also fixed, and icol[·] is a function of seed.col.
Consider the following circuit C ′ := C ′seed.shared. It receives as inputs q strings a1, a2, . . . , aq,

where for each j ∈ [q]:

• if itype[j] = input, then aj is interpreted as a row of the input matrix, and we use (aj)col to
denote the col-th bit of aj ;

• if itype[j] = proof, then aj is interpreted as a “seed” such that C(aj) is a row of the proof
matrix, and we use (aj)col to denote the col-th bit of C(aj). (NOT the col-th bit of aj !)

22

In addition, it also receives q bits pc1, pc2, . . . , pcq, representing the contribution of seed.row in the
q parity-check bits.

The circuit C ′ has 2rcol outputs. For each string seed.col ∈ {0, 1}rcol , we interpret seed.col as a
number in [2rcol], and the seed.col-th output of C ′ is

VDec
(

(a1)icol[1], (a2)icol[2], . . . , (aq)icol[q], pc1 ⊕ pccol1 , pc2 ⊕ pccol2 , . . . , pcq ⊕ pccolq

)
.

Here, VDec is the decision predicate of VPCPP and pccoli represents the contribution of seed.col in the
i-th parity-check bit. Note that as seed.shared is fixed, VDec is also fixed and its only dependencies
on seed.row or seed.col are via the parity-check bits. It is easy to see that C ′ only depends on C,
the verifier VPCPP, and the shared randomness seed.shared. Let d := 2q, then C ′ is an NC0

d ◦ C
circuit of description length O(q|〈C〉|) that has

O(q · (Winput + n)) ≤ n · polylog(`)

inputs and
2|seed.col| = `/T 0.25τ = `1−ηpolylog(`).

outputs.

C C

a1 a2 a3 aq

. . .

C(aq)C(a2)

. . .

VDec

seed.col

VDecVDecVDec VDec VDec VDec

.0 2rcol − 1

C′ = C′
seed.shared

pc1 pc2 pcq

itype = input inputproof proof

Figure 1: The construction of C ′. It is not hard to see that if C ∈ C , then C ′ ∈ NC0
d ◦ C .

After constructing C ′, we enumerate seed.row and compute

(irow[1], irow[2], . . . , irow[q]) := Vrow(seed.row, seed.shared),

as well as the contribution of seed.row to the parity-check bits pcrow1 , pcrow2 , . . . , pcrowq .
Let x̃j be the j-th row of Enc(x) (viewed as an Hinput ×Winput matrix). For every j ∈ [q], let

aj :=

{
x̃irow[j] if itype[j] = input

wirow[j] if itype[j] = proof
.

We feed the following input to C ′:

input := (a1, a2, . . . , aq, pc
row
1 , pcrow2 , . . . , pcrowq).

We can verify that for every seed.col, the seed.col-th output bit of C ′(input) is exactly equal
to VPCPPΠ(seed). Thus the relative Hamming weight of C ′(input) is exactly the probability that
VPCPP accepts, conditioned on seed.row and seed.shared.

23

Let DS := DSseed.shared be the data structure returned by Prep(C ′seed.shared). We hardwire DS in
our advice.19 We can use QueryDS(input) to distinguish between δ(C ′(input)) = 1 and δ(C ′(input)) ≤
ε in time

2|seed.col|/|seed.col|ω(1) = 2|seed.col|/`ω(1).

If the query algorithm returns 0 for some seed.shared, then we reject x; if it always returns 1,
then we accept x.

To summarise, the machine MPCPP runs as follows:

Algorithm 1 A machine MPCPP that attempts to speed up Lhard

Input: x; advice DSseed.shared for every string seed.shared ∈ {0, 1}|seed.shared|
1: Guess w1, w2, . . . , wHproof

∈ {0, 1}n
2: Compute (x̃1, . . . , x̃Hinput

)← Enc(x)
3: for every string seed.shared do
4: Let DS← DSseed.shared be the HammingHit data structure for the circuit C ′seed.shared
5: for every string seed.row do
6: input←

(
a1, a2, . . . , aq, pc

row
1 , pcrow2 , . . . , pcrowq

)

7: if QueryDS(input) = 0 then return reject
8: return accept

3.1.2 Analysis of MPCPP

(Time Complexity) Given x, we can compute Enc(x) in linear time which is not the bottleneck.
For each seed.shared and seed.row we need to invoke Query once, so the time complexity of
MPCPP is

2|seed.shared|︸ ︷︷ ︸
seed.shared

· 2|seed.row|︸ ︷︷ ︸
seed.row

· 2|seed.col|/ logω(1) `︸ ︷︷ ︸
Query

= HproofWproof/ logω(1)(Wproof) ≤ T/ logω(1) T.

(Nondeterminism) MPCPP only guesses the strings w1, w2, . . . , wHproof
. Therefore, the number of

nondeterministic bits it uses is at most Hproof · n ≤ N/10.

(Advice Complexity) For each seed.shared, we hardcode Prep(C ′seed.shared) which is a length-P
string as advice. Therefore, MPCPP requires (Hproof ·Wproof)

τ · `c ≤ N/10 advice bits.

Therefore, MPCPP computes a language in NTIMEGUESSRTM[T/ logω(1) T,N/10]/(N/10). By
Theorem 2.3, there is some input xhard ∈ {0, 1}N such that MPCPP(xhard) 6= Lhard(xhard).

Claim 3.4. For every x ∈ {0, 1}N , if x 6∈ Lhard, then MPCPP rejects x.

Proof. Since x 6∈ Lhard, Enc(x) is δ-far from Lenc∩{0, 1}Ñ . For every proof matrix π, the probability
over a random seed← {0, 1}r that VPCPPΠ(seed) accepts is at most ε, where Π := Enc(x)◦π. This
is of course also true if we restrict π to be the matrix whose i-th row is C(wi). By averaging, there
is a setting of seed.shared and seed.row such that

Pr
seed.col

[
VPCPPΠ(seed) accepts

]
≤ ε.

Thus MPCPP will reject in Line 7 of Algorithm 1.
19We do not need to construct either C or any C′seed.shared inside MPCPP as we can directly use the advice. However,

as we will see later, our FPNP algorithm for Avoid needs to compute this advice outside MPCPP.

24

It follows from the above claim that xhard ∈ Lhard but MPCPP rejects xhard. Now we claim that
every PCPP proof for xhard is “hard” against C.

Claim 3.5. For any proof matrix π such that

Pr
seed

[
VPCPPΠ(seed) accepts

]
= 1,

where Π := Enc(xhard) ◦ π, there is a row of π which is not in the range of C.

Proof. Suppose the claim is false. Then there are strings w1, w2, . . . , wHproof
∈ {0, 1}n such that the

concatenation of {C(wi)}i, denoted as π, is a valid PCPP proof for the assertion

Enc(x) ∈ Lenc.

For every possible seed, VPCPPΠ(seed) accepts. It follows that whenMPCPP guesses w1, w2, . . . , wHproof
,

the query algorithm in Line 7 of Algorithm 1 will always return 1. Therefore MPCPP accepts xhard,
a contradiction.

3.1.3 The FPNP Range Avoidance Algorithm

Now we present the FPNP algorithm for finding a non-output of C.
First, we fix the PCPP verifier VPCPP for Lenc. We enumerate every seed.shared and compute

the circuit C ′seed.shared. Then we compute DSseed.shared := Prep(C ′seed.shared) in FPNP, concatenate all
these data structures {DSseed.shared} together to form an advice string α. We also compute the code
of MPCPP as specified in Algorithm 1.

Since MPCPP is a nondeterministic RTM that runs in time T/ logω(1) T , guesses at most N/10
nondeterministic bits, and takes at most N/10 bits of advice, as discussed above, there is an input
xhard ∈ {0, 1}N such that xhard ∈ Lhard but MPCPP rejects xhard. Moreover, xhard can be found by
the refuter algorithm R(1N , 〈MPCPP〉, α) in Theorem 2.3 in FPNP.

By Claim 3.5, for every Hproof ×Wproof matrix π which is a valid PCPP proof for xhard, there
is a row of π which is not in the range of C. We can use the NP oracle to find some valid PCPP
proof π for xhard (for example, the lexicographically first one). Then we use the NP oracle to check,
for each row, whether it is in the range of C. We output the first row that is not in the range of C.
This finishes the description of our FPNP algorithm for C -Avoid.

3.2 A Non-trivial Avoidance Algorithm for De Morgan Formulas

As a straightforward application of Theorem 3.2, we present non-trivial FPNP avoidance algo-
rithms for De Morgan formulas. In particular, suppose F : {0, 1}n → {0, 1}` is a function where
each output can be computed by a De Morgan formula of size s, and ` ≥ nω(

√
s log s), then we can

find a non-output of F in deterministic poly(`) time with an NP oracle.
We need that any function computed by a size-s formula has approximate degree Õ(

√
s):

Theorem 3.6 ([Rei11, Tal17]; See also [KKL+21, Lemma 44]). For any integer s > 0 and any
0 < ε < 1, there exists a deterministic algorithm of running time sO(

√
s log s log(1/ε)) that given a De

Morgan formula F of size s, outputs an ε-approximating polynomial of degree O(
√
s log s log(1/ε))

for F . That is, the algorithm outputs a multi-linear polynomial p (as sum of monomials) over the
reals such that for every x ∈ {0, 1}n, we have |p(x)− F (x)| ≤ ε.

The above theorem implies the following avoidance algorithm:

25

Theorem 3.7. Let s = s(n) ≤ poly(n) be a good function. There is an FPNP algorithm that satisfies
the following.

(Input) The algorithm receives a multi-output function F : {0, 1}n → {0, 1}`, where each output is
computed by a size-s De Morgan formula over the inputs, and ` ≥ nω(

√
s log s). (The algorithm

is given the description of De Morgan formulas for each output bit.)

(Output) The algorithm outputs some string y ∈ {0, 1}` \ Range(F).

Proof. Let η > 0 be a small enough constant. Let C ′ be the class of multi-output functions with
input length `in := n · polylog(`) and output length `out := `1−η · polylog(`), where each output bit
is computed by a size-O(s) De Morgan formula. By Theorem 3.2, it suffices to design an FPNP data
structure for C ′-HammingHit with error 1− 1/3.

Let C : {0, 1}`in → {0, 1}`out be a multi-output function where every output bit is computed by
a formula of size O(s). Let Ci be the single-output function denoting the i-th output bit, and pi be
the polynomial that 1/10-approximates Ci, i.e., for every input x and every i, |Ci(x)−pi(x)| ≤ 1/10.
Let αS,i be the coefficient of the monomial xS :=

∏
j∈S xj in pi, then

pi(x) =
∑

|S|≤O(
√
s log s)

αS,ixS .

Now, let

p(x) := (1/`out)

`out∑

i=1

pi(x).

It follows that for every x,
|δ(C(x))− p(x)| ≤ 1/10.

So it suffices to compute p(x) during each query x. In the preprocessing phase, for every monomial
xS , we also compute

αS := (1/`out)

`out∑

i=1

αS,i.

It is easy to see that p(x) =
∑

S αSxS .
Our FPNP data structure for C ′-HammingHit works as follows. During the preprocessing phase,

we use Theorem 3.6 to compute p1, p2, . . . , p`out , and then compute αS for each monomial xS . Given
a query x ∈ {0, 1}`in , if p(x) ≤ 1/2 then we output 0; otherwise we output 1.

The preprocessing algorithm runs in time `out · sO(
√
s log s) + (`in)O(

√
s log s) ≤ poly(`out) (without

using the NP oracle). Each query algorithm runs in time

(`in)O(
√
s log s) ≤ (n log `)O(

√
s log s) ≤ `out/ logω(1) `out.

Thus we have a non-trivial data structure for C ′-HammingHit; we can use it to solve the avoidance
problem for De Morgan formulas in FPNP.

3.3 Avoidance Algorithms for NC0 from CSP Sparsification

Actually, one motivation of this work was to unconditionally solve the avoidance problem for
NC0 circuits (with moderate stretch), that is, to prove the following conjecture:

26

Conjecture 3.8. For every constant c ≥ 1 and γ > 0, let C be the class of functions with n input
bits and n1+γ output bits where each output bit depends on at most c input bits. Then there is an
FPNP algorithm for C -Avoid.

We did not manage to prove Conjecture 3.8, but we show that if CSP sparsifiers [PZ21] are
computable in FPNP, then Conjecture 3.8 is true. Note that the construction in [PZ21] only uses
the hypergraph cut sparsifiers in [BST19] as a black box, and thus is computable in randomised
polynomial time. Therefore, an FPNP derandomisation of the hypergraph cut sparsifiers implies an
FPNP algorithm for NC0-Avoid (with stretch n1+γ for any constant γ > 0).

Definition 3.9 (CSP Sparsifiers). A k-constraint satisfaction problem (k-CSP) is specified by a
k-uniform directed hypergraph G = (V,E) and a predicate P : {0, 1}k → {0, 1}. Here, we say G
is a k-uniform directed hypergraph if every edge in G is an ordered length-k tuple (v1, v2, . . . , vk)
where v1, v2, . . . , vk ∈ V .

Given an assignment α : V → {0, 1}, the value of the CSP is defined as

valueG,P (α) :=
1

|E|
∑

(v1,v2,...,vk)∈E

P (v1, v2, . . . , vk).

Let G be a k-uniform directed hypergraph and P : {0, 1}k → {0, 1} be a predicate. We say
that a sub-hypergraph G′ = (V,E′ ⊆ E) is a P -sparsifier of G with error ε, if for every assignment
α : V → {0, 1}, ∣∣valueG′,P (α)− valueG,P (α)

∣∣ ≤ ε.

Remark 3.10. We note that Definition 3.9 is weaker than [PZ21, Definition 9]. In that definition, the
error term is ε times a quantity which is related to the “volume” of the subset α−1(0) and upper bounded
by a constant. In our definition, the error term is simply ε. Of course, using a weaker definition of
sparsifiers makes it potentially easier to construct them.

The main result in [PZ21] is a randomised algorithm for constructing CSP sparsifiers:

Theorem 3.11 ([PZ21]). For every constants k ≥ 1 and ε > 0, there is a randomised polynomial-
time algorithm that given a k-uniform directed hypergraph G and a predicate P : {0, 1}k → {0, 1},
outputs a P -sparsifier of G with error ε using O

(
nε−2 log(1/ε)

)
hyperedges.

Theorem 3.12. Suppose that for every constant k ≥ 1, there is an FPNP algorithm that given any
k-uniform directed hypergraph G and any predicate P : {0, 1}k → {0, 1}, outputs a P -sparsifier of
G with error ε = 0.5 using Õ(n) hyperedges.

Then for every constants γ > 0 and c ≥ 2, there is an FPNP algorithm for C -Avoid, where C
is the family of NC0

c circuits with stretch n1+γ.

Proof. Let ε := 0.5 and `(n) := n1+γ . By Theorem 3.2, for some constant d ≥ 1, it suffices to design
an FPNP data structure for the C ′-HammingHit problem with error 1− ε = 0.5, where C ′ is the class
of NC0

c·d circuits with nin := n · polylog(n) inputs and nout := n1+8γ/9 · polylog(n) output bits.
Let C : {0, 1}nin → {0, 1}nout be an input circuit where each output bit only depends on k := c ·d

input bits. According to the k-ary Boolean function computed by each output bit, we can group
these output bits into 2k = O(1) categories, where each category corresponds to a CSP with a fixed
predicate P : {0, 1}k → {0, 1}. We compute an ε-additive sparsification for these CSPs and take the
union of them. (See [PZ21, Remark 11].) We obtain a smaller NC0 circuit C ′ : {0, 1}nin → {0, 1}nout

′

such that:

27

• nout
′ ≤ Õ(nin) · 2k ≤ Õ(nin);

• for every x ∈ {0, 1}nin , |δ(C(x))− δ(C ′(x))| ≤ ε.

Our HammingHit data structure proceeds as follows. In the preprocessing phase, we are given
the circuit C, and compute the circuit C ′ using the NP oracle. Given a query x ∈ {0, 1}nin , we
compute δ(C ′(x)) as an estimation of δ(C(x)) in O(nout

′) < nout/ logω(1) nout time.

Remark 3.13. The notion of CSP sparsifiers is a generalisation of hypergraph cut sparsifiers. Let
Cut : {0, 1}k → {0, 1} be the predicate which is 0 if all k input bits are equal and is 1 otherwise. Then
a cut sparsifier of a hypergraph G is simply a Cut-sparsifier of G.

Near-linear size hypergraph cut sparsifiers are computable in randomised polynomial time [KK15,
BST19, SY19, CKN20, KKTY21]. Unfortunately, it is unknown if these constructions can be deran-
domised (even with an NP oracle).

4 ENP Lower Bounds Are Data Structures

In this section, we show that circuit lower bounds for ENP are equivalent to a certain kind of
non-trivial derandomisation with ENP preprocessing.

4.1 Derandomisation with Preprocessing Implies Circuit Lower Bounds

Let C be a (single-output) circuit class. We define the circuit-analysis problems for C with ENP

preprocessing :

Definition 4.1. Let Prep be a preprocessing algorithm, Query be a query algorithm, C be a circuit
class, s(n) be a size parameter, and ε > 0. We say (Prep,Query) is a CAPP data structure for
C [s(n)] with ENP preprocessing and error ε, if the following are true:

• Prep(1n) runs in deterministic 2O(n) time with access to an NP oracle, and produces a string
DS of length 2O(n).

• Let C be a C circuit with n inputs and size s(n). Query(〈C〉) runs in deterministic 2n/nω(1)

time with random access to DS and outputs an estimation of Prx←{0,1}n [C(x) = 1] within an
additive error of ε.

If the correctness requirement for Query(·) is replaced by the following, then we say (Prep,Query)
is a GapUNSAT data structure for C [s(n)] with ENP preprocessing and error 1− ε:

• If C is unsatisfiable, then Query(〈C〉) outputs 0; if Prx←{0,1}n [C(x) = 1] ≥ 1 − ε, then
Query(〈C〉) outputs 1.

If the requirement for Query(·) is replaced by the following, then we say (Prep,Query) is a CAPP
data structure for C [s(n)] with ENP preprocessing and inverse-circuit-size error :

• Query(〈C〉) outputs an estimation of Prx←{0,1}n [C(x) = 1] within an additive error of 1/s(n).

Finally, if the data structure is correct only for infinitely many numbers n, then we say the data
structure is an i.o. CAPP (or i.o. GapUNSAT) data structure.

Theorem 4.2. Let C be a circuit class and poly(n) ≤ s(n) ≤ 20.01n be a good function, such that
the following technical conditions hold:

28

(C is universal) For every truth table of length 2k, there is a C circuit of size poly(2k) that
computes this truth table.

(C computes PARITY) The PARITY function can be computed by a C circuit of size poly(n).

For every constant ε ∈ (0, 1), there is a constant d ≥ 2 such that the following holds. If there is
a GapUNSAT data structure for NC0

d ◦C circuits of size poly(s(n)) with ENP preprocessing and error
1− ε, then there is a language in ENP without size-s(n) C circuits on almost every input length.

One attempt to prove the above theorem is to directly invoke Theorem 3.2. More precisely,
we define a multi-output circuit class that consists of only one circuit TTC (n) for each integer n:
TTC (n) receives as input the description of a C circuit and outputs its truth table. If we can solve
the avoidance problem for TTC (n), we could obtain a truth table hard for C circuits.

However, one issue with this approach is that we need to solve the HammingHit problem of
NC0 ◦TTC (n) in order to solve the avoidance problem for TTC (n). It seems unclear how to handle
NC0 ◦ TTC (n) circuits using only a CAPP data structure for C . Therefore, we need to follow the
proof of Theorem 3.2 (instead of treating it as a black box). The crucial step for getting rid of
the top NC0 circuit is that, in our rectangular PCPP construction, Vrow and Vcol have small circuit
complexity (i.e., they are projections).

Proof of Theorem 4.2. Let c ≥ 1 be a constant such that Prep(1n) always outputs a data structure
of length at most 2cn. Suppose that any C circuit of size s(n) can be described in bit-length
` ≤ O(s(n) log s(n)). In this proof, we set the following parameters:

τ := 1/(c+ 1),

wproof :=n, Wproof := 2wproof = 2n,

hproof := cn, Hproof := 2hproof = 2cn,

N := 10Hproof · ` = 10 · 2cn`,
T :=Hproof ·Wproof/poly(n) = 2(c+1)n/poly(n).

Our goal is to find, in DTIME[2O(n)]NP, a truth table of lengthWproof that does not have size-s(n)
C circuits. Let Lhard be the language constructed in Theorem 2.3, i.e.,

Lhard ∈ NTIMETM[T] \ i.o.-NTIMEGUESSRTM[T/polylog(T), N/10]/(N/10).

Now we construct a nondeterministic RTM MPCPP that attempts to solve Lhard. Let Lenc :=
{Enc(x) : x ∈ Lhard} where Enc is the error correcting code specified in Theorem 2.2. Suppose that
the encoding of length-N strings have length Ñ = O(N). Let

hinput :=

(
1− Θ(log log T)

log T

)
hproof , Hinput := 2hinput = 2cn/poly(n),

winput := dlog Ñe − hinput, Winput := 2winput = ` · poly(n).

Let VPCPP be the τ -almost rectangular PCPP verifier for Lenc with soundness ε specified in Theo-
rem 2.9, where the proof oracle π is anHproof×Wproof matrix and the input oracle is anHinput×Winput

matrix. We verify the technical conditions of Theorem 2.9 hold:

• τ log T ≤ τ(c+ 1)n = wproof ;

•
winput(n)

wproof(n)
≤ logN − cn+O(log n)

n
≤ log `+O(log n)

n
< 1− Ω(1).

29

The speed-up machine MPCPP assumes that every row of the proof oracle is the truth table of
some circuit in C [s(n)]. It guesses Hproof size-s(n) C circuits C1, C2, . . . , CHproof

such that the i-th
row of the proof matrix π is the truth table of Ci. Let Π := Enc(x) ◦ π, now it remains to estimate

pacc := Pr
seed

[VPCPPΠ(seed) accepts].

We first enumerate seed.shared and seed.row. Recall that we define

(itype[1], itype[2], . . . , itype[q]) :=Vtype(seed.shared),

(irow[1], irow[2], . . . , irow[q]) :=Vrow(seed.row, seed.shared), and
(icol[1], icol[2], . . . , icol[q]) :=Vcol(seed.col, seed.shared).

(Note that as we only enumerated seed.shared and seed.row, itype[i] and irow[i] are already fixed,
but icol[i] are functions of seed.col.) We need to estimate

pacc(seed.row, seed.shared) := Pr
seed.col

[VPCPPΠ(seed) accepts]. (2)

Now, we create the following circuit C ′ := C ′seed.row,seed.shared that takes seed.col as input and
accepts if and only if VPCPPΠ(seed) accepts. For every i ∈ [q]:

• Suppose itype[i] = proof. Let Di be the circuit such that Di(seed.col) = Cirow[i](icol[i]). Since
icol[i] is a projection over seed.col and C is closed under projections, Di can be computed by
a C circuit of size poly(`).

• Suppose itype[i] = input. Let D′irow[i] be the C circuit whose truth table is the irow[i]-th row
of the input matrix Enc(x). Since C is universal, the size of D′irow[i] is at most poly(Winput) ≤
poly(`).20 Let Di be the circuit such that Di(seed.col) := D′irow[i](icol[i]), then Di can also be
computed by a C circuit of size poly(`).

We also construct a circuit PCi(seed.col) to compute the i-th parity-check bit. In particular,
as we have already fixed seed.row and seed.shared, the i-th parity-check bit is simply the XOR of a
subset of indices in seed.col. Since PARITY can be computed by a C circuit of polynomial size21, it
follows that PCi is also a C circuit of size poly(|seed.col|) ≤ poly(n).

Let VDec be the decision predicate of VPCPP. The circuit C ′ is simply

C ′(seed.col) := VDec(D1(seed.col), . . . , Dq(seed.col), PC1(seed.col), . . . , PCq(seed.col)).

Let d := 2q. We can see that C ′ is an NC0
d ◦ C circuit of size poly(s(n)). Therefore, we can use

the GapUNSAT data structure to estimate Eq. (2) in time 2rcol/(rcol)
ω(1), where rcol := |seed.col| =

wproof − (τ/4) log T ≥ Ω(n). It follows that the above time bound is also 2rcol/nω(1).
The total running time of MPCPP is thus 2|seed|/nω(1) < T/ logω(1) T . The number of nondeter-

ministic bits thatMPCPP guesses is Hproof ·` ≤ N/10. The number of advice bits thatMPCPP uses is
2cn ≤ N/10. Therefore, MPCPP accepts a language in NTIMEGUESSRTM[T/ logω(1) T,N/10]/(N/10).

It follows from the definition of Lhard thatMPCPP fails to compute Lhard on some input of length
N , for every large enough N . We use the PNP refuter to find an input xhard where Lhard(xhard) 6=

20The circuit D′i may not be uniform (i.e., computable in polynomial time). However, given a circuit D̃i, it only
takes deterministic poly(Winput) < 2O(n) time to verify whether it computes a given truth table of length Winput.
Therefore we can use the NP oracle and generate D′i in TIME[poly(Winput)]

NP.
21The circuit for PARITY can be generated in a similar way as Footnote 20. The circuit only takes |seed.col| ≤ O(n)

inputs, so it can be verified in deterministic 2O(n) time, thus can be generated in TIME[2O(n)]NP.

30

icol[1]

D′
irow[1]

icol[2]

Cirow[2]

icol[3]

Cirow[3]

icol[q]

D′
irow[q]

. . .
. . .

projections

seed.col

PC1 PC2 PCq

VDec

itype = input proof proof input. . .

Figure 2: The circuit C ′. It is easy to see that C ′ ∈ NC0
d ◦ C .

MPCPP(xhard). By the construction of MPCPP, it has to be the case that xhard ∈ Lhard but
MPCPP(xhard) = 0. In this case, for any valid PCPP proof π of “Enc(xhard) ∈ Lenc”, if we treat
π as an Hproof ×Wproof matrix, then there has to be some row of π which is not the truth table of
any size-s(n) C circuit. We simply find a valid PCPP proof π and output the row of π that does
not have size-s(n) C circuits. This is easily done in TIME[2O(n)]NP.

To show equivalences in Section 4.3, we also need an infinitely-often version of the above theorem.

Corollary 4.3. Let C be a circuit class that is universal and computes PARITY. Let poly(n) ≤
s(n) ≤ 20.01n be a good function.

For every constant ε ∈ (0, 1), there is a constant d ≥ 2 such that the following holds. If there
is an i.o. GapUNSAT data structure for NC0

d ◦ C circuits of size poly(s(n)) with ENP preprocessing
and error 1− ε, then there is a language in ENP without size-s(n) C circuits.

Proof Sketch. As the proof is almost the same as the proof of Theorem 4.2, we will only sketch the
differences here.

We define MPCPP in the same way as Theorem 4.2. Then, MPCPP fails to compute Lhard on all
large enough input lengths. Note that the correctness of MPCPP on input length n only depends on
the correctness of the (i.o.) GapUNSAT data structure on input length

rcol = wproof − (τ/4) log T =
3

4
n+O(log n).

For every integer rcol such that the i.o. GapUNSAT data structure is correct, the “easy-witness”
assumption fails when n = 4

3rcol−O(log rcol). That is, for such integers n, any valid PCPP proof π
for xhard ∈ {0, 1}n contains some row that is not the truth table of any size-s(n) circuit.

4.1.1 Shaving Logs Implies Lower Bounds, Even with Preprocessing

As a direct corollary of Theorem 4.2, we tighten the connections between circuit lower bounds and
non-trivial speed-ups for certain problems in fine-grained complexity. Typically, such a connection
states that there is a problem L for which a Õ(n2) algorithm is already known, such that if we could
solve L in n2/ logω(1) n time (i.e., “shaving all logs”), then we could prove a breakthrough circuit
lower bound.

Theorem 4.2 implies that we could still obtain the breakthrough lower bound, even if we allow a
preprocessing phase of time n100 with an NP oracle before we receive the input of L! For an optimist,
this can be seen as an improved approach to prove such lower bounds: Now, we can rely on the

31

power of PNP preprocessing to solve L, and we (still) only need to obtain a modest improvement
over the naïve algorithms.

There are many such connections in the literature, but for illustration, we only consider the
following examples:

• LCS (Longest Common Subsequence) over alphabet Σ: Given two sequences a, b ∈ ΣN , find
the length of their longest common subsequence.

Abboud and Bringmann [AB18], improving on [AHWW16], showed that the SAT problem for
formulas of size s and n inputs can be reduced to an instance of LCS with two sequences of
length N := 2n/2 · s1+O(1/ log log σ) over alphabet [σ], in O(N) time.

• Closest-LCS-Pair: Given two sets of N length-D strings A,B, find (or approximate) the max-
imum length of the longest common subsequence among all pairs (a, b) ∈ A× B.
Chen, Goldwasser, Lyu, Rothblum, Rubinstein [CGL+19] showed that for every constant
c ≥ 1, the SAT problem for formulas of size s and n inputs can be reduced to an instance of
c-approximate Closest-LCS-Pair with N := 2n/2 and D := 2polylog(n).

Proof Sketch in [CGL+19]. We use Barrington’s theorem [Bar89] to transform the formula into
a width-5 branching program of size poly(s). Then we reduce its SAT problem to the following
problem (called BP-Satisfying-Pair in [CGL+19]): Given a size-poly(s) width-5 branching program
P on n Boolean inputs, and a set of N := 2n/2 strings A,B ⊆ {0, 1}n, determine if there is a
pair (a, b) ∈ A × B such that P (a, b) = 1. The next step is to invoke [CGL+19, Theorem 5.6]
to reduce BP-Satisfying-Pair to a problem called ε-Gap-Max-TropSim, whose input consists of two
sets of N tensors of size D := 2O(log2 n log logn). Finally, this problem reduces to O(1)-approximate
Closest-LCS-Pair over N length-D strings.

• Z-OV (Hopcroft’s Problem): Given N points ~v1, ~v2, . . . , ~vN ∈ ZD, find an orthogonal pair,
i.e., two vectors ~va and ~vb such that

D∑

i=1

vai · vbi = 0.

Chen [Che18] showed that the SAT problem on THR ◦THR circuits of size s and n inputs can
be reduced to poly(s) Z-OV instances on N := 2n/2 vectors of dimension D := poly(s).

Proof Sketch in [Che18]. Given a THR ◦ THR circuit of size s, we use [Che18, Theorem 1.6] to
transform it into an OR ◦THR ◦MAJ circuit of size poly(s), then use [HP10] to transform it into
an OR ◦ ETHR ◦MAJ circuit of size poly(s). Here, ETHR denotes “exact threshold gates”, which
outputs 1 if a certain linear combination of its input is exactly equal to its threshold parameter,
and outputs 0 otherwise; the transformation can be performed in deterministic poly(s) time.
Finally, we reduce the satisfiability of each bottom ETHR ◦MAJ circuit to Z-OV.

The naïve algorithms for LCS, Closest-LCS-Pair, and Z-OV run in O(N2), O(N2D2), and
O(N2D) time respectively. The above reductions show that a modest improvement of these
quadratic-time algorithms (i.e., “shaving all logs”) would imply new SAT algorithms for frontier
circuit classes, e.g., NC1 or THR ◦ THR. By the Algorithmic Method [Wil13, CW19], these SAT
algorithms imply long-standing circuit lower bounds for these classes.

To state our corollary, we need the following definition of solving a problem with PNP prepro-
cessing.

32

Definition 4.4. We say that a problem L can be solved in T (n) time with PNP preprocessing if
there are two algorithms (Prep,Query) such that the following holds:

• Prep receives an input 1n, runs in time poly(n) with access to an NP oracle, and outputs a
string DS of length poly(n).

• Query receives an input x of L, has random access to DS, runs in time T (n), and correctly
decides whether x ∈ L.

Now we present the following corollary of Theorem 4.2, which states that even if we allow a PNP

preprocessing phase (which runs in arbitrary polynomial time in N but does not see the input),
such a modest improvement would still imply breakthrough circuit lower bounds:

Corollary 4.5. The following are true:

• Suppose that LCS of length-N strings over any constant-size alphabet can be solved in N2/ logω(1)N
time, even with PNP preprocessing, then ENP 6⊆ NC1.

• Suppose there is a constant c ≥ 1 such that for any D = 2poly(log logN), Closest-LCS-Pair of N
length-D strings can be c-approximated in N2/ logω(1)N time, even with PNP preprocessing,
then ENP 6⊆ NC1.

• Suppose that for any D = polylog(N), Z-OV for N points in ZD can be solved in N2/ logω(1)N
time, even with PNP preprocessing, then ENP 6⊆ THR ◦ THR.

Remark 4.6. Since NC1 satisfies all technical conditions in Theorem 4.2 (NC1 is universal, computes
PARITY efficiently, and is closed under adding NC0 circuits at the top), the first two items of Corollary 4.5
are straightforward. For THR ◦ THR:

• Since THR ◦ THR contains CNF (i.e., AND ◦ OR), it is clearly universal.

• There is a polynomial-size THR ◦ THR circuit that computes PARITY [Mur71,PS94].

• Finally, for d = O(1), the SAT problem (thus, the GapUNSAT problem) for NC0
d ◦ THR ◦ THR

reduces to poly(nd) instances of the SAT problem for THR ◦ THR.
More precisely, since THR ◦THR is closed under negation, the SAT problem for NC0

d ◦THR ◦THR
reduces to the SAT problem for 2O(d) instances of ANDd ◦ THR ◦ THR. Using the fact that
THR ⊆ OR ◦ ETHR [HP10], we reduce the problem to the SAT problem for ANDd ◦OR ◦ ETHR ◦
THR. Enumerating the set of d bottom ETHR ◦ THR circuits that are satisfied, we reduce the
problem to poly(n)d ≤ poly(n) instances of the SAT problem for ANDd ◦ ETHR ◦ THR circuits.
Since AND ◦ ETHR ⊆ ETHR and ETHR ◦ THR = ETHR ◦ ETHR ⊆ THR ◦ THR [HP10], every
ANDd ◦ ETHR ◦ THR circuit is equivalent to a THR ◦ THR circuit. Finally, notice that every
transformation mentioned above can be implemented in deterministic polynomial time.

4.2 Technical Preliminaries

To prove the full equivalence results in Section 4.3, we need the following preliminaries.

4.2.1 Pseudorandom Generators

Let C be a circuit class, ε > 0, and r(n) < n be a good function. A pseudorandom generator
(PRG) with seed length r(n) that ε-fools C is a function G : {0, 1}r → {0, 1}n such that for every
circuit C ∈ C , ∣∣∣∣ Pr

x←{0,1}n
[C(x) = 1]− Pr

seed←{0,1}r
[C(G(seed)) = 1]

∣∣∣∣ ≤ ε.

33

We also say G is an i.o. PRG if the above condition holds for infinitely many lengths n.
In this paper, we will mostly consider ENP-computable PRGs, where G is computable in 2O(r)

time with access to an NP oracle. (It is without loss of generality to assume that r ≥ Ω(log n).)
A PRG G : {0, 1}r → {0, 1}n is seed-extending if for every seed ∈ {0, 1}r, the first r bits of

G(seed) is always equal to seed.22

We need the classical construction of PRGs from average-case lower bounds [NW94]. Let Juntak
be the class of k-juntas, i.e., functions that only depend on k input bits. We have:

Theorem 4.7 ([NW94], see also [CR20, Theorem 6.4]). Let m, `, a be integers such that a ≤ `,
and let t := O(`2 · m1/a/a). Let C be a circuit class closed under negation. There is a function
G : {0, 1}2`×{0, 1}t → {0, 1}m computable in deterministic poly(m, 2t) time such that the following
holds.

For any function Y : {0, 1}` → {0, 1} represented as a length-2` truth table, if Y cannot be
(1/2+ ε/m)-approximated by C [S]◦Juntaa circuits (i.e., the top C circuit has size S), then G(Y,−)
is a PRG that ε-fools every C [S] circuit. That is, for any circuit C ∈ C [S],

∣∣∣∣ Pr
s←{0,1}t

[C(G(Y, s)) = 1]− Pr
x←{0,1}m

[C(x) = 1]

∣∣∣∣ ≤ ε.

Moreover, for every Y , the function G(Y,−) is seed-extending.

4.2.2 Elementary Properties of Norm and Inner Product

We discuss some properties of norms and the inner product of functions on Boolean cubes, which
will be useful for us. For a function f : {0, 1}n → R, we define its `p-norm as

‖f‖p :=

(
E

x←{0,1}n
[|f(x)|p]

)1/p

In particular, the `∞-norm is defined as the maximum absolute value of f .

‖f‖∞ := max
x∈{0,1}n

|f(x)|.

For m ≥ 2 and functions f1, f2, . . . , fd : {0, 1}n → R, we use the following definition for conve-
nience:

〈f1, f2, . . . , fd〉 := E
x←{0,1}n

[
d∏

i=1

fi(x)

]
.

We need the following generalization of the Hölder’s inequality:

Fact 4.8. Let d be an integer. For functions f1, f2, . . . , fd : {0, 1}n → R we have that
∥∥∥∥∥
d∏

i=1

fi

∥∥∥∥∥
1

≤
d∏

i=1

‖fi‖d

We need the following simple lemma for this paper.
22Note that a cryptographic PRG [HILL99], where the PRG itself (G) is more efficient than the adversaries (C),

cannot be seed-extending. In contrast, a complexity-theoretic PRG [NW94], where the PRG could take more time
to compute than the adversaries have, could be seed-extending. Indeed, the classical Nisan-Wigderson PRG can be
made seed-extending.

34

Lemma 4.9 (a generalisation of [CW19, Lemma 28]). For any integer d ≥ 2 and functions
f1, f2, . . . , fd and g1, g2, . . . , gd from {0, 1}n → R and ε, α > 0, suppose for all i ∈ [d] we have:

• ‖fi‖d ≤ α and ‖gi‖d ≤ α,

• ‖fi − gi‖d ≤ ε.

Then |〈f1, f2, . . . , fd〉 − 〈g1, g2, . . . , gd〉| ≤ d · αd−1 · ε.

Proof. We have

|〈f1, . . . , fd〉 − 〈g1, . . . , gd〉| ≤
d∑

i=1

|〈f1, . . . , fi, gi+1, . . . , gd〉 − 〈f1, . . . , fi−1, gi, . . . , gd〉|

≤
d∑

i=1

|〈f1, . . . , fi − gi, gi+1, . . . , gd〉|

≤ d · αd−1 · ε (by Fact 4.8).

4.2.3 Linear Sum of Circuits

Sum ◦ C circuits. Let C be a circuit class. A Sum ◦ C circuit C : {0, 1}n → R is a circuit of the
following form:

C(x) =
∑̀

i=1

αiCi(x),

where each αi ∈ R and each Ci is a C circuit. The complexity of C is defined as

complexity(C) := max

{∑̀

i=1

|αi|,
∑̀

i=1

|Ci|
}
.

If for every input x ∈ {0, 1}n, we have C(x) ∈ [0, 1], then we say C is an [0, 1]-Sum ◦ C circuit.
Recall that the `1-distance between a Sum ◦ C circuit C and a function f is

‖C − f‖1 = E
x←{0,1}n

|C(x)− f(x)|.

We define binC as the Boolean function that is closest to C. That is, for every x ∈ {0, 1}n, if
C(x) ≤ 0.5 then binC(x) = 0, otherwise binC(x) = 1.

S̃um ◦ C circuits. Let δ ∈ [0, 0.5). A Sum ◦ C circuit C is said to be a S̃umδ ◦ C circuit, if for
every input x ∈ {0, 1}n, either |L(x)− 1| ≤ δ or |L(x)| < δ. We say C(x) = 1 if |L(x)− 1| ≤ δ, and
C(x) = 0 otherwise.

4.2.4 Algorithms for Linear Sum of Circuits

In the context of the Algorithmic Method, one advantage of Sum ◦C circuits is that it preserves
algorithms: circuit analysis algorithms for C often imply circuit analysis algorithms for Sum ◦ C .
Below are a few examples that will be useful for us.

35

PRGs fooling C also fools S̃um ◦ C . Suppose that G is a PRG that fools C circuits, we show
that it also fools S̃um ◦ C circuits. For completeness, we include a proof in Appendix A.2.

Lemma 4.10. Let ε, δ > 0, C be a circuit class, s(n) be a good function, and G : {0, 1}r → {0, 1}n
be a PRG that ε-fools C circuits of size s(n). For ε′ := 2δ+ ε ·s(n), G also ε′-fools S̃umδ ◦C circuits
of complexity s(n).

CAPP algorithms for Sum ◦C . Let d ≥ 2 be a constant. Given a CAPP algorithm for ANDd ◦C
with inverse-circuit-size error, we can also construct a CAPP algorithm for ANDd ◦C ′ with constant
error, where C ′ is the class of Sum ◦ C circuits C ′ that has `d-distance at most δ to binC′ .23

(Recall that binC′ is the Boolean function closest to C ′.) For completeness, we include a proof in
Appendix A.3.

Lemma 4.11. Let d ≥ 2 be a constant, s = s(n), T = T (n) be good functions, and C be a circuit
class. Suppose that there is a deterministic T (n)-time algorithm for the CAPP problem for ANDd◦C
circuits with inverse-circuit-size error, where the bottom C circuits have size Θ(s(n)d).

Then, there is a constant δ > 0 and an algorithm that achieves the following.

(Input) The algorithm is given d Sum ◦C circuits C1, C2, . . . , Cd as inputs, where for each i ∈ [d],
Ci has complexity at most s(n), and it is promised that ‖Ci − binCi‖d ≤ δ.

(Output) The algorithm estimates the following quantity within an additive error of (1/6) · 2−d.

E
x←{0,1}n

[binC1(x) ∧ binC2(x) ∧ · · · ∧ binCd(x)].

(Complexity) The algorithm runs in deterministic O(s(n)d · T (n)) time.

Verification of Sum ◦ C circuits. We need the following lemma for testing whether a Sum ◦ C
circuit has low `d-distance to its closest Boolean function. The lemma has a similar proof to
[CR20, Lemma 5.3], for completeness, we include a proof in Appendix A.4.

Lemma 4.12. Let S ∈ N and d ≥ 2 where d is an even number. Suppose we are given S reals
(αi)i∈[S], S C circuits (Ci)i∈[S], and a parameter δ < 0.01/d. Let αtot :=

∑
i∈[S] |αi| and ε :=

δd

2·3d·(αtot+1)2d . Suppose the CAPP problem for AND2d ◦ C with error ε can be solved in T (n) time.

Let f =
∑S

i=1 αi · Ci. There is an algorithm A running in O(T (n) · (S + 1)2d) time such that:

• If one of the following conditions hold, then A always accepts;

– ‖f − binf‖∞ ≤ δ/3
– ‖f − binf‖1 ≤ (δ/3)d and f(x) ∈ [0, 1] for any x ∈ {0, 1}n

• if ‖f − binf‖d ≥ δ, then A always rejects;

• otherwise, A can output anything.
23Here, the distance is measured in `d for the following reason. If the verification algorithm (Lemma 4.12) accepts

an input Sum ◦C circuit, we only know that this circuit is close to some Boolean function in `d-distance. Our CAPP
algorithm needs to deal with every Sum ◦ C circuit that passes the verification algorithm.

36

4.2.5 Worst-Case Hardness from PRGs

The following simple fact states that PRGs imply worst-case hardness.

Fact 4.13 ([CLLO21, Proposition 9]). Let C be a circuit class and r = r(n) be a good function.
Suppose there is an ENP-computable PRG (i.o. PRG respectively) G : {0, 1}r → {0, 1}n that ε-fools
C , where ε < 1 − 2r−n. Then there is a language L ∈ ENP that cannot be computed by C circuits
on almost every input length (infinitely many input lengths respectively).

We also need the following lemma stating that seed-extending PRGs fooling C imply `1-distance
lower bounds against [0, 1]-Sum ◦ C . For completeness, we include a proof in Appendix A.5.

Lemma 4.14. Let s = s(n) be a good function, G : {0, 1}n−1 → {0, 1}n be a seed-extending
PRG that ε-fools C circuits of size s(n). Then the following problem L has `1-distance at least
(1/2− ε · s(n)) from [0, 1]-Sum ◦ C circuits of complexity s(n).

L =
{
y ∈ {0, 1}n : ∃x ∈ {0, 1}n−1, s.t. G(x) = y

}
.

4.2.6 Hardness Amplification

Hardness amplification with a TC0 decoder. We need the following result.

Theorem 4.15 ([GR08]). Let ε > 2−c
√
n for some absolute constant c. There are two algorithms

Amp and Dec such that:

• For some constant d > 1, Amp takes as input the truth table of a function f : {0, 1}n → {0, 1}
and outputs the truth table of a function Amp(f) : {0, 1}dn → {0, 1}.

• Dec(−) receives an oracle h, an input x ∈ {0, 1}n, an advice string α ∈ {0, 1}O(log ε−1), as well
as two random strings r1, r2, and outputs a bit b.

• For every function h : {0, 1}dn → {0, 1} that (1/2 + ε)-approximates Amp(f),

Pr
r1

[
∃α ∈ {0, 1}O(log ε−1) s.t. ∀x ∈ {0, 1}n,Pr

r2
[Dech(α, x, r1, r2) = f(x)] > 9/10

]
> 99/100.

• Amp runs in deterministic 2O(n) time and Dec is a TC0 oracle circuit of size poly(n, ε−1).

A non-standard XOR lemma. For a function f : {0, 1}n → {0, 1} and an integer k, we define
the function f⊕k to take k inputs x1, x2, . . . , xk ∈ {0, 1}n and compute

f⊕k(x1, x2, . . . , xk) = f(x1)⊕ f(x2)⊕ · · · ⊕ f(xk).

We need the following XOR lemma with a linear sum corrector.

Theorem 4.16 ([Lev87], [CLW20, Lemma 3.8]). Let C be a circuit class that is closed under
negation and projection. Let δ < 1/2, k ∈ N be a parameter, and

εk := (1− δ)k−1(1/2− δ).

For any function f : {0, 1}n → {0, 1}, if f cannot be (1 − δ)-approximated in `1-distance by
[0, 1]-Sum ◦ C circuits of complexity O

(
ns

(δ·εk)2

)
, then f⊕k cannot be (1/2 + εk)-approximated by

C circuits of size s.

37

4.3 Equivalences between Circuit Lower Bounds and Derandomisation with
Preprocessing

We show that circuit lower bounds for ENP are actually equivalent to derandomisation with ENP

preprocessing.
Our first theorem shows that if C is a “strong enough” circuit class, then the worst-case lower

bound ENP 6⊆ C is equivalent to non-trivial derandomisation of C circuits with ENP preprocessing.
For simplicity, we only consider a few typical circuit classes (TC0, NC1, and P/poly), but it is clear
from the argument that we only rely on a few closure properties of C .

Theorem 4.17. Let C ∈ {TC0,NC1,P/poly}. The following are equivalent:

1. For every constant k ≥ 1, there is a language L ∈ ENP that cannot be (1/2+1/nk)-approximated
by i.o.-C [nk].

2. For every constant k ≥ 1, there is a language L ∈ ENP such that L 6∈ i.o.-C [nk].

3. For every constant k ≥ 1, there is a GapUNSAT algorithm for C [nk] with ENP preprocessing,
error 1− 0.01, and 2n/nω(1) query time.

4. For every constant δ > 0 and every good function s = s(n), there is a CAPP algorithm for
C [s] circuits with TIME[exp(sδ)]NP preprocessing, exp(sδ) query time, and inverse-circuit-size
error.

5. For every constant k ≥ 1, there is an ENP-computable PRG with seed length n− 1 that (1/3)-
fools C [nk] circuits.

6. For every constant k ≥ 1, there is an ENP-computable PRG with seed length n1/k that (1/nk)-
fools C [nk] circuits.

Proof. (4) =⇒ (3) and (6) =⇒ (5) are trivial.
(3) =⇒ (2) follows from Theorem 4.2 and the fact that C is “typical”. In particular, C is

universal (any Boolean function can be computed by C circuits of large enough size), PARITY has
polynomial-size C circuits, and C is closed under composition of an NC0 circuit at the top.

(2) =⇒ (1) follows from the locally list-decodable code of [GR08] with TC0 decoders. In partic-
ular, let ε := 1/nk+1, and (Amp,Dec) be the locally list-decodable code specified in Theorem 4.15.
Let f : {0, 1}n → {0, 1} be a hard function in ENP \ i.o.-C [nO(k)], and ttf ∈ {0, 1}2

n be its truth
table. Let ttf ′ := Amp(ttf), then for some constant d > 1, ttf ′ is the truth table of a function
f ′ : {0, 1}dn → {0, 1} which is computable in ENP.

We claim that f ′ cannot be (1/2+1/nk+1)-approximated by C circuits of size nk+1 (thus cannot
be (1/2 + 1/(dn)k)-approximated by C circuits of (dn)k). Suppose for contradiction that there is
a circuit C ∈ C [nk+1] that (1/2 + 1/nk+1)-approximates f ′. Fix a good r1, then there is a string
α ∈ {0, 1}O(log ε−1) such that for every x ∈ {0, 1}n,

Pr
r2

[Dech(α, x, r1, r2) = f(x)] > 9/10.

By Adleman’s argument [Adl78] over r2, and recall that Dec(−) is a TC0 oracle circuit, it follows
that f can be computed by a C circuit of size nO(k). This contradicts the worst-case hardness of f .

(1) =⇒ (6) follows from the Nisan-Wigderson generator [NW94]. In particular, we set the
following parameters:

38

` := n1/3k,m := n, a := log n, t := O(`2 ·m1/a/a) := O(`2) ≤ n1/k.

Let f : {0, 1}` → {0, 1} be a function in ENP that cannot be (1/2 + 1/nk+1)-approximated
by C circuits of size nk · poly(2a) ≤ poly(n). Then it cannot be (1/2 + 1/nk+1)-approximated
by C ◦ Juntaa circuits where the top C circuit has size nk. By Theorem 4.7, there is a function
G : {0, 1}2` × {0, 1}t → {0, 1}m computable in poly(m, 2t) ≤ 2O(t) time, such that G(tt(f),Ut)
(1/nk)-fools every C [nk] circuit. Since f ∈ ENP, the generator G(tt(f), ·) is computable in ENP.

(6) =⇒ (4): Let G : {0, 1}sδ/2 → {0, 1}s be the ENP-computable PRG that (1/s)-fools C [2s]
circuits with s inputs. (Given a C [s] circuit C with n inputs, we can pad some dummy inputs to C
so that C becomes a C circuit of size 2s with s inputs; C only depends on the first n inputs.)

In the ENP preprocessing phase, we compute the whole PRG (i.e., G(x) for every x ∈ {0, 1}sδ/2).
Given a circuit C ∈ C [s] as a CAPP query, we simply compute

Pr
x←{0,1}sδ/2

[C(G(x)) = 1],

which estimates the accept probability of C within additive error 1/s. The query algorithm runs in
poly(s) · exp(sδ/2) < exp(sδ) time.

(5) =⇒ (2) follows from Fact 4.13. In particular, suppose there is an ENP-computable PRG
G : {0, 1}n−1 → {0, 1}n that (1/3)-fools C [nk] circuits. Since 1/3 < 2(n−1)−n = 1/2, it follows from
Fact 4.13 that ENP cannot be computed by C [nk] circuits on almost every input length.

Our equivalence also holds in the high-end regime (e.g., for subexponential-size circuit lower
bounds) and in the infinitely-often setting:

Theorem 4.18. Let C ∈ {TC0,NC1,P/poly}. The following are equivalent:

1. There is a constant ε > 0 and a language L ∈ ENP such that L 6∈ C [2n
ε
].

2. There is a constant ε > 0 and a language L ∈ ENP such that L cannot be (1/2 + 1/2n
ε
)-

approximated by C [2n
ε
].

3. There is a constant ε > 0 and an i.o. GapUNSAT algorithm for C [2n
ε
] with ENP preprocessing,

error 1− 0.01, and 2n/nω(1) query time.

4. There is a constant k ≥ 1 such that for every good function s = s(n), there is an i.o. CAPP

algorithm for C [s] with TIME[2logk s]NP preprocessing, 2logk s query time, and inverse-circuit-
size error.

5. There is a constant c ≥ 1 and an ENP-computable i.o. PRG with seed length logc n that (1/n)-
fools C circuits of size n.

Proof Sketch. (3) =⇒ (1) follows from Corollary 4.3.
(1) =⇒ (2) follows from Theorem 4.15.
(2) =⇒ (5) follows from Theorem 4.7.
(5) =⇒ (4) follows by simply applying the i.o. PRG to fool the input circuit.
(4) =⇒ (3) is trivial.

For weaker circuit classes, we also get an equivalence by considering strong average-case lower
bounds: hard functions that cannot be (1/2 + 1/poly(n))-approximated by C , non-trivial CAPP
data structures for C with inverse-circuit-size error, and PRGs fooling C are equivalent. Note that

39

the following equivalence only holds in the low-end regime (i.e., for polynomial size but not for
subexponential size), and only holds infinitely often. The reason is that we need to use a win-win
argument in [CR20, CLLO21]: if a certain NC1-hard problem (called DCMD in [CR20]) can be
approximated by C circuits, we proceed in one way; if not, we proceed in another way. The reader
is referred to the discussion in [CLW20, Section 2.2.2] for more details on the limitation of this
win-win argument.

Below we list the properties of the weak circuit class C that we need:

(C is typical) C is closed under negation and projection.

(C is universal) For every truth table of length 2k, there is a C circuit of size poly(2k) that
computes this truth table.

(C computes PARITY) The PARITY function can be computed by a C circuit of size poly(n).

(C is closed under bottom juntas) For every constant d ≥ 1, every C ◦ Juntad circuit can be
computed by a polynomially-larger C circuit.

(C is closed under top NC0 circuits) For every constant d ≥ 1, every NC0
d ◦ C circuit can be

computed by a polynomially-larger C circuit.

Theorem 4.19. Let C be a circuit class that satisfies the properties above. If C ⊆ NC1, then the
following are equivalent:

1. For every constant k ≥ 1, there is a language L ∈ ENP that cannot be
(
1/2 + 1/nk

)
-approximated

by C [nk].

2. For every constant k ≥ 1, there is a language L ∈ ENP such that L 6∈ MAJ ◦ C [nk].

3. There is δ ≥ 1/poly(n) such that for every constant k ≥ 1, there is a language L ∈ ENP such
that L 6∈ S̃umδ ◦ C [nk].

4. For every constant k ≥ 1, there is a language L ∈ ENP such that L 6∈ S̃um1/3 ◦ C [nk].

5. For every constant k ≥ 1, there is an infinitely-often CAPP algorithm for C [nk] with ENP

preprocessing, 2n/nω(1) query time, and inverse-circuit-size error.

6. For every constant δ > 0 and every good function s = s(n), there is an infinitely-often
CAPP algorithm for C [s] circuits with TIME[exp(sδ)]NP preprocessing, exp(sδ) query time,
and inverse-circuit-size error.

7. For every constant k ≥ 1, there is an ENP-computable i.o. PRG with seed length n − 1 that(
1/nk

)
-fools C [nk] circuits.

8. For every constant k ≥ 1, there is an ENP-computable i.o. PRG with seed length n1/k that(
1/nk

)
-fools C [nk] circuits.

Proof. (8) =⇒ (7), (6) =⇒ (5), and (4) =⇒ (3) are trivial. (2) =⇒ (4) follows from the fact
that

⋃
k∈N S̃um1/3 ◦ C [nk] ∈ ⋃k∈N MAJ ◦ C [nk].

(8) =⇒ (6): The proof is exactly the same as (6) =⇒ (4) in Theorem 4.17. That is, we apply
the PRG to solve CAPP.

(7) =⇒ (3): From Lemma 4.10, a PRG fooling C is also a PRG fooling S̃um ◦ C . Then, from
Fact 4.13, a PRG fooling S̃um ◦ C implies a lower bound for it. Details follow.

40

For any fixed constant k, let Gn : {0, 1}n−1 → {0, 1}n be an ENP-computable i.o. PRG that(
1/nk+1

)
-fools C [nk+1] circuits. Then, by Lemma 4.10, G is also an i.o. PRG that ε′-fools S̃um1/n◦C

circuits of complexity nk, where

ε′ := 2 · (1/n) + nk/nk+1 = 3/n < 2(n−1)−n = 1/2.

By Fact 4.13, there is a language in ENP that is not computable in S̃um1/n ◦ C [nk].
(5) =⇒ (3) follows from arguments similar to Corollary 4.3. Let ε := 1/6, then by Corollary 4.3,

there is a constant d such that the following holds. For any constant k, non-trivial i.o. GapUNSAT
algorithms for NC0

d ◦ S̃umδ ◦ C [nk] with error ε imply the S̃umδ ◦ C [nk] lower bound we are looking
for. Here δ is a constant that we will assign later. We then use Lemma 4.11 to obtain the required
i.o. GapUNSAT algorithm.

Note that we cannot apply Corollary 4.3 directly in the above argument for the following reason.
In Corollary 4.3, the nondeterministic machine MPCPP guesses H size-s(n) circuits C1, C2, . . . , CH
and uses the truth tables of these circuits as rows of the proof matrix; then it runs the i.o. GapUNSAT
algorithm to decide whether VPCPP accepts the proof matrix. The problem is that in our case, the
circuits are S̃umδ ◦ C circuits, which are Sum ◦ C circuits with the promise that its `∞-distance to
the closest Boolean function is less than δ. Thus we need to additionally verify that the S̃umδ ◦ C
circuits satisfy the promise, as the i.o. GapUNSAT algorithm might behave incorrectly on arbitrary
Sum ◦ C circuits.

We apply Lemma 4.12 to check whether the guessed Sum ◦ C circuits are “valid” for our
i.o. GapUNSAT algorithm. For a Sum ◦ C circuit C :=

∑S
i=1 αi · Ci, Lemma 4.12 presents an

algorithm that always accepts when ‖C − binC‖∞ is small and always rejects when ‖C − binC‖d is
large.24

More precisely, recall that we defined d to be the constant from Corollary 4.3 given ε = 1/6. Let
δreq be the constant from Lemma 4.11 such that given d Sum◦C circuits C1, . . . , Cd, if ‖Ci−binCi‖d ≤
δreq, we can estimate the following quantity within error 1/6 · 2−d in 2n/nω(1) time:

E
x←{0,1}n

[binC1(x) ∧ binC2(x) ∧ · · · ∧ binCd(x)].

Our GapUNSAT algorithm for NC0
d◦Sum◦C works as follows. Let C = f(binC1 , binC2 , . . . , binCd)

be an NC0
d ◦ Sum ◦ C circuit, where f : {0, 1}d → {0, 1} is an arbitrary Boolean function, and each

Ci is a Sum ◦ C satisfying the promise (i.e., ‖Ci − binCi‖d ≤ δreq). We applying the above CAPP
algorithm for O(2d) times:

E
x←{0,1}n

[f(binC1(x), . . . , binCd(x))] =
∑

v∈{0,1}d,f(v)=1

E
x←{0,1}n

[binC1(x) = v1 ∧ · · · ∧ binCd(x) = vd]

The error will be at most 2d · (1/6 · 2−d) = 1/6 and will thus satisfy the requirement of Corol-
lary 4.3. It follows that if we can guarantee (by the testing algorithm) that every Sum◦C circuit Ci
that we guess satisfies ‖Ci−binCi‖d ≤ δreq, then we obtain a lower bound against S̃umδ ◦C circuits.

To test the circuits, we apply Lemma 4.12 with parameter δreq. More precisely, let c be a large
enough constant such that c ≥ (2d + 1)k and any AND2d ◦ C [nk] circuit can be simulated by a
size-nc C circuit. By (5), there is an infinitely-often CAPP algorithm for C [nc] with 2n/nω(1) query
time, inverse-circuit-size error, and ENP preprocessing. As the Sum ◦ C circuit being tested has

24Note that this is not an exact verification algorithm: if the verification accepts, we are only guaranteed that C
has small `d-distance to a Boolean function. But this guarantee is strong enough to ensure our GapUNSAT algorithm
is correct.

41

complexity ≤ nk, we have that αtot ≤ nk and thus δdreq
2·3d·(αtot+1)2d ≥ n−c. The CAPP problem for

AND2d ◦ C circuits can be estimated within error n−c in 2n/nω(1) time. Thus we have that each
Sum ◦ C circuit can be checked in time (2n/nω(1)) · poly(n) ≤ 2n/nω(1) time.

Therefore, all S̃umδreq/3◦C circuits will be accepted by the testing algorithm. Setting δ := δreq/3,
we have that (3) holds for S̃umδ ◦ C [nk] circuits.

(3) =⇒ (1) follows from the proof of (2) =⇒ (6) in [CLLO21, Theorem 1]; for completeness
we provide a sketch here. If a certain problem called DCMD, which is in P, cannot be (1/2 + 1/nk)-
approximated by C [nk] for every constant k, then (1) follows directly. Otherwise, by [CR20, Lemma
3.1], NC1 ⊆ S̃umδ ◦C . Let L be a language in ENP that does not have S̃umδ ◦C [nO(k)] circuits, then
L does not have NC1 circuits of size nO(k). By standard hardness amplification (with NC1 decoders)
such as Theorem 4.15, it follows that L cannot be (1/2 + 1/nk)-approximated by NC1 circuits of
size nO(k). Since C ⊆ NC1, (1) is true.

(1) =⇒ (2) follows from the discriminator lemma [HMP+93]. For a function f ∈ MAJ ◦ C
where the top MAJ gate has fan-in s, f can be (1/2 + 1/O(s)) approximated by C . This implies
the contrapositive of (1) =⇒ (2).

(1) =⇒ (8) follows from the Nisan-Wigderson generator [NW94]. We use the following param-
eters in Theorem 4.17:

` := n1/3k,m := n, a := 4k, t := O(`2 ·m1/a/a) := O(`2) ≤ n1/k.

We use a hard truth table of length 2` that is not (1/2+1/nk+1)-approximated by C ◦Juntaa circuits,
where the top C circuits have size nk. As any C ◦ Juntaa can be computed by a polynomially larger
C , the same proof applies.

We also present a characterisation of ENP lower bounds against weak circuit classes that holds
both in the high-end regime and almost everywhere. Note that we cannot consider lower bounds
against S̃um ◦ C circuits here; instead, we use [0, 1]-Sum ◦ C circuits that are close to Boolean in
`1-distance. Also, for technical reasons (that arise when applying Lemma 4.14), we need to consider
seed-extending PRGs.

Theorem 4.20. Let C be a circuit class satisfying the above properties. Moreover, suppose the
property that C is closed under bottom juntas is strengthened to:

(C is closed under bottom juntas) Every C ◦ Juntalogn circuit can be computed by a polynomi-
ally large C circuit.

Then the following are equivalent:

1. There is a constant ε > 0 and a language L ∈ ENP such that L cannot be (1/2 + 1/2n
ε
)-

approximated by C [2n
ε
] circuits on almost every input length.

2. There is a constant ε > 0 and a language L ∈ ENP such that L cannot be approximated by
[0, 1]-Sum ◦ C [2n

ε
] circuits within `1-distance 1/3 on almost every input length.

3. There is a constant ε > 0 and a CAPP algorithm for C [2n
ε
] with ENP preprocessing, 2n−n

ε

query time, and inverse-circuit-size error.

4. There is a constant c ≥ 1 such that for every good function s(n), there is a CAPP algorithm
for C [s] circuits with ENP preprocessing, 2logc s query time, and inverse-circuit-size error.

42

5. There is a constant ε > 0 and a seed-extending ENP-computable PRG with seed length n − 1
that (1/2n

ε
)-fools C circuits of size 2n

ε.

6. There is a constant c ≥ 1 and a seed-extending ENP-computable PRG with seed length logc n
that (1/n)-fools C circuits of size n.

Proof. (4) =⇒ (3) is trivial.
(6) =⇒ (5) can be proved by padding the circuit with dummy inputs.
(6) =⇒ (4): The proof is the same as (6) =⇒ (4) in Theorem 4.17.
(5) =⇒ (2) follows from Lemma 4.14.
(3) =⇒ (2) follows from careful adaption of Theorem 4.2, which is similar to the proof of

(5) =⇒ (3) in Theorem 4.19. The only difference is the verification algorithm: given a Sum ◦ C
circuit C as input, we need to accept when C is a [0, 1]-Sum ◦C circuit where ‖C − binC‖1 is small
(instead of when ‖C−binC‖∞ is small), and reject when ‖C−binC‖d is large. Therefore, we need to
use the second (instead of the first) condition in Lemma 4.12. That is, we need to set δ := (δreq/3)d

instead of δreq/3, so that if ‖C − binC‖1 ≤ δ then the algorithm accepts. This different will not
introduce new problems as δ is still a constant. After the verification algorithm accepts, we know
that every Sum ◦ C circuit we guess has `d-distance at most δreq to Boolean, and our GapUNSAT
algorithm is correct.

(2) =⇒ (1) follows from the XOR lemma in [CLW20]. In particular, suppose that L ∈ ENP

cannot be approximated by [0, 1]-Sum◦C [2n
ε
] circuits within `1-distance 1/3 on almost every input

length. Let δ := 1/3, k := O(nε/2), and

εk := (1− δ)k−1(1/2− δ) < 2−n
ε/2
.

By Theorem 4.16, L⊕k cannot be (1/2+εk)-approximated by C circuits of size 2n
ε/2 . Since L ∈ ENP,

we also have L⊕k ∈ ENP. Note that L⊕k is a function on ` := kn = O(n1+ε/2) input bits. Therefore,
for ε′ := 0.49ε/(1 + ε), L⊕k cannot be (1/2 + 1/2`

ε′
)-approximated by C circuits of size 2`

ε′ .
(1) =⇒ (6): Let L ∈ ENP be a language that cannot be (1/2 + 1/2n

ε
)-approximated by C [2n

ε
]

circuits on almost every input length. Let c ≥ 2 be a large enough constant such that C ◦ Juntaa
circuits where the top C circuit has size n can be simulated by C circuits of size nc. We apply the
Nisan-Wigderson generator [NW94] with the following parameters:

` := logc/ε n,m := n, a := log n, t := O(`2 ·m1/a/a) := O(`2) ≤ log2c/ε n.

From (1) we have that there exists a function f : {0, 1}` → {0, 1} in ENP that cannot be
(1/2+1/2`

ε
) = (1/2+1/nc)-approximated by C circuits of size nc. Then f cannot be (1/2+1/nc)-

approximated by C [n]◦ Juntaa circuits. By Theorem 4.7, there is a function G : {0, 1}2` ×{0, 1}t →
{0, 1}m computable in poly(m, 2t) ≤ 2O(t) time, such that G(tt(f),−) is a PRG that (1/nc−1)-fools
every C [n] circuit. Since f ∈ ENP, the generator G(tt(f), ·) is computable in ENP.

5 On the Limits of (Unconditional) Range Avoidance Algorithms

In this section, we investigate the role of stretch functions in the complexity of Avoid. We show
that if the stretch function is small enough, then range avoidance algorithms (even in FPNP) imply
breakthrough lower bounds, indicating that such algorithms may be beyond reach.

43

5.1 Breakthrough Lower Bounds from AC0-Avoid

In this sub-section, we show that solving AC0-Avoid with polynomial stretch (actually, “fixed-
quasi-polynomial” stretch) implies breakthrough circuit lower bounds such as ENP 6⊆ NC1.

Definition 5.1. Let C be a circuit class. We say that C has the universality property if there
is a constant c ≥ 1 such that for any good function s : N → N, there is a sequence of C -circuits
{Us,n}n∈N such that the following are true:

• The size of Us,n is s(n)c and it has O(s log s+ n) variables.

• Given an input (〈C〉, x), where 〈C〉 is the encoding of a C -circuit C of size s on n variables,
and x ∈ {0, 1}n, it accepts the input iff C accepts x.

• The family Us,n is uniform: there is a Turing machine that on input (1s, 1n), outputs the
description of Us,n in polynomial time.

Roughly speaking, the above definition means that C has the universal property if the C -Eval
problem (given the description of a C circuit C and an input x, compute C(x)) is itself computable
in C . The following theorem shows that for any circuit class C with the universal property, solving
C -Avoid implies lower bounds against C .

Theorem 5.2. Let C be any circuit class that has the universality property, and f : N → N be a
monotone function that is good. Suppose there is an FPNP algorithm for C -Avoid, where the C
circuits have input length N , output length f(N), and each output gate has C circuit complexity
poly(N). Then for some constant ε > 0, ENP does not have C -circuits of size f−1(2n)ε.

Proof. Let c be the constant corresponding to the universality property of C , without loss of gen-
erality assume c > 1. Let ε := 1/c and s(n) := f−1(2n)ε. Let {Us,n} be the sequence of universal
C -circuits corresponding to size parameter s(n), then the size of Us,n is s(n)c. We show how to use
the universality of C together with the avoidance algorithm to derive C -lower bounds for ENP.

Consider the truth table map

TTC : {0, 1}N → {0, 1}2n

defined as follows. The input of TTC is the encoding 〈C〉 of a (single-output) C circuit of size s(n)
on n variables. (Thus the input length is N := O(s log s).) The output is the truth table of C,
i.e. the string of length 2n which specifies C(x) for each x ∈ {0, 1}n in lexicographic order. By the
universality of C , this output can be computed by running Us,n on the input (〈C〉, x) for each input
x ∈ {0, 1}n. Hence, TTC can be implemented by a multi-output C -circuit with

2n = f(s(n)c) ≥ f(N)

output bits, where each output bit is computable by a C -circuit of size s(n)c ≤ poly(N).
Now we apply the FPNP algorithm for C -Avoid and obtain the truth table of a function f :

{0, 1}n → {0, 1} that is not in Range(TTC). Note that Range(TTC) is exactly the set of truth
tables computable by C circuits of size s(n), thus f cannot be computed by size-s(n) C circuits.
Note that f is in ENP because its truth table can be obtained in PNP as a function of 2n (which is
the output length of TTC), and hence in ENP as a function of n.

Theorem 5.2 can be used to show that even for weak classes such as AC0 and super-polynomial
stretch, the range avoidance problem might be beyond reach — since a deterministic algorithm for
it implies breakthrough circuit lower bounds.

44

Lemma 5.3 ([CH85]). The circuit class AC0 =
⋃
d AC0

d has the universality property.

Corollary 5.4. Suppose that there is a constant b ≥ 1 such that for every depth constant d ≥ 1,
there is an FPNP algorithm for AC0

d-Avoid with input length N and output length 2logbN . Then ENP

is not contained in NC1.

Proof. First, by Lemma 5.3, we can apply Theorem 5.2 to the circuit class AC0. A direct application
of Theorem 5.2 yields that ENP does not have AC0

d circuits of size 2n
δ for some fixed δ > 0 and any

depth d. Now we use the well-known simulation result [Nep70,AHM+08]: for every δ > 0, there is
some depth d ≥ 1 such that NC1 is contained in AC0

d[2
nδ]. Combining this simulation result with

the lower bound arising from Theorem 5.2 yields that ENP is not contained in NC1.

5.2 Breakthrough Lower Bounds from NC0-Avoid

Next, we proceed to show that even for the simplest non-trivial class of circuits, i.e., NC0

(each output bit only depends on a constant number of input bits), FPNP avoidance algorithms in
the small-stretch regime would imply breakthrough lower bounds. To establish this, we use the
randomised encoding technique of [AIK06]. Roughly speaking, NC1-Avoid can be reduced to NC0-
Avoid (in the small-stretch regime) using the randomised encoding technique, with any solution to
the latter problem yielding a solution to the former problem.

We state the randomised encoding property in a way that is convenient for our applications and
is implied by the standard definitions [AIK06].25

Definition 5.5. Let ` = `(n),m = m(n) be good functions, and consider functions

fn : {0, 1}n → {0, 1}` and f̂n : {0, 1}n × {0, 1}m → {0, 1}`+m.

We say that f̂ is a perfect randomised encoding of f if there is a a polynomial-time computable
decoder Dec : {0, 1}`+m → {0, 1}` such that for every x ∈ {0, 1}n and y ∈ {0, 1}`+m, f(x) = Dec(y)
iff there is r ∈ {0, 1}m such that f̂(x, r) = y.

Intuitively, the definition means that from the value of f̂(x, r) for any r, we can decode f(x)
without knowing x. Moreover, for every x ∈ {0, 1}n and y ∈ {0, 1}`+m such that y is decoded to
f(x), there is some (actually, a unique) r such that f̂(x, r) = y. Therefore, the range of f̂(x,−) is
indeed an “encoding” of the value f(x).

This definition only makes sense if f̂ is much easier to compute that f . This is actually the case:
[AIK06] showed that even very powerful functions f (computable by polynomial-size formulas) have
perfect randomised encodings f̂ computable in NC0

4. That is, every output bit of f̂ only depends
on four input bits.

Lemma 5.6 ([AIK06]). Let ` = `(n) and s = s(n) be good functions. Every sequence of multi-
output functions {fn : {0, 1}n → {0, 1}`(n)} computable by size-s(n) formulas has a perfect ran-
domized encoding f̂ : {0, 1}n × {0, 1}m(n) → {0, 1}`(n)+m(n) computable in NC0

4, for which m(n) ≤
poly(n, `(n), s(n)).

Lemma 5.7 ([Bus87]). The class of formulas has the universality property.

Now we prove the main theorem in this sub-section: solving the range avoidance problem for
NC0

4, which is a very “simple” class, implies breakthrough lower bounds.
25See discussions in “A combinatorial view of perfect encoding” on Page 9 of [AIK06].

45

Theorem 5.8. Suppose that for every constant ε > 0 there is an FPNP (resp. FP) algorithm for
NC0

4-Avoid with input length N and output length N +N ε. Then ENP 6⊆ Formula[2o(n)] (resp. E 6⊆
Formula[2o(n)]).

Proof. We first show, using the randomised encoding technique, that the assumed algorithm for
NC0

4-Avoid implies an FPNP algorithm for Formula-Avoid with input length n and output length
` := n1+γ for every constant γ > 0. We then use Lemma 5.7 and Theorem 5.2 to conclude the
formula lower bound.

Let f : {0, 1}n → {0, 1}` be the input of the range avoidance problem where each output gate of
f can be computed by a formula of size s = poly(n). Let m := poly(n, `, s) ≤ poly(n), we consider
the function f̂ : {0, 1}n × {0, 1}m → {0, 1}`+m, where f̂ is the randomised encoding of f defined in
Lemma 5.6, and is hence implementable in NC0

4. Since

(`+m)− (n+m) = `− n ≥ (n+m)Ω(1),

by our hypothesis, the range avoidance problem f̂ can be solved in FPNP.
We show how to use this to solve the original range avoidance problem in FPNP. Let M be an

FPNP algorithm producing a non-output y for f̂ . We define an FPNP algorithm M ′ producing a
non-output z of f as follows: M ′ simply produces z = Dec(y).

Note that since Dec is polynomial-time computable and M is an FPNP algorithm, we have that
M ′ is also an FPNP algorithm. Next we argue that if y is a non-output of f̂ , then Dec(y) is a
non-output of f . Indeed, by Definition 5.5, if Dec(y) = f(x) for some x, then there is r ∈ {0, 1}m
such that y = f̂(x, r), i.e., y is an output of f̂ , which is a contradiction.

Finally, we use the algorithm for Formula-Avoid together with the universality of formulas
(Lemma 5.7) to obtain lower bounds. By Theorem 5.2 with f a large enough polynomial, we get
that ENP does not have subexponential-size formulas.

In order to see that we can get lower bounds in E from avoidance algorithms in FP, simply note
that the reduction from Formula-Avoid to NC0-Avoid, as well as the arguments in Theorem 5.2,
do not use the NP oracle.

Remark 5.9. The only properties of formulas that are used in the above proof are the universality
property of formulas (Lemma 5.7) and the randomised encodings for formulas (Lemma 5.6).

It is shown in [AIK06] that branching programs and parity branching programs also have randomised
encodings computable in NC0

4. Since the (parity) branching program evaluation problem can be easily
done in (parity) log-space, the universality of (parity) branching programs is easy to see. Thus, the
hypothesis in Theorem 5.8 actually implies the stronger lower bounds that ENP (or E) does not have
sub-exponential-size (parity) branching programs.

Discussion. The above proof shows that in the regime with very small stretch (e.g., `(n) =
n+1), Formula-Avoid reduces to NC0

4-Avoid in polynomial time. We think this result reveals some
fundamental difference between the small-stretch regime (`(n) = n + 1), for which an avoidance
algorithm for NC0 implies breakthrough lower bounds, and the large-stretch regime (`(n) = n1+Ω(1)),
for which an avoidance algorithm for NC0 seems within reach (Theorem 3.12).

6 The FNP and FP Regimes

In this section, we present some preliminary results on the complexity of Avoid with respect to
algorithms less powerful than FPNP, such as FNP algorithms and FP algorithms.

46

6.1 Preliminaries

6.1.1 Proof Complexity

We introduce basic notions in proof complexity. Let TAUT denote the set of DNF tautologies,
then TAUT is coNP-complete. A propositional proof system (PPS) is essentially a nondeterministic
algorithm trying to solve TAUT:

Definition 6.1 ([CR79]). A propositional proof system (PPS) is a polynomial-time computable
binary relation Q ⊆ {0, 1}? × {0, 1}? such that:

• For every φ, π ∈ {0, 1}?, if (φ, π) ∈ Q, then φ ∈ TAUT.

• For every φ ∈ TAUT, there is a string π ∈ {0, 1}? such that (φ, π) ∈ Q.

Here, φ is the tautology to be proved and π is the proof.26

We define proof complexity generators:

Definition 6.2 ([ABRW04]). Let s(n) < n be a function for seed length. A proof complexity
generator is a map Cn : {0, 1}s → {0, 1}n computed by a family of polynomial-size circuits {Cn}n.
A generator is secure against a propositional proof system P if for every large enough n and every
y ∈ {0, 1}n, P does not have a polynomial-size proof of the (properly encoded) statement

∀x ∈ {0, 1}s, Cn(x) 6= y.

We also consider uniform and non-uniform proof complexity generators. A uniform proof com-
plexity generator is a sequence of generators Cn : {0, 1}s → {0, 1}n such that there is a polynomial-
time Turing machine that on input 1n generates the circuit Cn. A non-uniform proof complexity
generator is an arbitrary sequence of generators Cn : {0, 1}s → {0, 1}n.

6.1.2 Time-Bounded Kolmogorov Complexity

In this section, we define time-bounded Kolmogorov complexity and related notions.
We need to fix a universal Turing machine U in the following definition. In particular, given

a program d, an input x, and a time bound t, U(d, x, 1t) executes d on input x for t steps, and
outputs the output of d. Any machine U that runs in poly(|d|, |x|, t) steps suffices for our purpose.

Definition 6.3. Let t = t(n) be a polynomial and x, y be strings.

• The t-time bounded Kolmogorov complexity of x, denoted as Kt(x), is the length of the
shortest description d such that U(d, n, 1t(n)) = x, where n = |x|.

• The t-time bounded Kolmogorov complexity of x conditioned on y, denoted as cKt(x | y), is
the length of the shortest description d such that U(d, y, 1t(|d|+|y|)) = x.

Note that in the definition of Kt(x), we assume that n = |x| is already known to the program
that generates x. This is for technical convenience.

We define the following explicit construction problems where we want to construct strings with
high time-bounded Kolmogorov complexity.

26Note that the length of π could be super-polynomially larger than the length of φ. In fact, there is a polynomial-
bounded PPS (i.e., any tautology φ has a polynomially-long proof π) if and only if NP = coNP.

47

Definition 6.4. Let t = t(n) be a polynomial, α = α(n) be a good function such that α(n) < n.

• cKt
n−α(n)-Hard is the following problem: Given as inputs 1n and a string y, find a string

x ∈ {0, 1}n such that cKt(x | y) ≥ n− α(n).

• Kt
n−α(n)-Hard is the following problem: Given input 1n, find a string x ∈ {0, 1}n such that

Kt(x) ≥ n− α(n).

We also define a proof complexity generator based on time-bounded Kolmogorov complexity.

Definition 6.5. Fix a function α = α(n), the Kt
n−α(n) generator is the following candidate proof

complexity generator Kt
n−α(n) : {0, 1}n−α(n) → {0, 1}n. Given as input the description d of a Turing

machine, which has length n − α(n), the generator outputs U(d, n, 1t(n)) (i.e., the output of d in
t(n) steps), padded/truncated to length n if not already.

6.2 On Avoidance Algorithms in FNP

In this subsection, we characterise the existence of FNP algorithms for Avoid by the existence of
propositional proof systems (PPSs) that can break any proof complexity generator. Along the way
we also show that the generator Kpoly

n−ω(1) is “complete”: modulo some constant loss in the stretch,

any PPS fooled by some generator is also fooled by Kpoly
n−ω(1).

6.2.1 Non-uniform Proof Complexity Generators vs APEPP

Here we show equivalence results for the case of non-uniform proof generators.

Theorem 6.6. The following are equivalent:

1. There exists a constant c such that Avoid is in FNP for circuits with stretch c.

2. There exists a constant c such that cKt
n−c-Hard is solvable in FNP for all polynomials t.

3. There exist a constant c and some polynomial t > 1.1n such that cKt
n−c-Hard is solvable in

FNP.

4. There exist a constant c and a propositional proof system P which breaks every non-uniform
proof complexity generator of stretch c.

Proof. (1) =⇒ (2): Let (1n, y) be an input of cKt
n−c-Hard, we reduce it to an instance of Avoid.

We construct a circuit Φy with n−c input bits and n output bits as follows. On input d ∈ {0, 1}n−c,
Φy simulates U on input (d, y) for t steps and outputs the result, padded/truncated to length n
if not already. Then every non-output of Φy will be a valid answer for cKt

n−c-Hard on the input
(1n, y). This is because for a string x that is not a valid answer, there must exist a string d such
that U(d, y) outputs x in t steps, thus Φy(d) = x and x ∈ Range(Φy).

(2) =⇒ (3) is trivial.
(3) =⇒ (4): Let t > 1.1n be the time bound for which we can solve cKt

n−c. Let Eval be the
Turing machine that on input a string x and the description 〈C〉 of a circuit C, outputs C(x). We
require the circuit description 〈C〉 to be properly padded such that Eval runs in time t(|x|+ |〈C〉|).
The propositional proof system P works as follows: To break a candidate proof complexity generator
C : {0, 1}n → {0, 1}m, we use the proof given to P as the nondeterministic guesses of the FNP

48

algorithm for cKt
n−c-Hard to get a string y such that cKt(y | 〈C〉) > m − c. Now we claim that

if m > n + |dEval| + c then y would be out of the range of C, where dEval is the description of the
Turing machine Eval. This is because if y ∈ Range(C), namely that y = C(x), then as U would
output y on input (dEval, x, 〈C〉) in time t(n+ |〈C〉|), we have that cKt(y | 〈C〉) ≤ n+ |dEval| .

(4) =⇒ (1): Given a circuit C as an instance of Avoid, we can simply regard C as a proof
complexity generator and use P to break it. To do so, we guess a string x such that x /∈ Range(C)
along with a proof π such that (φx, y) ∈ P , where φx is the DNF encoding of the assertion that
x 6∈ Range(C).

6.2.2 Uniform Proof Complexity Generators vs SAPEPP

Here we show equivalence results for the case of uniform proof generators.
The class SAPEPP (for “sparse APEPP”) is the class of unary problems that are reducible to

Avoid. More precisely, let s : N → N be a function such that for every integer n, s(n) < n. A
search problem in SAPEPPs is defined by a Turing machine M that on input 1n, outputs in poly(n)
time a circuit Cn : {0, 1}s(n) → {0, 1}n. The total search problem associated with M asks: given n
in unary, find a bit-string y ∈ {0, 1}n such that for every x ∈ {0, 1}s(n), M(x) 6= y.

Now we prove the following theorem. We remark that although the stretch of the generators we
consider are Θ(log n), there is nothing special with the function log n. It can be replaced by any
super-constant function that is good.

Theorem 6.7. Let t(n) > 1.1n be a polynomial. The following are equivalent:

1. For every constant c > 0, Kt
n−c logn-Hard is in FNP.

2. For every constant c > 0, SAPEPPn−c logn ⊆ FNP.

3. For every constant c > 0, there is a propositional proof system P which breaks the Kt
n−c logn

generator.

4. For every constant c > 0, there is a propositional proof system P which breaks every uniform
proof complexity generator with seed length n− c log n.

Proof Sketch. (3) =⇒ (1): Let P be the propositional proof system that can break the Kt
n−c logn

generator, then the following FNP algorithm solves Kt
n−c logn-Hard. For x ∈ {0, 1}n, let φx be the

DNF encoding of the statement that Kt(x) ≥ n− c log n. We guess a string x ∈ {0, 1}n along with
a proof y such that (φx, y) ∈ P . Finally, we output x.

(1) =⇒ (3): Suppose that Kt
n−c logn is in FNP, we construct a propositional proof system P as

follows. The PPS receives an assertion φ and a proof π. If φ is of the form φx for some x ∈ {0, 1}n
(recall that φx is the DNF encoding of the statement that Kt(x) ≥ n− c log n), then we use π as the
nondeterministic guesses to the FNP algorithm for Kt

n−c logn-Hard, and obtain a string y ∈ {0, 1}n
such that Kt(y) ≥ n− c log n. We then verify that y = x. If y = x, then we accept (φ, π). If y 6= x
or the tautology is not of the form φx, then we use the trivial (e.g., truth-table) proof for φ.

The proofs of (2) ⇐⇒ (4) is similar to (1) ⇐⇒ (3), so we omit it here.
(2) =⇒ (1) is trivial.
(1) =⇒ (2): Let L be a problem in SAPEPPn−c logn. Then L is defined by a Turing machine

M that on input 1n, outputs a circuit Cn : {0, 1}n−c logn → {0, 1}n. Let |dM | be the description
length of M , then |dM | = O(1). For every string y ∈ Range(Cn), we have

Kt′(y) ≤ n− c log n+ |dM |+O(1) < n− (c/2) log n

49

for large enough n, where t′ is a polynomial that depends on the time complexity of M . Therefore,
it suffices to find a string of length n with near-maximum Kt′ complexity.

If t′(n) ≤ t(n), then we can simply use the FNP algorithm for Kt
n−(c/2) logn-Hard to find the

desired string. Now suppose t′(n) > t(n) (which is the more interesting case). Let k be the smallest
integer such that t′(n) < t(n)k−1 for large enough n,

c′ := c/(4k) and n1 := O(nk), (3)

then
O(t′(n)) ≤ t(n1) and c′ log n1 ≤ (c/3) log n.

We use the FNP algorithm for Kt
n−c′ logn-Hard to find a string y ∈ {0, 1}n1 such that Kt(y) >

n1−c′ log n1 = n1−(c/3) log n. Let y0 be the first n bits of y, we claim that Kt′(y0) ≥ n−(c/2) log n,
which implies the correctness of our algorithm for L.

To see this claim holds, suppose for contradiction that Kt′(y0) < n − (c/2) log n. Let Mpad be
the following Turing machine:

First, given n1, Mpad infers n from Eq. (3). Then, it receives as input a description d of length n −
(c/2) log n and a string y1 ∈ {0, 1}n

′−n. Let U be the universal Turing machine, Mpad runs U(d) for
t′(n) steps to obtain a string y0, padded/truncated to length n if not already. Then it outputs the
concatenation of y0 and y1.

If d is a description of length n − (c/2) log n such that U(d) outputs y0 in t′(n) steps, and y1

is the last n′ − n bits of y, then Mpad(U, y1) outputs y in O(t′(n)) ≤ t(n1) steps. Let |dMpad
| be

the description length of Mpad, then we have Kt′(y) ≤ n1 − (c/2) log n+ |dMpad
| < n1 − (c/3) log n,

which is a contradiction. Thus the claim follows.

In the super-constant-stretch regime, our results have the following implication for proof com-
plexity generators:

Corollary 6.8 (Informal). There exists a uniform proof complexity generator that is the “hardest”,
namely the K1.1n

n−ω(1) generator, in the following sense. If there is a PPS breaking this generator, then
there is a PPS breaking any uniform proof complexity generator of seed length n− ω(1).

Corollary 6.9 (Informal). If every uniform proof complexity generator of stretch n − ω(1) can be
broken by some PPS, then there exists a single PPS that breaks every uniform proof complexity
generator of stretch n− ω(1).

6.3 On Avoidance Algorithms in FP

Finally, we prove equivalence results for SAPEPP ⊆ FP. Again, in the following theorem, there
is nothing special about the function log n; it can be replaced by any super-constant function that
is good.

Theorem 6.10. For any polynomial t(n) > n3, the following are equivalent:

1. For every constant c > 0, Kt
n−c logn-Hard is in FP.

2. For every constant c > 0, SAPEPPn−c logn ⊆ FP.

3. For every constant c > 0, there is a language L in E\i.o.-DTIME[2n+1]/(2n−cn).

50

Proof. (2) =⇒ (1) is trivial.
(1) =⇒ (3): Suppose we want to find a language in E\ i.o.-DTIME[2n+1]/(2n−cn). Let c′ := c/2,

M be the machine that solves Kt
n−c′ logn-Hard, and ttn := M(12n). Let Mhard be the machine

whose truth table is exactly ttn on input length n. That is, on input x ∈ {0, 1}n, Mhard outputs the
x-th bit of M(12n). Let Lhard be the language accepted by Mhard, it is easy to see that Lhard ∈ E.
We claim that Lhard 6∈ i.o.-DTIME[2n+1]/(2n−cn).

Suppose for contradiction that Lhard ∈ i.o.-DTIME[2n+1]/(2n−cn). Since M solves Kt
n−c′ logn-

Hard, we have that Kt(2n)(y) > 2n − c′n. However, since L ∈ i.o.-DTIME[2n+1]/(2n−cn), there is
a program d of length ≤ 2n − cn + O(1) < 2n − c′n and time complexity at most 4n+1 that on
infinitely many n, prints the truth table of Lhard on input length n. This contradicts the fact that
Kt(2n)(ttn) > 2n − c′n.

(3) =⇒ (2): Let L ∈ SAPEPPn−c logn, we want to solve L in polynomial time. Let {Cn :
{0, 1}n−c logn → {0, 1}n} be a uniform family of circuits such that the input 1n of L is reduced to
the circuit Cn. We may pad some dummy inputs and outputs to Cn so that Cn becomes a circuit
from N − 2c′ logN bits to N bits where N is a power of 2, and Cn can be evaluated in time 2N .
Here, c′ is some constant depending on c and L. Since {Cn} is a uniform family, every output of
Cn has K2N -complexity at most N − 2c′ logN +O(1).

Now, let Lhard ∈ E \ i.o.-DTIME[2n+1]/(2n−c′n). Let tt be the truth table of Lhard on input length
logN . If K2N (tt) ≤ N−c′ logN−O(1) for infinitely many N , then L is in i.o.-DTIME[2n+1]/(2n−c′n),
contradicting (3). Therefore K2N (tt) > N − c′ logN −O(1) > N − 2c′ logN . It follows that tt is a
non-output of Cn. Since Lhard ∈ E, we can compute tt in polynomial time, thus solving L.

7 A Rectangular PCP of Proximity

In this section, we prove Theorem 2.9 by building a rectangular PCP of proximity.

Organisation of this section. Our rectangular PCPP is based on the PCPP in [BGH+06,
BGH+05], which we review in Section 7.1.1. As our main goal is to verify rectangularity, we will
focus on the query pattern of the verifier. In Section 7.1.2, we show the verifier is indeed almost
rectangular. It is shown in [BHPT20] that the PCP verifier is rectangular; but to deal with the
PCP of proximity verifier, additional care must be taken of the input matrix. There is a subtle issue
on soundness which we address in Section 7.1.3. Finally, we combine everything in Section 7.1.4.

The query complexity of the PCPP in Section 7.1 is T (n)Ω(1) (if we want the proof length to be
at most T (n) · polylog(T (n))), but ideally we want a PCPP with constant query complexity. Thus,
in Section 7.2, we compose it with another PCPP in [Mie09] to obtain a rectangular PCPP with
constant query complexity, while maintaining proof length T (n) · polylog(T (n)). (Note that it is
not required that the PCPP in [Mie09] is also rectangular.) The main body of Section 7.2 proves
a composition theorem for rectangular PCPPs; the final PCPP with constant query complexity is
constructed in Section 7.2.1.

In this section, NTIME[T (n)] always refers to NTIMETM[T (n)], i.e., we only consider the Turing
machine model.

7.1 The Rectangular PCPP in [BGH+05]

In this sub-section, we review the PCPP for NTIME[T (n)] constructed in [BGH+06,BGH+05],
with an emphasis on its rectangularity. The properties of the PCPP in [BGH+05, BGH+06] (in-
cluding rectangularity) are summarised in Theorem 7.1.

51

Recall that a function f : N → N is good if given the input n in binary, we can compute f(n)
(also in binary) in time poly(log n, log f(n)).

Theorem 7.1. The following holds for all constants m ≥ 1 and s, δ > 0. Let T (n), wproof(n),
winput(n) be good functions such that n ≤ T (n) ≤ 2poly(n), wproof(n) ≤ log T (n), and winput(n) ≤
log n. Let

hproof(n) := log T (n) + Θ(m log log T (n))− wproof(n), and
hinput(n) := dlog ne − winput(n).

Moreover, suppose that for some large enough constant C ≥ 1,

winput(n)

wproof(n)
,
hinput(n)

hproof(n)
≤ 1− C log log T (n)

log T (n)
.

Let Wproof(n) := 2wproof(n), Hproof(n) := 2hproof(n), Winput(n) := 2winput(n), and Hinput(n) := 2hinput(n).
Then NTIME[T (n)] has a robust and rectangular PCP of proximity with an Hproof(n) ×Wproof(n)
proof matrix and an Hinput(n) × Winput(n) input matrix, whose other parameters are specified in
Table 2.

Moreover, Vrow and Vcol are projections over seed.row and seed.col respectively, computable in
polynomial time given seed.shared.

Soundness error s

Proximity parameter δ

Robustness parameter Ω(δ)

Row randomness hproof − (2/m) log T (n)

Column randomness wproof − (4/m) log T (n)

Shared randomness (6/m) log T (n) +O(log log T (n))

Query complexity
T (n)1/m · polylog(T (n))Decision complexity

Table 2: Parameters of the PCPP constructed in Theorem 7.1.

We need an efficient construction of small-biased sets. In particular, let λ > 0, m ∈ N, and F be
a finite field of characteristic 2, we need a λ-biased set Sλ ⊆ Fm. Besides being λ-biased, Sλ should
possess an additional property: for every element ~y ∈ Sλ, the first coordinate of ~y is non-zero. It is
claimed in [BHPT20] that (under suitable conditions) for any (λ/4)-biased set Sλ/4, if we remove
every element ~y ∈ Sλ/4 with y1 = 0, then the remaining set is still λ-biased. For completeness we
provide a proof for the above claim in Appendix A.6.

Lemma 7.2. Let λ < 0.1, q,m be integers such that q ≥ log 4
λ , and let F = GF(2q). There

is a deterministic polynomial-time algorithm that on input (1m, 1q, 1d1/λe), outputs a λ-biased set
Sλ ⊆ (F \ {0})× Fm−1 of size O((qm/λ)2).

7.1.1 The PCPP Verifier

Let L ∈ NTIME[T (n)], we describe the PCPP verifier for L. The PCPP verifier receives two
oracles: the input oracle Πinput (consisting of the input in verbatim) and the proof oracle Πproof .

52

Set up. Let α be a universal constant as defined in the proof of [BGH+05, Theorem 6.4]. We set
the following parameters:

t := log T (n),

h := d(t+ 3)/me,
f :=h+ α log2 t,

λ := 1/ct, for some universal constant c.

We work with the field F := GF(2f). We treat F as a vector space of dimension f over GF(2),
and let e1, . . . , ef be its basis. Each element v ∈ F can then be written as v =

∑f
i=1 eibi for

bi ∈ GF(2), and we denote the binary representation of v as bin(v) = (b1b2 . . . bf). Let H be the
vector space spanned by e1, e2, . . . , eh. We also define two bijections

binHm : Hm → {0, 1}hm and binFm : Fm → {0, 1}fm.

The bijection binFm is the usual one: it maps (b1e1 + · · · + bfef , bf+1e1 + · · · + b2fef , . . . ,
b(m−1)f+1e1 + · · · + bmfef) to (b1b2 . . . bmf). We also treat binary strings as numbers where the
leftmost bit is the least significant one and the rightmost bit is the most significant one. For
example, the string (b1b2 . . . bmf) is treated as

∑mf
i=1 bi2

i−1.
We use the following injection It : [n]→ Hm to project the input to Hm:

It(i) = bin−1
Hm(2t+1 + i). (4)

That is, the i-th input bit will be embedded into the position It(i) ∈ Hm. Define the set I :=
{It(k) : k ≤ |Πinput|}, then the input will be stored on the index set I.

Note that we have not specified binHm yet; the definition of binHm is a bit technical and we will
specify it later. The reason is that we want to map the input to a matrix of dimensionHinput×Winput.
More specifically, the input string occupies positions [2t+1 + 1, 2t+1 + n], and we want to map this
portion into a subset of Hm which corresponds to a rectangle of dimensions Hinput ×Winput.

Remark 7.3. The definition of It (i.e., Eq. (4)) is derived from [BGH+05] as follows.

1. First, we reduce L to the Generalized deBruijn Graph Coloring problem ([BGH+05, Definition
4.3]). The i-th bit of Πinput is mapped to the (2t+1 + i)-th node of the first layer.

2. Then, we reduce the above coloring problem to the Multivariate Algebraic Constraint Satisfaction
Problem ([BGH+05, Definition 6.4]). In this step, for every i, the i-th node in (the first layer of)
the deBruijn graph is mapped to the vector bin−1

Hm(i) ∈ Hm.

Combining the above two steps, it follows that the i-th bit of Πinput is mapped to It(i).

The PCPP proof will have length |F|m · ` for some ` = polylog(T); we treat it as an oracle
Πproof : Fm → {0, 1}`.27 Without loss of generality we may assume ` is a power of 2. The i-th bit
of the proof (viewed as a string of length |F|m · `) is equal to the k-th bit of Πproof [bin−1

Fm(j)], where
j := bi/`c and k := i mod `.

Lines. A line L over Fm is a set of the form {~x+ t~y : t ∈ F}. Here ~x ∈ Fm is called the intercept of
L and ~y ∈ Fm is called the direction of L. The PCPP verifier will make queries along the following
two types of lines over Fm:

27Actually, in [BGH+05], each entry Πproof(~x) is an error-corrected version of a vector in Fpolylog(T). The use of
error correcting codes ensures that the PCPP verifier is robust.

53

• A first-axis parallel line is a line where ~y = (1, 0, 0, . . . , 0) and ~x ∈ Fm. To sample a uniform
first-axis parallel line, it suffices to choose ~x from {0} × Fm−1 uniformly at random using
(m− 1) log(|F|) bits of randomness.

• Fix a λ-biased set Sλ ⊆ Fm constructed in Lemma 7.2. A pseudorandom line is a line where
~x ∈ Fm and ~y ∈ Sλ. Each line has |F| different representations (since the intercepts ~x + t~y
represent the same line for all t ∈ F). Therefore, we specify a canonical representation for
each line.

To sample a pseudorandom line in the canonical way, we first choose ~y from Sλ uniformly
at random, and then sample ~x from {0} × Fm−1 uniformly at random. (Note that the first
coordinate of ~y is always non-zero, therefore every pseudorandom line intersects {0}×Fm−1.)
This uses log(|Sλ|) + (m− 1) log(|F|) bits of randomness.

Query pattern. To verify rectangularity, it suffices to describe the query pattern of the verifier,
i.e., the entries of Πinput and Πproof that are queried for a given randomness.

Let seed be the randomness of the verifier, which has length log
(
|Sλ| · |F|m−1

)
. We partition

seed into
seed := (R2, R3, . . . , Rm, Ry),

where each Ri (2 ≤ i ≤ m) has length log |F| and corresponds to an element in F, and Ry has
length log |Sλ| and corresponds to an element in Sλ. Then seed determines a first-axis parallel
line L0 and a canonical pseudorandom line L1 as follows. The intercepts of both L0 and L1 are
~x = (0, R2, R3, . . . , Rm); the direction of L0 is (1, 0, 0, . . . , 0), and the direction of L1 is the Ry-th
element of Sλ.

Let shift : Fm → Fm denote the cyclic shift one step to the left; i.e.,

shift(a1, a2, . . . , am) = (a2, a3, . . . , am, a1)

for a line L, shift(L) denotes the set {shift(x) : x ∈ L}.
Now we are ready to describe the query pattern of the PCPP verifier:

• For every point ~x on L0, shift(L0), and L1, it makes a query to Πproof [~x].

• For every ~x ∈ L1 ∩ I, it also makes a query to Πinput[I
−1
t (~x)].

Remark 7.4. This query pattern is derived from [BGH+06] (see also [BHPT20, Section C]). In particular:

• Robust Low-Degree Test makes queries to Πproof [L1];

• Robust Identity Test makes queries to Πproof [L0];

• Robust Edge-Consistency Test makes queries to Πproof [L0] and Πproof [shift(L0)];

• Robust Zero Propagation Test makes queries to Πproof [L0] and Πproof [shift(L0)];

• Robust Proximity Test makes queries to Πproof [L1] and Πinput[I
−1
t (L1 ∩ I)].

As Robust Proximity Test was not needed in, and not described by [BHPT20] (since they were
constructing a PCP instead of a PCPP), we describe its details here. This test queries Π on every
point in L1, and unbundles the answers to obtain the values of A0 (a certain proof polynomial in
[BGH+05, Definition 6.3]) on L1. Then it queries Πinput on every point k ∈ L1 ∩ I, and checks whether
Πinput[k] = f textract(A0[It(k)]) holds, where f textract is a certain function defined in [BGH+05, Definition
6.3].

54

7.1.2 Rectangularity of the PCPP Verifier

Given the query pattern of the verifier described above, we now show that the verifier is
rectangular. Recall that the verifier makes 3|F| queries to Πproof ; let us call them (~a1, . . . ,~a|F|),
(~a|F|+1, . . . ,~a2|F|), and (~a2|F|+1, . . . ,~a3|F|), which are on L0, shift(L0), and L1 respectively. The fol-
lowing lemma shows that for each 1 ≤ j ≤ m, the j-th coordinate of each query only depends on
Rj , Rj+1, and Ry.

Lemma 7.5. Fix the random string seed = (R2, R3, . . . , Rm, Ry), and for convenience define R1 =
Rm+1 = 0log |F|. Denote each ~ai = (ai,1, . . . , ai,m) ∈ Fm. Then for every j ∈ [m], (a1,j , a2,j , . . . , a3|F|,j)
only depends on Rj, Rj+1, and Ry.

Moreover, for a fixed Ry, (a1,j , a2,j , . . . , a3|F|,j) is a projection over (Rj , Rj+1).

Proof. Let h1, h2, . . . , h|F| be an enumeration of all the elements in F. Then

(a1,j , a2,j , . . . , a3|F|,j) = (Rj + h1y1,j , Rj + h2y1,j , . . . , Rj + h|F|y1,j ,

Rj+1 + h1y2,j , Rj+1 + h2y2,j , . . . , Rj+1 + h|F|y2,j ,

Rj + h1y3,j , Rj + h2y3,j , . . . , Rj + h|F|y3,j) (5)

where ~y1, ~y2, ~y3 ∈ Fm is defined to be ~y1 = (1, 0, 0, . . . , 0), ~y2 = (0, 0, . . . , 0, 1) and ~y3 is Ry-th vector
in Sλ.

It is easy to see that Eq. (5) only depends on Rj , Rj+1, and Ry. Moreover, each coordinate
ai,j is the sum of Rj or Rj+1 with an element of the form hkyl,j . Note that addition over F =
GF(2f) is equivalent to bitwise XOR over {0, 1}f , it follows that Eq. (5) is indeed a projection over
(Rj , Rj+1).

Definition of binHm. Now we define binHm . Roughly speaking, the goal of this definition is to
“shape” the input oracle as a rectangle of size Hinput ×Winput.

We treat every element in H as a binary string of length h. For a vector ~a = (a1, a2, . . . , am) ∈
Hm, the natural encoding of ~a is the concatenation of a1, a2, . . . , am (from the lowest bits to the
highest bits), where each ai is treated as an element in {0, 1}h. We denote this encoding as bin◦ ∈
{0, 1}mh. Let k := d(wproof − log `) · (h/f)e, as we will show later, the lowest k bits of bin◦ are
computed by Vcol and the rest bits of bin◦ are computed by Vrow. Then, we define binHm(~a) to be
the concatenation of (from the lowest bits to the highest bits):

bin◦[1, winput], bin◦[k + 1, k + hinput], bin◦[winput + 1, k], and bin◦[k + hinput + 1, hm]. (6)

Some intuitions behind the definition of binHm is as follows. The lowest k bits of bin◦ are
computed by Vcol and the rest bits are computed by Vrow. To make the input matrix size Hinput ×
Winput, among the lowest dlog ne bits, there needs to be winput bits computed by Vcol and dlog ne −
winput = hinput bits computed by Vrow. In the definition, we simply put the lowest winput bits
computed by Vcol and the lowest hinput bits computed by Vrow as the lowest dlog ne bits of binHm(~a),
and put the rest bits as the highest bits of binHm(~a).

We define c1 := dwinput/he, c2 := dk/he, c3 := d(k + hinput)/he. Then the winput-th bit of bin◦ is
in ac1 , the k-th bit of bin◦ is in ac2 , and the (k + hinput)-th bit of bin◦ is in ac3 .

55

a1 ac1−1 ac2+1 ac2ac3−1 ac1 ac1+1 am.

winput︷ ︸︸ ︷

︸ ︷︷ ︸
col

hinput︷ ︸︸ ︷

︸ ︷︷ ︸
col

a1 ac1 ac1+1 ac2 ac2+1 ac3 ac3+1 am.bin◦ =

binHm(~a) =

︸ ︷︷ ︸
col

︸ ︷︷ ︸
row

ac1 ac3 ac3 ac3+1 . . .
︸ ︷︷ ︸

row

︸ ︷︷ ︸
row

ac2

Figure 3: The bit-string binHm(a1, a2, . . . , am). In this figure, the leftmost bits are the least
significant ones.

Note that

winput ≤wproof(1−Θ(log f)/f) ≤ k, and
k + hinput ≤ (wproof − log `) · (h/f) + hproof · (h/f) ≤ hm. (7)

Here, Eq. (7) is because wproof +hproof = log |Πproof | = fm+ log `. Since winput ≤ k and k+hinput ≤
hm, Eq. (6) is well-defined.

Partition of the random seed. We partition seed into:

seed.col = (R1, R2, . . . , Rc2−1),

seed.row = (Rc2+2, Rc2+3, . . . , Rm−1), and
seed.shared = (Rc2 , Rc2+1, Ry).

seed

︸ ︷︷ ︸
seed.col

︸ ︷︷ ︸
seed.row

seed.shared

2 3 . . . c2 − 1 c2 c2 + 1 c2 + 2 . . . m− 1 m y

Figure 4: The partition of the random seed.

By Lemma 7.5, it suffices to know Rj , Rj+1, and Ry in order to calculate (a1,j , a2,j , . . . , a3|F|,j).
Therefore, Vcol is able to calculate the 1, 2, . . . , c2-th coordinates of each query; Vrow is able to
calculate the c2, c2 + 1, . . . ,m-th coordinates of each query.

In this partition, we have |seed.col| = (c2 − 1)f ≥ wproof − 2t/m and |seed.row| = (m − c2 −
2)f ≥ hproof − 4t/m. For technical convenience, we will assume |seed.col| = wproof − 2t/m and
|seed.row| = hproof − 4t/m from now on; the rest 6t/m + O(log t) + log |Sλ| random bits are in
seed.shared.

The predicates Vtype, Vrow, and Vcol. Recall that we treat Πproof as an oracle whose entries are
length-` strings, and we make 3|F| queries to Πproof . This means that we actually make 3|F|` queries
to the bit-string corresponding to Πproof . We also make |F| queries to Πinput.

It is easy to describe Vtype: the first 3|F|` queries are to the proof oracle, and the last |F| queries
are to the input oracle.

56

Now consider the i-th query where 1 ≤ i ≤ 3|F|`; these are queries made to Πproof . Let
j := b(i− 1)/`c and k := (i− 1) mod `, then the i-th query probes the k-th bit of Πproof [~aj], where
~aj ∈ Fm is defined above. We want to specify Vrow and Vcol such that the index of the i-th query is

irow[i] ·Wproof + icol[i] = binFm(~aj) · `+ k.

k a1 a2 . . . ac2 . . . am−1 am
︸ ︷︷ ︸

wproof bits

︸ ︷︷ ︸
hproof bits

wproof − (c2 − 1)f − log ℓ bits c2f + log ℓ− wproof bits

Figure 5: The binary representation of the address binFm(~a) · `+ k. In this figure, the leftmost
bits are the least significant ones. The lowest wproof bits are outputted by Vcol, while the rest
bits are outputted by Vrow.

Recall that Vcol can compute aj,1, aj,2, . . . , aj,c2 using Lemma 7.5. Then, it outputs icol[i] as
the concatenation of k, aj,1, . . . , aj,c2−1 and the lowest wproof − (c2 − 1)f − log ` bits of aj,c2 .28

Similarly, Vrow can compute aj,c2 , aj,c2+1, . . . , aj,m. It outputs irow[i] as the concatenation of the
highest c2f + log ` − wproof bits of aj,c2 , and aj,c2+1, aj,c2+2, . . . , aj,m. It follows from Lemma 7.5
that the first 3|F|` entries of Vrow and Vcol are projections over seed.row and seed.col, computable in
polynomial time given seed.shared.

Finally, we consider the (i+3|F|`)-th query where 1 ≤ i ≤ |F|; these are queries made to Πinput. In
particular, recall that the canonical pseudorandom line L1 consists of vectors ~a2|F|+1,~a2|F|+2, . . . ,~a3|F|.
If ~a2|F|+i ∈ I then we query the I−1

t (~a2|F|+i)-th bit of Πinput, otherwise we do nothing.
For notational convenience, we denote ~a? := ~a2|F|+i and bin := binHm(~a?). Now our goal is to

specify Vrow and Vcol such that the index of the (i+ 3|F|`)-th query is

irow
[
i+ 3|F|`

]
·Winput + icol

[
i+ 3|F|`

]
= I−1

t (~a?) = bin− 2t+1.

If either Vrow or Vcol outputs ⊥, or bin− 2t+1 6∈ [0, n), then we do not make this query.

a1 ac1−1 ac2+1 ac2ac3−1 ac1 ac1+1 am.

winput bits︷ ︸︸ ︷

︸ ︷︷ ︸
col

hinput bits︷ ︸︸ ︷

︸ ︷︷ ︸
col

ac1 ac3 ac3 ac3+1 . . .
︸ ︷︷ ︸

row

︸ ︷︷ ︸
row

ac2

winput − (c1 − 1)h bits c2h− k bits hinput + winput − (c3 − 1)h bits

Figure 6: The bit-string binHm(~a). Again, the leftmost bits are the least significant ones.

Recall that Vcol can compute a?1, a?2, . . . , a?c2 .

• If any of these elements are not in H, it outputs ⊥.

• If any of the elements a?c1+1, . . . , a
?
c2 is non-zero, then bin mod 2t is not in the range [0, n), and

it outputs ⊥.
28Note that c2 = d(wproof − log `)/fe, which means the “dividing point” between wproof and hproof is in ac2 .

57

• Otherwise, the concatenation of a?1, a?2, . . . , a?c1−1, and the lowest (winput − (c1 − 1)h) bits of
a?c1 is equal to (bin mod Winput). In this case it outputs

icol
[
i+ 3|F|`

]
= bin mod Winput.

Also recall that Vrow can compute a?c2 , a
?
c2+1, . . . , a

?
m.

• If any of these elements are not in H, it outputs ⊥.

• If any of the elements a?c3+1, a?c3+2, . . . , a?m−1 is non-zero, or a?m 6= 2t+1−(m−1)h, then bin is
not of the form 2t+1 + i (0 ≤ i < n), and it outputs ⊥.29

• Otherwise, the concatenation of the lowest (c2h− k) bits of a?c2 , and a
?
c2+1, a?c2+2, . . . , a?c3−1,

and the lowest (hinput +winput− (c3− 1)h) bits of a?c3 , is equal to b(bin− 2t+1)/Winputc. In this
case it outputs

irow
[
i+ 3|F|`

]
= b(bin− 2t+1)/Winputc.

7.1.3 Robust Soundness Amplification

The above PCPP only satisfies a weak version of expected robust soundness: the expected fraction
of bits that we need to flip in order to make the verifier accept is at least ρ, where the expectation
is over the choice of seed. Ideally, we want the following stronger version of robust soundness: with
probability at most s (where s can be made arbitrarily small), it is possible to flip a ρ fraction of
bits read by the verifier to make it accept.

We can convert expected robust soundness to standard robust soundness (with an arbitrarily
small soundness parameter s) using expander walks. Take a constant-degree expander graph G =
(V,E) where V = {0, 1}r(n). Use r(n) +O(1) random bits to sample a random walk of length O(1)
over G. Then, for every vertex v ∈ {0, 1}r(n) in the random walk, run the old PCPP verifier with v
as randomness, reject if the old PCPP verifier rejects. If every invocation of the old PCPP verifier
accepts, then our new PCPP verifier also accepts.

However, we need to be careful when implementing this approach: To preserve the rectangularity
of the verifier, we take the tensor product of three expanders (one for row randomness, one for column
randomness, and one for shared randomness). To ensure that Vrow and Vcol are (still) projections,
we use the following family of 1-local expanders:

Lemma 7.6 ([VW18]). For every λ < 1, there is some d = poly(1/λ) such that the following
holds. For every integer n, there are d explicit projections (i.e., NC0

1 circuits) C1, C2, . . . , Cd :
{0, 1}n → {0, 1}n such that the following graph Gn is an expander graph with second largest eigen-
value at most λ: The vertex set of Gn is {0, 1}n, and each vertex x ∈ {0, 1}n has d neighbors
C1(x), C2(x), . . . , Cd(x).

Theorem 7.7. Let L be a language. Suppose that L has a robust and rectangular PCP of proximity
V old with parameters specified in Table 3. Then for every parameter s = s(n), L has a robust and
rectangular PCP of proximity V new with parameters specified in Table 3.

Moreover, if V old
row and V old

col are projections computable in polynomial time given seedold.shared,
then V new

row and V new
col are also projections computable in polynomial time given seednew.shared.

29Note that the (t+1)-st bit of binHm(~a?) is indeed located in a?m, since hm−(t+1) ≤ (t+3)+m−(t+1) = m+2 < h
when t is large enough. Another minor detail is that if c1 = m, then the test that a?m = 2t+1−(m−1)h should be
performed by Vcol instead of Vrow.

58

Verifier V old V new

Proximity parameter δ δ

Soundness error expected ρ s
Robustness parameter ρ/3

Row randomness rrow rrow
Column randomness rcol rcol
Shared randomness rshared rshared +O(ρ−2 log(1/s) log(1/ρ))

Query complexity q O(q · ρ−2 log(1/s))

Decision complexity d O(d · ρ−2 log(1/s) + poly(rrow, rcol, rshared))

Table 3: The parameters of the PCPPs in Theorem 7.7.

Proof. Let λ := ρ/3, Grow be the 1-local expander on vertex set {0, 1}rrow(n) whose second largest
eigenvalue is at most λ, specified by Lemma 7.6; similarly let Gcol be the 1-local expander on vertex
set {0, 1}rcol(n), and Gshared be the 1-local expander on vertex set {0, 1}rshared(n). Then Grow, Gcol,
and Gshared are d-regular graphs for d := poly(1/δ). Let G := Grow × Gcol × Gshared be the tensor
product of the three expanders. That is, G = (V,E) where

V := {0, 1}rold(n) = {0, 1}rrow(n) × {0, 1}rcol(n) × {0, 1}rshared(n), and
E := {((u, v, w), (u′, v′, w′)) : (u, u′) ∈ E(Grow), (v, v′) ∈ E(Gcol), (w,w

′) ∈ E(Gshared)}.

It follows from the properties of tensor product that the second largest eigenvalue of G is also at
most λ.

Let ` := O(λ−2 log(1/s)). We take a length-` random walk on G to generate ` random seeds
seed1, . . . , seed` ∈ {0, 1}r

old(n), and plug them into the old PCPP verifier one by one. An equivalent
way to state this (from which the rectangularity is easier to see) is as follows. We add 3d(`−1) log de
random bits into seed.shared.

• The first d(`−1) log de random bits correspond to (`−1) numbers σ1, σ2, . . . , σ`−1 ∈ [d], which
specify a random walk (u1, u2, . . . , u`) in Grow: Namely, u1 = seed.row, and for every 2 ≤ i ≤ `,
ui = Cσi(ui−1). It is easy to see that each ui is a projection over seed.row, computable in
polynomial time given seed.shared.

• The middle d(`− 1) log de random bits specify a random walk (v1, v2, . . . , v`) in Gcol, starting
from seed.col. Each vi is a projection over seed.col, computable in polynomial time given
seed.shared.

• The last d(`− 1) log de random bits specify a random walk (w1, w2, . . . , w`) in Gshared.

Then, our new PCPP verifier accepts seed if and only if for every i ∈ [`], the old PCPP verifier
accepts the following random seed:

(seedold.row = ui, seedold.col = vi, seedold.shared = wi).

The query and decision complexity of our new PCPP verifier is easy to see. Fix seednew.shared,
the row indices of each query only depends on (u1, u2, . . . , u`), which only depends on seed.row.
Similarly, the column indices of each query only depends on (v1, v2, . . . , v`), which only depends on
seed.col. Therefore the new PCPP verifier is rectangular. Moreover, each ui can be computed by a
projection over seed.row, and each vi can be computed by a projection over seed.col.

59

Finally, we examine the robust soundness of our new PCPP. Fix an input oracle Πinput which
is δ-far from L. Let seed ∈ V (G) = {0, 1}rold(n) be some randomness for the old PCPP verifier, we
define δchange(seed) to be the fraction of bits read by the old PCPP verifier that we need to change in
order to make the old PCPP verifier accept. Let µ := Eseed[δchange(seed)], then µ ≥ ρ. By expander
Chernoff bound (see, e.g., [Vad12, Theorem 4.22]), we have

Pr

[∣∣∣∣∣
1

`

∑̀

i=1

δchange(ui, vi, wi)− µ
∣∣∣∣∣ ≥ 2λ

]
≤ 2 exp(−Ω(λ2`)) ≤ s.

It follows that w.p. at least 1−s, we need to change ≥ µ−2λ ≥ ρ/3 fraction of bits read by the new
PCPP verifier in order to make it accept. That is, the new PCPP verifier has soundness parameter
s and robustness parameter ρ/3.

7.1.4 Proof of Theorem 7.1

Now we prove Theorem 7.1.

Theorem 7.1. The following holds for all constants m ≥ 1 and s, δ > 0. Let T (n), wproof(n),
winput(n) be good functions such that n ≤ T (n) ≤ 2poly(n), wproof(n) ≤ log T (n), and winput(n) ≤
log n. Let

hproof(n) := log T (n) + Θ(m log log T (n))− wproof(n), and
hinput(n) := dlog ne − winput(n).

Moreover, suppose that for some large enough constant C ≥ 1,

winput(n)

wproof(n)
,
hinput(n)

hproof(n)
≤ 1− C log log T (n)

log T (n)
.

Let Wproof(n) := 2wproof(n), Hproof(n) := 2hproof(n), Winput(n) := 2winput(n), and Hinput(n) := 2hinput(n).
Then NTIME[T (n)] has a robust and rectangular PCP of proximity with an Hproof(n) ×Wproof(n)
proof matrix and an Hinput(n) × Winput(n) input matrix, whose other parameters are specified in
Table 2.

Moreover, Vrow and Vcol are projections over seed.row and seed.col respectively, computable in
polynomial time given seed.shared.

Proof Sketch. Consider the PCPP verifier introduced in Sections 7.1.1 and 7.1.2. Its decision com-
plexity, query complexity, and perfect completeness are shown in [BGH+06, BGH+05]. The rect-
angularity of the PCPP verifier is shown in Section 7.1.2. Note that |Sλ| = O((fm/λ)2), thus
log |Sλ| = O(log log T (n)). Recall that

rrow(n) =wproof − 2t/m,

rcol(n) =hproof − 4t/m,

rshared(n) = 6t/m+O(log t).

The above PCPP verifier only achieves the following version of robustness property (see [BGH+06,
Lemma 8.11]). Let δproof(seed) denote the fraction of bits of Πproof read by the verifier that we need
to flip, if we want the verifier to accept given seed as randomness; δinput(seed) is defined analogously
for Πinput. There is a constant ρ > 0 such that for every constant δ > 0, if Πinput is δ-far from L,
then for any proof oracle Πproof , either Eseed[δproof(seed)] ≥ ρ or Eseed[δinput(seed)] ≥ δ/3.

60

Recall that we make ninput := |F| queries to Πinput and nproof := 3|F|` queries to Πproof . We
repeat each input query n′ := 9(ρ/δ)` times. Now, if Πinput is δ-far from L, then the expected
fraction of bits read by the verifier needs to be flipped is at least

min{ρ · nproof , (δ/3) · n′ · ninput}
n′ · ninput + nproof

=
ρ

1 + 3(ρ/δ)
= Ω(δ),

in order to make the verifier accept. Now, we have a PCPP verifier that achieves expected robustness
Ω(δ): the expected fraction of bits read by the verifier that needs to be flipped, in order to make
the verifier accept, is at least Ω(δ), where the expectation is over the random seed of the verifier.
The decision and query complexities remain asymptotically the same.

Finally, we convert expected robustness to standard robustness via Theorem 7.7. For any pa-
rameter s > 0, we can reduce the soundness error to be at most s while preserving robustness error
Ω(δ), at the cost of adding O(log(1/s)) random bits in seed.shared and paying an O(log(1/s)) factor
in the decision and query complexity.

7.2 Composition and Final Construction

The PCPP verifier in Section 7.1 requires T (n)Ω(1) query complexity. In this section, we compose
it with an efficient PCPP to bring its query complexity down to O(1). We assume basic familiarity
with the composition theorem of PCPs; a good reference is [BGH+06, Section 2.4].

Let Circuit-Eval⊥ denote the circuit value problem where the circuit has alphabet {0, 1,⊥}.
Note that the input alphabet of the decision circuit of the PCPP constructed in Section 7.1
is {0, 1,⊥} instead of {0, 1}. Therefore we should use a PCPP for Circuit-Eval⊥ instead of
Circuit-Eval for the inner PCPP.

We prove the following composition theorem.

Theorem 7.8. Let n ≤ T (n) ≤ 2poly(n). Suppose that NTIME[T (n)] has a robust and rectangu-
lar PCPP verifier V out and Circuit-Eval⊥ has a robust (but not necessarily rectangular) PCPP
verifier V in with parameters specified in Table 4. Moreover, assume that ρout ≥ δin, `in = 2r

in,30

Wproof ≥ `in, Wproof is a power of 2, and routcol ≤ logWproof ≤ routcol + routshared.
Then NTIME[T (n)] has a robust and rectangular PCPP verifier V comp with parameters specified

in Table 4.

Proof. The composed PCPP is described in [BGH+06, Theorem 2.7], with one crucial difference in
ROPs. In particular, the outer PCPP in [BGH+06] computes its decision predicate from its random-
ness, but the decision predicate of our outer PCPP takes (the encoded version of) its randomness
as inputs.31 For completeness, we present the composed PCPP in Algorithm 2.

The for-loop in Algorithm 2 computes the query indices of V comp in detail. This for-loop will
be very important as the rectangularity of V comp relies on it. In the for-loop, we use the following
notation:

30This is without loss of generality, because `in ≤ 2r
in

· qin, and in our case qin will be a constant. We could always
add O(log qin) = O(1) dummy bits to the inner verifier’s randomness and pad the inner verifier’s proof oracle to length
2r

in

.
31The reason to apply an error-correcting code on the randomness is that we want Decout to have robust soundness.

Let (Πin,Enc(seed)) be the input of Decout, if given seed, Πin is far from being accepted by Decout, then (Πin,Enc(seed))
is also far from being accepted by Decout. This is not true if we do not encode seed.

61

Verifier V out V in V comp

Soundness error sout sin sout + sin

Proximity parameter δout δin δout

Robustness parameter ρout ρin ρin

Row randomness routrow - routrow

Column randomness routcol - routcol − rin
Shared randomness routshared rin routshared + 2 · rin
Proof matrix height Hproof - Hproof + 2r

out+rin/Wproof

Proof matrix width Wproof - Wproof

Query complexity qout qin qin

Parity check complexity - - qin

Decision complexity dout din din

Proof length `out `in `out + 2r
out · `in

Table 4: The parameters of the PCPPs in the composition theorem. Note that the input length of
the inner PCPP is dout = dout(n), e.g., rin in the table actually refers to rin(dout(n)).





icomp[k]← i . Regular Case

irowcomp[k]← irow

icolcomp[k]← icol
. Rectangular Case

This denotes that the k-th query index of V comp is (type, i) if there is no rectangularity constraint
on V out, and is (type, irow, icol) if we require V out and V comp to be rectangular. It will always be
the case that irow = bi/Wtypec and icol = i mod Wtype (for type ∈ {input, proof}), but it is helpful
to explicitly spell out irow and icol.

Now we specify the proof oracle of V comp. Fix a choice of seedout, let Πin
input := Πin

input(seedout)

be the input oracle of the inner PCPP verifier, specified in Eq. (8); let Πin
proof(seedout) be the PCPP

proof for V in of the statement that Decout accepts Πin
input. To construct the proof oracle of V comp, we

append the proofs Πin
proof(seedout) (for every possible choice of seedout) at the end of Πout

proof (the proof
oracle for the outer PCPP verifier). Let Nproof := Wproof/`

in = Wproof/2
rin , then every (appended)

row contains Nproof proofs for the inner verifier. The final proof oracle will be an H ′proof ×Wproof

matrix, where
H ′proof := Hproof + 2r

out
/Nproof = Hproof + 2r

out+rin/Wproof .

Partition of the random seed. The random seed is simply the concatenation of seedout and
seedin. The shared part of the random seed consists of three parts:

• seedout.shared, the shared part of seedout;

• seedin, the randomness of the inner verifier;

• some arbitrary rin bits of seedout.col (the reason for adding these bits into seed.shared will be
clear when we discuss Line 22 of Algorithm 2).

62

Algorithm 2 The composed PCPP
1: Obtain the decision circuit Decout of the outer verifier
2: Sample seedout ← {0, 1}rout
3: Sample the queries Iout ← V out(seedout) of the outer verifier
4: Sample seedin ← {0, 1}rin
5: Sample the queries I in ← V in(seedin) of the inner verifier
6: Let Deccomp ← Decin be the decision circuit of the composed verifier
7: (Implicitly) define the input oracle of the inner verifier to be

Πin
input := (Πinput,Πproof)|Iout ◦ Enc(seedout) (8)

8: for k ← 1 to qin do . Determine the position of the k-th query
9: if itypein[k] = input then . This query is on Πin

input

10: if iin[k] ≤ qout then . This query is on (Πinput,Πproof)|Iout
11: if itypeout[iin[k]] = input then
12: itypecomp[k]← input

13:





icomp[k]← iout[iin[k]] . Regular Case

irowcomp[k]← irowout[iin[k]]

icolcomp[k]← icolout[iin[k]]
. Rectangular Case

14: else
15: itypecomp[k]← proof

16:





icomp[k]← iout[iin[k]] . Regular Case

irowcomp[k]← irowout[iin[k]]

icolcomp[k]← icolout[iin[k]]
. Rectangular Case

17: else . This query is on Enc(seedout)
18: Fix the k-th input of Deccomp to be Enc(seedout)[iin[k]− qout]
19: else . This query is on the seedout-th inner proof
20: Let Nproof ←Wproof/`

in be the number of proof oracles for V in in one row
21: itypecomp[k]← proof

22:





icomp[k]← `out + seedout · `in + iin[k] . Regular Case

irowcomp[k]← Hproof + bseedout/Nproofc
icolcomp[k]← `in · (seedout mod Nproof) + iin[k]

. Rectangular Case

63

Formally, we split seedout.col into (seedout.col1, seedout.col2) where |seedout.col2| = rin. We have

seed.row = seedout.row,

seed.col = seedout.col1,

seed.shared = (seedout.shared, seedin, seedout.col2).

The predicates Vtype, Vrow, and Vcol. These predicates can be inferred from the for-loop of
Algorithm 2. In particular:

• Since itypeout only depends on seedout.shared, it is easy to see that itypecomp only depends on
seed.shared.

• It is easy to see that in Lines 13 and 16, irowcomp only depends on seed.shared and seed.row,
and icolcomp only depends on seed.shared and seed.col.

• In Line 22, icolcomp only depends on seed.shared and the lowest logNproof bits of seedout;
irowcomp only depends on seed.shared and the highest rout − logNproof bits of seedout. Note
that |seedout.col| ≤ logWproof ≤ |seedout.col|+ |seedout.shared|. Therefore

logNproof ≤ |seedout.col|+ |seedout.shared|, and

rout − logNproof ≤ rin + |seedout.row|+ |seedout.shared|.

We can rearrange the bits of seedout such that the lowest logNproof bits belong to either
seedout.col1 or seedout.shared (thus either seed.col or seed.shared), and the highest rout −
logNproof bits belong to either seedout.row, seedout.col2, or seedout.shared (thus either seed.row
or seed.shared). It follows that irowcomp only depends on seed.row and seed.shared, and icolcomp

only depends on seed.col and seed.shared.

ROP with parity-check bits. How does Deccomp (the decision predicate of V comp) depend on
its randomness? Note that Deccomp is equal to Decin except that in Line 18, we fix a certain input
bit of Deccomp to be a certain bit in Enc(seedout). Since Enc is a GF(2)-linear error correcting code
(Theorem 2.2), each bit of Enc(seedout) is the XOR of a subset of indices in seedout. (This is the
reason that we need parity-check bits in ROP.) Also, Decin only depends on seed.shared, therefore
Deccomp only depends on seed.shared and the qin parity-check bits over seed.row and seed.col.

Corollary 7.9. Suppose that in Theorem 7.8, for fixed seedout.shared, V out
row and V out

col are projections
over seedout.row and seedout.col (respectively), computable in polynomial time given seedout.shared.
Moreover, assume Hproof is a power of 2.

Then for fixed seedcomp.shared, V comp
row and V comp

col are also projections over seedcomp.row and
seedcomp.col, computable in polynomial time given seedcomp.shared.

Proof. For each k ≤ qin, we execute the for-loop in Algorithm 2. If we execute Line 13 or Line 16,
it is easy to see that irowcomp[k] is a projection over seed.row and icolcomp[k] is a projection over
seed.col. So it remains to examine Line 22:

• The lowest rout − logNproof bits of irowcomp[k] are simply the highest rout − logNproof bits of
seedout; the higher bits of irowcomp[k] are fixed to be Hproof .

• The lowest rin bits of icolcomp[k] are simply iin[k]; the higher bits of icolcomp[k] are the lowest
logNproof bits of seedout.

64

iin[k] seedout Hproof

︸ ︷︷ ︸
col

︸ ︷︷ ︸
row

rin bits rout − logNproof bits

Figure 7: The bit-string icomp[k] in Line 22. Again, the leftmost bits are the least significant
ones.

7.2.1 The Final PCPP

We will use the constant query PCPP of [Mie09] for the inner verifier.

Theorem 7.10 ([Mie09]). Let L be a pair language in NTIME[T (n)] for some non-decreasing func-
tion T : Z+ → Z+. Then, for every constants s, δ > 0, L has a PCPP verifier with parameters
specified in Table 5.

Proximity parameter δ

Soundness error s

Randomness complexity log T (n) +O(log log T (n))

Query complexity O(1)

Decision complexity polylog(T (n))

Table 5: Parameters of the PCPP constructed in Theorem 7.10.

Now, we compose the outer PCPP (Theorem 7.1) and the inner PCPP (Theorem 7.10) to obtain
the following:

Theorem 7.11. The following holds for every constants m ≥ 1 and s, δ > 0. Let T (n), wproof(n),
winput(n), be good functions such that n ≤ T (n) ≤ 2poly(n), 2

m log T (n) ≤ wproof(n) ≤ log T (n), and
winput(n) ≤ log n. Let

hproof(n) := log T (n) + Θ(m log log T (n))− wproof(n), and
hinput(n) := dlog ne − winput(n).

Moreover, suppose that for some large enough universal constant C ≥ 1,

winput(n)

wproof(n)
,
hinput(n)

hproof(n)
≤ 1− C log log T (n)

log T (n)
.

Let Wproof(n) := 2wproof(n), Hproof(n) := 2hproof(n), Winput(n) := 2winput(n), and Hinput(n) := 2hinput(n).
Then NTIME[T (n)] has a rectangular PCP of proximity with an Hproof(n)×Wproof(n) proof matrix
and an Hinput(n)×Winput(n) input matrix, whose other parameters are specified in Table 6.

Moreover, Vrow and Vcol are projections over seed.row and seed.col respectively, computable in
polynomial time given seed.shared.

65

Proximity parameter δ

Soundness error s

Total randomness log T (n) +O(m log log T (n))

Row randomness hproof − (5/m) log T (n)

Column randomness wproof − (5/m) log T (n)

Shared randomness (10/m) log T (n) +O(log log T (n))

Query complexity O(1)

Parity check complexity O(1)

Decision complexity polylog(T (n))

Table 6: Parameters of the final PCPP.

Proof. Let V out be the outer PCPP of Theorem 7.1 with soundness error sout := s/2, proximity
parameter δ, and robustness parameter ρout := Ω(δ). The decision and query complexity of V out

are
dout = qout := T (n)1/m · polylog(T (n)).

Let V in be the inner PCPP of Theorem 7.10 with soundness parameter sin := s/2 and proximity
parameter δin := ρout. Plugging in dout := T (n)1/m · polylog(T (n)), the randomness complexity of
V in becomes

rin(dout) =
1

m
log T (n) +O(log log T (n)) +O(log log(1/s)).

It is easy to check that every technical condition in Theorem 7.8 hold. In particular

• `in = 2r
in ≤ T (n)1/mpolylog(T (n)) < Wproof .

• routcol + routshared = (c2 − 4)f + 4f + log |Sλ| ≥ c2f + 10 ≥ wproof ; and

• routcol = (c2 − 4)f ≤ wproof .

Now we invoke Theorem 7.8 to obtain the final PCPP with:

• Proximity parameter δ;

• soundness error sout + sin = s;

• proof matrix height Hproof + 2r
out+rin/Wproof = Θ(T (n) logO(m) T (n)s−1/Wproof),

• query complexity and parity check complexity Os(1), and

• decision complexity polylog(T (n)).

Finally, we calculate the randomness complexity of the PCPP (note that hcomp
proof ≤ houtproof +

O(log log T (n))):

• row randomness rrow = routrow = houtproof − (2/m) log T (n) ≥ hcomp
proof − (5/m) log T (n);

• column randomness rin = routcol − rin ≥ wout
proof − (5/m) log T (n);

• shared randomness rshared = routshared +2 ·rin ≤ (10/m) log T (n)+O(log log T (n))+O(log(1/s));

We can simply assume that rrow = hcomp
proof − (5/m) log T (n), rcol = wcomp

proof − (5/m) log T (n), as we
can always move some portion of seed.row or seed.col into seed.shared.

Corollary 7.12. For every constant τ < 1, setting m := d20/τe, the above PCPP is τ -almost
rectangular with proof length T (n) · polylog(T (n)1/τ).

66

Acknowledgements

Hanlin Ren wants to thank Yuichi Yoshida for helpful discussions about hypergraph cut spar-
sifiers, Stanislav Živný for helpful discussions about [PZ21], and Lijie Chen for helpful discussions
in general and about THR ◦THR circuits specifically. We thank Jiatu Li for helpful comments on a
draft version of this paper. We thank Jan Pich for helpful discussions during the early stage of this
research.

References
[AB18] Amir Abboud and Karl Bringmann. Tighter connections between Formula-SAT and shaving logs.

In Proc. 45th International Colloquium on Automata, Languages and Programming (ICALP),
volume 107 of LIPIcs, pages 8:1–8:18, 2018. doi:10.4230/LIPIcs.ICALP.2018.8. (cit. on
p. 32)

[ABRW04] Michael Alekhnovich, Eli Ben-Sasson, Alexander A. Razborov, and Avi Wigderson. Pseudo-
random generators in propositional proof complexity. SIAM J. Comput., 34(1):67–88, 2004.
doi:10.1137/S0097539701389944. (cit. on p. 9, 47)

[AC19] Josh Alman and Lijie Chen. Efficient construction of rigid matrices using an NP oracle. In Proc.
60th Annual IEEE Symposium on Foundations of Computer Science (FOCS), pages 1034–1055,
2019. doi:10.1109/FOCS.2019.00067. (cit. on p. 3, 11)

[Adl78] Leonard M. Adleman. Two theorems on random polynomial time. In 19th Annual Symposium
on Foundations of Computer Science, Ann Arbor, Michigan, USA, 16-18 October 1978, pages
75–83, 1978. doi:10.1109/SFCS.1978.37. (cit. on p. 38)

[AGHP92] Noga Alon, Oded Goldreich, Johan Håstad, and René Peralta. Simple constructions of almost
k-wise independent random variables. Random Structures Algorithms, 3(3):289–304, 1992. doi:
10.1002/rsa.3240030308. (cit. on p. 79)

[AHM+08] Eric Allender, Lisa Hellerstein, Paul McCabe, Toniann Pitassi, and Michael E. Saks. Minimizing
disjunctive normal form formulas and AC0 circuits given a truth table. SIAM J. Comput.,
38(1):63–84, 2008. doi:10.1137/060664537. (cit. on p. 45)

[AHWW16] Amir Abboud, Thomas Dueholm Hansen, Virginia Vassilevska Williams, and R. Ryan Williams.
Simulating branching programs with edit distance and friends, or: a polylog shaved is a lower
bound made. In Proc. 48th Annual ACM Symposium on Theory of Computing (STOC), pages
375–388. ACM, 2016. doi:10.1145/2897518.2897653. (cit. on p. 32)

[AIK06] Benny Applebaum, Yuval Ishai, and Eyal Kushilevitz. Cryptography in NC0. SIAM Journal of
Computing, 36(4):845–888, 2006. doi:10.1137/S0097539705446950. (cit. on p. 8, 9, 45, 46)

[ALM+98] Sanjeev Arora, Carsten Lund, Rajeev Motwani, Madhu Sudan, and Mario Szegedy. Proof
verification and the hardness of approximation problems. Journal of the ACM, 45(3):501–555,
1998. doi:10.1145/278298.278306. (cit. on p. 10)

[AS98] Sanjeev Arora and Shmuel Safra. Probabilistic checking of proofs: A new characterization of
NP. Journal of the ACM, 45(1):70–122, 1998. doi:10.1145/273865.273901. (cit. on p. 10)

[Bar89] David A. Mix Barrington. Bounded-width polynomial-size branching programs recognize ex-
actly those languages in NC1. J. Comput. Syst. Sci., 38(1):150–164, 1989. doi:10.1016/
0022-0000(89)90037-8. (cit. on p. 32)

[BFT98] Harry Buhrman, Lance Fortnow, and Thomas Thierauf. Nonrelativizing separations. In Proc.
13th Annual IEEE Conference on Computational Complexity (CCC), pages 8–12, 1998. doi:
10.1109/CCC.1998.694585. (cit. on p. 2)

67

https://doi.org/10.4230/LIPIcs.ICALP.2018.8
https://doi.org/10.1137/S0097539701389944
https://doi.org/10.1109/FOCS.2019.00067
https://doi.org/10.1109/SFCS.1978.37
https://doi.org/10.1002/rsa.3240030308
https://doi.org/10.1002/rsa.3240030308
https://doi.org/10.1137/060664537
https://doi.org/10.1145/2897518.2897653
https://doi.org/10.1137/S0097539705446950
https://doi.org/10.1145/278298.278306
https://doi.org/10.1145/273865.273901
https://doi.org/10.1016/0022-0000(89)90037-8
https://doi.org/10.1016/0022-0000(89)90037-8
https://doi.org/10.1109/CCC.1998.694585
https://doi.org/10.1109/CCC.1998.694585

[BGH+05] Eli Ben-Sasson, Oded Goldreich, Prahladh Harsha, Madhu Sudan, and Salil P. Vadhan. Short
PCPs verifiable in polylogarithmic time. In Proc. 20th Annual IEEE Conference on Computa-
tional Complexity (CCC), pages 120–134, 2005. doi:10.1109/CCC.2005.27. (cit. on p. iii, 10,
15, 51, 53, 54, 60)

[BGH+06] Eli Ben-Sasson, Oded Goldreich, Prahladh Harsha, Madhu Sudan, and Salil Vadhan. Robust
PCPs of proximity, shorter PCPs and applications to coding. SIAM J. Comput., 36(4):889–974,
2006. doi:10.1137/S0097539705446810. (cit. on p. 10, 11, 17, 51, 54, 60, 61)

[BHPT20] Amey Bhangale, Prahladh Harsha, Orr Paradise, and Avishay Tal. Rigid matrices from rect-
angular PCPs or: Hard claims have complex proofs. In Proc. 61st Annual IEEE Symposium
on Foundations of Computer Science (FOCS), pages 858–869, 2020. doi:10.1109/FOCS46700.
2020.00084. (cit. on p. 3, 10, 11, 19, 51, 52, 54)

[BS08] Eli Ben-Sasson and Madhu Sudan. Short PCPs with polylog query complexity. SIAM J.
Comput., 38(2):551–607, 2008. doi:10.1137/050646445. (cit. on p. 11)

[BST19] Nikhil Bansal, Ola Svensson, and Luca Trevisan. New notions and constructions of spar-
sification for graphs and hypergraphs. In Proc. 60th Annual IEEE Symposium on Foun-
dations of Computer Science (FOCS), pages 910–928. IEEE Computer Society, 2019. doi:
10.1109/FOCS.2019.00059. (cit. on p. 27, 28)

[BSVW03] Eli Ben-Sasson, Madhu Sudan, Salil P. Vadhan, and Avi Wigderson. Randomness-efficient low
degree tests and short PCPs via epsilon-biased sets. In Proc. 35th Annual ACM Symposium on
Theory of Computing (STOC), pages 612–621, 2003. doi:10.1145/780542.780631. (cit. on
p. 79)

[Bus87] Samuel R. Buss. The Boolean formula value problem is in ALOGTIME. In Proc. 19th Annual
ACM Symposium on Theory of Computing (STOC), pages 123–131, 1987. doi:10.1145/28395.
28409. (cit. on p. 45)

[BV14] Eli Ben-Sasson and Emanuele Viola. Short PCPs with projection queries. In Proc. 41st Inter-
national Colloquium on Automata, Languages and Programming (ICALP), volume 8572 of Lec-
ture Notes in Computer Science, pages 163–173, 2014. doi:10.1007/978-3-662-43948-7_14.
(cit. on p. 3, 10, 11)

[CGL+19] Lijie Chen, Shafi Goldwasser, Kaifeng Lyu, Guy N. Rothblum, and Aviad Rubinstein. Fine-
grained complexity meets IP = PSPACE. In Proc. 30th Annual ACM-SIAM Symposium on
Discrete Algorithms (SODA), pages 1–20. SIAM, 2019. doi:10.1137/1.9781611975482.1.
(cit. on p. 32)

[CH85] Stephen A. Cook and H. James Hoover. A depth-universal circuit. SIAM J. Comput., 14(4):833–
839, 1985. doi:10.1137/0214058. (cit. on p. 45)

[Che18] Lijie Chen. Toward super-polynomial size lower bounds for depth-two threshold circuits. CoRR,
abs/1805.10698, 2018. doi:10.48550/arXiv.1805.10698. (cit. on p. 32)

[Che19] Lijie Chen. Non-deterministic quasi-polynomial time is average-case hard for ACC circuits.
In Proc. 60th Annual IEEE Symposium on Foundations of Computer Science (FOCS), pages
1281–1304, 2019. doi:10.1109/FOCS.2019.00079. (cit. on p. 3)

[CIKK16] Marco L. Carmosino, Russell Impagliazzo, Valentine Kabanets, and Antonina Kolokolova.
Learning algorithms from natural proofs. In Proc. 31st Computational Complexity Confer-
ence (CCC), volume 50 of LIPIcs, pages 10:1–10:24, 2016. doi:10.4230/LIPIcs.CCC.2016.10.
(cit. on p. 8)

[CKN20] Yu Chen, Sanjeev Khanna, and Ansh Nagda. Near-linear size hypergraph cut sparsifiers. In
Proc. 61st Annual IEEE Symposium on Foundations of Computer Science (FOCS), pages 61–72.
IEEE, 2020. doi:10.1109/FOCS46700.2020.00015. (cit. on p. 28)

68

https://doi.org/10.1109/CCC.2005.27
https://doi.org/10.1137/S0097539705446810
https://doi.org/10.1109/FOCS46700.2020.00084
https://doi.org/10.1109/FOCS46700.2020.00084
https://doi.org/10.1137/050646445
https://doi.org/10.1109/FOCS.2019.00059
https://doi.org/10.1109/FOCS.2019.00059
https://doi.org/10.1145/780542.780631
https://doi.org/10.1145/28395.28409
https://doi.org/10.1145/28395.28409
https://doi.org/10.1007/978-3-662-43948-7_14
https://doi.org/10.1137/1.9781611975482.1
https://doi.org/10.1137/0214058
https://doi.org/10.48550/arXiv.1805.10698
https://doi.org/10.1109/FOCS.2019.00079
https://doi.org/10.4230/LIPIcs.CCC.2016.10
https://doi.org/10.1109/FOCS46700.2020.00015

[CL21] Lijie Chen and Xin Lyu. Inverse-exponential correlation bounds and extremely rigid matrices
from a new derandomized XOR lemma. In Proc. 53rd Annual ACM Symposium on Theory of
Computing (STOC), pages 761–771, 2021. doi:10.1145/3406325.3451132. (cit. on p. 3)

[CLLO21] Lijie Chen, Zhenjian Lu, Xin Lyu, and Igor Carboni Oliveira. Majority vs. approximate linear
sum and average-case complexity below NC1. In Proc. 48th International Colloquium on Au-
tomata, Languages and Programming (ICALP), volume 198 of LIPIcs, pages 51:1–51:20, 2021.
doi:10.4230/LIPIcs.ICALP.2021.51. (cit. on p. 3, 37, 40, 42)

[CLW20] Lijie Chen, Xin Lyu, and R. Ryan Williams. Almost-everywhere circuit lower bounds from non-
trivial derandomization. In Proc. 61st Annual IEEE Symposium on Foundations of Computer
Science (FOCS), pages 1–12, 2020. doi:10.1109/FOCS46700.2020.00009. (cit. on p. 3, 13,
14, 16, 37, 40, 43, 73)

[COS18] Ruiwen Chen, Igor Carboni Oliveira, and Rahul Santhanam. An average-case lower bound
against ACC0. In Proc. 13th Latin American Theoretical Informatics Symposium (LATIN),
volume 10807 of Lecture Notes in Computer Science, pages 317–330, 2018. doi:10.1007/
978-3-319-77404-6_24. (cit. on p. 3)

[CR79] Stephen A. Cook and Robert A. Reckhow. The relative efficiency of propositional proof systems.
J. Symb. Log., 44(1):36–50, 1979. doi:10.2307/2273702. (cit. on p. 47)

[CR20] Lijie Chen and Hanlin Ren. Strong average-case lower bounds from non-trivial derandomization.
In Proc. 52nd Annual ACM Symposium on Theory of Computing (STOC), pages 1327–1334,
2020. doi:10.1145/3357713.3384279. (cit. on p. 3, 34, 36, 40, 42)

[CW19] Lijie Chen and R. Ryan Williams. Stronger connections between circuit analysis and circuit
lower bounds, via PCPs of proximity. In Proc. 34th Computational Complexity Conference
(CCC), volume 137 of LIPIcs, pages 19:1–19:43, 2019. doi:10.4230/LIPIcs.CCC.2019.19.
(cit. on p. 3, 32, 35)

[Din07] Irit Dinur. The PCP theorem by gap amplification. J. ACM, 54(3):12, 2007. doi:10.1145/
1236457.1236459. (cit. on p. 10)

[Erd59] Paul Erdős. Graph theory and probability. Canadian Journal of Mathematics, 11:34–38, 1959.
doi:10.4153/CJM-1959-003-9. (cit. on p. 1)

[FGHK16] Magnus Gausdal Find, Alexander Golovnev, Edward A. Hirsch, and Alexander S. Kulikov. A
better-than-3n lower bound for the circuit complexity of an explicit function. In Proc. 57th
Annual IEEE Symposium on Foundations of Computer Science (FOCS), pages 89–98, 2016.
doi:10.1109/FOCS.2016.19. (cit. on p. 1)

[FS16] Lance Fortnow and Rahul Santhanam. New non-uniform lower bounds for uniform classes.
In Proc. 31st Computational Complexity Conference (CCC), volume 50 of LIPIcs, pages 19:1–
19:14, 2016. doi:10.4230/LIPIcs.CCC.2016.19. (cit. on p. 14, 16, 73)

[GR08] Dan Gutfreund and Guy N. Rothblum. The complexity of local list decoding. In Approx-
imation, Randomization and Combinatorial Optimization. Algorithms and Techniques, 11th
International Workshop, APPROX 2008, and 12th International Workshop, RANDOM 2008,
Boston, MA, USA, August 25-27, 2008. Proceedings, volume 5171 of Lecture Notes in Computer
Science, pages 455–468. Springer, 2008. doi:10.1007/978-3-540-85363-3_36. (cit. on p. 4,
37, 38)

[GRST21] Gramoz Goranci, Harald Räcke, Thatchaphol Saranurak, and Zihan Tan. The expander hierar-
chy and its applications to dynamic graph algorithms. In Proceedings of the 2021 ACM-SIAM
Symposium on Discrete Algorithms, SODA 2021, Virtual Conference, January 10 - 13, 2021,
pages 2212–2228, 2021. doi:10.1137/1.9781611976465.132. (cit. on p. 6)

[GS89] Yuri Gurevich and Saharon Shelah. Nearly linear time. In Logic at Botik ’89, Symposium
on Logical Foundations of Computer Science, Pereslav-Zalessky, USSR, July 3-8, 1989, Pro-
ceedings, volume 363 of Lecture Notes in Computer Science, pages 108–118, 1989. doi:
10.1007/3-540-51237-3_10. (cit. on p. 15, 16)

69

https://doi.org/10.1145/3406325.3451132
https://doi.org/10.4230/LIPIcs.ICALP.2021.51
https://doi.org/10.1109/FOCS46700.2020.00009
https://doi.org/10.1007/978-3-319-77404-6_24
https://doi.org/10.1007/978-3-319-77404-6_24
https://doi.org/10.2307/2273702
https://doi.org/10.1145/3357713.3384279
https://doi.org/10.4230/LIPIcs.CCC.2019.19
https://doi.org/10.1145/1236457.1236459
https://doi.org/10.1145/1236457.1236459
https://doi.org/10.4153/CJM-1959-003-9
https://doi.org/10.1109/FOCS.2016.19
https://doi.org/10.4230/LIPIcs.CCC.2016.19
https://doi.org/10.1007/978-3-540-85363-3_36
https://doi.org/10.1137/1.9781611976465.132
https://doi.org/10.1007/3-540-51237-3_10
https://doi.org/10.1007/3-540-51237-3_10

[GSV18] Aryeh Grinberg, Ronen Shaltiel, and Emanuele Viola. Indistinguishability by adaptive pro-
cedures with advice, and lower bounds on hardness amplification proofs. In Proc. 59th An-
nual IEEE Symposium on Foundations of Computer Science (FOCS), pages 956–966, 2018.
doi:10.1109/FOCS.2018.00094. (cit. on p. 4)

[HILL99] Johan Håstad, Russell Impagliazzo, Leonid A. Levin, and Michael Luby. A pseudorandom
generator from any one-way function. SIAM Journal of Computing, 28(4):1364–1396, 1999.
doi:10.1137/S0097539793244708. (cit. on p. 34)

[HMP+93] András Hajnal, Wolfgang Maass, Pavel Pudlák, Márió Szegedy, and György Turán. Thresh-
old circuits of bounded depth. J. Comput. Syst. Sci., 46(2):129–154, 1993. doi:10.1016/
0022-0000(93)90001-D. (cit. on p. 42)

[HP10] Kristoffer Arnsfelt Hansen and Vladimir V. Podolskii. Exact threshold circuits. In Proc. 25th
Annual IEEE Conference on Computational Complexity (CCC), pages 270–279. IEEE Com-
puter Society, 2010. doi:10.1109/CCC.2010.33. (cit. on p. 32, 33)

[HV21] Xuangui Huang and Emanuele Viola. Average-case rigidity lower bounds. In Proc. 16th In-
ternational Computer Science Symposium in Russia (CSR), volume 12730 of Lecture Notes in
Computer Science, pages 186–205, 2021. doi:10.1007/978-3-030-79416-3_11. (cit. on p. 3)

[IK00] Yuval Ishai and Eyal Kushilevitz. Randomizing polynomials: A new representation with appli-
cations to round-efficient secure computation. In Proc. 41st Annual IEEE Symposium on Foun-
dations of Computer Science (FOCS), pages 294–304, 2000. doi:10.1109/SFCS.2000.892118.
(cit. on p. 8)

[IK02] Yuval Ishai and Eyal Kushilevitz. Perfect constant-round secure computation via perfect ran-
domizing polynomials. In Proc. 29th International Colloquium on Automata, Languages and
Programming (ICALP), pages 244–256, 2002. doi:10.1007/3-540-45465-9_22. (cit. on p. 8)

[IKW02] Russell Impagliazzo, Valentine Kabanets, and Avi Wigderson. In search of an easy witness:
exponential time vs. probabilistic polynomial time. J. Comput. Syst. Sci., 65(4):672–694, 2002.
doi:10.1016/S0022-0000(02)00024-7. (cit. on p. 7)

[IM02] Kazuo Iwama and Hiroki Morizumi. An explicit lower bound of 5n− o(n) for Boolean circuits.
In Proc. 27th International Symposium on Mathematical Foundations of Computer Science
(MFCS), volume 2420 of Lecture Notes in Computer Science, pages 353–364, 2002. doi:10.
1007/3-540-45687-2_29. (cit. on p. 1)

[IW01] Russell Impagliazzo and Avi Wigderson. Randomness vs time: Derandomization under a
uniform assumption. Journal of Computer and System Sciences, 63(4):672–688, 2001. doi:
10.1006/jcss.2001.1780. (cit. on p. 7)

[Jeř04] Emil Jeřábek. Dual weak pigeonhole principle, Boolean complexity, and derandomization. Ann.
Pure Appl. Log., 129(1-3):1–37, 2004. doi:10.1016/j.apal.2003.12.003. (cit. on p. 1)

[KK15] Dmitry Kogan and Robert Krauthgamer. Sketching cuts in graphs and hypergraphs. In Proc.
6th Conference on Innovations in Theoretical Computer Science (ITCS), pages 367–376. ACM,
2015. doi:10.1145/2688073.2688093. (cit. on p. 28)

[KKL+21] Valentine Kabanets, Sajin Koroth, Zhenjian Lu, Dimitrios Myrisiotis, and Igor Carboni Oliveira.
Algorithms and lower bounds for De Morgan formulas of low-communication leaf gates. ACM
Trans. Comput. Theory, 13(4):23:1–23:37, 2021. doi:10.1145/3470861. (cit. on p. 25)

[KKMP21] Robert Kleinberg, Oliver Korten, Daniel Mitropolsky, and Christos Papadimitriou. Total
functions in the polynomial hierarchy. In Proc. 12th Conference on Innovations in The-
oretical Computer Science (ITCS), volume 185 of LIPIcs, pages 44:1–44:18, 2021. doi:
10.4230/LIPIcs.ITCS.2021.44. (cit. on p. 1, 2)

70

https://doi.org/10.1109/FOCS.2018.00094
https://doi.org/10.1137/S0097539793244708
https://doi.org/10.1016/0022-0000(93)90001-D
https://doi.org/10.1016/0022-0000(93)90001-D
https://doi.org/10.1109/CCC.2010.33
https://doi.org/10.1007/978-3-030-79416-3_11
https://doi.org/10.1109/SFCS.2000.892118
https://doi.org/10.1007/3-540-45465-9_22
https://doi.org/10.1016/S0022-0000(02)00024-7
https://doi.org/10.1007/3-540-45687-2_29
https://doi.org/10.1007/3-540-45687-2_29
https://doi.org/10.1006/jcss.2001.1780
https://doi.org/10.1006/jcss.2001.1780
https://doi.org/10.1016/j.apal.2003.12.003
https://doi.org/10.1145/2688073.2688093
https://doi.org/10.1145/3470861
https://doi.org/10.4230/LIPIcs.ITCS.2021.44
https://doi.org/10.4230/LIPIcs.ITCS.2021.44

[KKTY21] Michael Kapralov, Robert Krauthgamer, Jakab Tardos, and Yuichi Yoshida. Towards tight
bounds for spectral sparsification of hypergraphs. In Proc. 53rd Annual ACM Symposium on
Theory of Computing (STOC), pages 598–611. ACM, 2021. doi:10.1145/3406325.3451061.
(cit. on p. 28)

[KL80] Richard M. Karp and Richard J. Lipton. Some connections between nonuniform and uniform
complexity classes. In Proc. 12th Annual ACM Symposium on Theory of Computing (STOC),
pages 302–309, 1980. doi:10.1145/800141.804678. (cit. on p. 16)

[Kor21] Oliver Korten. The hardest explicit construction. In Proc. 62nd Annual IEEE Symposium
on Foundations of Computer Science (FOCS), pages 433–444. IEEE, 2021. doi:10.1109/
FOCS52979.2021.00051. (cit. on p. 1, 2, 3, 5, 7, 8)

[Kra01] Jan Krajíček. Tautologies from pseudo-random generators. Bull. Symb. Log., 7(2):197–212,
2001. doi:10.2307/2687774. (cit. on p. 1)

[Kra04] Jan Krajíček. Dual weak pigeonhole principle, pseudo-surjective functions, and provability
of circuit lower bounds. J. Symb. Log., 69(1):265–286, 2004. doi:10.2178/jsl/1080938841.
(cit. on p. 1, 9)

[Kra11] Jan Krajíček. On the proof complexity of the Nisan-Wigderson generator based on a hard
NP ∩ coNP function. J. Math. Log., 11(1), 2011. doi:10.1142/S0219061311000979. (cit. on
p. 9)

[KW98] Johannes Köbler and Osamu Watanabe. New collapse consequences of NP having small circuits.
SIAM J. Comput., 28(1):311–324, 1998. doi:10.1137/S0097539795296206. (cit. on p. 2)

[Lev87] Leonid A. Levin. One-way functions and pseudorandom generators. Comb., 7(4):357–363, 1987.
doi:10.1007/BF02579323. (cit. on p. 37)

[LW17] Kasper Green Larsen and R. Ryan Williams. Faster online matrix-vector multiplication. In
Proc. 28th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 2182–2189.
SIAM, 2017. doi:10.1137/1.9781611974782.142. (cit. on p. 6)

[LY22] Jiatu Li and Tianqi Yang. 3.1n − o(n) circuit lower bounds for explicit functions. In Proc.
54th Annual ACM Symposium on Theory of Computing (STOC), 2022. To appear. URL:
https://eccc.weizmann.ac.il/report/2021/023/. (cit. on p. 1)

[Mie09] Thilo Mie. Short PCPPs verifiable in polylogarithmic time with O(1) queries. Ann. Math.
Artif. Intell., 56(3-4):313–338, 2009. doi:10.1007/s10472-009-9169-y. (cit. on p. 21, 51, 65)

[Mur71] Saburo Muroga. Threshold logic and its applications. Wiley, 1971. (cit. on p. 33)

[MW20] Cody D. Murray and R. Ryan Williams. Circuit lower bounds for nondeterministic quasi-
polytime from a new easy witness lemma. SIAM J. Comput., 49(5), 2020. doi:10.1137/
18M1195887. (cit. on p. 3)

[Nep70] V. A. Nepomnjascii. Rudimentary predicates and Turing computations. In Doklady Akademii
Nauk, volume 195, pages 282–284. Russian Academy of Sciences, 1970. (cit. on p. 8, 45)

[NW94] Noam Nisan and Avi Wigderson. Hardness vs randomness. Journal of Computer and System
Sciences, 49(2):149–167, 1994. doi:10.1016/S0022-0000(05)80043-1. (cit. on p. 34, 38, 42,
43)

[OS17] Igor Carboni Oliveira and Rahul Santhanam. Conspiracies between learning algorithms, circuit
lower bounds, and pseudorandomness. In Proc. 32nd Computational Complexity Conference
(CCC), volume 79 of LIPIcs, pages 18:1–18:49, 2017. doi:10.4230/LIPIcs.CCC.2017.18.
(cit. on p. 8)

[Pin73] Mark S Pinsker. On the complexity of a concentrator. In 7th International Telegraffic Confer-
ence, volume 4, pages 1–318, 1973. (cit. on p. 1)

71

https://doi.org/10.1145/3406325.3451061
https://doi.org/10.1145/800141.804678
https://doi.org/10.1109/FOCS52979.2021.00051
https://doi.org/10.1109/FOCS52979.2021.00051
https://doi.org/10.2307/2687774
https://doi.org/10.2178/jsl/1080938841
https://doi.org/10.1142/S0219061311000979
https://doi.org/10.1137/S0097539795296206
https://doi.org/10.1007/BF02579323
https://doi.org/10.1137/1.9781611974782.142
https://eccc.weizmann.ac.il/report/2021/023/
https://doi.org/10.1007/s10472-009-9169-y
https://doi.org/10.1137/18M1195887
https://doi.org/10.1137/18M1195887
https://doi.org/10.1016/S0022-0000(05)80043-1
https://doi.org/10.4230/LIPIcs.CCC.2017.18

[PS94] Ramamohan Paturi and Michael E. Saks. Approximating threshold circuits by rational func-
tions. Inf. Comput., 112(2):257–272, 1994. doi:10.1006/inco.1994.1059. (cit. on p. 33)

[PT07] Mihai Pǎtraşcu and Mikkel Thorup. Planning for fast connectivity updates. In Proc. 48th
Annual IEEE Symposium on Foundations of Computer Science (FOCS), pages 263–271, 2007.
doi:10.1109/FOCS.2007.54. (cit. on p. 6)

[PZ21] Eden Pelleg and Stanislav Zivný. Additive sparsification of CSPs. In Proc. 29th European
Symposium on Algorithms (ESA), volume 204 of LIPIcs, pages 75:1–75:15, 2021. doi:10.
4230/LIPIcs.ESA.2021.75. (cit. on p. 27)

[Raz15] Alexander Razborov. Pseudorandom generators hard for k-DNF resolution and polynomial
calculus resolution. Annals of Mathematics, 181(2):415–472, 2015. doi:10.4007/annals.2015.
181.2.1. (cit. on p. 9)

[Rei11] Ben Reichardt. Reflections for quantum query algorithms. In Proc. 22nd Annual ACM-SIAM
Symposium on Discrete Algorithms (SODA), pages 560–569. SIAM, 2011. doi:10.1137/1.
9781611973082.44. (cit. on p. 25)

[RR97] Alexander A. Razborov and Steven Rudich. Natural proofs. Journal of Computer and System
Sciences, 55(1):24–35, 1997. doi:10.1006/jcss.1997.1494. (cit. on p. 8)

[Sha49] Claude E. Shannon. The synthesis of two-terminal switching circuits. Bell System technical
journal, 28(1):59–98, 1949. doi:10.1002/j.1538-7305.1949.tb03624.x. (cit. on p. 1)

[Spi96] Daniel A. Spielman. Linear-time encodable and decodable error-correcting codes. IEEE Trans-
actions on Information Theory, 42(6):1723–1731, 1996. doi:10.1109/18.556668. (cit. on
p. 16)

[SV10] Ronen Shaltiel and Emanuele Viola. Hardness amplification proofs require majority. SIAM J.
Comput., 39(7):3122–3154, 2010. doi:10.1137/080735096. (cit. on p. 4)

[SW13] Rahul Santhanam and R. Ryan Williams. On medium-uniformity and circuit lower bounds.
In Proceedings of the 28th Conference on Computational Complexity, CCC 2013, K.lo Alto,
California, USA, 5-7 June, 2013, pages 15–23. IEEE Computer Society, 2013. doi:10.1109/
CCC.2013.40. (cit. on p. 3)

[SY19] Tasuku Soma and Yuichi Yoshida. Spectral sparsification of hypergraphs. In Proc. 30th Annual
ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 2570–2581. SIAM, 2019. doi:
10.1137/1.9781611975482.159. (cit. on p. 28)

[Tal17] Avishay Tal. Formula lower bounds via the quantum method. In Proc. 49th Annual ACM
Symposium on Theory of Computing (STOC), pages 1256–1268. ACM, 2017. doi:10.1145/
3055399.3055472. (cit. on p. 6, 25)

[Vad12] Salil P. Vadhan. Pseudorandomness. Foundations and Trends in Theoretical Computer Science,
7(1-3):1–336, 2012. doi:10.1561/0400000010. (cit. on p. 60)

[Val77] Leslie G. Valiant. Graph-theoretic arguments in low-level complexity. In Proc. 6th International
Symposium on Mathematical Foundations of Computer Science (MFCS), volume 53 of Lecture
Notes in Computer Science, pages 162–176, 1977. doi:10.1007/3-540-08353-7_135. (cit. on
p. 1)

[Vio20] Emanuele Viola. New lower bounds for probabilistic degree and AC0 with parity gates. Electron.
Colloquium Comput. Complex., page 15, 2020. URL: https://eccc.weizmann.ac.il/report/
2020/015. (cit. on p. 3)

[VW18] Emanuele Viola and Avi Wigderson. Local expanders. Computational Complexity, 27(2):225–
244, 2018. doi:10.1007/s00037-017-0155-1. (cit. on p. 58)

72

https://doi.org/10.1006/inco.1994.1059
https://doi.org/10.1109/FOCS.2007.54
https://doi.org/10.4230/LIPIcs.ESA.2021.75
https://doi.org/10.4230/LIPIcs.ESA.2021.75
https://doi.org/10.4007/annals.2015.181.2.1
https://doi.org/10.4007/annals.2015.181.2.1
https://doi.org/10.1137/1.9781611973082.44
https://doi.org/10.1137/1.9781611973082.44
https://doi.org/10.1006/jcss.1997.1494
https://doi.org/10.1002/j.1538-7305.1949.tb03624.x
https://doi.org/10.1109/18.556668
https://doi.org/10.1137/080735096
https://doi.org/10.1109/CCC.2013.40
https://doi.org/10.1109/CCC.2013.40
https://doi.org/10.1137/1.9781611975482.159
https://doi.org/10.1137/1.9781611975482.159
https://doi.org/10.1145/3055399.3055472
https://doi.org/10.1145/3055399.3055472
https://doi.org/10.1561/0400000010
https://doi.org/10.1007/3-540-08353-7_135
https://eccc.weizmann.ac.il/report/2020/015
https://eccc.weizmann.ac.il/report/2020/015
https://doi.org/10.1007/s00037-017-0155-1

[VW20] Nikhil Vyas and R. Ryan Williams. Lower bounds against sparse symmetric functions of ACC
circuits: Expanding the reach of #SAT algorithms. In Proc. 37th Symposium on Theoretical
Aspects of Computer Science (STACS), volume 154 of LIPIcs, pages 59:1–59:17, 2020. doi:
10.4230/LIPIcs.STACS.2020.59. (cit. on p. 3)

[Wil13] R. Ryan Williams. Improving exhaustive search implies superpolynomial lower bounds. SIAM
Journal of Computing, 42(3):1218–1244, 2013. doi:10.1137/10080703X. (cit. on p. 3, 8, 32)

[Wil14] R. Ryan Williams. Nonuniform ACC circuit lower bounds. J. ACM, 61(1):2:1–2:32, 2014.
doi:10.1145/2559903. (cit. on p. 3)

[Wil16] R. Ryan Williams. Natural proofs versus derandomization. SIAM Journal of Computing,
45(2):497–529, 2016. doi:10.1137/130938219. (cit. on p. 3, 7)

[Wil18a] R. Ryan Williams. Limits on representing Boolean functions by linear combinations of sim-
ple functions: Thresholds, ReLUs, and low-degree polynomials. In Proc. 33rd Computa-
tional Complexity Conference (CCC), volume 102 of LIPIcs, pages 6:1–6:24, 2018. doi:
10.4230/LIPIcs.CCC.2018.6. (cit. on p. 3)

[Wil18b] R. Ryan Williams. New algorithms and lower bounds for circuits with linear threshold gates.
Theory Comput., 14(1):1–25, 2018. doi:10.4086/toc.2018.v014a017. (cit. on p. 3)

[Zák83] Stanislav Zák. A Turing machine time hierarchy. Theor. Comput. Sci., 26:327–333, 1983.
doi:10.1016/0304-3975(83)90015-4. (cit. on p. 11, 13)

A Omitted Proofs

A.1 Proof of Theorem 2.3

We need the following binary search algorithm.

Lemma A.1 ([CLW20, Lemma 4.4]). There is an algorithm A satisfying the following.

• Input. A is given an explicit integer n ≥ 2 (written in binary form) as input, together with
oracle access to a list (a1, a2, . . . , an) ∈ {0, 1}n such that a1 6= an.

• Output. An index p ∈ [1, n− 1] such that ap 6= ap+1.

• Efficiency. A runs in O(log n) time and makes at most O(log n) queries to the list.

Theorem 2.3 ([FS16,CLW20]). Let c be a large universal constant, T : N→ N be a good function
such that n logc+1 n ≤ T (n) ≤ 2poly(n). There is a language

Lhard ∈ NTIMETM[T (n)] \ i.o.-NTIMEGUESSRTM[T (n)/ logc T (n), n/10]/(n/10).

Moreover, there is an algorithm R (the “refuter”) such that the following holds.

(Input) R receives three inputs (1n,M, α), whereM is a nondeterministic RTM and α ∈ {0, 1}n/10

is an advice string. It is guaranteed that M runs in T (n)/ logc T (n) time and uses at most
n/10 nondeterministic bits; moreover, the description length of M is O(1).

(Output) For every fixedM , every sufficiently large n, and every advice α ∈ {0, 1}n/10, R(1n,M, α)
outputs a string x ∈ {0, 1}n such that M(x;α) 6= Lhard(x).

(Complexity) R runs in poly(T (n)) time with adaptive access to an NP oracle.

73

https://doi.org/10.4230/LIPIcs.STACS.2020.59
https://doi.org/10.4230/LIPIcs.STACS.2020.59
https://doi.org/10.1137/10080703X
https://doi.org/10.1145/2559903
https://doi.org/10.1137/130938219
https://doi.org/10.4230/LIPIcs.CCC.2018.6
https://doi.org/10.4230/LIPIcs.CCC.2018.6
https://doi.org/10.4086/toc.2018.v014a017
https://doi.org/10.1016/0304-3975(83)90015-4

Proof. We first define Lhard. Let x ∈ {0, 1}n be the input of Lhard, we parse it into x := (〈M〉, α, w, xrest).
Here, 〈M〉 is the description of a nondeterministic RTM M , α ∈ {0, 1}n/10 is the advice string for
M , w ∈ {0, 1}n/10 is a witness of M , and xrest denotes the rest input bits. We interpret M as
a nondeterministic RTM that guesses at most n/10 nondeterministic bits and runs in at most
T ′ := T/ logc T time; if the nondeterminism or time complexity exceeds the corresponding bounds,
we force M to reject.

(i) If M accepts the input (〈M〉, α, 0n/10, xrest) with witness w and advice α, then Lhard(x) = 0.

(ii) Otherwise, if w = 1n/10, then Lhard(x) = 1.

(iii) Otherwise, let w + 1 be the lexicographically next string after w, Lhard(x) = 1 if and only if
M accepts (〈M〉, α, w + 1, xrest) with advice α.

Since a nondeterministic RTM of time complexity T ′ = T/ logc T can be simulated by a nonde-
terministic TM of time complexity o(T), it follows that Lhard ∈ NTIMETM[T (n)].

Before describing the refuter, it is instructive to understand why Lhard does not admit a nonde-
terministic RTM algorithm with time T ′, n/10 nondeterministic bits, and n/10 advice bits. Let M
be such an algorithm and α ∈ {0, 1}n/10 be the corresponding advice string. For the sake of con-
tradiction, suppose M computes Lhard. Fix an arbitrary xrest. For a witness string w ∈ {0, 1}n/10,
denote xw := (〈M〉, α, w, xrest). Abusing notation, for an integer 0 ≤ i < 2n/10, let wi be the
(i+ 1)-th lexicographically smallest string (with w0 = 0n/10 and w2n/10−1 = 1n/10), we also denote
xi := xwi .

• Suppose M(x0) accepts. Let w be the lexicographically smallest witness w such that M
accepts x0 on witness string w. It follows from (i) that Lhard(xw) = 0. However, for every
w′ < w, since M does not accept xw′ , by (iii) we have that

Lhard(xw′) = M(xw′+1) = Lhard(xw′+1).

It follows that 1 = M(x0) = Lhard(x0) = Lhard(xw) = 0, a contradiction.

• Suppose M(x0) rejects. Then M rejects x0 on every possible witness, which means (i) never
happens. It follows from (iii) that for every w ∈ {0, 1}n/10 \ {1n/10},

Lhard(xw) = M(xw+1) = Lhard(xw+1).

This is a contradiction as Lhard(x0) = 0 but Lhard(x1n/10) = 1.

Now we describe our refuter. On input (1n,M, α), our refuter R first uses the NP oracle to
decide if M(x0) accepts.

• If M(x0) accepts, then it uses the NP oracle to find the lexicographically smallest w such that
M accepts x0 on witness string w. Consider the list

1 = M(x0),M(x1), . . . ,M(xw), Lhard(xw) = 0.

We use Lemma A.1 to find two adjacent entries in the list that are different. This takes
O(log(2n)) = O(n) time with random access to the list. As random access to the list can be
simulated by an NP oracle, this pair of entries can be found in polynomial time with an NP
oracle. Now there are two cases:

74

– (Case I) Suppose the two entries are M(xw) and Lhard(xw). The refuter simply outputs
xw.

– (Case II) Suppose the two entries are M(xw′) and M(xw′+1) where w′ < w. Since M
does not accept x0 on witness string w′ and w′ < 1n/10, (iii) applies to w′. Therefore
Lhard(xw′) = M(xw′+1) 6= M(xw′), and the refuter can output xw′ .

• If M(x0) rejects, then consider the list

0 = M(x0),M(x1), . . . ,M(x1n/10), Lhard(x1n/10) = 1.

Again, we use Lemma A.1 to find two adjacent entries in the list that are different, in poly-
nomial time with an NP oracle. There are two cases:

– (Case I) Suppose the two entries are M(x1n/10) and Lhard(x1n/10). The refuter simply
outputs x1n/10 .

– (Case II) Suppose the two entries are M(xw) and M(xw+1) for some w ∈ {0, 1}n/10 \
{1n/10}. Since M does not accept x0 (at all) and w < 1n/10, (iii) applies to w. Therefore
Lhard(xw) = M(xw+1) 6= M(xw), and the refuter can output xw.

A.2 Proof of Lemma 4.10

Lemma 4.10. Let ε, δ > 0, C be a circuit class, s(n) be a good function, and G : {0, 1}r → {0, 1}n
be a PRG that ε-fools C circuits of size s(n). For ε′ := 2δ+ ε ·s(n), G also ε′-fools S̃umδ ◦C circuits
of complexity s(n).

Proof. Let C be a S̃umδ ◦ C circuit where the underlying (real-valued) Sum ◦ C circuit is

C̃ :=
∑̀

i=1

αi · Ci.

Let Un denote the uniform distribution over {0, 1}n; we abuse notation and let Gn denote the
distribution of Gn(y) for a uniformly random y ∈ {0, 1}r. From the definition of S̃umδ gates, we
have ∣∣∣E[C(Un)]− E[C̃(Un)]

∣∣∣ ≤ δ and
∣∣∣E[C(Gn)]− E[C̃(Gn)]

∣∣∣ ≤ δ.

Using the property of Gn we have

∣∣∣E[C̃(Un)]− E[C̃(Gn)]
∣∣∣ =

∣∣∣∣∣E
[∑̀

i=1

αi · Ci(Un)

]
− E

[∑̀

i=1

αi · Ci(Gn)

]∣∣∣∣∣

=

∣∣∣∣∣
∑̀

i=1

αi · (E[Ci(Un)]− E[Ci(Gn)])

∣∣∣∣∣

≤
(

`
max
i=1
|E[Ci(Un)]− E[Ci(Gn)]|

)
·
(∑̀

i=1

|αi|
)

≤ ε · s(n).

75

Therefore,

|E[C(Un)]− E[C(Gn)]| ≤
∣∣∣E[C(Un)]− E[C̃(Un)]

∣∣∣+
∣∣∣E[C̃(Un)]− E[C̃(Gn)]

∣∣∣

+
∣∣∣E[C̃(Gn)]− E[C(Gn)]

∣∣∣
≤ 2δ + ε · s(n) = ε′.

A.3 Proof of Lemma 4.11

Lemma 4.11. Let d ≥ 2 be a constant, s = s(n), T = T (n) be good functions, and C be a circuit
class. Suppose that there is a deterministic T (n)-time algorithm for the CAPP problem for ANDd◦C
circuits with inverse-circuit-size error, where the bottom C circuits have size Θ(s(n)d).

Then, there is a constant δ > 0 and an algorithm that achieves the following.

(Input) The algorithm is given d Sum ◦C circuits C1, C2, . . . , Cd as inputs, where for each i ∈ [d],
Ci has complexity at most s(n), and it is promised that ‖Ci − binCi‖d ≤ δ.

(Output) The algorithm estimates the following quantity within an additive error of (1/6) · 2−d.

E
x←{0,1}n

[binC1(x) ∧ binC2(x) ∧ · · · ∧ binCd(x)].

(Complexity) The algorithm runs in deterministic O(s(n)d · T (n)) time.

Proof. Suppose we are given an ANDd ◦ Sum ◦ C circuit as input:

C(x) := binC1(x) ∧ binC2(x) ∧ · · · ∧ binCd(x),

where for each i ∈ [d], Ci is a Sum ◦ C circuit with ‖Ci − binCi‖d ≤ δ.
Now we want to estimate

E
x←{0,1}n

[
d∏

i=1

binCi(x)

]
. (9)

First we show that

E
x←{0,1}n

[
d∏

i=1

Ci(x)

]
(10)

is a good estimation for Eq. (9).
Recall that for every 1 ≤ i ≤ d, we have ‖Ci − binCi‖d ≤ δ. As binCi are Boolean functions,

‖binCi‖d ≤ 1. Using the triangular inequality we have ‖Ci‖d ≤ 1 + δ. By Lemma 4.9 we have

|(9)− (10)| = | 〈C1, . . . , Cd〉 − 〈binC1 , . . . , binCd〉| ≤ d · (1 + δ)d−1 · δ.

Thus for any constant d, we can choose a suitable constant δ such that |(9)− (10)| ≤ 1/12 · 2−d.
Now we show how to compute a good approximation for Eq. (10). Let the linear combinations

of each Ci circuit be
∑

j∈Si αi,jCi,j , then

(10) = E
x←{0,1}n




d∏

i=1


∑

j∈Si

αi,jCi,j(x)






=
∑

p∈S1×S2×...×Sd

α1,p1α2,p2 · · ·αd,pd · E
x←{0,1}n

[C1,p1(x)C2,p2(x) · · ·Cd,pd(x)]

76

Since the product of d C circuits is a ANDd◦C circuit, we can use the CAPP algorithm for ANDd◦C
to estimate the following quantity within additive error 2−d/(12s(n)d).

E
x←{0,1}n

[C1,p1(x)C2,p2(x) . . . Cd,pd(x)]

Thus we can estimate Eq. (10) with error

(2−d/(12s(n)d)) ·


 ∑

p∈S1×S2×...×Sd

|α1,p1 | · |α2,p2 | · . . . · |αd,pd |




≤ (2−d/(12s(n)d)) ·


∑

i∈S1

|α1,i|


 ·


∑

i∈S2

|α2,i|


 · . . . ·


∑

i∈Sd

|αd,i|




≤ (2−d/(12s(n)d)) · s(n)d

≤ 1/12 · 2−d.

It follows that we could solve the CAPP problem for such circuits with error 1/12 ·2−d+1/12 ·2−d ≤
1/6 · 2−d. The algorithm runs in deterministic O(s(n)d · T (n)) time.

A.4 Proof of Lemma 4.12

Lemma 4.12. Let S ∈ N and d ≥ 2 where d is an even number. Suppose we are given S reals
(αi)i∈[S], S C circuits (Ci)i∈[S], and a parameter δ < 0.01/d. Let αtot :=

∑
i∈[S] |αi| and ε :=

δd

2·3d·(αtot+1)2d . Suppose the CAPP problem for AND2d ◦ C with error ε can be solved in T (n) time.

Let f =
∑S

i=1 αi · Ci. There is an algorithm A running in O(T (n) · (S + 1)2d) time such that:

• If one of the following conditions hold, then A always accepts;

– ‖f − binf‖∞ ≤ δ/3
– ‖f − binf‖1 ≤ (δ/3)d and f(x) ∈ [0, 1] for any x ∈ {0, 1}n

• if ‖f − binf‖d ≥ δ, then A always rejects;

• otherwise, A can output anything.

Proof. We define a polynomial P (z) = zd(1 − z)d. We also define dbin(z) to be min(|z|, |z − 1|).
Simple calculations confirm the following facts about P (z):

• P (z) ≤ dbin(z)d · (1 + dbin(z))d, and

• P (z) ≥ dbin(z)d · 2−d.

We now show the following properties of p:

1. When dbin(z) ≤ δ/3, we have P (z) ≤ (δ/3)d ·(1+δ/3)d. This means that if ‖f−binf‖∞ ≤ δ/3,
then we have

E
x←{0,1}n

[P (f(x))] ≤ (δ/3)d · (1 + δ/3)d ≤ (δ/3)d · (1 + 0.01/d)d ≤ (δ/3)d · e0.01.

77

2. When f(x) ∈ [0, 1] for any x ∈ {0, 1}n, we have for every x ∈ {0, 1}n, P (x) < dbin(x) and
Ex←{0,1}n [P (f(x))] ≤ ‖f − binf‖1. Thus when ‖f − binf‖1 ≤ (δ/3)d also holds, we have
Ex←{0,1}n [P (f(x))] ≤ (δ/3)d.

3. If ‖f − binf‖d ≥ δ, then by definition we have

E
x←{0,1}n

[
dbin(f(x))d

]
≥ δd.

Since d ≥ 2, we have

E
x←{0,1}n

[P (f(x))] ≥ (δ/2)d ≥ (9/4) · (δ/3)d.

Therefore, it suffices to compute

E
x←{0,1}n

[P (f(x))] (11)

within error (δ/3)d/2 to distinguish between these two cases in the lemma.
Expanding out P (f(x)) = P

(∑S
i=1 αi · Ci

)
, it can be written as an R-sum of at most (S + 1)2d

products of 2d functions from C . By rearranging the order of summation (summing all (S + 1)2d

terms first), we see that (11) can be evaluated by making at most (S + 1)2d calls to the assumed
algorithm within error δd

2·3d·(αtot+1)2d . Assuming that algorithm runs in T (n) time, the sum (11) can
be evaluated in time O(T (n) · (S + 1)2d).

A.5 Proof of Lemma 4.14

Lemma 4.14. Let s = s(n) be a good function, G : {0, 1}n−1 → {0, 1}n be a seed-extending
PRG that ε-fools C circuits of size s(n). Then the following problem L has `1-distance at least
(1/2− ε · s(n)) from [0, 1]-Sum ◦ C circuits of complexity s(n).

L =
{
y ∈ {0, 1}n : ∃x ∈ {0, 1}n−1, s.t. G(x) = y

}
.

Proof. Fix any [0, 1]-Sum ◦ C circuit C of complexity s. That is:

C(x) =
∑̀

i=1

αiCi(x),

where
∑`

i=1 |αi| ≤ s and
∑`

i=1 |Ci| ≤ s. It follows that

‖L− C‖1 = E
x←{0,1}n

[|L(x)− C(x)|]

=
1

2n
·


 ∑

x∈Range(G)

(1− C(x)) +
∑

x∈{0,1}n\Range(G)

C(x)




=
1

2
+

1

2
·
(

E
x∈{0,1}n\Range(G)

[C(x)]− E
x∈Range(G)

[C(x)]

)
. (12)

Here, Eq. (12) is because G is seed-extending and |Range(G)| = 2n−1.

78

Let Ein := Ex∈Range(G)[C(x)] and Eout := Ex∈{0,1}n\Range(G)[C(x)]. Then Ex←{0,1}n [C(x)] =
(Ein + Eout)/2. By the same argument as in the proof of Lemma 4.10, we have

|Ein − Eout|/2 =

∣∣∣∣ E
x←{0,1}n

[C(x)]− Ein

∣∣∣∣ ≤ ε · s(n).

It follows that
(12) = (1 + Ein − Eout)/2 ≥ 1/2− ε · s(n).

A.6 Proof of Lemma 7.2

For completeness, we include the definition of λ-biased sets:

Definition A.2. For two strings x, y ∈ {0, 1}n, denote their inner product as IP(x, y) := (−1)
∑n
i=1 xiyi .

Let λ > 0. A set S ⊆ {0, 1}n is a λ-biased set if for every string y ∈ {0, 1}n, if y is not the
all-zero string, then ∣∣∣∣∣

∑

x∈S
IP(x, y)

∣∣∣∣∣ ≤ λ|S|

Note that when F = GF(2q), the definition of λ-biased subsets of Fm in [BSVW03, Section 2]
coincides with the above definition (of λ-biased subsets of {0, 1}mq).

We use the explicit construction of a λ-biased subset Sλ ⊆ Fm of size O((qm/λ)2) in [AGHP92].
Recall that we also need that the first coordinate of every element in Sλ is nonzero. Therefore,
we first construct a (λ/4)-biased set Sλ/4 ⊆ Fm using [AGHP92], and then remove every element
~y ∈ Sλ/4 with y1 = 0 to obtain the λ-biased set Sλ. In what follows, we prove that this remaining
set is indeed a λ-biased set.

Lemma 7.2. Let λ < 0.1, q,m be integers such that q ≥ log 4
λ , and let F = GF(2q). There

is a deterministic polynomial-time algorithm that on input (1m, 1q, 1d1/λe), outputs a λ-biased set
Sλ ⊆ (F \ {0})× Fm−1 of size O((qm/λ)2).

Proof. We first use [AGHP92] to construct a λ/4-biased set Sλ/4 ⊆ Fm of size O((qm/λ)2). Let
S0 := {y ∈ Sλ/4 : y1 = 0} and Sλ := Sλ/4 \ S0, we will show that Sλ is a λ-biased set.

First, we show that |S0| ≤ (λ/2)|Sλ/4|, i.e., we only removed a small fraction of elements. Let
Y := {0, 1}q × {0(m−1)q} be the set of length-(mq) strings that is zero on all but the first q input
bits; each y ∈ Y corresponds to a linear test IP(·, y) that only depends on the first q input bits.
Abusing notation, we also use Y to denote the uniform distribution over Y. For every x ∈ Sλ/4,
if x ∈ S0 then IP(x, y) = 1 for every y ∈ Y; otherwise the expectation of IP(x, y) over a random
y ← Y is zero. It follows that

|S0|/|Sλ/4| = E
x←Sλ/4,y←Y

[IP(x, y)].

On the other hand, if y = 0mq then IP(x, y) = 1 for every possible x, while if y 6= 0mq then the
expectation of IP(x, y) over a random x← Sλ/4 is between −λ/4 and λ/4. Therefore

E
x←Sλ/4,y←Y

[IP(x, y)] ≤ 1

2q
+ λ/4 ≤ λ/2.

79

Now we show that Sλ is a λ-biased set. Fix any binary string y ∈ {0, 1}mq \ {0mq}, we have
∣∣∣∣∣∣
∑

x∈Sλ

IP(x, y)

∣∣∣∣∣∣
≤

∣∣∣∣∣∣
∑

x∈Sλ/4

IP(x, y)

∣∣∣∣∣∣
+

∣∣∣∣∣∣
∑

x∈S0

IP(x, y)

∣∣∣∣∣∣
≤ (λ/4)|Sλ/4|+ |S0|
≤ (3λ/4)|Sλ/4|.

On the other hand, we have |Sλ| ≥ (1− λ/2)|Sλ/4| ≥ 0.95|Sλ/4|. Therefore
∣∣∣∣ E
x←Sλ

[IP(x, y)]

∣∣∣∣ ≤
3λ

4 · 0.95
≤ λ.

80
ECCC ISSN 1433-8092

https://eccc.weizmann.ac.il

