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Abstract

Two of the most useful cryptographic primitives that can be constructed from one-way func-
tions are pseudorandom generators (PRGs) and universal one-way hash functions (UOWHFs).
The three major efficiency measures of these primitives are: seed length, number of calls to the
one-way function, and adaptivity of these calls. Although a long and successful line of research
studied these primitives, their optimal efficiency is not yet fully understood: there are gaps
between the known upper bounds and the known lower bounds for black-box constructions.

Interestingly, the first construction of PRGs by H̊astad, Impagliazzo, Levin, and Luby
[SICOMP ’99], and the UOWHFs construction by Rompel [STOC ’90] shared a similar struc-
ture. Since then, there was an improvement in the efficiency of both constructions: The state
of the art construction of PRGs by Haitner, Reingold, and Vadhan [STOC ’10] uses O(n4) bits
of random seed and O(n3) non-adaptive calls to the one-way function, or alternatively, seed of
size O(n3) with O(n3) adaptive calls (Vadhan and Zheng [STOC ’12]). Constructing a UOWHF
with similar parameters is still an open question. Currently, the best UOWHF construction by
Haitner, Holenstein, Reingold, Vadhan, and Wee [Eurocrypt ’10] uses O(n13) adaptive calls and
a key of size O(n5).

In this work we give the first non-adaptive construction of UOWHFs from arbitrary one-
way functions. Our construction uses O(n9) calls to the one-way function, and a key of length
O(n10). By the result of Applebaum, Ishai, and Kushilevitz [FOCS ’04], the above implies the
existence of UOWHFs in NC0, given the existence of one-way functions in NC1. We also show
that the PRG construction of Haitner et al., with small modifications, yields a relaxed notion of
UOWHFs. In order to analyze this construction, we introduce the notion of next-bit unreachable
entropy, which replaces the next-bit pseudoentropy notion, used in the PRG construction above.
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1 Introduction

A wide class of cryptographic primitives can be constructed from one-way functions, which is the
minimal assumption for cryptography. Two important such primitives are pseudorandom generators
(PRGs) [Yao82; BM84] and universal one-way hash functions (UOWHFs) also known as, target-
collision resistant (TCR) [NY89]. These two primitives are useful for constructing even more
powerful primitives such as encryption, digital signatures and commitments. Yet, the optimal
efficiency of these two basic primitives is not fully understood.

There are several important efficiency measures to account for when considering UOWHFs and
PRGs. For PRG constructions, one aims to minimize the seed length and the number of calls to
the one-way function f . For UOWHF constructions, there is a need to minimize the key length
and the number of calls to f . Besides these two measurements, another important parameter is the
adaptivity of the calls. That is, whether the invocations of the one-way function are independent of
the output of previous calls. A non-adaptive construction naturally gives rise to a, more efficient,
parallel algorithm. By contrast, if the calls are adaptive, one must make them sequentially.

In this paper, we focus on constructions of UOWHF, a relaxation of collision-resistant hash
function (CRHF) introduced by Naor and Yung [NY89]. Informally, a keyed function family F =
{fk : {0, 1}n → {0, 1}m}k is an UOWHF if m < n, and, for every poly-time algorithm A, and for
every input x ∈ {0, 1}n, the following holds: with high probability over the choice of the key k,
A(k, x) cannot find a collision x′ ̸= x with fk(x) = fk(x

′).
The first UOWHF construction from arbitrary one-way functions is due to Rompel [Rom90].

The efficiency was then improved by Haitner, Holenstein, Reingold, Vadhan, and Wee [Hai+10],
who gave a construction of UOWHF using O(n13) adaptive calls with a key of size O(n5).1,2 Notably,
prior to the work presented here, there was no non-adaptive UOWHF construction.

The above construction of [Hai+10] uses ideas similar to the ones used in the constructions
of PRGs. Still, the best PRGs constructions from arbitrary one-way functions are more efficient.
Currently, the state-of-the-art construction of PRGs uses O(n4) bits of random seed and O(n3)
non-adaptive calls to the one-way function, or alternatively seed of size O(n3) with O(n3) adaptive
calls [Hai+13; VZ12]. Constructing a UOWHF using O(n3) calls to the one-way function is still an
interesting open question.

These efficiency gaps between UOWHFs and PRGs constructions are even more surprising in
the light of the similarities between the constructions. Specially, for more structured one-way
functions such as permutations or regular functions, there is essentially no efficiency gap between
PRG and UOWHF constructions.3 Moreover, the constructions are very similar to each other and
use similar techniques. For example, the method of randomized iterate is used for the constructions
of both primitives from unknown-regular one-way functions [Hai+06; Yu+15; Ame+12]. Recently,
Mazor and Zhang [MZ21] introduced non-adaptive constructions for both UOWHF and PRG from

1We ignore low order terms for this introduction.
2[Hai+10] showed an UOWHF construction with key length O(n7). However, we observe that this can be reduced

easily to O(n5 logn). In their construction, [Hai+10] first construct κ = Ω(n2/ logn) function families, that at
least one of them is UOWHF. In the last stage of the construction (removing non-uniformity), the final UOWHF is
obtained by concatenating the output of all functions on the same input x. The key of the final construction is the
concatenation of κ keys of all families. We observe that it is possible to use the same key for all families.

3f is called regular if for every n and x, x′ with |x| = |x′| = n it holds that
∣∣f−1(f(x))

∣∣ = ∣∣f−1(f(x′))
∣∣. We say

that the function is unknown-regular if the regularity parameter,
∣∣f−1(f(x))

∣∣, may not be a computable function of
n.
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an unknown-regular one-way function. Their constructions for both primitives have in common a
similar formula shape and are composed of the same building-block operations.

Furthermore, the first constructions from (unstructured) arbitrary one-way functions of PRGs,
by H̊astad, Impagliazzo, Levin, and Luby [H̊as+99], and the constructions of UOWHFs by Rompel
[Rom90] and Haitner et al. [Hai+10], shared a similar framework. This framework includes first
constructing a non-uniform version of the desired primitive, and then eliminating the non-uniform
(short) advice by enumerating over all possible advices, and combining the constructions together.
This enumeration and combining step has a significant efficiency cost for both primitives.

By contrast, in their beautiful work, Haitner et al. [Hai+13] introduced a simpler and more
efficient framework to construct PRGs from arbitrary one-way functions. By introducing a notion
called next-bit pseudoentropy, they gave a very efficient and simple non-adaptive construction of
PRGs from one-way functions. As stated above, this construction has O(n4) random seeds with
O(n3) calls, which is a significant improvement over [H̊as+99]. One main reason for this efficiency
improvement is that this framework no longer requires the non-uniformity elimination step. Un-
fortunately, there is no analog to this construction for UOWHFs. Adapting the framework of
Haitner et al. [Hai+13] to improve the efficiency of UOWHF constructions is still an interesting
open question.

1.1 Our Contribution

In this paper, we partially answer the last question above. Our first result is (the first) non-adaptive
construction of UOWHF from arbitrary one-way functions. We achieve this by introducing a
construction that does not have the non-uniformity elimination step. By the result of Applebaum,
Ishai, and Kushilevitz [App+06], the above implies the existence of UOWHFs in NC0, assuming the
existence of one-way functions in NC1. In addition, our construction reduces the call complexity
over Haitner et al. [Hai+10], and uses O(n9) calls to the one-way function instead of O(n13). On
the negative side, the key length of our construction is O(n10), instead of O(n5).

Next, aiming to close the still remaining gap between PRG and UOWHF constructions, we show
that small modifications to the PRG construction of [Hai+13] yield a relaxed notion of UOWHF,
which we call “almost-UOWHF”. Informally, a function family is almost-UOWHF if by changing
the functions on a negligible fraction of the inputs, we can convert it into a (perfect) UOWHF. To
analyze the almost-UOWHF construction, we introduce the notion of next-bit unreachable entropy,
an analogue of next-bit pseudoentropy used in [Hai+13]. Similarly to the PRG construction, our
almost-UOWHF construction uses Õ(n3) non-adaptive calls to the one-way function and has a key
of size Õ(n4). More details below.

1.1.1 Non-Adaptive UOWHF from One-Way Functions

In their construction of UOWHFs from one-way functions, Haitner, Holenstein, Reingold, Vadhan,
and Wee [Hai+10] defined the notion of accessible entropy.4 Informally, for a function g, the
accessible entropy of g−1 is a bound on the entropy of the output of every collision finder for g
(i.e., of every poly-time algorithm that, given an input x, always outputs a pre-image of g(x)).

4We use the term accessible entropy to denote accessible entropy of functions. Somewhat different notions of
accessible entropy used in other contexts, for example to construct statistically-hiding commitments from one-way
functions ([Hai+09]).
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Haitner et al. [Hai+10] showed how a one-way function f : {0, 1}n → {0, 1}n can be used to

construct a function ρ : {0, 1}n
5

→ {0, 1}n
5

such that, for a uniformly chosen input X ← {0, 1}n
5

,
there is a gap between the entropy of X given ρ(X), and the accessible entropy of ρ−1. Namely,
there exists some ℓ ∈ N, such that for every collision finder A for ρ, the following holds with all
but a negligible probability: the size of ρ−1(ρ(X)) is at least 2ℓ+ω(logn), while the max-entropy of
the output of A(X), given the input X, is at most ℓ.5 When ℓ is known, such a function can be
converted easily to UOWHF, but here the parameter ℓ depends on f and may be unknown. To
overcome this obstacle, Haitner et al. [Hai+10] constructed from ρ a UOWHF candidate Cℓ for n

2

possible values of ℓ, and then combined them together. This part, used also by Rompel [Rom90],
introduces the adaptivity of the construction and blows up the number of calls.

By viewing ℓ as an unknown regularity parameter of ρ, we replace the last step by applying the
recent construction of [MZ21] of non-adaptive UOWHF from (unknown) regular one-way functions.
The above gives rise to the following result.

Theorem 1.1 (Non-Adaptive UOWHF from OWF, informal). Assuming one-way functions exist,
there exists a non-adaptive UOWHF. The construction uses O(n9) calls to the one-way function,
and has a key length and output length of O(n10).

We note that, since ρ is not a regular function (indeed, there is a negligible fraction of inputs
for which ρ may have fewer collisions), the use of [MZ21] is not straightforward, and the security
proof requires a new analysis.

1.1.2 Efficient Almost-UOWHF from One-Way Functions

Our second construction is inspired by the work of Haitner, Reingold, and Vadhan [Hai+13] on
PRGs. We show that small modifications to the PRG of [Hai+13] yield an almost-UOWHF. In-
formally, a function family is an almost-UOWHF, if there exists a negligible-sized set of inputs B,
such that no poly-time adversary can find a collision x′ to an input x, unless the collision x′ is a
member of B.6 That is, a function family is an almost-UOWHF, if by changing the functions on a
negligible fraction of the inputs, we can convert it into a UOWHF.

We note that, similarly to the above definition of almost-UOWHF, we can also define an
“almost-PRG”. However, unlike UOWHF, it is easy to see that an almost-PRG is a (perfect)
PRG. Hence, viewing [Hai+13]’s construction as an “almost-PRG”, we believe that the UOWHF
analog of [Hai+13]’s constructions is essentially our almost-UOWHF. While we do not know if an
almost-UOWHF can be converted efficiently into a UOWHF, we believe this construction sheds a
light on the reasons to the efficiency gap between PRGs and UOWHFs constructions. We get the
following theorem.

Theorem 1.2. [Almost-UOWHF from OWF, informal] Assuming one-way functions exist, there
exists an almost-UOWHF with key length Õ(n4). The almost-UOWHF makes Õ(n3) non-adaptive
calls to the underlying one-way function.

We also note that our (perfect) non-adaptive UOWHF construction can be seen, to some ex-
tent, as an instantiation of the almost-UOWHF construction (see Remark 2.2 for more details).

5The max-entropy of a random variable X is defined to be the log of the support size of X. The actual definition
of inaccessible entropy ignores some events that have a negligible probability.

6The set B is independent of the adversary, but can be dependent on the key. For the formal definition, see
Definition 5.2.
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This suggests that with an improved analysis, the parameter of the UOWHF construction can be
improved, and that our (perfect) UOWHF construction is a step towards the adjustment of the
framework of [Hai+13] for UOWHFs.

Next-bit unreachable entropy. In their work, Haitner et al. [Hai+13] defined the notion of
next-bit pseudoentropy. Roughly, a function g : {0, 1}m → {0, 1}ℓ has next-bit pseudoentropy k, if
for random X ← {0, 1}m and I ← [ℓ] the bit g(X)I has pseudoentropy k/ℓ given g(X)<I . Haitner
et al. [Hai+13] used a one-way function to construct a function g : {0, 1}m → {0, 1}ℓ with non-trivial
(i.e., larger than m) next-bit pseudoentropy. This function g is then used to construct an efficient
and simple PRG.

To replace the notion of next-bit pseudoentropy in our construction, we define the notion of
next-bit unreachable entropy, a variant of inaccessible entropy, defined by Haitner et al. [Hai+10],
that allows us to achieve almost-UOWHF using similar construction to the above PRG. We say
that a function g : {0, 1}m → {0, 1}ℓ has next-bit unreachable entropy v, if for every index i ∈ ℓ,
there is a sets Ui ⊆ {0, 1}m of unreachable inputs, such that for random x and i, the probability
that x /∈ Ui is smaller than (m− v)/ℓ, and the following holds.

1. For every x /∈ Ui, and every ppt A, it holds that

Pr
x′←A(x)

[
x′ ∈ Ui ∧ g(x)<i = g(x′)<i

]
= neg(n).

That is, it is hard to find a collision for g(x)<i inside Ui.

2. Moreover, even if x ∈ Ui, it is hard to flip the i-th bit of g while staying inside Ui. Formally, we
require that

Pr
x′←A(x)

[
x′ ∈ Ui ∧ g(x)<i = g(x′)<i ∧ g(x)i ̸= g(x′)i

]
= neg(n).

For example, for every permutation p : {0, 1}m → {0, 1}m, the function g : {0, 1}m → {0, 1}ℓ
defined by g(x) = p(x)0ℓ−m has next-bit unreachable entropy 0, as can been seen by setting
Ui = {0, 1}m for every i > m, or the empty set for i ≤ m. More generally, for every injective
function g : {0, 1}m → {0, 1}ℓ, we can define Ui to be the set of all inputs x ∈ {0, 1}m, such that
there is no x′ ∈ {0, 1}m with g(x)<i = g(x′)<i while g(x)i ̸= g(x′)i.

7 In this case, it is not hard to
see that the probability that a random x is outside of Ui (for any fixed i) is at least the entropy of
g(X)i given g(X)<i (i.e., H(g(X)i | g(X)<i)).

8 Using the chain rule of entropy, we get that for a
random index I, the probability that X is outside of UI is at least

1/ℓ ·
∑
i∈ℓ

H(g(X)i | g(X)<i) = 1/ℓ ·H(g(X)) = m/ℓ.

Note also that, without assuming computational hardness, the above sets Ui are the maximal that
respect the definition of unreachable entropy. By the above observations, it follows that a function g
has v > 0 next-bit unreachable entropy if the “reachable entropy” of g(X)I given g(X)<I is smaller

7If the function g is not injective, it is natural to consider g′(x) = (g(x), x). We use similar construction in
Section 5.

8Indeed, observe that H(g(X)i | g(X)<i = g(x)<i) is zero iff x ∈ Ui. Additionally, H(g(X)i | g(X)<i = g(x)<i) ≤
1 for every x. It follows that H(g(X)i | g(X)<i) = Ex←{0,1}m [H(g(X)i | g(X)<i = g(x)<i)] ≤ Ex←{0,1}m [1x/∈Ui ] =
Pr[X /∈ Ui].
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than its real entropy. In this sense, our definition is a dual version of the next-bit pseudoentropy
definition. We show that a very similar function to the function g used by [Hai+13] has non-trivial
next-bit unreachable entropy. More details on the constructions and the security proof are given
in Section 2.

1.2 Additional Related Work

Next-block pseudoentropy and inaccessible entropy. A different variant of inaccessible
entropy, for online generator, was defined and used by Haitner, Reingold, Vadhan, andWee [Hai+09]
to construct statistically hiding commitments. Agrawal, Chen, Horel, and Vadhan [Agr+19] pointed
out that the above notions of accessible entropy and next-block pseudoentropy are deeply related
to each other.

UOWHFs from regular one-way functions. The constructions of UOWHF from regular
one-way functions are more efficient. Besides the works mentioned above, Naor and Yung [NY89]
showed an efficient construction from 1-to-1 one way functions.

Additionally, a few refinements of regularity were considered in past works. [BM12] showed a
construction for UOWHF that uses O(ns6(n)) key-length under the assumption that

∣∣f−1(f(x))∣∣
is concentrated in an interval of size 2s(n). [Yu+15] showed adaptive constructions for a number of
regularity refinements.

UOWHFs from arbitrary one-way functions. As mentioned above, [Rom90] gave the first
constraction of UOWHF from arbitrary one-way functions. Katz and Koo [KK05] gave the first
full proof for Rompel [Rom90]’s construction.

Lower bounds. The lower bounds for black-box constructions are relatively far from the upper
bounds. In this line of work, there are two incomparable types of results. The first type, due
to [Gen+05] is stated with terms of the stretching and compression of the PRG and UOWHF,
respectively. Specifically, [Gen+05] showed that any black-box PRG construction G : {0, 1}m →
{0, 1}m+s from f must use Ω(s/ log n) calls to f . Similarly, any black box UWOHF construction
with input size m and output size m − s must use Ω(s/ log n) calls. In the second type of results
[HS12] showed that any black-box PRG construction from f must use Ω(n/ log n) calls to f , even
for 1-bit stretching. [BH13] showed similar results for 1-bit compressing UWOHF. These lower
bounds hold even when the one-way function f is unknown-regular. In this case, these bounds are
known to be tight.

Collision resistant hash functions (CRHFs). UOWHF is a relaxation of CRHF. In the
latter, we require that for a random function from the family, no adversary can find a collision
(x, x′). Constructing a CRHF is a more challenging task, and its complexity is still not clear.
Asharov and Segev [AS16] showed that there is no black-box construction of CRHFs even from
indistinguishable obfuscation (iO) additionally to a one-way permutation. Naor and Yung [NY89]
showed that UOWHFs are sufficient for the task of constructing digital signatures.
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1.3 Paper Organisation

In Section 2, we give a high-level description of our constructions and proof technique. Formal
definitions are given in Section 3. The UOWHF construction and the proof of Theorem 1.1 are
in Section 4. The formal definition of almost-UOWHF and next-bit unreachable entropy, and the
almost-UOWHF construction and the proof of Theorem 1.2 are in Section 5.

2 Our Technique

In this section, we provide a rather elaborate description of our constructions and proof technique.

2.1 Non-Adaptive UOWHF

We start with a high-level description of the constructions of [Hai+10] and [MZ21].

2.1.1 UOWHF from Unknown-Regular One-Way Functions ([MZ21])

Mazor and Zhang [MZ21] showed how to construct a non-adaptive UOWHF from an unknown-
regular one-way function f : {0, 1}n → {0, 1}n. For hash functions h1, . . . , hn−1 : {0, 1}n →
{0, 1}n−logn from a hash family H, and n inputs x1, . . . , xn ∈ {0, 1}n, [MZ21] showed that, for
the right choice of H, the function

C(h1, . . . , hn, x1, . . . , xn) = h1, . . . , hn, f(x1), h1(x1, f(x2)), . . . , hn−1(xn−1, f(xn)), xn

is collision resistant on random inputs. Since this function is also shrinking, it can be converted
into an UOWHF easily by a standard construction.9

Intuitively, for a regular function f and i.i.d uniform random variables X1, X2 over {0, 1}n,
given any fixing of f(X1), the entropy of the pair X1, f(X2) is exactly n. To see the above, recall
that for a regular f with an (unknown) regularity parameter ∆, it holds that there are exactly ∆
possible values forX1 given f(X1), and exactly 2n/∆ possible values for f(X2). Thus, the regularity
parameter ∆ “cancels out” when considering the number of possible values (given f(X1)) of the pair
X1, f(X2), as this number is ∆ · 2n/∆ = 2n. It follows that the compression of the pair X1, f(X2)
does not create too many collisions. This fact can be used in order to reduce the problem of
inverting f , into finding a collision for C.

2.1.2 Inaccessble Entropy from One-Way Functions ([Hai+10])

In order to construct an UOWHF from an arbitrary one-way function, given a one-way function
f : {0, 1}n → {0, 1}n, Haitner et al. [Hai+10] started with constructing a function g, that takes as
input an index i ∈ [n], string x ∈ {0, 1}n and a description of a random hash function h from a
3-wise independent hash family H, and outputs h, together with the i first bits of h(f(x)). That
is, g(i, x, h) = (h, h(x)≤i). Haitner et al. [Hai+10] showed that for every collision finder algorithm
A, there are sets {Lw}w∈([n]×{0,1}n×H), such that, for a random input W ← ([n]× {0, 1}n ×H),

1. Pr[A(W ) /∈ LW ] = neg(n), and,

9[MZ21] actually showed it is enough to use a single hash function. The number of repetitions n is in order to
make the function shrinking.
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2. H(W | g(W ))−E[log(|LW |)] ≥ log n/n,

where H is the entropy function. The above log n/n is a gap between the entropy of W given g(W ),
to its accessible average max entropy.

Haitner et al. [Hai+10] then showed that for ρ = gn
4
(i.e., ρ(w1, . . . , wn4) = g(w1), . . . , g(wn4),

the concatenation of the outputs of n4 independent invocations of g), both the entropy and the
accessible entropy are highly concentrated around their means. That is, there exist some ℓ ∈ N,
s = ω(log n) and sets {Lz}z∈Domain(ρ) that satisfy the following: (1) first,

∣∣ρ−1(ρ(z))∣∣ ≥ 2ℓ+s, (2)

|{Lz}| ≤ 2ℓ for all but negligible fraction of z’s, and (3), Pr[A(z) /∈ Lz] = neg(n) for every collision
finder A for ρ.

We now proceed to describing our construction. In the following we view ρ as a function from
{0, 1}m to {0, 1}k, for m, k = O(n5) (using a proper encoding of the input).

2.1.3 Our Construction

Thinking of ℓ as the regularity parameter of the function ρ, we use the construction of [MZ21] in
order to get a non-adaptive UOWHF. That is, for hash functions h1, . . . , hm−1 : {0, 1}m×{0, 1}k →
{0, 1}m−logn from a universal family H, and inputs z1, . . . , zm, let

C(h1, . . . , hm−1, z1, . . . , zm) = h1, . . . , hm−1, ρ(z1), h1(z1, ρ(z2)), . . . , hm−1(zm−1, ρ(zm)), zm.

We show that C is collision resistant on random inputs. Indeed, assume that
∣∣ρ−1(ρ(z))∣∣ ≥

2ℓ+ω(logn) for every z ∈ {0, 1}m. We get that the image size of ρ is at most 2m · 2−ℓ−ω(logn).
Thus, for Z1, Z2 ← {0, 1}m and H1 ← H, any poly-time algorithm cannot find a collision for
ρ(Z1), H1(Z1, ρ(Z2)), since it only has

|LZ1 | · |Image(ρ)| ≤ 2ℓ · (2m · 2−ℓ−ω(logn)) = 2m−ω(logn)

possible values to choose from, and the probability for each such value to collide with Z1, ρ(Z2)
on H1 is 2−m+logn. Thus, by the union bound, the probability that there is a collision for Z1, Z2

inside the set LZ1 × Image(ρ) is negligible. By a similar argument, the analysis shows that it is
impossible to find a collision for the entire function C.

However, there is an issue with the above idea. Note that the condition concerning the pre-
image size of an image of ρ holds only with overwhelming probability, which may pose a problem.
Indeed, let B =

{
z ∈ {0, 1}m :

∣∣ρ−1(ρ(z))∣∣ < 2ℓ+ω(logn)
}
be the set of all untypical inputs. The size

of ρ(B) can be much larger than 2m ·2−ℓ−ω(logn), the number of “typical” images. Thus, by choosing
X ′2 from this set, the adversary might be able to find a collision (Z ′1, Z

′
2) for ρ(Z1), H1(Z1, ρ(Z2)).

Fortunately, it turns out that this issue can be resolved by a more careful analysis, which yields the
following key insight: for every collision (z′1, . . . , z

′
m) for C found by an efficient algorithm, it holds

that if z′i ∈ B for some i, it must holds that z′i+1 ∈ B as well. It follows from the above that in this
case, z′m is also in B. Since C outputs its last input zm, and with all but a negligible probability
zm /∈ B, we have that (z′1, . . . , z

′
m) is not a valid collision.

Remark 2.1 (Using a more shrinking hashing). The actual gap s between the accessible and real
entropy of ρ−1 is s ≈ n3. Thus, the first part of the argument above will work even if the hash
functions will output only m−n3+ω(log n) bits. In this case, however, we will not be able to show
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that it is infeasible to find a collision inside B. The above suggests the following construction of
almost-UOWHF: let t ≈ n2, and for h1, . . . , ht−1, z1, . . . , zt, consider

C(h1, . . . , ht−1, z1, . . . , zt) = h1, . . . , ht−1, ρ(z1), h1(z1, ρ(z2), . . . , ht−1(zt−1, ρ(zt)), zt,

for hi : {0, 1}m+k → {0, 1}m−n
3/2.

For large enough t, the above function is shrinking, and, for a random input (h1, . . . , ht−1, z1, . . . , zt)
it is hard to find a collision (z′1, . . . , z

′
t), such that z′i /∈ B for every i. The latter implies that all

the collisions that can be found by an efficient algorithm come from a negligible-sized set. Such a
function can easily be converted into an almost-UOWHF, which yields a construction with O(n6)
non-adaptive calls, and key length of O(n7) bits. It turns out, see next section, that there are better
approaches for constructing almost-UOWHFs.

2.2 Almost-UOWHF

We start with a high-level description of the one-way function based pseudorandom generator of
[Hai+13]. The main building block of the construction is a function g : {0, 1}m → {0, 1}ℓ, with
k > m next-bit pseudoentropy. On a given input, their PRG starts by using g to construct the
following matrix-like structure (see Figure 1): the structure is composed of q ≈ m2 rows, where
each row contains t ≈ m independent copies of g(X), for X ← {0, 1}m, shifted by a random offset
between 0 to ℓ. Every fully populated column is then hashed by a hash function h : {0, 1}q → {0, 1}a,
for a ≈ q · k/ℓ > q ·m/ℓ. Finally, the output of the PRG is the concatenation of the outputs of the
hash function applied to every fully populated column.

q rows

output bits

h : {0, 1}q → {0, 1}a

g(X1
1 ) g(X2

1 ) g(X3
1 ) . . . g(Xt−1

1 ) g(Xt
1)

g(X1
2 ) g(X2

2 ) g(X3
2 ) . . . g(Xt−1

2 ) g(Xt
2)

g(X1
3 ) g(X2

3 ) g(X3
3 ) . . . g(Xt−1

3 ) g(Xt
3)

...

g(X1
q ) g(X2

q ) g(X3
q ) . . . g(Xt−1

q ) g(Xt
q)

Figure 1: The PRG construction of [Hai+13], G : H × ({0, 1}m)t·q → H × ({0, 1}a)(t−1)ℓ. there are
q ≈ m2 rows, each row has t ≈ m i.i.d copies of g(X), shifted by a random offset. Every fully populated
column, marked in grey, is hashed by h ∈ H. The almost-UOWHF construction also outputs the
columns that are not fully populated.

We prove that slightly tweaking the above construction, and using a different function g, yields
a function that is almost collision-resistant on random inputs. Specifically, the output of our
construction contains not only the hashed fully populated columns, but also all the columns that
are not fully populated (without hashing). Additionally, we choose the parameter a to be smaller
than q · n/m, in order to make the function length-decreasing. The function g we are using in our
construction, is defined by

g(h1, h2, x) = (h1, h2, h1(f(x)), h2(x)),
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for hash functions h1, h2 : {0, 1}n → {0, 1}n from a 3-wise independent family. We prove in Sec-
tion 5.2 that if f is a one-way function, the above function g has next-bit unreachable entropy
log n.10

Remark 2.2 (Similarities between our constructions). We note that the function ρ, defined in
Section 2.1, is composed of n4 independent repetitions of a simpler function with random shifts.
Thus, our first construction of non-adaptive UOWHF can be seen as an instantiation of the second
(almost-UOWHF) construction, described above, where we apply the hash function on blocks of m
columns, instead of hashing every single column (and by taking the number of rows to be larger).

In the rest of this section we give some details on the security proof. Consider the function σ
induced by taking the first hashed column in our almost-UOWHF construction (Figure 1) together
with the columns to the left of it. That is,

σ(h, i1, . . . , iq, x1, . . . , xq) = h, (g(x1)<i1 , . . . , g(xq)<iq), h(g(x1)i1 , . . . , g(xq)iq),

for a hash function h : {0, 1}q → {0, 1}a from a universal family H.
Additionally, consider the function σ̂, defined similarly to σ, but without applying the hash h

on the column. That is,

σ̂(h, i1, . . . , iq, x1, . . . , xq) = h, (g(x1)<i1 , . . . , g(xq)<iq), (g(x1)i1 , . . . , g(xq)iq).

It turns out, see detail below, that the following holds for a right choice of the parameter a and
for some negligible-sized set of inputs B: for a random input, every collision found by a collision
finder to the function σ is either a collision for σ̂, or it is inside the set B. That is, the function h
does not make the task of finding a collision (outside of B) easier.

To see that the above is enough to prove the security of the construction, let C be the almost-
UOWHF construction described above, and let Ĉ be the function defined by the raw matrix-like
structure (without applying the hash function on every fully-populated column). Observe that
since the function g is (close to) injective, the function Ĉ is (not shrinking) collision-resistant on
random inputs. A simple hybrid argument yields that every collision finder that, given an input w
for C, is able to find a collision w′ ̸= w for C that is not a collision for Ĉ (namely, C(w) = C(w′)
but Ĉ(w) ̸= Ĉ(w′)), can be used to find a collision for σ which is not a collision for σ̂.11 Since the
latter is hard to find, and since Ĉ is collision-resistant, the above concludes the proof.

σ is (almost) as hard as σ̂. It thus left to prove that it is hard to find a collision for σ which is
not a collision for σ̂, outside of the negligible sized set B. let A be a collision finder for σ, and let
w′ = (h, i1, . . . , iq, x

′
1 . . . , x

′
q) be a collision found by A(w), for some w = (h, i1, . . . , iq, x1 . . . , xq).

We show that either σ̂(w) = σ̂(w′), or w′ is a member of a small set B. To do so, we use the
next-bit unreachable entropy property of g.

Let {Ui}i∈[ℓ] be the sets guaranteed by the next-bit unreachable entropy of g (these sets are
independent from the choice of A). By the definition of next-bit unreachable entropy it holds that:

1. for every j such that xj /∈ Uij , no collision finder can find x′j ∈ Uij such that g(xj)<ij = g(x′j)<ij ,
and thus it must hold that x′j /∈ Uij .

10For the PRG construction, [Hai+13] used g(h, x) = (h, f(x), h(x)) and [VZ12] used g(x) = (f(x), x). Observe
that, since h1(f(x)) is also a one-way function, our g can be used in the PRG construction.

11Furthermore, the hybrid argument yields that w′ must be from a small set if the collision for σ̂ is.
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2. Similarly, for every j with xj ∈ Uij , it holds that g(xj)ij = g(x′j)ij , unless x
′
j /∈ Uij .

Let Jw be the set of indices for which xj is inside the set Uij . Formally,

Jw =
{
j ∈ [q] : xj ∈ Uij

}
.

By Item 1 above, it holds that Jw′ ⊆ Jw. Moreover, Item 2 implies that g(xj)ij = g(x′j)ij for every
j ∈ Jw′ ∩ Jw. The above yields the key observation of the proof:

Claim 2.3. For any collision w′ = (h, i1, . . . , iq, x
′
1 . . . , x

′
q) found by a collision finder A, unless

|Jw′ | is smaller than |Jw|, there are |Jw| bits in g(x′1)i1 , . . . , g(x
′
q)iq that get the exact same value

as in g(x1)i1 , . . . , g(xq)iq (namely, g(xj)ij = g(x′j)ij for every j ∈ Jw).

Observe that for large enough q, the size of Jw (for a random w) is concentrated around its
mean. Since g has log n next-bit unreachable entropy, its mean is at least q · (1 − m−logn

ℓ ). In
the following, assume for simplicity that the size of Jw is equal to its mean, and that this mean
is exactly q · (1 − m−logn

ℓ ). To conclude the proof, let B be the negligible-sized set of all inputs

w′ = (h, i1, . . . , iq, x
′
1 . . . , x

′
q) for which |Jw′ | is (much) smaller than q · (1 − m−logn

ℓ ), and set the

length of the output of the hash function h to be a ≈ q · m−lognℓ < q ·m/ℓ. It follows that the output
of every collision finder for σ is either in B, or agrees with g(x1)i1 , . . . , g(xq)iq on (almost) all the
indices in Jw. However, with all but a negligible probability, there is no string y′ that agrees with
y = (g(x1)i1 , . . . , g(xq)iq) on q · (1 − m−logn

ℓ ) bits, for which h(y) = h(y′), unless y = y′. In other
words, any such collision for σ is also a collision for σ̂.

3 Preliminaries

3.1 Notations

We use calligraphic letters to denote sets, uppercase for random variables, and lowercase for values
and functions. For n ∈ N, let [n] := {1, . . . , n}. Given a vector s ∈ {0, 1}n, let si denote its i-th
entry, and s≤i denote its first i entries. Define s<i, s>i and s≥i similarly.

The support of a distribution P over a finite set S is defined by Supp(P ) := {x ∈ S : P (x) > 0}.
For a (discrete) distribution D let d← D denote that d was sampled according to D. Similarly, for
a set S, let s← S denote that s is drawn uniformly from S. For an event W , we use W to denote
the compliment event. For a function f : {0, 1}n → {0, 1}n, let Im(f) := {f(x) : x ∈ {0, 1}n} be
the image of f .

Let poly denote the set of all polynomials, and let ppt stand for probabilistic polynomial time.
A function µ : N→ [0, 1] is negligible, denoted µ(n) = neg(n), if µ(n) < 1/p(n) for every p ∈ poly

and large enough n. For a security parameter n, a function f : {0, 1}m(n) → {0, 1}ℓ(n) is efficiently
computable if it is computable in polynomial time in n.

3.2 One-Way Functions

We now formally define basic cryptographic primitives. We start with the definition of one-way
function.
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Definition 3.1 (One-way function). A polynomial-time computable function f : {0, 1}∗ → {0, 1}∗
is called a one-way function if for every probabilistic polynomial time algorithm A, there is a negligible
function µ : N→ [0, 1] such that for every n ∈ N

Pr
x←{0,1}n

[
A(f(x)) ∈ f−1(f(x))

]
≤ µ(n)

For simplicity we assume that the one-way function f is length-preserving. That is, |f(x)| = |x|
for every x ∈ {0, 1}∗. This can be assumed without loss of generality, and is not crucial for our
constructions.

Immediately from the definition of a one-way function, we get the following simple observation.

Claim 3.2. For every one-way function f : {0, 1}n → {0, 1}n there exists a negligible function µ(n)
such that for every input x ∈ {0, 1}n it holds that

∣∣f−1(f(x))∣∣ ≤ 2n · µ(n).

3.3 Universal One Way Hash Functions

We now formally define UOWHF.

Definition 3.3 (Universal one-way hash function). Let n be a security parameter. A family of

functions F =
{
fz : {0, 1}m(n) → {0, 1}ℓ(n)

}
z∈{0,1}k(n)

is a family of universal one-way hash functions

(UOWHFs) if it satisfies:

1. Efficiency: Given z ∈ {0, 1}k(n) and x ∈ {0, 1}m(k), fz(x) can be evaluated in time poly(n).

2. Shrinking: ℓ(n) < m(n).

3. Target Collision Resistance: For every probabilistic polynomial-time adversary A, the probability
that A succeeds in the following game is negligible in n:

(a) Let (x, state)← A(1n) ∈ {0, 1}m(n) × {0, 1}∗.

(b) Choose z ← {0, 1}k(n).

(c) Let x′ ← A(state, z) ∈ {0, 1}m(n).

(d) A succeeds if x ̸= x′ and fz(x) = fz(x
′).

A relaxation of the target collision resistance property can be done by requiring the function to
be collision resistant only on random inputs.

Definition 3.4 (Collision resistance on random inputs). Let n be a security parameter. A

function f : {0, 1}m(n) → {0, 1}ℓ(n) is collision resistant on random inputs if for every probabilistic
polynomial-time adversary A, the probability that A succeeds in the following game is negligible in
n:

1. Choose x← {0, 1}m(n).

2. Let x′ ← A(1n, x) ∈ {0, 1}m(n).

3. A succeeds if x ̸= x′ and f(x) = f(x′).
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The following lemma states that it is enough to construct a function that is collision resistant
on random inputs, in order to get UOWHF.

Lemma 3.5 (From random inputs to targets, folklore). Let n be a security parameter. Let

F : {0, 1}m(n) → {0, 1}ℓ(n) be an efficiently computable length-decreasing function. Suppose F is

collision-resistant on random inputs. Then
{
Fy : {0, 1}m(n) → {0, 1}ℓ(n)

}
y∈{0,1}m(n)

, for Fy(x) :=

F (y ⊕ x), is an UOWHF.

3.4 Hash Families

2-universal and t-wise independent hash families are an important ingredient in our constructions.
In this section, we formally define this notion, together with some useful properties of such families.

Definition 3.6 (2-universal and t-wise independent families).

A family of function F =
{
f : {0, 1}n → {0, 1}ℓ

}
is 2-universal if for every x ̸= x′ ∈ {0, 1}n it

holds that Prf←F [f(x) = f(x′)] ≤ 2−ℓ. F is t-wise independent if for all x1 ̸= . . . ̸= xt ∈ {0, 1}n,
the random variables F (x1), . . . , F (xt) for F ← F are independent and uniformly distributed over
{0, 1}ℓ.

A family is explicit if given a description of a function f ∈ F and x ∈ {0, 1}n, f(x) can be
computed in polynomial time (in n, ℓ). Such family is constructible if it is explicit and there is a
ppt algorithm that given x ∈ {0, 1}n and y ∈ {0, 1}ℓ outputs a uniform f ∈ F , such that f(x) = y.

It is well-known that there are constructible families of t-wise independent functions with de-
scription size O(t · (n+ ℓ)). The next lemma, proven in Appendix A, will be useful in the proof.

Lemma 3.7. Let f : {0, 1}n → {0, 1}n be a function, and H = {h : {0, 1}n → {0, 1}n} a two-wise
independent family. For every x ∈ {0, 1}n and c ∈ N the following holds.

Pr
h←H

[∣∣{x′ : h(f(x′)) = h(f(x))
}∣∣ ≥ ∣∣f−1(f(x))∣∣+ n2c

]
≤ 2/nc.

3.5 Entropy and Accessible Entropy

The Shannon entropy of a random variable X is defined by

H(X) = −
∑

x∈Supp(X)

Pr[X = x] · log(Pr[X = x]).

The conditional entropy of a random variableX given Y , is defined asH(X | Y ) = Ey←Y [H(X|Y=y)].
For a number p ∈ [0, 1], we will use H(p) to denote the entropy of a random variable distributed
according to Bernoulli(p). That is H(p) = −p log p− (1− p) log(1− p).

The min entropy of a random variable X is defined by H∞(X) = minx∈Supp(X) log
1

Pr[X=x] , and

the max entropy of X is defined by H0(X) = log|Supp(X)|.
Lastly, for random variables X and Y , the sample entropy of x ∈ Supp(X) (with respect to

X) is defined by HX(x) = − logPr[X = x], and the sample entropy of x given y ∈ Supp(Y ) is
defined by HX|Y (x | y) = − logPr[X = x | Y = y]. The following equality is immediate from the
definitions above.

H(X | Y ) = E
x←X,y←Y

[
HX|Y (x | y)

]
(1)
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For a function g, we also use the following notation, defined in [Hai+10], for the entropy of g−1.

Definition 3.8 (Real entropy). Let n be a security parameter and g : {0, 1}n → {0, 1}m be a
function.

We say that g−1 has real Shannon entropy k if H(X|g(X)) = k, where X is uniformly distributed
on {0, 1}n.

We say that g−1 has real min-entropy at least k if there is a negligible function ε = ε(n) such
that Prx←X

[
HX|g(X)(x|g(x)) ≥ k

]
≥ 1− ε(n).

We say that g−1 has real max-entropy at most k if there is a negligible function ε = ε(n) such
that Prx←X

[
HX|g(X)(x|g(x)) ≤ k

]
≥ 1− ε(n).

[Hai+10] also introduced the notion of accessible max-entropy. A collision finder for a function
g is an algorithm that, given input x, always output x′ such that g(x) = g(x′). g−1 has small
accessible entropy, if the output of every collision finder for g comes from a small set.

Definition 3.9 (Collision finder). For a function g : {0, 1}m(n) → {0, 1}ℓ(n), an algorithm A is a

g-collision finder if for every x ∈ {0, 1}m(n) it holds that Pr[g(A(1n, x)) = g(x)] = 1.

Definition 3.10 (accessible max-entropy). Let n be a security parameter and g : {0, 1}m(n) →
{0, 1}ℓ(n) be a function. We say that g−1 has accessible max-entropy at most k if for every ppt
g-collision finder A and for every n ∈ N, there exists a family of sets {L(x)}

x∈{0,1}m(n) each of size

at most 2k(n) such that x ∈ L(x) for all x, and Pr
x←{0,1}m(n) [A(1n, x) ∈ L(x)] ≥ 1− neg(n).

The following theorems are implicit in [Hai+10] and will be useful in our constructions.

Theorem 3.11 (Entropy gap, implicit in [Hai+10]). Let f : {0, 1}n → {0, 1}n be a one-way func-

tion. Then there exists ℓ = ℓ(n), s = ω(log n) and an efficiently computable function g : {0, 1}n
5

→
{0, 1}n

5

such that:

1. g−1 has real min-entropy at least ℓ+ s.

2. g−1 has accessible max-entropy at most ℓ.

3. The evaluation procedure of g makes O(n4) non-adaptive calls to the one-way function.

Theorem 3.12 (Implied by Claim 4.9, [Hai+10]). Let f : {0, 1}n → {0, 1}n be a one-way func-
tion and let H = {h : {0, 1}n → {0, 1}n} be a family of constructible, three-wise independent hash
functions.12 Then, for every ppt A, every constant c > 0 and every i ∈ [n], it holds that:

Pr
h←H,

x←{0,1}n,
x′←A(1n,h,x,i)

[
(f(x′) ̸= f(x)) ∧ (h(f(x))<i = h(f(x′))<i) ∧ i > n− (log

∣∣f−1(f(x′))∣∣− c log n)
]
= neg(n).

12Actually, the proof in [Hai+10] only requires two-wise independence.
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3.6 Useful Facts

We will use the well known Chernoff bound in our proof.

Fact 3.13 (Chernoff bound). Let A1, ..., An be independent random variables s.t. Ai ∈ {0, 1} and
let Â = Σn

i=1Ai. For every ϵ ∈ [0, 1] It holds that:

Pr
[∣∣∣Â−E

[
Â
]∣∣∣ ≥ ϵ ·E

[
Â
]]
≤ 2 · e−ϵ2·E[Â]/3.

Additionally, the following inequalities will be useful.

Fact 3.14 ([Gal14]). For every ϵ < 1/2,
(

n
≤ϵn

)
≤ 2nH(ϵ), for

(
n
≤ϵn

)
=

∑
i≤ϵn

(
n
i

)
.

Fact 3.15. For every ϵ ≤ 1/2, H(ϵ) ≤ −2ϵ log ϵ.

4 Non-adaptive UOWHF From One-Way Functions

In this part we construct and prove the security of our non-adaptive UOWHF. This is done by com-
bining the construction of [Hai+10] with the non-adaptive construction of UOWHF for unknown-
regular one-way functions of [MZ21].

We start with the construction. Let g : {0, 1}m(n) → {0, 1}k(n) be a function with a suf-
ficient gap between the real min-entropy and the max accessible entropy of g−1. Let Hn ={
h : {0, 1}m(n)+k(n) → {0, 1}m(n)−logn

}
be 2-universal hash family. For every t ∈ N, define the

function Ct : Ht−1
n × ({0, 1}m(n))t → Ht−1

n × {0, 1}k(n) × ({0, 1}m(n)−logn)t−1 × {0, 1}m(n), by

Ct(h1, . . . , ht−1, x1, . . . , xt) := h1, . . . , ht−1, g(x1), h1(x1, g(x2)), . . . ht−1(xt−1, g(xt)), xt.

Note that the above function is length decreasing when (t − 1) log n > k(n). The next theorem
states that, for the right choice of parameters, Ct is also collision resistant.

Theorem 4.1. Let ℓ = ℓ(n), s = ω(log n) and let g : {0, 1}m(n) → {0, 1}k(n) be a function. Assume
that g−1 has real min-entropy at least ℓ+s and accessible max entropy at most ℓ. Then the function
Ct is collision resistant on random inputs, for every t ∈ poly.

Corollary 4.2. Assuming that one-way functions exist, there exists a non-adaptive UOWHF. More-
over, the construction uses O(n9) calls to the one-way function, and has key length and output length
of O(n10).

Proof. Let k = m = n5 and t = k/ log n + 2. The proof is immediate from Theorems 3.11
and 4.1 and Lemma 3.5, together with the fact that there is an explicit 2-universal family H ={
h : {0, 1}m+k → {0, 1}m−logn

}
with description size O(m+ k). □

We now prove Theorem 4.1. Let m, k, ℓ, g and t be as in Theorem 4.1. We will need the following
two claims. The first, which is straight-forward from the definition of accessible entropy, states that
every collision for Ct comes from a small set.
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Claim 4.3. For every collision-finder algorithm for Ct it holds that there exists a family of sets
{L(x)}x∈{0,1}m each of size at most 2ℓ such that

Pr
h:=(h1,...,ht−1)←Ht−1

n ,

x:=(x1,...,xt)←({0,1}m(n))t(n)

(h,(x′1,...,x
′
t))←A(1n,h,x)

[
∃i ∈ [t] s.t. g(x′i) = g(xi) ∧ x′i /∈ L(xi)

]
= neg(n).

For the second claim we will need the following definition. Let

Tn :=
{
x ∈ {0, 1}m(n) : HX|g(X)(x|g(x)) ≥ ℓ+ s

}
=

{
x ∈ {0, 1}m :

∣∣g−1(g(x))∣∣ ≥ 2ℓ+s
}
.

That is, T is the set of all “typical” inputs x for g, for which HX|g(X)(x|g(x)) is large.
The second claim consider the function Cd for every d ∈ poly. It states that for typical inputs,

i.e., x1, . . . , xd ∈ T , there is no collision x′1, . . . , x
′
d for Cd such that x′1 is from a small set G.

Claim 4.4. For every d, n ∈ N, set G ⊆ {0, 1}m(n) of size at most 2ℓ(n) and x = (x1, . . . , xd) ∈ T d
n

it holds that

Pr
h=(h1,...,hd−1)←Hd−1

n

[
∃x′ = (x′1, . . . , x

′
d) s.t x

′
1 ∈ G ∧ (x′1, g(x

′
2)) ̸= (x1, g(x2)) ∧ Cd(h, x) = Cd(h, x

′)
]

≤ d · µ(n),

for some negligible function µ.

We prove Claims 4.3 and 4.4 below, but first we use them in order to prove Theorem 4.1.

Proof of Theorem 4.1. Let A be a PPT collision-finder algorithm of Ct such that

Pr
h=(h1,...,ht−1)←Ht−1

n ,

x=(x1,...,xt)←({0,1}m(n))t(n)

(h,x′)←A(1n,h,x)

[
x ̸= x′ ∧ Ct(h, x) = Ct(h, x

′)
]
= α(n). (2)

We will show that α must be negligible.
For n ∈ N, let {L(x)}

x∈{0,1}m(n) be the family promised by Claim 4.3. LetH = (H1, . . . ,Ht−1)←
Ht−1

n and X = (X1, . . . , Xt) ← ({0, 1}m(n))t(n) be random variables, and let (·, X ′) ← A(1n, H,X)
be the output of A. Let Wn

1 be the event that A found a valid collision. By construction, this event
can be written as follows: There exists i ∈ [t(n)], such that,

1. (X ′i, g(X
′
i+1)) ̸= (Xi, g(Xi+1)), and

2. (g(Xi), Hi(Xi, g(Xi+1)), . . . ,Ht−1(Xt−1, g(Xt)), Xt) = (g(X ′i), Hi(X
′
i, g(X

′
i+1)), . . . ,Ht−1(X

′
t−1, g(X

′
t)), X

′
t).

Observe that, by definition of the function C, the last condition is equivalent to Ct−i+1(Hi,...,t−1, Xi,...,t−1) =
Ct−i+1(Hi,...,t−1, X

′
i,...,t−1).

Additionally, we define the following two events. Let Wn
2 be the event that exists i ∈ [t(n)]

such that Xi /∈ Tn, and let Wn
3 be the event that there exists i ∈ [t(n)] such that g(Xi) = g(X ′i)

and X ′i /∈ L(Xi).
It holds that,

α ≤ Pr[Wn
2 ] +Pr[Wn

3 ] +Pr
[
Wn

1 ∧Wn
2 ∧Wn

3

]
.

Finally, observe thatPr[Wn
2 ] = neg(n) by the assumption that g−1 has min-entropy at least ℓ+s and

the union bound, and Pr[Wn
3 ] = neg(n) by Claim 4.3. Additionally, Pr

[
Wn

1 ∧Wn
2 ∧Wn

3

]
= neg(n)

by Claim 4.4 and the union bound (choosing G = L(Xi)). □
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4.1 Proving Claim 4.3

Proof of Claim 4.3. Let A be a collision-finder algorithm for C. Consider R, a collision finder for
g:

Algorithm 1: The g-collision finder R

Input: 1n,x ∈ {0, 1}m(n).

Oracle: A.

Operation:

1. Sample i← [t(n)− 1], x1, . . . , xi−1, xi+1, . . . , xt(n) ← {0, 1}m(n) and h1, . . . , ht(n)−1 ← Hn, and
let xi := x.

2. Apply A(1n, h1, . . . , ht(n)−1, x1, . . . , xt) to get x′1, . . . , x
′
t(n).

3. If g(x′i) = g(xi) output x
′
i. Otherwise output xi.

Note that by definition it always holds that g(x) = g(RA(1n, x)). Thus, by Theorem 3.11, there
exists a family of sets {L(x)}

x∈{0,1}m(n) such that Pr
x←{0,1}m(n)

[
RA(1n, x) /∈ L(x)

]
≤ neg(n) and

|L(x)| ≤ 2ℓ(n) for every x ∈ {0, 1}m(n). Observe that,

Pr
x←{0,1}m(n)

[
RA(1n, x) /∈ L(x)

]
≥ 1/t(n) · Pr

h:=(h1,...,ht(n)−1)←H
t(n)−1
n ,

x:=(x1,...,xt(n))←({0,1}m(n))t(n)

(h,(x′1,...,x
′
t(n)

))←A(1n,h,x)

[
∃i ∈ [t(n)] s.t. g(x′i) = g(xi) ∧ x′i /∈ L(xi)

]

and thus the claim holds by combining the two equation above, and since t ∈ poly. □

4.2 Proving Claim 4.4

Fix n, and omit it from the notation. Let T = Tn and B := {0, 1}m\T . Recall that, by Theorem 3.11
and the definition of real min-entropy, it holds that |B| = ε(n) · 2m for some ε ∈ neg(n). Let
g(T ) := {g(x) : x ∈ T }. The next claim is the main part of the proof of Claim 4.4. It states that
for every small set G and strings x1, x2, the following holds with overwhelming probability over
h ∈ H. For every x′1, x

′
2 such that x′1 ∈ G and h(x1, g(x2)) = h(x′1, g(x

′
2)) it holds that x′2 is

non-typical (that is, x′2 ∈ B). Moreover, the number of such collision is small.

Claim 4.5. Let x1, x2 ∈ {0, 1}m, and let G ⊆ {0, 1}m be a set of size at most 2ℓ. For h ∈ H, let

Gh =
{
x′2 : ∃x′1 ∈ G s.t. (x′1, g(x

′
2)) ̸= (x1, g(x2)) ∧ h(x1, g(x2)) = h(x′1, g(x

′
2))

}
.

Then, Prh←H
[
Gh ⊆ B ∧ |Gh| ≤ 2ℓ

]
≥ 1− n(ε(n) + 2−s(n)).
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Proof of Claim 4.5. We start with showing that Prh←H[Gh ⊆ B] ≥ 1− n · 2−s(n). Indeed,

Pr
h←H

[Gh ⊈ B]

= Pr
h←H

[
∃(x′1, x′2) ∈ G × T s.t. (x′1, g(x

′
2)) ̸= (x1, g(x2)) ∧ h(x1, g(x2)) = h(x′1, g(x

′
2))

]
= Pr

h←H

[
∃(x′1, y′) ∈ G × g(T ) s.t. (x′1, y′) ̸= (x1, g(x2)) ∧ h(x1, g(x2)) = h(x′1, y

′)
]

≤ n · 2−m · |G| · |g(T )|
≤ n · 2−m · 2ℓ · 2m/2ℓ+s

= n · 2−s(n)

where the first inequality holds since Prh←H[h(x1, g(x2)) = h(x′1, y
′)] ≤ n · 2−m for every (x′1, y

′) ̸=
(x1, g(x2)) together with the union bound. The second inequality holds since by definition of T it
must hold that |g(T )| ≤ 2m/2ℓ+s.

We next show that Prh←H
[
|Gh ∩ B| ≥ 2ℓ

]
≤ n · ε(n), which concludes the proof. We start with

computing the expectation of |Gh ∩ B|:

E
h←H

[|Gh ∩ B|] ≤ n · 2−m · |G| · |B|

≤ n · 2−m · 2ℓ · ε(n) · 2m

≤ n · ε(n) · 2ℓ.

The claim now follows by Markov and the Union bound. □

We are now ready to prove Claim 4.4 using Claim 4.5. Intuitively, Claim 4.5 shows that if x′1 is
from a small set, x′2 is from a small set too. Thus, we can continue by induction, to prove that also
x′d is from the set B. It follows that, x′d ̸= xd with overwhelming probability (as xd ∈ T ), which is
enough since the output of Cd includes xd.

Proof of Claim 4.4. Fix n ∈ N, x = (x1, . . . , xd) ∈ T d
n and a set G ⊆ {0, 1}m. For h = (h1, . . . , hd−1) ∈

Hd−1, let

COL(h, x) =
{
x′ = (x′1, . . . , x

′
d) ∈ G × ({0, 1}m)d−1 : (x1, g(x2)) ̸= (x′1, g(x

′
2)) ∧ Cd(h, x) = Cd(h, x

′)
}

be the set containing all the possible collision of h, x with x′1 ∈ G and (x1, g(x2)) ̸= (x′1, g(x
′
2)).

Similarly, for every i ∈ {0, . . . , d− 1}, let

COLi(h1, . . . , hi, x) =
{
x′ ∈ G × ({0, 1}m)d−1 :

(x1,g(x2))̸=(x′1,g(x
′
2))

∧∀j∈[i] hj(xj ,g(xj+1))=hj(x
′
j ,g(x

′
j+1))

}
That is, all inputs with x′1 ∈ G and (x1, g(x2)) ̸= (x′1, g(x

′
2)) that collide with i blocks of Cd. It is

clear that for every x and h,

COL(h, x) ⊆ COLd−1(h, x) ⊆ ... ⊆ COL0(x) (3)

We want to show that with high probability over the choice of h, it holds that COL(h, x) is
empty.
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For every i ∈ [d − 1], let Wi be the event (over the choice of h1, . . . hi−1 ← Hi−1) that there
exists a set Gi of size at most 2ℓ, such that for every x′ ∈ COLi−1(h1, . . . , hi−1, x), it holds that
(x′i, g(x

′
i+1)) ̸= (xi, g(xi+1)) and x′i ∈ Gi.

For i ∈ [d], let Ŵi be the event that there exists a set Gi of size at most 2ℓ such that for every
x′ ∈ COLi−1(h1, . . . , hi−1, x), it holds that x′i ̸= xi and x′i ∈ Gi.

Observe that Pr
[
Wi | Ŵi

]
= 1. We will show that, for every 1 ≤ i < d, it holds that

Pr
[
Ŵi+1 |W≤i

]
≥ 1− n(ε(n) + 2−s(n)) (4)

Furthermore, Pr[W1] = 1. Indeed, let G1 = G. By assumption x1 ∈ G and (x′1, g(x
′
2)) ̸=

(x1, g(x2)) for every x′1, x
′
2 ∈ COL0(x).

To see that Equation (4) holds, fix 1 ≤ i < d. Let H ′ ← Hd−1|W≤i
, and observe that H ′i is

uniformly distributed over H. By the definition of Wi, it holds that for every x′ ∈ COLi−1(H ′<i, x)
it holds that (x′i, g(x

′
i+1)) ̸= (xi, g(xi+1)) and x′i ∈ Gi for some set Gi of size at most 2ℓ. Define

Gi+1 :=
{
x′i+1 : ∃x′i ∈ Gi s.t. (x′i, g(x′i+1)) ̸= (xi, g(xi+1)) ∧H ′i(xi, g(xi+1)) = H ′i(x

′
i, g(x

′
i+1))

}
.

By definition x′i+1 ∈ Gi+1 for every x′ ∈ COLi(H ′≤i, x). Applying Claim 4.5 we get that with all

but n(ε(n) + 2−s(n)) probability over the choice of H ′i, it holds that |Gi+1| ≤ 2ℓ. Moreover, with
the same probability Gi+1 ⊆ B, which implies that x′i+1 ̸= xi+1 (since by assumption, xi+1 ∈ Tn).

To conclude, we get that for every x′ ∈ COL(h, x) ⊆ COLd−1(h, x) it holds that x′d ̸= xd with
probability at least

Pr
[
Ŵd

]
≥ Pr

[
Ŵd |W<d

]
·

∏
1<i≤d−1

Pr[Wi |W<i]

≥ Pr
[
Ŵd |W<d

]
·

∏
1<i≤d−1

Pr
[
Wi, Ŵi |W<i

]
= Pr

[
Ŵd |W<d

]
·

∏
1<i≤d−1

(
Pr

[
Wi | Ŵi,W<i

]
·Pr

[
Ŵi |W<i

])
≥ (1− n(ε(n) + 2−s(n)))d

≥ 1− d · n(ε(n) + 2−s(n))

= 1− d · neg(n).

Where the penultimate inequality holds by Equation (4) and the fact that Pr
[
Wi | Ŵi,W<i

]
= 1.

Recall that Cd outputs xd. Thus, the above implies that Cd(h, x) ̸= Cd(h, x
′), which implies that

COL(h, x) = ∅ with the same probability.
□

5 Almost-UOWHF From One-Way Functions

In this section we formally define almost-UOWHF and next-bit unreachable entropy, and show how
to construct them from one-way functions.
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5.1 Almost-UOWHF

In this part we formally define almost-UOWHF. We start with the definition of almost collision
resistance on random input.

Definition 5.1 (Almost collision resistance on random inputs). Let n be a security parameter.

A function f : {0, 1}m(n) → {0, 1}ℓ(n) is almost collision resistant on random inputs if there exists

a set Bn ⊆ {0, 1}m(n), such that |Bn|/2m(n) = neg(n), and for every probabilistic polynomial-time
adversary A, the probability that A succeeds in the following game is negligible in n:

1. Choose x← {0, 1}m(n).

2. Let x′ ← A(1n, x) ∈ {0, 1}m(n).

3. A succeeds if x′ /∈ Bn, x ̸= x′ and f(x) = f(x′).

The definition of almost-UOWHF is similar.

Definition 5.2 (Almost universal one-way hash function). Let n be a security parameter. A family

of functions F =
{
fz : {0, 1}m(n) → {0, 1}ℓ(n)

}
z∈{0,1}k(n)

is a family of almost universal one-way hash

functions (UOWHFs) if it satisfies:

1. Efficiency: Given z ∈ {0, 1}k(n) and x ∈ {0, 1}m(n), fz(x) can be evaluated in time poly(n).

2. Shrinking: ℓ(k) < m(k).

3. Almost Target Collision Resistance: There exist sets {Bz}z∈{0,1}k(n) such that |Bz|/2m(n) =

neg(n), and for every probabilistic polynomial-time adversary A, the probability that A succeeds
in the following game is negligible in n:

(a) Let (x, state)← A(1n) ∈ {0, 1}m(n) × {0, 1}∗.
(b) Choose z ← {0, 1}k(n).
(c) Let x′ ← A(state, z) ∈ {0, 1}m(k).

(d) A succeeds if x′ /∈ Bz, x ̸= x′ and fz(x) = fz(x
′).

The next lemma follows easily from Lemma 3.5

Lemma 5.3 (From random inputs to targets, almost version). Let n be a security parameter.

Let F : {0, 1}m(n) → {0, 1}ℓ(n) be an efficiently computable length-decreasing function. Suppose F

is almost collision-resistant on random inputs. Then
{
Fy : {0, 1}m(n) → {0, 1}ℓ(n)

}
y∈{0,1}m(n)

, for

Fy(x) := F (y ⊕ x), is an almost-UOWHF.

5.2 Next-Bit Unreachable Entropy

In this section we present the notion of next-bit unreachable entropy, and construct a function
with next-bit unreachable entropy from one-way functions. Intuitively, we say that a function
g : {0, 1}m → {0, 1}ℓ has next-bit unreachable entropy v if for every i ∈ [ℓ], there is a set of
Ui ⊆ {0, 1}m, such that every x is a member of (ℓ −m + v) such sets, and, given x ∈ {0, 1}m, a
poly-time algorithm cannot find x′ ∈ Ui with g(x)<i = g(x′)<i, but g(x)i ̸= g(x′)i.

19



Definition 5.4. A function g : {0, 1}m(n) → {0, 1}ℓ(n) has next-bit unreachable entropy v, if the

following holds. For every n ∈ N and i ∈ [ℓ(n)] there exists a set Ui,n ⊆ {0, 1}m(n), such that

1. Ui,n are large: For every n ∈ N,

Pr
x←{0,1}m(n),i←[ℓ(n)]

[x /∈ Ui,n] ≤ (m(n)− v(n))/ℓ(n).

2. Hard to get inside Ui,n: For every ppt A,

Pr
x←{0,1}m(n),i←[ℓ(n)],x′←A(1n,x,i)

[
((x′ ∈ Ui,n)) ∧ (g(x)<i = g(x′)<i) ∧ (x /∈ Ui,n)

]
= neg(n).

3. The entropy inside Ui,n is unreachable: For every ppt A,

Pr
x←{0,1}m(n),i←[ℓ(n)],x′←A(1n,x,i)

[
((x′ ∈ Ui,n)) ∧ (g(x)<i = g(x′)<i) ∧ (g(x)i ̸= g(x′)i)

]
= neg(n).

The definition above is especially useful when the function g is close to be injective. Formally,

Definition 5.5. A function g is almost-injective if Prx←{0,1}m
[∣∣g−1(g(x))∣∣ > 1

]
= neg(n).

We use the above definition for the construction of almost-UOWHF in Section 5.3, but first we
prove that a function with non-trivial next-bit unreachable entropy exists.

Theorem 5.6. Let f and H = {h : {0, 1}n → {0, 1}n} be as in Theorem 3.12. Let g : H2×{0, 1}n →
H2×{0, 1}2n be defined by g(h1, h2, x) = (h1, h2, h1(f(x)), h2(x)). Then g is almost-injective func-
tion with next-bit unreachable entropy c log(n), for every constant c > 0.

Moreover, the input and output size of g are of length O(n).

The proof of Theorem 5.6 is by the next two claims. The first, proven on Appendix A, states
that the function g defined in Theorem 5.6 is indeed almost injective.

Claim 5.7. g is almost injective function.

Next, in order to prove that g has next-bit unreachable entropy, we define the sets Ui,n. Let d

be the description size of a function in H. In the following we view g as a function from {0, 1}2d+n

to {0, 1}2d+2n. Fix c and n, and define, for every i ∈ [n],

U2d+i,n =
{
(h1, h2, x) ∈ H2 × {0, 1}m(n) : i > n− log

∣∣f−1(f(x))∣∣− (c+ 4) log n
}

and

U2d+n+i,n =
{
(h1, h2, x) ∈ H2 × {0, 1}m(n) : ∀x′ ̸= x, (h1(f(x)), h2(x)<i) ̸= (h1(f(x

′)), h2(x
′)<i)

}
.

Lastly, for every i ≤ 2d, let Ui,n = ∅. Note that by definition, the above U2d+n+i,n fulfil Items 2
and 3 of Definition 5.4 for any (unbounded) adversary. By Theorem 3.12, it holds that also U2d+i,n

fulfil Items 2 and 3 of Definition 5.4 (observe that, for x and x′ with f(x) = f(x′), it holds that
x ∈ U2d+i,n iff x′ ∈ U2d+i,n). The next claim states that also Item 1 in Definition 5.4 holds.
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Claim 5.8 (Ui,n is large). Let ℓ = 2d+ 2n. In holds that

Pr
(h1,h2,x)←H2×{0,1}n,i←[ℓ(n)]

[(h1, h2, x) ∈ Ui,n] ≥ (n+ c log n)/ℓ.

Proof. It holds that,

Pr
(h1,h2,x)←H2×{0,1}n,i←[ℓ(n)]

[(h1, h2, x) ∈ Ui,n]

= E
x←{0,1}n,i←[ℓ(n)]

[
Pr

(h1,h2)←H2
[(h1, h2, x) ∈ Ui,n]

]

= 1/ℓ · E
x←{0,1}n

 ∑
i∈[ℓ(n)]

Pr
(h1,h2)←H2

[(h1, h2, x) ∈ Ui,n]


= 1/ℓ · E

x←{0,1}n

 ∑
i≤2d+n

Pr
(h1,h2)←H2

[(h1, h2, x) ∈ Ui,n] +
∑

i>2d+n

Pr
(h1,h2)←H2

[(h1, h2, x) ∈ Ui,n]


≥ 1/ℓ · E

x←{0,1}n

[
(c+ 4) log n+ log

∣∣f−1(f(x))∣∣− 1 +
∑

i>2d+n

Pr
(h1,h2)←H2

[(h1, h2, x) ∈ Ui,n]

]

We finish the proof by showing that for every x,∑
i>2d+n

Pr
(h1,h2)←H2

[(h1, h2, x) ∈ Ui,n] ≥ n− log
∣∣f−1(f(x))∣∣− 3 log n− 5 (5)

Indeed, fix i > 2d+ n+ log
∣∣f−1(f(x))∣∣+ 3 log n, and let W be the event that∣∣{x′ : h1(f(x′)) = h1(f(x))

}∣∣ < ∣∣f−1(f(x))∣∣+ n2.

It holds that,

Pr
(h1,h2)←H2

[(h1, h2, x) ∈ Ui,n]

= 1− Pr
(h1,h2)←H2

[
∃x′ ̸= x, g(h1, h2, x)<i = g(h1, h2, x)<i

]
≥ 1− Pr

(h1,h2)←H2

[
∃x′ ̸= x, h1(f(x)) = h1(f(x

′)) ∧ h2(x)<i−n−2d) = h2(x
′)<i−n−2d |W

]
− Pr

(h1,h2)←H2

[
W

]
≥ 1− 2i−n−2d−1 · (

∣∣f−1(f(x))∣∣+ n2)− 2/n

≥ 1− 4/n,

where the first equality holds by definition of Ui,n, the second inequality by Lemma 3.7 and since
H is two-wise independent, and the last by the bound on i.

Finally, Equation (5) holds since, by the above,∑
i>2d+n

Pr
(h1,h2)←H2

[(h1, h2, x) ∈ Ui,n] ≥
∑

i>2d+n+log|f−1(f(x))|+3 logn

(1− 4/n)

≥ (n− log
∣∣f−1(f(x))∣∣− 3 log n− 1)− 4.

□
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The proof of Theorem 5.6 is now immediate.

Proof of Theorem 5.6. Immediate from Claim 5.7, Claim 5.8 and Theorem 3.12. □

5.3 Next-Bit Unreachable Entropy to Almost-UOWHF

5.3.1 The Construction

We now describe our main construction. We start with some notations.
A position vector p ∈ [ℓ]q is just a vector of indexes from [ℓ]. For a function g : {0, 1}m → {0, 1}ℓ,

input vector w = (x1, . . . xq) ∈ ({0, 1}m)q and a position vector p = (i1, . . . , iq) ∈ [ℓ]q, let gp(w) :=
g(x1)i1 , . . . , g(xq)iq . Similarly, define g<p(w) := g(x1)<i1 , . . . , g(xq)<iq , and g≥p(w) analogously.

For a number k ∈ N, let p+ k := (i1 + k, . . . , iq + k). For a number t, let gt : {0, 1}tm → {0, 1}tℓ be
the t-fold repetition of g, i.e., gt(x1, . . . , xt) = g(x1), . . . , g(xt).

We are now ready to present the construction (see Figure 1).

Construction 5.9 (Almost-UOWHF). Let n be a security parameter, and let q = q(n), t = t(n)

and k = k(n) be parameters. Let g : {0, 1}m(n) → {0, 1}ℓ(n) be a function, and let Hn ={
h : {0, 1}q(n) → {0, 1}k(n)

}
be a 2-universal hash family. Define the function C : Hn× [ℓ(n)]q(n)×

({0, 1}m(n)·t(n))q(n) → Hn × [ℓ(n)]q(n) × {0, 1}ℓ(n)·q(n)+(t(n)−1)ℓ·k(n) by

C(h, p, z) := h, p, g′<p(z), h(g
′
p(z)), h(g

′
p+1(z)), . . . , h(g

′
p+(t−1)ℓ−1(z)), g

′
≥p+(t−1)ℓ(z),

for g′ = gt.

Our main theorem states that for the right choice of parameters, the above construction is
indeed an almost-UOWHF.

Theorem 5.10. Let g : {0, 1}m(n) → {0, 1}ℓ(n) be an efficient, almost-injective function with next-
bit unreachable entropy v(n) ∈ N. For every q ∈ poly and ε ∈ 1/poly such that H(4ε(n)) ≤
0.1v(n)/ℓ(n), q = ω

(
log n ·max

{
ℓ, ℓ

ε2(ℓ−m−v)

})
and for k = q(m− v/3)/ℓ, t = 3(ℓ−m)/v + 2 the

function C as in Construction 5.9 is efficient, shrinking and almost collision resistant on random
inputs.

We prove Theorem 5.10 below, but first we use Theorem 5.6 and Construction 5.9 in order to
conclude the parameters of our almost-UOWHF construction.

Corollary 5.11. Let s = ω(1). Assuming that one-way functions exist, there exists an almost-
UOWHF with key length O(n4 · s). Moreover, the almost-UOWHF makes O(n3 · s) non-adaptive
calls to the underlying one-way function.

Proof. By Theorem 5.6, assuming one-way function exists, there is an alomost-injective function
g : {0, 1}m(n) → {0, 1}ℓ(n) with next-bit unreachable entropy v(n) = 3 log n, for m(n) = O(n),
ℓ(n) = O(n) and ℓ(n) = Ω(ℓ(n)−m(n)− v(n)). Thus, using Fact 3.15 we can take ε = Ω(1/ℓ(n)),
q = O(s · n2 log n) and t = O(n/ log n).

The corollary thus follows from Theorem 5.10 and Lemma 5.3, and the fact that Construction 5.9
uses q · t non-adaptive calls to the g. □

In the rest of this section we prove Theorem 5.10. We start with analyzing a simpler function,
for which we only consider one hashed column.

22



5.3.2 Analyzing Single Column

In this part we analyze a simpler function. Let g, q, k and Hn be as in Construction 5.9. Consider
the function C1 : Hn × [ℓ(n)]q(n) × ({0, 1}m(n))q(n) → Hn × [ℓ(n)]q(n) × {0, 1}k(n) defined by

C1(h, p, w) := h, p, g<p(w), h(gp(w)),

Let Dn := Hn × [ℓ(n)]q(n) × ({0, 1}m(n))q(n) be the domain of C1. The next lemma is the crux
of the proof of Theorem 5.10, and it is the analog of it with respect to the function C1.

Lemma 5.12. Let g, q and k be as in Theorem 5.10. For every n ∈ N there exists a set Bn ⊆
[ℓ(n)]q(n)×({0, 1}m(n))q(n) such that |Bn| = neg(n) ·

∣∣∣[ℓ(n)]q(n) × ({0, 1}m(n))q(n)
∣∣∣, and for every ppt

algorithm A,

Pr
(h,p,w)←Dn

w′←A(1n,h,p,w)

[
C1(h, p, w) = C1(h, p, w′) ∧ (p, w) /∈ Bn ∧ gp(w) ̸= gp(w

′)
]
= neg(n).

That is, there is a negligible size set, such that no efficient algorithm can find a collision for C1

outside this set, unless the value of the last column gp(w) stays the same.
In order to prove Lemma 5.12, let g, q, k, v and ϵ be as in Theorem 5.10.

Defining Bn. We start with the definition of Bn. Since g has next-bit unreachable entropy
v(n), for every n ∈ N there is a collection of sets {Ui,n}i∈[ℓ(n)] that fulfils the definition of Def-

inition 5.4. We further assume without loss of generality that Pr
x←{0,1}m(n),i←[ℓ(n)]

[x /∈ Ui,n] =

(m(n)− v(n))/ℓ(n), as we can take v to be larger if the above equality does not holds.
Fix n and omit it from the notation. For p = (i1, . . . , iq) ∈ [ℓ]q and w = (x1, . . . , xq) ∈ ({0, 1}m)q,

let
Jp(w) :=

{
j ∈ [q] : xj ∈ Uij

}
Note that by definition, the expected size of Jp(w) is q(ℓ−m+ v)/ℓ. Thus, we define

Bn :=
{
(p, w) ∈ [ℓ(n)]q(n) × ({0, 1}m(n))q(n) : |Jp(w)| < (1− ε)q · (ℓ−m+ v)/ℓ

}
.

The next claim, proved below by a simple use of Chernoff bound, implies that the size of Bn is
indeed negligible.

Claim 5.13.

Pr
(·,p,w)←D

[|Jp(w)| /∈ (1± ε) · q · (ℓ−m+ v)/ℓ] ≤ 2−ε
2·q·(ℓ−m+v)/3ℓ+1.

Next, fix a ppt collision finder algorithm A for C1.The proof of Lemma 5.12 now follows by the
next two claims. The first shows that all the collisions A can find have a specific structure. For
p ∈ [ℓ]q and w ∈ ({0, 1}m)q, let

Tp,w :=
{
w′ = (x′1, . . . , x

′
q) : Jp(w′) ⊆ Jp(w) ∧ ∀j ∈ Jp(w′), g(x′j)ij = g(xj)ij

}
.

Claim 5.14.
Pr

(h,p,w)←Dn

(h,p,w′)←A(1n,h,p,w)

[
w′ /∈ Tp,w

]
= neg(n).
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In the following, for p ∈ [ℓ(n)]q(n), let Bp = {w : (w, p) ∈ Bn}. The second claim states that
with all but negligible probability, there is no collision for C1(z, p, w) in the set Tp,w \ Bp.

Claim 5.15.

Pr
(h,p,w)←Dn

[
∃w′ ∈ (Tp,w \ Bp) s.t. C1(h, p, w) = C1(h, p, w′) and gp(w) ̸= gp(w

′)
]
= neg(n).

We prove Claims 5.13 to 5.15 below, but first we use it in order to prove Lemma 5.12.

Proof of Lemma 5.12. For every n ∈ N, let Bn be as defined above. By Claim 5.13, the size of Bn
is at most 2−ε

2q(ℓ−m+v)/4ℓ ·
∣∣∣[ℓ(n)]q(n) × ({0, 1}m(n))q(n)

∣∣∣ = neg(n) ·
∣∣∣[ℓ(n)]q(n) × ({0, 1}m(n))q(n)

∣∣∣ by
our choice of parameters.

Next, fix a ppt collision finder algorithm A.13It follows that,

Pr
(h,p,w)←Dn

(h,p,w′)←A(1n,h,p,w)

[
C1(h, p, w) = C1(h, p, w′) ∧ (p, w) /∈ Bn ∧ gp(w) ̸= gp(w

′)
]

≤ Pr
(h,p,w)←Dn

(h,p,w′)←A(1n,h,p,w)

[
w′ /∈ Tp,w

]
+ Pr

(h,p,w)←Dn

(h,p,w′)←A(1n,h,p,w)

[
w′ ∈ (Tp,w \ Bp) and gp(w) ̸= gp(w

′)
]

≤ neg(n) + Pr
(h,p,w)←Dn

[
∃w′ ∈ (Tp,w \ Bp) s.t. C1(h, p, w) = C1(h, p, w′) and gp(w) ̸= gp(w

′)
]

≤ neg(n),

where the second inequality holds by Claim 5.14 and by our assumption that A is a collision finder,
and the last inequality follows by Claim 5.15. □

Proving Claim 5.13.

Proof of Claim 5.13. For each j ∈ [q], let Zj be an indicator for the event that xj ∈ Uij . It holds
that Pr[Zj = 1] = (ℓ − m + v)/ℓ for every j ∈ [q], and Z1, . . . , Zq are independent. Thus, by
Fact 3.13,

Pr
(·,p,w)←D

[|Jp(w)| /∈ (1± ε) · q · (ℓ−m+ v)/ℓ] = Pr
[∣∣∣∑Zj −E

[∑
Zj

]∣∣∣ ≥ ε ·E
[∑

Zj

]]
≤ 2 · e−ε2·E[

∑
Zj ]/3.

□

Proving Claim 5.14.

Proof of Claim 5.14. Let A be a ppt collision finder for C1. Assume toward a contradiction that

Pr
(h,p,w)←Dn

(h,p,w′)←A(1n,h,p,w)

[
w′ /∈ Tp,w

]
≥ 1/nc (6)

for some c ∈ N and for infinitely many n’s. The following algorithm R breaks the assumed next-bit
unreachable entropy of g.

13Note that the assumption that A is a collision finder is without loss of generality.
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Algorithm 2: The reduction R

Input: 1n, x ∈ {0, 1}m(n),i ∈ [ℓ(n)]
Oracle : A

1 Sample h← Hn and j ← [q(n)].

2 Sample x1, . . . xj−1, xj+1, . . . , xq(n) ← {0, 1}m(n) and set xj = x. Let w := (x1, . . . , xq(n))

3 Sample p1, . . . pj−1, pj+1, . . . , pq(n) ← [ℓ]m(n) and set pj = i. Let p = (p1, . . . , pq(n)
4 Compute (h, p, w′) = A(1n, h, p, w) and output w′j .

That is, R gets x and i as inputs, and plant it in a random position j inside a random input for
A. It then executes A in order to get its output w′, and outputs x′j .

Fix n ∈ N such that Equation (6) holds. We next show that for such n, either

αn := Pr
x←{0,1}m(n),

i←[ℓ(n)],

x′←RA(1n,x,i)

[
(x′ ∈ Ui,n) ∧ (g(x)<i = g(x′)<i) ∧ (x /∈ Ui,n)

]
≥ 1/2q · 1/nc

or
βn := Pr

x←{0,1}m(n),
i←[ℓ(n)],

x′←RA(1n,x,i)

[
(x′ ∈ Ui,n) ∧ (g(x)<i = g(x′)<i) ∧ (g(x)i ̸= g(x′)i)

]
≥ 1/2q · 1/nc

The above contradicts the assumed next-bit unreachable entropy of g, since q ∈ poly and at least
one of the above must happen for infinitely many n’s.

Indeed,

αn + βn

≥ Pr
x←{0,1}m(n),

i←[ℓ(n)],

x′←RA(1n,x,i)

[
(x′ ∈ Ui,n) ∧ (g(x)<i = g(x′)<i)∧

(
(x /∈ Ui,n) ∨ (g(x)i ̸= g(x′)i))]

≥ Pr
(h,p,w)←Dn,
j←[q(n)],

(h,p,w′)←A(1n,h,p,w)

[
(w′j ∈ Upj ,n) ∧ (g(wj)<pj = g(w′j)<pj )∧

(
(wj /∈ Upj ,n) ∨ (g(wj)pj ̸= g(w′j)pj ))]

≥ Pr
(h,p,w)←Dn,
j←[q(n)],

(h,p,w′)←A(1n,h,p,w)

[
(w′j ∈ Upj ,n)∧

(
(wj /∈ Upj ,n) ∨ (g(wj)pj ̸= g(w′j)pj ))]

≥ 1/q · Pr
(h,p,w)←Dn,

(h,p,w′)←A(1n,h,p,w)

[
∃j ∈ [q(n)] s.t. (w′j ∈ Upj ,n) ∧

(
(wj /∈ Upj ,n) ∨ (g(wj)pj ̸= g(w′j)pj ))]

= 1/q(n) · Pr
(h,p,w)←Dn

(h,p,w′)←A(1n,h,p,w)

[
w′ /∈ Tp,w

]
≥ 1/q(n) · 1/nc,

where the first inequality holds by the union bound, the second by the definition of R and the
distribution Dn, the third by our assumption that A is a collision finder, and the equality by the
definition of Tp,w. □
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Proving Claim 5.15.

Proof of Claim 5.15. Fix n ∈ N and omit it from the notation. By Claim 5.13, With all but
negligible probability probability over the choice of (p, w),

|Jp(w)| ∈ (1± ε)q(ℓ−m+ v)/ℓ. (7)

Fix p ∈ [ℓ]q and w ∈ ({0, 1}m)q such that |Jp(w)| ∈ (1 ± ε)q(ℓ −m + v)/ℓ, and let J = |Jp(w)|.
Define

S :=
{
gp(w

′) : w′ ∈ (Tp,w \ Bp)
}
.

That is, S ⊆ {0, 1}q contains all the possible values of gp(w
′) where w′ is in (Tp,w \ Bp). We

start with bounding the size of S. Observe that, by Equation (7) and the definition of Bp, for each
w′ ∈ (Tp,w \Bp), it holds that Jp(w′) = Jp(w)∪J ′, for some set J ′ of size at most 2ε ·q(ℓ−m+v)/ℓ.
Thus, there are at most 2ε · q(ℓ −m + v)/ℓ indices j ∈ Jp(w) with gp(w

′)j ̸= gp(w)j . The other
(q − J) indices outside of Jp(w) are free to choose. Hence, using Fact 3.14, and the fact that
J > q(ℓ−m− v)/2ℓ,

log|S| ≤ (q − J) + log

(
J

≤ 2ε · q(ℓ−m+ v)/ℓ

)
≤ (q − J) + JH(2ε · q(ℓ−m+ v)/(ℓJ))

≤ (q − J) + JH(4ε)

= q − J(1−H(4ε)).

By our assumptions on J and ϵ, it holds that

J(1−H(4ε)) ≥ (1−H(4ε))(1− ε)q(ℓ−m+ v)/ℓ)

≥ (1−H(4ε)− ε)q(ℓ−m+ v)/ℓ)

≥ (1− 2H(4ε))q(ℓ−m+ v)/ℓ)

≥ q((ℓ−m+ v)/ℓ− 2H(4ε))

≥ q((ℓ−m+ 0.8v)/ℓ),

where the third inequality holds since H(α) > α for every α ∈ [0, 1/2]. Combining the above, we
get that,

log|S| ≤ q(m− 2v/3)/ℓ.

Thus, by our choice of h, the probability that there is an element w′ ∈ S, with gp(w) ̸= gp(w
′),

that maps to the same image of h(gp(w)) is at most

|S| · 2−k ≤ |S| · 2−q(m−v/3)/ℓ ≤ 2q(m−2v/3)/ℓ · 2−q(m−v/3)/ℓ = 2−q·v/(3ℓ) = neg(n),

where the last inequality holds by our choice of q. □
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5.3.3 Proving Theorem 5.10

We now prove Theorem 5.10. In the following, let g,m, ℓ, v, q, t and k be as in Theorem 5.10, and
let C be as in Construction 5.9. We start with some claims. The first states that the function C is
shrinking.

Claim 5.16. C is length-decreasing.

Proof of Claim 5.16. Fix n ∈ N and omit it from the notation. It is enough to show that m · t · q >
k · ℓ · (t− 1) + ℓ · q. Indeed,

m · t · q = (m− v/3) · t · q + (v/3) · t · q
= (m− v/3) · (t− 1) · q + (v/3) · t · q + (m− v/3) · q
= k · ℓ · (t− 1) + (v/3) · t · q + (m− v/3) · q
> k · ℓ · (t− 1) + (v/3) · (1 + 3(ℓ−m)/v) · q + (m− v/3) · q
= k · ℓ · (t− 1) + (ℓ−m) · q +m · q
= k · ℓ · (t− 1) + ℓ · q.

Where the third equality is by our choice of k, and the inequality is by our choice of t. □

To see the almost collision resistance property, we start with the definition of Bn. Fix n ∈ N
and omit it from the notation. Let B1n be the set from Lemma 5.12. Informally, the set Bn contains
all the inputs (p, z) such that there exists a column k ∈ [ℓ · t] that is inside B1n. That is, the position
of the blocks that intersects with the k-th column are untypical. To define it formally, we will need
the following definitions.

For a position vector p ∈ [ℓ · t]q and input z = ((z11 , . . . , z
t
1), . . . , (z

1
q , . . . , z

t
q)) ∈ ({0, 1}m·t)q,

let zp := (z
⌈p1/ℓ⌉
1 , . . . , z

⌈pq/ℓ⌉
q ). That is, for each row j ∈ [q], g((zp)j) is the ℓ-size block in g′(zj)

that contains the index pj . Additionally, define the position vector p̂+ k by (p̂+ k)j := ((pj + k −
1) mod ℓ) + 1. That is, (p̂+ k)j is the relative position of (p+ k)j inside the ℓ-size block.

Let

Bn =
{
(h, p, z) ∈ H × [ℓ]q × ({0, 1}m)t·q : ∃k ∈ [t · ℓ] s.t. (p̂+ k, zp+k) ∈ B

1
n

}
.

The next claim bound the size of Bn, using a simple use of the union bound.

Claim 5.17.
|Bn| = neg(n) ·

∣∣∣Hn × [ℓ(n)]q(n) × ({0, 1}m(n))t(n)·q(n)
∣∣∣.

Proof of Claim 5.17. First, observe that for every k ∈ [t · ℓ], the distribution of (p̂+ k, zp+k), for

p← [ℓ]q, z ← ({0, 1}m·t)q, is uniform. Thus, by definition of B1n and Claim 5.13, for every k ∈ [t · ℓ]
it holds that

Pr
(h,p,z)←Hn×[ℓ(n)]q(n)×({0,1}m(n))t(n)·q(n)

[
(p̂+ k, zp+k) ∈ B

1
n

]
= neg(n).

The claim now follows since ℓ, t ∈ poly and the union bound.
□
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The proof of Theorem 5.10 is now by a simple reduction to the single-column case.

Proof of Theorem 5.10. By Claim 5.16, C is shrinking. Let Bn be as defined above. By Claim 5.17,
the Bn is of negligible fraction.

We are left to prove that every ppt algorithm can only find collisions inside Bn. This is done by a
reduction from the single column case. In the following, we view z ∈ ({0, 1}m·t)q as z = (z1, . . . , zq)
for zj = (z1j , . . . , z

t
j), such that zij ∈ {0, 1}

m. Let A be a collision finder for C, and consider the
following algorithm:

Algorithm 3: The reduction R

Input: 1n, h ∈ Hn, p ∈ [ℓ(n)]q(n), w = (w1, . . . , wq(n)) ∈ {0, 1}m(n)q(n)

Oracle : A
1 Choose k ← [ℓ(n) · t(n)].
2 For each j ∈ [q(n)], let p′j := ((pj − k − 1) mod ℓ(n)) + 1, and cj :=

⌈
(p′j + k)/ℓ(n)

⌉
.

3 For each j ∈ [q(n)], let z
cj
j = wj , and choose z1j , . . . , z

cj−1
j , z

cj+1
j , . . . , ztj ← {0, 1}

m(n). Let

zj = (z1j , . . . , z
t
j) and z = (z1, . . . , zq).

4 Let (h, p′, z′) = A(1n, h, p′, z). Output (z′c11 , . . . , z′
cq(n)

q(n) ).

That is, given an input (h, p, w = (w1, . . . , wq)) for C1, the reduction R complete it to be an
input (h, p′, ((z11 , . . . z

t
1), . . . , (z

1
q , . . . , z

t
q))) for C: It chooses a random column k ∈ [ℓ · t], and sets p′

and z = ((z11 , . . . z
t
1), . . . , (z

1
q , . . . , z

t
q))) such that gp(w) = g′p′+k(z), and g′<p′+k(z) contains g<p(w).

It then executes A on the above inputs in order to get a collision for (h, p, w).
For fixed n ∈ N, Let K, P ′, and Z be the random variables representing the values of k, p and z

in Algorithm 3 in a random execution with a random inputs (1n, H, P,W ). Let Z ′ be the value of
z′, the output of A it this execution, and W ′ the output of Algorithm 3. Let α be the probability
that Z ′ ̸= Z and Z ′ /∈ Bn. We will show that α ≤ µ(n), for some negligible function µ.

We first observe that the distribution (H,P ′, Z) is independent from the distribution of K.
Additionally, since g is almost-injective, if Z ′ ̸= Z, with all but negligible probability it holds that
(g′(Z1), . . . , g

′(Zq)) ̸= (g′(Z ′1), . . . , g
′(Z ′q)). Thus, there exists k∗ such that g′p′+k(Z) ̸= g′p′+k(Z

′).
Take the minimal such k∗, such that g′<p′+k∗(Z) = g′<p′+k∗(Z

′). By construction, if K = k∗, the

output of RA is a collision for C1, which happens with probability 1/(ℓ(n) · t(n)).
To conclude, with probability at least α/(ℓ(n) · t(n)), it holds that W ′ ̸= W and C1(H,P,W ′) =

C1(H,P,W ). Additionally, since Z ′ /∈ Bn, by construction it holds that W ′ /∈ B1n. Using
Lemma 5.12 we get that α must be negligible. □
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A Missing Proofs

Proving Lemma 3.7.

Lemma A.1 (Lemma 3.7, restated). Let f : {0, 1}n → {0, 1}n be a function, and H = {h : {0, 1}n → {0, 1}n}
a two-wise independent family. For every x ∈ {0, 1}n and c ∈ N the following holds.

Pr
h←H

[∣∣{x′ : h(f(x′)) = h(f(x))
}∣∣ ≥ ∣∣f−1(f(x))∣∣+ n2c

]
≤ 2/nc.

Proof. Let A =
{
y ∈ Im(f) :

∣∣f−1(y)∣∣ ≤ nc
}

and B =
{
y ∈ Im(f) :

∣∣f−1(y)∣∣ > nc
}
. Notice that

|B| ≤ 2n/nc, and thus,

Pr
h←H

[∃y ∈ B \ {f(x)} s.t. h(y) = h(f(x))] ≤ |B| · 2−n ≤ 1/nc.

Similarly, using Markov inequality, since

E
h←H

[|{y ∈ A \ {f(x)} : h(y) = h(f(x))}|] = |A| · 2−n ≤ 1,

it holds that
Pr
h←H

[|{y ∈ A \ {f(x)} : h(y) = h(f(x))}| ≥ nc] ≤ 1/nc.
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We get that

Pr
h←H

[∣∣{x′ : h(f(x′)) = h(f(x))
}∣∣ ≥ ∣∣f−1(f(x))∣∣+ n2c

]
≤ Pr

h←H
[∃y ∈ B \ {f(x)} s.t. h(y) = h(f(x))] + Pr

h←H
[|{y ∈ A \ {f(x)} : h(y) = h(f(x))}| ≥ nc]

≤ 2/nc.

□

Proving Claim 5.7.

Claim A.2 (Claim 5.7, restated). g is almost injective function.

Proof. Fix n ∈ N and x ∈ {0, 1}n. We will show that

Pr
h1,h2←H

[
∃x′ ̸= x ∈ {0, 1}n s.t. (h1(f(x)), h2(x)) = (h1(f(x

′)), h2(x
′))

]
= neg(n)

which implies the claim. Observe that by the pair-wise independence of H, for every x′ such that
f(x′) ̸= f(x), it holds that Prh1,h2←H[(h1(f(x)), h2(x)) = (h1(f(x

′)), h2(x
′))] = 2−2n. Similarly, for

every x′ with f(x) = f(x′) it holds that Prh1,h2←H[(h1(f(x)), h2(x)) = (h1(f(x
′)), h2(x

′))] = 2−n.
Thus, using the union bound we get,

Pr
h1,h2←H

[
∃x′ ̸= x s.t. (h1(f(x)), h2(x)) = (h1(f(x

′)), h2(x
′))

]
≤ 2n · 2−2n +

∣∣f−1(f(x))∣∣ · 2−n
≤ 2−n + neg(n)

= neg(n).

Where the last inequality is by Claim 3.2. □
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