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Abstract

We study the problem of testing whether a function f : Rn → R is a polynomial of degree at most d
in the distribution-free testing model. Here, the distance between functions is measured with respect to an
unknown distribution D over Rn from which we can draw samples. In contrast to previous work, we do
not assume that D has finite support.

We design a tester that given query access to f , and sample access to D, makes poly(d/ε) many
queries to f , accepts with probability 1 if f is a polynomial of degree d, and rejects with probability
at least 2/3 if every degree-d polynomial P disagrees with f on a set of mass at least ε with respect to
D. Our result also holds under mild assumptions when we receive only a polynomial number of bits of
precision for each query to f , or when f can only be queried on rational points representable using a
logarithmic number of bits. Along the way, we prove a new stability theorem for multivariate polynomials
that may be of independent interest.

1 Introduction

Traditionally, program testing involves running a suspect program on a curated test set and checking the
validity of the results. To formalize and quantitatively study this problem, Blum, Luby, and Rubinfeld [BLR93]
initiated research on self-testers, which check a particular property of the given program by verifying
whether the program’s output on a random input is consistent with its outputs on other related inputs.
Soon afterwards, spurred by connections to the newly emerging areas of interactive proof systems and
probabilistically checkable proofs, self-testing blossomed into the general area of property testing; see the
textbooks [Gol17,BY22] for detailed introductions. Perhaps because of these early connections to complexity
theory and coding theory, the standard setup in property testing is to assume that both the domain and range
of the function being tested are finite sets.
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In this work, we return to the roots of property testing and consider testing properties of real-valued
functions f : Rn → R with real-valued inputs. Specifically, we focus on the fundamental problem of
low-degree testing which has been widely and intensely studied in the standard setup. Recall that in the
traditional setup we are given query access to a function f : Fn → F defined over some finite field F and
a parameter ε > 0. The aim of a property tester for these parameters is to distinguish with probability at
least 2/3 between the case when f is a polynomial of degree at most d, and the case when f is ε-far, i.e., it
disagrees with any polynomial P of degree at most d on at least an ε fraction of the domain Fn.

To extend the notion of testing to functions defined over Rn, we need a notion of “ε-farness” in this
setting. One approach is to fix a specific distribution D over Rn, and define f to be ε-far from a property P if:

inf
g∈P

Pr
x∼D

[f(x) ̸= g(x)] > ε. (1)

Indeed, forD being the standard Gaussian distribution, this is the approach used by most prior work on testing
properties of functions over the reals, e.g., testing halfspaces [MORS10b, MORS10a, MORS09, Har19],
surface area [Nee14, KNOW14], high-dimensional convexity [CFSS17], linear separators [BBBY12], and
linear k-juntas [DMN19]. However, this approach is not entirely satisfactory, as the assumed D may not be
the relevant underlying input distribution.

A different approach is to use the framework of distribution-free testing, studied first by Halevy and
Kushilevitz [HK07], that does not assume knowledge of D. Instead, it is only assumed that the tester receives
sample access to the underlying distribution D, and the goal is to reject when (1) holds. Distribution-free
testing has been widely studied for a variety of properties of boolean functions, e.g., monomials [GS09,DR11],
juntas [LCS+19], halfspaces [CX16, CP22], and monotonicity [BCS20]. Distribution-free property testing
over Rn is an emerging trend in the field, that has been studied, e.g., for monotonicity [BCS20, HY20],
halfspaces [Har19] and polynomial threshold functions [BFPJH21]. Most directly relevant here is the
work of Fleming and Yoshida [FY20] where they studied distribution-free testing of linearity of functions
f : Rn → R.

To further discuss testing real functions, we first formally define distribution-free testing of real functions.
For a property P over real functions, we say that an algorithm is a tester for P if, given query access to a
function f : Rn → R, and sampling access to an unknown distribution D, and ε > 0, it distinguishes the case
that f satisfies P , from the case that f is ε-far from P over D, i.e., for any function g : Rn → R satisfying P ,

Pr
x∼D

[f(x) ̸= g(x)] > ε

holds. We say that a tester is a one-sided error tester, if it always accepts functions satisfying P . We also
explore testing in the presence of errors. In this context, the early works [ABCG93, GLR+91] introduced
the notion of approximate testing, which was made more formal by the work of Ergun, Kumar and Rubin-
feld [EKR01]. Given two parameters α < β, in addition to ε > 0, query access to f : Rn → R and sample
access to a distribution D, the goal of an approximate tester for a property P is to distinguish between the
following two cases:

• YES: There exists h ∈ P , such that |f(x)− h(x)| < α for all x ∈ Rn.

• NO: For every h ∈ P , Prx∼D[|f(x)− h(x)| > β] > ε.

In the YES case, we say that f is pointwise α-close to h. Here, α should be thought of as a representational
limitation, or a round-off/truncation error. For example, α = 1/ exp(poly(n)) can be achieved by storing
poly(n) bits of precision.
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1.1 Our Contributions

Our first result gives an exact tester for low-degree that generalizes the result of [FY20]. Note that there is a
trivial Ω(max{d, 1/ε}) lower bound on the complexity of testing degree-d polynomials.

Theorem 1.1. Let d ∈ N, and for L > 0, suppose f : Rn → R is a function that is bounded in the
ball B(0, L). Given ε > 0, query access to f , and sampling access to an unknown distribution D, there
exists a one-sided error, distribution-free, O(d5 + d2

ε log 1
ε )-query tester for testing whether f is a degree-d

polynomial, or is ε-far from degree-d polynomials over D.

Some form of the boundedness condition is necessary to test low degree using standard functional equation
characterizations. Even for linearity, Hamel [Ham05] showed the existence of functions f : R → R
that satisfy the Cauchy functional equation f(x + y) = f(x) + f(y) everywhere but are unbounded on
any measurable set1. On the other hand, Cauchy [Cau21] showed that the only continuous solutions to
f(x + y) = f(x) + f(y) are the linear maps f(x) = cx. Darboux [Dar75] later showed that boundedness on
any interval is a weaker condition than continuity that also implies the result of Cauchy. The latter two results
were generalized to low-degree polynomials by Fréchet [Fré09] and Ciesielski [Cie59] respectively.

Theorem 1.1 serves as a starting point for our investigation into approximate low-degree testing. In
this setting, we give an approximate tester for low-degree polynomials, where the unknown underlying
distribution D is required to be (ε, R)-concentrated. We say that a distribution is (ε, R)-concentrated if most
of its mass is concentrated in a ball of radius R, that is,

Pr
p∼D

[p ∈ B(0, R)] ≥ 1− ε.

Note that the standard Gaussian distribution is (0.01, 2
√

n)-concentrated.

Theorem 1.2. Let d ∈ N, f : Rn → R be a function that is bounded in B(0, 2d
√

n), and for ε ∈ (0, 1), R >

0, let D be an (ε/4, R)-concentrated distribution. Given α > 0, β ≥ 2(2n)O(d)
Rdα, query access to f , and

sampling access to D, there is a one-sided error, O(d5 + d2

ε log 1
ε )-query tester which, distinguishes between

the case when f is pointwise α-close to some degree-d polynomial and the case when, for every degree-d
polynomial h : Rn → R, Prp∼D[|f(p)− h(p)| > β] > ε.

Thus, if d is constant, R is polynomial in n, and the tester receives poly(n) most significant bits of f(p)
for any query point p, the tester accepts when f is a degree-d polynomial, and rejects when f is not pointwise
1-close to a degree-d polynomial on at least an ε fraction of D. In Appendix D, we consider the special case
of testing additivity. Here, we give a tester which requires only O(log n) bits of precision.

The above results assume that the function can be queried on arbitrary points in Rn which is unrealistic
in view of finite precision issues. We also analyze the setting where the tester can evaluate f only on points
with finite number of bits of precision and also, the unknown distribution D is promised to be supported on
points with finite number of bits of precision. More precisely, D is given to be supported on points of the
lattice L ≜ 1

BZn, for some parameter B controlling the density of the lattice, and also, f can be queried only
on a lattice L′ ≜ 1

B′Zn for a bounded B′. This setting models the situation where we only care about the
function’s behavior on finitely representable inputs, and on such inputs, the function can be evaluated exactly.
The goal is to obtain a tester that does not require B′ to be very large but still allows B to be large.

1In fact, Hamel showed that if f is a non-linear solution, the set {(x, f(x))} intersects every neighborhood of every point in
R × R, and so is clearly unbounded on any measurable set.
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Theorem 1.3. For d, B, R > 0, let B′ ≥ 16 max{n5/2+2dd2d, B2R2/
√

n} be a multiple of B. LetL = 1
BZn

and L′ = 1
B′Zn. Given ε > 0, query access to a function f : Rn → R, and sample access to an unknown

(ε/4, R)-concentrated distribution D supported on L, there is a one-sided error, O(d5 + d2

ε log 1
ε )-query

tester for testing whether f agrees with a degree-d polynomial on L, or is ε-far from degree-d polynomials
over D. The tester queries f on points in L′.

Note that unlike Theorem 1.2 and Theorem 1.1, our tester for lattices does not make any assumptions
about the function f .

1.2 Related Work

Although distribution-free testing (for graph properties) was already defined in an early work on property
testing [GGR98], the first distribution-free testers for non-trivial properties appeared much later in the
work of Halevy and Kushilevitz [HK07]. Since then, distribution-free testers have been considered for a
variety of Boolean functions including low-degree polynomials, dictators, and monotone functions [HK07],
k-juntas [HK07, LCS+19, Bsh19, Bel19], conjunctions, decision lists, and linear threshold functions [GS09],
monotone and non-monotone monomials [DR11], and monotone conjunctions [GS09, CX16]. The first
(partial) distribution-free testing result for functions on the Euclidean space was due to Harms [Har19]: He
gave an efficient tester for half spaces over any rotationally invariant distribution. Then, as we mentioned
above, Fleming and Yoshida [FY20] gave a tester for linearity of functions over the Euclidean space.

Property testing originated (implicitly, under the name of self-testing) in the work of Blum, Luby,
and Rubinfeld [BLR93], who exhibited the famous BLR tester for linearity over F2. Since then, testers
have been developed for higher degree polynomials, such as the famous Rubinfeld Sudan [RS96] and Raz
and Safra [RS97] tests for degree-d polynomials over sufficiently large finite fields. One line of work,
closely related to ours extended the domain over which these testers worked, culminating in the work of
Lipton [Lip89] and Rubinfeld and Sudan [RS92], who gave testers for degree-d polynomials over any finite
subset of rationals, where the distance is measured according to the uniform distribution; see [KMS01] for an
excellent survey. The main distinguishing features between this paper and the works of [Lip89, RS92] is that
(i) we work in the distribution-free setting, (ii) we do not assume that the domain is finite, and (iii) the input
function is multivariate.

1.3 Proof Overview

This work significantly extends the framework of Fleming and Yoshida [FY20], who exhibited a constant-
query algorithm for testing the linearity of functions over Rn in the distribution-free setting (when distance is
measured according to an arbitrary distribution D); thus, we briefly describe their proof first.

Testing Linearity over the Reals. The tester follows the high-level “self-correct and test” approach of
Halevy and Kushilevitz [HK07]. To test whether a given function f : Rn → R is linear, it suffices to construct
a linear function glin : Rn → R such that:

1. If f is indeed a linear function, then f = glin.

2. For any p ∈ Rn, we can efficiently query the value of glin(p) using queries to f .

Indeed, by (1), to test if f is linear, it suffices to estimate the distance between f and glin (measured according
to D), which can be done efficiently by (2).
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B(0, r)

N (0, I)

Figure 1: Each point in the Gaussian distribution is projected into the small ball B(0, r) at the origin.

To construct glin they use the standard self-correcting approach pioneered in the Blum, Luby, and
Rubinfeld (BLR) test for linearity over GF(2) [BLR93]. However, this has to be significantly modified.
Standard self-correction arguments require that every point in the distribution has equal probability mass,
and there is no natural analogue to the uniform distribution over Rn. Instead, they modify the self-correcting
argument to work for the standard Gaussian distribution — that is, by evaluating f on points sampled from
N (0, I), they are able to construct the desired function glin. Note that even though glin is constructed using
samples fromN (0, I), in order to test whether f is close to a linear function over the given distribution D, by
(1) it suffices to estimate the distance between f and glin over D. This can be done by sampling sufficiently
many points p ∼ D and checking whether f(p) = glin(p), using (2) in order to evaluate glin(p).

To circumvent the issue that points have differing probability mass under N (0, I), they project every
point into a Euclidean ball B(0, r) of small radius r at the center of the Gaussian (see Figure 1). Within this
ball, every point has approximately the same mass and they are able to perform the self-correction argument.
In particular, they define

glin(p) ≜ γp · maj
q∼N (0,I)

[
f

(
p

γp
− q

)
+ f(q)

]
,

where γp ∈ R is such that p/γp ∈ B(0, r). That is, glin(p) is the majority value weighted according to the
standard Gaussian distribution. This is essentially the same self-corrected function used in the BLR test,
except that each point q is first projected into B(0, r).

Finally they argue that, if their tests pass with a sufficiently high probability, then glin is a linear function,
and furthermore, for any p ∈ Rn, the value of glin(p) can be recovered with a small number of queries to f .

Exactly Testing Polynomials over the Reals. Our work is a significant generalization of the ideas used
in the linearity test so that they may be applied to degree-d polynomials. Given a function f : Rn → R, we
construct a degree-d polynomial g : Rn → R such that

1. If f is a degree-d polynomial, then f = g.

2. For any p ∈ Rn, we can efficiently query the value g(p) using queries to f .

As in the the case of linear functions, we construct g using samples from the Gaussian distribution. We
mitigate the fact that points are weighted non-uniformly, by restricting attention to a small (open) ball B(0, r),

5



defining g within that ball, and then extending outwards. Formally, let αi ≜ (−1)i+1(d+1
i

)
, and for any

p ∈ B(0, r) and q ∈ Rn, let gq(p) ≜
∑d+1

i=1 αi · f(p + iq). For points p ∈ B(0, r), we define g to be

g(p) ≜ maj
q∼N (0,I)

[gq(p)] ,

where the majority is weighted according to N (0, I). For points p ̸∈ B(0, r), the value of g(p) is defined
by interpolating from evaluations of g, on d + 1 distinct points within B(0, r) (this is defined formally in
Section 3).

Having thus defined g, we would like to argue that if a certain set of tests pass with sufficiently high
probability, then g is a degree-d polynomial. We make this argument in three steps, where each step extends
the domain over which we guarantee that g is a polynomial.

1. We show that g is consistent with a degree-d univariate polynomial on any line segment LB
a,b ≜

{a + xb ∈ B(0, r) : x ∈ R} within the ball B(0, r). To prove this, we generalize the self-correction
argument from [RS96] to hold over the ball B(0, r) of reals.

2. We show how to stitch together these “local” representations of g on lines into a degree-d multivariate
polynomial, which is consistent with g within a hypercube contained within B(0, r). We describe this
step in more detail below.

3. We extend this representation of g within the hypercube to a consistent representation of g as a degree-d
polynomial everywhere. This follows by extrapolating g from the small ball B(0, r) to all of Rn.

The main innovation is step (2), and therefore we will describe it in more detail. Step (2) is proved in two
parts: first, we argue that g can be represented as a polynomial of degree dn; second, we reduce the degree to
d.

B(0, r)

xn

L
n(d− 1)

Figure 2: The construction of the degree nd representation of g. d + 1 slices, parallel to the xn axis, of
the cube are chosen. On each slice g is a degree n(d − 1) polynomial (cyan). These degree n(d − 1)
representations on slices are stitched together along a line L.

To prove the first part, we consider the largest n-dimensional cube that can be inscribed in the ball
B(0, r). We then discretize the cube by picking d+1 slices perpendicular to the xn axis ((n−1)-dimensional
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0
R

r

D

Figure 3: The ball B(0, R), containing at least 1− ε/4 of the mass of the (ε/4, R)-concentrated distribution
D, and the ball B(0, r) from which g is extrapolated.

sub-cubes), and argue by induction that g can be written as a degree (n(d− 1)) polynomial on each slice2

(see Figure 2). To combine these n(d− 1)-degree polynomials into a degree-dn polynomial, we consider any
L line parallel to the xn axis. This line has exactly one intersection point with each of the d + 1 slices. By
step (1), g restricted to this line is a degree-d univariate polynomial. Using this univariate representation of g
on the line to interpolate between the n(d− 1)-degree representations of g on the slices allows us to obtain a
representation of g as a degree-dn polynomial within the hypercube.

To reduce the degree of this representation of g from dn to d, we use the fact that (by step (1)) g can be
represented as a degree-d univariate polynomial on every line segment within the ball. In particular, we show
that for any representation if g as a polynomial of some degree m, there exists a radial line L0,b such that g
restricted to this line also has degree m. However, by step (1), g restricted to any line has degree at most d,
and this implies that m ≤ d.

Approximate Testing Polynomials over the Reals. The major new challenge that arises in approximate
testing is that we must ensure that our tester accepts all functions that are pointwise δ-close to being a
polynomial; i.e., we should accept f if there exists a degree-d polynomial f̂ such that for every x ∈ Rn

|f(x)− f̂(x)| ≤ δ.

We work in the setting where the unknown distribution D is known to satisfy the condition that 1 − ε/4
fraction of the mass of D is contained within B(0, R) for a given parameter R (see Figure 3).

We begin by constructing a self-corrected function g, except that now, it is in terms of the median3 instead
of the majority. Our analysis then follows the three-step outline mentioned above for the exact case. In the
first step, we argue that g approximately satisfies the univariate characterization of degree-d polynomials
on every line restricted to B(0, r), and hence, g is pointwise close to a low degree univariate polynomial on
every such line segment. The last conclusion is due to a theorem of Gajda [Gaj91] from the literature on
Hyers-Ulam stability results for functional equations; see the book [HIR12] for a comprehensive survey of
this area.

Our main technical contribution comes in the second step of the analysis. We show that being pointwise
close to a multivariate low-degree polynomial is approximately a ‘lifted’ property [GKS13].

2The reason that we use a hypercube embedded within the ball — rather than using d + 1 slices of B(0, r) — is that we require
each of the (n − 1)-dimensional polynomials have the same domain. If we took d + 1 slices of B(0, r), this would not be true.

3The use of median in the context of approximate testing is not a new idea; see, e.g., [KMS01].
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Lemma 1.4. Let m ∈ (0, 1], δ > 0, and let h : [−m, m]n → R. If for every line L, there exists a degree-d
univariate polynomial ĥL that is pointwise δ-close to hL (the restriction of h on the line L), then h is pointwise
((2/m)(n40d)δ)-close to a degree-d polynomial.

The proof of Lemma 1.4 is by induction on n, where we show in each step, that (i) the function is
pointwise close to a degree-2d polynomial, and then that (ii) the function from step (i) is pointwise close to a
degree-d polynomial. Both parts refine the corresponding analysis in the exact case.

• For part (i), we choose d+1 hyperplanes H0 ≜ {xn = c0}, . . . , Hd ≜ {xn = cd} where c0, . . . , cd are
the scaled Chebyshev nodes. By induction, there exist degree-d polynomials ĝi that are pointwise close
to g on Hi. Now, for any line L parallel to the xn axis, we look at the univariate degree d polynomial
gL that g is pointwise close to, and the degree d polynomial ĝL that agrees with ĝi for each of the
intersections between L and Hi. The difference gL− ĝL is small at the Chebyshev nodes, which implies
that gL − ĝL is small everywhere inside [−m, m]n. This argument yields a degree-2d polynomial that
is pointwise close to g on [−m, m]n.

• We prove a more general result that implies what we need in part (ii).

Theorem 1.5. Let m ∈ (0, 1], n ≥ 2 and p be an n-variate polynomial of total degree at most ℓ,
for some d ≤ ℓ. If for every a ∈ [−m, m]n, the univariate polynomial p0,a(t) = p(at) which is the
restriction of p to the radial line L0,a, is pointwise ε-close to a degree-d univariate polynomial on the
interval t ∈ [−1, 1], then p is pointwise η-close to p≤d (the truncation of p to degree d) on [−m, m]n
for η = 2(2/m)2n18ℓ

ε.

In order to prove Theorem 1.5, suppose for the sake of contradiction that p − p≤d is large at some
point in [−m, m]n. By a straightforward argument, this implies that there must be coefficient αI of
a degree ≥ d monomial in p which has large magnitude. From this, we would like to conclude that
the restriction of p to some radial line L0,a must not be pointwise close to a degree-d polynomial, and
hence we would have a contradiction. Let the restriction of p to this line be defined as

p(at) =
∑
k≤ℓ

γk(a)Tk(t),

where Tk is the kth Chebyshev polynomial. It turns out that in order to show p(at) is not close to a
degree-d polynomial, it suffices to show γk(a) is large for some k > d.

The large coefficient αI of p appears in some coefficient γk∗(a) for k∗ > d4. Note that γk∗ is itself a
degree-ℓ multivariate polynomial when we consider a as variables. In order to conclude that γk(a) is
large for some a, we will choose values for a such that γk∗ is a degree-d univariate polynomial (in
some variable z) and there is a monomial in γk∗ with a large coefficient; anti-concentration then implies
that there is a setting of z which makes γk∗ large. To satisfy this, we want to choose a substitution for
a in z such that the monomials under this substitution have exactly the same coefficients as those of
γk∗(a) (that is, no two monomials collapse to the same monomial).

Fixing a formal variable z, we set a to be (zy1 , . . . , zyn) for an integer valued vector y = (y1, . . . , yn),
and define γ̃k∗(z) = γk∗(zy1 , . . . , zyn). We choose y in such a way that distinct monomials of a in
γk∗ lead to distinct powers of z in γ̃k∗ ; such a y exists due to a probabilistic argument.

4In fact, k∗ is either d + 1 or d + 2.
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At this point, we have a univariate polynomial γ̃k∗ that has at least one large coefficient, and we would
like to conclude that it has a large value at some point. This is a statement about the anti-concentration
of the polynomial γ̃k∗ . If the largest coefficient were the leading term, then it is well-known that
Chebyshev polynomials attain the smallest uniform norm on [−1, 1] among all such polynomials. In
our situation, the largest coefficient may not be the leading one; nevertheless, we can show a lower
bound on the uniform norm by making a connection to Chebyshev polynomials5:

Lemma 1.6. Let p(x) =
∑d

i=0 αix
i be a degree-d polynomial and let η > 0. If |αi| ≥ η for some

i ≥ 1, then there exists x ∈ [−1, 1] such that |p(x)| ≥ 2−2d2
η.

We now return to the main thread of describing the three-step analysis for Theorem 1.2. In the last step,
we need to extrapolate our definition of g from within the small ball B(0, r) to the bigger ball B(0, R), within
which the underlying distribution is concentrated. Again, using properties of Chebyshev polynomials, we
show that if g is pointwise η-close to a degree-d polynomial in some ball B(0, r′)6, then its extrapolation
is pointwise (O(R/r′))dη pointwise close to a degree-d polynomial in B(0, R). After this, the rest of the
analysis mirrors the one for the exact case.

Exactly Testing Polynomials over Discrete Domains. For Theorem 1.3, the main complication is that
we can no longer evaluate points (even approximately!) on points drawn from N (0, I). We crucially relied
on properties of the Gaussian (e.g., it is stable) for showing the self-correction properties of g in the above
results. Instead here, we sample from discrete Gaussian distributions on lattices in order to define the
self-corrected function g. Discrete Gaussians are a fundamental object of study in lattice cryptography (see,
e.g., [MR07,Reg09]). Ours seems to be the first application of discrete Gaussians in a property testing setting.

For a lattice L, the discrete Gaussian G(L, s) is proportional to the density function of N (0, s) on the
lattice points. The self-corrected function g is defined as majq∼G(L′,1)[gq(p)], where gq is the same as in the
exact testing analysis over Rn. We perform the same three-step analysis here as above. For the first step, in
order to show that g satisfies the degree-d characterization over lattice points, we derive explicit bounds on
the TV distance between discrete Gaussians that were implicit in previous literature. For the second step, we
follow the argument in the exact case, but we need to ensure that the lattice is large enough so that a nonzero
low-degree polynomial is nonzero on at least one lattice point. Finally, in the third step, we extrapolate g
from its self-corrected values on lattice points of L′ inside a small ball B(0, r) to lattice points of L on which
D is supported. By the concentration property of D and from taking L′ fine enough, we can find d + 1 lattice
points of L′ on any line from the origin to a point in L ∩ B(0, R). This suffices for the extrapolation and the
rest of the analysis.

1.4 Further Remarks

We leave the question of improving the bounds for the query complexity and the other parameters in
Theorem 1.2 and Theorem 1.3 as interesting open problems. Also, it would be very interesting to obtain
a separation between the complexities of the exact and approximate testing problems, in terms of query
complexity. For the case of d = 1, we have an improved analysis that appears in Appendix D.

It is also natural to ask about tolerant testing [PRR06] in our setting. This is distinct from approximate
testing, because in the completeness case, the function is only required to equal a degree-d polynomial P

5Note that (scaled) Chebyshev polynomials are bounded by 21−dη within [−1, 1]. We leave it open whether the lower bound of
2−O(d2) can be improved to 2−O(d). However, for our application, this improvement would not be significant.

6In our analysis, we have, and choose r′ that are strictly smaller than r.
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with some probability over the distribution D which may be less than 1. Our test should still work under an
appropriate choice of parameters, because by the union bound, we can upper bound the probability that one
of the queries does not come from P .

Our work also opens the way for investigating the testability of other multivariate functional equations.
Is there a general theory that characterizes testability (under natural assumptions) just as there is for finite
fields [KS08, BFH+13]?

1.5 Organization

In the following section we discuss some preliminaries used for the exact testing. In Section 3 we give the
full proof for the existence of an exact tester for low-degree polynomials, proving Theorem 1.1. Section 4
is devoted to proving Theorem 1.2, giving the approximate tester, wherein in Section 4.1, we give more
preliminaries needed for the approximate tester. And Section 5 contains the tester for discrete domains, as
specified in Theorem 1.3, wherein in Section 5.1 we give some more preliminaries needed for the discrete
case. As the exact tester is the starting point for the other settings, in the later sections we rely on the proofs
from Section 3, and show what changes need to be done. Finally, in Appendix D, we prove a sub-case of the
approximate tester, where d = 1 and show a better result. While in the other appendices we show full proofs
of some intermediate lemmata/theorems, that we skipped in the paper for the convenience of the reader.

2 Preliminaries

Here we record some notations and definitions which will be used throughout the paper. For a positive integer
n, let [n] = {1, 2, . . . , n}. We will reserve non-boldface symbols (such as a ∈ R) to represent variables and
scalars, and we will use boldface (such as a ∈ Rn) to represent vectors.

For any S ⊆ Rn, we say that f : Rn → R is a polynomial over S if there exists a degree-d polynomial
g : Rn → R such that f(x) = g(x) for every x ∈ S. A line is a polynomial of the form a + ib, where i is a
variable, and we will denote by La,b ≜ {a + ib : i ∈ R}, the set of points on this line. A radial line is a line
that passes through the origin; that is, a line of the form L0,b for some b ∈ Rn. Throughout this paper, it will
be convenient to talk about functions restricted to lines. For a, b ∈ Rn, let fa,b : R→ R be defined as the
restriction of f on La,b, i.e., fa,b(x) = f(a + xb).

Local Characterization of Degree-d Polynomials. In order to test whether a univariate function f is
consistent with a degree-d polynomial, we will use a characterization of degree-d polynomials which is more
amenable to this task. This characterization involves inspecting the finite forward differences of f , defined as

∆h[f ](x) ≜ f(x + h)− f(x), (2)

for h ∈ R. This difference is a linear operator, i.e., for functions f , and g,

∆h[f + g](x) = ∆h[f ](x) + ∆h[g](x). (3)

Higher order finite forward differences are defined inductively as,

∆(m)
h [f ](x) ≜ ∆h

[
∆(m−1)

h [f ]
]
(x) = (−1)m+1

m∑
i=0

αi · f(x + ih), (4)

10



where αi ≜ (−1)i+1(m
i

)
, m ∈ Z>1, and ∆(1)

h = ∆h. Finite forward differences are related to the standard
notion of a derivative, and we explain this further in Appendix A.

We will use the following characterization of degree-d polynomials, that follow from well-known results
in analysis (see Appendix A for details).

Local Characterization Theorem. Let a, b ∈ R such that a < b, and let g : (a, b) → R be a univariate,
bounded function. If for every x ∈ (a, b) and sufficiently small h > 0, such that a < x < x + (d + 1)h < b,
∆(d+1)

h [g](x) = 0, then g is a degree-d polynomial.

A discrete variant of this theorem, given in Section 5, will be used for our lattice-based tester.

Sampling from Gaussian Distributions. In order to test that the local characterization holds, we will
sample points from the p ∼ N (0, βI) for various values of β. This is possible, given sampling access to
N (0, I), by multiplying sampled vectors with the respective

√
β’s, since

√
βv ∼ N (0, βI), if v ∼ N (0, I).

In order to generalize our tester to distributions that need not be centered at the origin, but say, at c ∈ Rn,
we can test the local characterization at points sampled from Gaussians that are centered at such c’s. This
again is possible, given sampling access to N (0, I), by translating the sampled vectors by the respective c’s,
since c + v ∼ N (c, I), if v ∼ N (0, I).

Throughout this work, we will need to relate points sampled from different Gaussian distributions. For
two distributions D and D′ on the same domain Ω, the total variation distance between them is defined as

dTV(D,D′) ≜ 1
2

∫
Ω
|D(x)−D′(x)|dx.

We will use the following lemma (a proof can be found in [FY20]) to bound the total variation distance
between two Gaussian distributions. Let ∥ · ∥2 denote the operator norm on matrices.

Lemma 2.1. Consider two Gaussian distributions N (µ1, Σ),N (µ2, Σ) with shared invertible covariance
matrices Σ ∈ Rn×n. Then dTV(N (µ1, Σ),N (µ2, Σ)) ≤ ϕ holds, if ∥µ1 − µ2∥2 ≤ 2ϕ/

√
∥Σ−1∥2.

An immediate corollary of Lemma 2.1 is the following:

Lemma 2.2. For any integer k ≥ 1, real r > 0, and p ∈ Rn, such that ∥p∥2 ≤ r, it follows that
dTV(N (0, kI),N (p, kI)) ≤ kr/2.

Proof. Observe that the spectral norm of kI is k, and therefore ∥p∥2
√
∥kI∥2 ≤ kr. It follows from

Lemma 2.1, that dTV(N (0, kI),N (p, kI)) ≤ kr/2.

3 Exact Testing

In this section, we develop a distribution-free tester for low-degree polynomials over the Rn, assuming that
we can exactly query the input function. Our tester is given in Algorithm 1 and uses the subroutines given in
Algorithm 2. The CHARACTERIZATIONTEST checks properties of f which will be sufficient to guarantee
that g — the self-corrected version of f — is a degree-d polynomial. QUERY-g retrieves the value of g(p)
for a given point p by running the subroutine QUERY-g-INBALL, which in turn obtains the values of g on
points within the small ball B(0, r) by evaluating f .

Recall that in Theorem 1.1, f is assumed to be bounded in B(0, L), for some L > 0. Throughout
this section, we assume L = 2d

√
n. This is without loss of generality as we can define f ′ : Rn → R as

f ′(x) = f(xL/(2d
√

n)) which is bounded in B(0, 2d
√

n), and the tester can query f ′ via queries to f . If f
is a degree-d polynomial, so is f ′. If f is ε-far from degree-d polynomials over a distribution D, so is f ′ over
the distribution D′, where a sample y ∼ D′ is generated as y = 2d

√
n

L x where x ∼ D.
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B(0, r)

c1

c2

c3

L0,p

pp

Figure 4: The definition of g(p) for p ̸∈ B(0, r). First, a degree-d univariate polynomial pp is defined by the
value of g on d + 1 points ci ∈ B(0, r) on the line L0,p, such that pp(ci) = g(pci). Then, the value of g(p)
is defined to be pp(1).

The Self-Corrected Function. As outlined in Section 1.3, by sampling points from the standard Gaussian,
we will construct a self-corrected version g of the input function f such that, if our tests (in particular
CHARACTERIZATIONTEST in Algorithm 2) pass with sufficiently high probability, then we can guarantee
that g is a degree-d polynomial. Let r = (3d)−6, and B(0, r) be the open ball of radius r, centered at the
origin. We will guarantee that g is a degree-d polynomial for points p ∈ B(0, r) first, and then extended the
characterization to points outside of this ball. The advantage of restricting our attention to this small ball is
that for any p ∈ B(0, r), p + x is approximately distributed as x.

We define g : Rn → R formally as follows: let αi = (−1)i+1(d+1
i

)
, and for any p ∈ B(0, r) and q ∈ Rn,

gq(p) ≜
∑d+1

i=1 αi · f(p + iq). The intuition behind gq(p) is that it is the value of the univariate, degree-d
polynomial at the point p, that is uniquely defined by the d + 1 evaluations {f(p + iq) : i ∈ [d + 1]}. For
points p ∈ B(0, r), we define the value of g to be

g(p) ≜ maj
q∼N (0,I)

[gq(p)] .

For points p ̸∈ B(0, r), we define g(p) by interpolating the evaluations of g on points within B(0, r)
as follows (see Figure 4). Consider the radial line L0,p = {xp : x ∈ R} and fix d + 1 (arbitrary)
“distinguished” points along this line c0, . . . , cd ∈ R such that cip ∈ B(0, r) for all i; in Algorithm 2 we
choose ci = ir/((d + 1)∥p|2). Let pp : Rn → R be the degree-d, univariate polynomial uniquely defined by
these d + 1 points, such that pp(ci) = g(cip), for every i ∈ [d + 1]. The value of g(p) is defined as pp(1).
Note that if g was a degree-d polynomial to begin with, then we would indeed have pp(1) = g(p).

The following lemma records the properties of g that will be guaranteed by our tester.

Lemma 3.1. If CHARACTERIZATIONTEST fails with probability at most 2/3, then g is a degree-d polynomial,
and furthermore for any p ∈ Rn, g(p) = QUERY-g(p) with probability at least 1− ε

2 .

We prove the main theorem of this section assuming Lemma 3.1 holds; we restate it next for convenience.

Theorem 1.1. Let d ∈ N, and for L > 0, suppose f : Rn → R is a function that is bounded in the
ball B(0, L). Given ε > 0, query access to f , and sampling access to an unknown distribution D, there

12



Algorithm 1: Distribution-Free Low-Degree Tester

1 Procedure LOWDEGREETESTER(f, d,D, ε)
Given :Query access to f : Rn → R, degree d ∈ N, sampling access to an unknown distribution

D, and farness parameter ε > 0.
2 Reject if CHARACTERIZATIONTEST rejects;
3 N1 ← O(ε−1);
4 for N1 times do
5 Sample p ∼ D;
6 Reject if f(p) ̸= QUERY-g(p) or if QUERY-g(p) rejects.

7 Accept.

exists a one-sided error, distribution-free, O(d5 + d2

ε log 1
ε )-query tester for testing whether f is a degree-d

polynomial, or is ε-far from degree-d polynomials over D.

Proof of Theorem 1.1. First we analyze the query complexity. CHARACTERIZATIONTEST performs O(d2)
independent tests, each of which requires O(d) evaluations of f , and is repeated N2 = O(d2) times. QUERY-
g-INBALL samples N ′

2 = O(log(1/ε)) points, each requiring O(d) evaluations of f . QUERY-g picks O(d)
points in B(0, r) and calls QUERY-g-INBALL on them. LOWDEGREETESTER calls CHARACTERIZATION-
TEST once, and then calls QUERY-g, N1 = O(1/ε) times. Altogether, our algorithm makes O(d5+ d2

ε log(1
ε ))

queries.
Next, we argue that the tester is correct. If f is a degree-d polynomial, then it accepts with probability 1.

Indeed, in this case f restricted to a line p + iq is also a degree-d polynomial, g = f , and all of the tests pass
with probability 1.

Now, assume that f is ε-far from any degree-d polynomial (according to D). If CHARACTERIZATION-
TEST fails with probability at least 2/3, then we reject with probability at least 2/3. Otherwise, by Lemma 3.1,
g is a degree-d polynomial and so Prp∼D[f(p) ̸= g(p)] > ε. The probability that we do not reject in any
of the N1 steps of Algorithm 1 is at most the probability that f(p) = g(p) or that QUERY-g(p), instead of
rejecting, returned some value other than g(p). The latter happens with probability at most ε

2 by Lemma 3.1,
and so

Pr
p∼D

[f(p) = g(p) ∨ g(p) ̸= QUERY-g(p)] ≤ 1− ε + ε

2 ≤ 1− ε

2 .

Thus, Algorithm 1 accepts with probability at most (1− ε
2)N1 < 1

3 , by choosing the constant in N1 = O(ε−1)
to be sufficiently large.

In the remainder of this section we will prove Lemma 3.1. First, in Section 3.1, we show that g agrees
with a degree-d, univariate polynomial on every line segment in B(0, r). Then, we show that g is consistent
with a degree-d, n-variate polynomial within B(0, r). Finally, by the fact that for points outside B(0, r), g is
defined by interpolating evaluations out of B(0, r), we show that it is a degree-d, n-variate polynomial on
Rn.

3.1 Polynomial Representation on Every Line Within the Ball

We will prove that if CHARACTERIZATIONTEST passes with high probability, then g is consistent with a
degree-d polynomial when projected to any line segment that lies within the open ball B(0, r) for r = (3d)−6.
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Algorithm 2: Subroutines

1 [Recall αi ≜ (−1)i+1(d+1
i

)
.]

2 Procedure CHARACTERIZATIONTEST

3 N2 ← O(d2) ;
4 for N2 times do
5 for j ∈ {1, . . . , d + 1} do
6 for t ∈ {0, . . . , d + 1} do
7 Sample p ∼ N (0, j2(t2 + 1)I), q ∼ N (0, I); ▷ [j2(t2 + 1) vs. 1 Test.]
8 Reject if

∑d+1
i=0 αi · f(p + iq) ̸= 0;

9 Sample p ∼ N (0, j2I), q ∼ N (0, (t2 + 1)I); ▷ [j2 vs. t2 + 1 Test.]
10 Reject if

∑d+1
i=0 αi · f(p + iq) ̸= 0;

11 Sample p, q ∼ N (0, j2I); ▷ [j2 vs. j2 Test.]
12 Reject if

∑d+1
i=0 αi · f(p + iq) ̸= 0;

13 Accept;
14 Procedure QUERY-g(p)
15 r ← (3d)−6;
16 if p ∈ B(0, r) then
17 return QUERY-g-INBALL(p);

18 for i ∈ {1, . . . , d + 1} do
19 ci ← ir/((d + 1)∥p∥2);
20 v(ci)← QUERY-g-INBALL(cip);

21 Let pp : R→ R be the unique degree-d polynomial such that pp(ci) = v(ci) for i ∈ [d + 1];
22 return pp(1);

23 Procedure QUERY-g-INBALL(p)
24 N ′

2 ← O
(

log 1
ε

)
;

25 Sample q1, . . . , qN ′
2
∼ N (0, I);

26 Reject if there exists j ∈ {2, . . . , N ′
2} such that

∑d+1
i=1 αi · f(p + iq1) ̸=

∑d+1
i=1 αi · f(p + iqj);

27 return
∑d+1

i=1 αi · f(p + iq1);

For a, b ∈ B(0, r), we will denote by LB
a,b the line segment obtained by restricting the line La,b to the

ball B(0, r). The main theorem of this section states that evaluations of g on every point on any line segment
within the open ball B(0, r), are consistent with a unique, univariate, degree-d polynomial.

Theorem 3.2. (Polynomial Representation on Lines) If CHARACTERIZATIONTEST fails with probability
at most 2/3, and f is bounded on B(0, 2d

√
n), then for every a, b ∈ B(0, r), the univariate function

ga,b(x) = g(a + xb) defined on points x ∈ LB
a,b is a degree-d, univariate polynomial.

In order to prove this theorem we will need the following auxiliary lemmas.

Lemma 3.3. If CHARACTERIZATIONTEST fails with probability at most 2/3, then for every p, q ∈ B(0, r),
for all sufficiently small h > 0, such that p + ihq ∈ B(0, r) for every i ∈ [d + 1],

∑d+1
i=0 αi · g(p + ihq) = 0.

Lemma 3.4. If f is bounded on B(0, 2d
√

n), then g is bounded on B(0, r).
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We prove Theorem 3.2 assuming these lemmas, and prove them afterwards.

Proof of Theorem 3.2. Since f is bounded on B(0, 2d
√

n), by Lemma 3.4, g is bounded on B(0, r). Fix
some a, b ∈ B(0, r). We would like to show that ga,b(x) is consistent with a degree-d polynomial on every
point x in {x ∈ R : a + xb ∈ B(0, r)}; fix such an x. By the Local Characterization Theorem, it suffices to
show that for all sufficiently small h > 0, satisfying a + (x + ih)b ∈ LB

a,b for every i ∈ [d + 1],

∆(d+1)
h [ga,b](x) =

d+1∑
i=0

αi · ga,b(x + ih) =
d+1∑
i=0

αi · g(a + xb + ihb) = 0.

From Lemma 3.3, it follows that
∑d+1

i=0 αi · g(p + ihq) = 0 for every p, q ∈ B(0, r) and all sufficiently
small h > 0, satisfying p + ihq ∈ B(0, r) for every i ∈ [d + 1]. Let p ≜ a + xb and q ≜ b. Observe that
p, q ∈ B(0, r), and therefore since B(0, r) is an open ball, p + ihq ∈ B(0, r) for every i ∈ [d + 1]. Thus,

∆(d+1)
h [ga,b](x) =

d+1∑
i=0

αi · g(a + xb + ihb) =
d+1∑
i=0

g(p + ihq) = 0.

In the remainder of this subsection we prove Lemma 3.3 and Lemma 3.4. For this, it will be convenient to
let ρ denote the smallest upper-bound on the probability that each of the tests in the CHARACTERIZATIONTEST

failed. That is, for every j ∈ [d + 1] and t ∈ {0, . . . , d + 1}, ρ is the smallest value such that

Pr
p∼N (0,j2(t2+1)I)

q∼N (0,I)

[
d+1∑
i=0

αi · f(p + iq) ̸= 0
]
≤ ρ, [j2(t2 + 1) vs. 1 Test.] (5)

Pr
p∼N (0,j2I)

q∼N (0,(t2+1)I)

[
d+1∑
i=0

αi · f(p + iq) ̸= 0
]
≤ ρ, [j2 vs. t2 + 1 Test.] (6)

Pr
p∼N (0,j2I)
q∼N (0,j2I)

[
d+1∑
i=0

αi · f(p + iq) ̸= 0
]
≤ ρ. [j2 vs. j2 Test.] (7)

A bound on the rejection probability of CHARACTERIZATIONTEST implies the following bound on ρ.

Claim 3.5. If CHARACTERIZATIONTEST fails with probability at most 2/3, then ρ is at most (30d)−2.

Proof. Each of the tests (5), (6) and (7) are invoked N2 = O(d2) in the CHARACTERIZATIONTEST. If any of
these tests fail with probability more than 1/(30d)2, then CHARACTERIZATIONTEST passes with probability
at most (1− 1

(30d)2 )O(d2) < 1/3, which contradicts our assumption.

The proof of Lemma 3.3 will heavily rely on the fact that if ρ is small then gq1 and gq2 agree on points in
B(0, r) with high probability.

Lemma 3.6. For every p ∈ B(0, r), and every t ∈ {0, . . . , d + 1},

Pr
q1∼N (0,(t2+1)I)

q2∼N (0,I)

[gq1(p) ̸= gq2(p)] ≤ 4dρ + 48d5r.
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Proof. Let t ∈ {0, . . . , d + 1} and fix some p ∈ B(0, r). We will bound the probability that gq1(p) and
qq2(p) are different from

∑d+1
i=1

∑d+1
j=1 αiαj · f(p + iq1 + jq2); the lemma will then follow by a union bound.

By definition, gq2(p) =
∑d+1

i=1 αi · f(p + iq2). Fixing i ∈ [d + 1], we have

Pr
q1∼N (0,(t2+1)I)

q2∼N (0,I)

[f(p + iq1︸ ︷︷ ︸
≜m

) ̸= gq2(p + iq1)] = Pr
m∼N (p,i2(t2+1)I)

q2∼N (0,I)

[
f(m) ̸=

d+1∑
j=1

αj · f(m + jq2)
]

≤ Pr
m∼N (0,i2(t2+1)I)

q2∼N (0,I)

[ d+1∑
j=0

αj · f(m + jq2) ̸= 0
]

+ 2 dTV(N (0, i2(t2 + 1)I),N (p, i2(t2 + 1)I))

≤ ρ + i2(t2 + 1)r ≤ ρ + 20d4r. (By (5) and Lemma 2.2)

By a similar calculation, for every j ∈ [d + 1], we have that

Pr
q1∼N (0,(t2+1)I)

q2∼N (0,I)

[
f(p + jq2︸ ︷︷ ︸

≜m

) ̸= gq1(p + jq2)
]

= Pr
m∼N (p,j2I)

q1∼N (0,(t2+1)I)

[
f(m) ̸=

d+1∑
i=1

αi · f(m + iq1)
]

≤ Pr
m∼N (0,j2I)

q1∼N (0,(t2+1)I)

[
d+1∑
i=0

α1 · f(m + iq1) ̸= 0
]

+ 2 dTV(N (0, j2I),N (p, j2I))

≤ ρ + j2r ≤ ρ + 4d2r. (By (6) and Lemma 2.2)

Taking a union bound over i ∈ [d + 1] and j ∈ [d + 1] respectively, it follows that

Pr
q1∼N (0,(t2+1)I)

q2∼N (0,I)

[
d+1∑
i=1

αi · f(p + iq1)︸ ︷︷ ︸
=gq1 (p)

̸=
d+1∑
i=1

d+1∑
j=1

αiαj · f((p + iq1) + jq2)
]
≤ (d + 1)(ρ + 20d4r),

Pr
q1∼N (0,(t2+1)I)

q2∼N (0,I)

[
d+1∑
j=1

αj · f(p + jq2)

︸ ︷︷ ︸
=gq2 (p)

̸=
d+1∑
j=1

d+1∑
i=1

αiαj · f((p + jq2) + iq1)
]
≤ (d + 1)(ρ + 4d2r).

The first inequality is at most 2dρ + 40d5r, while the second is at most 2dρ + 8d3r. Thus, by a union bound
over the two previous inequalities we can conclude that

Pr
q1∼N (0,(t2+1)I)

q2∼N (0,I)

[gq1(p) ̸= gq2(p)] ≤ 4dρ + 48d5r.

The next corollary follows immediately by instantiating the parameters in the previous lemma.

Corollary 3.7. If CHARACTERIZATIONTEST fails with probability at most 2/3, then for every p ∈ B(0, r)
and every t ∈ {0, . . . , d + 1},

Pr
q∼N (0,(t2+1)I)

[g(p) ̸= gq(p)] ≤ 1
7d

.

16



Proof. Observe that for any t ∈ {0, . . . , d + 1}, and any p ∈ B(0, r),

Pr
q∼N (0,(t2+1)I)

[g(p) ̸= gq(p)] ≤ Pr
q1∼N (0,I)

[g(p) ̸= gq1(p)] + Pr
q∼N (0,(t2+1)I)

q1∼N (0,I)

[gq1(p) ̸= gq(p)].

By Lemma 3.6, this is at most 2(4dρ + 48d5r), where for the first term, we have used the fact that gq1(p) is
defined as the majority of q ∼ N (0, I). By Claim 3.5 and by our choice of r = (3d)−6, this probability is at
most 1/(7d).

We are now ready to prove Lemma 3.3.

Proof of Lemma 3.3. Fix p, q ∈ B(0, r), and let h > 0 be such that p + ihq ∈ B(0, r) for every i ∈ [d + 1];
note that h exists as B(0, r) is an open ball containing p. We will argue that the following hold simultaneously
with non-zero probability over q1, q2 ∼ N (0, I):

d+1∑
i=0

αi · g(p + ihq) =
d+1∑
i=0

αi · gq1+iq2(p + ihq), (8)

d+1∑
i=0

αi · f(p + jq1 + i(hq + jq2)) = 0, for every j ∈ [d + 1]. (9)

We will complete the proof assuming that these bounds hold. Fix any q1, q2 satisfying both (8), and (9).
Then,

d+1∑
i=0

αi · g(p + ihq) =
d+1∑
i=0

αi · gq1+iq2(p + ihq) (By (8))

=
d+1∑
i=0

αi

d+1∑
j=1

αj · f(p + ihq + j(q1 + iq2))


=

d+1∑
j=1

αj

(
d+1∑
i=0

αi · f(p + jq1 + i(hq + jq2))
)

=
d+1∑
j=1

αj · 0 = 0. (By (9))

Next, we argue that (8) and (9) hold separately with sufficiently high probability.

Pr
q1,q2∼N (0,I)

[(8)] = Pr
q1,q2∼N (0,I)

[ d+1∑
i=0

αi · g(p + ihq) =
d+1∑
i=0

αi · gq1+iq2(p + ihq)
]

≥ Pr
q1,q2∼N (0,I)

[g(p + ihq) = gq1+iq2(p + ihq), ∀i ∈ {0, . . . , d + 1}]

= 1− Pr
q1,q2∼N (0,I)

[∃i ∈ {0, . . . , d + 1} : g(p + ihq) ̸= gq1+iq2(p + ihq)]

≥ 1−
d+1∑
i=0

Pr
q1,q2∼N (0,I)

[g(p + ihq) ̸= gq1+iq2(p + ihq)] (By union bound)
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= 1−
d+1∑
i=0

Pr
m∼N (0,(i2+1)I)

[g(p + ihq) ̸= gm(p + ihq)] (Letting m ≜ q1 + iq2)

≥ 1− d + 2
7d

>
1
2 . (Applying Corollary 3.7, as p + ihq ∈ B(0, r))

For (9), fix some j ∈ [d + 1], then

Pr
q1,q2∼N (0,I)

[ d+1∑
i=0

αi · f(p + jq1︸ ︷︷ ︸
≜z1

+i(hq + jq2︸ ︷︷ ︸
≜z2

)) ̸= 0
]

= Pr
z1∼N (p,j2I)

z2∼N (hq,j2I)

[ d+1∑
i=0

αi · f(z1 + iz2) ̸= 0
]

≤ Pr
z1∼N (0,j2I)
z2∼N (0,j2I)

[ d+1∑
i=0

αif(z1 + iz2) ̸= 0
]

+ 2(dTV(N (0, j2I),N (p, j2I)) + dTV(N (0, j2I),N (hq, j2I)))

≤ ρ + j2r + j2hr ≤ ρ + 8d2r. (By (7) and Lemma 2.2)

By a union bound over all j ∈ [d + 1],

Pr
q1,q2∼N (0,I)

[(9)] = Pr
q1,q2∼N (0,I)

[
∀j ∈ [d+1],

d+1∑
i=0

αi ·f(p+jq1 + i(hq +jq2)) = 0
]
≥ 1−(2dρ+16d3r),

which is at least 2/3 by our choice of r = (3d)−6 and Claim 3.5. A final union bound over (8), and (9)
concludes that both hold simultaneously with non-zero probability.

Finally, in order to conclude that g is indeed a polynomial by using Local Characterization Theorem on
lines within B(0, r), we will argue that g is bounded in B(0, r)

Proof of Lemma 3.4. It suffices to prove gq(p) is bounded for every p ∈ B(0, r), and every q ∈ Rn such
that gq(p) = g(p). By Corollary 3.7, g(p) = gq(p) with probability at least 1 − 1/7d for q ∼ N (0, I).
By [BHK20, Theorem 2.9], at least 99% of the mass inN (0, I) lies in the annulus |r−

√
n| ≤ 20. Therefore,

we can conclude that g(p) agrees with gq(p) for q satisfying |∥q∥2 −
√

n| ≤ 20. Note that gq(p) depends
only on {f(p + iq)}d+1

i=0 , and maxi{∥p + iq∥2} ≤ (d + 2) max{∥p∥2, ∥q∥2} ≤ (d + 2)(
√

n + 20). Thus,
if f is bounded on B(0, 2d

√
n), then g is bounded on B(0, r).

3.2 Polynomial Representation Within a Hypercube

Let m ∈ R be be the largest value, such that the hypercube [−m, m]n is strictly contained within the open
ball B(0, r); in particular, r/(2

√
n) ≤ m < r/

√
n. We show that if the conditions of Theorem 3.2 are met,

then g is consistent with a degree-d multivariate polynomial on [−m, m]n. This is done in two steps; first,
in Lemma 3.8 we show that g is consistent with a finite bounded degree polynomial. Then, in Lemma 3.9, we
show that this degree can be reduced to d.

Let ei denote the ith standard basis vector, defined as ei,j = 0 if j ̸= i and ei,i = 1.

Lemma 3.8. (Local to Global) Let m > 0, and let h : [−m, m]n → R. If for every i ∈ [n], and
a ∈ [−m, m]n such that ai = 0, the restriction of h to the line segment La,ei , the univariate function
ha,ei : [−m, m]→ R is consistent with a degree-d univariate polynomial on the interval [−m, m], then h is
consistent with an n-variate polynomial of degree at most dn.
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c0
c1

c2
c3

B(0, r)

[−m, m]n

2m

h(c2)

Figure 5: The construction of the polynomial h(a1, . . . , an−1). d + 1 slices of the cube [−m, m]n are chosen,
where the ith slice corresponds to setting xn = t = ci. The picture depicts setting t = c2 and thus δci(t) = 0
for all i ̸= 2 and δc2(t) = 1, selecting the polynomial representation h(c2) of h on the 2nd slice.

Proof. We will show that h is a degree-dn polynomial by induction on the dimension n. For the base case
when n = 1, we have that h = h0,1 and therefore is of degree d by assumption.

Assume the statement is true for dimension n− 1. Let c ∈ [−m, m] and define h(c) : [−m, m]n−1 → R
as

h(c)(x1, . . . , xn−1) ≜ h(x1, . . . , xn−1, c).

We will argue that h(c) satisfies the conditions of Lemma 3.8: Fix i ∈ [n − 1], and a ∈ [−m, m]n−1

with ai = 0, and define a↑ = (a1, . . . , an−1, c) ∈ [−m, m]n to be an extension of a to dimension n. By
assumption, ha↑,ei

: [−m, m]→ R is a degree-d polynomial. For every x ∈ [−m, m], we have

ha↑,ei
(x) = h(a1, . . . , ai−1, x, ai+1, . . . , an−1, c) = h(c)(a + xei) = h(c)

a,ei
(x),

and so h
(c)
a,ei(x) is a degree-d polynomial on the domain [−m, m]. Thus, by the inductive hypothesis we can

conclude that h(c) : [−m, m]n−1 → R is a degree-d(n− 1) multivariate polynomial.
It remains to show that h is a degree-dn polynomial. Let c0, c1, . . . , cd ∈ [−m, m] be any d + 1 distinct

values. Denote by δci the unique degree-d polynomial satisfying

δci(cj) ≜
{

1 i = j,

0 i ̸= j.
(10)

Using δci , we will show that h can be written as a polynomial of degree dn.
First, we claim that for every fixed a ∈ [−m, m]n−1 and variable t,

h(a1, . . . , an−1, t) =
d∑

i=0
δci(t)h(ci)(a1, . . . , an−1).
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B(0, r)

[−m, m]n

L0,b

Figure 6: The radial lines L0,b within the hypercube [−m, m]n in two dimensions.

To see this, observe that h(ci)(a1, . . . , an−1) is a constant and therefore δci(t)h(ci)(a1, . . . , an−1) is a degree-
d polynomial. Thus,

∑d
i=0 δci(t)h(ci)(a1, . . . , an−1) and h(a1, . . . , an−1, t) are degree-d polynomials (the

latter is by assumption). Furthermore, these degree-d polynomials agree on the d+1 distinct points c0, . . . , cd

and therefore they must be equal. As this equality holds for every (a, t) ∈ [−m, m]n, it follows that for every
x ∈ [−m, m]n,

h(x1, . . . , xn) =
d∑

i=0
δci(xn)︸ ︷︷ ︸
degree d

h(ci)(x1, . . . , xn−1)︸ ︷︷ ︸
degree d(n−1)

,

which is a degree dn representation of h.

Lemma 3.9. (Degree Reduction) Let α ∈ N, m > 0, and h : Rn → R be a multivariate polynomial of finite
degree α. If for every radial line segment in the cube [−m, m]n, the restriction of h to that line segment is
consistent with a polynomial of degree at most d, then α ≤ d.

Proof. Fix some b ∈ [−m, m]n and consider the radial line L0,b. The n-variate polynomial h, restricted to
this line, h0,b(x) = h(xb) for x such that xb ∈ [−m, m]n, can be written as

h(xb) =
α∑

k=0

∑
i1+···+in=k

ci1,...,in

n∏
j=1

(xbj)ij =
α∑

k=0

( ∑
i1+···+in=k

ci1,...,in

n∏
j=1

b
ij

j

)
xk,

which is a univariate degree-α polynomial in x. Consider the coefficient cα of xα in h(xb) as a function of b,

cα(b) ≜
∑

i1+···+in=α

ci1,...,in

n∏
j=1

b
ij

j ,

this is a n-variate polynomial of degree α in the variables b. Note that cα ̸≡ 0, as otherwise h would have
degree less than α. Fix some b = b∗ ∈ [−m, m]n such that cα(b∗) ̸= 0, such a point exists since cα has
finite number of roots, and view x as the only variable; as cα(b∗) ̸= 0, h0,b∗ is a univariate polynomial of
degree α. However, by assumption h0,b∗(x) has degree at most d, and hence α ≤ d.
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3.3 Polynomial Representation Everywhere

We are now ready to prove that g is a degree-d polynomial over Rn.

Lemma 3.10. If CHARACTERIZATIONTEST fails with probability at most 2/3, then g is a degree-d, n-variate
polynomial.

Proof. Consider the largest n-dimensional hypercube H ≜ [−m, m]n that can be inscribed in the open ball
B(0, r). By Theorem 3.2, g restricted to any line segment LB

p,q = Lp,q ∩B(0, r) within the ball B(0, r) is
consistent with a univariate degree-d polynomial, and therefore the same holds for g restricted to any line
segment LH

p,q, as H ⊂ B(0, r).
By Lemma 3.8 and Lemma 3.9, we can conclude that g(x) : [−m, m]n → R is consistent with a

polynomial of degree at most d within H. Hence, for every α ∈ Nn such that ∥α∥1 ≤ d, there exists cα ∈ R,
such that for every x ∈ H, we can write

g(x) =
∑

α∈Nn:∥α∥1≤d

cα

n∏
j=1

x
αj

j . (11)

Next, we argue that g is also consistent with this polynomial representation for every point within B(0, r).
By Theorem 3.2, for any y ∈ B(0, r) \ H and x ∈ R, for which xy ∈ B(0, r), it follows that g(xy) has a
unique representation as a univariate polynomial. This polynomial must be consistent with (11) on any point
x′y ∈ H, with x′ ∈ R. As these are both polynomials (agreeing on at least (d + 1) points), it follows that
both polynomial must be consistent on any point on the line segment LB

0,y. As we know that g is consistent
with the univariate representation within B(0, r), it follows that the representation (11) holds for g(y) for
any y ∈ B(0, r).

It remains to argue that g is consistent with this degree-d polynomial representation everywhere. Recall
that we defined g(p) for p ̸∈ B(0, r), by extrapolating its representation within B(0, r) along line L0,p, to
obtain a representation of g(xp) as a degree-d (univariate) polynomial.

Thus, g is consistent with a degree-d, n-variate polynomial over Rn.

Finally, having established Lemma 3.10, we are ready to prove Lemma 3.1, restated here for convenience.

Lemma 3.1. If CHARACTERIZATIONTEST fails with probability at most 2/3, then g is a degree-d polynomial,
and furthermore for any p ∈ Rn, g(p) = QUERY-g(p) with probability at least 1− ε

2 .

Proof of Lemma 3.1. Suppose that CHARACTERIZATIONTEST fails with probability at most 2/3, then by
Lemma 3.10, g is a degree-d polynomial. It remains to bound the probability that g(p) ̸= QUERY-g(p) for
p ∈ Rn. To query g on a point p ∈ Rn, QUERY-g(p) call QUERY-g-INBALL(p) if p ∈ B(0, r) or otherwise
it attempts to obtain d + 1 distinct points on the line segment LB

0,p using QUERY-g-INBALL(·) for each
and then interpolate g along this line. For each of these d + 1 points s, QUERY-g-INBALL(s) samples an
additional N ′

2 points q1, . . . , qN ′
2
∼ N (0, I), and checks whether∑

i∈[d+1]
αi · f(s + iq1) =

∑
i∈[d+1]

αi · f(s + iqj),

for all j ∈ [N ′
2]; it fails if any of these checks fail. Note that by the definition of gq, this is equivalent to

checking whether gq1(s) ̸= gqj (s). By Corollary 3.7 the probability that gq1(s) ̸= g(s) is at most 1/(7d),
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since s ∈ B(0, r). The probability that QUERY-g-INBALL(s) returns an incorrect value is the probability
that g(s) ̸= gq1(s) = gqj (s) for every qj , which is at most (7d)−N ′

2 ≤ ε
4d by choosing N ′

2 = O(log(1/ε)).
As QUERY-g(p) evaluate at most d + 1 points using QUERY-g-INBALL(·), the probability that these points
are all evaluated correctly, is at least 1− ε/2.

4 Approximately Testing Polynomials

In this section, we generalize our polynomial tester to be robust against noise. Given query access to a function
f : Rn → R bounded on the ball B(0, 2d

√
n), and sampling access to an unknown (ε/4, R)-concentrated

distribution D, and constants α, ε > 0, β ≥ α, a point-wise approximate tester for degree-d polynomials is
an algorithm that distinguishes between the following two cases with probability at least 2/3:

• Yes Case: There exists a degree-d polynomial h : Rn → R such that for every x ∈ Rn,

|f(x)− h(x)| ≤ α;

• No Case: For any degree-d polynomial h : Rn → R,

Pr
x∼D

[|f(x)− h(x)| > β] > ε.

An alternative interpretation of this model is as follows: we would like to design a low-degree tester for a
function f∗ : Rn → R; however, on every p ∈ Rn, we are only able to obtain “noisy” evaluations of f(p)
within an accuracy of up to α. We represent this by giving the tester query-access to a function f : Rn → R,
such that for every p ∈ Rn,

|f∗(p)− f(p)| ≤ α.

This setup is quite natural, and captures the setting in which we are only able to observe a small number of
bits of precision of the evaluations of f∗(p). The main theorem of this section is the following.7

Theorem 1.2. Let d ∈ N, f : Rn → R be a function that is bounded in B(0, 2d
√

n), and for ε ∈ (0, 1), R >

0, let D be an (ε/4, R)-concentrated distribution. Given α > 0, β ≥ 2(2n)O(d)
Rdα, query access to f , and

sampling access to D, there is a one-sided error, O(d5 + d2

ε log 1
ε )-query tester which, distinguishes between

the case when f is pointwise α-close to some degree-d polynomial and the case when, for every degree-d
polynomial h : Rn → R, Prp∼D[|f(p)− h(p)| > β] > ε.

Our self-corrected function g will be the same as the self-corrected function in the exact case, with one
small twist: We use the median rather than the majority, as the median is more robust to errors.

The Self-Corrected Function. Let r be sufficiently small (r = (4d)−6 suffices). We first define our self-
corrected function for the points p ∈ B(0, r) as the (weighted) median value of gq(p) ≜

∑d+1
i=1 αi ·f(p+ iq),

weighted according to the probability of q ∼ N (0, I). That is,

g(p) ≜ med
q∼N (0,I)

[gq(p)].

7We note that it is possible to relax the condition on f to be bounded in B(0, L) for some known L > 0. This then leads to β
being dependent on L as well. To avoid complicating the parameters, we have chosen to present the less general theorem here.
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For points p ̸∈ B(0, r) we define the value of g by extrapolating it from within the ball B(0, r) along the
radial line L0,p. To do so, we will interpolate a univariate polynomial on the line L0,p using the evaluation
of g on d + 1 points in B(0, r). For our analysis, it will be convenient to take these points to be c0, . . . , cd,
where8 ci ≜ (r/∥p∥2) cos(π(i + 1/2)/(d + 1)). Let pp be the unique univariate degree-d polynomial such
that pp(ci) = g(pci) for all i. Then, we define g(p) ≜ pp(1).

Our tester is given in Algorithm 3, with subroutines in Algorithm 4.

Algorithm 3: Low-Degree Approximate Tester

1 Procedure LOWDEGREEAPPROXTESTER(f, d,D, α, ε, R)
Given :Query access to f : Rn → R, a degree d ∈ N, sampling access to an unknown

(ε/4, R)-concentrated distribution D, a noise parameter α > 0, and a farness parameter
ε > 0.

2 δ ← 2d+1α;
3 r ← (4d)−6;
4 Reject if APPROXCHARACTERIZATIONTEST rejects;
5 for N3 ← O(ε−1) times do
6 Sample p ∼ D;
7 if p ∈ B(0, R) then
8 Reject if |f(p)− APPROXQUERY-g(p)| > 2 · 2(2n)45d

Rdδ, or if APPROXQUERY-g(p)
rejects.

9 Accept.

Bridging the gap between Median and Majority. The following lemma will allow us to port the techniques
that we used in Section 3, where g was defined as a majority over the standard gaussian, to our setting where
g is defined as a median. This lemma gives sufficient conditions for the median of any distribution to be close
to a random element.

Lemma 4.1. Let Ω be a sample space, g : Ω → R and D be a distribution over Ω. For any η ∈ [0, 1/4],
δ ∈ R, if Prq1,q2∼D[|g(q1) − g(q2)| < δ] > 1 − η, then Prq1∼D[|gmed − g(q1)| < δ] > 1 − 4η, where
gmed = medq∼D{g(q)}.

The proof is given in Appendix E.

4.1 Preliminaries on Chebyshev Polynomials

Our proof will heavily rely on properties of the Chebyshev polynomials (of the first kind), which we recall
next; further details on Chebyshev polynomials can be found in [MH02]. Denote by Td(x), the d-th Chebyshev
polynomial. Td is a degree-d polynomial and has d roots ĉi ≜ cos(π(i + 1/2)/d) for i ∈ {0, . . . , d − 1}
in the interval [−1, 1], known as Chebyshev nodes. On the interval [−1, 1], the extrema of the Chebyshev
polynomials are either −1 or 1, and thus we have

x ∈ [−1, 1] =⇒ |Td(x)| ≤ 1. (12)

Chebyshev polynomials form a basis of polynomials, and in particular satisfy the following orthogonality
properties.

8These are the Chebyshev nodes of the (d + 1)-st Chebyshev polynomial, scaled to lie on L0,p ∩ B(0, r), as in Section 4.1.
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Algorithm 4: Approximate Subroutines

1 [Recall αi ≜ (−1)i+1(d+1
i

)
and δ = 2d+1α.]

2 Procedure APPROXCHARACTERIZATIONTEST

3 N4 ← O(d2) ;
4 for N4 times do
5 for j ∈ {1, . . . , d + 1} do
6 for t ∈ {0, . . . , d + 1} do
7 Sample p ∼ N (0, j2(t2 + 1)I), q ∼ N (0, I); ▷ [j2(t2 + 1) vs. 1 Test.]
8 Reject if |

∑d+1
i=0 αi · f(p + iq)| > δ;

9 Sample p ∼ N (0, j2I), q ∼ N (0, (t2 + 1)I); ▷ [j2 vs. t2 + 1 Test.]
10 Reject if |

∑d+1
i=0 αi · f(p + iq)| > δ;

11 Sample p, q ∼ N (0, j2I); ▷ [j2 vs. j2 Test.]
12 Reject if |

∑d+1
i=0 αi · f(p + iq)| > δ;

13 Accept;
14 Procedure APPROXQUERY-g(p)
15 if p ∈ B(0, r) then
16 return APPROXQUERY-g-INBALL(p);

17 for i ∈ {0, 1, . . . , d} do
18 ci ← r

∥p∥2
cos

(π(i+1/2)
d+1

)
;

19 v(ci)← APPROXQUERY-g-INBALL(cip) ;

20 Let pp : R→ R be the unique degree-d polynomial such that pp(ci) = v(ci) for i ∈ {0, . . . , d};
21 return pp(1);

22 Procedure APPROXQUERY-g-INBALL(p)
23 N ′

4 ← O(log 1
ε );

24 Sample q1, . . . , qN ′
4
∼ N (0, I);

25 Reject if there exists j ∈ {2, . . . , N ′
4} such that

|
∑d+1

i=1 αi · f(p + iq1)−
∑d+1

i=1 αi · f(p + iqj)| > 2d+2δ;
26 return

∑d+1
i=1 αi · f(p + iq1);

Orthogonality. The polynomials Td are orthogonal with respect to the weight function w(x) ≜ (1−x2)−1/2

on the interval [−1, 1]. Formally,

∫ 1

−1
Tn(x) Tm(x) dx√

1− x2
=


0 if n ̸= m,

π if n = m = 0,

π/2 if n = m ̸= 0.

(13)

Discrete orthogonality. The polynomials Td are also discretely orthogonal:

d∑
k=0

Ti(ĉk) Tj(ĉk) =


0 if i ̸= j,

d + 1 if i = j = 0,
d+1

2 if i = j ̸= 0,

(14)
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where d ≥ max(i, j), and the ĉk are the d + 1 Chebyshev nodes of Td+1.
The following lemma will be useful throughout our proof, and follows in a straightforward fashion from

properties of Chebyshev polynomials.

Lemma 4.2. Let f : R → R be a univariate polynomial of degree at most d. And let ĉ0, . . . , ĉd be the
Chebyshev nodes of Td+1. If |f(ĉk)| ≤ ε for every k ∈ {0, . . . , d}, then for every x ∈ [−1, 1]

|f(x)| ≤
√

2(d + 1)ε.

Proof. Let f(x) =
∑d

i=0 αiTi(x) be the Chebyshev expansion of f . Since for every k, we have f(ĉk)2 ≤ ε2,

d∑
k=0

f(ĉk)2 ≤ (d + 1)ε2.

On the other hand,

d∑
k=0

f(ĉk)2 =
d∑

k=0

(
d∑

i=0
αiTi(ĉk)

)2

=
d∑

k=0

d∑
i,j=0

αiαjTi(ĉk)Tj(ĉk)

=
d∑

i,j=0
αiαj

d∑
k=0

Ti(ĉk)Tj(ĉk)

≥ d + 1
2

d∑
i=0

α2
i . (By (14))

Combining the above bounds, we have that |αi| ≤
√

2ε for every i ∈ {0, . . . , d}. Thus, for every
x ∈ [−1, 1],

|f(x)| =
∣∣∣∣ d∑

i=0
αiTi(x)

∣∣∣∣ ≤ d∑
i=0
|αi∥Ti(x)| ≤ (d + 1)

√
2ε. (by (12))

By scaling the Chebyshev nodes, we can obtain the following corollary, which is a scaled version of
Lemma 4.2 to any given interval, rather than [−1, 1].

Corollary 4.3. Let f be a univariate degree-d polynomial, let m ∈ R>0, and ck ≜ m cos
(

π
d+1(k + 1/2)

)
for k ∈ {0, . . . , d} be the Chebyshev nodes of Td+1 scaled to the interval [−m, m]. If |f(ck)| ≤ ε for every
k ∈ {0, . . . , d}, then for any x ∈ [−m, m],

|f(x)| ≤
√

2(d + 1)ε.

Proof. In the proof of Lemma 4.2 we represent f(x) =
∑d

i=0 αiTi(x/m) as a linear combination of the
Chebyshev polynomials with the back-scaled variable. The other parts of the proof are the same.
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4.2 Correctness of the Approximate Polynomial Tester

In the remainder of this section we will argue the correctness of our tester (Theorem 1.2). The next lemma
records the properties of g that it guarantees.

Lemma 4.4. Let r = (4d)−6, δ = 2d+1α, as set in Algorithm 4, and R > r. If APPROXCHARACTERIZA-
TIONTEST fails with probability at most 2/3, then g is pointwise 2(2n)45d

Rdδ-close to a degree-d polynomial
in B(0, R). Furthermore, for every point p ∈ B(0, R) APPROXQUERY-g(p) well approximates g(p) with
high probability, that is,

Pr
[
|g(p)− APPROXQUERY-g(p)| ≤ (12R/r)d2d+4δ

]
≥ 1− ε

4 .

We prove the main theorem of this section assuming that Lemma 4.4 holds.

Proof of Theorem 1.2. If f is point-wise α-close to a degree-d polynomial h, then for any p, q ∈ Rn,∣∣∣∣∣
d+1∑
i=0

αi · f(p + iq)
∣∣∣∣∣ =

∣∣∣∣∣
d+1∑
i=0

αi · (f(p + iq)− h(p + iq))
∣∣∣∣∣ ≤

d+1∑
i=0
|αi| · α ≤ 2d+1α = δ.

Thus, APPROXCHARACTERIZATIONTEST always passes, and APPROXQUERY-g(p) returns a value that
is 2d+3δ-close to g(p), without rejecting with probability 1, and Algorithm 3 always accepts. To see this
observe, for any p, q1, qj ∈ Rn,

|gq1(p)− gqj (p)| =
∣∣∣ d+1∑

i=1
αif(p + iq1)−

d+1∑
i=1

αif(p + iqj)
∣∣∣ =

∣∣∣ d+1∑
i=0

αif(p + iq1)−
d+1∑
i=0

αif(p + iqj)
∣∣∣

=
∣∣∣ d+1∑

i=0
αi(f(p + iq1)− h(p + iq1))−

d+1∑
i=0

αi(f(p + iqj)− h(p + iqj))
∣∣∣

≤ 2
d+1∑
i=0
|αi(f(p + iq1)− h(p + iq1))| ≤ 2

d+1∑
i=0
|αi| · α = 2d+2α < 2d+2δ.

So, by Lemma 4.1, we may claim Prq1∼N (0,I)[|g(p)− APPROXQUERY-g(p)| < 2d+2δ] = 1, where
APPROXQUERY-g(p) ≜ gq1(p), by APPROXQUERY-g-INBALL(p), and g(p) = medq∼N (0,I){gq(p)}.

Next, we show that if f is β-far from all degree-d polynomials, for β ≜ 2 · 2(2n)45d
Rdδ, then Algorithm 3

rejects with probability at least 2/3. Let δ1 ≜ 2(2n)45d
Rdδ, and δ2 ≜ (12R/r)d2d+4δ. If APPROXCHAR-

ACTERIZATIONTEST fails with probability at least 2/3, then we reject f with probability at least 2/3.
Otherwise, by Lemma 4.4, g is pointwise δ1-close in B(0, R) to some degree-d polynomial H , and for every
p ∈ B(0, R), Pr[|g(p) − APPROXQUERY-g(p)| > δ2] < ε

4 . Hence, Prp∼D[|f(p) − g(p)| > β − δ1] > ε,
noting β − δ1 ≥ δ1.

The probability that we do not reject in any of the N3 steps of Algorithm 3 is at most the probability that
either p ̸∈ B(0, r), for every sampled point p, or |f(p)− g(p)| ≤ δ1, or that APPROXQUERY-g(p) returned
a value that is δ2-far from g(p) (instead of rejecting). The first event happens with probability at most ε

4 ,
while the last happens with probability at most ε

4 by Lemma 4.4. Thus,

Pr
p∼D

[p ̸∈ B(0, R) ∨ |f(p)− g(p)| ≤ δ1 ∨ |g(p)− QUERY-g(p)| > δ2] ≤ ε

4 + 1− ε + ε

4 ≤ 1− ε

2 ,

and Algorithm 3 accepts with probability at most
(
1− ε

2
)N3 < 1

3 for sufficiently large N3 = O(1/ε).
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Finally, the bound on the query complexity of the tester follows the same argument, as in the exact case, for
Algorithm 1, noting that for sampled points p ∼ D that don’t fall in B(0, R), LOWDEGREEAPPROXTESTER

makes no queries to f , and thus matches the O(d5+ d2

ε log(1
ε )) query complexity of the LOWDEGREETESTER.

In the remainder of this section, we will prove Lemma 4.4. This will be done in three steps, similar to the
proof outline for Lemma 3.1. First, we show that g is pointwise close a univariate polynomial of degree d on
every line segment in B(0, r). Then, we show that g is pointwise close to a degree-d, n-variate polynomial
within B(0, r). Finally, by the fact that g is defined by interpolating evaluations out of B(0, r), we show that
it is pointwise close to a degree-d, n-variate polynomial on Rn.

4.3 Polynomial Approximation on Every Line Within the Ball

First, we will argue that g is approximately consistent with a degree d polynomial on every line within the
ball B(0, r). The following is an approximate analogue of Theorem 3.2.

Theorem 4.5. If APPROXCHARACTERIZATIONTEST fails with probability at most 2/3, and f is bounded
on B(0, 2d

√
n), then for every a, b ∈ B(0, r), the univariate function ga,b(x) = g(a + xb) defined on points

x ∈ LB
a,b is pointwise 215d2 · δ-close to a degree-d, univariate polynomial.

The main technical tool in the proof of this theorem will be the following corollary of a result9 from
[Gaj91], which guarantees that any bounded function f defined on a line segment, which has small (d + 1)-st
order finite forward differences, is point-wise close to a degree-d polynomial, on that line segment.

Theorem 4.6. Let x0 ∈ R, d ∈ N, ϕ, a ∈ (0,∞), and a bounded function f : (x0−a, x0 +a)→ R, such that
for all x ∈ (x0−a, x0+a), and h ∈ (−a, a), with x+(d+1)h ∈ (x0−a, x0+a), |∆(d+1)

h [f ](x)| ≤ ϕ. Then,
there exists a degree-d polynomial g : R→ R, such that for every x ∈ (x0−a, x0+a), |f(x)−g(x)| ≤ 28d2

ϕ.

Thus, in order to prove an approximate analogue of Theorem 3.2, it suffices to show that the self-corrected
function g satisfies the conditions of Theorem 4.6; i.e., along every line the (d + 1)st order finite differences
of the restriction of g to these lines are small, which will occupy the remainder of this subsection.

Let ρ denote the bound of the probability that each of the tests in the APPROXCHARACTERIZATIONTEST

fails. That is, for every j ∈ {1, . . . , d + 1} and t ∈ {0, . . . , d + 1}:

Pr
p∼N (0,j2(t2+1)I)

q∼N (0,I)

[∣∣∣ d+1∑
i=0

αi · f(p + iq)
∣∣∣ > δ

]
≤ ρ. [j2(t2 + 1) vs. 1 Test.] (15)

Pr
p∼N (0,j2I)

q∼N (0,(t2+1)I)

[∣∣∣ d+1∑
i=0

αi · f(p + iq)
∣∣∣ > δ

]
≤ ρ. [j2 vs. t2 + 1 Test.] (16)

Pr
p∼N (0,j2I)
q∼N (0,j2I)

[∣∣∣ d+1∑
i=0

αi · f(p + iq)
∣∣∣ > δ

]
≤ ρ. [j2 vs. j2 Test.] (17)

Following the same argument as in Claim 3.5, we first bound ρ:
9Stated in Appendix B as Theorem B.1.
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Claim 4.7. If APPROXCHACTERIZATIONTEST fails with probability at most 2/3, then ρ is at most (30d)−2.
Then, we prove an approximate version of Lemma 3.6 (which lower bounded collision probabilities), via

an identical argument, the proof of which can be found in Appendix B:

Lemma 4.8. For every p ∈ B(0, r), and every t ∈ {0, . . . , d + 1},

Pr
q1∼N (0,(t2+1)I)

q2∼N (0,I)

[
|gq1(p)− gq2(p)| > 2d+2δ

]
≤ 4dρ + 48d5r.

An immediate corollary is the following.

Corollary 4.9. If APPROXCHARACTERIZATIONTEST fails with probability at most 2/3, then for every
p ∈ B(0, r) and every t ∈ {0, . . . , d + 1},

Pr
q∼N (0,(t2+1)I)

[|g(p)− gq(p)| > 2d+3δ] <
1
7d

.

Proof. By Claim 4.7, ρ at at most (30d)−2. Observe that for any t ∈ {0, . . . , d + 1},

Pr
q∼N (0,(t2+1)I)

[|g(p)− gq(p)| > 2d+3δ]

≤ Pr
q1∼N (0,I)

[|g(p)− gq1(p)| > 2d+2δ] + Pr
q∼N (0,(t2+1)I)

q1∼N (0,I)

[|gq1(p)− gq(p)| > 2d+2δ]

≤ 5(4dρ + 48d5r). (By Lemma 4.1, ∵ g(p) = medq∼N (0,I){gq(p)}, and Lemma 4.8)

By choosing r = (4d)−6 and with ρ ≤ (30d)−2, we get 5(4dρ + 48d5r) ≤ 1/(7d).

Next, we prove the approximate analogue of Lemma 3.3, (which showed that the (d + 1)st order finite
differences of g’s restrictions to all lines in B(0, r) vanish) via an identical argument, and the proof of which
can also be found in Appendix B.

Lemma 4.10. If APPROXCHARACTERIZATIONTEST fails with probability at most 2/3, then for every
p, q ∈ B(0, r) and sufficiently small h ∈ R, such that p + ihq ∈ B(0, r) for every i ∈ [d + 1], we have
|
∑d+1

i=0 αi · g(p + ihq)| ≤ 22d+5δ.

We are now ready to prove Theorem 4.5.

Proof of Theorem 4.5. First note that since f is bounded on B(0, 2d
√

n), by the same argument as in
Lemma 3.4, g is bounded on B(0, r). Next, fix some a, b ∈ B(0, r); we would like to show that ga,b(x) is
pointwise close a unique degree-d polynomial for every point x in {x ∈ R : a + xb ∈ B(0, r)}; fix such an
x. By Theorem 4.6, it suffices to show that for all sufficiently small h ∈ R, such that a + (x + ih)b ∈ LB

a,b

for every i ∈ [d + 1],

|∆(d+1)
h [ga,b](x)| =

∣∣∣ d+1∑
i=0

αi · g(a + xb + ihb)
∣∣∣ ≤ 27d2

δ.

By Lemma 4.10, we have that for every p, q ∈ B(0, r) and sufficiently small h ∈ R, such that p + ihq ∈
B(0, r) for every i ∈ [d + 1], |

∑d+1
i=0 αi · g(p + ihq)| ≤ 22d+5δ. Let p ≜ a + xb and q ≜ b. Since B(0, r)

is an open ball containing p, and q, we have p + ihq ∈ B(0, r) for every i ∈ [d + 1]. Thus,

|∆(d+1)
h [ga,b](x)| =

∣∣∣ d+1∑
i=0

αi · g(a + xb + ihb)
∣∣∣ =

∣∣∣ d+1∑
i=0

g(p + ihq)
∣∣∣ ≤ 22d+5δ ≤ 27d2

δ.
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4.4 Polynomial Approximation Within the Hypercube

Let 0 < m ≤ 1 be a large value such that the hypercube [−m, m]n is contained within B(0, r); setting
m = r/(2

√
n) suffices. We will prove that the self-corrected function g is close to a degree-d polynomial on

[−m, m]n. The following lemma is the approximate analogue of Lemma 3.8, and Lemma 3.9 combined into
one.

Lemma 4.11. Let m ∈ (0, 1], δ > 0, and let h : [−m, m]n → R. If for every line L, the restriction of h to
this line hL, is pointwise δ-close to a degree-d polynomial ĥL, then h is pointwise ((2/m)n40d

δ)-close to a
degree-d, n-variate polynomial.

The proof of Lemma 4.11 is by induction. At each inductive step we build a degree-2d polynomial and
then reduce it to degree d using the following Lemma, the proof of which is in the of which is deferred until
the following subsection.

Theorem 1.5. Let m ∈ (0, 1], n ≥ 2 and p be an n-variate polynomial of total degree at most ℓ, for some
d ≤ ℓ. If for every a ∈ [−m, m]n, the univariate polynomial p0,a(t) = p(at) which is the restriction of p to
the radial line L0,a, is pointwise ε-close to a degree-d univariate polynomial on the interval t ∈ [−1, 1], then
p is pointwise η-close to p≤d (the truncation of p to degree d) on [−m, m]n for η = 2(2/m)2n18ℓ

ε.

Proof of Lemma 4.11. We will show that h is pointwise close to an n-variate degree-d polynomial Hn by
induction on the dimension n. Set δn ≜ (2/m)n40d

δ. For the base case, when n = 1, we have that h = h0,1
is pointwise δ-close to a univariate polynomial ĥ0,1 of degree d by assumption, so we let H1 = ĥ0,1 and
δ1 = (2/m)δ ≥ δ.

Assume that the statement is true for n− 1, with δn−1 = (2/m)(n−1)40d
δ. For any c ∈ [−m, m], define

h(c) : [−m, m]n−1 → R as
h(c)(x1, . . . , xn−1) ≜ h(x1, . . . , xn−1, c).

We will argue that h(c) is pointwise δn−1-close to an (n − 1)-variate polynomial of total degree at most
d. Fix i ∈ [n − 1], and a ∈ [−m, m]n−1 with ai = 0, and let a↑ = (a1, . . . , an−1, c) ∈ [−m, m]n to be
an extension of a to dimension n. As well, let ei denote the ith standard basis vector. By assumption,
ha↑,ei

: [−m, m]→ R is pointwise δ-close to some univariate degree-d polynomial, which we will denote by
ĥa↑,ei

. For every x ∈ [−m, m], we have

ha↑,ei
(x) = h(a1, . . . , ai−1, x, ai+1, . . . , an−1, c) = h(c)(a + xei) = h(c)

a,ei
(x),

and so h
(c)
a,ei(x) is δ-close to ĥa↑,ei

on [−m, m]. Thus, by the induction hypothesis, h(c) : [−m, m]n−1 → R
is pointwise δn−1-close to an (n− 1)-variate polynomial of total degree at most d, which we will denote by
H

(c)
n−1.

It remains to show that h is pointwise δn-close to an n-variate polynomial Hn of total degree at most d
on [−m, m]n. Let c0, . . . , cd ∈ [−m, m] be the scaled Chebyshev nodes ci ≜ m cos

(
π
2 (i + 1/2)/(d + 1)

)
.

Let δci : R→ R be the unique degree-d polynomial which satisfies

δci(cj) =
{

1 i = j,

0 i ̸= j.

Using δci , we build a degree at most 2d polynomial

H(x1, . . . , xn) ≜
d∑

i=0
δci(xn)︸ ︷︷ ︸
degree d

H
(ci)
n−1(x1, . . . , xn−1)︸ ︷︷ ︸

degree ≤d

.
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Next, we argue that H is pointwise close to h. Fix some b = (b1, . . . , bn−1) ∈ [−m, m]n−1 and let
b↑ = (b1, . . . , bn−1, 0) be an extension of b to dimension n. Consider the following two univariate functions
in the variable t. The first function is

hb↑,en
(t) = h(b1, . . . , bn−1, t),

which by assumption is pointwise δ-close to a univariate degree-d polynomial ĥb↑,en
(t). The second is the

polynomial H with the first n− 1 variables fixed to b,

H(b1, . . . , bn−1, t) =
d∑

i=0
δci(t)H

(ci)
n−1(b1, . . . , bn−1).

Since the H
(ci)
n−1(b1, . . . , bn−1) are constants in t, Hn(b1, . . . , bn−1, t) is a univariate polynomial of degree d.

Observe that for c0, . . . cd,

|ĥb↑,en
(ci)−H(b1, . . . , bn−1, ci)| ≤ |ĥb↑,en

(ci)− hb↑,en
(ci)|+ |h(ci)(b)−H(b1, . . . , bn−1, ci)|

≤ δ + δn−1,

where the first inequality follows because hb↑,en
(ci) = h(ci)(b) and the second follows by the inductive

hypothesis, since H(b1, . . . , bn−1, ci) = H
(ci)
n−1(b1, . . . , bn) by definition.

Applying Corollary 4.3 to the error function e(t) = ĥb↑,en
(t) − H(b1, . . . , bn−1, t), we have that for

every t ∈ [−m, m], the difference between the two degree-d polynomials is at most

|ĥb↑,en
(t)−H(b1, . . . , bn−1, t)| ≤

√
2(d + 1)(δ + δn−1).

Since this is true for every b ∈ [−m, m]n−1 and t ∈ [−m, m], we have that for every x ∈ [−m, m]n

|H(x)−h(x)| ≤ |H(x)− ĥ(x1,...,xn−1),en
(xn)|+ |ĥ(x1,...,xn−1),en

(xn)−h(x)| ≤
√

2(d+1)(δ +δn−1)+δ.

Note that for every a ∈ [−m, m]n, the restriction H0,a on the radial line L0,a is a univariate polynomial which
is pointwise (10dδn−1)-close to the degree d univariate polynomial ĥ0,a on points in the cube [−m, m]n,
since |H0,a(t)− ĥ0,a(t)| ≤ |H0,a(t)−h0,a(t)|+ |h0,a(t)− ĥ0,a(t)| ≤

√
2(d + 1)(δ + δn−1) + 2δ for every

t ∈ [−1, 1].
Applying Theorem 1.5 on H , we have that Hn ≜ H≤d is pointwise (20d(2/m)2n36d

δn−1)-close to H
on the cube [−m, m]n. Thus, for every x ∈ [−m, m]n, we have

|h(x)−Hn(x)| ≤ |h(x)−H(x)|+ |H(x)−Hn(x)|

≤ (9dδn−1) + (20d(2/m)2n36d
δn−1)

≤ 30d(2/m)2n36d
δn−1

≤ δn.

4.4.1 Proof of Theorem 1.5

Consider the monic Chebyshev polynomials T̃n(x) ≜ 21−nTn(x), with ∥T̃n(x)∥∞ = 21−n on the interval
x ∈ [−1, 1]. Then, by the extremal property that Chebyshev polynomials have the minimum maximal
absolute value among all monic polynomials of the same degree on the interval [−1, 1], we have the following
fact and the subsequent lemma.
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Fact 4.12. For every monic polynomial p(t) of degree d ≥ 1 there exists x ∈ [−1, 1] such that |p(x)| ≥ 21−d.

Corollary 4.13. Let m ≤ 1 and p(t) is a monic polynomial of degree d ≥ 1. Then, there exists x ∈ [−m, m]
such that |p(x)| ≥ md21−d.

Proof. Let p(x) = xd +
∑d−1

i=0 αix
i, and note that p(xm) = (xm)d + +

∑d−1
i=0 αi(xm)i. Then p(xm)/md

is a degree-d monic polynomial. Thus, by Fact 4.12, there exists x ∈ [−1, 1] such that |p(xm)/md| ≥ 21−d.
That is, there is x ∈ [−m, m] such that |p(x)| ≥ md21−d.

Lemma 1.6. Let p(x) =
∑d

i=0 αix
i be a degree-d polynomial and let η > 0. If |αi| ≥ η for some i ≥ 1,

then there exists x ∈ [−1, 1] such that |p(x)| ≥ 2−2d2
η.

Proof. Let ℓ be the largest index such that |αℓ| ≥ 2(−
∑ℓ

k=1 k)η; ℓ exists since |αi| ≥ η ≥ 2(−
∑i

k=1 k)η.

Note that by the maximality of ℓ, for every j > ℓ, |αj | < 2(−
∑j

k=1 k)η. Therefore,

p(x)
αℓ

=
ℓ∑

j=0

αj

αℓ
xj +

d∑
j=ℓ+1

αj

cα
xj = p≤ℓ(x)

αℓ
+ p>ℓ(x)

αℓ
.

Observe that p≤ℓ(x)/αℓ is a monic polynomial of degree at most ℓ, and thus by Fact 4.12 there exists
x ∈ [−1, 1] such that |p≤ℓ(x)|/|αℓ| ≥ 21−ℓ. On the other hand, for every x ∈ [−1, 1] we have that

|p>ℓ(x)|
|αℓ|

≤
d∑

j=ℓ+1

|αj |
|αℓ|
≤

d∑
j=ℓ+1

2−
(∑j

k=ℓ+1 k
)
≤
∑
j>ℓ

2−j ≤ 2−ℓ.

Altogether this implies that there is some x ∈ [−1, 1] such that

|p(x)|
|αℓ|

≥ |p
≤ℓ(x)|
|αℓ|

− |p
>ℓ(x)|
|αℓ|

≥ 21−ℓ − 2−ℓ = 2−ℓ,

and it follows that |p(x)| ≥ 2−ℓ|αℓ| ≥ 2−ℓ(2−
∑ℓ

k=1 k)η = (2−ℓ(ℓ+3)/2)η ≥ η2−2d2
.

Corollary 4.14. Fix η > 0, m < 1, and let p(x) =
∑d

i=0 αix
i be a degree-d polynomial. If |αi| ≥ η for

some i ∈ [d], then there exists x ∈ [−m, m] such that |p(x)| ≥ 2−2d2
mdη.

Proof. Writing p(x) = p≤ℓ(x) + p>ℓ(x) as in Lemma 1.6, and noticing p≤ℓ(x)/αℓ is a monic, degree ℓ
polynomial, we invoke Corollary 4.13 to claim, there exists x ∈ [−m, m] such that |p≤ℓ(x)|/|αℓ| ≥ 21−ℓmℓ.
While simultaneously, we have for every x ∈ [−m, m]:

|p>ℓ(x)|
|αℓ|

≤
d∑

j=ℓ+1

|αj ||m|j

|αℓ|
≤

d∑
j=ℓ+1

2
−
(∑d

k=ℓ+1 k

)
mj ≤

∑
j>ℓ

2−jmj ≤ mℓ
∑
j>ℓ

2−j ≤ 2−ℓmℓ.

Therefore, there exists x ∈ [−m, m] such that |p(x)|/|αℓ| ≥ 2−ℓmℓ, and we have |p(x)| ≥ 2−ℓmℓ|αℓ| ≥
2−2d2

mdη.

For vectors y, z ∈ Rn, denote by ⟨y, z⟩ =
∑

j∈[n] yjzj the standard inner product between them.

Lemma 4.15. For k ≥ n8d there exists y ∈ {0, . . . , k}n such that for any z(1) ̸= z(2) ∈ {0, . . . , d}n

satisfying
∑n

j=1 z
(i)
j ≤ 2d for i ∈ {1, 2}, it holds that ⟨y, z(1)⟩ ≠ ⟨y, z(2)⟩.
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Proof. Let Z = {z ∈ {−d, . . . , 0, . . . , d}n : ∥z∥0 ≤ 4d}, where ∥ · ∥0 gives the number of non-zero
coordinates. Note that z(1)−z(2) ∈ Z . Thus, it suffices to show that there exists y such that for any z ∈ Z , if
⟨y, z⟩ = 0 then z = 0. Suppose z ̸= 0, and let ℓ be such that zℓ ̸= 0. Sample y uniformly from {0, . . . , k}n.
Then,

Pr
y

[⟨y, z⟩ = 0] = Pr
[
yℓ = − 1

zℓ

∑
j ̸=ℓ

yjzj

]
≤ 1

k
.

By a union bound over all z ̸= 0,

Pr
y

[∃z : ⟨y, z⟩ = 0] ≤ |Z| − 1
k

<

( n
4d

)
(2d + 1)4d

k
≤ n8d

k
.

Thus, choosing k ≥ n8d, there exists y such that for every 0 ̸= z ∈ Z it holds ⟨y, z⟩ ≠ 0.

Let us introduce some notation. For an n-variate polynomial p(x) =
∑

I∈Nn αI
∏

j∈[n] x
Ij

j , let

p≤d(x) ≜
∑

I∈Nn:∥I∥1≤d

αI

∏
j∈[n]

x
Ij

j

be the truncation of p to degree d.

Fact 4.16. Let p(x) =
∑

I∈Nn αI
∏

j∈[n] x
Ij

j be an n-variate polynomial. Then, for every point x ∈ [−1, 1]n,

|p(x)− p≤d(x)| ≤
∑

I∈Nn:∥I∥1>d

|αI |.

Proof. Observe, that for every x ∈ [−1, 1]n, for every j, |xj | ≤ 1, and hence

|p(x)− p≤d(x)| =
∣∣∣ ∑

I∈Nn:∥I∥1>d

αI

∏
j∈[n]

x
Ij

j

∣∣∣ ≤ ∑
I∈Nn:∥I∥1>d

|αI |
∏

j∈[n]
|xj |Ij ≤

∑
I∈Nn:∥I∥1>d

|αI |.

Corollary 4.17. Let p(x) =
∑

I∈Nn αI
∏

j∈[n] x
Ij

j be a polynomial of total degree ℓ ≥ d. If for every
I ∈ Nn such that ∥I∥1 > d, we have |αI | ≤ η, then p is pointwise η̃-close to p≤d on [−1, 1]n, where
η̃ = η|{I | d < ∥I∥1 ≤ ℓ}| ≤ η(n + 1)ℓ.

We are now ready to prove Theorem 1.5.

Proof of Theorem 1.5. Let
p(x) =

∑
I∈Nn:∥I∥1≤ℓ

αI

∏
j∈[n]

x
Ij

j .

Assume by contradiction that p is not pointwise η-close to p≤d on [−m, m]n. Then, by Corollary 4.17 there
exists Ĩ such that ∥Ĩ∥1 > d and |αĨ | > (n + 1)−ℓη. Fix a = (a1, . . . , an) ∈ [−m, m]n, then the restriction
of p to the line L(0,a) is

p0,a(t) =
∑

I∈Nn:∥I∥1≤ℓ

αI

∏
j∈[n]

a
Ij

j t∥I∥1 =
ℓ∑

r=0

( ∑
I∈Nn:∥I∥1=r

αI

∏
j∈[n]

a
Ij

j

)
tr.
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By the Fourier-Chebyshev expansion, we can write each monomial tr =
∑r

k=0 βk,rTk(t), where

βk,r =


0 if k ̸≡ r mod 2,

21−r
( r

(r−k)/2
)

if k ≡ r mod 2, and k ̸= 0,

2−r
( r

(r−k)/2
)

if k = 0, and r ≡ 0 mod 2.

which gives

p0,a(t) =
ℓ∑

r=0

( ∑
I∈Nn:∥I∥1=r

αI

∏
j∈[n]

a
Ij

j

)
r∑

k=0
βk,rTk(t)

=
ℓ∑

r=0

r∑
k=0

( ∑
I∈Nn:∥I∥1=r

βk,rαI

∏
j∈[n]

a
Ij

j

)
Tk(t)

=
ℓ∑

k=0

(
ℓ∑

r=k

∑
I∈Nn:∥I∥1=r

βk,rαI

∏
j∈[n]

a
Ij

j︸ ︷︷ ︸
≜qk(a)

)
Tk(t).

Let qk(a) be the coefficient of Tk(t) in the previous expansion and let r̃ = ∥Ĩ∥1. Note that by the values of
the coefficients βk,r, we have αĨ appears either in qd+1 or in qd+2 depending on the parity of r̃; let i = d + 1
or i = d + 2 be such that i ≡ r̃ mod 2. Thus, the coefficient of the monomial

∏
j∈[n] a

Ĩj

j in qi is

βi,r̃aĨ = 21−r̃

(
r̃

(r̃ − i)/2

)
αĨ ≥ 2−r̃αĨ ≥ (2n + 2)−ℓη.

Using this, we will derive a contradiction to the following claim.

Claim 4.18. For all a ∈ [−m, m]n, |qi(a)| ≤
√

2ε.

We defer the proof of Claim 4.18 until later and complete the proof first. As ∥I∥1 ≤ ℓ for every I , let y ∈
{0, . . . , n8ℓ}n be given by Lemma 4.15 and consider the univariate polynomial q̃i(z) ≜ qi(zy1 , zy2 . . . , zyn)
in z. By the guarantee of Lemma 4.15, for any I ̸= I ′ with ∥I∥1, ∥I ′∥1 ≤ ℓ, it holds that ⟨y, I⟩ ≠ ⟨y, I ′⟩, and
thus the coefficients of q̃i(z) are exactly the same as coefficients of qi (that is, no two monomials become the
same after the substitution of zyi). Therefore, there exists a coefficient in q̃i which is at least (2n + 2)−ℓη. On
the other hand, since ⟨y, I⟩ ≤ ∥I∥1n8ℓ ≤ ℓn8ℓ, the degree of q̃i is at most ℓn8ℓ ≤ n9ℓ, and thus Corollary 4.14
implies that there is some z ∈ [−m, m], such that |q̃i(z)| ≥ 2−2n18ℓ

mn9ℓ
η ≥ ( 2

m)−2n18ℓ
η >

√
2ε. This

contradicts Claim 4.18.

Proof of Claim 4.18. Let p̂0,a(t) be the univariate degree-d polynomial which is pointwise ε-close to p0,a(t)
on t ∈ [−1, 1], and let its Fourier-Chebyshev expansion be p̂0,a(t) =

∑d
k=0 γkTk(t). Consider the error

polynomial

e(t) ≜ p0,a(t)− p̂0,a(t) =
ℓ∑

k=0
(qk(a)− γk)Tk(t),

where we define γk ≜ 0 for k > d. Note that since p0,a and p̂0,a are ε-close on [−1, 1], |e(t)| ≤ ε for all
t ∈ [−1, 1]. Letting w(t) ≜ (1− t2)−1/2 be the Chebyshev weight function, and noting that

∫ 1
−1 w(t)dt = π,
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we have,

ε2π ≥
∫ 1

−1
e2(t)w(t)dt

=
∫ 1

−1

( ℓ∑
k=0

(qk(a)− γk)Tk(t)
)2

w(t)dt

=
ℓ∑

k=0
(qk(a)− γk)2

∫ 1

−1
Tk(t)Tk(t)w(t)dt

≥ π

2

ℓ∑
k=0

(qk(a)− γk)2

≥ π

2 (qi(a))2 ,

where the first steps by the orthogonality of Chebyshev polynomials (13), and the final inequality follows
because i > d and so γi = 0. Rearranging, we conclude that |qi(a)| ≤

√
2ε.

4.4.2 Extrapolation

In this section we show that if g is pointwise close to a degree d polynomial then within B(0, r), then it must
be pointwise close to a degree-d polynomial within a bigger ball B(0, R).

Lemma 4.19. Let R > r′ > 0 be any real numbers. If g is pointwise η-close to a degree-d polynomial in
B(0, r′), then g is pointwise (12R/r′)dη-close to a degree-d polynomial on all points in B(0, R).

Proof. Let H : Rn → R be the degree-d polynomial which is η-close to g on B(0, r′). We will argue that for
any x ∈ B(0, R),

|g(x)−H(x)| ≤ (12R/r′)dη.

If x ∈ B(0, r′), then this holds by assumption, so we consider the case when x ̸∈ B(0, r′). Recall that
we define the value of g on points x ̸∈ B(0, r′) by pretending that it is a degree-d polynomial and using d + 1
points in B(0, r′) to extrapolate its value along radial lines from within the ball. In particular, let c0, . . . , cd

be the Chebyshev nodes ci ≜ (r′/∥x∥2) cos
(

π
d+1(i + 1/2)

)
, scaled so that they lie within L0,x ∩B(0, r′).

Then, the value of g(x) for x ̸∈ B(0, r′) is defined by interpolating a degree-d univariate polynomial px such
that px(ci) = g(xci) for i, and then the value of g(x) is defined as px(1).

Thus, in order to bound the distance between g(x) and H(x), it suffices to bound the distance between
px(t) and H(0,x)(t) for t = 1. Consider the error polynomial e(t) ≜ px(t)−H(0,x)(t). As e is a polynomial
of degree at most d, we can consider its Fourier-Chebyshev expansion,

e(t) =
d∑

i=0
αiTi(t∥x∥2/r′),

where Ti(t∥x∥2/r′) is the ith Chebyshev polynomial with the Chebyshev nodes back-scaled to the interval
[−1, 1]. By assumption, e(ci) ≤ η for each i, which allows us (by the same argument as in Lemma 4.2
and Corollary 4.3) to bound the coefficients |αi| ≤

√
2η. The ith Chebyshev polynomial involves at most

i + 1 terms, each of which are of degree at most i and has coefficients of value at most 2i, and therefore
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|Ti(∥x∥2/r′)| ≤ (i + 1)2i(∥x∥2/r′)i. Altogether, this allows us to bound the value of the error polynomial
on t = 1 by

|e(1)| ≤
√

2η(d + 1)2(2∥x∥2/r′)d ≤ (12R/r′)dη,

where the second inequality is by
√

2(d + 1)2 ≤ 6d for every d ≥ 1, and the last holds as x ∈ B(0, R). Since
g(x) = px(1), we have that the distance between g(x) and H(x) is at most (12R/r′)dη.

4.5 Approximate Polynomial Representation in a Large Ball

We now prove the approximate analogue of Lemma 3.10 which showed g is a degree-d polynomial over Rn.

Lemma 4.20. Let r = (4d)−6 and R > r. If APPROXCHARACTERIZATIONTEST fails with probability
at most 2/3, then g is point-wise 2(2n)45d

Rdδ-close to a degree-d, n-variate polynomial on all points in
B(0, R).

Proof. By Theorem 4.5, g restricted to any line segment LB
p,q = Lp,q ∩B(0, r) is point-wise 215d2

δ-close
to a unique univariate degree-d polynomial. Applying Lemma 4.11 (with m = r/(2

√
n)), we have that g

is pointwise 215d2(4
√

n/r)n40d
δ-close to a degree d, n-variate polynomial on every point in the hypercube

H = [−m, m]n, contained within B(0, r). We then consider a smaller ball B(0, r′) of radius r′ = m,
contained within H. By Lemma 4.19, it follows that g is point-wise 215d2(4

√
n/r)n40d(24

√
nR/r)dδ ≤

2(2n)45d
Rdδ-close to a degree-d, n-variate polynomial in B(0, R).

Finally, we are ready to prove the main lemma of this section.

Proof of Lemma 4.4. Suppose that APPROXCHARACTERIZATIONTEST fails with probability at most 2/3,
then by Lemma 4.20, g is pointwise 2(2n)45d

Rdδ-close to a degree-d polynomial in B(0, R). It remains to
bound Pr[|g(p) − APPROXQUERY-g(p)| > (12R/r)d2d+4δ], where p ∈ B(0, R). In the YES case, f is
point-wise α-close to a degree-d polynomial h, and so for any p, q

|
d+1∑
i=0

αi · f(p + iq)| = |
d+1∑
i=0

αi · (f(p + iq)− h(p + iq))| ≤
d+1∑
i=0
|αi| · α ≤ 2d+1α = δ.

Therefore, APPROXCHARACTERIZATIONTEST always passes, and APPROXQUERY-g(p) returns a value that
is 2d+3δ-close to g(p). Assume that f is not a degree-d polynomial. To query g on a point p ∈ B(0, R),
APPROXQUERY-g(p) attempts to obtain d + 1 points on the line segment LB

0,p and then interpolate g

along this line. For these points s ∈ {ckp}dk=0, APPROXQUERY-g-INBALL(s) samples an additional
N ′

4 = O(log(1/ε)) points q1, . . . , qN ′
4
∼ N (0, I), and checks whether∣∣∣ ∑

i∈[d+1]
αi · f(s + iq1)−

∑
i∈[d+1]

αi · f(s + iqj)
∣∣∣ ≤ 2d+2δ,

for all j ∈ [N ′
4]; it rejects if any of these checks fail. By the definition of gq, this is equivalent to checking

whether |gq1(s) − gqj (s)| > 2d+2δ; by Lemma 4.8, this occurs with probability at most 1/(7d), since
s ∈ B(0, r). The probability that APPROXQUERY-g-INBALL(s) doesn’t reject, yet |g(s)− APPROXQUERY-
g-INBALL(s) | > 2d+4δ, is the probability that: |g(s) − gq1(s)| > 2d+4δ, and |gq1(s) − gqj (s)| ≤
2d+3δ, (and therefore |g(s)− gqj (s)| > 2d+3δ) for every qj . By Corollary 4.9, this probability is at most
(7d)−N ′

4 < 2−N ′
4/dN ′

4 ≤ ε/(4(d + 1)), where the final inequality follows by choosing N ′
4 = O(log(1/ε)).
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As APPROXQUERY-g(p) approximately recovers the value of g on points {cip}di=0, we have that for every
i ∈ {0, . . . , d},

Pr[|g0,p(ci)− APPROXQUERY-g-INBALL(cip)| > 2d+4δ] ≤ ε

4(d + 1) .

Thus, by Lemma 4.19 and a union bound over i,

Pr[|g(p)− APPROXQUERY-g(p)| > (12R/r)d2d+4δ] = Pr[|g(p)− g0,p(1)| > (12R/r)d2d+4δ]

≤
d∑

i=0
Pr[|g0,p(ci)− APPROXQUERY-g-INBALL(cip)| > 2d+4δ] ≤ ε

4 .

5 Exact Testing over Discrete Domains

In this section we show that the test for degree-d polynomials from Section 3 can be modified to work for
(sufficiently dense) discrete domains. The main theorem of this section is as follows:

Theorem 1.3. For d, B, R > 0, let B′ ≥ 16 max{n5/2+2dd2d, B2R2/
√

n} be a multiple of B. LetL = 1
BZn

and L′ = 1
B′Zn. Given ε > 0, query access to a function f : Rn → R, and sample access to an unknown

(ε/4, R)-concentrated distribution D supported on L, there is a one-sided error, O(d5 + d2

ε log 1
ε )-query

tester for testing whether f agrees with a degree-d polynomial on L, or is ε-far from degree-d polynomials
over D. The tester queries f on points in L′.

The key idea behind our tester is to define the self-corrected function g relative to a discretized Gaussian
distribution defined over L.

Definition 5.1. Given a lattice L, and any s > 0, the discrete Gaussian G(L, s) is the probability distribution
over L such that the probability of drawing x ∈ L is ∝ τs(x) ≜ exp(−π∥x∥2/s2). (If unspecified, s = 1.)

That we are able to efficiently sample from a discrete Gaussian is guaranteed by the following lemma.

Lemma 5.2 (Lemma 2.3 in [BLP+13]). There is a probabilistic polynomial time algorithm that given a
positive integer B and parameter r ≥ Ω(

√
log n/B), outputs a sample distributed according to G( 1

BZn, r).

At a high-level, the design of our tester will follow the same strategy as the design of our exact tester from
Section 3, with several modifications to handle the lattice L. From our unknown function f , we will define a
self-corrected function g such that we have query access to g, and such that if our tests pass with sufficiently
high probability then g is a degree-d polynomial on L, and equals f on L if f is itself a degree-d polynomial.

As before, we define g on points within a small ball B(0, r); for points p ∈ L \ B(0, r) we will define
their value by extrapolating the value of g within B(0, r) by choosing d + 1 points within B(0, r) ∩ L along
the line L0,p, using them to interpolating a degree-d univariate polynomial pp, and then using pp to define
the value of g(p) (see Figure 4). In order to certify that g is indeed a degree-d polynomial, we will use the
following variant of the Local Characterization Theorem; a proof of which is given in Appendix A.

Discrete Local Characterization Theorem. Fix a > 0, M ≥ d + 1, and let S ≜ { ia
M : i ∈ N}. If

f : [0, a] → R is a univariate function such that ∆(d+1)
a

M
[f ](x) = 0, for every x ∈ S ∩ [0, a] satisfying

x + (d + 1) a
M ∈ [0, a], then f agrees with a degree-d polynomial over the points in S ∩ [0, a].
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However, for an arbitrary point p ∈ L \ B(0, r) there may not be d + 1 points on the line segment
L0,p ∩L ∩ B(0, r) — this can occur if p is sufficiently far away from 0 — and thus we cannot define pp. To
remedy this, we make two modifications. First, we assume that our distribution is (ε/4, R)-concentrated —
that 1− ε/4 fraction of the mass of the unknown distribution D is in B(0, R). We define g only on points
within B(0, R) and we will not test whether f differs from a degree-d polynomial outside of B(0, R); as
these point constitute only a small ε/4 portion of D, which we can simply fold into the error of our tester.
Second, in order to ensure that for any point p ∈ B(0, R), g is defined on at least d + 1 points on the line
L0,p within B(0, r), we define g on a finer lattice L′ ≜ r

(d+1)RL = r
BR(d+1)Z

n within B(0, r).

The Self-Corrected Function. Let R > r > 0, and let our (unknown) (ε/4, R)-concentrated distribution
D be supported over a given lattice L = 1

BZn. Let L′ ≜ r
(d+1)RL be a refinement of L. We define the

self-corrected function g, whose domain is L ∪ (L′ ∩B(0, r)), as follows. Let αi ≜ (−1)i+1(d+1
i

)
, and for

any p ∈ B(0, r) ∩ L′, and q ∈ L, let gq(p) ≜
∑d+1

i=1 αi · f(p + iq). For any p ∈ B(0, r) ∩ L′, we define

g(p) ≜ maj
q∼G(L,1)

[gq(p)].

For points p ∈ (B(0, R)\B(0, r))∩L we define the value of g(p) by interpolating a degree-d univariate
polynomial along the line L0,p as follows: Let c0, . . . , cd ∈ R be d + 1 “distinguished” points (arbitrary, but
fixed) on the line L0,p within B(0, r)∩ r

R(d+1)L; in Algorithm 6 we choose ci = ir/((d + 1)∥p∥2) and note
that these points lie within L′. Let pp be the unique univariate polynomial such that pp(ci) = g(cip) for
every i ∈ [d + 1]. We define g(p) ≜ pp(1).

Our tester is given in Algorithm 5, with corresponding subroutines in Algorithm 6.

Algorithm 5: Low-Degree Discrete Tester

1 Procedure DISCRETELOWDEGREETESTER(f, d,D, ε, R, B)
Given :Query access to f , a degree d ∈ N, sampling access to an (ε/4, R)-concentrated

unknown distribution D supported over the lattice L ≜ 1
BZn, where ε is the farness

parameter, and B is the density parameter.
2 Reject if DISCRETECHARACTERIZATIONTEST rejects;
3 for N5 ← O(ε−1) times do
4 Sample p ∼ D;
5 if p ∈ B(0, R) then
6 Reject if f(p) ̸= DISCRETEQUERY-g(p) or if DISCRETEQUERY-g(p) rejects.

7 Accept.

In the remainder of this section we will prove Theorem 1.3. However, before we are able to do so, we
require several structural results about Lattices and discrete Gaussians, which will occupy the next subsection.

5.1 Preliminaries on Lattices and Discrete Gaussians

First, we recall that many of the properties of Gaussian distributions translate over to their discrete variants.

Fact 5.3 (Fact 2 in [AGHS13]). Suppose L is a lattice, and s > 0 is a parameter. If x is distributed as
G(L, s), then for any integer t, tx is distributed as G(tL, ts).
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Algorithm 6: Discrete Subroutines

1 Procedure DISCRETECHARACTERIZATIONTEST

2 N6 ← O(d2) ;
3 for N6 times do
4 for j ∈ {1, . . . , d + 1} do
5 for t ∈ {0, . . . , d + 1} do
6 Sample p ∼ G(jL, j

√
t2 + 1), q ∼ G(L, 1); ▷ [j2(t2 + 1) vs. 1 Test.]

7 Reject if
∑d+1

i=0 αi · f(p + iq) ̸= 0;
8 Sample p ∼ G(jL, j), q ∼ G(L,

√
t2 + 1); ▷ [j2 vs. (t2 + 1) Test.]

9 Reject if
∑d+1

i=0 αi · f(p + iq) ̸= 0;

10 Sample p, q ∼ G(jL, j); ▷ [j2 vs. j2 Test.]
11 Reject if

∑d+1
i=0 αi · f(p + iq) ̸= 0;

12 Accept;
13 Procedure DISCRETEQUERY-g(p)
14 r ← d

√
n/(2B) ;

15 if p ∈ B(0, r) then
16 return DISCRETEQUERY-g-INBALL(p);

17 for i ∈ [d + 1] do
18 ci ← ir

(d+1)∥p∥2
;

19 v(ci)← DISCRETEQUERY-g-INBALL(cip) ;

20 Let pp : R→ R be the unique degree-d polynomial such that pp(i) = v(ci) for i ∈ [d + 1];
21 return pp(1);

22 Procedure DISCRETEQUERY-g-INBALL(p)
23 N ′

6 ← O(log 1
ε );

24 Sample q1, . . . , qN ′
6
∼ G

(
r

R(d+1)L, 1
)
;

25 Reject if there exists j ∈ {2, . . . , N ′
6} such that

∑d+1
i=1 αi · f(p + iq1) ̸=

∑d+1
i=1 αi · f(p + iqj);

26 return
∑d+1

i=1 αi · f(p + iq1);

We implicitly use this fact to sample random vectors from scaled discrete gaussians in Algorithm 6. Next,
we record a bound on the total variation distance between two Gaussians which is analogous to Lemma 2.1.
To state the theorem, we need the following smoothing parameter defined in [MR07] as a parameter of a
lattice with the following property: if one picks a noise vector from a Gaussian distribution with radius at least
as large as the smoothing parameter, and reduces the noise vector modulo the fundamental parallelopiped of
the lattice, then the resulting distribution is very close to uniform.

Definition 5.4. For a lattice L ⊆ Rn and a parameter ϑ > 0, the smoothing parameter ηϑ(L) is the smallest
s > 0 such that:

τ1/s (L∗ \ {0}) ≜
∑

x∈L∗\{0}
τ1/s(x) =

∑
x∈L∗\{0}

exp
(
−π∥x∥2s2

)
≤ ϑ,

where τ is defined in Definition 5.1, and L∗ ≜ {x ∈ span(L) : ∀y ∈ L, ⟨x, y⟩ ∈ Z} is the dual lattice of L.
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Observation 5.5. For any lattice L, parameter ϑ > 0, and i ∈ Z≥2, (iL)∗ = 1
iL

∗, and

ηϑ(iL) = min
s>0

{ ∑
x∈(iL)∗\{0}

exp
(
−π∥x∥2s2

)}
= min

s>0

{ ∑
x∈L∗\{0}

exp
(
−π∥x∥2s2/i2

)}
≤ i2ηϑ(L).

The next theorem follows from (a quantified version of) Theorem 3.3 of [MP13], which we prove in
Appendix C. Since ϑ is taken as a negligible function of n, so for small k, 4kϑ≪ 1. Later, while invoking it,
we will set k ≤ d + 2, which satisfies the restriction on k, and ϑ contained therein.

Theorem 5.6. Let k ∈ Z>0, ϑ ∈ R>0 be such that k ≤ 1/(4ϑ). Let L ⊆ Rn be a lattice, and let
s ∈ Rk

>0 and z ∈ Zk be such that si ≥
√

2∥z∥∞ηϑ(L) for every i ∈ [k]. If y1, . . . , yk are sampled
independently from yi ∼ G(L, si) then the distribution of

∑k
i=1 ziyi is 4kϑ-close in total variation distance

to G(gcd(z)L,
√∑k

i=1 (zisi)2).

Next, we recall a simple bound on the total variation distance incurred by shifting the center of a discrete
Gaussian. Denote by erf(·), the Gaussian error function.

Lemma 5.7 (Remark from Lemma 6 of [AGHS13]). For any full-rank lattice L ⊆ Rn, ϑ ∈ (0, 1/2), c > 1
and a parameter s such that s > (1 + 2c)ηϑ(L), the following holds: The total variation distance between
G(L, s) and G(v + L, s) for any v ∈ L is at most

erf(q)
erf(qc) ·

1 + ϑ

1− ϑ
,

where q = ∥v∥22
√

π/s.

By combining Lemma 5.7 and Observation 5.5 we obtain the following corollary, which bounds the
distance between two discrete Gaussians.

Corollary 5.8. Let i ∈ [d + 1], t be a non-negative integer, ϑ ∈ (0, 1/2), r ≤ d
√

ηϑ(L), and let L = 1
BZn.

Then, for any p ∈ B(0, r) ∩ (d + 1)!L,

dTV (G(p + iL, it),G(iL, it)) ≤ 98d2ηϑ(L).

Proof. To bound the total variation distance, we aim to apply Lemma 5.7. To do so, we need to choose c
such that it > (1 + 2c)ηϑ(iL). Observe that

(1 + 2c)ηϑ(iL) ≤ (1 + 2c)i2ηϑ(L) ≤ (1 + 2c)(d + 1)2ηϑ(L) < 12cd2ηϑ(L),

where the first inequality follows by Observation 5.5. Thus, letting c ≜ t(12d2ηϑ(L))−1 we have (1 +
2c)ηϑ(iL) < t ≤ it. Applying Lemma 5.7,

dTV(G(p + iL, it),G(iL, it)) ≤ (1 + ϑ)erf(∥p∥22
√

π/it)
(1− ϑ)erf(c∥p∥22

√
π/it)

.

Note that because erf(x) ≜ Pry∼N (0,1/2)[y ∈ [−x, x]] and the PDF of N (0, 1/2) is 1√
π

e−x2
, we have

2x√
π

e−x2 ≤ erf(x) ≤ 2x√
π

. This means that for any q > 0, e−q2

c ≤ erf(q)
erf(qc) ≤

ec2q2

c , and so if q ≤ e/c, it holds

that erf(q)
erf(qc) ≤

e
c . Because p ∈ B(0, r), q ≜ ∥p∥22

√
π/it ≤ r2√π/it ≤ e/c by our choice of c and r. Thus,

(1 + ϑ)erf(∥p∥22
√

π/it)
(1− ϑ)erf(c∥p∥22

√
π/it)

≤ 1 + ϑ

1− ϑ
(e/c) ≤ 3e/c = 98d2ηϑ(L),

where the second inequality follows because ϑ ∈ (0, 1/2).
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5.1.1 Correctness of the Discrete Low Degree Tester

We are now ready to prove Theorem 1.3. In fact, we prove a more general result, which handles lattices
parameterized by their smoothness parameter. We state this generalization next.

Theorem 5.9. Let R > r > 0 and B′, d > 0 satisfy rB′ > (d + 1)!n3/2+d. Let ϑ ≤ (192d)−1 be such that

ηϑ( 1
B′Zn) ≤ (6d)−4, and r ≤ d

√
ηϑ( 1

B′Zn). Let L = R(d+1)
rB′ Zn, L′ = 1

B′Zn, ε > 0, and f : Rn → R.

There is a one-sided error, O(d5 + d2

ε log 1
ε )-query tester for testing whether f agrees with a degree-d

polynomial on L with respect to an (ε/4, R)-concentrated distribution D supported over L.

Theorem 1.3 follows by letting B = r
R(d+1)B′, setting ϑ = 2−n, r = (d+1)n1/4

4
√

B′ , and B′ > 16n5/2+2d·d2d.
To see that the inequalities in the statement of Theorem 5.9 are satisfied, we use the following bound which
can be found in [MR07]: √

n/π

B
≤ η2−n

( 1
B
Zn
)
≤
√

n

B
.

The following lemma records the properties of g which are guaranteed by our tester.

Lemma 5.10. Assume that the conditions of Theorem 5.9 hold. If DISCRETECHARACTERIZATIONTEST

fails with probability at most 2/3, then g consistent with a degree-d polynomial within B(0, R) ∩ L, and
furthermore for every p ∈ B(0, R) ∩ L, g(p) = DISCRETEQUERY-g(p) with probability at least 1− ε

4 .

We prove the main theorem assuming that this lemma holds.

Proof of Theorem 5.9. The proof follows the same argument as the proof of Theorem 1.1, with two small
changes. First, we use Lemma 5.10 in place of Lemma 3.1. Second, since we only test points within B(0, R),
we err on those points which are not. However, since D is (ε/4, R)-concentrated, the probability mass of
these points is at most ε/4, and this is folded into the error probability of our tester.

5.2 Polynomial Representation on Lines Within a Small Ball

We turn now to proving Lemma 5.10; this will be done over the following three subsections. First, we prove
that g is consistent with a degree-d polynomial on every line within B(0, r).

Theorem 5.11. (Polynomial representation on lines) Let B, r > 0 be such that (rB/(d + 1)!n3/2+d)n > 1.
Let ϑ ≤ (192d)−1 and L = 1

BZn be a lattice such that ηϑ(L) ≤ (6d)−4. If DISCRETECHARACTER-
IZATIONTEST fails with probability at most 2/3, then for any a, b ∈ B(0, r) ∩ (d + 1)!L, there is a
degree-d univariate polynomial which is consistent with ga,b(x) = g(a + xb) on every point x such that
a + xb ∈ B(0, r) ∩ (d + 1)!L.

The proof of Theorem 5.11 follows by exactly the same argument as the proof of Theorem 3.2, using the
Discrete Local Characterization Theorem, and Lemma 5.12 in place of Lemma 3.3.

Lemma 5.12. Let B, r > 0 be such that (rB/(d + 1)!n3/2+d)n > 1. Let ϑ ≤ (64(d + 2))−1 and L = 1
BZn

be a lattice such that ηϑ(L) ≤ (6d)−4. If DISCRETECHARACTERIZATIONTEST fails with probability at
most 2/3, then for every p, q ∈ B(0, r) ∩ (d + 1)!L such that p + iq ∈ B(0, r) ∩ (d + 1)!L for every
i ∈ [d + 1], we have

∑d+1
i=0 αi · g(p + iq) = 0.
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In the remainder of this subsection, we will prove Lemma 5.12.
Let ρ denote the bound of the probability that each of the tests in the DISCRETECHARACTERIZATION-

TEST fails. That is, for every j ∈ {1, . . . , d + 1} and t ∈ {0, . . . , d + 1}, the following are bounded:

Pr
p∼G(jL,j

√
t2+1)

q∼G(L,1)

[
d+1∑
i=0

αi · f(p + iq) ̸= 0
]
≤ ρ. [j2(t2 + 1) vs. 1 Test.] (18)

Pr
p∼G(jL,j)

q∼G(L,
√

t2+1)

[
d+1∑
i=0

αi · f(p + iq) ̸= 0
]
≤ ρ. [j2 vs. (t2 + 1) Test.] (19)

Pr
p,q∼G(jL,j)

[
d+1∑
i=0

αi · f(p + iq) ̸= 0
]
≤ ρ. [j2 vs. j2 Test.] (20)

We first bound ρ, by an identical argument, used earlier in Claim 3.5 to bound ρ in the exact case:

Claim 5.13. If DISCRETECHARACTERIZATIONTEST fails with probability at most 2/3, then ρ ≤ (4d)−2.

Then we bound the probability that gq1 and gq2 differ, in the intersection of B(0, r) with (d + 1)!L:

Lemma 5.14. Let L denote the lattice 1
BZn. Let ηϑ ∈ (0, 1/2), and r ≤ d

√
ηϑ(L). Then, for every

p ∈ B(0, r) ∩ (d + 1)!L and every t ∈ S ≜ {
√

i2 + 1 : i ∈ {0, . . . , d + 1}},

Pr
q1∼G(L,t)
q2∼G(L,1)

[gq1(p) ̸= gq2(p)] ≤ 2(d + 1)
(
ρ + 196d2ηϑ(L)

)
.

Proof. We follow the proof of Lemma 3.6. Fix p, t as in the statement of the lemma. For i ∈ [d + 1], will
bound the following probability

Pr
q1∼G(L,t)
q2∼G(L,1)

[
f(p + iq1︸ ︷︷ ︸

≜m

) ̸= gq2(p + iq1)
]

= Pr
m∼G(p+iL,it)

q2∼G(L,1)

[
f(m) ̸= gq2(m)

]
,

≤ Pr
m∼G(iL,it)
q2∼G(L,1)

[
d+1∑
j=0

αi · f(m + jq2) ̸= 0
]

+ 2 dTV(G(p + iL, it),G(iL, it)), (By definition of gq2(m))

≤ ρ + 196d2ηϑ(L),

where the bound on the second term follows from Corollary 5.8, and the first term is bounded by the rejection
probability ρ, by (18). Note that we can indeed apply Corollary 5.8, since p ∈ (d + 1)!L guarantees that
p ∈ iL for every i ∈ [d + 1].

By the same argument as above, with (18) replaced by (19), for any j ∈ [d + 1], we can bound

Pr
q1∼G(L,t)
q2∼G(L,1)

[
f(p + jq2︸ ︷︷ ︸

≜m

) ̸= gq1(p + jq2)
]

= Pr
m∼G(p+jL,j)

q1∼G(L,t)

[
f(m) ̸= gq1(m)

]
,

≤ Pr
m∼G(jL,j)
q1∼G(L,t)

[
d+1∑
i=0

αi · f(m + iq1) ̸= 0
]

+ 2 dTV(G(p + jL, j),G(jL, j)), (By definition of gq1(m))

≤ ρ + 196d2ηϑ(L).
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Taking a union bound over all i, j ∈ [d + 1] gives

Pr
q1∼G(L,t)
q2∼G(L,1)

[
d+1∑
i=1

αi · f(p + iq1)︸ ︷︷ ︸
=gq1 (p)

̸=
d+1∑
i=1

d+1∑
j=1

αiαj · f((p + iq1) + jq2)
]
≤ (d + 1)

(
ρ + 196d2ηϑ(L)

)
,

Pr
q1∼G(L,t)
q2∼G(L,1)

[
d+1∑
j=1

αj · f(p + jq2)

︸ ︷︷ ︸
=gq2 (p)

̸=
d+1∑
j=1

d+1∑
i=1

αiαj · f((p + jq2) + iq1)
]
≤ (d + 1)

(
ρ + 196d2ηϑ(L)

)
.

Thus, by a final union bound, we can conclude that

Pr
q1∼G(L,t)
q2∼G(L,1)

[gq1(p) ̸= gq2(p)] ≤ 2(d + 1)
(
ρ + 196d2ηϑ(L)

)
.

An immediate corollary is the following.

Corollary 5.15. If DISCRETECHARACTERIZATIONTEST fails with probability at most 2/3, and ηϑ(L) ≤
(6d)−4, then for every p ∈ B(0, r) ∩ (d+1)!

B Zn and every t ∈ {0, . . . , d + 1},

Pr
q∼G(L,

√
t2+1)

[g(p) ̸= gq(p)] <
1

4(d + 2) .

Proof. By Claim 5.13, ρ is at most (4d)−2. Observe, for any t ∈ {0, . . . , d + 1},

Pr
q∼G(L,

√
t2+1)

[g(p) ̸= gq(p)] ≤ Pr
q1∼G(L,1)

[g(p) ̸= gq1(p)] + Pr
q∼G(L,

√
t2+1)

q1∼G(L,1)

[gq(p) ̸= gq1(p)]

≤ 4(d + 1)
(
ρ + 196d2ηϑ(L)

)
, (By Lemma 5.14)

which is at most (4(d + 2))−1, since ρ ≤ (4d)−2, and by our assumptions on ηϑ(L).

Finally, we are ready to prove Lemma 5.12, the discrete analog of Lemma 3.3.

Proof of Lemma 5.12. By Claim 5.13, ρ is at most (4d)−2. By the same argument as in the proof of
Lemma 3.3, it is sufficient to show that for q1, q2 ∼ G(L, 1), the following two events hold simultaneously
with non-zero probability, for every p, q ∈ B(0, r) ∩ (d + 1)!L such that p + iq ∈ B(0, r) ∩ (d + 1)!L for
every i ∈ [d + 1]:

d+1∑
i=0

αi · g(p + iq) =
d+1∑
i=0

αi · gq1+iq2(p + iq) (21)

d+1∑
i=0

αi · f(p + jq1 + i(q + jq2)) = 0, for every j ∈ [d + 1]. (22)

We begin with (21):

Pr
q1,q2∼G(L,1)

[
d+1∑
i=0

αi · g(p + iq) =
d+1∑
i=0

αi · gq1+iq2(p + iq)
]
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≥ Pr
q1,q2∼G(L,1)

[g(p + iq) = gq1+iq2(p + iq), ∀i ∈ {0, . . . , d + 1}]

=1− Pr
q1,q2∼G(L,1)

[∃i ∈ {0, . . . , d + 1} : g(p + iq) ̸= gq1+iq2(p + iq)]

≥1−
d+1∑
i=0

Pr
q1,q2∼G(L,1)

[g(p + iq) ̸= gq1+iq2(p + iq)]

=1−
d+1∑
i=0

(
Pr

m∼G(L,
√

i2+1)
[g(p + iq) ̸= gm(p + iq)] + 2 dTV

(
q1 + iq2,G

(
L,
√

i2 + 1
)))

. (23)

Since p + iq ∈ B(0, r) ∩ (d + 1)!L, the probability that g(p + iq) ̸= gm(p + iq) is at most (4(d + 2))−1,
by Corollary 5.15. As well, we can bound the total variation distance by 8ϑ, by applying Theorem 5.6 with
parameters k = 2, z = (1, i), s = (1, 1), and noting that si = 1 ≥

√
2iηϑ(L). Thus, (23) is at least

1−
d+1∑
i=0

( 1
4(d + 2) + 16ϑ

)
≥ 1−

(1
4 + 16(d + 2)ϑ

)
≥ 1

2 .

Next, we bound (22). Fix some j ∈ [d + 1], then

Pr
q1,q2∼G(L,1)

[ d+1∑
i=0

αi · f(p + jq1 + i(q + jq2)) ̸= 0
]

(Let z1 ≜ p + jq1, z2 ≜ q + jq2)

≤ Pr
z1∼G(p+jL,j)
z2∼G(q+jL,j)

[ d+1∑
i=0

αi · f(z1 + iz2) ̸= 0
]

+ 2
(

dTV(jq1,G(jL, j))︸ ︷︷ ︸
=0, by Fact 5.3

+ dTV(jq2,G(jL, j))︸ ︷︷ ︸
=0, by Fact 5.3

)

≤ Pr
z1∼G(jL,j)
z2∼G(jL,j)

[ d+1∑
i=0

αif(z1 + iz2) ̸= 0
]

+ 2(dTV(G(jL, j),G(p + jL, j)) + dTV(G(jL, j),G(q + jL, j)))

≤ Pr
z1∼G(jL,j)
z2∼G(jL,j)

[ d+1∑
i=0

αi · f(z1 + iz2) ̸= 0
]

+ 392d2ηϑ(L) (By Corollary 5.8)

≤ ρ + 392d2ηϑ(L). (By (20))

Finally, by a union bound over all j ∈ [d + 1], the probability of event (22) can be lower bounded,

Pr
q1,q2∼G(L,1)

[
∀j ∈ [d+1],

d+1∑
i=0

αi ·f(p+jq1 +i(q+jq2)) = 0
]
≥ 1−(d+1)(ρ+392d2ηϑ(L)) ≥ 1−o(1),

where the last inequality follows by our assumptions on ρ and ηϑ(L).
A final union bound shows that (21) and (22) hold simultaneously with non-zero probability, and the

theorem follows.

5.3 Polynomial Within a Hypercube

Next, we obtain the discrete analog of Theorem 3.2. We argue that if the conditions of Theorem 5.11 are met,
then g is consistent with a degree-d polynomial on a hypercube [−r′, r′]n ⊆ B(0, r); we take r′ = r/

√
n as

this is a large hypercube which can be inscribed within the cube such that no point in [−r′, r′]n is extremal
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on the cube, however other values of r′ work as well. This is done in two steps: in Theorem 5.11 we argue
that g is consistent with a polynomial of degree at most dn, and in Lemma 5.17 we reduce the degree to d.
As before, let ei denote the ith standard basis vector.

Lemma 5.16. Assume that the assumptions of Theorem 5.11 hold. Let r′ = r/
√

n, let d, B > 0 satisfy
2rB/

√
n > d! and let h : [−r′, r′]n → R. Then, the following holds: If for every i ∈ [n] and a ∈ [−r′, r′]n

such that ai = 0, the restriction of h to the line segment La,ei , the univariate function ha,ei is consistent with
a degree-d univariate polynomial on every input x for which a + xei ∈ [−r′, r′]n ∩ (d+1)!

B Zn, then h agrees
with an n-variate polynomial of degree at most dn on [−r′, r′]n ∩ (d+1)!

B Zn.

Proof. Let H ≜ [−r′, r′]n ∩ (d+1)!
B Zn. We will prove the lemma by induction on the dimension n; the case

n = 1 is immediate. Now, assume that the statement is true for n− 1. Let c1, . . . , cd+1 ∈ [−r′, r′]∩ (d+1)!
B Z,

be d + 1 distinct values; note that these exist since 2r′B
(d+1)! > d + 1. For each i ∈ {1, . . . , d + 1} consider the

sub-cubes H1, . . . , Hd+1 of dimension n− 1, defined as Hi ≜ [−r′, r′]n−1 ∩ (d+1)!
B Zn−1 × ci. Note that all

the line segments in Hi are also contained in H and therefore, by assumption, h is consistent with degree-d
univariate polynomials on them. Thus, we can apply the induction hypothesis to argue that h is consistent
with degree-d(n − 1) polynomials hi on each of the sub-cubes Hi. We will combine these polynomials
to form an n-variate polynomial using the following degree-d polynomials: For every i ∈ [d + 1], δi’s are
defined as,

δi(cj) ≜
{

1 i = j,

0 i ̸= j.

We argue that

h(x) =
d+1∑
i=1

δi(xn)︸ ︷︷ ︸
deg=d

·hi(x1, . . . , xn−1)︸ ︷︷ ︸
deg=d(n−1)

on the lattice points inside the cube. Fix a ∈ [−r′, r′]n−1 ∩ (d+1)!
B Zn−1 and let t be a formal variable. We

claim that the following two univariate polynomials are equal,

h(a1, . . . , an−1, t) =
d+1∑
i=1

δi(t)hi(a).

The left polynomial is of degree-d by assumption, while the right polynomial is of degree-d by definition of
δi and the fact that a is fixed. Moreover, these two polynomial agree on d + 1 points (a1, . . . , an−1, i)i∈[d+1],
and therefore they are equal.

As equality holds for every such (a, t) ∈ [−r′, r′]n, h is a polynomial of degree at most dn within
[−r′, r′]n.

Next, we argue that the degree of h is in fact at most d.

Lemma 5.17. Assume that the assumptions of Theorem 5.11 hold. Let r′ = r/
√

n, let d, B, m > 0 satisfy(
2r′B

(d+1)!(m+1)

)n
> nm, and let h : [−r′, r′]n → R be a polynomial of finite degree m. If for every radial line

in the cube [−r′, r′]n, the restriction of h to that line agrees with a univariate polynomial of degree at most d

on points in (d+1)!
B Zn, then m ≤ d.
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Proof. Consider the coefficient representation of the polynomial h(xb) in the formal variables x ∈ R and
b ∈ Rn. This representation is a polynomial of degree m in both x and b, as h is degree m. Consider αm,
the coefficient of the monomial with the highest degree (in x) in h as a polynomial in the formal variables b.

αm(b) ≜
∑

i1+···+in=m

αi1,...,in

n∏
j=1

b
ij

j ,

and note that αm ̸= 0, as otherwise h would have degree less than m.
Now, fix b to some value b∗ ∈ [− r′

m+1 , r′

m+1 ]n ∩ (d+1)!
B Zn such that αm(b∗) ̸= 0; such a point exists

since there are at most nm roots of the polynomial αm and, by assumption, there are at least( 2r′B

(d + 1)!(m + 1)

)n

> nm

many lattice points in the cube [− r′

m+1 , r′

m+1 ]n, and at least m + 1 lattice points on the line segment
L0,b ∩[−r′, r′]n. The univariate polynomial h(xb∗) in the formal variable x is of degree exactly m. By
assumption, it is consistent with a univariate polynomial of degree at most d on all points in L0,b∗ ∩ (d+1)!

B Zn.
Since there are more than m + 1 points on the line segment, these two polynomials are identical and therefore
m ≤ d.

5.4 Global Polynomial Representation

Finally, we argue that if the conditions of Theorem 5.11 are met, then g is a degree-d polynomial.

Theorem 5.18. Suppose that the assumptions of Theorem 5.11 hold, and let R > r > 0, and let d, B > 0
satisfy (rB/(d + 1)!n3/2+d)n > 1. If DISCRETECHARACTERIZATIONTEST fails with probability at most
2/3, then g is a degree-d, n-variate polynomial on the lattice L′ ≜ (d+1)R

rB Zn within B(0, R).

Proof. The proof is identical to the proof of Lemma 3.10, using Lemma 5.16 and Theorem 5.11, noting
that our choice of r, B, d satisfies the hypothesis of Lemma 5.17. Choosing L′ to be a coarser lattice than L
guarantees that for every p ∈ B(0, R), there are at least d + 1 points on the line L0,p ∩B(0, R) on which to
define the value of g(p), and therefore g is well defined on L′ within B(0, R).

Finally, we are ready to prove the main lemma, which concludes the proof of correctness for our tester.

Proof of Lemma 5.10. Suppose that DISCRETECHARACTERIZATIONTEST fails with probability at most
2/3. Then, by Theorem 5.18, g is a degree-d, n-variate polynomial. It remains to bound the probability
that g(p) ̸= DISCRETEQUERY-g(p) for p ∈ Rn ∩ L \ B(0, r). If f is itself a degree-d polynomial,
then DISCRETEQUERY-g(p) returns g(p) with probability 1, so assume otherwise. To query g on a point
p ∈ Rn ∩ L, DISCRETEQUERY-g(p) obtains d + 1 points on the line segment LB

0,p and then interpolate g
along this line. For each of these d + 1 points s, DISCRETEQUERY-g-INBALL(s) samples an additional
N ′

6 = O(log(1/ε)) points q1, . . . , qN ′
6
∼ G(L, 1), and checks whether∑

i∈[d+1]
αi · f(s + iq1) =

∑
i∈[d+1]

αi · f(s + iqj),

for all j ∈ [N ′
6]; it rejects if any of these checks fail. This is equivalent to checking whether gq1(s) ̸= gqj (s);

by Corollary 5.15, this occurs with probability at most 1/(4(d + 2)), since s ∈ B(0, r) ∩ L. The probability
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that this test returns an incorrect value is the probability that g(s) ̸= gq1(s) = gqj (s) for every qj , which
is at most (4(d + 2))−N ′

6 = 4−N ′
6/(d + 2)N ′

6 ≤ ε/2(d + 1), where the final inequality follows by choosing
N ′

6 = O(log(1/ε)). As DISCRETEQUERY-g(p) samples d + 1 points, the probability that these points are all
recovered successfully is at least 1− ε/2.

A similar argument holds for points p ∈ B(0, r) ∩ 1
BZn, and bounds the probability by 1 − ε/2 as

well.
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Appendix A A Characterization of Degree-d Polynomials

In this appendix, we show how the Local Characterization Theorem of degree-d polynomials over R follows
from known results. We begin with several definitions.

To connect finite forward differences of f with derivatives of f , we consider the discrete differential
operator. Let t = (t1, . . . , td+1) ∈ Rd+1, where ti ̸= 0 for every i ∈ [d + 1], be a vector of length d + 1,
and for any S ⊆ [d + 1], denote tS ≜

∑
j∈S tj . The discrete differential operator is defined as

Dt[f ](x) = D(t1,...,td+1)[f ](x) ≜
∑

S⊆[d+1]
(−1)|S|f (x + tS) .

Note that the derivative of f is the limit of the corresponding differential; formally,

dd+1

dxd+1 f(x) = lim
t→0

Dt[f ](x)∏
i∈[d+1] ti

. (24)

Thus, we can obtain local information about the derivative by inspecting the discrete differential. We will
indirectly evaluate the discrete differential by inspecting the forward finite difference ∆h[f ](x) (defined in
(4)). Indeed, for 1 = (1, . . . 1) ∈ Rd+1, observe that for any h ∈ R,

Dh·1[f ](x) =
∑

S⊆[d+1]
(−1)|S|f (x + h|S|) =

d+1∑
i=0

(−1)i

(
d + 1

i

)
f(x + hi) = (−1)d+1∆(d+1)

h [f ](x). (25)

We will first state a useful result from [Cie59], and sketch a variant of another result from [ALM03].

Theorem A.1. (Theorem 1 of [Cie59]) Let f : (a, b) → R be J-convex of the d-th order over (a, b), i.e.
∆(d+1)

h [f ](x) ≥ 0, for every x, and h > 0 such that a < x < x + (d + 1)h < b. If f is bounded on a set
E ⊂ (a, b) of positive measure, then f is continuous on the interval (a, b).

Theorem A.2. (A variant of Theorem 2 of [ALM03]10) Let f : (a, b)→ R such that ∆(d+1)
h [f ](x) = 0, for

every x ∈ (a, b) and h > 0, such that a < x < x + (d + 1)h < b. If f is continuous on a set S ⊂ (a, b) of
d + 1 points, then f is a degree-d polynomial over (a, b).

Proof Sketch: The proof goes through by showing that for an arbitrary α ∈ (a, b), and a large enough
M ∈ N, f agrees with a unique degree-d polynomial p, on a sequence of sets {{ iα

2nM }i∈Z ∩ (a, b)}n∈N, and
then by the continuity of f on S, f and p can be proven to be arbitrarily close on S, i.e. f(x) = p(x), for
every x ∈ S. With |S| = d + 1, this proves f is a degree-d polynomial.

We are now ready to prove the Local Characterization Theorem, restated next for convenience.

Local Characterization Theorem. Let a, b ∈ R such that a < b, and let g : (a, b) → R be a univariate,
bounded function. If for every x ∈ (a, b) and sufficiently small h > 0, such that a < x < x + (d + 1)h < b,
∆(d+1)

h [g](x) = 0, then g is a degree-d polynomial.

Proof. Since ∆d+1
h [g](x) = 0 for every x ∈ (a, b) and sufficiently small h > 0, such that a < x <

x + (d + 1)h < b, it follows that g is J-convex of the d-th order over (a, b). Since g is bounded as well over
(a, b), by Theorem A.1 g must be continuous over (a, b). Now, invoking Theorem A.2, we thus claim g is a
degree-d polynomial over (a, b).

10See also [McK67, Ger71, ALM07].

50



Next, we prove the Discrete Local Characterization Theorem which was used in Section 5.

Discrete Local Characterization Theorem. Fix a > 0, M ≥ d + 1, and let S ≜ { ia
M : i ∈ N}. If

f : [0, a] → R is a univariate function such that ∆(d+1)
a

M
[f ](x) = 0, for every x ∈ S ∩ [0, a] satisfying

x + (d + 1) a
M ∈ [0, a], then f agrees with a degree-d polynomial over the points in S ∩ [0, a].

Proof. For each i ∈ N, let Si ≜ { ia
M , . . . , (i+d)a

M } ⊂ [0, a] and let pi(t) : [0, a]→ R be the unique degree-d
polynomial satisfying pi(s) = f(s) for all s ∈ Si. We will argue that the polynomials pi are identical, and
thus equal to f on S ∩ [0, a]. First, we will argue that p0 = p1. Observe that

0 = ∆(d+1)
a

M
[f ](0) =

d+1∑
j=0

αj · f
(

ja

M

)
=

d∑
j=0

αj · f
(

ia

M

)
+ αd+1 · f

((d + 1)a
M

)
.

As p0 was defined by interpolating the values of f on S0, we have

0 =
d∑

j=0
αj · p0

(
ja

M

)
+ αd+1 · f

((d + 1)a
M

)
=

d+1∑
j=0

αj · p0

(
ja

M

)
︸ ︷︷ ︸

=0

+αd+1 · (f − p0)
((d + 1)a

M

)
,

which implies that f((d + 1)a/M) = p0((d + 1)a/M), and hence p0(t) = p1(t) for every t ∈ [0, a].
Repeating this argument for every i ∈ N, we can conclude that p0(t) = p1(t) . . . = f(t) for every
t ∈ S ∩ [0, a], where the equality with f follows because the pi’s are defined by interpolating the values of f
on the Si’s. Thus, f agrees with a degree-d polynomial on S ∩ [0, a].

Appendix B Proofs from Section 4.3

In this appendix, we provide proofs of Lemma 4.8, and Lemma 4.10. But first we state the result from [Gaj91],
that forms the basis of our Theorem 4.6:

Theorem B.1. ( [Gaj91, Theorem 8]) Let X be a linear space over the rationals, x0 ∈ R, d ∈ N, ϕ, a ∈
(0,∞), and suppose that for all x ∈ (x0−a, x0 + a) and h ∈ (−a, a), with x + (d + 1)h ∈ (x0−a, x0 + a),
f : (x0 − a, x0 + a)→ X satisfies

|∆(d+1)
h [f ](x)| ≤ ϕ.

Then, there exists a degree-d polynomial g : R→ X , such that for every x ∈ (x0−a, x0+a), |f(x)−g(x)| ≤
l′′dϕ, where l′′d ≜ nd + 2d+1l′d(2d+1− 1)nd , nd ≜ min{k ∈ N : (1 + k/d)k ≥ d}, l′d ≜

∏d
i=1(k′

i + 1), l′0 ≜ 1,
and k′

i ≜ 3 ·22i +(i−1)2i+1−1. In particular, l′d = Θ(3d ·2d2+d), nd ∈ Ω(log d)∩o(d), and l′′d = o(28d2).

Interestingly, [Gaj91] defines a function g : (a, b)→ X to be a degree-d polynomial, if ∆(d+1)
h [g](x) = 0,

for all x ∈ (a, b) and h > 0, such that a < x < x + (d + 1)h < b. Note that if f : (a, b)→ R is bounded
on (a, b), then by Theorem B.1 g : R→ R is also bounded, and hence a degree-d polynomial on the same
interval, by the Local Characterization Theorem, thus proving Theorem 4.6. We now resume the proofs:

Lemma 4.8. For every p ∈ B(0, r), and every t ∈ {0, . . . , d + 1},

Pr
q1∼N (0,(t2+1)I)

q2∼N (0,I)

[
|gq1(p)− gq2(p)| > 2d+2δ

]
≤ 4dρ + 48d5r.
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Proof. Fix some t ∈ {0, . . . , d + 1} and p ∈ B(0, r). We will bound the probability that gq1(p) and qq2(p)
are far from

∑d+1
i=1

∑d+1
j=1 αiαj · f(p + iq1 + jq2); the lemma will then follow by a union bound.

By definition, we have gq2(p) =
∑d+1

i=1 αi · f(p + iq2). Fixing an i ∈ [d + 1], we get

Pr
q1∼N (0,(t2+1)I)

q2∼N (0,I)

[
|f(p + iq1︸ ︷︷ ︸

≜z

)− gq2(p + iq1)| > δ

]
= Pr

z∼N (p,i2(t2+1)I)
q2∼N (0,I)

[∣∣∣f(z)−
d+1∑
j=1

αjf(z + jq2)
∣∣∣ > δ

]

≤ Pr
z∼N (0,i2(t2+1)I)

q2∼N (0,I)

[∣∣∣∣∣
d+1∑
j=0

αj · f(z + jq2)
∣∣∣∣∣ > δ

]
+ 2 dTV(N (0, i2(t2 + 1)I),N (p, i2(t2 + 1)I))

≤ ρ + i2(t2 + 1)r ≤ ρ + 20d4r. (By (15) and Lemma 2.2)

By a similar calculation, we have for every j ∈ [d + 1] that

Pr
q1∼N (0,(t2+1)I)

q2∼N (0,I)

[
|f(p + jq2︸ ︷︷ ︸

≜z

)− gq1(p + jq2)| > δ

]
= Pr

z∼N (p,j2I)
q1∼N (0,(t2+1)I)

[∣∣∣f(z)−
d+1∑
i=1

αif(z + iq1)
∣∣∣ > δ

]

≤ Pr
z∼N (0,j2I)

q1∼N (0,(t2+1)I)

[∣∣∣∣∣
d+1∑
i=0

α1 · f(z + iq1)
∣∣∣∣∣ > δ

]
+ 2 dTV(N (0, j2I),N (p, j2I))

≤ ρ + j2r ≤ ρ + 4d2r. (By (16) and Lemma 2.2)

Taking a union bound over i ∈ [d + 1] and j ∈ [d + 1] respectively, it follows that

Pr
q1∼N (0,(t2+1)I)

q2∼N (0,I)

[∣∣∣∣∣
d+1∑
i=1

αi · f(p + iq1)︸ ︷︷ ︸
=gq1 (p)

−
d+1∑
i=1

d+1∑
j=1

αiαj · f((p + iq1) + jq2)
∣∣∣∣∣ > 2d+1δ

]
≤ 2dρ + 40d5r,

Pr
q1∼N (0,(t2+1)I)

q2∼N (0,I)

[∣∣∣∣∣
d+1∑
j=1

αj · f(p + jq2)

︸ ︷︷ ︸
=gq2 (p)

−
d+1∑
j=1

d+1∑
i=1

αiαj · f((p + jq2) + iq1)
∣∣∣∣∣ > 2d+1δ

]
≤ 2dρ + 8d3r.

Thus, by a union bound over the two previous inequalities we can conclude that

Pr
q1∼N (0,(t2+1)I)

q2∼N (0,I)

[|gq1(p)− gq2(p)| > 2d+2δ] ≤ 4dρ + 48d5r.

Lemma 4.10. If APPROXCHARACTERIZATIONTEST fails with probability at most 2/3, then for every
p, q ∈ B(0, r) and sufficiently small h ∈ R, such that p + ihq ∈ B(0, r) for every i ∈ [d + 1], we have
|
∑d+1

i=0 αi · g(p + ihq)| ≤ 22d+5δ.

Proof. Fix p, q ∈ B(0, r) and let h ∈ R be sufficiently small so that p + ihq ∈ B(0, r) for every i ∈ [d + 1];
such h’s exist, as B(0, r) is an open ball containing p. We will argue that the following hold simultaneously
with non-zero probability over q1, q2 ∼ N (0, I):

∣∣∣ d+1∑
i=0

αi · g(p + ihq)−
d+1∑
i=0

αi · gq1+iq2(p + ihq)
∣∣∣ ≤ 22d+4δ, (26)
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∣∣∣ d+1∑
i=0

αi · f(p + jq1 + i(hq + jq2))
∣∣∣ ≤ δ, for every j ∈ [d + 1]. (27)

Assuming that these hold, we complete the proof. Fix any q1, q2 satisfying both (26), and (27). Then,

∣∣∣ d+1∑
i=0

αi · g(p + ihq)
∣∣∣ ≤ ∣∣∣ d+1∑

i=0
αi · gq1+iq2(p + ihq)

∣∣∣+ 22d+4δ (By (26))

=
∣∣∣ d+1∑

i=0
αi

( d+1∑
j=1

αj · f(p + ihq + j(q1 + iq2))
)∣∣∣+ 22d+4δ

(By definition of gq(p))

=
∣∣∣ d+1∑

j=1
αj

( d+1∑
i=0

αi · f(p + jq1 + i(hq + jq2))
)∣∣∣+ 22d+4δ

≤
∣∣∣ d+1∑

j=1
αj · δ

∣∣∣+ 22d+4δ (By (27))

≤ 2d+1δ + 22d+4δ = 2d+1(2d+3 + 1)δ ≤ 22d+5δ.

Next, we prove (26) and (27), by arguing that each holds with positive probability and then taking a union
bound. For (26), we observe

Pr
q1,q2∼N (0,I)

[∣∣∣ d+1∑
i=0

αi · g(p + ihq)−
d+1∑
i=0

αi · gq1+iq2(p + ihq)
∣∣∣ ≤ 22d+4δ

]
≥ Pr

q1,q2∼N (0,I)

[
|g(p + ihq)− gq1+iq2(p + ihq)| ≤ 2d+3δ, ∀i ∈ {0, . . . , d + 1}

]
= 1− Pr

q1,q2∼N (0,I)

[
∃i ∈ {0, . . . , d + 1} : |g(p + ihq)− gq1+iq2(p + ihq)| > 2d+3δ

]
≥ 1−

d+1∑
i=0

Pr
q1,q2∼N (0,I)

[
|g(p + ihq)− gq1+iq2(p + ihq)| > 2d+3δ

]
(By union bound)

= 1−
d+1∑
i=0

Pr
m∼N (0,(i2+1)I)

[
|g(p + ihq)− gm(p + ihq)| > 2d+3δ

]
(Letting m ≜ q1 + iq2)

> 1−
d+1∑
i=0

1
7d

= 1− d + 2
7d

>
1
2 . (Applying Corollary 4.9, as p + ihq ∈ B(0, r))

For (9), consider some j ∈ [d + 1], then

Pr
q1,q2∼N (0,I)

[∣∣∣ d+1∑
i=0

αi · f(p + jq1︸ ︷︷ ︸
≜z1

+i(hq + jq2︸ ︷︷ ︸
≜z2

))
∣∣∣ > δ

]
= Pr

z1∼N (p,j2I)
z2∼N (hq,j2I)

[∣∣∣ d+1∑
i=0

αi · f(z1 + iz2)
∣∣∣ > δ

]

≤ Pr
z1∼N (0,j2I)
z2∼N (0,j2I)

[∣∣∣ d+1∑
i=0

αi · f(z1 + iz2)
∣∣∣ > δ

]

+2
(
dTV

(
N (0, j2I),N (p, j2I)

)
+ dTV

(
N (0, j2I),N (hq, j2I)

))
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≤ Pr
z1,z2∼N (0,j2I)

[∣∣∣ d+1∑
i=0

αi · f(z1 + iz2)
∣∣∣ > δ

]
+ j2r + j2hr (By Lemma 2.2)

≤ ρ + j2r + j2hr < ρ + 8d2r. (By (17))

By a union bound over all j ∈ [d + 1],

Pr
q1,q2∼N (0,I)

[
∀j ∈ [d + 1],

∣∣∣ d+1∑
i=0

αi · f(p + jq1 + i(hq + jq2))
∣∣∣ ≤ δ

]
≥ 1− (2dρ + 16d3r),

which is at least 2/3, as ρ ≤ (30d)−2 by Claim 4.7, and we set r = (4d)−6 in Corollary 4.9. A final union
bound concludes that both (26) and (27) hold simultaneously with non-zero probability.

Appendix C Proof of Theorem 5.6

In this appendix we prove Theorem 5.6, which is an immediate consequence of the following lemma. This
lemma follows in a straightforward manner from [MP13, Theorem 3.3] . Denote by ⊕, the standard direct
sum of lattices and by ⊗, the standard tensor product, and let In denote the n× n identity matrix.

Lemma C.1. Let L ⊆ Rn be a full rank lattice, and fix k ∈ Z>0, ϑ, s1, . . . , sk ∈ R>0, and z ≜
(z1, . . . , zk) ∈ Zk such that si ≥ ∥z∥∞

√
2ηϑ(L) for every i ∈ [k]. Let y1, . . . , yk be sampled independently

from G(L, si). Then, for s ≜
√∑k

i=1(zisi)2, the total variation distance between y ≜
∑k

i=1 ziyi and
G (gcd (z)L, s) is given by

dTV (y,G (gcd (z)L, s)) = 1
2

∑
y∈gcd(z)L

∣∣∣∣ τs(y)
τs(gcd(z)L) −

τs(y)τ(L + x)
τ(L′)

∣∣∣∣ ,
where the nk-dimensional lattice L′ ≜

⊕k
i=1 s−1

i L = (S ⊗ In)−1L⊕k, for S ≜ diag(s1, . . . , sk), and
L is the sublattice of L′ containing the elements which fall in the kernel of Z ≜ (z⊤S) ⊗ In; that is,
L ≜ L′ ∩ ker(Z). As well, x is the orthogonal projection of x′ onto ker(Z), where x′ ∈ L′ : Zx′ = y.
Furthermore,

dTV (y,G (gcd (z)L, s)) ≤ 2kϑ

1− 2kϑ
.

The proof of the first part follows by recording the parameters obtained in [MP13], while the proof for
the second part is provided below:

Proof. Let ℜ : C→ R denote the real part of a complex number. From the proof of Lemma 4.1 in [MR07],
we have that for every x ∈ Rn, lattice Λ, and ϑ > 0, such that ηϑ(Λ) ≤ 1,

τ(Λ + x)︸ ︷︷ ︸
≥0

= det(Λ∗)︸ ︷︷ ︸
≥0

(
1 +

∑
w∈Λ∗\{0}

e2πi⟨x,w⟩ τ(w)︸ ︷︷ ︸
≥0

)

= det(Λ∗)
(
1 +

∑
w∈Λ∗\{0}

ℜ(e2πi⟨x,w⟩)︸ ︷︷ ︸
∈[−1,1]

τ(w)
)
∈ det(Λ∗)

(
1±

∑
w∈L∗\{0}

τ(w)
)

= det(Λ∗)
(
1± τ(Λ∗ \ {0})︸ ︷︷ ︸

≤ϑ,∵ηϑ(L)≤1

)
= det(Λ∗)(1± ϑ).
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From the proof of Theorem 3.3 in [MP13], we have ηϑ′(L) ≤
√

2ηϑ(L)/ min si ≤ 1, where ϑ′ ≜ (1 +
ϑ)k−1 − 1. And for all ϑ, k such that kϑ ∈ [0, 1] we have ϑ′ = (1 + ϑ)k−1 − 1 ≤ 2kϑ. Also, note that for
every 0 ≤ ϑ1 ≤ ϑ2, ηϑ1(Λ) ≥ ηϑ2(Λ) holds, for every lattice Λ. So, we can claim η2kϑ(L) ≤ ηϑ′(L) ≤ 1,
and hence we have that for every x ∈ Rn, τ(L + x) ∈ det(L∗)(1 ± 2kϑ) = det(L∗)[1 − 2kϑ, 1 + 2kϑ].
Now observe that

∑
y∈gcd(z)L

τs(y)
τs(gcd(z)L)︸ ︷︷ ︸

≜p(y)

= 1 =
∑

y∈gcd(z)L

τs(y)τ(L + x)
τ(L′)︸ ︷︷ ︸
≜q(y)

=
∑

y∈gcd(z)L
p(y)c · (1 + ϑ(y))︸ ︷︷ ︸

=q(y)

,

where c ≜ τs(gcd(z)L) det(L∗)/τ(L′) = τs(gcd(z)L)/τ(L′) det(L), and ϑ(y) ∈ [−2kϑ, 2kϑ] for every
y ∈ gcd(z)L. Thus, we have,

1
c

=
∑

y∈gcd(z)L
p(y)(1 + ϑ(y)) =

∑
y∈gcd(z)L

p(y)

︸ ︷︷ ︸
=1

+
∑

y∈gcd(z)L
p(y)ϑ(y)

︸ ︷︷ ︸
p(y) is a PMF

= 1 + Ey∼p(y)gcd(z)L[ϑ(y)]︸ ︷︷ ︸
∈[miny ϑ(y),maxy ϑ(y)]

∈ [1− 2kϑ, 1 + 2kϑ].

Thus, c ∈ [1/(1 + 2kϑ), 1/(1− 2kϑ)] and 1− c ∈ [−2kϑ/(1− 2kϑ), 2kϑ/(1 + 2kϑ)]. It follows that

dTV (y,G (gcd(z)L, s)) = 1
2

∑
y∈gcd(z)L

∣∣∣∣ τs(y)
τs(gcd(z)L) −

τs(y)τ(L + x)
τ(L′)

∣∣∣∣ ≤ 1
2 max

y∈gcd(z)L

∣∣∣∣1− q(y)
p(y)

∣∣∣∣
≤ 1

2 max
y∈gcd(z)L

max
c
|1− c(1 + ϑ(y))|

≤ 1
2

(
max

c
|1− c|+ max

c
c · max

y∈gcd(z)L
|ϑ(y)|

)

= 1
2

( 2kϑ

1− 2kϑ
+ 1

1− 2kϑ
2kϑ

)
= 2kϑ

1− 2kϑ
.

Finally, setting k and ϑ such that kϑ < 1/4 proves Theorem 5.6.

Appendix D Distribution-Free Approximate Tester for Additivity

Recall that a function f : Rn → R is additive if for every x, y ∈ Rn, f(x + y) = f(x) + f(y); a function
is linear if it is both additive and for every α ∈ R and x ∈ Rn, f(αx) = αf(x). In this appendix we modify
the additivity tester of [FY20] to be robust against noise. This gives us a tester for additivity with better
error parameters than the approximate degree-1 tester obtained from Theorem 1.2. Formally, given query
access to the input function f : Rn → R, sampling access to unknown (ε/4, R)-concentrated distribution D,
and constants 0 < α ∈ R and 0 < ε ∈ R, a distribution-free approximate tester for additivity distinguishes
between the following two cases with probability at least 2/3:

• YES CASE: There exists an additive function h : Rn → R such that for all p ∈ Rn:

|f(p)− h(p)| ≤ α;
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• NO CASE: For any additive function h : Rn → R:

Pr
p∼D

[|f(p)− h(p)| > 21015 ·Rn1.5α] > ε.

We say that the tester has one-sided error if, for every f satisfying the YES CASE , the tester always accepts,
with probability 1.

The main theorem of this section is the following.

Theorem D.1. Let α, ε > 0 and D be an unknown (R, ε/4)-concentrated distribution. There exists a
one-sided error, O(1

ε log 1
ε )-query for distinguishing between the case when f is pointwise α-close to some

additive function and the case when, for every additive function h, Prp∼D[|f(p)−h(p)| > O(Rn1.5α)] > ε.

The remainder of this section is organized as follows: In Section D.1, first we describe several properties
of additive functions which we will require for our tester, and give an overview of the proof of Theorem D.1.
Then, we present our tester under some constraints on the unknown D, and give informal description of
the proof technique. In Section D.2 we prove the main Theorem D.1, relying on our main Lemma D.6.
Section D.3 is devoted to prove the main Lemma D.6. Finally, in Section D.4, we show that our tester is
actually a multiplicative error distribution-free tester, without any assumption on the unknown distribution D.

D.1 Proof Overview and δ-Additive Functions

We say that a function f : Rn → R is δ-additive, if for every x, y ∈ Rn it holds that

|f(x + y)− f(x)− f(y)| ≤ δ.

Satisfying δ-additivity implies that the following inequalities hold, which will be the basis for our tester. For
every x, y, z ∈ Rn, assuming f is α-close to some additive function h, we have:

|f(x− y)− f(x) + f(y)| ≤ |h(x− y)− h(x)− h(−y)︸ ︷︷ ︸
=0

|+ 3α ≤ δ, (28)

|f(x) + f(−x)| ≤ |h(x) + h(−x)|+ 2α = |h(x)− h(x)|+ 2α ≤ δ (29)

|f(x− y)− f(x− z)− f(z − y)| ≤ |h(x− y)− (h(x− z) + h(z − y)︸ ︷︷ ︸
=h(x−y)

)|+ 3α ≤ δ (30)

Our tester (given in Algorithm 7 and Algorithm 8) follows the general outline given in the introduction for
testing linearity. First, it tests whether f satisfies δ-additivity over a set of samples drawn from the distribution
N (0, I). If this test passes with sufficiently high probability then we able to show that g — a self-corrected
function of f on B(0, r) — is O(n1.5δ)-close to an additive function h : Rn → R, and furthermore, if f
is δ-additive, then f and g (and therefore f and h) are close. To do so, we crucially rely on the following
stability theorem for additive functions which follows from [Kom89, Theorem 2].

Theorem D.2. Let r > 0 and g : B(0, r) → R. If g is δ-additive, then there exists an additive function
h : Rn → R, such that for every x ∈ B(0, r)

|g(x)− h(x)| ≤ 5n1.5δ.
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Second, we show that by the way we have constructed g, we are able to approximate its value on points
within B(0, r) with high probability. Thus, for any point B(0, r), we can estimate the distance between f
and g, and therefore between f and h, the additive function which is close to g, given by Theorem D.2.

For points p ̸∈ B(0, r), we map them to a point within B(0, r) by dividing by a contraction factor κp,
defined as

κp ≜

1 if ∥p∥2 ≤ r,⌈
∥p∥2

r

⌉
if ∥p∥2 > r.

Then, we approximate h on the corresponding point p/κp inside the ball and map h(p/κp) back to h(p).
We are now ready to formally define g.

The Self-Corrected Function. Let r be a sufficiently small rational; r ≜ 1/50 suffices. Define the
value of the self-corrected function g at a point p ∈ B(0, r) as the (weighted) median value of gx(p) ≜
f(p− x) + f(x), each weighted according to its probability mass under x ∼ N (0, I). For points p outside
of the ball, we project them into the ball by diving by a sufficiently large contraction factor that depends on
the magnitude of p.

Concretely, g : Rnb→ R is defined as follows

g(p) ≜ κp · med
x∼N (0,I)

[
gx

(
p

κp

)]
= κp · med

x∼N (0,I)

[
f

(
p

κp
− x

)
+ f (x)

]
.

The intuition for using median is that it, in the case when f is approximately additive, the median value
should allow us to approximately correct the errors in f , and thus g should be close to additive. We use the
median here, rather than the majority, because the majority is more affected by outliers.

D.2 Approximate Additivity Tester

Our tester is given in Algorithm 7, which uses subroutines given in Algorithm 8.

Algorithm 7: Approximate Additivity Tester

1 Procedure APPROXADDITIVITYTESTER(f,D, α, ε, R)
Given :Query access to f : Rn → R, sampling access to an unknown (ε/4, R)-concentrated

distribution D, a noise parameter α > 0, and a farness parameter ε > 0;
2 δ ← 3α, r ← 1/50;
3 Reject if TESTADDITIVITY(f, δ) returns Reject;
4 for N7 ← O(1/ε) times do
5 Sample p ∼ D;
6 if p ∈ B(0, R) then
7 Reject if |f(p)− APPROXIMATE-g(p, f, δ)| > 5δn1.5κp, or if APPROXIMATE-g(p, f, δ)

returns Reject.

8 Accept.

The following lemma records the properties of g that will be guaranteed by our tester.
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Algorithm 8: Additivity Subroutines

1 Procedure TESTADDITIVITY(f, δ)
Given :Query access to f : Rn → R, threshold parameter δ > 0;

2 for N8 ← O(1) times do
3 Sample x, y, z ∼ N (0, I);
4 Reject if |f(−x) + f(x)| > δ;
5 Reject if |f(x− y)− (f(x)− f(y)) | > δ;

6 Reject if
∣∣∣f (x−y√

2

)
−
(
f
(

x−z√
2

)
+ f

(
z−y√

2

))∣∣∣ > δ;

7 Accept.
8 Procedure APPROXIMATE-g(p, f, δ)

Given :p ∈ Rn, query access to f : Rn → R, threshold parameter δ > 0;
9 N ′

8 ← O
(
log 1

ε

)
;

10 Sample x1, . . . , xN ′
8
∼ N (0, I);

11 Reject if there exists j ∈ [N ′
8] such that

|(f(p/κp − x1) + f(x1))− (f(p/κp − xj) + f(xj))| > 2δ;
12 return κp (f(p/κp − x1) + f(x1)).

Lemma D.3. With r ≜ 1/50, if TESTADDITIVITY(f, δ) accepts with probability at least 1/3, then g is a
14δ-additive function inside the small ball B(0, r), and furthermore, for every p ∈ B(0, r) it holds that

Pr
x∼N (0,I)

[|g(p)− (f(p− x) + f(x))| ≥ 4δ] < 1/2.

We prove Theorem D.1 assuming that Lemma D.3 holds.

Proof of Theorem D.1. First, observe that if f is a noisy version of an additive function with noise bounded
by α, then f is a δ-additive function for δ = 3α, and we claim Algorithm 7 always accepts. It is immediate
that TESTADDITIVITY(f ) always accepts. To see that f also passes the remaining tests, observe that, since f
is α-close to an additive function h, point-wise, we can claim:

|κpgx(p/κp)− f(p)| ≤ κp |gx(p/κp)− f(p/κp)|+ |κpf(p/κp)− f(p)|
= κp |f(p/κp − x) + f(x)− f(p/κp)|︸ ︷︷ ︸

≤δ, by (28)

+ |κpf(p/κp)− h(p) + h(p)− f(p)|

≤ κpδ + |κpf(p/κp)− κph(p/κp) + h(p)− f(p)| (as h(p) = κph(p/κp))

≤ δκp + κp |f(p/κp)− h(p/κp)|︸ ︷︷ ︸
<α

+ |h(p)− f(p)|︸ ︷︷ ︸
<α

≤ δκp + ακp + α < 2δκp.

Note that APPROXIMATE-g(p, f ) never rejects, because we have |gx(p/κp)− f(p/κp)| ≤ δ.Then, by
the triangle inequality,

|gxi(p/κp)− gxj (p/κp)| ≤ 2|gx(p/κp)− f(p/κp)| ≤ 2δ.

We now show that if f is ε-far from all additive functions, then Algorithm 7 rejects with probability at least
2/3. If TESTADDITIVITY(f ) accepts with probability at most 1/3, we can reject f with probability at least
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2/3. Hence, we assume that TESTADDITIVITY(f ) accepts with probability at least 1/3. Then by Lemma D.3,
the function g is 14δ-additive, inside B(0, r). Using Theorem D.2, there is an additive function h : Rn → R,
which is 70δn1.5-close to g, on the small ball, i.e. for every x ∈ B(0, r), |g(x)− h(x)| ≤ 70δn1.5. Since f
is ε-far from any additive function, we have f is ε-far from h.

Now, we want to bound the probability that Step 2 of Algorithm 7 passes. First, we bound the
probability that APPROXIMATE-g(p, f ) fails to recover the value of g(p) within an error of 4δ. That
is, we bound the probability that |gx1(p/κp) − gxj (p/κp)| ≤ 2δ, for all j ∈ [N ′

8] (so that it doesn’t
reject), but |g(p/κp)− gx1(p/κp)| > 4δ, by the probability that for all sampled vectors xi, i ∈ [N ′

8],
|g(p/κp)− gxi(p/κp)| ≥ 4δ. By Lemma D.3, the probability that we draw N ′

8 points which satisfy this, is
less than 2−N ′

8 , which can be made ≤ ε/4 by choosing the hidden constant in N ′
8 to be large enough.

Now that we have established that — in the case we obtained query access to approximate g inside
the small ball — we get the correct approximation within 4δ with high probability, it remains to show that
we can test whether f and h are close. After arguing that g is 14δ-additive in B(0, r), it will follow using
Theorem D.2, that g is close to an additive function h : Rn → R on all points inside B(0, r). We argue that
in the YES case, if f is close to some additive function then, for every p ∈ B(0, R) (which contains the
majority of the mass of the unknown distribution D), we have |f(p)− h(p)| ≤ O(n1.5δ).

While in the NO case, since f is far from any additive function, it is also far from h, and therefore

Pr
p∼D

[|f(p)− h(p)| > 4515n2α] ≥ ε.

And also
Pr

p∼D
[|f(p)− h(p)| > 4515n2α : p ∈ B(0, R)] ≥ 3

4ε.

If TESTADDITIVITY(f ) passes with probability at least 1/3, then by Lemma D.3, g will be 14δ-additive
inside B(0, r), and for every p ∈ B(0, r), Prp∼N (0,I)[|g(p) − gx(p)| ≥ 4δ] < 1/2. Consequently, by
Theorem D.2, there would exist an additive function h : Rn → R, such that for every x ∈ B(0, r), |g(x)−
h(x)| ≤ 70n1.5δ. This gives us, for every p ∈ B(0, R),

|g(p)− h(p)| =
∣∣∣∣∣κpg

(
p

κp

)
− κph

(
p

κp

)∣∣∣∣∣ ≤ 70n1.5δκp ≤ 3500n1.5δR ≤ 7000n2δ.

Note that since f is ε-far from h we have

Pr
p∼D

[|f(p)− g(p)| > 5δn1.5κp : p ∈ B(0, R)]

≥ Pr
p∼D

[|f(p)− h(p)| > 21015n2α : p ∈ B(0, R)]

≥ 3ε

4
Indeed, the probability that Step 2 of Algorithm 7 fails to reject is at most(

Pr
p∼D

[
|f(p)− g(p)| ≤ 5δn1.5κp ∨ APPROXIMATE-g(p, f ) fails to correctly recover g(p) : p ∈ B(0, R)

])N7

≤
(
1− Pr

p∼D
[|f(p)− g(p)| > 5δn1.5κp : p ∈ B(0, R)]

+ Pr
p∼D

[APPROXIMATE-g(p, f ) fails to correctly recover g(p) : p ∈ B(0, R)]
)N7

<

(
1− 3ε

4 + ε

4

)N7

<
1
3 ,
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by choosing the hidden constant in N7 to be large enough. Therefore, Algorithm 7 rejects with probability at
least 2/3.

It now remains to prove Lemma D.3, showing that if Algorithm 7 succeeds, then g is 14δ-additive inside
B(0, r), and can be well approximated in B(0, r) with high probability by querying f on correlated points.

D.3 O(δ)-Additivity of g Inside B(0, r)

First, we record the basic, but useful observation that if the TESTADDITIVITY subroutine passes, then each
of its tests hold with high probability over N (0, I).

Lemma D.4. If TESTADDITIVITY(f ) accepts with probability at least 1/3, then

Pr
x∼N (0,I)

[|f(−x) + f(x)| ≤ δ] ≥ 999
1000 , (31)

Pr
x,y∼N (0,I)

[|f(x− y)− f(x) + f(y)| ≤ δ] ≥ 999
1000 , (32)

Pr
x,y,z∼N (0,I)

[∣∣∣∣f (x− y√
2

)
− f

(
x− z√

2

)
− f

(
z − y√

2

)∣∣∣∣ ≤ δ

]
≥ 999

1000 . (33)

Proof. Suppose for contradiction that at least one of (31), (32), and (33) does not hold. We here assume
that (31) does not hold as other cases are similar.

We accept only when all the sampled points x satisfy |f(−x) + f(x)| ≤ δ. By setting the hidden
constant in N8 to be large enough, this happens with probability at most

(
Pr

x∼N (0,I)
[|f(−x) + f(x)| ≤ δ]

)N8
<

( 999
1000

)N8

<
1
3 ,

which is a contradiction.

In order to argue that g is O(δ)-additive on points within B(0, r), we will rely on the fact that p + x is
approximately distributed as x ∼ N (0, I), if ∥p∥2 is small. By Lemma 2.2, we have a bound on the total
variation distance between x and p + x. Next, we will show that g is O(δ)-additive within B(0, r).

Lemma D.5. Suppose that (31)− (33) of Lemma D.4 hold. Then for every p, q ∈ Rn with ∥p∥2, ∥q∥2, ∥p +
q∥2 ≤ r, it holds that

|g(p + q)− g(p)− g(q)| ≤ 14δ.

The proof of this lemma will crucially rely on the following two lemmas, which say that the conclusions
of Lemma D.4 hold with high probability, even when one of the points are fixed to some p ∈ B(0, r). A
consequence of this is that we will be able to query g within a small error, with high probability.

Lemma D.6. Suppose that (31)− (33) of Lemma D.4 hold. Then, for every p ∈ Rn with ∥p∥2 ≤ r,

Pr
x∼N (0,I)

[|g(p)− (f(p− x) + f(x))| < 4δ] ≥ 113
125 . (34)

The proof of this lemma will rely on an earlier stated theorem which provides a relationship between the
majority and the median:
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Lemma 4.1. Let Ω be a sample space, g : Ω → R and D be a distribution over Ω. For any η ∈ [0, 1/4],
δ ∈ R, if Prq1,q2∼D[|g(q1) − g(q2)| < δ] > 1 − η, then Prq1∼D[|gmed − g(q1)| < δ] > 1 − 4η, where
gmed = medq∼D{g(q)}.

We provide a proof of this theorem in Appendix E. With this result in hand, we are ready to prove
Lemma D.6.

Proof of Lemma D.6. Fix a point p ∈ Rn with ∥p∥2 ≤ r. We will bound the following probability, which
can be thought as the approximate-collision probability.

A := Pr
x,y∼N (0,I)

[|(f(p− x) + f(x))− (f(p− y) + f(y))| ≤ 4δ].

Observe that

1−A = Pr
x,y∼N (0,I)

[|f(x)− f(y)− f(p− y) + f(p− x)| ≥ 4δ]

≤ Pr
x,y∼N (0,I)

[|f(x− y)− f(p− y) + f(p− x)| > 3δ]

+ Pr
x,y∼N (0,I)

[|f(x)− f(y)− f(x− y)| > δ] (By Triangle Inequality)

< Pr
x,y∼N (0,I)

[|f(x− y)− f(p− y) + f(p− x)| > 3δ] + 1
1000 (By Lemma D.4 (32))

To bound the first term, we observe, by the fact that x − p, y − p ∼ N (−p, I) and p ≈ 0, the random
variables x− p and y − p should be distributed similarly to x and y. Indeed,

Pr
x,y∼N (0,I)

[|f(x− y)− (f(p− y)− f(p− x))| > 3δ]

= Pr
x,y∼N (0,I)

[|f(x− p︸ ︷︷ ︸
≜x̃

−(y − p︸ ︷︷ ︸
≜ỹ

))− (f(p− y)− f(p− x))| > 3δ]

= Pr
x̃,ỹ∼N (−p,I)

[|f(x̃− ỹ)− (f(−ỹ)− f(−x̃))| > 3δ]

≤ Pr
x̃,ỹ∼N (0,I)

[|f(x̃− ỹ)− (f(−ỹ)− f(−x̃))| > 3δ] + 2 dTV
(
N (0, I),N (−p, I)

)
≤ Pr

x̃,ỹ∼N (0,I)
[|f(x̃− ỹ)− f(x̃) + f(ỹ)| > δ] + Pr

x̃∼N (0,I)
[|f(−x̃)− f(x̃)| > δ]

+ Pr
ỹ∼N (0,I)

[|f(−ỹ)− f(ỹ)| > δ] + 1
50 (By Triangle Inequality, and Lemma 2.2)

≤ 3
1000 + 1

50 ≤
23

1000 . (By Lemma D.4 (31)− (33))

Plugging this into our previous bound on A, we have

Pr
x,y∼N (0,I)

[|gx(p)− gy(p)| ≤ 4δ] ≥ 1−
( 1

1000 + 23
1000

)
= 1− 3

125 ,

Applying Lemma 4.1, we conclude that for every p ∈ B(0, r)

Pr
q∼N (0,I)

[|g(p)− (f(p− q) + f(q))| ≤ 4δ] ≥ 1− 4 · 3
125 = 113

125 .
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The following lemma is essentially condition (32) of Lemma D.4 with two fixed points.

Lemma D.7. Suppose that (31)− (33) of Lemma D.4 hold then, for every p, q ∈ Rn with ∥p∥2, ∥q∥2, ∥p +
q∥ ≤ r, it holds that

Pr
x,y,z∼N (0,I)

[∣∣∣∣g(p + q)−
(

f

(
p− x− z√

2

)
+ f

(
q − z − y√

2

)
+ f

(
x− y√

2

))∣∣∣∣ > 5δ

]
<

177
1000 .

Proof. Fix a pair of points p, q ∈ Rn with ∥p∥2, ∥q∥2 ≤ r. We can bound the probability

Pr
x,y,z∼N (0,I)

[∣∣∣∣g(p + q)−
(

f

(
p− x− z√

2

)
+ f

(
q − z − y√

2

)
+ f

(
x− y√

2

))∣∣∣∣ > 5δ

]
≤ Pr

x,y∼N (0,I)

[∣∣∣∣g(p + q)−
(

f

(
p + q − x− y√

2

)
+ f

(
x− y√

2

))∣∣∣∣ > 4δ

]
+ Pr

x,y,z∼N (0,I)

[∣∣∣∣f (p + q − x− y√
2

)
−
(

f

(
p− x− z√

2

)
+ f

(
q − z − y√

2

))∣∣∣∣ > δ

]

To bound the first term, observe that if x, y ∼ N (0, I), then the random variable m ≜ (x − y)/
√

2 ∼
N (0, I). Furthermore, because ∥p + q∥2 ≤ r, we can apply Lemma D.6 (34) and conclude that

Pr
x,y∼N (0,I)

[∣∣∣∣g(p + q)−
(

f

(
p + q − x− y√

2

)
+ f

(
x− y√

2

))∣∣∣∣ > 4δ

]
= Pr

m∼N (0,I)
[|g(p + q)− (f((p + q)−m) + f(m))| > 4δ] ≤ 12

125 .

To bound the second term, observe that

Pr
x,y,z∼N (0,I)

[∣∣∣∣f (p + q − x− y√
2

)
−
(

f

(
p− x− z√

2

)
+ f

(
q − z − y√

2

))∣∣∣∣ > δ

]

= Pr
x,y,z∼N (0,I)

[∣∣∣∣∣f
(

(
√

2q + y)− (x−
√

2p)√
2

)
−
(

f

(
(
√

2q + y)− z√
2

)
+ f

(
z − (x−

√
2p)√

2

))∣∣∣∣∣ > δ

]

= Pr
x̃≜x−

√
2p∼N (−

√
2p,I)

ỹ≜y+
√

2q∼N (
√

2q,I)
z∼N (0,I)

[∣∣∣∣f ( ỹ − x̃√
2

)
−
(

f

(
ỹ − z√

2

)
+ f

(
z − x̃√

2

))∣∣∣∣ > δ

]

≤ Pr
x̃,ỹ,z∼N (0,I)

[∣∣∣∣f ( ỹ − x̃√
2

)
−
(

f

(
ỹ − z√

2

)
+ f

(
z − x̃√

2

))∣∣∣∣ > δ

]
+ 2

(
dTV

(
N (0, I),N (−

√
2p, I)

)
+ dTV

(
N (0, I),N (

√
2q, I)

))
≤ 1

1000 +
√

2
25 <

81
1000 . (By Lemma D.4 (33) and Lemma 2.2)

Combining both of these bounds, we have

Pr
x,y,z∼N (0,I)

[∣∣∣∣g (p + q)−
(

f

(
p− x− z√

2

)
+ f

(
q − z − y√

2

)
+ f

(
x− y√

2

))∣∣∣∣ > 5δ

]
<

177
1000 .
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O(δ)-additivity of g within B(0, r) is an immediate consequence of these two lemmas.

Proof of Lemma D.5. Let p, q ∈ Rn be any pair of points satisfying ∥p∥2, ∥q∥2, ∥p + q∥2 ≤ r. Our aim
is to show that |g(p + q)− g(p)− g(q)| ≤ 14δ. By a union bound we show that the probability that
x, y, z ∼ N (0, I) simultaneously satisfy:∣∣∣∣g(p + q)−

(
f

(
p− x− z√

2

)
+ f

(
q − z − y√

2

)
+ f

(
x− y√

2

))∣∣∣∣ < 5δ, (35)∣∣∣∣g(p)−
(

f

(
p− x− z√

2

)
+ f

(
x− z√

2

))∣∣∣∣ < 4δ, (36)∣∣∣∣g(q)−
(

f

(
q − z − y√

2

)
+ f

(
z − y√

2

))∣∣∣∣ < 4δ, (37)∣∣∣∣f (x− y√
2

)
−
(

f

(
x− z√

2

)
− f

(
z − y√

2

))∣∣∣∣ < δ (38)

is at least 1 − (177/1000 + 2 · 12/125 + 1/1000) = 63/100 > 0. Probabilities for (35), and (38)
follow by Lemma D.7, and Lemma D.4 (32), respectively. For (36) and (37) we are using the fact that
(x − z)/

√
2, and (z − y)/

√
2 are distributed as N (0, I) and apply Lemma D.6 (34). Fixing such a triple

(x, y, z), we conclude that

|g(p + q)− g(p)− g(q)| ≤
∣∣∣∣g(p + q)−

(
f

(
p− x− z√

2

)
+ f

(
q − z − y√

2

)
+ f

(
x− y√

2

))∣∣∣∣
+
∣∣∣∣f (p− x− z√

2

)
+ f

(
q − z − y√

2

)
+ f

(
x− y√

2

)
− g(p)− g(q)

∣∣∣∣
≤5δ +

∣∣∣∣f (p− x− z√
2

)
+ f

(
x− z√

2

)
− g(p)

∣∣∣∣
+
∣∣∣∣f (q − z − y√

2

)
+ f

(
z − y√

2

)
− g(q)

∣∣∣∣
+
∣∣∣∣f (x− y√

2

)
− f

(
x− z√

2

)
− f

(
z − y√

2

)∣∣∣∣ ≤ 14δ.

Therefore, g is 14δ-additive within B(0, r).

With this we are ready to prove Lemma D.3.

Proof of Lemma D.3. g is 14δ-additive by Lemma D.5. And, gx(p) = f(p−x) + f(x) is a good estimation
(up to 4δ) for g(p) with high probability

(
113
125 > 1

2

)
for x ∼ N (0, I) by Lemma D.6(34).

D.4 Multiplicatively-Approximate Distribution-Free Additivity Tester

In this section, we show that a small adaption of our tester give us a distribution-free tester for multiplicatively
approximate additivity, without any precondition on the unknown distribution D (such as assuming that it is
concentrated). After removing the condition of sampled points being inside B(0, R), the adapted tester is
represented in Algorithm 9.

We note that the subroutines in Algorithm 8 remain the same and still sample points from N (0, I), in
order to check that f satisfies the characterization properties, and to approximate g inside B(0, r).
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Algorithm 9: Distribution-Free Approximate Additivity Tester With Multiplicative Error

1 Procedure MULTAPPROXADDITIVITYTESTER(f,D, α, ε, R)
Given :Query access to f : Rn → R, sampling access to an unknown (ε/4, R)-concentrated

distribution D, noise parameter α > 0, farness parameter δ > 0;
2 δ ← 3α, r ← 1/50;
3 Reject if TESTADDITIVITY(f, δ) returns Reject;
4 for N9 ← O(1/ε) times do
5 Sample p ∼ D;
6 Reject if |f(p)− APPROXIMATE-g(p, f, δ)| > 5δn1.5κp or if APPROXIMATE-g(p, f, δ)

returns Reject.
7 Accept.

Distribution-Free Multiplicatively-Approximate Tester for Additivity. Given query access to the input
function f : Rn → R, sampling access to unknown distributionD, as well toN (0, I), a parameter 0 < α ∈ R
and a constant 0 < ε ∈ R, a distribution-free, multiplicative-approximate tester for additivity distinguishes
between the following two cases with probability at least 2/3:

• YES CASE: There exists an additive function h : Rn → R such that for all p ∈ Rn:

|f(p)− h(p)| ≤ α;

• NO CASE: For any additive function h : Rn → R:

Pr
p∼D

[|f(p)− h(p)| > 600n1.5ακp] > ε.

Correctness of our tester, given in Algorithm 9, follows from this theorem.

Proof. The proof follows the same path as for Theorem D.1. We only adapt the Algorithm 9 to now test all
points sampled by D. In the YES CASE, the tests always accept. Indeed the TESTADDITIVITY(f ) subroutine
passes with probability 1, and we claim APPROXIMATE-g(p, f ) never rejects and returns an approximate
value κpgx1

(
p

κp

)
, when queried g(p) = κpg

(
p

κp

)
, where x1 ∼ N (0, I). Recall that in the YES CASE,∣∣∣gx1

(
p

κp

)
− f

(
p

κp

)∣∣∣ ≤ δ = 3α. Therefore we have, by triangle inequality, for every p, x1 ∈ Rn,∣∣∣∣∣f(p)− κpgx1

(
p

κp

)∣∣∣∣∣ ≤
∣∣∣∣∣f(p)− κpf

(
p

κp

)∣∣∣∣∣+ κp

∣∣∣∣∣f
(

p

κp

)
− gx1

(
p

κp

)∣∣∣∣∣ ≤ α + ακp + δκp ≤ 2δκp.

Last inequality by f being point-wise close to an additive function. Thus Step 4 in Algorithm 9 always
passes.

In the NO CASE, we reject with probability at least 2/3. Indeed, if TESTADDITIVITY(f ) rejects with
probability > 2/3 we are done. So, assume that it accepts with probability at least 1/3, then we see that the
premise of Lemma D.3 holds.

We first bound the probability of Step 4 of Algorithm 9 to pass. For this we use the fact that the probability
that g̃(p) ≜APPROXIMATE-g(p, f ) fails to approximate g withing 6δ error is at most ε

2 as we proved for
Theorem D.1.

Pr
p∼D

[Step 6 passes] ≤ Pr
p∼D

[
|f(p)− g̃(p)| < 5δn1.5κp

]
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≤ Pr
p∼D

[
|f(p)− g(p)| < 20δn1.5κp ∨ |g̃(p)− g(p)| > 6δ

]
≤ 1− Pr

p∼D

[
|f(p)− g(p)| ≥ 20δn1.5κp

]
+ Pr

p∼D
[|g̃(p)− g(p)| > 6δ]

≤ 1− Pr
p∼D

[
|f(p)− g(p)| ≥ 20δn1.5κp

]
+ ε

2
≤ 1− ε

2 .

For the last inequality we have to bound the probability that f and g are far, say

Pr
p∼D

[
|f(p)− g(p)| ≥ 20δn1.5κp

]
≥ ε,

for that we use Theorem D.2 to show that there exist an additive function h : Rn → R, such that for every
x ∈ B(0, r), |g(x)− h(x)| ≤ 150n1.5δ. This gives us, for every p ∈ Rn,

|g(p)− h(p)| =
∣∣∣∣∣κpg

(
p

κp

)
− κph

(
p

κp

)∣∣∣∣∣ ≤ 150n1.5δκp.

Note that since f is ε-far from any additive function, it is also ε-far from h and with probability ε we
draw p ∼ D that satisfies |f(p)− h(p)| > 200δn1.5κp. For these p, it holds that

200δn1.5κp < |f(p)− h(p)| < |f(p)− g(p)|+ |g(p)− h(p)| ≤ |f(p)− g(p)|+ 150δn1.5κp,

implying that |f(p)− g(p)| > 50δn1.5κp.

Appendix E Proof of Lemma 4.1

In this appendix we prove the following lemma which gives a sufficient condition for the median of any
distribution to be close to a random element sampled from that distribution.

Lemma 4.1. Let Ω be a sample space, g : Ω → R and D be a distribution over Ω. For any η ∈ [0, 1/4],
δ ∈ R, if Prq1,q2∼D[|g(q1) − g(q2)| < δ] > 1 − η, then Prq1∼D[|gmed − g(q1)| < δ] > 1 − 4η, where
gmed = medq∼D{g(q)}.

Proof. Define S≤ ≜ {q ∈ Ω : g(q) ≤ gmed}, and S≥ ≜ {q ∈ Ω : g(q) ≥ gmed}. Since, gmed is the median
of the set {g(q) : q ∈ Ω} over q ∼ D,

Pr
q∼D

[q ∈ S≤] = Pr
q∼D

[q ∈ S≥] = 1
2 . (39)

Suppose for contradiction that the following hold:

Pr
q1,q2∼D

[|g(q1)− g(q2)| < δ] > 1− η, (40)

Pr
q1∼D

[|gmed − g(q1)| < δ] ≤ 1− 4η, (41)

By (41), for q1 ∼ D, g(q1) will be at least δ-far from gmed with probability more than 4η. We will argue that
for q2 ∼ D, g(q2) will be at least δ-far from g(q1), with probability more than η, contradicting (40).
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Suppose that q1 ∈ S≤. Then, for any q2 ∈ S≥, we have

|g(q2)− g(q1)| ≥ |g(q2)− gmed|+ |gmed − g(q1)| ≥ 0 + δ = δ.

Similarly, if q1 ∈ S≥, then for any q2 ∈ S≤,

|g(q2)− g(q1)| ≥ |g(q2)− gmed|+ |gmed − g(q1)| ≥ 0 + δ = δ.

Therefore,

Pr
q1,q2∼D

[|g(q1)− g(q2)| ≥ δ]

≥ Pr
q1∼D

[q1 ∈ S≤] · Pr
q1∼D

[|gmed − g(q1)| ≥ δ | q1 ∈ S≤] · Pr
q2∼D

[q2 ∈ S≥]

+ Pr
q1∼D

[q1 ∈ S≥] · Pr
q1∼D

[|gmed − g(q1)| ≥ δ | q1 ∈ S≥] · Pr
q2∼D

[q2 ∈ S≤]

= 1
4

(
Pr

q1∼D
[|gmed − g(q1)| ≥ δ | q1 ∈ S≤] + Pr

q1∼D
[|gmed − g(q1)| ≥ δ | q1 ∈ S≥]

)
(By (39))

= 1
4

(
Pr

q1∼D
[|gmed − g(q1)| ≥ δ]

)
>

4η

4 = η. (By (41))
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