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Abstract

Given i.i.d. samples from an unknown distribution over a large domain [N ], approximating
several basic quantities, including the distribution’s support size, its entropy, and its distance
from the uniform distribution, requires Θ(N/ logN) samples [Valiant and Valiant, STOC 2011].

Suppose, however, that we can interact with a powerful but untrusted prover, who knows the
entire distribution (or a good approximation of it). Can we use such a prover to approximate (or
rather, to approximately verify) such statistical quantities more efficiently? We show that this
is indeed the case: the support size, the entropy, and the distance from the uniform distribution,
can all be approximately verified via a 2-message interactive proof, where the communication
complexity, the verifier’s running time, and the sample complexity are Õ(

√
N). For all these

quantities, the sample complexity is tight up to polylogN factors (for any interactive proof,
regardless of its communication complexity or verification time).

More generally, we give a tolerant interactive proof system with the above sample and com-
munication complexities for verifying a distribution’s proximity to any label-invariant property
(any property that is invariant to re-labeling of the elements in the distribution’s support). The

verifier’s running time in this more general protocol is also Õ(
√
N), under a mild assumption

about the complexity of deciding, given a compact representation of a distribution, whether it
is in the property or far from it.
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1 Introduction

Given sample access to an unknown discrete distribution over a large domain [N ], what can we
learn about the distribution’s properties? How many samples are required, and what is the com-
putational complexity of learning? These are basic questions in statistics and in computer science.
In particular, the problems of approximating the distribution’s (Shannon) entropy or its support
size, and applications thereof, have a long history of study spanning several fields. For additive ap-
proximation, Valiant and Valiant [VV10, VV11], following Raskhodnikova et al. [RRSS09], showed
that Θ(N/ logN) samples are necessary and sufficient, where N is the size of the domain.

In this work, we study a new question: what is the complexity of verifying such quantities?
Suppose that an untrusted prover, who knows the distribution, claims that the entropy is k or that
the support size is M . Perhaps the untrusted prover claims that the distribution is close to uniform
over its domain, or that it has some other property. Can the prover provide a proof of approximate
correctness for such claims? We are interested in proofs that can be verified using fewer samples
and computational resources than it would take to approximate these quantities on our own. More
generally: which distribution properties can be verified efficiently? This continues a central theme
in theoretical computer science: studying the resources needed to verify that a computational task
was performed correctly, and comparing them with the resources needed to perform the task.

1.1 Our Results

We show that, for all three of these quantities, and for the general class of label invariant distribu-
tion properties (see below), approximate verification can be very efficient. Verification is performed
via an interactive proof system [GMR85], where a probabilistic verifier has sampling access to the
distribution and communicates with an untrusted prover. This continues a study of proof systems
for distribution properties initiated by Chiesa and Gur [CG18]. Drawing inspiration from the prop-
erty testing literature [GGR98, RS96], if the prover’s claim is approximately correct, the verifier
accepts with high probability. If the claim is far from correct, no matter what strategy a cheating
prover might follow, the verifier rejects with high probability. For verifying the entropy, we show:

Theorem 1.1 (Verifying entropy). There exists an interactive proof system, where the prover and
the verifier both get as input an integer N and parameters k, σ > 0, as well as sampling access to
an unknown distribution D over domain [N ], with the following properties:

• Completeness: If H(D) = k and the prover follows the protocol, the verifier accepts w.h.p.1,
where H(D) is D’s Shannon entropy.

• Soundness: If |H(D) − k| ≥ σ, then for every (computationally unbounded) prover strategy,
the verifier rejects w.h.p. over its samples and coin tosses.

• Complexity: The protocol consists of 2 messages. The communication complexity, sample
complexity, and verifier runtime are all Õ(

√
N) · poly(1/σ).

See Section 1.1.2 for further discussion. We note that the sample complexity is nearly-optimal
(for any interactive proof, regardless of its communication or round complexities). The verifier
uses private coins. The honest prover can be implemented using poly(N, 1/σ) samples (see Remark
2.3), but its running time is quasi-polynomial in N (see Remark 2.2). Reducing the honest prover’s
running time to be polynomial in N is a natural and important goal for future study.

1It suffices for k to be within a Θ̃(σ/ logN) (additive) term from H(D).
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Support size and distance from uniform. We get a similar result to Theorem 1.1 for verifying
the statistical (L1) distance from the uniform distribution, up to a σ additive error. We also get

a similar result for verifying the support size. The prover claims that the support size is M̃ . If
the prover is honest, then the verifier will accept w.h.p. If the distribution is σ-far (in statistical
distance) from having the claimed support size, then, no matter how the prover cheats, the verifier
will reject w.h.p. This latter protocol can be used for additive approximation of the support size,
under a promise that the probability of each element in the support of the distribution is at least
1/N (this is the standard formulation of the problem). See Section 2.3 for further details.

1.1.1 Verifying General Label-Invariant Properties

Our main result is a general proof system for approximately verifying any label-invariant distribution
property. In the spirit of property testing, we focus on verifying that a distribution has (or is close
to having) a property, such as being uniform over the domain.

A distribution property is a set of distributions (similarly to the way a language is a set of strings),
parameterized by the size of the domain N . Label-invariant properties (sometimes referred to as
symmetric properties) are a natural class of distribution properties. As the name suggests, changing
the “labels” of elements in the support of a distribution should not change membership in a label-
invariant property. More formally, for a distribution D over the domain [N ], and a permutation
π : [N ] → [N ], we let π(D) be the distribution obtained by sampling from D and applying the
permutation π to the outcome. A property P is label-invariant if for every distribution D ∈ P,
and every permutation π over D’s domain, π(D) ∈ P. Many natural properties are label-invariant:
indeed, this is the case for the properties of being uniform, having entropy k, or having support size
M . Another example is the property of being m-grained, where the probabilities of all elements
are integer multiples of 1/m [GR21]. We measure the distance of a distribution D from a property
P by D’s total variation distance to the closest distribution in P.

Theorem 1.2 (Main result: tolerant verification of label-invariant properties). For every label-
invariant property P, there exists an interactive proof system, where the prover and the verifier
both get as input an integer N and proximity parameters εc, εf ∈ [0, 1] where εc < εf , as well as
sampling access to an unknown distribution D over support [N ], and the following properties hold:

• If D is εc-close to the property (i.e. D is at statistical distance at most εc from a distribution
that has the property) and the prover follows the protocol, then the verifier accepts w.h.p.

• If D is εf -far from the property (its statistical distance from every distribution in the property
is at least εf ), then no matter how the prover cheats, the verifier rejects w.h.p.

The protocol consists of 2 messages. Taking ρ = εf − εc, the communication complexity and the

verifier’s sample complexity are Õ(
√
N) · poly(1/ρ). If the property has an efficient approximate

decision procedure (Definition 2.6 below), then the verifier’s runtime is also Õ(
√
N) · poly(1/ρ).

We emphasize that the completeness requirement is tolerant [PRR06]: the verifier should accept
even if the distribution is not in the property, so long as it is close to the property. The complexity
is polynomial in the gap (εf − εc) between the distances. Tolerant verification can be used to
approximately verify the distribution’s distance to the property: if the prover claims the distance
is δ, we can verify this (up to distance ρ) by setting εc = δ and εf = δ+ ρ in our proof system. See
Section 1.2 for related work on property and distribution testing.
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Many of the remarks made after Theorem 1.1 also apply here: the verifier uses private coins.
The honest prover can be implemented using poly(N, 1/ρ) samples, but its running time is super-
polynomial in N (see Remark 2.2). The sample complexity is optimal up to poly(logN, 1/ρ) factors.

The verifier’s runtime is small so long as the property satisfies a mild approximate decision
condition condition. In a nutshell, this assumes the existence of a polynomial-time procedure A
that, given a histogram of the distribution’s probabilities, accepts if the distribution is in the prop-
erty and rejects if the distribution is σ-far from the property. The histogram is defined as follows:
we bucket the elements in the domain according to their (approximate) probabilities, and the his-
togram specifies the number of elements in each bucket. In more detail, we round each element’s
probability down to the nearest value eiτ/N for an integer i, where τ is an approximation param-
eter that is polynomial in σ. We refer to this as the distribution’s τ -approximate histogram (or
bucket histogram), and note that a distribution’s histogram gives sufficient information for approx-
imating the distribution’s distance from a label-invariant property. We can ignore the elements
whose probabilities are very small, so the τ -approximate histogram can be represented using only
O(log2N/τ) bits. The approximate decision procedure should run in time that is polynomial in
this representation, i.e. in poly(logN, 1/σ) time. See Section 2.4 and Definition 2.6 for further
discussion.

Remark 1.3 (Delegating the distance computation). While we find the efficient approximate deci-
sion property described above quite mild, we can also obtain an interactive proof protocol under the
much milder requirement that the approximate decision procedure A runs in space that is polyno-
mial in the histogram’s representation and in the error parameter σ. This can be done by delegating
A’s computation to the untrusted prover using the IP = PSPACE protocol [LFKN92, Sha92]. Note
that this protocol is not doubly-efficient [GKR15], so this might increase the runtime of the honest
prover, as well as the round complexity. Other interactive proof protocols [GKR15, RRR16] can
give better round complexity or prover runtime under different assumptions on A’s complexity.

Verifying the distance from the uniform distribution is an immediate special case of Theorem
1.2. The proof systems for verifying the entropy and support size also follow, though a bit more
care is needed to translate the statistical distance from a property into a guarantee about the
approximate correctness of a quantity of interest (e.g. relating D’s statistical distance from a
distribution of entropy k to the difference between D’s entropy and k). See Section 2.3.

1.1.2 Further Remarks

Optimal sample complexity. Extending a result of [CG18], we show that Ω(
√
N) samples are

essential for any verification protocol for the quantities we study, regardless of its communication
complexity or the verifier’s running time (see Appendix B). As noted above, this implies that the
sample complexities of Theorems 1.1 and 1.2 are optimal up to poly(logN, 1/σ) factors.

Intuitively, the lower bound holds because the verifier can’t say anything about the prover’s
claim before it sees a collision (two appearances of the same element). By a birthday paradox
argument, this requires

√
N samples. Our results show that once Õ(

√
N) samples are allowed, the

situation becomes dramatically different: we can verify a rich class of properties very efficiently.

Comparison to prior results. For verifying general distribution properties, it was known how
to obtain either: (i) small sample complexity with large communication and verification time, or (ii)
small communication complexity with large sample complexity and verification time. The former
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follows using a protocol of Chiesa and Gur [CG18]: the prover sends a complete description of a
distribution D̃. The verifier checks that D̃ is close to the property, and then runs a distribution
tester to verify that the alleged distribution D̃ is ε-close to the actual distribution D. This can be
done using O(

√
N/ε2) samples [BFF+01, VV14, Gol20b]. Moreover, the protocol is non-interactive,

using only a single message, and the honest prover runtime is polynomial in N . However, the
verification time and the communication are quasi-linear in N . In the other direction, the verifier
can ignore the prover and learn (an approximation to) the entire distribution D on its own (see
Section 3.30). This requires no communication, but the sample complexity and verification time
are linear in N .

In contrast to the above solutions, our focus in this work is on verification that is simultaneously
efficient in terms of the verifier’s running time, of the communication complexity, and of the sample
complexity. In our protocols, all of these complexity measures are bounded by Õ(

√
N) · poly(1/σ).

In particular, our results give a quadratic improvement over the communication complexity and
verification time of the Chiesa and Gur protocol, and a quadratic improvement over the sample
complexity and verification time of the standalone tester.

Verifying upper and lower bounds. We note that a lower bound on the distance from the
uniform distribution is significantly easier to verify. I.e., verifying that an unknown distribution
is far from uniform can be done using the celebrated protocol for the statistical distance problem
[GMR85, GMW91, SV03]: the verifier flips a coin, samples either from the unknown distribution
or the uniform distribution, sends the result to the prover, and asks the prover to reconstruct its
coin flip. This requires only a single sample and logarithmic communication! On the other hand,
verifying an upper bound on the distance from the uniform distribution is significantly harder, and
requires at least

√
N samples (see Appendix B). There is an analogous gap between the complexity

of verifying upper bounds on the distribution’s entropy (which is easier - indeed, we use an entropy
upper bound protocol in our main construction, see below), and verifying lower bounds (which is
hard). In particular, in our setting, where the verifier only gets sample access to the distribution,
the complexity of verification is not closed under complementation. We remark that this is very
different from the situation in the white-box setting, where the verifier is given an explicit circuit
that can be used to sample from the distribution (a setting studied in the statistical zero-knowledge
literature). See Section 1.2 and the survey by Goldreich and Vadhan [GV11] for further discussion.

1.2 Wider Perspective

In this work, we study the question of verifying properties of an unknown distribution using fewer
resources than it would take to assert or even approximate the properties. We study the power of
interactive proof-systems, introduced by Goldwasser, Micali and Rackoff [GMR85], in this setting.
This builds on a line of work that studies the power of sublinear time verifiers, who cannot read
the entire input [EKR04, RVW13, GR18], on verifying properties of distributions using a small
number of samples [CG18], and on verifying the result of machine learning algorithms using a small
number of labeled examples [GRSY21]. In particular, Chiesa and Gur [CG18] introduced and
studied interactive proofs for distribution verification. They showed upper and lower bounds for
interactive and non-interactive (1-message) verification. Focusing on the sample and communication
complexities of verification, they show that there exist properties for which distribution verification
can be much less expensive than distribution testing.
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Property testing and distribution testing. Following Chiesa and Gur [CG18], our work
builds on the notion of distribution testing, studied in the field of property testing [GGR98, RS96].
Distribution testing is a special case of property testing, where the object being tested is a distri-
bution over a large domain, and the tester can access the distribution by sampling it. Similarly
to our work, the goal is to reject distributions that are far from the property and to accept dis-
tributions that are in the property. In tolerant testing, introduced and studied by Parnas, Ron
and Rubinfeld [PRR06], we add the requirement that distributions that are close to the property
will also be accepted. See the book by Goldreich [Gol17] and the survey by Cannone [Can15], and
the references therein, for further background. The main difference between this literature and our
work is that we allow a distribution verifier to also communicate with a powerful but untrusted
prover, who knows the distribution.

We elaborate on the works most closely related to ours in the the standalone distribution testing
model, focusing on testing uniformity, support size and entropy. Uniformity testing is a foundational
and widely-studied problem: Given a distribution over the domain [N ], the goal is distinguishing
the case where the distribution is uniform over [N ] from the case where it is ε-far from uniform (in
statistical distance). In the context of property testing, this problem was first studied by Goldreich
and Ron [GR00] (under a different phrasing), who showed a Θ(

√
Nε−4) upper bound. Following

their work, through a series of works by Batu et al. [BFR+00, BFF+01], Chan et al. [CDVV14],
Acharya et al. [ADK15], and Diakonikolas [DKN15], it was shown that O(

√
Nε−2) samples are

sufficient and necessary to test uniformity. Paninski [Pan08] showed a matching lower bound. See
also Goldreich [Gol20a].

For tolerant testing, a series of works by Raskhodnikova, Ron, Shpilka, and Smith [RRSS09],
Valiant [Val11], and Valiant and Valiant [VV10] resulted in sample complexity lower bounds of
Ω(N/ logN) for tolerant uniformity testing, entropy estimation and support size. Matching upper
bounds were shown by Valiant and Valiant [VV11]. Further optimal results relating to estimation
of label-invariant properties under different risk measures retain a similar sample complexity with
relation to the domain size, and can be found in [JVHW15, WY16, JHW18, HJW18]. As demon-
strated by the above results, in the stand-alone distribution testing setting (without a prover),
tolerant testing of a property can be significantly harder than non-tolerant testing (e.g. this is
the case for distribution uniformity testing). Cannon, Jain, Kamath, and Li [CJKL21] recently
showed tradeoffs between the promise parameters and the sample complexity for fundamental tol-
erant testing problems. Chakraborty et al. [CFG+21] show that for label-invariant properties, the
gap between tolerant and non-tolerant distribution testing can be at most quadratic.

White-box vs. Black-Box access to D. Approximating the entropy of a distribution, or
determining whether two distributions are close or far, are basic problems in computer science and
statistics. They have been studied in different models, and the complexities of these problem differ
according to the type of access we are granted to the distributions. In the black-box model, we are
granted only sampling access to the distributions. This is the focus of our work and the distribution
testing literature (see above). These problems have also been studied extensively in the white-box
model, where we are given the description of a sampling device, such as a Boolean circuit. The
distribution is generated by feeding a uniformly random input to this circuit. The study of these
problems in the white-box model is quite different from the black-box model (which is the focus of
our work). For example, sample complexity is no longer an issue in the white-box model: we have a
succinct description of the entire distribution! We can use this description to generate samples or to
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conduct other computations. Indeed, the focus is on verification time that is poly-logarithmic in the
distribution’s support size. The white-box variants of entropy approximation and of approximating
the distance between distributions are known to be complete for the complexity class Statistical
Zero Knowledge [GSV99, SV03, Vad04]. See Goldreich and Vadhan [GV11] for a survey on the
study of these problems in the two models.

2 Technical Overview

We focus on proving Theorem 1.2: a proof system for label-invariant properties. After setting up
the notation, we present in Section 2.1 a simplified / idealized version of our protocol that highlights
the main ideas. This simplified version uses 4 messages. In Section 2.2 we discuss complications
that arise and additional ideas that are used in the full protocol, as well as how to reduce the
number of messages from 4 to 2.

As discussed above, the histogram of a distribution can be used to compute the distribution’s
membership in, and distance from, any label-invariant property. An important object in our work
is the τ -approximate histogram (or bucket histogram) of a distribution, where we perform a multi-
plicative discretization of the probabilities and place the elements into “buckets” accordingly. For
a discretization parameter τ > 1/N , the i-th bucket consists of all elements whose probabilities
are in [eiτ/N, e(i+1)τ/N). The set of buckets is L = {i ∈ N : τ/N ≤ eiτ/N ≤ 1}. For simplicity,
we assume in this overview that there are no elements whose probability is less than τ/N (since
there are at most N such elements, their total mass is at most τ). Thus, the number of buckets
is O((logN)/τ). We define the mass of bucket i to be the cumulative mass of all the elements in
the i-th bucket, and denote this quantity by pi. The number of elements in the bucket is between
N · pi/e(i+1)τ and N · pi/eiτ . The approximate histogram is specified by {pi}i∈L.

Distance from a histogram. The τ -approximate histogram of a distribution D doesn’t describe
D exactly, but it induces a collection of distributions (D among them), all with the same τ -
approximate histogram. As all the distributions have the same histogram, every pair of distributions
in the set is close up to a relabelling of the domain, i.e. some permutation of the first distribution
is at statistical distance O(τ) from the second distribution. We define the distance of an arbitrary
histogram from a distribution D as the smallest distance between D and a distribution D′ from
the set of distributions induced by the histogram. We define a histogram’s distance from a label-
invariant property similarly, as the smallest distance between the property and a distribution D′

from the set of distributions induced by the histogram. By the above, if a histogram is close to a
distribution D, then its distance from a label-invariant property is a good approximation to D’s
distance from the property.

2.1 The Simplified Protocol

We construct a protocol for obtaining a verified histogram of D. In the protocol, the untrusted
prover claims that a τ -approximate histogram {p̃j}j∈L is close to D. If the prover follows the
protocol, then {p̃j}j∈L will indeed be close to D and the verifier accepts. If, however, the claimed
histogram is far from D (i.e. it does not induce D′ that is close to D), then the verifier will reject
with high probability (over its coins and samples). Once the verifier has a verified τ -histogram, the
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protocol of Theorem 1.2 follows, see Section 2.4. The main challenge is verifying that the alleged
histogram {p̃j}j∈L is close to D.

First step: obtaining tagged samples. The first two messages of the protocol are as follows:

1. The verifier obtains s = Õ(
√
N) · poly(τ−1) samples from D, and sends the collection S of

samples to the prover.

2. For each sample x ∈ S, the prover specifies the alleged index ĩx ∈ L of x’s bucket.

If the prover is truthful, then these samples are sufficient for obtaining a very good approxima-
tion to D’s bucket histogram. For a bucket j ∈ L, denote by p̃j the fraction of samples tagged by
the prover as belonging to bucket j (if an element x occurs multiple times in the sample, we count
each of its appearances in computing this fraction. Of course, all appearances of x should get the
same tag). The fraction p̃j is a claim about the empirical mass of bucket j. We denote the true
empirical mass of bucket j by p̂j (that is, the fraction of samples sampled from the real bucket j).
If the prover is honest, then for all buckets p̃j = p̂j . By standard concentration bounds, p̂j is very
close to the true mass of bucket j, pj , and we conclude that the alleged histogram {p̃j}j∈L is close
to the underlying distribution D.

Of course, the prover might be cheating: tagging elements as having higher or lower probabilities
than they truly have. Detecting this type of cheating is the primary challenge for our protocol.

Second step: counting collisions. The verifier attempts to detect cheating behavior by drawing
a second collection T of i.i.d. samples from D, and counting the number of collisions with elements
tagged as belonging to each alleged bucket j ∈ L:

3. The verifier samples a set T of s = Õ(
√
N) · poly(τ−1) fresh i.i.d. samples.

4. For each alleged bucket j ∈ L, the verifier counts the number C̃j of samples from T that
collide with elements in the first sample S that were tagged as belonging to bucket j.

5. The verifier checks that all (significant) buckets j satisfy that C̃j is close to the number of
collisions that would be expected if the probability of all the elements in S tagged as belonging
to bucket j was close to ejτ/N , and rejects if not.

We remark that in this second test (and for the remainder of this overview), we ignore “insignif-
icant” alleged buckets, whose claimed weights p̃j are below a threshold µ = poly(τ/ logN) that is
set low enough to ensure that they don’t interfere with the analysis. We show that, if the prover is
honest, then for each significant bucket, the number of collisions is tightly concentrated around its
expectation, and the collision test will pass.

If the prover is dishonest, then the collision test constrains its (cheating) tagging to maintain
the expected number of collisions on elements tagged as belonging to each alleged bucket j. In
particular, for each alleged bucket j, the prover cannot tag only elements whose true probabilities
are all significantly larger than ejτ/N as belonging to the bucket, since the verifier would see more
collisions than it expects and reject. Similarly, the prover cannot tag only elements whose true
probabilities are all significantly smaller than ejτ/N as belonging to bucket j. Rather, the collision
test forces a cheating prover who wishes to significantly mis-tag many elements to “mix”, into many
alleged buckets j, elements with probabilities that are both higher and lower than ejτ/N .
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Catching mixing - simplified case. In light of the collision counting test, our main challenge
is catching a “mixing” attempt as described above. To illustrate how we deal with such mixing
attempts, we focus on a (relatively) simple scenario: a cheating prover tags all the samples in S as
belonging to a single bucket j. Effectively, the prover is claiming that that the distribution is nearly
uniform over a set of size N/ejτ . In reality, however, the distribution is far from the prover’s claim,
and the samples come from a mix of different buckets (some “above” j and some “below”). We note
that this problem, distribution testing for the property of being uniform over some subset of the
domain of a given size M , was studied by Batu and Cannon [BC17] in the standalone distribution
testing setting. They showed optimal sample complexity bounds of Θ(N2/3) (for testing without
a prover). We show how to verify this property using Õ(

√
N) samples and communication: this

follows from the general result of Theorem 1.2, but the protocol we outline below gives a more
direct construction.

How can we catch a cheating prover who is claiming that the distribution is nearly-uniform over
a set of size N/ejτ? The collision test is not sufficient: there are distributions that are far from
uniform over N/ejτ elements, but they have collision probability ejτ/N , so their “farness” cannot
be detected using 2-way collisions. We need a different way of detecting this type of cheating. We
do so using the following lemma, which states that if a distribution D is far from uniform over a
set of size S, but has collision probability 1/|S|, then its Shannon entropy must be large:

Lemma 2.1 (Relating entropy, collisions, and the distance from uniform. See Lemma 5.2). For
every discrete distribution D, integer K ∈ N, and parameters σ, γ ∈ [0, 1]. If D satisfies:

• D’s collision probability is approximately 1
K : ‖D‖22 ∈

[
1−γ
K , 1+γ

K

]
,

• D is at statistical distance at least σ from every distribution that is uniform over K elements,

then,

H(D) ≥ log(K) +
σ2

32
− γ (1)

Recall that the Shannon entropy H(D) is never smaller than log(1/‖D‖22). Indeed, for a uniform
distribution these two quantities are identical, so the condition that D is far from uniform is
essential. Note that for D to satisfy the conditions of the lemma, it must be the case that D has
support size larger than K: distributions with support size K or less that are far from uniform
over their support will have collision probability larger than 1/K.2 See Section 5.1 for a formal
statement and the proof of Lemma 2.1.

We conclude that, in the simple scenario analyzed above, while the cheating prover was able
to fool the collision test, to do so it had to claim that the distribution has significantly smaller
entropy than the truth (i.e. the cheating prover claimed that the entropy is only log(K), but the
true entropy is lower bounded by Equation (1)). To detect this false claim, we ask the prover to
execute an entropy upper bound protocol, which they are bound to fail. The entropy upper bound
protocol we use is taken from the statistical zero knowledge literature [SV03, Vad99] (see below).

2This follows from Pinsker’s Inequality, which implies that if D has support of size at most K and is σ far from
uniform over K elements, then its entropy can be upper bounded by log(K) − σ2. We remark that while Pinsker’s
Inequality might seem to be related to the statement of Lemma 2.1, it gives a result in the opposite direction (an
entropy upper bound, rather than a lower bound).
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Catching mixing - general case. In the general case, a cheating prover might tag the sample
elements as belonging to many different buckets (rather than claiming that they all belong to a
single bucket). Still, the prover’s tagging induces a claim about the distribution’s histogram. As
discussed above, for each (significant) bucket j, the prover is claiming that approximately a p̃j
fraction of the distribution’s mass is nearly uniform over a set of size (Npj)/e

jτ (where p̃j is the
fraction of the samples in S tagged as belonging to bucket j). In particular, this induces a claim
about the distribution’s (approximate) Shannon entropy. Similarly to the simplified case analyzed
above, we show that w.h.p., if a cheating prover significantly mis-tags the samples in S, but does
so using tags that can pass the collision test, then the entropy claim derived from the tags is
significantly smaller than the true Shannon entropy of D.

To prove that the claimed entropy is smaller than the true entropy, we partition the domain [N ]
into disjoint subdomains, such that if we restrict D to these subdomains, the conditions of Lemma
2.1 hold. This gives us a lower bound for the entopy of D restricted to each of these sub-domains,
and we can combine these to get the desired lower bound on the entropy of D. This partition
is defined as follows: consider all the elements in the sample tagged by the prover as belonging
to bucket j. In actuality, these elements might be from different buckets. For every bucket i, we
denote by xi,j the fraction of samples whose true bucket is i, which were mistagged as belonging to
bucket j. We then, for each i, take xi,j fraction of the elements of each real bucket i (we emphasize
that here we refer to all elements in the support of D that are in bucket i, not just those in the
sample), and define their union to be the j-th subdomain of [N ]. We continue this process for every
j and obtain a partition of [N ].

If the prover tagged the samples in a way that is likely to pass the collision test, then we have
a good approximation for the collision probability of D restricted to each of these subdomains (it
should be close to the collision probability of a uniform distribution over a subset of the appropriate
size). If the cheating prover’s tags induce a histogram of the sample that is far from its true
histogram, we conclude that for a significant portion of these subdomains, the restriction of D to
the them will be far from the corresponding uniform distribution. Thus, we can apply the lemma
to the restriction of D to each of these subdomains, and derive a lower bound for the entropy
of D. We note that, for technical reasons, in the formal proof we define an alternative fictitious
distribution D′, which is sufficiently close to D, and carry out the above argument over D′.

Entropy upper bound protocol. We conclude that if the prover is cheating but it passes the
collision test, then w.h.p. it’s claim about the distribution’s entropy is significantly smaller than
the true entropy H(D) (in the completeness case, on the other hand, w.h.p. the claimed entropy
is very close to the true entropy). To catch the cheating prover, we use a protocol that verifies
(using sample access) that a distribution’s Shannon entropy is below a claimed threshold. This
employs ideas from the statistical zero knowledge literature, and in particular the reduction from
the entropy gap problem to the statistical distance problem [SV03, GV99, Vad99], see Section 5.2.

We elaborate briefly. First, we can turn the Shannon Entropy gap between the prover’s claim
and the truth into a min-entropy gap by repetition: taking several samples from the distribution.
This idea goes back to the work of [HILL99]. We can upper bound a distribution’s min-entropy via
a standard protocol that uses a strong seeded randomness extractor (see e.g. Vadhan [Vad12a]).
Consider applying an extractor (with appropriate parameters) to a sample from the distribution:
if the min-entropy is as claimed, then the extracted outcome will be far from uniform. On the
other hand, if the entropy is larger than claimed, then the outcome will be close to uniform. In the
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min-entropy upper-bound protocol, the verifier flips a coin and, depending on the outcome, sends
either the extractor’s output, or a uniformly random string. The verifier then asks the prover to
distinguish the outcome of its coin flip. If the min-entropy was as claimed, then the prover can
distinguish with good advantage, but if the min-entropy was significantly larger, then the prover is
doomed to fail and will be caught.

Remark 2.2 (Honest prover running time). The main bottleneck is in the protocol’s final step,
where the (honest) prover needs to distinguish whether the string it received is an output of the
extractor, or a uniformly random string. Recall that we use repetition to reduce a claim about
Shannon entropy into a claim about min-entropy. The repetitions cause a super-polynomial blowup
in the distribution’s support size, which means that distinguishing the extractor’s output from a
uniformly random string by brute force requires Npoly(logN,1/σ) time. Obtaining a polynomial honest
prover is a natural question for future work.

Remark 2.3 (Honest prover sample complexity). For the sake of the analysis, we assume the
honest prover has full information on the distribution. Following an argument in [CG18], we can
“compile” such a proof system into one where the honest prover only has black-box sample access
to D and uses poly(N) samples. To see this, suppose the verifier’s sample complexity is bounded by
s. The prover P can use Õ(N ·s2) samples to learn, w.h.p., the full description of a distribution D′

that is o(1/s)-close to the true distribution D. If the protocol is complete when the true distribution
is D′, then, by a hybrid argument, the verifier will still accept w.h.p. when the prover behaves as if
the distribution is D′, but the verifier’s samples come from D.

2.2 Towards The Full Protocol

From 4 messages to 2 messages. The protocol, as described above, consists of 4 messages, or
two sequential phases, each comprising 2 messages: in the first phase, the verifier sends its samples
S and the prover responds with their tags. The tags induce an alleged histogram {p̃j}, and a claim
w̃ about D’s entropy. In the second phase, the verifier (after running the collision test), runs the
entropy upper bound protocol: sending a hash function h and flipping a coin to decide whether
to send the hash of samples drawn from D, or to send a uniformly random string. The prover
responds by trying to guess the verifier’s random coin flip.

The key observation for collapsing these two phases is that the only information needed to run
the second phase is the alleged entropy w̃. We can run both phases in parallel (and reduce the
number of messages to 2) by having the verifier initiate independent executions of the entropy
upper bound protocol, one for each possible value of w̃ (discretized to multiples of 1/poly(σ)). In
parallel, the verifier also sends the samples S. The prover responds by tagging the elements in S
(as in phase 1). Let w̃ be the entropy claim induced by the prover’s tags. The prover also sends
a response to the appropriate entropy upper bound challenge (the execution that used the bound
closest to w̃). The verifier runs the collision test to check the tags, computes the entropy w̃, and
completes the verification of the appropriate entropy upper bound protocol execution.

In the collapsed protocol, a cheating prover can adaptively choose its tags for S, based on the
entropy upper bound challenges it received, but its hands are still tied: if it wants to pass the
collision test, it must tag the elements in S using a “mixing” strategy that will induce a claimed
entropy that is larger than H(D). Intuitively, a cheating prover’s only freedom is in choosing a
specific value for w̃, out of the possible (discretized) values that are bounded away from H(D). To
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argue that the collapsed protocol remains sound, we use an entropy upper bound protocol with
sufficiently small soundness error, and take a Union Bound over the prover’s choices.

Dealing with heavy elements. The full protocol encounters several complications that were
brushed under the rug in the overview. Most significantly, “weighty” elements in the support of D,
whose probabilities are above a certain threshold, do not behave as nicely as we need them to. This
“non-nice” behavior is both in terms of concentration for the number of collisions they induce, and
in the decomposition of D into the subsets Fj . We do show nice behavior (as described above) for
light (non-weighty) elements, whose true probabilities are below (poly(ρ)/(

√
N · polylogN)).

We deal with heavy elements by having the verifier draw an additional initial sample W of size
w = Õ(

√
N) · poly(ρ−1). We choose w to be large enough that W will include all of the heavy

elements w.h.p. On the other hand, W is still of size only roughly
√
N , so the verifier can run a

“brute force” distribution learning algorithm to learn a very good approximation to the distribution
D conditioned on W (see e.g. Goldreich’s book [Gol17]). For this, we assume the mass of W is large
enough, so we can sample from this conditional distribution using rejection sampling (otherwise, if
the mass of W is small, we can just ignore these elements). We emphasize that in this initial step,
which deals with the heavy elements, the verifier does not need the prover’s help.

The verifier can then run the verified histogram protocol on D restricted to the domain (N \W ),
where w.h.p. all the elements are light. Again, we assume the mass of (N \W ) is large enough
for rejection sampling (otherwise, the distribution over W is a good approximation to D, and the
verifier doesn’t need the prover). The full protocol and its analysis are in Section 4.

2.3 Approximating the Entropy and Support Size

The protocol behind Theorem 1.2 allows the verifier to obtain an approximate histogram that is ρ-
close to the real distribution D (otherwise the verifier rejects w.h.p.). Given this protocol, verifying
the distance from the uniform distribution is immediate. Verifying the entropy and support size
also follows, because the values asserted by the histogram for these quantities will be close to the
true quantities on D. Theorem 1.1 and the proof system for approximately verifying the support
size follow by the following claims:

Claim 2.4. Let {p̃`}` be a τ -approximate histogram that is ρ-close to a distribution D over support
[N ]. Define the entropy induced by the histogram as:

H̃ =
∑
`

p̃` · log

(
N

e`τ

)
.

Then we have: ∣∣∣H(D)− H̃
∣∣∣ = O((ρ logN) + τ)

Claim 2.5. Let {p̃`}`∈L be a τ -approximate histogram that is ρ-close to a distribution D over
support [N ]. Let Supp(D) ⊆ [N ] denote D’s support, and suppose that every element in D’s
support has probability at least η/N for η > 0. Define the support size induced by the histogram as:

|̃Supp| =
∑
`∈L

p̃` ·N
e`τ

.
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Then we have: ∣∣∣|Supp(D)| − |̃Supp|
∣∣∣ ≤ O(τ) · |̃Supp|+ ρN

η

From the above claims we conclude that we can deduce the distribution’s entropy and support
size up to any desired error σ by picking ρ to be small enough (note that this, in turn, sets τ in
our protocol to be even smaller than ρ). See Section 6.2 for formal statements and proofs.

2.4 From Verified Histograms to Tolerant Verification

Section 2 outlined the main technical tool we use in our results: an efficient protocol that allows
the verifier to obtain a verified τ -approximate histogram to the unknown distribution D (for τ
of its choice). In this section, we outline how this histogram can be used not only to verifiably
approximate various interesting quantities of distributions, as described in Section 2.3, but also to
prove Theorem 1.2: tolerant verification of label-invariant distribution properties.

Concretely, after having obtained a histogram {pj}j , which is verifiably close to the samplable
distribution D, and given some label invariant property P, the verifier now needs to verify whether
the distribution D is εc close the property (and reject if it’s εf far from it). In order to achieve this,
we show a protocol that allows the verifier to distinguish whether the histogram {pj}j is close to
P, or far from it (i.e. whether there exists a distribution consistent with {pj}j that is close to the
property, or all such distributions are far from the property). The distance of D from the property
can be bounded using the triangle inequality. As the distance between D and {pj}j is with high
probability at most δ = O(

√
τ), choosing τ such that δ < εf − εc allows us to relate the distance

of {pj}j from the property to the verification at hand.

Verifying that the histogram {pj}j is close to the property. Our protocol for accom-
plishing this works (roughly) as follows - the verifier asks the prover to provide the histogram of a
distribution Q inside the property, which is closest to {pj}j (i.e. if P is the distribution consistent
with {pj}j closest to the property, then Q is the distribution inside the property closest to P ), and
then, the verifier tests for the following two conditions - whether this histogram is indeed consis-
tent with some distribution whose distance from {pj}j is small (at most εc); and that it’s indeed
consistent with some distribution which lies inside the property. If so, the verifier will conclude
that D is indeed close to the property and accept, and otherwise, the verifier will reject.

We thus require establishing efficient ways of performing these tests. To this end, we use two
tools: (i) an efficient mechanism for estimating the distance between two histograms (which we
elaborate on shortly); (ii) an efficient approximate decision procedure for deciding whether a given
histogram is consistent with some distribution that is inside the property:

Definition 2.6 (Efficient approximate decision procedure). A distribution property P has an effi-
cient approximate decision procedure if there exists a polynomial-time procedure A as follows. A
gets as input the domain size N , a distance parameter σ ∈ (0, 1), and an approximate histogram
{(i,mi)}. There exists a function µ(N, σ) = poly((1/ logN), σ) s.t. for every integer N , every
distribution D over [N ] and every σ > 0:

• If D is in P, then A accepts the µ-approximate histogram of D.

• A rejects every µ-approximate histogram that is not σ-close to P.
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We assume that the property in question has an efficient approximate decision procedure. We
view this as a mild assumption (and note that it can be relaxed, see Remark 1.3). In Section 6.1
we show efficient approximate decision procedures for several natural properties.

As for approximating the distance between two histograms, we show an algorithm that
given two τ -approximate histograms {pj}j and {qj}j , approximates the distance between them
(defined to be the minimal distance between two distributions, where one is consistent {pj}j , and
the other is consistent with {qj}j). The algorithm runs in time poly(logN, 1/τ) and approximates
this distance by up to an O(τ) additive error.

The algorithm is based on the fact that given two histograms {pj}j and {qj}j , it is possible to
construct two distributions P and Q, such that the distance between these distributions is easily
estimated, and at the same time, it approximates well the distance between the original histograms.
The quality of this estimation is a function of τ (see Proposition 3.29 for more detail).

Thus, the protocol outlined above proves the following proposition:

Proposition 2.7. Fix N , and a label invariant property P, as well as parameters εc and εf . Let A
be an efficient approximate decision procedure for P, with function µ (see Definition 2.6). Denote
ρ = εf − εc, and let τ = O (min{µ(N, ρ), ρ}). There exists a 1-message protocol between a prover
and a verifier, such that assuming that the verifier and the prover get as input a τ -approximate
histogram {pj}j that is ρ/3-close to a distribution D over domain [N ], the following hold:

• Completeness. If ∆SD(D,P) ≤ εc, then there exists a prover message that makes the verifier
accept (w.p. 1).

• Soundness. If ∆SD(D,P) ≥ εf , then no matter what message the prover sends, the verifier
always rejects.

The prover message length and the runtime of the verifier are poly(logN, 1/τ).

This proposition, alongside the protocol for obtaining a histogram {pj}j close to D, allows the
verifier to tolerantly verify label-invariant properties. For more on the proof of this proposition, as
well as a formal proof of Theorem 1.2, see Section 6.

2.5 Organization of this Paper

In Section 3 we review basic definitions regarding distributions and distributions testing, and also
provide proof for a folklore result in distribution testing (Theorem 3.30): an algorithm that learns
distributions up to small error (using many samples). In Section 3.3 we introduce the measure of
relabeling distance, which is used extensively in our work. In Section 3.4 we define the formal setting
for verification of tolerant distribution properties, which we explore in the subsequent sections.

Section 4 contains our main result (Theorem 4.1), which shows that through communication
with an untrusted prover, a verifier can efficiently obtain a verified approximation (in relabeling
distance) of a given distribution D’s histogram, while using only a bounded number of samples
from D. This section also contains the proof of this theorem, which itself relies heavily on two
claims: the first is Theorem 3.30 (see above), and the second is a special case of our main result
(Lemma 5.1), where the input distribution D is assumed to contain no heavy (high probability)
elements.

Section 5 deals with the special case of our main result mentioned above and its proof. Before
presenting the proof of Lemma 5.1 in Section 5.3, we introduce two fundamental tools used in
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the proof, and dedicate a section to each: Section 5.1, deals with proving a relation between
the relabeling distance from uniform of a distribution, its entropy, and its `2 norm; and Section
5.2 recounts the entropy upper bound protocol from the statistical zero knowledge literature (we
provide a self-contained proof, following the exposition of Vadhan [Vad99]).

The aforementioned results are then leveraged in Section 6 to provide a collection of corollaries.
First, we show a tolerant verification protocol for label invariant properties that admit an efficient
approximate decision procedure (see Definition 2.6), and in Section 6.1, we provide examples of
such procedures for some natural label-invariant properties. Next, in Section 6.2, we show how
Theorem 4.1 can also be used to approximate the entropy, support size, and distance from uniform
of a samplable distribution.

Lastly, we provide two appendices. Appendix A shows collision concentration results: namely,
drawing two large enough samples from a distribution, will result in well-behaved collision patterns
between the samples. In Appendix B we extend a lower bound of Chiesa and Gur [CG18], which
shows that the sample complexity of our protocols is close to optimal.

3 Preliminaries

3.1 Distributions - General Definitions

Without loss of generality, and for the sake of simplicity of notation ahead, we consider all finite
domains to be subsets of N.

Notation 3.1. For a distribution P over a domain X , and x ∈ X we use the following notation:

P (x) = Pr
P

(x)

Definition 3.2. Denote by ∆N the set of all distributions over the domain [N ], and ∆fin =⋃
N∈N ∆N , the set of all distributions over finite domains.

Definition 3.3. The statistical distance between distributions P and Q over a domain X is defined
as:

∆SD(P,Q) =
1

2

∑
x∈X
|P (x)−Q(x)|

Claim 3.4. Let P,Q be distributions over a domain X such that ∆SD(P,Q) = δ. Then:

max
A⊆X

(P (A)−Q(A)) = δ

Proof. Define A = {x ∈ X : P (x) > Q(x)}. Observe that by definition:

∆SD(P,Q) =
1

2

∑
x∈X
|P (x)−Q(x)| (2)

=
1

2

∑
x∈A

(P (x)−Q(x)) +
1

2

∑
x∈X\A

(Q(x)− P (x)) (3)

=
1

2
(P (A)−Q(A)) +

1

2
(Q(X \A)− P (X \A)) (4)

=
1

2
(P (A)−Q(A)) +

1

2
(1−Q(A)− (1− P (A))) (5)

= P (A)−Q(A) (6)
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Moreover, since by definition for every x ∈ A it holds that P (x) > Q(x), thenA ∈ arg maxX⊆X (P (X)−Q(X)),
as taking any element out of A will decrease the value of P (A)−Q(A), and any element added to
A has to be from {x ∈ X : Q(x) ≥ P (x)}, and as such, it won’t increase P (A)−Q(A).

Definition 3.5. Let P be a distribution. The min-entropy of P is defined to be:

H∞(P ) = min
x∈SuppP

(− log (P (x)))

Definition 3.6. Let P be a distribution. The Shannon entropy of P is defined to be:

H(P ) =
∑

x∈Supp(P )

P (x) log

(
1

P (x)

)
Equivalently, for random variables X taking values in set A ⊆ N:

H(X) =
∑
a∈A

Pr(X = a) log

(
1

Pr(X = a)

)
The following claim helps allows us to estimate the Shannon entropy of a distributions based

on information about the distribution over subdomains.

Claim 3.7. Let K ∈ N, and {zi}i∈[K] be such that zi ∈ [0, 1], and
∑

i∈[K] zi = η < 1, then∑
i∈[K] zi log (1/zi) < η logK+η log

(
1
η

)
. Moreover, for m,M ∈ N such that m < M , if zi ∈

[ η
M ,

η
m

]
and K ∈ [m,M ], then: ∑

i∈[K]

zi log (1/zi) ∈ [η log (m/η) , η log (M/η)]

Proof. Consider the distribution over [K], Q, that assigns mass qi = zi
η to element i ∈ [K]. Since the

function f(x) = x log
(

1
x

)
is concave for x ∈ (0, 1], by Jensen’s Inequality (for concave functions):

∑
i∈[K]

zi
η

log
η

zi
=
∑
i∈[K]

qi log
1

qi
≤ log

(
1∑

i∈[K] q
2
i

)

The value
∑

i∈[K] q
2
i is minimized for the uniform distribution, i.e. for all i, qi = η

K . This yields:

∑
i∈[K]

zi
η

log
η

zi
≤ log

(
1∑

i∈[K] 1/K2

)
= log (K)

From which we conclude that: ∑
i∈[K]

zi log
1

zi
≤ η logK + η log

(
1

η

)

Where the maximum is achieved for zi = η/K. Moving to the second part of the claim, from
what shown above, we immediately get that if zi ∈

[ η
M ,

η
m

]
then,

∑
i∈[K] zi log 1

zi
≤ η logM/η.

We are left to show the lower bound. For every choice of {zi}i fulfilling the conditions in the
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claim, consider J = {i ∈ [K] : zi 6= 0}. Assuming zi ∈
[ η
M ,

η
m

]
, for every i ∈ J it holds that

log(1/zi) ≥ log(m/η) ≥ 0. Therefore, concluding the proof:∑
i∈[K]

zi log

(
1

zi

)
=
∑
i∈J

zi log

(
1

zi

)
≥ log

(
m

η

) ∑
i∈[K]

zi = η log

(
m

η

)

The following is a basic property of Shannon entropy, which we state without a proof:

Claim 3.8 (Chain rule of entropy.). Let P be a distribution over a domain X . Let X be some ran-
dom variable that takes values in a set A ⊆ N. Then, the Shannon entropy of the joint distribution
(X,P ) satisfies:

H(X,P ) = H(X) +
∑
a∈A

Pr(X = a)H
(
P
∣∣
X=a

)
Moreover, H(P ) ≥

∑
a∈A Pr(X = a)H

(
P
∣∣
X=a

)
We also make limited use of the following information theoretic quantity:

Definition 3.9 (KL Divergence). For distributions P,Q over domain [N ], if Supp(P ) ⊆ Supp(Q),
the Kullback–Leibler divergence between P and Q is defined to be:

KL (P‖Q) =
∑
x∈[N ]

P (x) log

(
P (x)

Q(x)

)

Otherwise, it’s defined to be KL (P‖Q) =∞.

The KL divergence between two distributions is related to their statistical distance through the
following inequality which we also state without proof:

Lemma 3.10 (Pinsker’s Inequality). For distributions P,Q over domain [N ]:

∆SD(P,Q) ≤
√

1

2
KL (P‖Q)

3.2 Distribution Histograms

The exact histogram of a distribution D is a collection of tuples (p, n), where p ∈ [0, 1] is a
probability mass of an element, and n is the number of elements in the support of D with probability
exactly p. The exact histogram of a distribution provides all the information about the distribution,
up to the label of the elements in the support, and as such, can provide plenty of information for
various measures of the distribution, like its support size, entropy, distance from the uniform
distribution over the entire domain (and in general, it is possible to deduce from it the membership
of D in any label-invariant property, as defined in Definition 3.34 ahead).

But since the exact histogram might be both hard to describe concisely, and hard to evaluate
given only limited access to the distribution, we instead focus our attention to an approximation
of this histogram.
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Definition 3.11 ((N, ξ)-bucket of a distribution). The `’th (N, ξ) bucket of distribution P is:

BP
` =

{
x ∈ Supp(P ) : P (x) ∈

[
e`ξ

N
,
e(`+1)ξ

N

)}

Definition 3.12 ((N, ξ)-histogram of a distribution). The (N, ξ)-histogram of distribution P ∈

∆fin is the collection {p`}`∈I , where I =
{
L, · · · − 1, 0, 1, . . . ,

⌊
logN
ξ

⌋}
, and L =

⌊
−

log log N
ξ2

ξ

⌋
− 1,

such that for every ` ∈ I\{L}: p` = P
(
BP
`

)
, and pL = P

({
x ∈ Supp(P ) : P (x) ≤ e(L+1)ξ

N ≤ ξ2

N logN

})
(note that e(L+1)ξ

N ≤ ξ2

N logN ).

Definition 3.13. Let {pj}j∈I be a (N, ξ)-histogram, define:

FN,ξ({pj}) = {P ∈ ∆fin : {pj} is the (N, ξ)-histogram of P}

Remark 3.14. We often omit either the indication of the set I, or the explicit parameters (N, ξ),
when they can be derived from context.

Definition 3.15 (Histogram realizability in a set). Let {pj}j be some (N, ξ)-histogram. We say it
is realizable in a set A ⊆ N if there exists a finitely supported distribution D over a domain A with
the (N, ξ)-histogram {pj}j∈I .

Claim 3.16 (Histogram realizability algorithm). There exists an algorithm that runs in time
poly(logN, τ), that upon receiving parameters M,N ∈ N and τ ∈ (0, 1), as well as an (N, τ)-
histogram {pj}j, accepts if {pj}j is realizable in [M ], and rejects otherwise.

Proof. The algorithm works as follows: for every j ∈ I, it computes -

k−j =
Npj

e(j+1)τ

k+
j =

Npj
ejτ

If there exists j such that [k−j , k
+
j ] ∩ N = φ, the algorithm rejects. Otherwise, it computes

T =
∑

k

⌈
k−j

⌉
. If T ≤M , the algorithm accepts, and otherwise rejects.

We now explain the correctness of the algorithm and analyse its runtime. First, assume that
{pj}j is indeed realizable in [M ], and let D be some distribution consistent with {pj}j which is

realizable in [M ]. Note that for every bucket j 6= L, it holds that k−j ≤
∣∣∣BD

j

∣∣∣ ≤ k+
j . Therefore, as∣∣∣BD

j

∣∣∣ ∈ N, it must hold that
∣∣∣BD

j

∣∣∣ ∈ [k−j , k
+
j ] ∩ N 6= φ, and the first check the algorithm performs

passes. Next, since T =
∑

j

⌈
k−j

⌉
≤
∑

j

∣∣∣BD
j

∣∣∣ ≤M , and the algorithm accepts.

Assume next {aj}j isn’t realizable in [M ]. If for all buckets j it holds that [k−j , k
+
j ] ∩ N 6= φ,

then, there exists D′ with an (N, τ)-histogram {pj}j . As before, we can conclude that each bucket

j is of size at least
⌈
k−j

⌉
, and so, it must hold that T > M , as otherwise, D′ can be realized over

the domain [M ], in contradiction to the assumption.
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Runtime. As the histogram contains O (logN/τ) entries, computing k−j , k
+
j for every j, as well

as T takes poly(logN, 1/τ) time, as required.

3.3 Relabeling Distance

Definition 3.17 (Permutation of a distribution). For a distribution P over a domain X , and a
permutation π over the same domain, we define π(P ) as the distribution that satisfies for every
x ∈ X : π(P )(x) = P (π−1(x)).

Definition 3.18. For any set A, perm(A) is the set of all permutations over the set A.

Definition 3.19 (Relabeling distance). Let P and Q be distributions over finite domains X ⊆ N,
and Y ⊆ N respectively. The relabeling distance between P and Q is defined to be:

∆RL(P,Q) = min {∆SD(P, π(Q)) : π ∈ perm (N)}

Claim 3.20. For every two permutations π, π′ ∈ perm (N), and every two distributions P,Q ∈
∆fin:

• ∆SD(P,Q) = ∆SD(π(P ), π(Q))

• ∆RL(P,Q) = ∆RL (π(P ), π′(Q))

Proof. Fix π ∈ perm(N), as well as P,Q ∈ ∆fin.
First, observe that ∆SD(P,Q) = ∆SD(π(P ), π(Q)). This is true since:

∆SD(π(P ), π(Q)) =
1

2

∑
x∈N
|π(P )(x)− π(Q)(x)|

=
1

2

∑
x∈N

∣∣P (π−1(x))−Q(π−1(x))
∣∣

=
1

2

∑
x∈N
|P (x)−Q(x)|

= ∆SD(P,Q)

Where the last equality is justified by the fact that there are only finitely many non-0 summands,
and so, a change of summation order does not affect the final sum.

Next, by definition:

∆RL(π(P ), π′(Q)) = min
{

∆SD(π(P ), σ ◦ π′(Q)) : σ ∈ perm (N)
}

Which by what we showed above satisfies:

∆RL(π(P ), π(Q)) = min
{

∆SD(π−1 ◦ π(P ), π−1 ◦ σ ◦ π′(Q)) : σ ∈ perm (N)
}

= min
{

∆SD(P, π−1 ◦ σ ◦ π′(Q)) : σ ∈ perm (N)
}
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Observe that for every π, π′ ∈ perm(N), {π−1 ◦ σ ◦ π : σ ∈ perm(N)} = {ρ : ρ ∈ perm(N)}.
This is justified by the fact that the left-hand side is obviously contained in the right; while every
ρ ∈ perm(N) can be represented as π−1 ◦ σρ ◦ π, where σρ = π ◦ ρ ◦ π′−1. Therefore,

∆RL(π(P ), π′(Q)) = min
{

∆SD(P, π−1 ◦ σ ◦ π′(Q)) : σ ∈ perm (N)
}

= min {∆SD(P, ρ(Q)) : ρ ∈ perm (N)}
= ∆RL(P,Q)

Claim 3.21. Let P,Q,R be any three distributions over finite domains X ,Y, and Z respectively.
The Relabeling Distance satisfies:

• ∆RL(P,Q) ≥ 0, and ∆RL(P,Q) = 0 iff there exists a permutation σ ∈ perm(N) such that
P = σ(Q).

• Symmetry: ∆RL(P,Q) = ∆RL(Q,P ).

• Triangle inequality: ∆RL(P,R) ≤ ∆RL(P,Q) + ∆RL(Q,R)

In other words, we claim that ∆RL is a metric on the quotient space ∆fin modulu all the
permutations of N.

Proof. Let P,Q be two distributions over the domain X and Y respectively. First, immediately
from definition, it holds that ∆RL(P,Q) ≥ 0, and that ∆RL(P,Q) = 0 if and only if P and Q are
the same up to permutation of the domain N.

Moving to symmetry, let π0 ∈ perm(N) be such that ∆RL(P,Q) = ∆SD(P, π0(Q)). Then,
by Claim 3.20, ∆RL(P,Q) = ∆SD(π−1

0 (P ), π−1
0 ◦ π0(Q)) = ∆SD(Q, π−1

0 (P )), and by definition,
∆RL(Q,P ) ≤ ∆RL(P,Q). Similarly, we can argue that ∆RL(P,Q) ≤ ∆RL(Q,P ), and achieve
∆RL(P,Q) = ∆RL(Q,P ).

Lastly, the Relabeling Distance also satisfies the triangle inequality: let R be another distribution
over the domain Z. Let π0 be as above, and let π1 be a permutation that achieves ∆SD(Q, π1(R)) =
∆RL(Q,R):

∆RL(P,Q) + ∆RL(Q,R) = ∆SD(P, π0(Q)) + ∆SD(Q, π1(R)) (7)

= ∆SD (P, π0(Q)) + ∆SD(π0(Q), π0 (π1(R))) (8)

≥ ∆SD(P, π0 ◦ π1(R)) (9)

≥ min
π
{∆SD(P, π(R))} (10)

= ∆RL(P,R) (11)

Definition 3.22. For any distribution Q ∈ ∆fin, and any (N, ξ)-histogram {pj}j∈I , define:

∆RL(Q, {pj}j∈I) = min
P∈FN,ξ({pj}j)

∆SD(Q,P )

This definition also extends to the distance between two histograms. Given another (N ′, ξ′)-histogram
{qj}j:

∆RL({qj}j , {pj}j) = min
Q∈FN′,ξ′ ({qj}j)

min
P∈FN,ξ({pj}j)

∆SD(Q,P )
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The protocols to be presented in this paper use the tool of deconstructing distributions ac-
cording to subdomains. The following claims associate the distance between two distributions to
the distance between them conditioned on subdomains, and are used several times throughout the
paper.

Claim 3.23. Let P,Q be two distributions over a domain X , and let A ⊆ X , Ā = X \ A. Denote
p = P (A), and q = Q(A).

• If q, p ∈ (0, 1) Then:

∆SD(P,Q) ≤ p∆SD(P
∣∣
A
, Q
∣∣
A

) + (1− p)∆SD(P
∣∣
Ā
, Q
∣∣
Ā

) + |p− q|

.

• If q = 1, and p ∈ (0, 1), then:

∆SD(P,Q) ≤ p∆SD(P
∣∣
A
, Q) + (1− p)

Proof. If q, p ∈ (0, 1), by definition:

∆SD(P,Q) =
1

2

∑
x∈X
|P (x)−Q(x)| (12)

=
1

2

∑
x∈A

∣∣∣pP ∣∣A(x)− qQ
∣∣
A

(x)
∣∣∣+

1

2

∑
x∈Ā

∣∣∣(1− p)P ∣∣Ā(x)− (1− q)Q
∣∣
Ā

(x)
∣∣∣ (13)

The left-hand sum on the last line satisfies:

1

2

∑
x∈A

∣∣∣pP ∣∣A(x)− qQ
∣∣
A

(x)
∣∣∣ ≤ 1

2

∑
x∈A

∣∣∣pP ∣∣A(x)− pQ
∣∣
A

(x)
∣∣∣+

1

2

∑
x∈A

∣∣∣pQ∣∣A(x)− qQ
∣∣
A

(x)
∣∣∣ (14)

= p · 1

2

∑
x∈A

∣∣∣P ∣∣A(x)−Q
∣∣
A

(x)
∣∣∣+
|p− q|

2

∑
x∈A

Q
∣∣
A

(x) (15)

= p · 1

2

∑
x∈A

∣∣∣P ∣∣A(x)−Q
∣∣
A

(x)
∣∣∣+
|p− q|

2
(16)

Similarly, on the right hand sum, if p, q ∈ (0, 1), then:

1

2

∑
x∈A

∣∣∣(1− p)P ∣∣Ā(x)− (1− q)Q
∣∣
A

(x)
∣∣∣ ≤ (1− p) · 1

2

∑
x∈Ā

∣∣∣P ∣∣Ā(x)−Q
∣∣
Ā

(x)
∣∣∣+
|(1− p)− (1− q)|

2

(17)

= (1− p) · 1

2

∑
x∈Ā

∣∣∣P ∣∣Ā(x)−Q
∣∣
Ā

(x)
∣∣∣+
|p− q|

2
(18)

Plugging Inequalities (16) and (18) to Equation (13), we get the the first desired result.
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Next, considering the case where p ∈ (0, 1), yet q = 1, and following the same reasoning:

∆SD(P,Q) =
1

2

∑
x∈X
|P (x)−Q(x)| (19)

=
1

2

∑
x∈A

∣∣∣pP ∣∣A(x)−Q(x)
∣∣∣+

1

2

∑
x∈Ā

∣∣∣(1− p)P ∣∣Ā(x)− 0
∣∣∣ (20)

≤ p∆SD

(
P
∣∣
A
, Q
)

+
1

2

∑
x∈A
|pQ(x)−Q(x)|+ 1

2
(1− p)

∑
x∈Ā

P
∣∣
Ā

(x) (21)

= p∆SD

(
P
∣∣
A
, Q
)

+ (1− p) (22)

This last claim extends to relabeling distance and provides us with the following corollaries:

Corollary 3.24. Let D be a distribution over a domain X , for A ⊆ X let dA = D(A). Let {qj}j
be some (N, ξ)-histogram that is realizable in A, then:

∆RL (D, {qj}j) ≤ dA∆RL(D
∣∣
A
, {qj}j) + (1− dA)

Proof. Let Q ∈ FN,ξ ({qj}j) be a distribution supported in A (there exists such Q as we assume
that {qj}j is realizable in A). By Claim 3.23, for any such Q:

∆SD(D,Q) ≤ dA∆SD(D
∣∣
A
, Q) + (1− dA)

In particular, take Q0 to be the minimizer of ∆SD(D
∣∣
A
, Q0) in FN,ξ ({qj}j), and we get:

∆SD(D,Q0) ≤ dA∆RL

(
D
∣∣
A
, {qj}j

)
+ (1− dA)

Therefore, by definition,

∆RL(D, {qj}j) ≤ ∆SD(D,Q0) ≤ dA∆RL(D
∣∣
A
, {qj}j) + (1− dA)

Corollary 3.25. Let P be a distribution over a domain X , and let A ⊆ X be some subdomain.
Assume Q is a distribution over a domain Y, and B ⊆ Y. Then:

∆RL(P,Q) ≤ pA∆RL

(
P
∣∣
A
, Q
∣∣
B

)
+ (1− pA)∆RL

(
P
∣∣
Ā
, Q
∣∣
B̄

)
+ |pA − qB|

Where pA = P (A), qB = Q(B), Ā = X \A, and B̄ = Y \B.

Proof. Consider a permutation σ0 such that the set T = σ0(B) ∪ A satisfies T ∩ Ā = φ as well as
σ0(B̄)∩T = φ. For such σ0, σ0(Q)(T ) = σ0(Q)(σ0(B)) = Q(B) = qB, and P (T ) = P (A) = pA. By
Claim 3.23, it holds that:

∆SD(P, σ0(Q)) ≤ pA∆SD

(
P
∣∣
T
, σ0(Q)

∣∣
T

)
+ (1− pA)∆SD

(
P
∣∣
T̄
, σ0(Q)

∣∣
T̄

)
+ |pA − qB|

We therefore get by Claim 3.20:

∆RL(P,Q) = ∆RL(P, σ0(Q)) ≤ ∆SD(P, σ0(Q)) ≤ pA∆SD

(
P
∣∣
T
, σ0(Q)

∣∣
T

)
+(1−pA)∆SD

(
P
∣∣
T̄
, σ0(Q)

∣∣
T̄

)
+|pA − qB|
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As this holds for any σ0 satisfying the conditions above, it also holds for the σ0 that minimizes
∆SD

(
P
∣∣
T
, σ0(Q)

∣∣
T

)
and ∆SD

(
P
∣∣
T̄
, σ0(Q)

∣∣
T̄

)
. We can assume there exists one permutation that

minimizes both expressions as both these conditions apply on disjoint parts of the domain. So, by
the assumption over σ0, by considering the minimizing σ0, we conclude that:

∆RL(P,Q) ≤ pA∆RL

(
P
∣∣
T
, Q
∣∣
T

)
+ (1− pA)∆RL

(
P
∣∣
T̄
, Q
∣∣
T̄

)
+ |pA − qB|

And from ∆RL invariance to permutations, plugging above ∆RL

(
P
∣∣
T
, Q
∣∣
T

)
= ∆RL

(
P
∣∣
A
, Q
∣∣
B

)
, as

well as ∆RL

(
P
∣∣
T̄
, Q
∣∣
T̄

)
= ∆RL

(
P
∣∣
Ā
, Q
∣∣
B̄

)
, yields the desired result.

Corollary 3.26. Let {Xi}i∈I be a collection of disjoint sets such that for all i ∈ I, Xi ⊆ N, and
I is finite. Let P and Q be two distributions over the domain X =

⋃
i∈I Xi. Assume for all i ∈ I,

P (Xi) = Q(Xi) = αi, then:

∆SD(P,Q) =
∑
i∈I

αi∆SD(P
∣∣
Xi
, Q
∣∣
Xi

)

Proof. We show this by induction on the size of I. If |I| = 2, then, as α2 = 1−α1, simply plugging
in Claim 3.23 yields the base case:

∆SD(P,Q) = α1∆SD(P
∣∣
X1
, Q
∣∣
X1

) + α2∆SD(P
∣∣
X2
, Q
∣∣
X2

)

Next, assume for given n ∈ N it holds that every two distributions P ′ and Q′ over the domain⋃
i∈[n]Xi satisfying P ′(Xi) = Q′(Xi) = αi, also satisfy:

∆SD(P ′, Q′) =
∑
i∈[n]

αi∆SD

(
P ′
∣∣
Xi
, Q′
∣∣
Xi

)
And let P,Q be two distributions over the domain

⋃
i∈[n+1]Xi that satisfy for all i P ′(Xi) =

Q′(Xi) = αi. Denote U =
⋃
iin[n]Xi, and P

∣∣
U

= PU , Q
∣∣
U

= QU :

∆SD(P,Q) =

∑
i∈[n]

αi

∆SD (PU , QU ) + αn+1∆SD

(
P
∣∣
Xn+1

, Q
∣∣
Xn+1

)

=

∑
i∈[n]

αi

∑
i∈[n]

αi∑
i∈[n] αi

∆SD

(
PU
∣∣
Xi
, QU

∣∣
Xi

)
+ αn+1∆SD

(
P
∣∣
Xn+1

, Q
∣∣
Xn+1

)
=

∑
i∈[n+1]

αi∆SD

(
P
∣∣
Xi
, Q
∣∣
Xi

)
Where the last equality is due to the fact that PU

∣∣
Xi

= P
∣∣
Xi
, QU

∣∣
Xi

= Q
∣∣
Xi

.

Claim 3.27. Let {qj}j and {pj}j be two (N, ξ)-histograms. For every ε ≥ 0, if 1
2

∑
j∈I |pj − qj | ≤ ε,

then,
∆RL({qj}j , {pj}j) ≤ eξε+ eξ(eξ − 1)
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Proof. Let P,Q be two finitely supported distributions with (N, ξ)-histograms {pj}j and {qj}j
respectively. Assume that they are of disjoint support. Let BP

j and BQ
j be the j’th (N, ξ) buckets

of distribution P and Q respectively. I.e. P (BP
j ) = pj , and Q(BQ

j ) = qj . Denote:

Blarge
j = arg max

S∈{BPj ,BQj }
|S|

Bsmall
j = arg min

S∈{BPj ,BQj }
|S|

Define σ0 to be the permutation that satisfies: σ0

∣∣
Blargej

= id
Blargej

, and σ0

(
Bsmall
j

)
⊆ Blarge

j . Now,

by Claim 3.20, and the definition of relabeling distance, we get that:

∆RL ({pj}j , {qj}j) = ∆RL(P,Q) = ∆RL (σ0(P ), σ0(Q)) ≤ ∆SD (σ0(P ), σ0(Q)) (23)

We therefore wish to bound the expression ∆SD (σ0(P ), σ0(Q)). First, note that σ0

(
Blarge
j ∪Bsmall

j

)
=

Blarge
j , as well as

∣∣∣Blarge
j

∣∣∣− ∣∣∣Bsmall
j

∣∣∣ ≤ max{pj ,qj}
ejξ/N

− min{pj ,qj}
e(j+1)ξ/N

, and so:∣∣∣Blarge
j

∣∣∣− ∣∣∣Bsmall
j

∣∣∣ =
(∣∣∣Blarge

j

∣∣∣− eξ ∣∣∣Bsmall
j

∣∣∣)+
(
eξ
∣∣∣Bsmall

j

∣∣∣− ∣∣∣Bsmall
j

∣∣∣) (24)

≤ max{pj , qj} −min{pj , qj}
ejξ/N

+
∣∣∣Bsmall

j

∣∣∣ (eξ − 1) (25)

=
|pj − qj |
ejξ/N

+
∣∣∣Bsmall

j

∣∣∣ (eξ − 1) (26)

Therefore:

∆SD (σ0(P ), σ0(Q)) =
1

2

∑
x∈N
|σ0(P )(x)− σ0(Q)(x)|

=
1

2

∑
j∈I

∑
x∈Blargej

|σ0(P )(x)− σ0(Q)(x)|

≤ 1

2

∑
j∈I

∑
x∈Bsmallj

|σ0(P )(x)− σ0(Q)(x)|+ 1

2

∑
j∈I

∑
x∈Blargej \σ0(Bsmallj )

max {σ0(P )(x), σ0(Q)(x)}

≤ 1

2

∑
j∈I

∑
x∈Bsmallj

ejξ

N

(
eξ − 1

)
+

1

2

∑
j∈I

(∣∣∣Blarge
j

∣∣∣− ∣∣∣Bsmall
j

∣∣∣) eξ ejξ
N

≤ 1

2

∑
j∈I

∣∣∣Bsmall
j

∣∣∣ ejξ
N

(eξ − 1) + eξ
1

2

∑
j∈I

ejξ

N
· |pj − qj |
ejξ/N

+ eξ
1

2

∑
j∈I

ejξ

N

∣∣∣Bsmall
j

∣∣∣ (eξ − 1)

≤ eξ(eξ − 1)
∑
j∈I

ejξ

N

∣∣∣Bsmall
j

∣∣∣+ eξ
1

2

∑
j∈I
|pj − qj |

≤ eξ(eξ − 1) + eξε
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Claim 3.28. For any two distributions P,Q over the domain [N ]. Let πord : [N ] → [N ] be the
permutation that satisfies the property for every i, j ∈ [N ], if P (i) < P (j) then

(
πord(Q)

)
(i) ≤(

πord(Q)
)

(j). Then, it holds that:

∆RL(P,Q) = ∆SD(P, πord(Q))

Proof. Assume that P is “sorted” in the following way: for every i ∈ [N − 1], P (i) ≥ P (i+ 1). No
generality is lost by this assumption since that if P is not ordered such that P (i) ≥ P (i+1), consider
P ′ to be the distribution obtained by applying a permutation πP over [N ] such that πP (P )(i) ≥
πP (P )(i+ 1) for all i ∈ [N − 1]. Since ∆RL(P, P ′) = 0, it holds that ∆RL(P,Q) = ∆RL(P ′, Q).

We prove the claim by showing that the smallest ∆SD between P and a permutation of Q is
achieved when Q is also “sorted” according to probability. Assume there exists a pair (i, j) ∈
[N ] × [N ] such that i < j and Q(j) > Q(i), and consider permutation π(i,j) such that it is the
identity permutation on all the domain, save for {i, j}, where it swaps one for the other. We now
prove that ∆SD(P,Q) > ∆SD(P, π(i,j)(Q)).

First, observe that:

∆SD(P,Q)−∆SD(P, π(i,j)(Q)) =
1

2
(|P (i)−Q(i)| − |P (i)−Q(j)|+ |P (j)−Q(j)| − |P (j)−Q(i)|)

Denote δ = |P (i)−Q(i)| − |P (i)−Q(j)| + |P (j)−Q(j)| − |P (j)−Q(i)|. We show that δ ≥ 0.
Note that the elements P (i), P (j), Q(i), Q(j) must satisfy one of the two composite conditions:

1. P (i) ≥ P (j) ≥ Q(j) > Q(i), or Q(j) > Q(i) ≥ P (i) ≥ P (j), or P (i) ≥ Q(j) ≥ P (j) ≥ Q(i).

2. P (i) ≥ Q(j) ≥ Q(i) ≥ P (j), or Q(j) ≥ P (i) ≥ P (j) ≥ Q(i), or Q(j) ≥ P (i) ≥ Q(i) ≥ P (j).

In the first case, it holds that |P (i)−Q(i)|+ |P (j)−Q(j)| = |P (i)−Q(j)|+ |P (j)−Q(i)|, which
means δ = 0. Moving to the second case, if for example P (i) ≥ Q(j) ≥ Q(i) ≥ P (j), then
|P (i)−Q(i)| + |P (j)−Q(j)| = P (i) + Q(j) − P (j) − Q(i), while |P (i)−Q(j)| + |P (j)−Q(i)| =
P (i) +Q(i)−P (j)−Q(j). Note that this implies that δ ≥ 0. A similar analysis follows for the rest
of options.

Assume now there exists a “non-sorted” permutation of Q, Q′ (i.e. there exist i < j for which
Q′(i) < Q′(j)), that achieves ∆SD(P,Q′) = ∆RL(P,Q), then, applying a sorting permutation to Q′

yields a distribution with the same distance from P as Q′ (by assumption over Q′), we get that a
“sorted” Q satisfies the desired property.

Proposition 3.29 (Histogram distance estimator). For every ξ ≤ 0.1 there exists an algorithm
that runs in O (log(N)/ξ) time and given parameters N , ξ, as well as two (N, ξ)-histograms {pj}j
and {qj}j, outputs d such that |d−∆RL ({pj}j , {qj}j |) ≤ 7ξ.

Proof. We prove that the algorithm described in Figure 1 satisfies the conditions in the claim above.

First, define the distributions P ′ and Q′ as follows:

• P ′ is the distribution that for every j assigns probability e(j+1)ξ/N to
⌊

pj
e(j+1)ξ/N

⌋
elements,

and the rest of the mass it assigns to a special element ? ∈ N, with value to be determined:

P ′(?) = 1−
∑

j

⌊
pj

e(j+1)ξ/N

⌋
·e(j+1)ξ/N . Moreover, assume that for every i 6= ?, P ′(i) ≥ P ′(i+1).
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Algorithm for approximating distance between histograms:
Input: parameters N and ξ, as well as two ξ-approximate histograms {pj}j and {qj}j .
Output: d ∈ [0, 1] such that the distance between {pj}j and {qj}j is d up to an additive factor of 7ξ.

The Algorithm:

1. Initialization. Set parameters c, d = 0, as well as mp,mq, s0, s1, t0, t1 = 0, and jp = 2 logN/τ ,

jq = 2 logN/τ , and define p′j =
⌊ pj
ejτN

⌋
· e

jτ

N , q′j =
⌊ qj
ejτN

⌋
· e

jτ

N .

2. While mp 6= 1 and mq 6= 1:

(a) Update parameters t0, t1, s0, s1:

• If t0 = t1: update jp → max{j ∈ I : p′j > 0, j < jp}, and t1 ← t1 +
Np′jp
ejpξ

.

• If s0 = s1: update jq → max{j ∈ I : q′j > 0, j < jq}, and s1 ← s1 +
Nq′jq
ejqξ

.

(b) Update:

• d← d+ 1
2

∣∣∣ ejpξN − ejqξ

N

∣∣∣ (min{t1, s1} −max{t0, s0})

• mp ← mp + ejpτ

N (min{t1, s1} −max{t0, s0})
• mq ← mp + ejqτ

N (min{t1, s1} −max{t0, s0})
Then:

• If min{t1, s1} = s1, set s0 ← s1.

• If min{t1, s1} = t1, set t0 ← t1.

3. Update d← d+ 1
2 ((1−mp) + (1−mq)).

4. Output d.

Figure 1: Algorithm for approximating distance between histograms

• Q′ is similarly defined with respect to {qj}j : for every j assigns probability e(j+1)ξ/N to⌊
qj

e(j+1)ξ/N

⌋
elements, and Q′(?) = 1−

∑
j

⌊
qj

e(j+1)ξ/N

⌋
· e(j+1)ξ/N . Also, assume that for every

i ∈ [N − 1], Q′(i) ≥ Q′(i+ 1).

Set ? to be large enough so that it doesn’t collide with the rest of the support of P ′ or Q′. We prove
that the algorithm provides a close estimate to the distance between P ′ and Q′, which we use as
proxies for distributions that are consistent with {pj}j and {qj}j respectively. Concretely, we show
the following: (i) ∆RL(P ′, {pj}j) ≤ 3ξ; (ii) ∆RL(Q′, {pj}j) ≤ 3ξ; (iii) d ≤ ∆RL(P ′, Q′) ≤ d + ξ.
Note that proving the three articles above will imply, through the triangle inequality for relabeling
distance (Proposition 3.21), that |∆RL ({pj}j , {qj}j)− d| ≤ 7ξ.

We start by proving that the distributions P ′ and Q′ are indeed close to all distributions
consistent with {pj}j and {qj}j respectively. We do so by showing that the histogram of P ′

(respectively Q′) is very close to {pj}j (respectively {qj}j) on every bucket, and by using Claim
3.27, we conclude the required condition.
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Denote p′j =
⌊

pj
ejξ/N

⌋
· ejN , and q′j =

⌊
qj

ejξ/N

⌋
· ejξN . By definition:

0 ≤
∑
j

(
pj − p′j

)
=
∑
j

(
pj −

⌊
pj

ejξ/N

⌋
· ejξ/N

)
= 1−

∑
j

p′j = P ′(?)

As {p′j}j differs from the histogram of P ′ by only the contribution of ? to one of the buckets, if we

denote the histogram of P ′ by {p̄j}j , then 1
2

∑
j |pj − p̄j | ≤

1
2

∑
j

∣∣∣pj − p′j∣∣∣+ 1
2P
′(?) = P ′(?). Thus,

by Claim 3.27: ∆RL(P, P ′) ≤ eξ 1
2

∑
j |pj − p̄j |+ eξ(exi − 1). Since ξ < 0.1, this yields:

∆RL(P, P ′) ≤ 1.5
1

2

∑
j

|pj − p̄j |+ 1.5ξ = 1.5P ′(?) + 1.5ξ

We therefore only need to bound P ′(?). For every bucket j any distribution P consistent with

{pj}j it holds that the number of elements in bucket j, is at most
⌊

pj
ejξ/N

⌋
, and at least

pj
e(j+1)ξ/N

.

So,
⌊

pj
ejξ/N

⌋
≥ pj

e(j+1)ξ/N
= e−τ

pj
ejξ/N

. Therefore, for every j,
pj

ejξ/N
−
⌊

pj
ejξ/N

⌋
≤ (1− e−τ )

pj
ejξ/N

, and:

P ′(?) = 1−
∑
j

⌊
pj

ejξ/N

⌋
·e
jξ

N
=
∑
j

pj
ejξ/N

·e
jξ

N
−
⌊

pj
ejξ/N

⌋
·e
jξ

N
≤
∑
j

(1−e−ξ) pj
ejξ/N

·e
jξ

N
≤ (1−e−ξ) ≤ ξ

Thus ∆RL(P, P ′) ≤ 3ξ. Following a similar argument for Q′ proves the second article.
Therefore, we are left to show the third article. Namely, d ≤ ∆RL(P ′, Q′) ≤ d+ ξ. Consider the

domain of P ′ and Q′ to be [M ], for some M ∈ N. We show that d = 1
2

∑
x∈[M ]\{?} |P ′(x)−Q′(x)|.

In other words - the algorithm calculates the distance between P ′ and Q′ on their domain, excluding
?. As we’ve established that P ′(?), Q′(?) ≤ ξ, this implies the desired result. Assume without loss
of generality that Supp(Q′) ⊆ Supp(P ′).

Before we describe the algorithm, note that: (i) since we assume that P ′ and Q′ assigns prob-
ability in a monotonic manner over [M ] \ {?}, this implies that their buckets are intervals, and in
particular, every intersection of a P ′-bucket and a Q′-bucket is an interval as well; (ii) in order to
compute the desired distance, we only require the size of such intersections:

1

2

∑
x∈[M]\{?}

∣∣P ′(x)−Q′(x)
∣∣ =

1

2

∑
x∈Supp(Q′)\{?}

∣∣P ′(x)−Q′(x)
∣∣+

1

2

∑
x∈Supp(P ′)\Supp(Q′)

P ′(x) (27)

=
1

2

∑
j,i

∑
x∈BP ′j ∩B

Q′
i

∣∣P ′(x)−Q′(x)
∣∣+

1

2

∑
j

∑
BP
′

j \Supp(Q′)

P ′(x) (28)

=
1

2

∑
j,i

∣∣∣BP ′
j ∩B

Q′

i

∣∣∣ · ∣∣∣∣ejξN − eiξ

N

∣∣∣∣+
1

2

∑
j

P ′
(
BP ′
j \ Supp(Q′)

)
(29)

It is possible to compute the size of the interval
∣∣∣BP ′

j ∩B
Q′

i

∣∣∣ for every j, i in poly(logN, 1/τ)

time. Our algorithm performs this in time linear in log(N)/τ (the size of the input). The algorithm
works as follows: it sets the variables t0 and t1 (s0 and s1) to contain the boundaries of a bucket
(which is an interval) of P ′ (Q′), starting from the highest bucket (containing the element 1 ∈ [M ]).
On each round, it calculates the size of the intersection between the P ′ and Q′ buckets with these
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boundaries, and updates the variables to contain the boundaries of the buckets whose intersection
follows (note that as this means that either t0 and t1 are updated to contain the boundaries of
the following P ′ bucket, s0 and s1 are updated to contain the boundaries of the following Q′, or
both). By so, the algorithm scans the entire domain, going intersection after intersection, and

adding their contribution to the distance - the value 1
2

∣∣∣BP ′
j ∩B

Q′

i

∣∣∣ · ∣∣∣ ejξN − eiξ

N

∣∣∣ - to the parameter

d. The variables p′j and q′j represent the bucket whose boundaries are contained in (t0, t1) and

(s0, s1) respectively, and through them, we calculate
∣∣∣ ejξN − eiξ

N

∣∣∣. This scanning motion is depicted

in Figure 2.
Since we assumed for the sake of the analysis that Supp(Q′) ⊆ Supp(P ′), in order to cal-

culate the distance between the distributions (up to ξ), we also require to take into account
1
2

∑
j P
′
(
BP ′
j \ Supp(Q′)

)
. This is achieved through the the parameters mq and mp. At each iter-

ation of the While-loop, parameters mp and mq are increased by the mass of the intersection whose
size has been calculated according to distribution P ′ andQ′ respectively. Thus, when the While-loop
meets its termination condition, as we assumed Supp(Q′) ⊆ Supp(P ′), it holds that mq = 1. At this
point, the variable mp contains the value P ′(Supp(Q′)), and so, 1−mp = P ′ (Supp(P ′) \ Supp(Q′)).

Therefore, the value 1
2 (1−mp) is exactly 1

2

∑
j P
′
(
BP ′
j \ Supp(Q′)

)
, and upon adding it to d, we

get that at the end of the run d = 1
2

∑
x∈[M]\{?} |P ′(x)−Q′(x)|.

1 2 3 ... M

𝐵!!
"" ∩𝐵!#

#"

1 2 3 4

P’
Q’

𝐵!
" !

𝐵#
$!

5    …
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Figure 2: The domain interval [M ], indicated by the ruler on top of the figure, is divided according
to the buckets of P ′ (depicted in light blue), and the buckets of Q′ (in light green). The red numbers
indicate the intersections between the different buckets, arranged according to the iteration of the
algorithm in which their contribution is added to the parameter d, and the position of s0, s1, t0, t1
represents the values of these variables on the 5’th iteration, before the update of variable d.

3.4 Testing and Verifying Distribution Properties

Theorem 3.30 (Distribution learner). (Folklore) There exists an algorithm that given sample
access to a distribution P over the domain [N ], and an accuracy parameter α ∈ (0, 1), it runs in
time Õ(N/α2), takes O(N/α2) samples, and with probability at least 0.99 outputs a full description
of a distribution Papprox such that ∆SD(P, Papprox) ≤ α.

Proof. Let S be a sample of size s = 10000Nα−2 drawn i.i.d. according to distribution P . For every
i ∈ [N ] let Xi denote the fraction of number of occurrences of element i in sample S. Fix such i. For
every k ∈ [s], define Ik to be the indicator that Sk = i. By definition, 1

s

∑
k∈[s] Ik = Xi. Also, by

definition, for every k, E[Ik] = P (i). Thus, by the linearity of expectation, E[Xi] = P (i). Moreover,

since the samples were drawn i.i.d., Var[Xi] = 1
sVar[I1] ≤ 1

sE[I1] = P (i)
s , where the inequality holds
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since I1 is a Bernoulli variable. By Jensen’s inequality, (E[|Xi − P (i)|])2 ≤ E[|Xi − P (i)|2] =

Var[Xi], which implies E[|Xi − P (i)|] ≤
√

Var[Xi] =

√
P (i)
s .

Since we picked i arbitrarily, this applies to all i ∈ [N ], and so:

E

∑
i∈[N ]

|Xi − P (i)|

 =
∑
i∈[N ]

E [|Xi − P (i)|] ≤
∑
i∈[N ]

√
P (i)

s
≤
√
n

s

Where the last inequality is justified by the Cauchy-Schwarz inequality. Finally, by Markov’s
inequality:

Pr
P

∑
i∈[N ]

|Xi − P (i)| > ε

 ≤ √N/s
ε

Plugging in s = 10000nα−2, it follows that:

Pr
P

∑
i∈[N ]

|Xi − P (i)| > ε

 ≤ 1

100

Therefore, if we define Papprox to be the distribution that assigns probability Xi to element i ∈ [N ],
then ∆SD(P, Papprox) ≤ ε with probability at least 0.99.

Drawing from Goldreich [Gol17], a distribution property Π is some predefined set of distributions
(which are considered to have the property).

Definition 3.31 (Distribution tester for property Π). Let δ be some distance measure between
distributions. A tester T of property Π is a probabilistic oracle machine, that on input parameters
N and ε, and oracle access to a sampling device for a distribution D over a domain of size N ,
outputs a binary verdict that satisfies the following two conditions:

1. If D ∈ Π, then Pr(TD(N, ε) = 1) ≥ 2/3.

2. If δ(D,Π) > ε, then Pr(TD(N, ε) = 0) ≥ 2/3.

In the context of this work, the relevant distance measure is statistical distance as defined above.
An extension of this definition, introduced by Parnas, Ron, and Rubinfeld [PRR06] is the following:

Definition 3.32 ((εc, εf )-tolerant distribution property tester). For parameters εc, εf ∈ [0, 1] such
that εc < εf , a (εc, εf )-tolerant tester T of property Π is a probabilistic oracle machine, that on
inputs N, εc, εf and given oracle access to a sampling device for distribution D over a domain of
size N , outputs a binary verdict that satisfies the following two conditions:

1. If δ(D,Π) ≤ εc, then Pr(TD(N, εc, εf ) = 1) ≥ 2/3.

2. If δ(D,Π) ≥ εf , then Pr(TD(N, εc, εf ) = 0) ≥ 2/3.

Note that a tolerant distribution test is for some property Π is at least as hard as a standard
non-tolerant tester for the same property, as mentioned in Section 1.2.

Our main result is an interactive proof system for many tolerant testing problems. The following
definition sets the framework for this work. It is based on the setting presented in the seminal work
of Goldwasser, Micali, and Rackoff [GMR85], and it is an extension of the definition presented by
Chiesa and Gur [CG18] that includes tolerant testing.
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Definition 3.33 (Proof system for tolerant distribution testing problems). A proof system for a
tolerant distribution testing problem Π with parameters εc and εf is a two-party game, between a
verifier executing a probabilistic polynomial time strategy V , and a prover that executes a strategy
P . Given that both V and P have black-box sample access to distribution D over the domain [N ],
and are given N , the interaction should satisfy the following conditions:

• Completeness: For every D ∈ ∆N such that ∆SD(D,Π) ≤ εc, the verifier V , after inter-
acting with the prover P , accepts with probability at least 2/3.

• Soundness: For every D ∈ ∆N such that ∆SD(D,Π) ≥ εf , and every cheating strategy P ∗,
the verifier V , after interacting with the prover P ∗, rejects with probability at least 2/3.

The complexity measures associated with the protocol are: the sample complexity of the verifier (and
the prover), the communication complexity, the runtime of both agents, and the round complexity
(how many messages were exchanged).

There are properties for which we want to consider an alternative definition of the completeness
and soundness clauses, restricting the ambient set from which distribution D is taken, from the
∆N to ∆′N ⊆ ∆N . We define ∆′ =

⋃
N∈N ∆′N . This prompts the following definition:

Definition 3.34 (Label invariant distribution property). A distribution property Π ⊆ ∆ is called
label invariant if for all permutation σ ∈ perm (N) it holds that D ∈ Π if and only if σ(D) ∈ Π.

4 Main Result

Theorem 4.1. [Verified histogram protocol] There exists a 2-message interactive protocol between
an honest verifier and a (potentially malicious) prover, where the verifier receives as input param-
eters τ ∈ (0, 0.1) and 100 < N ∈ N, as well as sample access to a distribution D over the domain
[N ]. The communication complexity, verifier sample complexity, and verifier running time are all
Õ(
√
N) · poly(τ−1). Given sample access to the distribution D, the honest prover requires with high

probability O (exp (poly(logN, 1/τ)) samples and running time.
Define τ ′ = τ

15000 logN . At the end of the interaction, the verifier rejects or outputs a (N, τ ′)-
histogram {aj}j∈I , such that:

• If the prover is honest, then with probability at least 0.9, the verifier doesn’t reject, and
∆RL (D, {aj}j∈I) ≤

√
τ/2.

• Whatever strategy a dishonest prover follows, the probability over the verifier’s coin tosses and
samples that the verifier doesn’t reject and outputs {aj}j∈I such that ∆RL(D, {aj}j∈I) > 2

√
τ

is at most 0.1.

4.1 Proof of Theorem 4.1

Notation 4.2. Throughout the proof we take dW = D(XW ).

We show that the protocol in Figure 3 fulfills all the conditions of Theorem 4.1. The idea
behind the protocol is to divide the problem of finding the histogram of the distribution into two -
approximating the histogram of D on subdomain XW , that contains all the high probability elements
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IP for verified histogram reconstruction

Verifier Input: integer N > 100, accuracy parameter τ < 0.1, and sample access to distribution D over
domain [N ].
Prover Input: same as verifier (or, alternatively, full information of distribution D).

Goal: obtain a
(
N,O

(
τ

logN

))
-histogram {aj}j∈I such that ∆RL (D, {aj}j) < 2

√
τ .

The Protocol:

1. Dividing the domain to heavy and light elements. Define s = 10000
√
N log2(N)τ ′−4 log(τ ′−1).

The verifier draws a sample W = (W1,W2, . . . ,Ww), where w = 80s (τ ′
√
τ)
−1

logN . Define the set
of elements sampled in W to be XW , and XL = [N ] \ XW .

2. Test I. Learning the distribution D
∣∣
XW

. The verifier samples w′ = 53 · 10000w (τ
√
τ)
−1

fresh

samples to yield W ′, and sets d̂W =
{|i∈[w′]:W ′

i∈XW}|
w′ , the empirical mass of the set XW :

• If d̂W <
√
τ/5, the verifier continues to Test II.

• Otherwise, d̂W ≥
√
τ/5, and sample W ′ contains enough samples from XW for the verifier to

run the Folklore Distribution Learner, as in Theorem 3.30 on D
∣∣
XW

, with distance parameter√
τ/5. Denote the output of the learner by Dapprox

W .

3. Test II. Learning the (N, τ ′)-histogram of D
∣∣
XL

.

• If d̂W > 1−
√
τ/5, the verifier continues to Step 4.

• Otherwise, the verifier uses the samples of W ′ from XL, to run the protocol for histogram recon-
struction of distributions with no high-probability elements as in Figure 6 for the distribution
D
∣∣
XL

, with parameters N, τ (see Section 5 for more detail). If this protocol ends in rejection,

the verifier rejects. Otherwise, it gets a (N, τ ′)-histogram {p̃j}j∈I .

4. Composing the final histogram.

• If d̂W <
√
τ
5 , set {aj}j = {p̃j}j .

• If d̂W > 1−
√
τ
5 , set {aj}j∈I as the (N, τ ′) histogram of Dapprox

W .

• Otherwise, for every j ∈ I, define hj = Dapprox
W

(
Kapprox
W,j

)
, for Kapprox

W,j ={
x ∈ XW

∣∣∣∣∣ d̂W ·Dapprox
W (x) ∈

[
ejτ

′

N , eτ
′ ejτ

′

N

)}
, and define δ = −

⌊
log(1−d̂W )

τ ′

⌋
, and for every

j ∈ I \ {L}, set:

aj = d̂W · hj + (1− d̂W ) · p̃j+δ
And aL = 1−

∑
j∈I\{L} aj .

5. Output {aj}j∈I .

Figure 3: Interactive protocol for histogram reconstruction - general distribution

and on subdomain XL, which accounts for the rest of the domain. After having obtained them, the
verifier puts them together to create the histogram of D. We start by showing how this division is
achieved in Claim 4.3.
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On subdomain XW the verifier computes the conditioned histogram by running the folklore
distribution leaner as detailed in Theorem 3.30 to yield good approximation for D conditioned
on the subdomain XW . Then, the verifier runs the bounded probability histogram reconstruction
protocol as provided by lemma 5.1 and detailed in Figure 6 on D restricted to XL (this is possible
as this subdomain does not contain elements with high probability).

Claim 4.3. For N > 100, with probability at least 0.99 over the choice of W , for every x ∈ XL
simultaneously, D(x) ≤

√
τ

10 ·
1−e−τ ′

s .

Proof. Let x ∈ [N ] be such that D(x) ≥ (1−e−τ ′ )
√
τ

10s . Since the sample was drawn i.i.d., the
probability that x doesn’t appear at all in the sample is exactly (1−D(x))w. By the assumption
on the value of D(x), as well as the choice of w:

Pr (x ∈ XL) = (1−D(x))w ≤

(
1− (1− e−τ ′)

√
τ

10s

)80s
(

(1−e−τ ′ )
√
τ
)−1

logN

(30)

≤
(
2e−1

)−8 logN
=
(
elog 2−1

)−8 logN
≤
(
e−1/4

)−8 logN
= e−2 logN =

1

N2

(31)

Where the second inequality holds as long as s
√
τ

1−e−τ ′ > 2, which holds for every N and τ .

As there are at most N elements in the domain, and in particular, at most N elements with

probability at least (1−e−τ ′ )
√
τ

10s (in fact there are far less than N such elements, but for sake of
simplicity we use the crude upper bound), taking a union bound over all these elements, we get

that the probability that there exists an element with probability at least (1−e−τ ′ )
√
τ

10s that wasn’t
sampled in W is at most 1/N , and for N > 100, this probability is at most 0.01, leaving the
probability of the complementary event to be at least 0.99.

Having a good approximation of the histograms of both D
∣∣
XW

, and D
∣∣
XL

is meaningful for

extracting the histogram of D only if the verifier has a good estimate of D(XW ). And indeed:

Claim 4.4. With probability at least 0.99 over the choice of W ′:∣∣∣d̂W − dW ∣∣∣ ≤ τ ′
Proof. Let IXWi be the indicator that W ′i ∈ XW . By definition, for every i ∈ [w′], E[IXWi ] = dW ,

and by linearity of expectation and the definition of d̂W , E[d̂W ] = E
[

1
w′
∑

i∈[w′] I
XW
i

]
= dW . As

these indicators are independent, using Hoeffding’s inequality, we conclude that:

Pr
(∣∣∣d̂W − dW ∣∣∣ > τ ′

)
≤ 2exp

(
−2w′τ ′2

)
< 0.01 (32)

We now turn to prove the the completeness and the soundness of the protocol in Figure 3. In
order to do so, we analyse the output variables {aj}. Observe that in the case that d̂W is very
small or very large, {aj} is simply an approximation of the (N, τ ′)-histogram of either D

∣∣
XW

(as
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the verifier outputs the histogram of yielded by the folklore histogram learner for that distribution),
or D

∣∣
XL

(the output of the bounded probability histogram reconstruction protocol). However, in the

case that d̂W is neither very small nor very large, {aj}j collects together the buckets from both
D
∣∣
XW

and D
∣∣
XL

to yield the histogram of the entire distribution.

This process is somewhat involved, and in order to prove that in this case, {aj}j as we define,
does exactly that, we construct a distribution D′ such that D′ is divided into two domains in a
similar way to D, and has (N, τ ′)-histogram very close to {aj}j (i.e. ∆RL(D′, {aj}j) is small).
We show that in the completeness case, this distribution is close to D in relabelling distance, and
conclude that the histogram {aj}j is close to D in relabelling distance. In the soundness case,
we show that the probability that the verifier doesn’t reject and D′ is far from D is small, which
concludes the proof. In the following construction, we assume 1− d̂W >

√
τ/5.

Construction 4.5 (Distribution D′). Define the collection {Xj}j∈I to be a collection of disjoint

sets, such that for every j, Xj ⊆ N, and |Xj | =
⌊
Np̃j
ejτ ′

⌋
. Denote L =

(⋃
j Xj

)
∪ {−1}, and assume

w.l.o.g. that L ∩ XW = φ (this is possible since the sets L and XW are finite by construction).
Define the distribution D′ to be as follows:

• D′(XW ) = d̂W , and D′(L) = 1− d̂W .

• D′
∣∣
XW

= Dapprox
W .

• For every j and every x ∈ Xj, D
′∣∣
L(x) = ejτ

′

N

• D′
∣∣
L({−1}) = 1−

∑
x∈LD

′∣∣
L(x).

Claim 4.6. The distribution D′ of the above construction is well defined, and satisfies:

• ∆RL(D′, {aj}j) ≤ 6τ ′

• ∆RL

(
D′
∣∣
L, D

∣∣
XL

)
≤ ∆RL(D

∣∣
XL
, {p̃j}j) + τ ′

Proof. Distribution D′ is well defined as it is well defined over the domain XW (since it is equal to
a well defined distribution over that domain), and over L, it holds that:

∑
x∈L\{−1}

D′
∣∣
L(x) =

∑
j∈I

∑
x∈Xj

D′
∣∣
L(x) =

∑
j∈I

⌊
p̃j

ejτ ′/N

⌋
· e

jτ ′

N
≤
∑
j∈I

p̃j ≤ 1

And we get that D′({−1}) ≥ 0, as well as
∑

x∈LD
′∣∣
L(x) = 1.

We move to show that ∆RL (D′, {aj}j) ≤ 2τ ′. We do so by calculating the (N, τ ′)-histogram of
D′, and showing that it is close to {aj}j .

Denote by BLk the k’th (N, τ ′)-histogram of D′
∣∣
L. Ignoring first {−1}, consider the (j + δ)’th

bucket of D
∣∣
L for δ = −

⌊
log(1−d̂W )

τ ′

⌋
, as defined in the protocol. We show that the elements in this

bucket are in the j’th bucket of D′. Take x ∈ BLj+δ:

D′(x) = (1− d̂W ) ·D′
∣∣
L(x) = (1− d̂W )

e(j+δ)τ ′

N
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By definition of δ:

(1− d̂W )
e(j+δ)τ ′

N
=
elog(1−d̂W )e(j+δ)τ ′

N
=
exp

(
τ ′ log(1−d̂W )

τ ′ − τ ′
⌊

log(1−d̂W )
τ ′

⌋)
· ejτ ′

N
≤ eτ

′
ejτ
′

N

And bounding from below:

d̂W
e(j+δ)τ ′

N
=
elog d̂W e(j+δ)τ ′

N
=
exp

(
τ ′ log d̂W

τ ′ − τ
′
⌊

log(d̂W )
τ ′

⌋)
· ejτ ′

N
≥ ejτ

′

N

We showed that D′(x) ∈
[
ejτ
′

N , eτ
′ ejτ

′

N

)
, i.e. every element x in the j + δ bucket of D′

∣∣
L, belongs

to the j’th bucket of D′. Take now y ∈ Kapprox
W,j (as defined in the protocol). We know that:

D′(y) = d̂W ·Dapprox
W (y) ∈

[
ejτ

N , eτ
′ ejτ

N

)
by definition, and so, y is also in the j’th bucket of D′. We

therefore showed that Kapprox
W,j ∪BLj+δ is contained in the j’th bucket of D′. We also argue that save

for potentially set {−1}, no other element z ∈ L ∪ XW satisfies D′(z) ∈
[
ejτ
′

N , eτ
′ ejτ

′

N

)
.

Take z ∈ L ∪ XW such that z /∈ {−1} ∪ BLj+δ ∪K
approx
W,j . By construction, it holds that either

z ∈ Xk1 for k1 6= j + δ, or z ∈ Kapprox
W,k2

for k2 6= j. Following the same line of reasoning above,
this immediately implies that z is not in the j’th bucket of distribution D′. Therefore, the mass of
bucket j of distribution D′, denotes by d′j , (still excluding, potentially, the contribution of element
{−1}) is:

d′j = D′
(
Kapprox
W,j

)
+D′

(
BLj+δ

)
= d̂W · hj + (1− d̂W )

⌊
p̃j

ejτ ′/N

⌋
ejτ
′

N

Where hj = Dapprox
W

(
Kapprox
W,j

)
= D′

∣∣
XW

(
Kapprox
W,j

)
, as defined in the protocol.

We now turn to show that for every j, d′j is close to aj . First, note that the number of non-
negative indices in the histogram {p̃j}j is at most dCe for:

C =
log logN

τ ′
+

2 log
(

1
τ ′

)
τ ′

+
logN

2τ ′
+

2 log (τ ′)

τ ′

As there are at most logN
2τ ′ + 2 log(τ ′)

τ ′ buckets between the 0 bucket (contains elements with individual

mass 1/N), and the highest bucket that contains elements with mass at most τ ′

s , and log logN
τ ′ +

2 log( 1
τ ′ )

τ ′ buckets between the 0 bucket, and the L’th bucket (with elements with mass smaller than
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τ ′2

N logN ). Observe that:

1

2

∑
j:p̃j 6=0

∣∣d′j − aj∣∣ =
1

2

∑
j:p̃j 6=0

(1− d̂W )

(
p̃j −

⌊
p̃j

ejτ ′/N

⌋
ejτ
′

N

)
(33)

≤ (1− d̂W )
1

2

∑
j:p̃j 6=0

(
p̃j −

(
p̃j

ejτ ′/N
− 1

)
ejτ
′

N

)
(34)

=
(1− d̂W )

2
· 1

2

∑
j:p̃j 6=0

ejτ
′

N
(35)

≤ τ ′2

N logN
·

(
eτ
′
)C+1

− 1

eτ ′ − 1
(36)

≤ τ ′2

N logN
·
eτ
′
(
eτ
′
)C
− 1

eτ ′ − 1
(37)

≤ eτ
′
τ ′2

N logN
·

logN
τ ′2 ·

N
2 · τ

′2

τ ′
(38)

≤ τ ′ (39)

Considering next the mass of {−1}, and its contribution to the distance, observe that:

D′({−1}) ≤
∑
j:p̃j 6=0

ejτ
′

N
≤ τ ′

This is justified as {−1} is defined to contain the sum of probability mass of all elements neglected
in the rounding process described above.

Therefore, also considering the contribution of the {−1} element, we deduce that if we denote
by d

′′
j the true mass of the j’th bucket of distribution D′ (including, potentially, the contribution

of the neglected {−1}, whose mass is at most τ ′), we get:

1

2

∑
j∈I

∣∣∣d′′j − aj∣∣∣ ≤ 2τ ′

And so, by Claim 3.27, we get that ∆RL(D′, {aj}j) ≤ eτ
′
(eτ
′ − 1) + 2eτ

′
τ ′ ≤ 3τ ′ + 3τ ′ = 6τ ′ Where

the last inequality is justified through the choice of τ < 0.1, and N > 100.
The second part of this claim is more straightforward. By the triangle inequality of relabelling

distance (Claim 3.21):

∆RL

(
D′
∣∣
L, D

∣∣
XL

)
≤ ∆RL

(
D′
∣∣
L, {p̃j}j

)
+ ∆RL

(
{p̃j}j , D

∣∣
XL

)
Note that the above calculation can also be drawn to conclude that ∆RL

(
D′
∣∣
L, {p̃j}j

)
< τ ′, as they

differ only on the allocation of the mass attributed to {−1}, which yields the desired result.

Proposition 4.7. If the prover is honest, then, with probability at least 0.9 over the choice of
W,W ′, the randomness of the folklore distribution learner, and the randomness of the bounded
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probability histogram reconstruction protocol, at the end of protocol in Figure 3, the verifier outputs

{aj}j∈I , such that: ∆RL(D, {aj}j∈I) <
√
τ

2 .

Proof. We divide the proof into four parts, according to the value of D(XW ) = dW (the real mass
of XW ).

Case I: dW <
√
τ/5− τ ′. In this case:

• By Claim 4.4, the probability that d̂W <
√
τ/5 is at least 0.99. Assuming this is the case,

W ′ contains sufficiently many samples from XL to run the bounded probability histogram
reconstruction protocol detailed in Section 5. This is justified by the definitions of w′ and the
fact that more than

√
τ/5 + τ ′ elements are from XL.

• By Claim 4.3, the probability that all elements in XL are of probability at most (1−e−τ ′ )
√
τ

10s is
at least 0.99.

• Assuming XL contains only elements with probability at most
√
τ

10 ·
1−e−τ ′

s , then, givenD(XL) =

1 − dW > 1 −
√
τ/5 + τ ′ >

√
τ/10, all x ∈ XL satisfy D

∣∣
XL

(x) ≤ 1−e−τ ′
s . By Proposition

5.1, given that the prover is honest, with probability at least 0.95 over the randomness of the
bounded probability histogram reconstruction protocol, the histogram {p̃j}j∈I satisfies:

∆RL

(
{p̃j}j , D

∣∣
XL

)
< 2τ ′

Therefore, in this case, by union bound, all these conditions apply with probability at least 0.9.
Recall that in this case, for every j, the verifier sets aj = p̃j . By Corollary 3.24:

∆RL(D, {aj}j) = ∆RL (D, {p̃j}j) ≤ (1−dW )∆RL

(
D
∣∣
XL
, {p̃j}j

)
+dW ≤ 1 · 2τ ′+

√
τ/5− τ ′ ≤

√
τ/2

Case II: dW > 1− (
√
τ/5− τ ′). In this case:

• By Claim 4.4, the probability that d̂W > 1−
√
τ/5 is at least 0.99.

• By Theorem 3.30, with probability at least 0.99 over the randomness of the Folklore Distri-

bution Learner, it holds that ∆SD

(
D
∣∣
XW

, Dapprox
W

)
≤
√
τ/5, and so, if {aj}j is the (N, τ ′)-

histogram of Dapprox
W , then, by definition:

∆RL

(
D
∣∣
XW

, {aj}j
)
≤
√
τ/5

As before, taking union bound over these conditions, they all apply simultaneously with probability
at least 0.9. Recall that in this case, the output {aj}j is the (N, τ ′)-histogram of Dapprox

W , and by
Corollary 3.24:

∆RL (D, {aj}j) ≤ dW∆RL

(
D
∣∣
XW

, {aj}j
)

+ (1− dW ) ≤ 1 ·
√
τ/5 +

√
τ/5− τ ′ ≤

√
τ/2
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Case III:
√
τ/5 + τ ′ < dW < 1− (

√
τ/5 + τ ′). This case is slightly more involved. In this case:

• By Claim 4.4, with probability of least 0.99 over the choice of W ′,
∣∣∣d̂W − dW ∣∣∣ < τ ′, i.e.

d̂W ∈ (
√
τ/5, 1−

√
τ/5).

• As in Case I, we get that with probability at least 0.99 over the choice of W , XL contains only

elements with probability at most
√
τ

10 ·
1−e−τ ′

s , and so, again, following the same reasoning as

in Case I, for every x ∈ XL, D
∣∣
XL
≤ 1−e−τ ′

s , and since 1−d̂W >
√
τ/10, the verifier has enough

samples to run the bounded probability histogram re-constructor protocol for distribution D
∣∣
XL

with parameters N and τ ; and with probability at least 0.95, the histogram obtained by
running the protocol, {p̃j}j∈I , satisfies:

∆RL({p̃j}j , D
∣∣
XL

) < 2τ ′

• As in Case II, assuming d̂W >
√
τ/5, we have enough samples to run the Folklore Distribution

Learner, and by Theorem 3.30, with probability at least 0.99, we get distribution Dapprox
W such

that:
∆RL

(
D
∣∣
XW

, Dapprox
W

)
≤
√
τ/5

Like in both previous cases, with probability at least 0.9 all these conditions apply at once.
Assume they all apply.

Recall that in this case, for every j 6= L, the verifier sets aj = d̂W · hj + (1− d̂W ) · p̃j+δ.
Let D′ be as in Construction 4.5. By Claim 3.25, it holds that:

∆RL

(
D,D′

)
≤ dW∆RL

(
D
∣∣
XW

, D′
∣∣
XW

)
+ (1− dW )∆RL

(
D
∣∣
XL
, D′
∣∣
L

)
+
∣∣∣d̂W − dW ∣∣∣

By Claim 4.6, the above assumptions, as well as the assumption that τ < 0.1, N > 100:

∆RL(D,D′) ≤
√
τ/5 + 2τ ′ + τ ′ + τ ′ =

√
τ/4

Moreover, by the same claim, we also get that ∆RL(D′, {aj}j) ≤ 6τ ′. Which gives us through the
triangle inequality for relabelling distance (Claim 3.21):

∆RL(D, {aj}j) ≤
√
τ/4 + 6τ ′ ≤

√
τ/2

Lastly, we get to the final case:

Case IV: dW ∈
[√

τ
5 − τ

′,
√
τ

5 + τ ′
]
∪
[

1−
√
τ

5 − τ ′, 1−
√
τ

5 + τ ′
]

. This case is reducible to the

previous cases. In this case, assuming
∣∣∣dW − d̂W ∣∣∣ < τ ′, which occurs with probability at least 0.99,

we get that {aj}j changes according to the value of d̂W , and can be in any of the previous cases.

If d̂W <
√
τ/5, the arguments in Case I apply, if d̂W > 1−

√
τ/5, the arguments in Case II apply,

and otherwise, the arguments in Case III apply.

Proposition 4.8. If the prover is dishonest, the probability that the verifier doesn’t reject and
outputs {aj}j such that: ∆RL(D, {aj}j) >

√
τ is at most 0.1.

Proof. Assume the prover is dishonest. Note that Test I, and the composition of Dapprox
W require no

interaction with the prover. Therefore, a dishonest prover can only effect the output of the bounded
probability histogram reconstruction protocol for distribution D

∣∣
XL

. We consider the following cases:
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Case I: dW > 1 −
√
τ/5 + τ ′. In this case, with probability at least 0.99, it holds that d̂W >

1 −
√
τ/5, and the verifier outputs the (N, τ ′) histogram of Dapprox

W . Here, the prover plays no
part in the production of the output, therefore, the proof here follows the same course as the
one in the previous proof. In short, by Theorem 3.30, with probability at most 0.01, the folklore
distribution learner outputs Dapprox

W such that its histogram, {aj}j , satisfies ∆RL(D
∣∣
XW

, {aj}j) ≤√
τ/5, which as shown in the previous proof, with probability at least 0.9, translates to the condition

∆RL(D, {aj}j) <
√
τ/2, and in particular, with probability at most 0.1, the verifier outputs {aj}j

such that ∆RL(D, {aj}j) >
√
τ .

Case II: dW < 1 −
√
τ/5 − τ ′. By Claim 4.4, with probability at least 0.99, we get that

1− d̂W ≥
√
τ/5, and as explained in Case I of the previous proof, there are enough samples to run

the bounded probability histogram recontruction protocol over D
∣∣
XL

. By Lemma 5.1, if the prover

is dishonest, with probability at least 0.95, the verifier either rejects or outputs a histogram {p̃j}j
such that ∆RL(D

∣∣
XL
, {p̃j}j) ≤

√
τ . Consider the latter case, that the verifier didn’t reject. Next, it

holds either d̂W is very small, in which the histogram {p̃j}j will also be the output; or that d̂W has

enough mass to run the folklore distribution learner on D
∣∣
XW

. Formally, either 1− d̂W > 1−
√
τ/5,

or 1 − d̂W ≤ 1 −
√
τ/5. If the former holds {aj}j = {p̃j}j , and by the arguments in Case I of the

previous proof, we get that:

∆RL (D, {aj}j) = ∆RL (D, {p̃j}j) ≤ ∆RL

(
D
∣∣
XL
, {p̃j}j

)
+ dW ≤

√
τ +
√
τ/5 + τ ′ ≤ 2

√
τ

Otherwise, aj = d̂Whj + (1− d̂W )p̃j+δ. Let D′ be as in Construction 4.5. By the triangle inequality
for relabelling distance (Claim 3.21), and by Claim 4.6, with probability at least 0.9:

∆RL(D, {aj}j) ≤ ∆RL(D,D′) + ∆RL(D′, {aj}j) (40)

≤ d̂W∆RL

(
D
∣∣
XW

, D′
∣∣
W

)
+ (1− d̂W )∆RL

(
D
∣∣
XL
, {p̃j}j

)
+
∣∣∣dW − d̂W ∣∣∣+ 6τ ′ (41)

≤
√
τ/5 +

√
τ + τ ′ + 6τ ′ ≤ 2

√
τ (42)

Case III. dW ∈ [1−
√
τ/5− τ ′, 1−

√
τ/5 + τ ′]. In this case, in the same vein as Case IV of the

previous proof, it holds that d̂W can be either above or below 1−
√
τ/5. In any case, the calculation

for both these cases can be reduced to the above two cases (to Case I if d̂W ≥ 1 −
√
τ/5, and to

Case II if d̂W < 1−
√
τ/5).

5 Bounded Probability Histogram Reconstruction Protocol

Lemma 5.1. There exists a 2-message interactive protocol between an honest verifier and a (po-
tentially malicious) prover, where the verifier receives parameters τ ∈ (0, 0.1) and N ∈ N as
input, as well as sample access to some distribution D over a domain [N ] that satisfies for all

x ∈ [N ], D(x) ≤ 1−e−τ ′
s , for τ ′ = τ

15000 logN , and s = 10000
√
N log2(N)τ ′−4 log(1/τ ′). The com-

munication complexity, verifier sample complexity, and verifier running time are all s = Õ(
√
N) ·

poly(τ−1). Given sample access to the distribution D, the honest prover requires with high proba-
bility O (exp (poly(logN, 1/τ)) samples and running time.
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At the end of the interaction, the verifier rejects or outputs a (N, τ ′)-histogram {p̃j}j∈I such
that:

• If the prover is honest, then with probability at least 0.95, the verifier doesn’t reject, and
∆RL(D, {p̃j}j) < 2τ ′.

• No matter what strategy a dishonest prover follows, the probability that the verifier doesn’t
reject and outputs {p̃j}j∈I such that ∆RL(D, {p̃j}j∈I) >

√
τ is at most 0.05.

Organization of this section. The following sections cover the proof of this lemma by showing
a protocol that satisfies all of its conditions. The verifier tests performed as part of the protocol
are based on estimations and manipulations of several distribution quantities, and in particular,
the `2 norm and entropy of a distribution.

Therefore, before we provide the protocol and proof to this lemma, we first establish two
important tools - the first is a method of relating the `2-norm and relabelling distance from uniform
of a distribution, to its entropy (Section 5.1); and the second is an entropy upper bound protocol,
that allows a verifier to spot a prover that tries to convince her that the entropy of a given samplable
distribution is smaller than it actually is (Section 5.2). This allows us to prove in Section 5.3, the
main section of the proof, that the protocol in Figure 5 fulfills all the requirement of the lemma,
save for one - it consists of four messages. To fix this, in Section 5.4 we collapse the rounds of the
protocol to just two, concluding the proof.

5.1 Relating `2-norm and Relabelling Distance from Uniform to Entropy

At the heart of the proof of the protocol lies the following lemma, which ties together three quan-
tities: a distribution’s relabelling distance from uniform, its entropy, and its `2 norm. The lemma
asserts that the two distributions - the uniform distribution over K ∈ N elements, U[K]; and a
distribution P that is at least σ-far in relabelling distance from U[K] that has `2 norm close to the
of U[k] - must have their entropies bounded away from each other (where the gap is dependent on
the gap in norms and σ).

Lemma 5.2. Let P be a discrete distribution over [M ] elements such that
∣∣∣(∑i∈Supp(P ) P

2(i)
)
− 1

K

∣∣∣ <
γ
K , for some K ∈ N, and γ > 0. If there exists σ ∈ (0, 1) s.t. ∆RL(P,U[K]) ≥ σ (where U[K] is the
uniform distribution over K elements), then:

H(P )− log(K) ≥ 1

32
σ2 − γ

We now turn to prove the theorem, and subsequently explain its application in the context of
this proof:

Proof of Theorem 5.2. Fix a distribution P over a domain [M ], a constant σ ∈ (0, 1), and an integer

K. Assume that ∆RL(P,U[K]) > σ, as well as
∣∣∣(∑i∈Supp(P ) P

2(i)
)
− 1

K

∣∣∣ < γ
K , for some γ > 0.

By Taylor’s theorem, for every x ∈ R≥0:

log

(
1

x

)
= log(K)−K

(
x− 1

K

)
+

1

2
· 1

(m(x))2

(
x− 1

K

)2
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Where m(x) ∈
[
x, 1

K

]
∪
[

1
K , x

]
. Therefore:

H(P ) = Ei∼P
[
log

(
1

P (i)

)]
= log(K)− Ei∼P

[
K

(
P (i)− 1

K

)
+

1

2
· 1

m(P (i))2

(
P (i)− 1

K

)2
]

Where for each i, m(i) ∈
[
P (i), 1

K

]
∪
[

1
K , P (i)

]
. This immediately yields the following valuable

equality:

H(P )− log(K) = Ei∼P
[
−K

(
P (i)− 1

K

)]
+ Ei∼P

[
1

2
· 1

m(P (i))2

(
P (i)− 1

K

)2
]

(43)

We turn to bounding the two expressions on the right-hand side.
First:

Ei∼P
[
−K

(
P (i)− 1

K

)]
= −

∑
i∈Supp(P )

P (i) ·K
(
P (i)− 1

K

)

= −K

 ∑
i∈Supp(P )

(P (i))2 − 1

K

∑
i∈Supp(P )

P (i)


≥ −K · γ

K
= −γ

Where the last inequality is justified by the assumption on P .
We proceed to bound the second term. Without loss of generality, assume that P satisfies the

condition that for all i ∈ [M − 1], P (i) ≥ P (i + 1) (otherwise, relabel the domain). Let Q∗, be
a uniform distribution over support of size K, such that Q∗(i) ≥ Q∗(i + 1) for all i ∈ [K], and 0
otherwise. By the assumption over P , ∆SD(P,Q∗) ≥ σ. Further define:

A = {i ∈ Supp(P ) ∩ Supp(Q∗) : P (i) ≥ Q∗(i) 6= 0}
B = {i ∈ Supp(P ) ∩ Supp(Q∗) : P (i) < Q∗(i) 6= 0}
C = Supp(P ) \ Supp(Q∗)

D = Supp(Q∗) \ Supp(P )

Observe that by the monotonicity assumption over P and Q∗ it follows that either C = φ or D = φ
(corresponding to the cases where Supp(P ) is larger than K and smaller than K, respectively),
and the union A ∪B ∪ C ∪D contains the entire support of both P and Q∗.

We perform a case analysis in order to bound the second term.
Observe that σ ≤ ∆SD(P,Q∗) =

∑
x∈A (P (i)−Q∗(i)) +

∑
x∈C P (i). Thus, it must be that

either
∑

i∈A (P (i)−Q(i)) ≥ σ/2, or
∑

i∈C P (i) ≥ σ/2.

Case 1. Assume
∑

x∈A (P (i)−Q(i)) ≥ σ/2. define:

Agood =

{
i ∈ A :

P (i)− 1
K

P (i)
> σ/4

}

Abad =

{
i ∈ A :

P (i)− 1
K

P (i)
≤ σ/4

}
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Note that: ∑
i∈Abad

(
P (i)− 1

K

)
=
∑
i∈Abad

P (i)

(
P (i)− 1

K

)
P (i)

≤ σ

4

∑
i∈Abad

P (i) ≤ σ

4

Since
∑

i∈A (P (i)− 1/K) ≥ σ/2, this implies that:∑
i∈Agood

(P (i)− 1/K) ≥ σ/4

And so:

Ei∼P

[
1

2
· 1

m(P (i))

(
P (i)− 1

K

)2
]

=
1

2

∑
i∈Supp(P )

P (i) · 1

(m(P (i)))2

(
P (i)− 1

K

)2

≥ 1

2

∑
i∈Agood

1

P (i)

(
P (i)− 1

K

)2

=
1

2

∑
i∈Agood

(
P (i)− 1

K

)
P (i)

(
P (i)− 1

K

)

≥ 1

2
· σ

4

∑
i∈Agood

(
P (i)− 1

K

)
≥ σ

8
· σ

4

=
σ2

32

Case 2. assume
∑

x∈C P (i) ≥ σ/2. In particular it holds that D = φ. This second case is
divided into two subcases, according to the value of pBmin = min{P (i) : i ∈ B}.

Case 2a: assume pBmin <
1

2K , and
∑

i∈C P (i) ≥ σ/2. Recall that we assumed without loss of
generality that P (i) ≥ P (i+1) as well as Q∗(i) ≥ Q∗(i+1), for all i ∈ [M ]. Therefore, in particular,
we conclude that for every i ∈ C, P (i) ≤ pBmin - this is justified by observing that B ⊆ Supp(Q),
while C ∩ Supp(Q) = φ, and so, we deduce that for all j ∈ C and k ∈ B, j > k. Therefore, for
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every i ∈ C, (P (i)− 1/K)2 ≥ 1
4K2 . And so:

Ei∼P

[
1

2
· 1

m(P (i))

(
P (i)− 1

K

)2
]

=
1

2

∑
i∈Supp(P )

P (i) · 1

(m(P (i)))2

(
P (i)− 1

K

)2

≥ 1

2

∑
i∈C

P (i) · 1

1/K2

(
P (i)− 1

K

)2

≥ K2

2

∑
i∈C

P (i) · 1

4K2

=
1

8

∑
i∈C

P (i)

≥ 1

8
· σ

2

=
σ

16

Case 2b. Assume pBmin ≥ 1
2K and

∑
x∈C P (i) ≥ σ/2 (and in particular D = φ). We have that

∆SD(P,Q∗) =
∑

i∈B (Q∗(i)− P (i)). By the Cauchy-Schwarz Inequality:

σ ≤ ∆SD(P,Q∗)

=
∑
i∈B

(Q(i)− P (i)) · 1

≤
√∑

i∈B
(P (i)−Q(i))2

√∑
i∈B

1

≤
√
K
∑
i∈B

(P (i)−Q(i))2

=

√√√√K
∑
i∈B

(
P (i)− 1

K

)2
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Where the last inequality is due to B ⊆ Supp(Q), and |Supp(Q)| = K. We conclude that: σ2 ≤
K
∑

i∈B
(
P (i)− 1

K

)2
. Moreover, for every i ∈ B, m(P (i)) ≤ 1

K . Therefore, in this case:

Ei∼P

[
1

2
· 1

m(P (i))

(
P (i)− 1

K

)2
]

=
1

2

∑
i∈Supp(P )

P (i) · 1

(m(P (i)))2

(
P (i)− 1

K

)2

≥ 1

2

∑
i∈B

P (i) · 1

1/K2

(
P (i)− 1

K

)2

≥ 1

2

∑
i∈B

pBmin

1/K
·K

(
P (i)− 1

K

)2

=
1

4
K
∑
i∈B

(
P (i)− 1

K

)2

≥ σ2

4

Conclusion. We conclude that in all cases, we get that under the conditions over P above,
H(P )− log(K) ≥ σ2

32 − γ.

5.2 Entropy Upper Bound Protocol

Theorem 5.3. [Vad99]. There exists a 2-message interactive proof system between a verifier V
and a prover P , where the they both get as input an integer N > 100, and parameters k, z and ν,
as well as sampling access to an unknown distribution D over support [N ]. The communication
complexity, and the verifier sample complexity and runtime are poly(z, logN, 1/ν). Let H(D) denote
the (Shannon) entropy of D. The proof system has the following properties:

• Completeness: if H(D) ≤ k, following the strategy of P causes the verifier to accept with
probability at least 1 − 2−z over its samples and coin tosses, as well as that of the honest
prover. P uses sample complexity and runtime exp (poly (logN, 1/ν)).

• Soundness: if H(D) > k + ν, then for every (computationally unbounded) cheating prover
strategy, the verifier rejects with probability at least 1− 2−z over its samples and coin tosses.

The proof of this theorem is based on results from the statistical zero knowledge literature, and
specifically, from Vadhan’s PhD dissertation [Vad99]. Following the arguments presented there, we
show that the protocol described in Figure 4 fulfills the conditions described in Theorem 5.3.

The idea behind the protocol in Figure 4 is to transform the entropy gap to a gap in statistical
distance from the uniform distribution. This is done using a randomness extractor, and more
concretely, through hashing the domain of the distribution D to a new domain, such that if the
distribution has low entropy, the hashed distribution is far from the uniform distribution over that
domain, and if its of large entropy, it will be almost uniform over R.

By so, the problem is reduced to the much simpler problem of lower bounding the statistical
distance from uniform, verifying whether a distribution is far from uniform (YES case), or close to
uniform (NO case).
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Entropy upper bound protocol (single round):

Verifier Input: integer N > 100, entropy claim k, gap promise ν, and parameter z, as well as sample
access to distribution D over domain [N ].

Prover Input: same as verifier (or, alternatively, full description of distribution D).

Goal: accept if H(D) ≤ k, reject if H(D) ≥ k + ν.

The Protocol:

1. The verifier prepares the entropy challenge:

• Set t = 900 log2N
ν2 . The verifier draws t i.i.d. samples from D, to yield the sample x from Dt

and a random bits b
r←− {0, 1}.

• Let H = {h : [N ]t → R}, be a 2-universal hash family, where |R| =
⌈
2t·(k+ν/2)

⌉
. The verifier

chooses uniformly h← H, and if b = 0, it sets m← UR, and otherwise m← h(x).

2. The verifier message. The verifier sends (h,m) to the prover.

3. The prover response. The prover sends b̃ ∈ {0, 1}.

4. Verifier Test. If b̃ 6= b, the verifier rejects, and otherwise accepts.

Figure 4: Interactive protocol for entropy upper bound

Thus, this section is divided into two parts: one detailing the extraction and the reduction
to the problem of verifying a lower bound on the statistical distance from uniform (culminating
in Proposition 5.9), and the other arguing about this verification process (the game described in
Problem 5.10, and in Proposition 5.11).

We begin by detailing the reduction from entropy gap to distance from uniform, as described
above. The main tool we seek to use in order to accomplish the extraction is the Leftover Hash
Lemma.

Definition 5.4. Let P be a distribution over domain X . The weight of element x ∈ Supp(P ) is
defined to be wtP (x) = − logP (x)

Lemma 5.5 (Leftover Hash Lemma). Let H be a 2-universal family of hash functions mapping
domain X to domain R. Suppose P is a distribution on X such that with probability of at least
1 − δ over x selected from X , wtP (x) ≥ log (|R|) + 2 log(1/ε). Then the distribution obtained by
choosing h

r←− H, and x ← P , and outputting (h, h(x)) is at most (δ + ε) far from the uniform
distribution over H×R in statistical difference.

Note that the lemma requires min-entropy as defined in Definition 3.5 (and captured in this
formulation by the requirement over the weight) rather than Shannon entropy (see Definition 3.6).
As we have no guarantee with regard to the min-entropy of the distribution D, we require another
step in order to reach the extraction. In order to guarantee a certain value for the min-entropy we
consider the distribution Dt for some parameter t, and show that the min-entropy of the distribution
Dt is well behaved and can be bounded.
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Remark 5.6. For more detail about this process and the ideas that lie behind it, such as assuring the
flatness of the distribution, and the meaning of min-entropy, the reader is referred to the wonderful
survey by Vadhan [Vad12b].

We show a lower bound for the weight of distribution Dt on a significant part of its domain,
where we denote by Dt the distribution achieved by taking t independent samples from D.

Claim 5.7. Let D be a distribution over domain [N ], such that H(D) = k. For every integer t,
and every s > 0, there exists a set X ⊆ [N ]t, such that for every ~x ∈ X, |wtDt(~x)− t · k| ≤ s∆, for
∆ = 2

√
t logN , and Dt(X) ≥ 1− 2−s

2+1.

Proof. Assume without loss of generality that D(x) ≥ 1/N2 (otherwise, the cumulative mass of all
elements with probability lower than 1/N2 is at most 1/N , and so, we can consider a distribution D′

obtained from D by grouping all the elements of low mass together, and analysing the distribution
D′, that lies within distance at most 1/N from D, and remains in distance o(1) even when taking
polylog(N) copies of each distribution. Note that the entropy difference between D and D′ is also
bounded by Õ(1/N), as shown in the proof of Claim 6.9). Thus, for all x ∈ [N ], the weight
function satisfies wtD(x) ∈ [0, 2 logN ]. Take ~x = (x1, x2, . . . , xt) ∈ [N ]t. By definition, wtDt (~x) =∑

i∈[t] wtD(xi). Also, note that Ex∼D [wtD(x)] = H(D) = k. By the Hoeffding bound, for every
s > 0:

Pr
~x∼Dt

(|wt (~x)− t · k| > s∆) < 2exp

(
− 2s2∆2

4t log2N

)
= 2exp

(
−2s2

(
∆

2
√
t logN

)2
)
≤ 2e−2s2 ≤ 2−s

2+1

Next, we define a distribution A achieved by taking t copies of D and hashing them, as well as
distribution B, which is uniform over the domain of A. We proceed by showing a reduction from
the entropy gap upper bound problem to the distance from uniform problem in Proposition 5.9,
through the use of distributions A and B.

Definition 5.8. Let H = {h : [N ]t → R}, be a 2-universal hash family, where |R| =
⌈
2t·(k+ν/2)

⌉
.

• Distribution A: Choose ~x← Dt, and h
r←− H. Output (h, h(~x)).

• Distribution B: Choose b← UR, and h
r←− H. Output (h, b).

Proposition 5.9. Consider the distributions A and B as defined above. Assume N > 100. Taking

t = 900 log2N
ν2 , we get:

• If H(D) ≤ k, then ∆SD(A,B) ≥ 0.999.

• If H(D) ≥ k + ν, then ∆SD(A,B) ≤ 0.001.

Proof. Denote the components of distributions A and B as A = (A1, A2), and B = (B1, B2). Note
that A1 and B1 are uniformly distributed over H, therefore, if we denote Ah = A2

∣∣
A1=h

, and

Bh = B2

∣∣
B1=h

, by Corollary 3.26:

∆SD(A,B) =
∑
h∈H

1

|H|
∆SD (Ah, Bh)
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Moreover, note that for every h ∈ H, Bh = UR, and that Ah = h(Dt).
Assume H(D) ≤ k. Fix h ∈ H. We bound from below the distance between the distribution

Ah and Bh. Fix s > 0. By Claim 5.7, there exists a set X ⊆ [N ]t such that Dt(X) ≥ 1 − 2−s
2+1,

and for every ~x ∈ X, wt(~x) ≤ tk + s∆, and denote T = h(X). We bound Ah(T ) − Bh(T )
from below, and conclude from that a lower bound for ∆SD(Ah, Bh). By definition, it holds that

Ah(T ) ≥ D(X) ≥ 1−2−s
2+1. In order to bound Bh(T ) from above, note that |T | ≤ |X| ≤ 1−2−s

2+1

e−tk−s∆
,

where the last inequality is based on the assumption that every ~x ∈ X satisfies wt(~x) ≤ tk+s∆, and
so, Dt(~x) ≥ e−tk−s∆. From the uniformity of Bh, every ~x ∈ T satisfies Bh(~x) = 1

|R| = e−(tk+tν/2).
We conclude that:

Bh(T ) ≤ 1− 2−s
2+1

e−tk−s∆
· e−(tk+tν/2) ≤ es∆−tν/2

We get that:
∆SD(Ah, Bh) ≥ Ah(T )−Bh(T ) ≥ 1− 2−s

2+1 − es∆−tν/2

We conclude that, if H(D) ≤ k, then:

∆SD(A,B) ≥ 1− 2−s
2+1 − es∆−tν/2

Moving to the second item of Proposition 5.9, assume that H(D) ≥ k+ν. In this case, by Claim
5.7, for every s > 0, it holds that there exists some set Y ⊆ [N ]t such that Dt(Y ) ≥ 1 − 2−s

2+1,
and for every ~y ∈ Y it holds that wt(~y) ≥ tk + tν − s∆ ≥ log |R| + tν/2 − s∆. Let Bh and Ah
be as above. Since Bh it is uniform over |R|, by the Leftover Hash Lemma (Lemma 5.5) and the
triangle inequality:

∆SD(A,B) ≤ 2−s
2+1 + e−(tν/4−s∆/2)

Plugging in both cases s = 10, t = 900 log2 N
ν2 , and ∆ = 2

√
t logN yields the desired result.

We are now left to show how verifying distance from uniform can be achieved. We introduce
the following problem to illustrate the verification protocol.

Problem 5.10 (Distribution Hypothesis Testing). Distribution Hypothesis Testing is a 2-player
game involving two distributions P0 and P1 over domain X , where both players have full information
of the distributions. The game is as follows: Player 1 tosses a balanced coin b ← {0, 1}, whose
value is unknown to Player 2. If b = 0, Player 1 samples a single sample from P0, and if b = 1,
she samples from P1. Denote this sample by s. Player 1 sends sample s to Player 2. Player 2 has
to decide whether b = 0 or b = 1. She provides her answer b̃ to Player 1. Player 2 wins if b̃ = b,
otherwise, Player 1 wins.

Proposition 5.11. Denote by p the probability over b and s that Player 2 wins the game, and set
δ = ∆SD(P0, P1). Then p ≤ 1+δ

2 , and a Player 2 with a perfect description of the distributions

P0 and P1 has a strategy that achieves 1+δ
2 win probability. Moreover, if Player 2 does not have

perfect description of the distributions, but instead, only black box access to a sampling device of
both distributions, as well as knowledge of N , and δ, there exists a strategy that can be implemented
using sample complexity and runtime poly (|X | , 1/δ, 1/α)), that achieves p ≥ 1+δ

2 − 2α.

Proof. Set A0 = {x ∈ X : P0(x) ≥ P1(x)}. Consider the following strategy for an all-knowing
Player 2, with a perfect description of both P1 and P2. If s ∈ A0, set b̃ = 0, and otherwise b̃ = 1.
Recall that by the properties of statistical distance, it holds that δ = PrP0(A0) − PrP1(A0). We
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analyse the probability of the event {b̃ = b}, given this strategy for Player 2. Note that in this case,
we can think of the probability that Player 2 wins as decomposed into two events - either b = 0
and s ∈ A0, or b = 1 and s /∈ A0. Therefore:

Pr
b,s

({b̃ = b}) = Pr
b

(b = 0) Pr
P0

(s ∈ A0) + Pr
b

(b = 1) Pr
P1

(s /∈ A0) (44)

=
PrP0(A0) + (1− PrP1(A0))

2
(45)

=
1 + δ

2
(46)

And thus there exists a strategy for Player 2 that achieves p = 1+δ
2 . We proceed to show this

is optimal. In order to do so, we provide an example of distributions P0 and P1, which induce
an alternative equivalent description of a the process generating (b, s), over which we prove the
optimality of the above strategy. Previously, the distribution over (b, s) was generated by tossing a
fair coin b ∈ {0, 1}, and then sampling Pb once. Consider now distributions P0 and P1 that satisfy
the condition that for every x ∈ Supp(P0) ∩ Supp(P1), P0(x) = P1(x), and they are flat both over
Supp(P0) \ Supp(P1) and Supp(P1) \ Supp(P0) respectively. In other words, they are flat over:

• B0 = {x ∈ X : P0(x) > P1(x)}

• B1 = {x ∈ X : P1(x) > P0(x)}

• B(=) = {x ∈ X : P0(x) = P1(x)}

Recall that ∆SD(P0, P1) = δ, and consider the following procedure:

1. Flip a biased coin d that is 0 with probability 1− δ, and 1 with probability δ.

(a) If d = 0: uniformly select an element from B(=), and select b ∈ {0, 1} uniformly.

(b) If d = 1: uniformly select b ∈ {0, 1}. If b = 0, uniformly select an s element from B0,
and if b = 1, uniformly select s from B1.

2. Output (b, s)

Note that this process induces the same distribution (b, s) as the previously described one for the
case of P0 and P1 defined as above.

Next, Observe that the prover strategy described previously will be correct whenever d = 1, and
will err with probability 1

2 in the case that d = 0. Therefore, in this setting, the winning probability

of Player 2 is still 1+δ
2 . However, in this case, it is evident that this is the best strategy possible,

as the prover never errs when d = 1, and when d = 0 it achieves the best error probability, since in
this case the bit b is independent of the sample s, and there isn’t a strategy that achieves success
probability higher than 1

2 .
Lastly, we show that there exists a Player 2 strategy based on this method, that achieves

p ≥ 1+δ
2 − 2α; requires no information beyond the parameters N = |X |, and δ, as well as sample

access to both distributions; and can be implemented using poly (N, 1/δ, 1/α) samples and runtime.
We call the player enacting this strategy black-box-access Player 2, for this player doesn’t know

the full description of the distribution. The strategy is as follows: upon receiving the message
containing s, the black-box-access Player 2 estimates both P0(s) and P1(s) up to δα/2N accuracy,
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by sampling both distributions 80N2/α2δ2 times each, and computing p0 and p1 as the fraction of
samples yielding s from distributions P0 and P1 respectively. If |p0 − p1| ≤ αδ/N , the prover tosses
a balanced coin and sends its value as b̃. Otherwise, it sends b̃ = 0 if p0 > p1, and b̃ = 1 if p1 > p0.

We prove that this strategy achieves success probability 1+δ
2 − 2α. First, as it holds that

E[p0] = P0(s) and E[p1] = P1(s), and the samples are independent, by Hoeffding’s Inequality:

Pr
P0

[|p0 − P0(s)| > δα/2M ] ≤ 2exp
(
−2 · (80M2/δ2α2)(δ2α2/4M2)

)
< 2−20

And similarly,
Pr
P0

[|p1 − P1(s)| > δα/2N ] < 2−20

Therefore, with probability at least 1 − (2−20 + 2−20) ≥ 0.9999, black-box-access Player 2 has
an estimate of both p0 and p1 up to an αδ/2M additive factor. The success probability of this
estimation can be made smaller than 2α(1 − δ) by taking polylogarithmically many samples in
(1/δα). Consider therefore the success probability of the estimation to be as such.

Assume now the case that both estimation errors are indeed smaller than αδ/2M . If s is such
that |P1(s)− P0(s)| > 2αδ/M , then, it holds that Pb(s) ≥ P1−b(s) implies pb > p1−b for b ∈ {0, 1},
and as also |p0 − p1| ≥ αδ/M , black-box-access Player 2 answers the same way as the all-knowing
Player 2 described previously, and so have the same success probability. Denote the set of all such
s as Xgood.

Otherwise s ∈ X̄good = Xbad, and is such that |P1(s)− P0(s)| ≤ 2αδ/M . In this case, either
the black-box-access Player achieves a an estimation such that |p0 − p1| > αδ/M , which implies
that it answers the same as the all-knowing player, or she flips a coin for b̃r, which gives success
probability 1/2. Note that for each such s, the all-knowing Player 2 achieves success probability at
most 1

2 + 2αδ/M .
Therefore, black-box-access Player 2 errs if either of the following happens:

• The estimates of p0, p1 went wrong; Or,

• The estimations are within the error bound, however, s ∈ Xbad, and Player 2 guessed wrong;
Or,

• The estimation is within the error bound, and s ∈ Xgood, but still the value b̃ is incorrect.

The first event is of probability at most 2(1− δ)α. The second and third events reflect a strategy
that is at most 2αδ worse than that of the all-knowing Player 2 (which is 1−δ

2 ). Therefore, by
taking union bound, the failure probability of black-box-access Player 2 is at most:

2(1− δ)α+
1− δ

2
+ 2αδ =

1− δ
2

+ 2α

Having established both the reduction from verifying an entropy upper bound to verifying
farness from uniform, as well as the verification process of the latter, we are now set to prove
Theorem 5.3.

Proof of Theorem 5.3. Observe that the Protocol described in Figure 4 describes a single run of
the Distribution Hypothesis Testing games between the verifier (Player 1), and the prover (Player
2), for distributions A and B. Concretely, (as defined in Definition 5.8). By Claim 5.11 the prover’s
success probability depends on δ = ∆SD(A,B).
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Single game completeness. Assume H(D) ≤ k. By Proposition 5.9, taking α < 1
10000 , it holds

that in this case δ = ∆SD(A,B) ≥ 0.999.
Consider the strategy described in the proof of Proposition 5.11, by which if B(h,m) ≥ A(h,m),

b̃ = 0, and otherwise b̃ = 1. By Proposition 5.11, it follows that the probability a prover with black
box access to distribution D achieves b̃ = b is 1+δ

2 − 2α ≥ 1+0.999
2 − 2α ≥ 0.999, where the last

inequality holds when α ≤ 0.0001.

Single game soundness. Assume H(D) ≥ k + ν. by Proposition 5.9, it holds that δ =
∆SD(A,B) ≤ 0.001. And so, by Claim 5.11, no prover strategy can fool the verifier to accept
with probability greater than 1+δ

2 ≤ 0.501.

Parallel Executions. Since we want soundness error (and completeness error) of 2−z, we run the
protocol O(z) times independently, and reject if more than half the runs terminated in rejection.
This is a standard argument that follows immediately from Hoeffding’s Inequality (see Goldreich
[Gol08]).

Verifier complexity. The verifier samples z · t = poly (z, logN, 1/ν) samples from D, as well as
z hash functions from H, and communicates the hash functions as well as the hashed samples to
the prover. Her runtime is accordingly poly (z, logN, 1/ν).

Prover complexity. By Proposition 5.11, assuming H(D) < k, and given only sample access
to D, as well as parameters ν and N , there exists a single-game honest prover strategy that can
be implemented using poly

(
N t, 1/ν

)
, and convinces the verifier with probability at least 0.99. By

choice of t, N t = exp (poly (logN, 1/ν)). This complexity scales linearly in z.

5.3 Proof of Lemma 5.1

Let D be some distribution over [N ], and let τ ∈ (0, 1). We first show that the 4-message protocol
in Figure 5 indeed fulfills both the conditions in Lemma 5.1. Namely, that if the prover is honest,
then the alleged histogram {p̃j}j∈I is indeed close to the real histogram of distribution D, and
with high probability, all the tests will pass; and if the prover provided a histogram {p̃j}j∈I that
is
√
τ -far from the real distribution in ∆RL distance, with high probability, at least one test will

fail, and the verifier will reject. Later, we add minor changes to the protocol in order to achieve
a 2-message protocol with the same properties. This second protocol is described in Figure 6, and
after we will have established the previously presented protocol, the proof that this second protocol
fulfills all the conditions of lemma (appearing in the aptly named Section 5.4) will follow suit.

But first, we provide a glossary of some of the notations used throughout the proof.

Definition 5.12. A pair (k,m) ∈ [s]× [s] is called a collision pair if Sk = Tm.

We say the collision pair belongs to bucket i if Sk belongs to bucket i. We denote the number of
colliding pairs belonging to the real bucket i by Ĉi. We also denote by C̃i the number of colliding
pairs belonging to the alleged bucket i, as claimed by the prover. For i ∈ I, we use the following
notations:

• pi is the real mass of the i’th bucket of D.
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IP for verified histogram reconstruction for dist. with no high-prob. elements (4 messages):

Verifier Input: integer N > 100, accuracy parameter τ < 0.1, and sample access to distribution D over

domain [N ], such that for all x ∈ [N ], D(x) ≤ Õ
(

poly(τ)√
N

)
.

Prover Input: same as verifier (or, alternatively, full information of distribution D).

Goal: obtain a
(
N,O

(
τ

logN

))
-histogram {p̃j}j∈I such that ∆RL ({p̃j}j , D) <

√
τ .

The Protocol:

1. The verifier draws s = Õ(
√
Nτ−4) samples, and sends sample S = (S1, S2, . . . , Ss) to the prover.

2. For every element x appearing in sample S, the prover responds with tag(x) ∈ I, corresponding to
the bucket to which element x belongs.

3. The verifier compiles the alleged histogram. For every j ∈ I, the verifier computes F̃j =

{k ∈ [s] : tag(Sk) = j}, and p̃j =
|F̃j|
s , to form {p̃j}j∈I , the alleged empirical (N, τ ′)-histogram of

the sample S

4. Verifier tests. The verifier draws a fresh set of samples T = (T1, T2, . . . , Ts) of size s, and performs
the following tests:

(a) Test 1 - collision matching test. For every j ∈ I \ {L}, define:

C̃j =
∣∣∣{(k,m) ∈ [s]× [s] : Sk = Tm, k ∈ F̃j

}∣∣∣
The verifier rejects unless for every bucket j such that p̃j ≥ τ ′2

logN , the verifier checks that:∣∣∣∣C̃j − s2

N
p̃je

jτ ′
∣∣∣∣ ≤ (eτ

′
− 1)

s2

N
p̃je

jτ ′

(b) Test 2 - interactive entropy upper bound test. The verifier runs the entropy up-
per bound protocol (detailed in Appendix 5.2) over distribution D with parameters N , k =∑
j∈Ĩheavy p̃j log

(
Np̃j
ejτ′

)
+ 7τ

15000 , and ν = 240τ
15000N , z = 20. If the protocol results in rejection -

the verifier rejects.

5. The verifier outputs {p̃j}j∈I .

Figure 5: Interactive protocol for histogram reconstruction - upper-bounded probability

• p̂i is the empirical mass of the i’th bucket in the sample S, and defined to be the real fraction
of samples belonging to bucket i.

• p̃i is the alleged empirical mass of the i’th bucket in the sample S, as claimed by the (un-
trusted) prover, and is defined to be the fraction of samples tagged as belonging to bucket
i.

In General, for a quantity of interest, we use the ˜ sign to indicate the fact that the value is
only “alleged”, ̂ to indicate the true empirical value according to the sample, and without any
symbols to mean the true value according to distribution D. We also use the following notation:
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H =

⌊
log N

s

τ ′
−

log 1
1−e−τ ′

τ ′

⌋

L =

⌈
2 log τ ′

τ ′
− log logN

τ ′

⌉
I.e. eHτ

′

N ≤ 1−e−τ ′
s , and eLτ

′

N ≥ τ ′2

N logN . As we assumed that for every x ∈ [N ], D(x) ≤ 1−e−τ ′
s ,

we think of H as the highest bucket, and so, from now on, when we write I, we think of it as
truncated at H. That is: I = {L,L+ 1, . . . , 0, 1, . . . H}. This also implies that for the sake of this
proof |I| = H + |L| < logN

τ ′ .
Next, we introduce a useful analytic tool for the analysis of the prover’s answer: define x`,j to

be the fraction of samples of the sample S belonging to bucket `, that are claimed by the prover
to true belong to bucket j:

Definition 5.13. For every `, j ∈ I, x`,j =
|{k∈[s] : tag(Sk)=j and Sk∈BD` }|

s·p̂`

Where BD
` =

{
x ∈ [N ] : D(x) ∈

[
e`τ
′

N , eτ
′ e`τ

′

N

)}
is the true `’th bucket of D. And so, if the real

empirical histogram over the sample S has p̂` as the mass of the `’th bucket, then, the alleged mass
of the j’th alleged bucket is by definition p̃j =

∑
`∈I p̂` · x`,j .

Observe that if the prover is honest, then for every `, x`,` = 1, while for every j 6= `, x`,j = 0,
which also means that p̃` = p̂`.

First, we argue that the real empirical histogram of S is close to the real histogram of distribution
D. This claim will allow us to relate claims about the empirical distribution to claims about the
real distribution.

Definition 5.14. An i.i.d. sample S of size s from distribution D over a domain [N ] is called
nice, if:

• For every ` ∈ I, |p` − p̂`| < τ ′2

logN .

• There are no dlogNe-wise collisions: i.e. there don’t exist distinct k1, k2, . . . , kdlogNe ∈ [s]
such that Sk1 = Sk2 = · · · = SkdlogNe

Claim 5.15. For any distribution D over [N ] such that for every x ∈ [N ], D(x) < 1−e−τ ′
s , with

probability at least 0.99 over the choice of S = (S1, S2, . . . , Ss), the sample S is nice.

Proof. Define I`k to be the indicator that the sample Sk was drawn from the `’th bucket of the
distribution. By definition, we get p̂` = 1

s

∑
k∈[s] I

`
k. Observe that ES [p̂`] = p`: This is due to the

fact that Pr(I`k = 1) = p`, combined with the linearity of expectation.
We show that p̂` is concentrated around its mean. Since the samples are drawn i.i.d., p̂` is the

average of independent Bernoulli variables with expectation p`. Using Hoeffding’s inequality, this
implies:

Pr

(
|p̂` − p`| >

τ ′2

log(N)

)
< 2exp

(
− 2s2τ ′4

s log2N

)
= 2exp

(
−s 2τ ′4

log2N

)

50



And so, using the union bound, we get that the probability there exists i ∈ [log(N)/τ ′] such that

|p̂i − pi| > τ ′2

log(N) is:

∑
`∈I

2exp

(
−s 2τ ′4

log2N

)
≤ |I| 2exp

(
−s 2τ ′4

log2N

)
≤ 2 logN

τ ′
· exp

(
−s 2τ ′4

log2N

)
< 0.001

Where the last inequality is justified by the choice of s. We move to the second condition. Recall

that for all x ∈ [N ], D(x) ≤ 1−e−τ ′
s ≤ τ ′

s . The probability some subset of size logN of S consists

solely of x is (D(x))logN . Taking union bound over all such subsets of S, we get that the probability
x appears at least logN times is at most

(
s

logN

)
(D(x))logN , which is bounded from above by

slogN · (D(x))logN . By the assumption over x, this quantity is at most τ ′ logN ≤
(
e−2
)logN

= 1/N2.
Therefore, summing over all possible x ∈ [N ] we get that the probability x was sampled at least
logN times in a sample S, is at most 1/N < 0.001.

Combining these two conditions together, we get that by union bound, the probability that S
is nice is at least 0.99.

Corollary 5.16. Assuming the prover is honest, then, with probability at least 0.99 over the choice
of S:

∆RL (D, {p̃j}j) < 2τ ′

Proof. Recall that since the prover is honest, we get p̃j = p̂j for all j. Plugging for every j ∈ I,
p̂j = p̃j in Claim 5.15, we get:

1

2

∑
j∈I
|p̃j − pj | ≤

1

2
|I| τ ′2

logN
=
τ ′

2

By Claim 3.27, and the assumption that τ ′ < 0.1 this means that ∆RL ({pj}j , {p̃j}j) ≤ 2τ ′, and
since {pj}j is the (N, τ ′) histogram of D, this concludes the proof of this claim.

Completeness. The last corollary shows that if the prover is honest the claim it provides with
regard to the histogram of D indeed satisfies the condition in Lemma 5.1 with high probability.
And so, in the case the prover is honest, all that is left in order to conclude the completeness claim
of the protocol is to show that both tests pass.

The first test involves counting how many collisions are associated with each alleged bucket.
As we expect this quantity to be concentrated only on “significant” enough buckets, with enough
mass and of elements with high enough probability, we first limit our analysis to those, and define:

Definition 5.17.

• Ĩheavy =
{
j ∈ I : ejτ

′ ≥ τ ′

logN and p̃j ≥ τ ′2

logN

}
• Ĩlight = I \ Ĩheavy

Note that we use the ˜ sign here to indicate that the indices of Ĩheavy depend on the prover’s

answers (since it contains all indices j for which p̃j >
τ ′2

logN ).

Claim 5.18. For every nice sample S, if the prover is honest, then:
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• For every j ∈ Ĩheavy, E[C̃j ] ∈
[
s2

N p̃je
jτ ′ , eτ

′ s2

N p̃je
jτ ′
)

.

• With probability at least 0.99 over the choice of T , for all j ∈ Ĩheavy:∣∣∣C̃j − ET [C̃j ]
∣∣∣ ≤ (eτ

′ − 1)ET [C̃j ]

More on this claim, as well as the proof can be found in Appendix A. An immediate corollary
of this claim is:

Corollary 5.19. For every nice sample S, if the prover is honest, then, with probability at least
0.99 over the choice of T , for all j ∈ Ĩheavy:∣∣∣∣C̃j − s2

N
p̃je

jτ

∣∣∣∣ ≤ (eτ
′ − 1)

s2

N
p̃je

jτ

And Test 1 passes.

We showed that if the prover is honest, then with high probability, Test 1 passes. In order
to show Test 2 also passes with high probability in this case, we first argue that the quantity,∑

`∈Ĩheavy p̃` log
(

N
e`τ ′

)
, achievable to the verifier through the prover’s answers, is a close estimation

of the real entropy of distribution D. This will allow us to show that the entropy upper-bound
protocol passes with high probability. Concretely, we prove:

Proposition 5.20. Assume that the sample S is nice, then, if the prover is honest:∣∣∣∣∣∣∣H(D)−
∑

`∈Ĩheavy

p̃` log

(
N

e`τ ′

)∣∣∣∣∣∣∣ <
7τ

15000

In order to prove this, we require a preliminary claim:

Claim 5.21. Assume S is nice. If the prover is honest, then,
∑

`∈Ĩlight p` ≤ 3τ ′

Proof. Define Ilow = {i ∈ I : eiτ
′

N < τ ′

N logN }. and Blow =
{
x ∈ [N ] : D(x) ≤ τ ′

N logN

}
. As there

are at most N elements in the domain of D, we conclude that D(Blow) ≤ τ ′

logN , or alternatively,∑
`∈Ilow p` ≤

τ ′

logN . We will show next that
∑

`∈Ĩlight\Ilow p` ≤ 2τ ′. First, note that by Claim 5.15,

as we assumed S is nice, we get that for all ` ∈ I, |p̂` − p`| < τ ′2

logN , therefore:

∑
`∈Ĩlight\Ilow

p` ≤
∑

`∈Ĩlight\Ilow

(
p̂` +

τ ′2

logN

)
(47)

=
∑

`∈Ĩlight\Ilow

(
p̃` +

τ ′2

logN

)
(48)

≤ logN

τ ′
· τ ′2

logN
+

logN

τ ′
· τ ′2

logN
(49)

= 2τ ′ (50)
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Where the first equality is due to the assumption that prover is honest, and the subsequent in-
equality is due to the fact that for all ` ∈ Ĩlight \Ilow it holds that p̃j ≤ τ ′2

logN , as well as |I| ≤ logN
τ ′ .

We thus conclude that:∑
`∈Ĩlight

p` =
∑
`∈Ilow

p` +
∑

`∈Ĩlight\Ilow

p` ≤
τ ′

logN
+ 2τ ′ ≤ 3τ ′

We are set to prove Proposition 5.20:

Proof of Proposition 5.20. Assuming S is nice, by Claim 5.21,
∑

`∈Ilight
∑

x∈BD`
D(x) =

∑
`∈Ilight p` ≤

3τ ′, through Claim 3.7, we get:∑
`∈Ĩlight

∑
x∈B`

D(x) log

(
1

D(x)

)
≤ 3τ ′ logN + 3τ ′ log

(
1

3τ ′

)
≤ 4τ ′ logN

Where the last inequality is justified by the assumption that τ ≥ 1
N , as well by setting τ ′ =

τ
15000 logN .

Therefore,∣∣∣∣∣∣∣
∑
`∈I

∑
x∈B`

D(x) log

(
1

D(x)

)
−

∑
`∈Ĩheavy

∑
x∈B`

D(x) log

(
1

D(x)

)∣∣∣∣∣∣∣ =
∑

`∈Ĩlight

∑
x∈B`

D(x) log

(
1

D(x)

)
(51)

≤ 4τ ′ logN (52)

=
4τ

15000
(53)

This claim essentially means that if the prover is honest, and S is nice, in order to approximate
the entropy of D up to an additive factor of 4τ

15000 , it suffices to consider only real buckets with

indices from Ĩheavy. We are thus left to show that the empirical histogram (which is the same as
the alleged histogram), provides a good approximation for these buckets.

Observe that since all the elements x in given bucket ` ∈ Ĩheavy satisfy D(x) ∈
[
e`τ
′

N , e
(`+1)τ ′

N

)
,

and considering the quantity
∑

x∈B` D(x) as fixed, by Claim 3.7, the quantity
∑

x∈B` D(x) log
(

1
D(x)

)
is maximised when for every x ∈ B`, D(x) assumes minimal value, i.e. when all the elements in the

bucket are of probability e`τ
′

N . Moreover, there can be at most p`
e`τ ′/N

such elements, and therefore

for every ` ∈ Ĩheavy:∑
x∈B`

D(x) log

(
1

D(x)

)
≤ Np`
e`τ ′
· e

`τ ′

N
log

(
N

e`τ ′

)
= p` log

(
N

e`τ ′

)

Similarly, it assumes its minimal value when all the elements are of each of mass e(`+1)τ ′

N , and thus:∑
x∈B`

D(x) log

(
1

D(x)

)
≥ p` log

(
N

e(`+1)τ ′

)
= p` log

(
N

e`τ ′

)
− p`τ ′
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And so, for every ` ∈ Ĩheavy:∣∣∣∣∣∣
∑
x∈B`

D(x) log

(
1

D(x)

)
− p` log

(
N

e`τ ′

)∣∣∣∣∣∣ ≤ p`τ ′
Summing over all ` ∈ Ĩheavy, we conclude:∣∣∣∣∣∣∣

∑
`∈Ĩheavy

∑
x∈B`

D(x) log

(
1

D(x)

)
−

∑
`∈Ĩheavy

p` log

(
N

e`τ ′

)∣∣∣∣∣∣∣ ≤ τ ′
∑

`∈Ĩheavy

p` ≤ τ ′ <
τ

15000
(54)

Also, as S is nice, and |I| ≤ logN
τ ′ :∣∣∣∣∣∣∣

∑
`∈Ĩheavy

p` log

(
N

e`τ ′

)
−

∑
`∈Ĩheavy

p̃` log

(
N

e`τ ′

)∣∣∣∣∣∣∣ ≤
∑

`∈Ĩheavy

log

(
N

e`τ ′

)
|p` − p̃`| ≤

τ ′2

logN

∑
`∈Ĩheavy

logN2

(55)

= 2τ ′ logN (56)

=
2τ

15000
(57)

Combining Inequalities (51), (54), and (55), we conclude that:∣∣∣∣∣∣
∑
x∈[N ]

D(x) log

(
1

D(x)

)
−

∑
`∈Ĩheavy

p̃` log

(
N

e`τ ′

)∣∣∣∣∣∣∣
≤

∣∣∣∣∣∣∣
∑

`∈Ĩlight

∑
x∈B`

D(x) log

(
1

D(x)

)∣∣∣∣∣∣∣+

∣∣∣∣∣∣∣
∑

`∈Ĩheavy

∑
x∈B`

D(x) log

(
1

D(x)

)
−

∑
`∈Ĩheavy

p` log

(
N

e`τ ′

)∣∣∣∣∣∣∣
+

∣∣∣∣∣∣∣
∑

`∈Ĩheavy

p` log

(
N

e`τ ′

)
−

∑
`∈Ĩheavy

p̃` log

(
N

e`τ ′

)∣∣∣∣∣∣∣
≤ 4τ

15000
+

τ

15000
+

2τ

15000

=
7τ

15000

Combining the results above with Theorem 5.3, we conclude the following:

Corollary 5.22 (Completeness of the Protocol in Figure 5). If the prover is honest, then with
probability at least 0.95 over the choice of S, T , and the randomness of the entropy upper bound
protocol, it holds that ∆RL (D, {p̃j}j∈I) < 2τ ′, and both Test 1 and Test 2 pass.
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Proof. By Claim 5.15, with probability at least 0.99 over the choice of S, the sample S is nice.
Given that it is nice, we get that:

• By Corollary 5.16, it holds that ∆RL(D, {p̃j}j) < 2τ ′. 5.19, with probability at least 0.99
over the choice of T , Test 1 passes.

• By Proposition 5.20, H(D) <
∑

j∈Ĩheavy p̃j log
(
Np̃j
ejτ ′

)
+ 10τ

15000

Given this final point, as Test 2 merely consists of running the entropy lower bound protocol with

parameters N,K =
∑

j∈Ĩheavy p̃j log
(
Np̃j
ejτ ′

)
+ 10τ

15000 , and ν = 240τ
15000 , we get that as the prover is

honest, with probability at least 0.99, this interaction results in acceptance, meaning that Test 2
passes. Taking union bound on the probability that either of these conditions fail, we get that
if the prover is honest, with probability at least 0.95, ∆RL(D, {p̃j}j) < 2τ ′, and both tests pass,
concluding the completeness claim for the protocol in Figure 5.

Soundness. We move on to show the soundness of the protocol in Figure 5. We accomplish this
by showing that if the sample S is “nice”, and the prover provided an alleged histogram {p̃j}j such
that ∆RL(D, {p̃j}j) >

√
τ , then with probability at most 0.01 over the choice of T , Test 1 passes,

and the entropy of the alleged distribution - estimated by the expression
∑

`∈Ĩheavy p̃` log
(

N
e`τ ′

)
- is

close to the entropy of real distribution D. In other words, if the prover is dishonest and provides
a histogram such that ∆RL(D, {p̃j}j) >

√
τ , with high probability either the verifier rejects after

performing Test 1, or the entropy of the real distribution is significantly higher than the entropy
alleged by the prover, and so, the entropy upper-bound protocol succeeds with high probability in
the task of identifying the cheating prover, and Test 2 fails. Formally:

Proposition 5.23. Assume samples S is nice, then no matter what strategy a cheating prover
might employ, if {p̃j}j∈I satisfies ∆RL(D, {p̃j}j∈I) >

√
τ , with probability at most 0.01 over the

choice of T , Test 1 passes, and:

H(D)−
∑

j∈Ĩheavy

p̃j log

(
N

ejτ ′

)
≤ 250τ

15000
,

This proposition relies mainly on Lemma 5.2. The Lemma is used to tie Tests 1 and 2 together,
by relating the collision count verified in Test 1, to the entropy gap assumption that is necessary
for the soundness of Test 2.

The general (and slightly inaccurate) intuition behind this is the following: consider a cheating
prover. An alleged bucket j will be composed of elements from buckets potentially different from
j, and will be of alleged mass p̃j =

∑
`∈I p̂`x`,j . I.e. we can think of it as composed of fractions

of other real empirical buckets. And so, while each real bucket is nearly uniform in terms of the
probability of its elements, if the prover is dishonest, the alleged bucket can be not uniform, and
potentially even far from it.

If the prover is dishonest, and provided a
√
τ -far histogram, it essentially claims that many

distributions (the distribution D conditioned on the different buckets) are uniform, while in fact,
they are far from it. Lemma 5.2 asserts that a distribution that is far from uniform, yet has `2 norm
close to that of a uniform distribution, must have higher entropy than that of the same uniform
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distribution. Therefore, in order to show an entropy gap in our context, we are left to argue about
the `2 norm of these distributions.

Recall that the (squared) `2 norm, by its definition
∑

x∈Supp(P ) (P (x))2, reflects the probability
that a pair of i.i.d. samples from P yields the same element twice, and so it is closely tied to
collision counting.

Thus, if the prover is truthful, counting collisions associated with bucket j allows the verifier to
verify the `2 norm of the distribution conditioned on real bucket j (note that we use the term verify,
as the verifier can already compute a claim about this quantity from the alleged histogram). In the
case the prover is dishonest, the verifier still gets an estimation of some `2 norm, but this time it’s
the norm of the distribution D conditioned on the alleged bucket j, which is not necessarily uniform.
Passing Test 1 means that with high probability, the `2 norm of this non-uniform distribution is close
to the `2 norm the verifier expected to see from the uniform distribution induced by D restricted
to bucket j, assuming it has mass p̃j .

And so, assuming {p̃j}j satisfies ∆RL(D, {p̃j}j) >
√
τ and Test 1 passed, we show that with

high probability the conditions of Lemma 5.2 (being far from uniform distribution over K elements,
yet having squared `2 close to 1/K, for some K) apply for distribution D conditioned on each of
the heavy buckets, and employing it over them reveals that the entropy of the real distribution
conditioned on those buckets is in fact larger than the alleged entropy of the uniform distribution it
is claimed to be. Putting together these results for all heavy buckets, we get an entropy gap between

the estimation
∑

`∈Ĩheavy p̃` log
(

N
e`τ ′

)
and the real entropy of D, which is significantly higher.

This difference in entropy is leveraged by the entropy upper bound protocol as detailed in Ap-
pendix 5.3 to uncover the cheating behavior through Test 2.

In actuality, we cannot guarantee that every alleged bucket j produces such a gap in entropy,
but instead, we show that this entropy gap holds in aggregate. Moreover, we cannot work solely
with the distribution D conditioned on elements from the samples, since there are far too few such
elements. More on this last issue in the following remark.

Remark 5.24. Consider an element x sampled in S, pertaining to real bucket `, for ` = O(1).
With overwhelming probability, it appears only once in S, as do almost all elements from the same
bucket that were sampled in S. Therefore, the `2 norm of D restricted to the elements sampled from

real bucket ` is approximately s · p̂` ·
(
e`τ
′

Np̂`

)2
= s

p̂`N2 e
2`τ ′. At the same time, the number of collisions

associated with it is roughly s2

N p̂`e
`τ ′ (as explained in Appendix A). Achieving the first value from

the second requires the verifier to know both e`τ
′

and p̂`. This is possible if the prover is honest, and
all elements tagged as belong to bucket ` have indeed mass of about e`τ

′
/N . However, this process

is made impossible for the verifier if the prover is dishonest. In that case, the value achieved from
collision counting is close to the sum

∑
`∈I

s2

N p̂`x`,je
`τ ′, while the true `2 norm of distribution D

restricted to the alleged bucket j is about
∑

`∈I
s

N2p̂`x`,j

(
e`τ
′
)2

(from a reasoning similar to the one

above). The task of relating these two quantities cannot be achieved by the verifier without more
information.

Another crucial (related) issue with considering only the sampled elements is that our protocol
soundness relies on the claim that the prover tags induce non-uniform distributions on buckets,
such that these distributions have higher entropy than their alleged entropy, calculated through the
histogram. Limiting our analysis to the sample, taking into account a “falsly” tagged bucket, the
prover claims that the distribution is (roughly) uniform over the elements inside it, while these
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elements might vary greatly in probability. Since the argument applies only to a specific known set
of elements that were sampled, the alleged entropy will be higher than the true entropy, as for a
given set of elements, the uniform distribution has the highest entropy. This trend is opposite to
what we require in the entropy upper-bound protocol.

In order to overcome the obstacle of having no information over the elements in real bucket
j save for the small fraction of elements sampled in S, we create a dummy distribution, P , over
support of size Θ(N), which is an extrapolation of the real empirical bucket histogram of S (i.e.
it has (N, τ ′) histogram of {p̂`}`). This theoretical entity is provably close in relabelling distance
to the real distribution D, and can be used to argue about the prover’s answers. We analyse it to
prove several important claims about the estimates achieved through the the tags on the sample S,
and in particular, it will allow us, in the soundness case, to claim an entropy gap between the real
distribution and the quantity achieved from the prover’s answers (which we have previously shown
to approximate the real entropy well in the case the prover is honest).

In short, we define the distribution P such that P has exactly the histogram {p̂j}j∈I , and whose
description we know fully, and so we can more easily analyse its structure and entropy (as opposed
to the distribution D). In order to define it, we require the following claim, which we will use to
create the support of P .

Claim 5.25. Assume that S is nice, and that Test 1 has passed. Then, for every prover response
characterised by parameters {x`,j}`,j∈I , for every j, ` ∈ I, such that x`,j > 0, there exists some

λ`,j ∈ [`, `+ 1) such that:

x`,j p̂`

e
λ`,jτ

′

N

∈ N.

Proof. Let j, ` ∈ I be two bucket indices, such that x`,j 6= 0. Consider the function f(a) =
x`,j p̂`
eaτ
′

N

with the domain a ∈ [`, `+1). Observe that f is continuous in a, therefore, by the intermediate value

theorem, it assumes all values in between
x`,j p̂`
e(`+1)τ ′

N

, and
x`,j p̂`
e`τ
′

N

. In particular, if
x`,j p̂`
e`τ
′

N

− x`,j p̂`
e(`+1)τ ′

N

≥ 1,

it assumes an integer value at some point. And indeed:

x`,j p̂`
e`τ ′

N

−
x`,j p̂`
e(`+1)τ ′

N

=
x`,j p̂`
e`τ ′

N

(1− e−τ ′) =
sx`,j p̂`
e`τ ′

N

· (1− e−τ ′)
s

≥ 1

Where the inequality is due to e`τ
′

N ≤ 1−e−τ ′
s since ` ≤M and by choice of M , as well as sx`,j p̂` ≥ 1,

which is justified by the fact that the quantity sx`,j p̂` is in fact the number of samples associated
with bucket ` that were tagged as belonging to bucket j, and by so, it has to be at least 1.

Thus, set λ`,j to be the value of x for which
x`,j p̂`
e`τ
′

N

− x`,j p̂`
e(`+1)τ ′

N

is an integer.

Remark 5.26. This last claim is the only place in the proof in which we use the condition that for
all x ∈ [N ], D(x) ≤ 1−e−τ

s . It essentially allows us to construct a distribution with a well defined
number of elements, where each bucket ` has exactly p̂` mass. To emphasize the importance of this
point, consider a “heavier” bucket `0 with elements with individual mass roughly 2

s . If its empirical
mass is not divisible by 2/s (which is very likely), constructing a distribution with bucket `0 with
exactly p̂`0 mass is not possible. In other words, empirical histograms {p̂`}` supported over heavier
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buckets might not be realizable in any set (recall Definition 3.15). This is not only an analytic
compromise we impose on the protocol, but also reflects the volatility of measures like empirical
entropy or number of collisions induced by different samples, when heavier elements are taken into
account. Focusing on the lighter elements, these quantities are much better concentrated and permit
the analysis shown here. The general case, with distributions supported over heavier elements as
well, is presented separately in this paper.

Further note that if the sample S were larger, than the granularity of the empirical mass was
finer, and the restriction on the maximum probability would be weaker.

Construction 5.27 (Distribution P ). For every `, j ∈ I, define A`,j to be a set of size
Nx`,j p̂`

e
λ`,jτ

′ ,

where the sets {A`,j}`,j are disjoint, and for every pair `, j ∈ I, λ`,j is set according to Claim 5.25.

Thus,
Nx`,j p̂`

e
λ`,jτ

′ is an integer satisfying λ`,j ∈ [`, `+ 1).

Define U = ∪`,j∈IA`,j to be the domain of P . For every `, j ∈ I, the distribution P assigns the

elements in set A`,j probability e
λ`,jτ

′

N .
Moreover, define the following:

• For every j ∈ I, define the distribution Pj to be P conditioned on the subdomain Supp(Pj) =⋃
`∈I A`,j.

• For every ` ∈ I, define BP
` =

⋃
j∈I A`,j.

Claim 5.28. The distribution P defined in Construction 5.27 above is a well defined distribution,
the `’th (N, τ ′)-bucket of P is BP

` , and its (N, τ ′)-histogram is {p̂`}`∈I .

Proof. First, we show that it is indeed a distribution. By construction, for every element x ∈ U ,
P (x) ∈ [0, 1]. Moreover:

∑
x∈U

P (x) =
∑
`,j∈I

∑
x∈A`,j

P (x) =
∑
`,j∈I

∑
x∈A`,j

eλ`,jτ
′

N
=
∑
`,j∈I

Nx`,j p̂`

eλ`,jτ
′ ·

eλ`,jτ
′

N
=
∑
`∈I

∑
j∈I

p̂jx`,j = 1

Where the last equality is justified by the definition of x`,j . Therefore, P is indeed well-defined.
Next, we argue that its (N, τ ′)-histogram is {p̂`}`. This in fact stems directly from the construction,

as the elements with mass in the interval
[
e`τ
′

N , eτ
′ `τ ′

N

)
are exactly the elements in BP

` . Note that

for every `:

P
(
BP
`

)
=
∑
j∈I

∑
x∈A`,j

P (x) =
∑
j∈I

p̂`x`,j = p̂`

Where the second to last equality is justified by the fact that set A`,j has
Np̂`x`,j

e
λ`,jτ

′ elements with

individual mass e
λ`,jτ

′

N .

Remark 5.29. Note that as the (N, τ ′)-histogram of P is {p̂`}`∈I , we in fact get that P ∈
FN,τ ′({p̂j}j∈I).

We proceed to prove that assuming S is nice, the entropy of P approximates the entropy
of D (Claim 5.33); and assuming that ∆RL(D, {p̃j}j∈I) >

√
τ , with high probability over the

choice of T , either Test 1 fails, or the entropy of P is significantly higher than the estimate
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∑
`∈Ĩheavy p̃` log

(
N
e`τ ′

)
. The latter is achieved in several steps. First, we decompose distribution

P =
∑

j∈I p̃jPj (as defined in the construction). We proceed to show that under the soundness as-
sumption, assuming S is nice, with high probability over the choice of T , the conditions of Lemma
5.2 regarding distance from uniform and `2 norm apply to many distributions in the collection
{Pj}j , providing a lower bound on their (collective) entropy. Concretely, we show that with high
probability either Test 1 fails or it passes and for heavy j’s, Pj has `2 norm close to that of U[Kj ]

for Kj =
(⌊

Np̃j
ejτ ′

⌋)−1
(Claim 5.31), as well as

∑
j∈Ĩheavy p̃j∆RL(Pj , UKj ) > 4

√
τ/5 (Claim 5.32).

This allows us in Proposition 5.34 to utilize Lemma 5.2 on Pj for all heavy j, and to argue a lower
bound on

∑
j∈I p̃jH(Pj), from which we deduce a lower bound on H(P ), which in turn yields a

lower bound for H(D).
First, we provide a useful technical claim.

Claim 5.30. For every j ∈ I:∣∣∣∣∣ ejτ
′

Np̃j
−
(⌊

Np̃j
ejτ ′

⌋)−1
∣∣∣∣∣ ≤ (eτ ′ − 1

)
· e

jτ ′

Np̃j

Proof. Let j ∈ Ĩheavy, so p̃j ≥ τ ′2

logN . Recall that by definition of I, for every j ∈ I, ejτ
′

N ≤ 1−e−τ ′
s .

Therefore, by the choice of s, we have s > logN
τ ′2 :

(1− e−τ ′) · Np̃j
ejτ ′

≥ (1− e−τ ′) · s

1− e−τ ′
· τ ′2

logN
≥ sτ ′2

logN
≥ 1

And thus: ⌊
Np̃j
ejτ ′

⌋
≥ Np̃j
ejτ ′

− 1 ≥ Np̃j
ejτ ′

− (1− e−τ ′) · Np̃j
ejτ ′

= e−τ
′Np̃j
ejτ ′

And so: (⌊
Np̃j
ejτ ′

⌋)−1

≤ eτ ′ · e
jτ ′

Np̃j

By definition: (⌊
Np̃j
ejτ ′

⌋)−1

≥ ejτ
′

Np̃j

And thus: ∣∣∣∣∣
(⌊

Np̃j
ejτ ′

⌋)−1

− ejτ
′

Np̃j

∣∣∣∣∣ ≤ (eτ ′ − 1
) ejτ ′
Np̃j

Claim 5.31. For every nice sample S, and every prover response characterized by {x`,j}`,j∈I , with

probability at most 0.01 over the choice of T , Test 1 passes, and there exists j ∈ Ĩheavy such that:∣∣∣∣∣‖Pj‖22 −
(⌊

Np̃j
ejτ ′

⌋)−1
∣∣∣∣∣ > 10(eτ

′ − 1)

(⌊
Np̃j
ejτ ′

⌋)−1
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Proof. Assume S is nice. We prove this claim by combining four inequalities through the triangle
inequality.

First, assuming Test 1 passed, we know that for every j ∈ Ĩheavy:∣∣∣∣C̃j − s2

N
p̃je

jτ ′
∣∣∣∣ ≤ (eτ

′ − 1)
s2

N
p̃je

jτ ′ (58)

Which implies C̃j ≤ eτ
′ s2

N p̃je
jτ ′ . By Claim A.1, given a nice sample S, with probability at least

0.99 over the choice of T , for all j ∈ Ĩheavy:∣∣∣C̃j − E[C̃j ]
∣∣∣ ≤ 2(eτ

′ − 1)C̃j (59)

Therefore, the probability that both Test 1 passed, and there exists some j ∈ Ĩheavy such that∣∣∣C̃j − E[C̃j ]
∣∣∣ > 3(eτ

′ − 1) s
2

N p̃je
jτ ′2(eτ

′ − 1)eτ
′ s2

N p̃je
jτ ′ , is at most 0.01. We conclude that for every

nice S, with probability at most 0.01 over the choice of T , both Test 1 passes and there exists some
j ∈ Ĩheavy such that:∣∣∣∣E[C̃j ]−

s2

N
p̃je

jτ ′
∣∣∣∣ > 3(eτ

′ − 1)
s2

N
p̃je

jτ ′ + (eτ
′ − 1)

s2

N
p̃je

jτ ′ = 4
(
eτ
′ − 1

) s2

N
p̃je

jτ ′ (60)

In other words, with high probability over the choice of T , either Test 1 fails, or Test 1 passes
and for every heavy j, E[C̃j ] ≈ s2

N p̃je
jτ ′ . We next show that E[C̃j ] also approximates ‖Pj‖22, up to

small factors, and this will yield the desired result.
By construction, for all j (and in particular for j ∈ Ĩheavy):

‖Pj‖22 =
∑
`∈I

∑
x∈A`,j

Pj(x)2 =
∑
`∈I

∑
x∈A`,j

(
eλ`,jτ

′

Np̃j

)2

=
∑
`∈I

p̂`x`,j

e
λ`,jτ

′

N

(
eλ`,jτ

′

Np̃j

)2

=
1

Np̃2
j

∑
`∈I

p̂`x`,je
λ`,jτ

′

(61)

And by Claims A.1 and A.3, for j ∈ Ĩheavy:∣∣∣∣∣s2

N

∑
`∈I

p̂`x`,je
λ`,jτ

′ − E[C̃j ]

∣∣∣∣∣ ≤ s2

N

∑
`∈I\{L}

p̂`x`,j

∣∣∣e`τ ′ − eλ`,jτ ′∣∣∣+
(
eτ
′ − 1

) s2

N
p̃je

jτ ′ (62)

≤ s2

N

∑
`∈I\{L}

p̂`x`,j

∣∣∣e`τ ′ − eλ`,jτ ′∣∣∣+
(
eτ
′ − 1

) s2

N
p̃je

jτ ′ (63)

≤
(
eτ
′ − 1

) s2

N

∑
`∈I\{L}

p̂`x`,je
`τ ′ +

(
eτ
′ − 1

) s2

N
p̃je

jτ ′ (64)

≤
(
eτ
′ − 1

)
E[C̃j ] +

(
eτ
′ − 1

) s2

N
p̃je

jτ ′ (65)

≤
(
eτ
′ − 1

) s2

N
p̃je

jτ ′
(

4(eτ
′ − 1) + 1

)
+
(
eτ
′ − 1

) s2

N
p̃je

jτ ′ (66)

≤ 3
(
eτ
′ − 1

) s2

N
p̃je

jτ ′ (67)
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The third inequality holds by the definition of λ`,j (by which λ`,j ∈ [`, `+ 1), and so
∣∣∣e`τ ′ − eλ`,jτ ′∣∣∣ ≤

(eτ
′ − 1)e`τ

′
), and the second to last one is due to Inequality (60), while the last one is justified by

choice of τ ′ < 0.1, which justifies (eτ
′ − 1) ·

(
4(eτ

′ − 1) + 1
)
≤ 2

(
eτ
′ − 1

)
.

We thus conclude by Inequalities (60), and (67) that with probability at most 0.01 over the
choice of T , it holds that both Test 1 passes and there exists some j ∈ Ĩheavy such that:∣∣∣∣∣s2

N

∑
`∈I

p̂`x`,je
λ`,jτ

′ − s2

N
p̃je

jτ ′

∣∣∣∣∣ > 7(eτ
′ − 1)

s2

N
p̃je

jτ ′ (68)

Combining this last inequality with Equation (61), we get that with probability at most 0.01 over
the choice of T , both Test 1 passes and there exists a heavy j such that:∣∣∣∣∣‖Pj‖22 − ejτ

′

Np̃j

∣∣∣∣∣ =

∣∣∣∣∣ 1

s2p̃2
j

· s
2

N

∑
`∈I

p̂`x`,je
λ`,jτ

′ − 1

s2p̃2
j

· s
2

N
p̃je

jτ ′

∣∣∣∣∣ (69)

=
1

s2p̃2
j

∣∣∣∣∣s2

N

∑
`∈I

p̂`x`,je
λ`,jτ

′ − s2

N
p̃je

jτ ′

∣∣∣∣∣ (70)

>
1

s2p̃2
j

7
(
eτ
′ − 1

) s2

N
p̃je

jτ ′ (71)

= 7
(
eτ
′ − 1

) ejτ ′
Np̃j

(72)

By Claim 5.30, we deduce that:∣∣∣∣∣ ejτ
′

Np̃j
−
(⌊

Np̃j
ejτ ′

⌋)−1
∣∣∣∣∣ ≤ (eτ

′ − 1)

(⌊
Np̃j
ejτ ′

⌋)−1

And lastly, plugging this back to Inequality (72), recalling that τ ′ < 0.1, we get that with probability
at most 0.01 over the choice of T , Test 1 passes and there exists some j ∈ Ĩheavy such that:∣∣∣∣∣‖Pj‖22 −

(⌊
Np̃j
ejτ ′

⌋)−1
∣∣∣∣∣ > 10

(
eτ
′ − 1

)(⌊Np̃j
ejτ ′

⌋)−1

Next, we show that we can translate the assumption that the histogram provided by the prover
is far from the true histogram, to conclude that distributions {Pj}j∈I are far from uniform.

Claim 5.32. Assuming the sample S is nice, then, if ∆RL

(
D, {p̃j}N,τ

′

j∈I

)
>
√
τ , then:

∑
j∈Ĩheavy

p̃jσj ≥
4

5

√
τ

Where σj = ∆RL(Pj , U[Kj ]), for Kj =
⌊
Np̃j
ejτ ′

⌋
.

61



Proof. Assuming S is nice, it holds that for every ` ∈ I, |p̂` − p`| < τ ′2

logn , therefore, as |I| ≤
logN
τ ′ , it holds that 1

2

∑
j∈I |pj − p̂j | ≤ τ ′, and so, by Claim 3.27, ∆RL(D,P ) < eτ

′
τ ′ + τ ′ ≤

3τ ′. As we assumed ∆RL(D, {p̃j}j∈I) >
√
τ , by Claim 3.21, we conclude that as τ ′ = τ

15000 logN :

∆RL(P, {p̃j}j∈I) >
√
τ − 3τ ′ ≥ 9

10

√
τ

Next, for every j ∈ I, Let Rj be a uniform distribution over Kj elements, such that for every
i 6= j, Supp(Pi) ∩ Supp(Rj) = φ. That is, the support of Rj only intersects, potentially, with the
domain of Pj . Denote Supp(Pj) ∪ Supp(Rj) = Yj . Now, for P as in the construction above, by

construction P =
∑

j∈I p̃jPj , and define R =
∑

j∈I p̃jRj . Since every Rj is uniform over
⌊
Np̃j
ejτ ′

⌋
elements, and Rj has p̃j mass in the distribution R, we conclude that for every x ∈ Supp(Rj),

R(x) = p̃j

(⌊
Np̃j
ejτ ′

⌋)−1
, which by Claim 5.30 satisfies:

R(x) ∈

[
ejτ
′

N
, eτ
′ ejτ

′

N

)
That is, {p̃j}j∈I is the (N, τ ′)-histogram of R. Therefore, if ∆RL(P, {p̃j}j∈I) ≥ 9

10

√
τ , then, by

definition, ∆SD(P,R) ≥ 9
10

√
τ .

By construction, the definition of Yj , and Claim 3.26:

9

10

√
τ ≤ ∆SD(P,R) =

∑
j∈I

p̃j∆SD(P
∣∣
Yj
, R
∣∣
Yj

) =
∑
j∈I

p̃j∆SD(Pj , Rj)

We are left to show that buckets in Ĩheavy capture the majority of the distance between P and
R.

We show that
∑

`∈Ĩlight p̂` < 3τ ′. Denote Ismall = {` ∈ I : e(`+1)τ ′

N ≤ τ ′

N logN }. By definition,

Ismall ⊆ Ĩlight. Since S is nice:∑
`∈Ismall

p̂` ≤
∑

`∈Ismall

(
p` +

τ ′2

logN

)
=

∑
`∈Ismall

p` + |Ismall|
τ ′2

logN

As |Ismall| ≤ |I| ≤ logN
τ ′ , we conclude that |Ismall| τ ′2

logN ≤ τ ′. Also, since D is over support of

size at most N , it holds that for every ` ∈ Ismall, p` ≤ N · e`τ
′

N ≤ N · τ ′

N logN ≤ τ ′. Therefore,∑
`∈Ismall p̂` ≤ 2τ ′. Next, since for every ` ∈ Ĩlight \ Ismall, p̃
Consider j ∈ Ĩlight. Since the support of P is at most e2τ ′N , it holds that the cumulative

mass of buckets j such that ejτ
′

N ≤ τ ′

N logN is at most e2τ ′N · τ ′

N logN ≤
2τ ′

logN . Also, as |I| ≤ logN
τ ′ ,

the cumulative mass of p̃j for j satisfying p̃j <
τ ′2

logN is at most τ ′. Therefore, we conclude that∑
j∈Ĩlight < 2τ ′, and as the statistical distance between any two distributions is at most 1, we get

that: ∑
j∈ ˜Iheavy

p̃j∆SD(Pj , Rj) ≥
9

10

√
τ − 2τ ′ ≥ 4

5

√
τ

As Rj is an arbitrary distribution of support
⌊
Np̃j
ejτ ′

⌋
, this means that every such distribution

satisfies the above condition, and in particular, we deduce that:∑
j∈Iheavy

p̃jσj ≥
4

5

√
τ
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Claim 5.33. Let P be as in Construction 5.27, then, if the sample S is nice, for every prover
response, characterized by variables {x`,j}`,j:

|H(D)−H(P )| =

∣∣∣∣∣∣
∑
x∈[N ]

D(x) log

(
1

D(x)

)
−
∑
x∈U

P (x) log

(
1

P (x)

)∣∣∣∣∣∣ < 7τ

15000

Proof. The proof of this claim follows a similar path to the proof of Proposition 5.20. First, let
BP
` be as defined in Construction 5.27. We decompose the left hand side expression in the above

statement: ∑
x∈[N ]

D(x) log

(
1

D(x)

)
=
∑
`∈I

∑
x∈BD`

D(x) log

(
1

D(x)

)
We decompose the second expression similarly:∑

x∈U
P (x) log

(
1

P (x)

)
=
∑
`∈I

∑
x∈BP`

P (x) log

(
1

P (x)

)

We therefore seek to bound
∣∣∣∑`∈I

∑
x∈BD`

D(x) log
(

1
D(x)

)
−
∑

`∈I
∑

x∈BP`
log
(

1
P (x)

)∣∣∣.
First, observe that as, by construction, for every x ∈ BP

L , P (x) ∈
[
e−τ

′ τ ′2

N logN ,
τ ′2

N logN

)
, and

as S is nice, p̂L ≤ pL + τ ′2

logN ≤ 2 τ ′2

logN . Since all elements in BP
L have individual mass of at

least e−τ
′ τ ′2

N logN , we conclude that there are at most
2 τ ′2

logN

e−τ ′ τ ′2
N logN

≤ 2eτ
′
N ≤ e2N elements in BP

L .

Therefore, by Claim 3.7, the assumption that N > 1
τ ′ , and choice of τ ′:∑

x∈BPL

P (x) log
1

P (x)
≤ 2τ ′

logN
log(e2N) +

2τ ′

logN
log

logN

2τ ′

≤ 4
τ ′

logN
+ 2

τ ′

logN
· logN +

2τ ′

logN
· logN +

2τ ′

logN
log

1

2τ ′

≤ 4
τ ′

logN
+ 2τ ′ + 2τ ′ +

2τ ′

logN
· logN

≤ 7τ ′ ≤ τ

15000

Similarly, applying Claim 3.7 on BD
L , noting that

∣∣BD
L

∣∣ ≤ N ,
∑

x∈BDL
D(x) log 1

D(x) <
τ

15000 .

And so, as both quantities are positive:∣∣∣∣∣∣
∑
x∈BDL

D(x) log
1

D(x)
−
∑
x∈BPL

P (x) log
1

P (x)

∣∣∣∣∣∣ ≤ τ

15000
(73)

Next, consider ` ∈ I \{L}. By construction,
∑

x∈BP`
P (x) = p̂`. Moreover, also by construction,

every element x ∈ BP
` satisfies P (x) ∈

[
e`τ
′

N , e
(`+1)τ ′

N

)
. Therefore:∑

x∈BP`

P (x) log

(
1

P (x)

)
≤ p̂` log

(
N

e`τ ′

)
= p̂` log

(
N

e`τ ′

)
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As well as: ∑
x∈BP`

P (x) log

(
1

P (x)

)
≥ p̂` log

(
N

e(`+1)τ ′

)
= p̂` log

(
N

e`τ ′

)
− p̂`τ ′

By which we conclude that for every ` ∈ Ĩheavy:∣∣∣∣∣∣
∑
x∈BP`

P (x) log

(
1

P (x)

)
− p̂` log

(
N

e`τ ′

)∣∣∣∣∣∣ ≤ p̂`τ ′
Similarly, we also deduce that for every such `:∣∣∣∣∣∣

∑
x∈BD`

D(x) log

(
1

D(x)

)
− p` log

(
N

e`τ ′

)∣∣∣∣∣∣ ≤ p`τ ′
But since we know S is nice, then |p̂` − p`| ≤ τ ′2

logN . Moreover, for ` ∈ I \ {L}, log
(

N
e`τ ′

)
≤ 4 logN .

Therefore, by the triangle inequality, for every ` ∈ I \ {L}:∣∣∣∣∣∣
∑
x∈BD`

D(x) log

(
1

D(x)

)
−
∑
x∈BP`

P (x) log

(
1

P (x)

)∣∣∣∣∣∣ ≤ p̂`τ ′+p`τ ′+|p̂` − p`|·log

(
N

e`τ ′

)
≤ p̂`τ ′+p`τ ′+4τ ′2

Summing over all such `, by the triangle inequality:∣∣∣∣∣∣
∑

`∈I\{L}

∑
x∈BD`

D(x) log

(
1

D(x)

)
−

∑
`∈I\{L}

∑
x∈BP`

P (x) log

(
1

P (x)

)∣∣∣∣∣∣ (74)

≤ τ ′
∑

`∈I\{L}

(p̂` + p`) + 4τ ′2 |I \ {L}| (75)

≤ 2τ ′ + 4τ ′ logN (76)

≤ 6τ

15000
(77)

Putting together Inequalities (74), (73), we get the desired result.

Proposition 5.34. Assume the sample S is nice, then, if the prover provided {p̃j}j∈I such that
∆RL(D, {p̃j}j∈I) >

√
τ , then, with probability at most 0.01 over the choice of T , both Test 1 passes,

and:

H(D)−
∑

j∈Ĩheavy

p̃j log

(
N

ejτ ′

)
<

250τ

15000

Proof. Let P be as in Construction 5.27. We analyze the following quantity:

(H(D)−H(P )) +

H(P )−
∑

j∈Ĩheavy

p̃j log

(
N

ejτ ′

) (78)
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Note that by Claim 5.33, if S is nice, then:∣∣∣∣∣∣
∑
x∈[N ]

D(x) log

(
1

D(x)

)
−
∑
x∈U

P (x) log

(
1

P (x)

)∣∣∣∣∣∣ < 7τ

15000
(79)

Therefore, we can immediately conclude that:

H(D)−H(P ) > − 7τ

15000
(80)

We are thus left to bound from below the quantity H(P )−
∑

j∈Ĩheavy p̃j log
(

N
ejτ ′

)
.

This quantity is itself at least
∑

j∈Ĩheavy
∑

x∈Supp(Pj)
P (x) log

(
1

P (x)

)
−
∑

j∈Ĩheavy p̃j log
(

N
ejτ ′

)
.

Rearranging:∑
j∈Ĩheavy

∑
x∈Supp(Pj)

P (x) log

(
1

P (x)

)
−

∑
j∈Ĩheavy

p̃j log

(
N

ejτ ′

)
(81)

=
∑

j∈Ĩheavy

p̃j

 ∑
x∈Supp(Pj)

P (x)

p̃j
log

(
p̃j
P (x)

· 1

p̃j

)− ∑
j∈Ĩheavy

p̃j log

(
Np̃j
ejτ ′

· 1

p̃j

)
(82)

Recall that by construction,
∑

x∈Supp(Pj)
P (x) = p̃j , therefore:

∑
j∈Ĩheavy

p̃j
∑

x∈Supp(Pj)

P (x)

p̃j
log

(
p̃j
P (x)

· 1

p̃j

)
=

∑
j∈Ĩheavy

p̃j
∑

x∈Supp(Pj)

P (x)

p̃j
log

(
p̃j
P (x)

)
+

∑
j∈Ĩheavy

p̃j log

(
1

p̃j

)

Consider the second summand on the right hand side of Equation (82). We also get that:∑
j∈Ĩheavy

p̃j log

(
Np̃j
ejτ ′

· 1

p̃j

)
=

∑
j∈Ĩheavy

p̃j log

(
Np̃j
ejτ ′

)
+

∑
j∈Ĩheavy

p̃j

(
1

p̃j

)

Plugging these two conclusions back in Equation (82),∑
j∈Ĩheavy

∑
x∈Supp(Pj)

P (x) log

(
1

P (x)

)
−

∑
j∈Ĩheavy

p̃j log

(
N

ejτ ′

)
(83)

=
∑

j∈Ĩheavy

p̃j
∑

x∈Supp(Pj)

P (x)

p̃j
log

(
p̃j
P (x)

)
−

∑
j∈Ĩheavy

p̃j log

(
Np̃j
ejτ ′

)
(84)

=
∑

j∈Ĩheavy

p̃j

 ∑
x∈Supp(Pj)

P (x)

p̃j
log

(
p̃j
P (x)

)− log

(
Np̃j
ejτ ′

)
(85)

65



By construction, H(Pj) =
∑

x∈Supp(Pj)
P (x)
p̃j

log
(

p̃j
P (x)

)
. And so, we conclude that:

∑
j∈Ĩheavy

∑
x∈Supp(Pj)

P (x) log

(
1

P (x)

)
−

∑
j∈Ĩheavy

p̃j log

(
N

ejτ ′

)
(86)

=
∑

j∈Ĩheavy

p̃j

(
H(Pj)− log

(
Np̃j
ejτ ′

))
(87)

First, given that S is nice, by Claim 5.31, with probability at most 0.01 over the choice of

T , both Test 1 passes, and for there exists some j ∈ Ĩheavy, for which

∣∣∣∣‖Pj‖22 − (⌊Np̃jejτ ′

⌋)−1
∣∣∣∣ ≥

10(eτ
′−1)

(⌊
Np̃j
ejτ ′

⌋)−1
. Therefore, with probability at least 0.99 either Test 1 fails, or for all heavy j,∣∣∣∣‖Pj‖22 − (⌊Np̃jejτ ′

⌋)−1
∣∣∣∣ < 10(eτ

′ − 1)
(⌊

Np̃j
ejτ ′

⌋)−1
. By Claim 5.32, and assuming the prover provided

a histogram {p̃j}j∈I , such that ∆RL(D, {p̃j}j∈I) ≥
√
τ , then, if we denote Kj =

(⌊
Np̃j
ejτ ′

⌋)−1
,

σj = ∆RL(Pj , U[Kj ]), it holds that
∑

j∈Ĩheavy p̃jσj ≥
4
√
τ

5 . Therefore, by Lemma 5.2, with probability

at least 0.99 over the choice of T , either Test 1 failed, or for all j ∈ Ĩheavy H(Pj)− log
(⌊

Np̃j
ejτ ′

⌋)
≥

1
32σ

2
j − 10(eτ

′ − 1), which in combination with Claim 5.30 means that, with small probability Test
1 passed and there exists a heavy j such that:

H(Pj)− log

(
Np̃j
ejτ ′

)
<

1

32
σ2
j − 11(eτ

′ − 1)

Plugging this back to Equation (87):

∑
j∈Ĩheavy

∑
x∈Supp(Pj)

P (x) log

(
1

P (x)

)
−

∑
j∈Ĩheavy

p̃j log

(
N

ejτ ′

)
(88)

=
∑

j∈Ĩheavy

p̃j

(
H(Pj)− log

(
Np̃j
ejτ ′

))
(89)

≥
∑

j∈Ĩheavy

p̃j

(
1

32
σ2
j − 11(eτ

′ − 1)

)
(90)

=
1

32

 ∑
j∈Ĩheavy

p̃jσ
2
j

− 11(eτ
′ − 1)

 ∑
j∈Ĩheavy

p̃j

 (91)

≥ 1

32

∑
j∈Ĩheavy

p̃jσ
2
j − 12τ ′ (92)

Next, observe that by Jensen’s inequality,
∑

j∈Ĩheavy p̃jσ
2 ≥

(∑
j∈Ĩheavy p̃jσ

)2
=
(

4
5

√
τ
)2 ≥ 3τ

5 .
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Plugging this in the expression above:∑
j∈Ĩheavy

∑
x∈Aj

P (x) log

(
1

P (x)

)
−

∑
j∈Ĩheavy

p̃j log

(
N

ejτ ′

)
≥ 1

32
· 3

5
τ − 11τ

15000
≥ 257τ

150000
(93)

(94)

Finally, plugging Inequalities (80) and (93) in Expression (78), we get:

H(D)−
∑

`∈Ĩheavy

p̃j log

(
Np̃j
ejτ ′

)
> − 7τ

15000
+

257τ

15000
=

250τ

15000
(95)

We get that with probability at least 0.99 over the choice of T , either Test 1 fails, or Test 1 passes,

and H(D)−
∑

`∈Ĩheavy p̃j log
(
Np̃j
ejτ ′

)
> 250τ

15000 .

We are now set to conclude the soundness of the protocol in Figure 5:

Corollary 5.35 (Soundness of the Protocol in Figure 5). If the prover is dishonest, and provided
{p̃j}j such that ∆RL (D, {p̃j}j) >

√
τ , then Test 1 and Test 2 pass with probability at most 0.05.

Proof. By Claim 5.15, with probability at least 0.99 over the choice of S, the sample S is nice.
Assume the prover provided tags of the sample S that result with histogram {p̃j}j∈I such that:
∆RL (D, {p̃j}j) >

√
τ . Then, by Proposition 5.34, with probability at least 0.99 over the choice of

T , either Test 1 fails, or H(D)−
∑

j∈I p̃j log
(
Np̃j
ejτ ′

)
≥ 250τ

15000 . In the latter case, since in Test 2 the

verifier runs the entropy upper bound protocol with parameters N, k =
∑

j∈Ĩheavy p̃j log
(
Np̃j
ejτ ′

)
+

10τ
15000 , z = 10, and ν = 240τ

15000 , we get that with probability at most 0.01 over the randomness of the
protocol, the verifier accepts. Therefore, the verifier might output {p̃j}j such that ∆RL(D, {p̃j}j) >√
τ , if either of the following occurs:

• S is not nice.

• S is nice, and also Test 1 passed and H(D)−
∑

j∈I p̃j log
(
Np̃j
ejτ ′

)
< 250τ

15000 .

• S is nice, also Test 1 passed and H(D)−
∑

j∈I p̃j log
(
Np̃j
ejτ ′

)
≥ 250τ

15000 , and on top of that the

entropy upper bound protocol fails.

All these events occur with probability at most 0.015. Taking union bound over them yields the
desired result.

5.4 Round Collapse

The bounded probability histogram reconstruction protocol detailed in Figure 5 consists of four
messages, and can be divided into two phases: in the first phase, that is made up of the first
two messages, the verifier sends a collection of samples S to the prover, and the prover tag each
sample according to its (N, τ ′)-bucket. At the end of this phase the verifier is left with the tagged
samples, from which, if the prover is honest, it is possible to deduce with high probability a close
approximation of the (N, τ ′)-histogram of D.
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In the second phase, the verifier verifies the tags provided by the prover in the previous phase.
It does so by performing two tests. The first test involves sampling a fresh sample, and checking
to see whether the number of collisions of this second sample with each alleged bucket of the first
sample (as claimed by the prover) is close to the expected number of collisions for each bucket
(as calculated from the prover tags). Note that this test requires no further interaction with the
prover. Assuming Test 1 passed, then: if the prover is honest, with high probability, the prover tags
provide a close estimate of the entropy of D, up to some small additive factor O(τ) (Proposition
5.20); and if the prover is dishonest and provided tags that produce a histogram far from the real
one, with high probability, the entropy estimate achieved from the tags will be lower than the real
entropy by a significant additive factor Ω(τ) (Proposition 5.34).

Accordingly, to distinguish between these two cases, the verifier performs Test 2, which is an
entropy upper bound protocol for the entropy claim deduced by the prover answers (for a detailed
analysis of this protocol see Section 5.2). This test involves two more messages, the first, a verifier
message which we think of as an entropy challenge, and the second - the prover response to the
challenge. Two important observations concerning this test: (i) the only information from the first
phase of the protocol required to run this test is the entropy claim deduced from the prover tags,
while the rest of the input to the protocol (the gap and the domain size) are known to the verifier
in advance; (ii) the total effective number of possible entropy claims is small. We elaborate on this
second point - since the entropy of distribution D is at most logN , and the entropy gap between
the two cases mentioned above is at least ν ′ = Ω(τ), if we denote ν = ν ′/3, then one of the points

in the set {i · ν}blogN/νc
i=1 is guaranteed to be at least the entropy claim produced from the tags, and

at most ν above it, making it an effective entropy claim for running the upper bound protocol on
distribution D, with gap ν.

Following this line of thought, we reduce the number of rounds of the protocol as follows: in
the first phase of the protocol, alongside sample S the verifier sends to the prover, the verifier also

sends
⌊

logN
ν

⌋
entropy challenges to the prover, for each value (possible entropy claim) in the set

{i·ν}blogN/νc
i=1 . The prover then responds in the second message with the tags of S, and also with the

response to the entropy challenge relevant to the entropy claim implied by the tags of S. Next, in
the second phase of the protocol, the verifier performs Test 1 as before, and when (and if) reaching
Test 2, it examines the prover’s response to the relevant entropy challenge. See Figure 6 for a
complete description of this protocol. Note that even though this change in the protocol requires
the verifier to sample more samples than before, and communicate more bits of information, the
quantity by which it increases these complexity measures is dominated by the communication and
sample complexity required for sampling and sending sample S. We now prove that this collapsed
protocol satisfies the conditions of Lemma 5.1.

Proposition 5.36 (Completeness). If the verifier is honest, with probability of at least 0.9 over the
choice of S, T, C, {hi}i∈[q], {bi}i∈[q] the verifier doesn’t reject and outputs {p̃j}j such that ∆RL (D, {p̃j}j∈I) <
2τ ′.

Proof. Assuming the prover is honest, by Corollary 5.16, Corollary 5.19, as well as Proposition
5.20, we get that with probability of at least 0.95 over S and T :

• ∆RL (D, {p̃j}j∈I) < 2τ ′.

• Test 1 passes.
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IP for verified histogram reconstruction for dist. with no high-prob. elements (2 messages):
Verifier Input: integer N > 100, accuracy parameter τ < 0.1, and sample access to distribution D over

domain [N ], such that for all x ∈ [N ], D(x) ≤ Õ
(

poly(τ)√
N

)
.

Prover Input: same as verifier (or, alternatively, full information of distribution D).

Goal: obtain a
(
N,O

(
τ

logN

))
-histogram {p̃j}j∈I such that ∆RL ({p̃j}j , D) <

√
τ .

The Protocol:

1. The verifier message. The verifier performs the following in parallel:

• It sets ν = 80τ
15000 , and q =

⌊
logN
ν

⌋
. For each value k in the set {ν · i}i∈[q], the verifier runs in

parallel the entropy upper bound protocol detailed in Section 5.2 with entropy claim k, domain

size parameter N , gap parameter ν, and z = log
(

100 logN
ν

)
.

• the verifier samples s = Õ(
√
Nτ−4) fresh i.i.d. samples from D to yield S = (S1, S2, . . . , Ss)

and sends S to the prover.

Note that the verifier sends in one message q entropy challenges, one for each run of the entropy
upper bound protocol, and s samples to the prover.

2. The prover response. For every element x in sample S, the prover responds with tag(x) ∈ I,

corresponding to the bucket to which element x belongs; and for ĩ =
⌈(∑

j∈Iheavy p̃j log
(
N
eτ′

))
/ν
⌉

+

1, where Iheavy = {j 6= L : p̃j >
τ ′2

logN }, the prover responds to the run of the entropy upper bound

protocol corresponding to the entropy claim ν · ĩ.

3. The verifier composes the alleged histogram. For every j ∈ I, the verifier computes F̃j =

{k ∈ [s] : tag(Sk) = j}, and p̃j =
|F̃j|
s , to form {p̃j}j∈I , the alleged empirical (N, τ ′)-histogram of

the sample S

4. Verifier tests. The verifier draws a fresh set of samples T = (T1, T2, . . . , Ts) of size s, and performs
the following tests:

(a) Test 1 - collision matching test. Same as in the protocol in Figure 5

(b) Test 2 - entropy upper bound test. If the run of the entropy upper bound protocol with
entropy claim ν · ĩ, terminated in rejection, the verifier rejects.

5. The verifier outputs {p̃j}j∈I .

Figure 6: Interactive protocol for histogram reconstruction - upper-bounded probability

•
∣∣∣H(D)−

∑
`∈Ĩheavy p̃` log

(
N
e`τ ′

)∣∣∣ < 7τ
15000 .

We assume these three conditions apply. Consider ĩ =
⌈(∑

j∈Iheavy p̃j log
(
N
eτ ′

))
/ν
⌉

+ 1. Observe

that:

ĩν ≥
∑

`∈Ĩheavy

p̃` log

(
N

e`τ ′

)
+ ν ≥

∑
`∈Ĩheavy

p̃` log

(
N

e`τ ′

)
+

7τ

15000
≥ H(D)

Where the second inequality is justified by choice of ν. A honest run of the entropy upper bound

protocol as described in Section 5.2 in this case, with parameter z = log
(

100 logN
ν

)
succeeds with
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probability at least 0.99.
In conclusion, if the prover is honest, with probability at least 0.9, the verifier outputs {p̃j}j ,

such that ∆RL(D, {p̃j}j) < 2τ ′, and the conditions of the completeness clause are met.

Proposition 5.37 (Soundness). No matter the prover response, the probability over the choice of
S, T, C, {hi}i∈q, {bi}i∈q, that the verifier doesn’t reject and outputs {p̃j}j such that ∆RL (D, {p̃j}j∈I) ≥√
τ , is at most 0.1.

Proof. With probability at least 0.99, S is nice. Assume this is the case. For any i ∈ [q], such that
ν · i ≤ H(D) − ν, the probability that the entropy upper bound protocol with entropy claim ν · i
doesn’t result in rejection is 2−z = ν

100 logN . Therefore, by the Union Bound, the probability that
there exists i ∈ [q] such that ν · i ≤ H(D) − ν, and the prover succeeds to convince the verifier
to accept during the run of the entropy upper bound protocol for entropy claim ν · i is at most
q · ν

100 logN ≤ 0.01.
Assume this event didn’t occur, i.e. there doesn’t exists some run of the entropy upper bound

protocol for entropy claim ν · i ≤ H(D) − ν in which the prover succeeds to convince the verifier
to accept. Moreover assume that the prover chose some labelling of S such that {p̃j}j satisfies
∆RL(D, {p̃j}j) ≥

√
τ . In this case, with probability at least 0.99 over the choice of T , either Test

1 fails, or Test 1 passes, and H(D)−
∑

`∈Ĩheavy p̃` log
(

N
e`τ ′

)
≥ 250τ

15000 . Assume this event as well. If

Test 1 didn’t fail, the entropy claim relevant to the prover tags, ν · ĩ, satisfies:

ν · ĩ ≤
∑

`∈Ĩheavy

p̃` log

(
N

e`τ ′

)
+ 2ν ≤

∑
`∈Ĩheavy

p̃` log

(
N

e`τ ′

)
+

160τ

15000
≤ H(D)− ν

Which means that the entropy upper bound run relevant to it ended in rejection.
In summary, the prover might fool the verifier and make it output {p̃j}j such that ∆RL(D, {p̃j}) ≥√

τ , if:

• S isn’t nice; or,

• S is nice, and there exists a run of the entropy upper bound protocol for a entropy claim k
such that k ≤ H(D)− ν, and the run didn’t result in rejection; or,

• S is nice and all runs of the entropy upper bound protocol for entropy claims k such that k ≤
H(D)−ν terminate in rejection, but Test 1 passed, andH(D)−

∑
`∈Ĩheavy p̃` log

(
N
e`τ ′

)
< 250τ

15000 .

All of the events above occur each with probability at most 0.02, concluding the soundness proof.

6 Applications to Tolerant Verifiction

In this section we show how our main result, Theorem 4.1, can be used to prove Theorem 1.2
stated in Section 1.1.1. I.e. we show how to tolerantly verify every label-invariant property P,
given sample access to the distribution. The verification protocol relies on two procedures: the
first is provided by the main result, and allows the verifier to obtain a “verified” histogram that
is close to the samplable distribution D; the second is defined by the property P, and allows the
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verifier to verify whether this obtained histogram is indeed close to the property P. The formal
interpretation of this condition will be discussed shortly.

We remark that this second verification procedure changes from property to property, and its
efficiency can vary accordingly. We thus focus in this work on label-invariant properties that admit
what we call an efficient decision procedure (see Definition 6.1 below): a method for determining
whether a given histogram is either: (i) consistent with some distribution inside the property, or
(ii) consistent only with distributions far from the property. Note that we only require a method to
determine whether a given histogram is inside the property or far from it. This decision procedure
is leveraged, through communication with the prover, to allow verification that a given histogram
is close to the property. The efficiency of the procedure is defined as having runtime that is
polynomial in the size of the histogram. This efficiency condition guarantees that the verification
that the obtained histogram is close to the property P doesn’t incur runtime that exceeds the
runtime required by the protocol for obtaining the histogram (see Remark 6.3 for a discussion of
properties where the decision procedure requires more time).

We proceed to formally define efficient decision procedures (see the less formal definition in
Definition 2.6 in Section 1.1.1), and then show how they can be used to verify whether a histogram
is close to the property.

Definition 6.1 (Efficient approximate decision procedure). For every N ∈ N, denote PN = P ∩
∆N . A distribution property P has an efficient approximate decision procedure if there exists
a polynomial-time procedure A as follows. A gets as input the domain size N , a parameter τ ,
distance parameter σ ∈ (0, 1), and a [N ]-realizable (N, τ)-histogram {pj}j. There exists a function
µ(N, σ) = poly(1/ logN, σ) s.t. for every integer N , every τ ≤ µ(N, σ), every (N, τ)-histogram
{pj}j, and every σ > 0:

• If there exists a distribution D ∈ PN consistent with {pj}j, then A accepts.

• If every distribution D ∈ ∆N consistent with {pj}j satisfies ∆RL(D,PN ) ≥ σ, A rejects.

Note that since the approximate histogram has a compact representation (with respect to N),
and A’s running time is polynomial in its input length, it should run in poly(logN, τ−1) time. Thus,
the prover in our protocol can (and will) send approximate histograms, and the verifier can run A.

As a simple example for such procedure, consider the property P = {U[N ]:N∈N} (i.e. the property
of being uniform over the entire domain). Since upon fixing parameters N and τ , there is only
one possible (N, τ)-histogram for the distributions (in fact distribution) in PN , given {pj}j , an
an efficient decision procedure for P only needs to check if a given histogram {pj}j satisfies the
condition p0 = 1, while pj = 0 for all j 6= 0. In order to guarantee that histograms that are far from
the property are rejected, we just need to set τ to be small enough, so that all distributions with
all their mass in the 0’th bucket are σ-close to U[N ]. By Claim 3.27, this is achieved for τ < σ/4,
and so, if we set µ(σ,N) = σ/4, this procedure constitutes an efficient decision procedure for this
property (its runtime being clearly low). In Section 6.1 we provide more examples of efficient
decision procedures for natural label invariant distribution properties.

In order to prove Theorem 1.2, we need to show the existence of a protocol that allows to verify
closeness of a histogram to a property:

Proposition 6.2 (Histogram proximity verification protocol). Fix N , and a label invariant property
P, as well as parameters εc < εf . Let A be an efficient approximate decision procedure for P, with
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function µ. Denote ρ = εf − εc, and let τ = min{µ(N, ρ/3), ρ/100}. There exists a 1-message
protocol between a prover and a verifier, such that when both are given as input an (N, τ)-histogram
{pj}j that is ρ/3-close to the distribution D, the following hold:

• Completeness. If ∆SD(D,P) ≤ εc, then there exists a prover message that makes the verifier
accept (w.p. 1).

• Soundness. If ∆SD(D,P) ≥ εf , then no matter what message the prover sends, the verifier
always rejects.

The prover message length and the runtime of the verifier are poly(logN, 1/τ).

Verification procedure for distance of histogram from property:

Verifier Input: label-invariant property P, with efficient decision procedure A with function µ.
Also, an integer N > 100, parameters εc, εf ∈ (0, 1) such that ρ = εf − εc > 0, and parameter
τ ≤ min {µ(N, ρ/3), ρ/100}, and an (N, τ)-histogram {pj}j such that ∆RL(D, {pj}j) ≤ ρ/3, for a
distribution D over domain [N ].

Prover Input: same as verifier.

Goal: denote PN = P ∩∆N . The verifier accepts if ∆RL(D,PN ) ≤ εc, and rejects if ∆RL(D,PN ) ≥ εf .

The Protocol:

1. Prover message. the prover sends the verifier a (N, τ)-histogram {tj}j that it claims to be consis-
tent with a distribution P ∈ PN where ∆SD(D,P ) = ∆SD(D,PN ).

2. Verifier Tests. The verifier performs the following tests:

• Test I. The verifier runs the histogram realizability algorithm (as depicted in Claim 3.16) with
parameters N (as both the set size parameter, and the histogram parameters), and τ , on the
histogram {tj}j . The verifier rejects if the algorithm rejects.

• Test II. The verifier runs the histogram distance estimator (as depicted in Proposition 3.29)
with inputs N , τ , and histograms {pj}j and {tj}j . Let d be the output of the estimator. If
d > εc + ρ/2, the verifier rejects.

• Test III. The verifier runs the procedure A with parameters N , τ , and ρ/100 on the histogram
{tj}j . If the run terminates in rejection, the verifier rejects. Otherwise, it accepts.

Figure 7: Verification procedure for distance of histogram from property

Proof. We show that the protocol in Figure 7 satisfies the conditions in Proposition 6.2.
The proof of this theorem is straightforward given the efficient approximate decision procedure

A for P, and a method for computing the distance between two histograms. In short, the verifier
gets a histogram of a distribution that allegedly lies within the property P, and is closest to D.
Then, the verifier verifies both these assertions. Namely, that the distribution is indeed close to D
(by estimating the distance between the histogram sent by the prover, and the histogram {pj}j ,
which is close to D by assumption), and that the histogram provided {tj}j is indeed consistent
with some distribution inside the property (as made possible by the algorithm A). We have:
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Completeness. Assume ∆SD(D,PN ) ≤ εc. If so, there exists some distribution P ∈ PN such
that ∆SD(D,P ) ≤ εc. The prover then sends the τ -histogram of P as {tj}j . The histogram {pj}j
is at distance at most ρ/3 from D. Note that the first test passes, as the distribution P is over the
domain [N ], and {tj}j is its histogram. Moving to the second test, by the assumption over P , we get
that ∆RL(D, {tj}j) ≤ εc, and so, by a triangle inequality (Claim 3.21), ∆RL({pj}j , {tj}j) ≤ εc+ρ/3.
Therefore, by Proposition 3.29, running histogram distance estimator with input {pj}j and {tj}j
along with parameters N and τ , yields d such that |d−∆RL({pj}j , {tj}j)| ≤ 7τ ≤ 7ρ/100, and so,
we get that d ≤ εc + ρ/3 + 7ρ/100 < εc + ρ/2, and the second test passes. Lastly, by the definition
of A, since {pj}j is derived from a distribution in P, the run of A is an accepting run. And so, the
verifier accepts.

Soundness. Assume ∆SD(D,P) ≥ εf = εc + ρ. Let {tj}j be some τ -approximate histogram
provided by the prover. If {tj}j is more than ρ/100-far from the property P, then the run of
procedure A terminates in rejection. Otherwise, there exists a distribution P that is ρ/100-close to
P, and has histogram {tj}j . By the triangle inequality, and since every two distributions consistent
with {tj}j are at most 3τ -far (see Claim 3.27), we get that the distance between D and {tj}j is at
least εf−ρ/100−3τ . And so, the distance between {tj} and {pj}j is at least εf−ρ/100−3τ−3τ >
εc + ρ/2 + 7τ . Therefore, by Proposition 3.29, the output d of the histogram distance estimator
satisfies d > εc + ρ/2 and the verifier rejects.

We are now set to present the proof to Theorem 1.2:

Proof of Theorem 1.2. Let A be an efficient decision procedure for P with function µ. The protocol
consists of running two protocols:

• The verifier and prover run the histogram reconstruction protocol as in Figure 6 with domain
size parameter N , and accuracy parameter τ = min

{
µ(N, ρ/3), (ρ/4)2, ρ/100

}
. The verifier

either rejects or obtains (N, τ ′)-histogram {aj}j , for τ ′ = O(τ/ logN).

• The verifier and prover run the histogram proximity verification protocol as in Figure 7 with
respect to the (N, τ ′) histogram {aj}j , property P, and distance parameters εc, εf . Note that
τ ′ ≤ µ(N, ρ/3).

Note that the second protocol is comprised of a single message from the prover, and so, we can
“piggyback” this message with the second message of the first protocol, making the message count of
the property verification protocol amount to only two messages. By Theorem 4.1, with probability
at least 0.9 over the randomness of the histogram reconstruction protocol, the (N, τ ′)-histogram
{aj}j satisfies ∆RL(D, {aj}j) ≤

√
τ/2 ≤ ρ/3.

Completeness. Assume ∆SD(D,P) ≤ εc. Assume further the (N, τ ′)-histogram {aj}j satisfies
∆RL(D, {aj}j) ≤ ρ/3. Since τ ′ ≤ min{µ(N, ρ/3), ρ/100}, by Proposition 6.2, there exists a prover
message that will make the verifier accept. Since ∆RL(D, {aj}j) ≤ ρ/3 with probability at least
0.9, we get that the verifier accepts with probability at least 0.9.
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Soundness. Assume ∆SD(D,P) ≤ εf . Assume further the (N, τ ′)-histogram {aj}j satisfies
∆RL(D, {aj}j) ≤ ρ/3. In this case, since τ ′ ≤ min{µ(N, ρ/3), ρ/100}, by Proposition 6.2, there
doesn’t exist a prover message (as part of the histogram proximity verification protocol) that will
make the verifier accept. We thus get that the verifier might accept only if ∆RL(D, {aj}j) > ρ/3,
which occurs with probability at most 0.1.

Remark 6.3. Assume a label-invariant property P does not admit an efficient decision procedure.
In this case, the verifier can still obtain a (N, τ)-histogram for τ of its choice using the protocol
presented in Theorem 4.1, and also require the prover to supply the histogram of the closest dis-
tribution to D inside PN . However, it is possible that deciding whether the supplied histogram is
indeed inside the property P requires far longer runtime than obtaining the histograms (if at all
possible! One can consider properties for which calculating membership is undecidable). This will
incur large runtime for the verifier at the end of the interaction, in order to perform Test III in
the protocol in Figure 7. However, the condition of having an efficient decision procedure can be
relaxed, see Remark 1.3 for more details.

6.1 Examples of Efficient Approximate Decision Procedures

Following the arguments above, in order to show an efficient tolerant verification procedure for a
label invariant property P, we only need to provide an efficient approximate decision procedure
for that property. In this section we provide such procedures for several natural label-invariant
properties.

Claim 6.4. For N > 210 and k ∈ [0, logN ], the property Hk = {P : Supp(P ) ⊆ [N ], H(P ) ≥ k}
has an efficient approximate decision procedure with function µ(N, σ) = min{σ3/2, 0.1}.

Claim 6.5. Fix η = Ω(1) and N > 210. Define: ∆η
N =

{
D ∈ ∆N : minx∈Supp(D)D(x) ≥ η/N

}
.

For every t ∈ {1, 2, . . . , N}. The property: St =
{
D ∈ ∆η

N : |Supp(D)| = t
}

Has a ∆η
N -efficient

approximate decision procedure with function µ(N, σ) =
√
η, as follows3: there exists an algorithm

that for every (N, τ)-histogram {pj}j where τ < µ(N, σ) = σ:

• If {pj}j is consistent with a distribution P ∈ St, then the algorithm accepts.

• If every distribution P ∈ ∆η
N consistent with {pj}j satisfies ∆RL(P,St) ≥ σ, the algorithm

rejects.

Remark 6.6. We assume that 1/τ = o(N), as otherwise the dependence in τ−1 will result with a
sample complexity exceeding N .

We proceed to prove the claims above:

3Note that any distribution D ∈ ∆N over support of size K < N , satisfies the condition that for every K′ ∈
{K,K + 1, . . . , N} the distribution Dε

K′ obtained by taking ε mass from D and dividing it over K′ − K elements,
is ε close to D and has support K′. Therefore, in order for this property to be meaningful, we define the goal
of the verification procedure slightly differently. Instead of requiring the verifier to accept a general D ∈ ∆N if
∆SD(D,Sk) ≤ εc, and reject if ∆SD(D,Sk) ≥ εf , we consider a new parameter η = Ω(1), known to both verifier and
prover, and limit our view to only those D’s that satisfy the condition that for all x ∈ Supp(D), D(x) ≥ η/N . This
condition guarantees a meaningful interpretation of the distance of a distribution from the property, and requires
only minor adjustments in the run of the verification protocol. Further details of these adjustments are omitted.
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Efficient approximate decision procedure for having entropy at least k:

Input: parameters N > 210, σ ∈ [0, 1], τ < min{σ3/2, 0.1}, and k ∈ [0, logN ], as well as an [N ]-realizable
(N, τ)-histogram {pj}j .

Output: denote Hk = {P ∈ ∆N : H(P ) ≥ k}: The algorithm outputs ACCEPT if ∆RL ({pj}j ,Hk) = 0,
and REJECT if ∆RL ({pj}j ,Hk) ≥ σ.

The Algorithm:

1. Compute h =
∑
j pj log

(
N/e(j+1)τ

)
.

2. Output:

• If h ≥ k − σ3, output ACCEPT.

• Otherwise, output REJECT.

Figure 8: Efficient approximate decision procedure for having entropy at least k

Proof of Claim 6.4. We prove that the algorithm in Figure 8 satisfies the conditions of the propo-
sition.

Fix k ∈ [0, logN ], and let τ be such that τ ≤ µ(N, σ) = min{σ3/2, 0.1}. First, we show that

the quantity h =
∑

j pj log
Npj

e(j+1)τ is a lower bound on the entropy of any distribution P consistent
with histogram {pj}j . For subdomain X ⊆ [N ] and a fixed distribution P , we call the quantity∑

x∈X P (x) log(1/P (x)) the contribution of X to the entropy of P . By Claim 3.7, the contribution
of each bucket j 6= L with mass pj to a the entropy of a distribution consistent with {pj}j is at

most pj log
Npj
ejτ

, and at least pj log
Npj

e(j+1)τ . As for the L’th bucket, by definition, every element in

this bucket is of probability at most τ2

N logN , and as the domain has at most N elements, its mass

is at most τ2/ logN . By Claim 3.7 we get that the contribution of the L’th bucket is at most
τ2

logN logN + τ2

logN log logN
τ2 ≤ 2τ2 (justified by the choice N > 210), while for the same reasoning as

above, it’s at least pj log
Npj

e(L+1)τ . We conclude that for every distribution P with histogram {pj}j :

0 ≤ H(P )−
∑
j

pj log
Npj

e(j+1)τ
≤ 2τ2 + τ ≤ 2τ (96)

Where the last inequality is justified by choice of τ ≤ µ(N, σ) ≤ 0.1.

Completeness. If ∆RL(Hk, {pj}j) = 0, then there exists some distribution P with histogram
{pj}j and entropy H(P ) ≥ k. By Inequality (96) and the choice of τ , it holds that:

H(P )−
∑
j

pj log
Npj

e(j+1)τ
≤ 2τ ≤ σ3

And so, we conclude that
∑

j pj log
Npj

e(j+1)τ ≥ k − σ3, and the algorithm accepts.

Soundness. We show that if
∑

j pj
Npj

e(j+1)τ ≥ k − σ3, then there exists a distribution consistent
with {pj}j that is σ-close to Hk, and so the histogram {pj}j has to be close to the property.
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Assume that
∑

j pj
Npj

e(j+1)τ ≥ k − σ3, and fix P0 to be a distribution over domain [N ] consistent
with histogram {pj}j , and let U[N ] to be the uniform distribution over the domain [N ]. We divide the
analysis into two cases according to the value of k: k ∈

[
0, logN − σ2

]
, and k ∈ (logN −σ2, logN ].

We start with the latter case.

Case (i): k ∈
(
logN − σ2, logN

]
. Note that by definition, for every k, U[N ] ∈ Hk. We show

that in this case, assuming
∑

j pj
Npj

e(j+1)τ ≥ k − σ3, any distribution consistent with {pj}j , and P0

in particular, is close to U[N ], and thus also, close to the property. This is accomplished through
the use of Pinsker’s Inequality (see Lemma 3.10). Observe that4:

KL(P0‖U[N ]) =
∑
x∈[N ]

P0(x) log
P0(x)

1/N
=
∑
x∈[N ]

P0(x) logN −
∑
x∈[N ]

P0(x) log
1

P0(x)
= logN −H(P0)

By assumption H(P0) ≥
∑

j pj
Npj

e(j+1)τ ≥ k − σ3 ≥ logN − σ2 − σ3 > logN − 2σ2. And so,

KL
(
P0‖U[N ]

)
< logN − (logN − 2σ2) = 2σ2. But, from Pinsker’s Inequality, KL(P0‖U[N ]) ≥

2∆SD(P0, U[N ])
2, which implies:

∆SD(P0, U[N ]) < σ

Case (ii): k ≤ logN − σ2. In this case, we show that given P0, we can construct a distribution
Pα0 over domain [N ] which is both σ-close to P0, and has entropy at least k, where Pα0 is a convex
combination of P0 and U[N ]. Concretely, consider the distribution family {Pα}α∈[0,1] defined as
follows:

Pα = (1− α)P0 + αU[N ]

We prove that if
∑

j pj log
Npj

e(j+1)τ ≥ k − σ3, then there exist α0 ∈ [0, σ) for which Pα0 ∈
Hk. As we’ll show promptly, for every α, ∆SD(P0, Pα) ≤ α. Therefore, if such α0 exists, then
∆RL(P0,Hk) ≤ ∆RL(P0, Pα0) < σ, which concludes the proof.

In order to establish this, we need to prove: (i) the existence of such α0; and (ii) for every α,
∆SD(P0, Pα) ≤ α.

We begin by showing the latter:

∆SD(Pα, P0) =
1

2

∑
x∈[N ]

|Pα(x)− P0(x)| (97)

=
1

2

∑
x∈[N ]

∣∣∣ α
N

+ (1− α)P0(x)− P0(x)
∣∣∣ (98)

= α · 1

2

∑
x∈[N ]

∣∣∣∣ 1

N
− P0(x)

∣∣∣∣ (99)

= α∆SD(U[N ], P0) (100)

≤ α (101)

Next, assume k ≤ logN − σ2, and that ∆SD(P0,Hk) > σ for all P0 consistent with {pj}j over

domain [N ]. Assume further that
∑

j pj log
Npj

e(j+1)τ ≥ k − σ3

4In the following calculation we use the convention that 0 log 1
0

= 0
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Next, define the function f(α) = H(Pα). Observe that f(0) = H(P0) ≥
∑

j pj log
Npj

e(j+1)τ ≥
k − σ3. We focus on the case that H(P0) ∈ [k − σ2, k) (since otherwise, P0 ∈ Hk and P0 satisfies
the desired properties).

Since the entropy function is concave: f(α) = H(Pα) ≥ (1− α)H(P0) + α logN . Note that:

f(σ) ≥ (1− σ)H(P0) + σ logN

≥ (1− σ)(k − σ3) + σ logN

= k + σ (logN − k) + σ4 − σ3

≥ k + σ · σ2 + σ4 − σ3

> k

We thus conclude that f(σ) > k, while f(0) ≤ k. Therefore, by the continuity of f , and the
intermediate value theorem, there exists α0 ∈ [0, σ) for which f(α0) = k. This implies that Pα0 ∈
Hk, and as argued above,

∆RL({pj}j ,Hk) ≤ ∆RL(P0, Pα0) ≤ α0 < σ

.

Runtime. Computing h takes poly(logN, τ−1) time.

Before proving Claim 6.5, we present the following useful claim:

Claim 6.7. Let A be a distribution consistent with a (τ,N)-histogram {aj}j such that aL = 0,
then:

|Supp(A)| ∈

e−τ∑
j

Naj
ejτ

,
Naj
ejτ


Proof. Since the mass of elements in the L’th bucket can be arbitrarily small, we cannot bound its
size from above just knowing aL. However, upon assuming aL = 0, we can estimate the size of the
rest of the buckets (that have both an upper as well as a lower bound to the individual mass of

their elements). This gives a bound on the size of the support. For every j, define k+
j =

⌊
Naj
ejτ

⌋
,

k−j =
⌈

aj
e(j+1)τ

⌉
(again, this is 0 for j = L). By definition, we get that for every distribution A

consistent with {aj}j , and every j, k−j ≤
∣∣∣BD

j

∣∣∣ ≤ k+
j .

From this we conclude that
∑

j k
−
j = e−τ

∑
j
Naj
ejτ

and
∑

j k
+
j =

∑
j
Naj
ejτ

reflect, respectively,
the smallest and largest achievable support sizes for a distribution consistent with {aj}j .

Proof of Claim 6.5. We show that the algorithm in Figure 9 is a ∆η
N -efficient decision procedure

for the property Sk. First, we show that the histogram allows us to get an approximation of the
number of elements in the support of the distribution.

Since we assumed τ <
√
η, we know that eLτ/N ≤ τ2

N logN ≤
η

N logN < η/N . And so, in
particular, we are guaranteed that pL = 0. Thus, by Claim 6.7, we get that the distribution has

support at least T1 =
∑

j

⌈
Npj

e(j+1)τ

⌉
, and at most T2 = min

{∑
j k

+
j , N

}
(note that we disregard any

distribution with support larger than N).
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Efficient approximate decision procedure for having support of size t:

Input: parameters η = Ω(1), N > 210, σ ∈ [0, 1], τ <
√
η, and t ∈ {1, 2, . . . , N}, as well as a [N ]-realizable

(N, τ)-histogram {pj}j .

Output: denote St = {P ∈ ∆η
N : |Supp(P )| = t}. The algorithm accepts if there exists a distribution

P ∈ ∆η
N consistent with {pj}j such that |Supp(P )| = t, and rejects if every P ∈ ∆η

N consistent with {pj}j
satisfies ∆SD (P,St) > σ.

The Algorithm:

1. For every j compute k−j =
⌈

Npj
e(j+1)τ

⌉
, and k+j =

⌊
Npj
ejτ

⌋
, and set T1 =

∑
j k
−
j , and T2 =

min
{∑

j k
+
j , N

}
.

2. Output:

• If t ∈ {T1, T1 + 1, . . . , T2}, the algorithm accepts.

• Otherwise, it rejects.

Figure 9: Efficient approximate decision procedure for having support of size T

Completeness. Assume there exists a distribution P ∈ ∆η
N consistent with {pj}j such that

|Supp(P )| = t. Then, as T1 and T2 bound any possible support size for distributions consistent
with {pj}j , we get:

t = |Supp(P )| =
∑
j

∣∣BP
j

∣∣ ∈ {T1, T1 + 1, . . . , T2}

And the algorithm accepts.

Soundness. Assume that every P ∈ ∆η
N consistent with {pj}j satisfies ∆SD (P,St) > σ, and in

particular, there doesn’t exist a distribution consistent with {pj}j with support of size t. Let T1

and T2 be set with respect to {pj}j as defined above. Assume that for every t′ ∈ {T1, T1 +1, . . . , T2}
there exists a distribution Pt′ consistent with {pj}j such that |Supp(Pt′)| = t′. If so, it must be
that t /∈ {T1, T1 + 1, . . . , T2}, and the algorithm rejects.

We thus turn to prove that for every t′ ∈ {T1, T1 + 1, . . . , T2} there exists a distribution Pt′

consistent with {pj}j with support of size t′: note that there exists a distribution P0 which is
consistent with {pj}j and has support of size exactly T1 - for example, the distribution for which each
bucket j contains k−j elements of mass pj/k

−
j ∈

[
ejτ/N, e(j+1)τ/N

)
. Note that if N ≥ T2 ≥ T1 + 1,

this means that there exists a bucket j0 for which k+
j ≥ k−j + 1. Thus, we can define P1 to be the

distribution for which all buckets j save for the j0’th bucket have k−j elements, whereas the j0’th

bucket has k−j+1 elements. By induction, this argument can be extended for every t′ ∈ {T1, . . . , T2}.

Runtime. Calculating k−j , k
+
j for every j, as well as computing T1 and T2 takes poly(logN, τ−1)

time.

Remark 6.8. Note that the previous decision procedure is in fact not approximate at all, as every
histogram defines which support sizes are possible and which aren’t.
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6.2 Approximating the Entropy, Support Size, and Distance from Uniform

In this section we show how Theorem 4 can be leveraged to verifiably approximate the entropy,
support size, and distance from uniform of the samplable distribution (which is implicit in the
previous section). Concretely, we show that if a (N, τ)-histogram {aj}j satisfies ∆RL(D, {aj}j) ≤ ε,
for some distribution D, then the information in the histogram {aj}j allows us to estimate the
above measures with regard to D. Note that at the focus of this section are approximate search
problems, whereas the focus in much of this work is on approximate decision problems. Concretely,
we formally restate Claim 2.4 and Claim 2.5 introduced in Section 2.3.

Claim 6.9. [Claim 2.4, formal statement] Let D be a distribution over domain [N ], for N > 210.
Let {aj}j∈I be a [N ]-realizable (N, τ)-histogram such that ∆RL (D, {aj}j) ≤ ε for ε > 1/N . Then:∣∣∣∣∣∣H(D)−

∑
j∈I\{L}

aj log

(
N

ejτ

)∣∣∣∣∣∣ ≤ 10ε logN + 2τ

Claim 6.10. [Claim 2.5, formal statement] Fix η ∈ (0, 1), N > 210, and let D be a distribution
over domain [N ], such that for all x ∈ [N ], D(x) ≥ η/N . Let {aj}j∈I be a (N, τ)-histogram such
that ∆RL (D, {aj}j) ≤ ε, and τ <

√
η. Then:∣∣∣∣∣∣Supp(D)−N
∑
j

aj
ejτ

∣∣∣∣∣∣ ≤ (1− e−τ)N
∑
j

aj
ejτ

+
εN

η

Claim 6.11. Let D be a distribution over domain [N ], for N > 210. Let {aj}j∈I be a (N, τ)-
histogram such that ∆RL (D, {aj}j) ≤ ε. Then:∣∣∣∣∣∣∆SD(D,U[N ])−

∑
j≥0

aj

(
1− 1

ejτ

)∣∣∣∣∣∣ ≤ ε+ (1− e−τ )

Proof of Claim 6.9. Assume ε > 1/N . Let A be a distribution consistent with {aj}j that satisfies
∆SD(D,A) = ∆RL(D, {aj}j) ≤ ε. We show that: (i) the sum

∑
j∈I\{L} aj log

(
N
ejτ

)
approximates

well (up to O(τ)) the entropy of A; (ii) by picking A to be the closest distribution to D with
histogram {aj}j , we can bound the difference |H(D)−H(A)| by O(ε logN).

We start by proving article (ii): we use the non-negativity of the KL-divergence to bound the
difference in entropies. In order to do so, we introduce an auxiliary distribution, Dε, defined as
follows: Dε = εU[N ] + (1 − ε)D. Note that for every x ∈ [N ], Dε(x) ≥ ε/N , which implies that
KL(A‖Dε) is finite, and by the same arguments in the proof of Claim 6.4, ∆SD(D,Dε) ≤ ε. Since
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the divergence is always non-negative:

0 ≤ KL (A‖Dε) (102)

=
∑
x∈[N ]

A(x) log
A(x)

Dε(x)
(103)

=
∑
x∈[N ]

A(x) log
1

Dε(x)
+
∑
x∈[N ]

A(x) logA(x) (104)

=
∑
x∈[N ]

Dε(x) log
1

Dε(x)
+
∑
x∈[N ]

(A(x)−Dε(x)) log
1

Dε(x)
−
∑
x∈[N ]

A(x) log
1

A(x)
(105)

≤ H(Dε) +
∑
x∈[N ]

|A(x)−Dε(x)| log
1

Dε(x)
−H(A) (106)

Focusing on the middle expression, note that for every x ∈ [N ], log 1
Dε(x) ≤ log 1

ε/N = logN +log 1
ε .

Moreover,
∑

x∈[N ] |A(x)−Dε(x)| = 2∆SD(A,Dε), and by the triangle inequality: ∆SD(A,Dε) ≤
∆SD(A,D) + ∆SD(D,Dε) ≤ ε+ ε = 2ε. We thus conclude that∑

x∈[N ]

|A(x)−Dε(x)| log
1

Dε(x)
≤ 4ε

(
log

1

ε
+ logN

)

Plugging this back to Inequality (106), as well as adding H(A) to both sides of the inequality, we
get:

H(A) ≤ H(Dε) + 4ε

(
log

1

ε
+ logN

)
(107)

Moreover, by the Chain Rule of Entropy (see Claim 3.8) H(Dε) ≤ hb(ε) + ε logN + (1− ε)H(D),
and since ε > 1/N , hb(ε) = ε log 1

ε + (1− ε) log 1
1−ε ≤ 2ε log 1

ε ≤ 2ε logN (where the first inequality
is true for ε ≤ 1/2). We conclude that:

H(Dε) ≤ 2ε logN +H(D)

Plugging this back to Inequality (107):

H(A)−H(D) ≤ 2ε logN + 4ε

(
log

1

ε
+ logN

)
≤ 6ε logN + 4ε log

1

ε
≤ 10ε logN

Following the same argument replacing the roles of D and A, we get:

|H(D)−H(A)| ≤ 10ε logN (108)

Next, we show that
∑

j∈I\{L} aj log
(
N
ejτ

)
approximates H(A) up to 2τ . By Claim 3.7, for every

bucket j 6= L of A, it holds that:∑
x∈BAj

A(x) log
1

A(x)
∈
[
aj log

N

e(j+1)τ
, aj log

N

ejτ

]
=

[
aj

(
log

N

ejτ
− τ
)
, aj log

N

ejτ

]
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And for j = L: ∑
x∈BAL

A(x) log
1

A(x)
≤ aj logN + aj log

1

aj

We thus conclude that:∣∣∣∣∣∣H(A)−
∑
j 6=L

aj
N

ejτ

∣∣∣∣∣∣ ≤
∑
j 6=L

∣∣∣∣∣∣∣
∑
x∈BAj

(
A(x) log

1

x
− aj

N

ejτ

)∣∣∣∣∣∣∣+
∑
x∈BAL

A(x) log
1

A(x)
≤
∑
j 6=L

ajτ + aL logN ≤ 2τ

(109)

Where the last inequality is due to the fact that aj ≤ N · e
Lτ

N = N · τ2

N logN ≤
τ

logN .
Putting these Inequalities (108) and (109) together, we get:∣∣∣∣∣∣D(A)−

∑
j 6=L

aj
N

ejτ

∣∣∣∣∣∣ ≤ 10ε logN + 2τ

Proof of Claim 6.10. Similar to the proof of the previous claim, we show that
∑

j
Naj
ejτ

approximates,

up to a multiplicative factor of e−τ , the support size of every distribution in ∆η
N = {P ∈ ∆N : ∀x ∈

[N ], P (x) ≥ η/N} consistent with {aj}j ; and that the difference between the support size of D to
the support size of any distribution consistent with {aj}j in ∆η

N can be bounded by Nε/η.
Like in the proof of Claim 6.5, since τ <

√
η, we know that aL = 0, and by Claim 6.7, we know

that
∑

j
Naj
ejτ

indeed approximates, up to multiplicative factor of e−τ the support of distributions
consistent with {aj}j .

We are thus left to bound the difference between |Supp(D)| and the support size of distri-
butions in ∆η

N consistent with {aj}j . Let A be a distribution in ∆η
N consistent with {aj}j such

that ∆SD(D,A) = ∆RL(D,A) ≤ ε. By Claim 3.28, it holds that either Supp(D) ⊆ Supp(A) or
Supp(A) ⊆ Supp(D), and since the minimum probability of elements in both D and A is η/N :

ε ≥ ∆SD(D,A) ≥ |(Supp(A) \ Supp(D)) ∪ (Supp(D) \ Supp(A))| · η
N

We conclude that ||Supp(D)| − |Supp(A)|| ≤ ε/(η/N) = Nε/η , and so,∣∣∣∣∣∣Supp(D)−N
∑
j

aj
ejτ

∣∣∣∣∣∣ ≤ (1− e−τ)N
∑
j

aj
ejτ

+
εN

η

Proof of Claim 6.11. Following the same line of reasoning as before, we first estimate the distance
of distributions consistent with {aj}j from U[N ], and conclude from that (through the triangle
inequality) the distance of D from U[N ]. Let A be some distribution consistent with {aj}j . Define
X = {x ∈ Supp(A) : A(x) ≥ 1/N} then, since by definition |X| ≤ N , it holds that:

∆SD(A,U[N ]) = A(X)− U[N ](X) = A(X)− |X|
N
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Note that X =
⋃
j≥0B

A
j . Therefore, A(X) =

∑
j≥0 aj . And so, to estimate the distance of A from

U[N ], we only need to estimate |X|.
For every bucket j ≥ 0, it holds

∣∣∣BA
j

∣∣∣ ∈ [ Naj
e(j+1)τ ,

Naj
ejτ

]
, therefore |X| ∈

[∑
j≥0

Naj
e(j+1)τ ,

∑
j≥0

Naj
ejτ

]
,

and:

∆SD(A,U[N ]) ≤
∑
j≥0

aj −
∑
j≥0

aj

e(j+1)τ
=
∑
j≥0

aj

(
1− 1

e(j+1)τ

)

∆SD(A,U[N ]) ≥
∑
j≥0

aj −
∑
j≥0

aj
ejτ
≥
∑
j≥0

aj

(
1− 1

ejτ

)
Since this is true for every A consistent with {aj}j , it holds for the distribution A0 closest to D,
and by the triangle inequality:

∆SD(D,U[N ]) ≤ ∆SD(D,A0) + ∆SD(A0, U[N ]) ≤ ε+
∑
j≥0

aj

(
1− 1

e(j+1)τ

)

= ε+
∑
j≥0

aj

(
e−τ + (1− e−τ )− e−τ

ejτ

)

≤ ε+ e−τ
∑
j≥0

aj

(
1− 1

ejτ

)
+
∑
j≥0

aj
(
1− e−τ

)
≤ ε+ (1− eτ ) +

∑
j≥0

aj

(
1− 1

ejτ

)

As well as:

∆SD(D,U[N ]) ≥ ∆SD(A0, U[N ])−∆SD(A0, D) ≥
∑
j≥0

aj

(
1− 1

ejτ

)
− ε

From which we conclude:∣∣∣∣∣∣∆SD(D,U[N ])−
∑
j≥0

aj

(
1− 1

ejτ

)∣∣∣∣∣∣ ≤ ε+ (1− e−τ )
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A Collisions Concentration

Assume D is a distribution over domain [N ] that satisfies that for every x ∈ [N ], D(x) ≤ 1−e−τ ′
s

with parameters s and τ ′ defined as in Lemma 5.1, and assuming τ ′ < 0.1. Let S be an i.i.d.
sample of size s of distribution D. Denote by {p`}`∈I the real (N, τ ′)-histogram of D, and {p̂`}`∈I
the empirical (N, τ ′)-histogram of D according to sample S. Moreover, let {p̃j}j∈I the (N, τ ′) be
the histogram achieved through miss-labelling S according to (N, τ ′)-buckets, as in the protocol
in Figure 5. Let {x`,j}`,j∈I be the variables associated with the miss-labelling of the sample, as
defined in Definition 5.13.
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Assume a fresh i.i.d. sample of D of size s was sampled. Denote this sample by T . And for
every bucket j, define C̃j to be the same as in the protocol in Figure 5 - i.e. the number of pairs
(k,m) ∈ [s]× [s] such that Sk = Tm, and Sk was labelled as belonging to bucket j.

Claim A.1. For every nice sample S, and any mislabelling of S characterised by variables {x`,j}`,j∈I :

• For every j ∈ I \ {L}:

E[C̃j ] ∈

 ∑
`∈I\{L}

x`,j
s2

N
p̂`e

`τ ′ , eτ
′ ∑
`∈I\{L}

x`,j
s2

N
p̂`e

`τ ′ + p̂LxL,je
Lτ ′


• With probability of at least 0.99 over the choice of T , for all j ∈ I \ {L} such that p̃j >
τ2/ logN ∣∣∣C̃j − ET [C̃j ]

∣∣∣ ≤ (eτ − 1)ET [C̃j ]

Proof. Fix j ∈ I \ {L}. Define Ir,k to be the indicator that Tr = Sk, and tag(Sk) = j. Denote

F̃j = {i ∈ [s] : tag(Si) = j}. By definition, C̃j =
∑

r∈[s]

∑
k∈F̃j Ir,k (note that Ir,k = 0 for all

k /∈ F̃j). Therefore, by the linearity of expectation:

E[C̃j ] =
∑
r∈[s]

∑
k∈F̃j

E[Ir,k]

The value of E[Ir,k] can vary significantly between indices in F̃j , depending on Sk, the probability

of the element Sk affects the probability that the sample Tr collided with it. Thus, we divide F̃j
into disjoint subsets according to the bucket origin of each sample in S. Define F̃`→j ⊆ F̃j to be
the set of indices associated with true bucket ` that were tagged as belonging to alleged bucket
j. By this definition, F̃j = ∪`∈IF̃`→j , and also |F̃`→j | = sp̂`x`,j . Plugging this back to the above
expression:

E[C̃j ] =
∑
`∈I

∑
r∈[s]

∑
k∈F̃`→j

E[Ir,k] =
∑
r∈[s]

∑
k∈F̃L→j

E[Ir,k] +
∑

`∈I\{L}

∑
r∈[s]

∑
k∈F̃`→j

E[Ir,k] (110)

This decomposition of the sum allows us to unravel the expression E[Ir,k], since for all ` ∈ I \ {L},
every k ∈ F̃`→j , satisfies D(Sk) ∈

[
e`τ
′

N , eτ e
`τ ′

N

)
, and so E[Ir,k] ∈

[
e`τ
′

N , eτ
′ e`τ

′

N

)
. Similarly, for

k ∈ F̃L→j , D(Sk) ∈
[
0, e

mτ ′

N

)
=
[
0, τ ′2

N logN

)
. We conclude that:

∑
`∈I\{L}

∑
r∈[s]

∑
k∈F̃`→j

E[Ir,k] ≤
∑

`∈I\{L}

s · (sx`,j p̂`) · eτ
′ e`τ

′

N
= eτ

′ ∑
`∈I\{L}

x`,j ·
s2

N
p̂`e

`τ ′ (111)

And: ∑
`∈I\{L}

∑
r∈[s]

∑
k∈F̃`→j

E[Ir,k] ≥
∑

`∈I\{L}

s · (sx`,j p̂`) ·
e`τ
′

N
=

∑
`∈I\{L}

x`,j ·
s2

N
p̂`e

`τ ′ (112)
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As well as: ∑
r∈[s]

∑
k∈F̃L→j

E[Ir,k] ≤ s · (sxL,j p̂L) · e
Lτ ′

N
=
s2

N
p̂LxL,je

Lτ ′ (113)

Combining Inequality (113) and Inequality (112), we conclude:

E[C̃j ] ≤ eτ
∑

`∈I\{L}

(
s2

N
p̂`x`,je

`τ ′
)

+
s2

N
p̂LxL,je

Lτ ′

Similarly, we also get:

E[C̃j ] ≥
∑

`∈I\{L}

s2

N
p̂`x`,je

`τ

And so concludes the first part of the proof.
Moving on to proving measure concentration. In order to do so, we bound Var[C̃j ] from above,

in the aim of using Chebyshev’s inequality to bound the probability that C̃j deviates from its
expectation. First, recall that:

Var
[
C̃j

]
=

∑
(r1,k1):
r1∈[s]

k1∈F̃j

∑
(r2,k2):
r2∈[s]

k2∈F̃j

Cov [Ir1,k1 , II2,k2 ]

In order to bound this expression, observe that for every r1, r2 ∈ [s], such that r1 6= r2, since Tr1
and Tr2 were chosen i.i.d., the variables Ir1,k1 and Ir2,k2 are independent, and so Cov [Ir1,k1 , Ir2,k2 ] =
0. Also, if r1 = r2, but Sk1 6= Sk2 , then, as it is impossible that both the variables Ir1,k1 , Ir2,k2

are positive at the same time, it follows that in this case, Cov [Ir1,k1 , Ir2,k2 ] < 0. This leaves us
only with the case r1 = r2 and Sk1 = Sk2 . In this case, the variables satisfy Ir1,k1 = Ir2,k2 , and by
the definition of the covariance, this yields Cov [Ir1,k1 , Ir2,k2 ] = Var[Ir1,k1 ]. And as for every r1, k1,
Var[Ir1,k1 ] ≤ ET [Ir1,k1 ], we conclude:

Var[C̃j ] ≤
∑
r∈[s]

∑
k1∈F̃j

∑
k2:

Sk2
=Sk1

ET [Ir,k1 ] (114)

Assuming D has maximal probability τ ′/S, and that S is nice, it follows that every element sampled
in S appears at most logN times, and so, we are guaranteed that for every k1, the number of
summands in the third sum over k2 is at most logN . Therefore:

Var[C̃j ] ≤
∑
r∈[s]

∑
k1∈F̃`

∑
k2:

Sk2
=Sk1

ET [Ir,k1 ] ≤ logN
∑
r∈[s]

∑
k1∈F̃`

ET [Ir,k1 ] = logNET [C̃`] (115)

For every j ∈ I \ {L}, Denote r̃j = p̃j − p̂LxL,j . Using Chebyshev’s inequality, as well as the lower
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bound for E
[
C̃j

]
shown above, for every j ∈ I \ {L}:

Pr
T

(∣∣∣C̃j − ET [C̃j ]
∣∣∣ ≥ (eτ

′ − 1)ET [C̃j ]
)
≤ logN

(eτ ′ − 1)2ET [C̃j ]

≤ logN

τ ′2 s
2

N

∑
`∈I\{L} p̂`x`,je

`τ ′

=
N logN

τ ′2s2
· r̃j∑

`∈I\{L}
p̂`x`,j
r̃j

e`τ ′

≤ N logN

τ ′2s2
· r̃j
eLτ ′

=
N logN

τ ′2s2
· logN

τ ′2
· r̃j

=
N log2N

τ ′4s2
r̃j

Where the third inequality is justified by the fact that by definition
∑

`∈I\{L}
p̂`x`,j
r̃j

= 1, and

e`τ
′ ≥ eLτ

′
for all ` ∈ I \ {L}. Summing over all j ∈ I \ {L}, we get by union bound that the

probability that there exists some j ∈ I \{L} such that
∣∣∣C̃` − ET [C̃`]

∣∣∣ > (eτ
′ − 1)ET [C̃`] is at most:

∑
j∈I\{L}

N log2N

τ ′4s2
r̃j =

N log2N

τ ′4s2

∑
j∈I\{L}

r̃j ≤
N log2N

τ ′4s2
< 0.01

Where the last inequality is justified by the choice of s.

Corollary A.2. If the prover in the protocol in Figure 5 is honest, then, for every j ∈ I \ {L}:

E
[
C̃j

]
∈
[
s2

N
p̃je

jτ ′ , eτ
′ s2

N
p̃je

jτ ′
)

Proof. Immediate from Claim A.1 by plugging the honest prover response, which is characterized
by variables {x`,j}`,j∈I that satisfy for all ` ∈ I, x`,j = 1 for j = ` and x`,j = 0 otherwise.

Claim A.3. For every j ∈
{
i ∈ I : e

iτ ′

N > τ ′

N logN

}
:

p̂LxL,je
L,j ≤ (eτ

′ − 1)p̃je
jτ ′

Proof. Observe that by definition p̂LxL,j ≤ p̃j . Also, since for every j ∈
{
i ∈ I : e

iτ ′

N > τ ′

N logN

}
,

by definition (eτ
′ − 1)ejτ

′
> τ ′ejτ

′
> τ ′ τ ′

logN = τ ′2

logN ≥ e
Lτ ′
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B Sample Complexity Lower Bound for Verification

We extend a sample complexity lower bound of Chiesa and Gur [CG18], who showed a lower bound
for non-interactive verification for the uniformity property. We observe that their logic also implies
a lower bound for interactive protocols:

Theorem B.1. Any proof system for approximate verification of uniformity requires that the veri-

fier take Ω
(√

N/ε2
)

samples. This lower bound holds regardless of the communication complexity

or the verifier’s runtime.

The proof follows similar logic to the statement shown in [CG18, Observation 3.10].

Proof sketch for Theorem B.1. We show a lower bound for the easier problem of non-tolerant veri-
fication (the YES case contains only the uniform distribution, the NO case is all distributions that
are ε far from uniform), which implies a bound for the general case.

Assume for contradiction that there exists a proof system for standard uniformity testing, with
(black-box) sample complexity of o(

√
N/ε2) samples. We use such a proof system to construct a

(standalone) uniformity tester using only o(
√
N/ε2) samples. This stands in contradiction to the

lower bound on the sample complexity of non-interactive testers for uniformity, which is Ω(
√
N/ε2)

samples [Pan08].
The tester simulates the protocol: whenever the prover is required to respond, it does so by

answering as the honest prover would on the distribution U[N ] (ignoring D). At the end of the
simulation, the tester accepts or rejects according to the answer of the virtual verifier.

Observe that if D = U[N ], then, as the YES case contains only U[N ], by answering according
to distribution U[N ], the virtual honest prover responds in fact according to D, which it has all
the information about. Therefore, as the protocol is complete, the virtual verifier will accept, with
high probability.

If D is ε-far from uniform, then answering according to U[N ] while ignoring D, is just one
possible cheating prover behavior. Therefore, since the protocol is sound against any cheating
prover, the virtual verifier will reject, with high probability.

In total, the number of samples the tester draws from D is equal to the sample complexity of
the verifier in the protocol, which is o(

√
N/ε2). We emphasize that any samples used by the prover

are drawn from the distribution U[N ], without ever sampling D, and thus they do not add to the
tester’s sample complexity.

A Ω(
√
N · poly(1/σ)) lower bound applies also for approximate verification of a distribution’s

entropy up to additive error σ, we defer the details to the full version.
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