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Abstract

Random Δ-CNF formulas are one of the few candidates that are expected to be hard to refute in
any proof system. One of the frontiers in the direction of proving lower bounds on these formulas
is the 𝑘-DNF Resolution proof system (aka Res(𝑘)). Assume we sample 𝑚 clauses over 𝑛 variables.
There are two known lower bounds.

• Segerlind, Buss, Impagliazzo [SBI04] showed an exponential lower bound for any constant
𝑘, Δ = 𝒪 (𝑘2) in case 𝑚 = 𝒪 (𝑛7/6).

• Alekhnovich [Ale11] showed lower bound for 𝑘 = 𝒪 (√ log𝑛
log log𝑛 ), any Δ ≥ 3 in case 𝑚 =

𝒪 (𝑛).
Both of these papers used the same technique: the so-called small restriction switching lemma.

However, they used different properties of the dependency graph of the random formula. In this
paper we present a new technique with the same flavour though based on a different complexity
measure that we call closure covering. We use only the expansion of the dependency graph of the
formula. This technique allows us to unify and improve both of these bounds simultaneously. In
particular, as a corollary we show:

• an exponential lower bound for any constant 𝑘, Δ = 𝒪 (1) in case 𝑚 = poly(𝑛);
• an exponential lower bound for 𝑘 = 𝒪 (√log𝑛), Δ = 𝒪 (1) in case 𝑚 = 𝒪 (𝑛).

It is the first lower bound that works for clause density 𝑚
𝑛 > 𝑛1/6 (density can even be superpoly-

nomial for random log𝑛-CNF).

1 Introduction

Random Δ-CNF formulas are an important and popular object in various areas of the complexity
theory. These formulas are generated as a random subset of𝑚 clauses over 𝑛 variables. It is known that
for each Δ there is a density threshold 𝑐Δ such that if 𝑚

𝑛 > 𝑐Δ then whp formula is unsatisfiable and if
𝑚
𝑛 < 𝑐Δ then whp formula is satisfiable. A common belief is that solving the satisfiability problem for
random Δ-CNF formulas near the density threshold is hard. Some formal conjectures were formulated
by Feige [Fei02]: no polynomial time algorithm may prove whp the unsatisfiability of a random 𝒪 (1)-
CNF formula with arbitrary large constant clause density. Assuming Feige’s conjecture it is known
that some problems are hard to approximate: vertex covering, DNF PAC learning, etc.
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Random Δ-CNF formulas are actively studied from the proof complexity point of view. It is one
of the few candidate for hard examples for all proof system. It is also one the most promising candi-
dates. We knowmany lower bounds for random formulas even in powerful proof systems like Sum-of-
Squares. Such lower bounds are out of reach for other candidates like PRG formulas [Ale+04; Raz15]
or Clique formulas [Ats+18; Pan21]. We mention known results for random formulas in Section 1.1.

In this paper we focus on lower bounds for the Res(𝑘) proof system that was introduced by Krajíček
[Kra01]. This is a subsystem ofAC0-Frege (even a subsystem of depth-2 Frege) that is a current frontier
for proving lower bounds on the randomCNF formulas in subsystems of Frege proof system (any lower
bound for Frege systems is a long-standing open problem in proof complexity).

In addition to the motivation that we presented, lower bounds on random Δ-CNF formulas on the
subsystems ofAC0-Frege system are interesting from the technical points of view. Most results that we
have for AC0-Frege system are obtained by using variations of Switching Lemma (for example [UF96],
[Hås21]), but it seems that for random CNF formulas it is not applicable and any potential lower bound
will need a new general technique.

1.1 Prior Results

Proof system Polynomial upper bound Lower bound 2𝑛𝜀

Resolution 𝑚 > 𝑛Δ−1

logΔ−2 𝑛 [Bea+02] 𝑚 ≤ 𝑛(Δ+2)/4 [Bea+02]

Polynomial
Calculus

𝑚 = 𝒪 (𝑛) , Δ ≥ 3 [BI99]
𝑚 = poly(𝑛), Δ = 3 [AR03]

Sum-of-Squares 𝑚 = poly(𝑛), Δ = 𝒪 (1) [Gri01], [Sch08]
Cutting Planes 𝑚 = poly(𝑛), Δ = Ω(log𝑛) [HP17], [Fle+17]

TC0-Frege
Δ = 3, 𝑚 > 𝑛1.4 [FKO06],

[MT14] ×

Res(𝑘) 𝑚 = 𝒪 (𝑛) , Δ ≥ 3, 𝑘 = 2 [ABE02]
𝑚 = 𝒪 (𝑛) , Δ ≥ 3, 𝑘 = 𝒪 (√ log𝑛

log log𝑛) [Ale11]
𝑚 = 𝑛7/6, Δ = 𝒪 (𝑘2) , 𝑘 = 𝒪 (1) [SBI04]

In fact, all lower bounds that are mentioned in the table (except Res(𝑘) and the best result for
Resolution) are based only on the fact that dependency graph is a good enough expander (for different
proof systems lower bounds require different expansion parameter). Hence we can change parameters
as long as the random graph satisfies the required expansion.

1.2 Our Results

We suggest a technique for proving lower bounds on CNF formulas with the only requirement that
the dependency graph is a good enough expander. More formally, we show the following Theorem in
Section 5.

Theorem 1.1

Let 𝜑 be a Δ-CNF formula such that its dependency graph 𝐺 is an (𝑟, Δ, 0.95Δ)-boundary
expander. Then for any 𝛿 > 0 if:

𝑛𝛿 ( 𝑛
0.4𝑟)

20𝑘2

= 𝑜(𝑟/𝑘)

then any Res(𝑘) proof of 𝜑 has size at least 2𝑛𝛿 .
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In Section 6 we show the following corollaries:

• an exponential lower bound for any constant 𝑘, Δ = 𝒪 (1) in case 𝑚 = poly(𝑛) (improvement
of the result of Segerlind, Buss, Impagliazzo [SBI04]);

• an exponential lower bound for 𝑘 = 𝒪 (√log𝑛), Δ = 𝒪 (1) in case 𝑚 = 𝒪 (𝑛) (improvement
of the result of Alekhnovich [Ale11]).

We would like to emphasize that this result is the first that provides a lower bound on the Res(𝑘)
proofs for the constant Δ independent on 𝑘 and polynomially large clause density 𝑚

𝑛 . As the table
in Section 1.1 illustrates, there are non-trivial upper bounds in strong proof systems that depend on
density, so the authors find it crucial to explore how does the proof complexity of random formulas
behave with density increasing.

As a weakness of our results, we would mention the fact that the constant Δ should be big enough
for the dependency graph of the formula to be an expander with good parameters. Naive computations
say that Δ ≈ 100 is enough (see Section C). We did not try to optimize this constant, since we do not
see the way to achieve the best possible value 3 (like in [Ale11]).

The new measure “closure covering” that we use in our paper, along with the properties of our
“closure” , has an independent interest. We keep all useful properties from earlier definitions of closure
in expander graphs while equipping our definition with the new ones, such as uniqueness and that, in
some sense, it is preserved after taking a subgraph.

As mentioned above, earlier lower bounds on random CNFs in Res(𝑘) are based on the technique
of Small Restriction Switching Lemma [SBI04], [Raz15], which is a very general and powerful tool,
used mostly in a manner of a black box. Due to switching to the new measure, our technique does not
fit into the framework of Small Restriction Switching Lemma. It is also worth noting that all current
lower bounds in Res(𝑘) are obtained by reduction to Resolution in one way or another. We work in
somehow different manner. While we still argue about decision trees of DNFs, we do not extract the
Resolution proof from this argument, dealing with the dag of Res(𝑘) proof instead (though this can
be rephrased in terms of Resolution proofs). By working directly with Res(𝑘) proofs, we shed some
light on the internal mechanism of how they behave under random restrictions. We believe this to be
a step to future generalizations and to finding the method to argue about hardness in Res(𝑘) without
appealing to Resolution.

1.3 The Outline

In Section 3we give definitions for expander graphs and a notion of the individual closure, and show the
required properties of it. In Section 4 we consider random CNF formulas and random linear systems.
We give the criteria that some partial assignments are “independent” which is the key technical tool
for the proof of the main result. In Section 5 we focus on the proof of the main Theorem, and we
also prove a “Restriction Lemma” that is a translation of our notion of independency into the language
of probabilities. In Section 6 we show several applications of the main Theorem for random CNF
formulas.

2 Preliminaries

Let 𝑥 be a propositional variable, i.e., a variable that ranges over the set {0, 1}. A literal of 𝑥 is either
𝑥 (denoted sometimes as 𝑥1) or ¬𝑥 (denoted sometimes as 𝑥0). A clause 𝐶 ≔ 𝑥𝑐1

1 ∨ 𝑥𝑐2
2 ⋯ ∨ 𝑥𝑐𝑘

𝑘 is a
disjunction of literals where 𝑐1, 𝑐2, … , 𝑐𝑘 ∈ {0, 1}. A CNF formula 𝜑 ≔ 𝐶1 ∧⋯∧𝐶𝑚 is a conjunction
of clauses. A term is a conjunction of literals. A DNF formula 𝜑 ≔ 𝑡1 ∨ ⋯ ∨ 𝑡𝑚 is a disjunction of
terms.
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Let 𝑋 be a set of propositional variables. A partial assignment or a restriction is a mapping
𝜌 : 𝑋 → {0, 1, ∗}. We let supp(𝜌) ≔ 𝜌−1({0, 1}) denote the set of assigned variables. The restriction
of a function 𝑓 (or a formula 𝜑) by 𝜌, denoted 𝑓|𝜌 (𝜑|𝜌), is the Boolean function (propositional formula)
obtained from 𝑓 (from 𝜑, respectively) by setting the value of each 𝑥𝑖 ∈ supp(𝜌) to 𝜌(𝑥𝑖) and leaving
each 𝑥𝑖 ∉ supp(𝜌) unassigned.

We say that two partial assignments 𝜌, 𝜌′ are consistent iff for any 𝑥 ∈ supp(𝜌) ∩ supp(𝜌′) the
following holds 𝜌(𝑥) = 𝜌′(𝑥). In addition, if supp(𝜌′) ⊆ supp(𝜌) then we use a notation 𝜌′ ⊆ 𝜌.

𝑘-DNF Resolution. In this paper we focus on classical generalization of the Resolution proof system,
so-called 𝑘-DNF Resolution aka Res(𝑘) [Kra95].

A proof system Res(𝑘) operates with 𝑘-DNFs. A Res(𝑘)-proof 𝜋 of an unsatisfiable CNF formula 𝜑
is an ordered sequence of 𝑘-DNFs 𝜋 ≔ 𝐶1, … , 𝐶𝑠 such that 𝐶𝑠 = ∅ is an empty formula. Each 𝐶𝑖
either comes from the original formula 𝜑 or is inferred using one of the rules:

Weakening: 𝐹
𝐹∨ℓ ;

And-introduction: 𝐹∨ℓ1,…,𝐹∨ℓ𝑤

𝐹∨(
𝑤
⋀

𝑖=0
ℓ𝑖)

;

And-elimination:
𝐹∨(

𝑤
⋀

𝑖=0
ℓ𝑖)

𝐹∨ℓ𝑖
;

Cut:
𝐹∨(

𝑤
⋀

𝑖=0
ℓ𝑖),𝐺∨(

𝑤
⋁

𝑖=0
¬ℓ𝑖)

𝐹∨𝐺 .
The size of the proof 𝜋 is 𝑠. In fact, more naturally one can define the size of the proof as a sum of sizes
of 𝐶𝑖, but all our results holds also for our definition (that is stronger in terms of lower bounds).

3 Expanders

We use the following notation: N𝐺 (𝑆) is the set of neighbours of the set of vertices 𝑆 in the graph 𝐺,
𝜕𝐺(𝑆) is the set of unique neighbours of the set of vertices 𝑆 in the graph 𝐺. We omit the index 𝐺 if
the graph is evident from the context.

A bipartite graph 𝐺 ≔ (𝐿, 𝑅, 𝐸) is an (𝑟, Δ, 𝑐)-expander if all vertices 𝑢 ∈ 𝐿 have degree at
most Δ and for all sets 𝑆 ⊆ 𝐿, |𝑆| ≤ 𝑟, it holds that |N (𝑆) | ≥ 𝑐 ⋅ |𝑆|. Similarly, 𝐺 ≔ (𝐿, 𝑅, 𝐸) is
an (𝑟, Δ, 𝑐)-boundary expander if all vertices 𝑢 ∈ 𝐿 have degree at most Δ and for all sets 𝑆 ⊆ 𝐿,
|𝑆| ≤ 𝑟, it holds that |𝜕(𝑆)| ≥ 𝑐 ⋅ |𝑆|. In this context, a simple but useful observation is that

|N (𝑆) | ≤ |𝜕(𝑆)| + Δ|𝑆| − |𝜕(𝑆)|
2 = Δ|𝑆| + |𝜕(𝑆)|

2 ,
since all non-unique neighbours have at least two incident edges. This implies that if a graph 𝐺 is an
(𝑟, Δ, (1 − 𝜀)Δ)-expander then it is also an (𝑟, Δ, (1 − 2𝜀)Δ)-boundary expander.

The next Lemma is well known in the literature. In this form it was used in [GMT09].
Lemma 3.1

Let 𝐺 = (𝐿, 𝑅, 𝐸) be an (𝑟, Δ, 𝑐)-boundary expander. Let 𝑆 ⊆ 𝐿 be a set of vertices, |𝑆| ≤ 𝑟.
Then there exists an enumeration 𝑆 = {𝑠1, 𝑠2, … , 𝑠|𝑆|} and a partition ⨆

𝑖
𝑅𝑖 = N (𝑆) such that:

• 𝑅𝑖 = N (𝑠𝑖) ⧵ (
𝑖−1
⋃

𝑗=1
N (𝑠𝑗));

• |𝑅𝑖| ≥ 𝑐.
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Proof. Since |𝑆| ≤ 𝑟 it holds that |𝜕(𝑆)| ≥ 𝑐|𝑆| and there is a vertex 𝑠|𝑆| ∈ 𝑆 such that |𝜕(𝑠|𝑆|)| ≥ 𝑐.
Let 𝑅|𝑆| ≔ 𝜕(𝑠𝑖), and repeat the process for 𝑆 ⧵ {𝑠|𝑆|}.

Since papers [AR03; Ale+04] a “closure” operation is widely used in proof complexity. In this
paper we start with definition from [AR03] and show some additional properties of it. To emphasize
the difference, we call it individual closure.

Let 𝐺 ≔ (𝐿, 𝑅, 𝐸) denote a bipartite graph of left degree at most Δ. We say that a vertex 𝑣 ∈ 𝐿 is
𝜈-captured by a set 𝐽 ⊆ 𝑅 iff |N (𝑣)∩𝐽| ≥ Δ−𝜈. Let ICl𝜈𝐺 (𝐽) ⊆ 𝐿 be the smallest set of vertices that
are 𝜈-captured by N (ICl𝜈𝐺 (𝐽)) ∪ 𝐽 . We also can define the set ICl𝜈𝐺 (𝐽) inductively: ICl𝜈𝐺 (𝐽) may be
considered as a maximal sequence of distinct vertices {𝑣1, 𝑣2, 𝑣3, … , 𝑣𝑖, … } such that 𝑣𝑖 is 𝜈-captured
by 𝐽 ∪

𝑖−1
⋃

𝑗=1
N (𝑣𝑗). We denote by Ext𝜈𝐺 (𝐽) ≔ 𝐽 ∪ N (ICl𝜈𝐺 (𝐽)) the extension of 𝐽 .

Remark 3.2

ICl𝜈𝐺 (𝐽) is unique and well-defined.

Proof. Fix some set 𝐽 . Let 𝑉 ≔ {𝑣1, 𝑣2, 𝑣3, … , 𝑣𝑖, … } and 𝑈 ≔ {𝑢1, 𝑢2, 𝑢3, … , 𝑢𝑖, … } be two se-
quences that satisfy the required properties. For the sake of contradiction assume that 𝑈 ⧵𝑉 ≠ ∅. Pick
the first vertex 𝑢𝑗 ∈ 𝑈 that does not appear in 𝑉 . But |N (𝑢𝑗) ∩ (𝐽 ∪

𝑗−1
⋃

𝑘=1
N (𝑢𝑘))| ≥ Δ − 𝜈 and by the

choice of 𝑢𝑗: |N (𝑢𝑗) ∩ (𝐽 ∪ ⋃
𝑣∈𝑉

N (𝑣))| ≥ Δ − 𝜈. Hence we can extend 𝑉 by 𝑢𝑗, which contradicts

with the maximality.

Lemma 3.3

Suppose that 𝐺 is an (𝑟, Δ, 𝑐)-boundary expander and that 𝐽 ⊆ 𝑅 has size |𝐽 | ≤ (𝑐 − 𝜈)𝑟.
Then |ICl𝜈 (𝐽) | < |𝐽|

𝑐−𝜈 .

Proof. Let 𝑉 ≔ {𝑣1, 𝑣2, 𝑣3, … , 𝑣ℓ} be the sequence of vertices from 𝐿 that generates ICl𝜈 (𝐽). If ℓ > 𝑟
then 𝑆 ⊆ {𝑣1, 𝑣2, … , 𝑣𝑟} otherwise 𝑆 ≔ 𝑉 .

Note that 𝜕(𝑆) ⊆
|𝑆|
⋃

𝑖=1
(N (𝑣𝑖) ⧵ N(

𝑖−1
⋃

𝑗=1
𝑣𝑗)). Hence:

|𝜕(𝑆) ⧵ 𝐽| ≤

2
|𝑆|
∑
𝑖=1

|N (𝑣𝑖) ⧵ (N(
𝑖−1
⋃
𝑗=1

𝑣𝑗) ∪ 𝐽)| ≤

|𝑆|
∑
𝑖=1

𝜈 ≤

𝜈|𝑆|.

Since |𝑆| ≤ 𝑟 by definition, the expansion property of the graph guarantees that |𝜕(𝑆) ⧵ 𝐽| ≥
𝑐|𝑆| − |𝐽|. Altogether |𝑆| < |𝐽|

𝑐−𝜈 ≤ 𝑟 and the conclusion follows.

Suppose 𝐽 ⊆ 𝑅 is not too large. Then Lemma 3.3 shows that the individual closure of 𝐽 is not
much larger. Thus, after removing the closure and its neighbourhood from the graph, we are still left
with a decent expander. The following lemma makes this intuition precise.
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Lemma 3.4

Let 𝐺 ≔ (𝐿, 𝑅, 𝐸) be an (𝑟, Δ, 𝑐)-boundary expander and 𝐽1, 𝐽2, … , 𝐽ℓ ⊆ 𝑅. Then the graph

𝐺 ⧵ (
ℓ
⋃

𝑖=1
(Ext𝜈𝑖 (𝐽𝑖) ∪ ICl𝜈𝑖 (𝐽𝑖))) is an (𝑟, Δ, 𝑐 −

ℓ
∑
𝑖=1

(Δ − 𝜈𝑖))-boundary expander.

Proof. Consider a vertex 𝑣 ∈ 𝐿 and note that 𝑣 ∈ 𝐿 ⧵ (
ℓ
⋃

𝑖=1
ICl𝜈𝑖 (𝐽𝑖)). By definition of individual

closure for all 𝑖 ∈ [ℓ]: |N (𝑣) ∩ Ext𝜈𝑖 (𝐽𝑖) | < Δ − 𝜈𝑖. Hence:

|N (𝑣) ∩ (
ℓ

⋃
𝑖=1

Ext𝜈𝑖 (𝐽𝑖)) | <
ℓ

∑
𝑖=1

(Δ − 𝜈𝑖).

Hence for any 𝑆 ⊆ 𝐿 ⧵ (
ℓ
⋃

𝑖=1
ICl𝜈𝑖 (𝐽𝑖)) of size at most 𝑟:

|𝜕(𝑆) ⧵ (
ℓ

⋃
𝑖=1

Ext𝜈𝑖 (𝐽𝑖)) | ≥ 𝑐|𝑆| −
ℓ

∑
𝑖=1

(Δ − 𝜈𝑖)|𝑆|.

We also need a technical definition for a graph 𝐺 ≔ (𝐿, 𝑅, 𝐸) that is (𝑟, Δ, 𝑐)-boundary expander.
We say that a pair (𝑆, 𝑇 ) where 𝑆 ⊆ 𝐿 and 𝑇 ⊆ 𝑅 is 𝜁-reasonable iff (𝐿 ⧵ 𝑆, 𝑅 ⧵ (𝑇 ∪ N (𝑆)), 𝐸) is
an (𝑟, Δ, 𝜁)-boundary expander.

Remark 3.5
A partial case of Lemma 3.4 may be reformulated as follows.

Let 𝐺 ≔ (𝐿, 𝑅, 𝐸) be an (𝑟, Δ, 𝑐)-boundary expander and 𝐽 ⊆ 𝑅. Then a pair
(ICl𝜈 (𝐽) , Ext𝜈 (𝐽)) is (𝑐 − (Δ − 𝜈))-reasonable.

The following property of individual closure is crucial for our purpose. On the one hand, it is trivial,
on the other hand, it is unexpected, since for other definitions (for example [Rez+19; Sok20]) it works
in completely opposite way.

Lemma 3.6

Let 𝐺 ≔ (𝐿, 𝑅, 𝐸) be a bipartite graph and 𝐺′ ≔ (𝐿′, 𝑅′, 𝐸) be a subgraph of 𝐺. For any set
𝐽 ⊆ 𝑅 and any 𝜈 the following holds.

1. If 𝐺′ ≔ (𝐿′, 𝑅′, 𝐸) is a subgraph of 𝐺 then ICl𝜈𝐺′ (𝐽 ∩ 𝑅′) ⊆ ICl𝜈𝐺 (𝐽).

2. If 𝐽 ′ ⊆ 𝐽 then ICl𝜈𝐺 (𝐽 ′) ⊆ ICl𝜈𝐺 (𝐽).

Proof. Let {𝑣1, 𝑣2, 𝑣3, … , 𝑣𝑖, … } be the sequence that generates ICl𝜈𝐺′ (𝐽 ∩ 𝑅′). Note that |N𝐺′ (𝑣𝑖) ∩

(𝐽 ∪ N𝐺′ (
𝑖−1
⋃

𝑗=1
𝑣𝑗) | ≥ Δ − 𝜈 hence |N𝐺 (𝑣𝑖) ∩ (𝐽 ∪ N𝐺 (

𝑖−1
⋃

𝑗=1
𝑣𝑗) | ≥ Δ − 𝜈. So by induction on 𝑖

we conclude that all elements 𝑣𝑖 ∈ ICl𝜈𝐺 (𝐽).
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The second property follows from the similar argument. Let {𝑣1, 𝑣2, 𝑣3, … , 𝑣𝑖, … } be the sequence

that generates ICl𝜈𝐺 (𝐽 ′). Note that |N𝐺 (𝑣𝑖) ∩ (𝐽 ′ ∪ N𝐺 (
𝑖−1
⋃

𝑗=1
𝑣𝑗) | ≥ Δ − 𝜈 hence |N𝐺 (𝑣𝑖) ∩ (𝐽 ∪

N𝐺 (
𝑖−1
⋃

𝑗=1
𝑣𝑗) | ≥ Δ − 𝜈. So by induction on 𝑖 we conclude that all elements 𝑣𝑖 ∈ ICl𝜈𝐺 (𝐽).

Let 𝐺 ≔ (𝐿, 𝑅, 𝐸) be an (𝑟, Δ, 𝑐)-boundary expander and 𝐽, 𝐽 ′ ⊆ 𝑅. We say that 𝐽, 𝐽 ′ are
𝜈-closure-independent, if

(Ext𝜈 (𝐽) ∩ Ext𝜈 (𝐽 ′)) = ∅.
For a collection of sets 𝒯 ≔ {𝑇1, … , 𝑇ℓ} we say that a closure covering number (denoted as clv𝜈 (𝒯))
is the least number of vertices from 𝑅 to cover a collection of sets {Ext𝜈 (𝑇𝑖)}𝑖∈[ℓ].

4 Random CNF Formulas and Linear Systems

Let 𝜑 be a formula on 𝑋 variables. With this formula, we associate a bipartite dependency graph
𝐺𝜑 ≔ (𝐿, 𝑅, 𝐸) where 𝐿 corresponds to the set of clauses of 𝜑 (and we identify these two sets), 𝑅
correspond to the set of variables (and we also identify these two sets) and (𝑢, 𝑣) ∈ 𝐸 iff clause 𝑢
contains a variable 𝑣 or its negation.

Definition 4.1

Let 𝜑(𝑚, 𝑛, Δ) denote the distribution of random Δ-CNF on 𝑛 variables obtained by sampling
𝑚 clauses (out of the (𝑛

Δ)2Δ possible clauses) uniformly at random with replacement.

Lemma 4.2 ([CS88])

For any Δ ≥ 3 whp 𝜑 ∼ 𝜑(𝑚, 𝑛, Δ) is unsatisfiable if 𝑚 ≥ ln 2 ⋅ 2Δ𝑛.

In the section C we present some classical computations that show that randomly sampled graph
is a good enough expander (see also [Vad12]).

Let 𝜑 be a CNF formula on 𝑛 variables with 𝑚 clauses. We define a system of linear equation 𝐴𝜑.
Let 𝐶 ≔ 𝑥𝑎1

1 ∨ ⋯ ∨ 𝑥𝑎𝑤𝑤 be a clause from 𝜑. We add to 𝐴𝜑 an equation 𝑥1 + ⋯ + 𝑥𝑤 = 𝑎1 + ⋯ + 𝑎𝑤.
We do this for every clause 𝐶 ∈ 𝜑.

We identify the linear system 𝐴 and its standard encoding in CNF. Note that 𝜑 is a subformula of
𝐴𝜑, so a lower bound on 𝐴𝜑 implies a lower bound on 𝜑.

Let 𝐴 be a linear system over boolean variables from the set 𝑋. Let 𝐴𝐼 denote a subsystem of 𝐴
on equations obtained from the subset of equations 𝐼 . For a partial assignment 𝜌 by 𝐴|𝜌 we denote a
system over variables 𝑋 ⧵ supp(𝜌) that is obtained from 𝐴 by an application of 𝜌. We remove all the
equations that are satisfied by 𝜌.

By analogy with dependency graph of a formula𝜑we define a dependency graph of a linear system
𝐴.

Definition 4.3

Let 𝐺𝐴 ≔ (𝐿, 𝑅, 𝐸) be a bipartite graph where the left part 𝐿 corresponds to equations of 𝐴,
and the right part 𝑅 to its variables. We draw an edge (ℓ, 𝑟) iff 𝑟 ∈ ℓ where 𝑟 is a variable and
ℓ is an equation.

Note that 𝐺𝜑 and 𝐺𝐴𝜑 are identical.

7



4.1 Locally Consistent Assignments

Let 𝐴 be a linear system based on a graph 𝐺 ≔ (𝐿, 𝑅, 𝐸) that is an (𝑟, Δ, 𝑐)-expander. We say that a
partial assignment 𝜎 is locally consistent iff there is 𝜁 > 0 and a 𝜁-reasonable pair (𝑆, 𝑇 ) such that:

• supp(𝜎) ⊆ 𝑇 ∪ N (𝑆);
• the system 𝐴𝑆|𝜎 is satisfiable.

The next Lemma is an analog of similar statement from [Ale11]. But since we change the definition
of a locally consistent assignment we provide a proof in the Appendix D.

Lemma 4.4

Let 𝐴 be a linear system based on a graph 𝐺 ≔ (𝐿, 𝑅, 𝐸) that is an (𝑟, Δ, 𝑐)-expander. If 𝜎 is
a locally consistent assignment, then for any 𝐼 of size at most 𝑟 the system 𝐴𝐼 |𝜎 is satisfiable.

The following Lemma gives us a useful characterisation of locally consistent assignments.
Lemma 4.5

Let 𝐴 be a linear system based on a graph 𝐺 ≔ (𝐿, 𝑅, 𝐸) that is an (𝑟, Δ, 𝑐)-expander, 𝐽 ⊆ 𝑅
and 𝜎 be an assignment on 𝐽 .

1. If the assignment 𝜎 is locally consistent, then 𝐴ICl𝜈(𝐽)|𝜎 is satisfiable for all positive 𝜈 < 𝑐
such that |𝐽 | ≤ (𝑐 − 𝜈)𝑟.

2. If the system 𝐴ICl𝜈(𝐽)|𝜎 is satisfiable for some positive 𝜈 < 𝑐 such that |𝐽 | ≤ (𝑐 − 𝜈)𝑟 and
𝑐 > (Δ − 𝜈), then the assignment 𝜎 is locally consistent.

Proof. Note that if |𝐽 | ≤ (𝑐 − 𝜈)𝑟, then by Lemma 3.3 |ICl𝜈 (𝐽) | ≤ 𝑟 and the first statement follows
from Lemma 4.4.

For the second statement note that a pair (ICl𝜈 (𝐽) , Ext𝜈 (𝐽)) is 𝑐 −(Δ−𝜈)-reasonable by Lemma
3.4. The statement follows from definition of local consistency.

Lemma 4.6 (Alekhnovich [Ale11])

Let 𝑌 be the set of variables. Let 𝜌 be partial assignment uniformly distributed on an affine
subspace 𝐴 ⊆ {0, 1}𝑌 . Then for every term 𝑡 in 𝑌 variables either Pr[𝑡|𝜌 = 1] = 0 or Pr[𝑡|𝜌 =
1] ≥ 1

2|𝑡| .

4.2 Random Restrictions

Definition 4.7

Let 𝐴 be a linear system, 𝐺𝐴 ≔ (𝐿, 𝑅, 𝐸) be an (𝑟, Δ, 𝑐)-expander and 𝑇 ⊆ 𝑅. We define a
uniform distribution over all locally consistent partial assignments on 𝑇 as 𝔘𝐺

𝑇 .
We define a distribution 𝔘𝑝,𝜈 on partial assignments as follows:

• create a set 𝐽 ⊆ 𝑅 by adding each element of 𝑅 into 𝐽 uniformly at random with prob-
ability 𝑝;

• pick an assignment from 𝔘𝐺
Ext𝜈(𝐽).

We omit the graph if it is clear from the context.
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The following Lemma is a very powerful technical tool that helps to establish that some parts of
random restrictions in the considered distributions may be chosen independently.

Lemma 4.8

Let 𝐴 be a linear system based on a graph 𝐺 ≔ (𝐿, 𝑅, 𝐸) that is (𝑟, Δ, 𝑐)-boundary expander
where 𝑐 > 2(Δ − 𝜈) for some positive 𝜈 < 𝑐.

Let 𝐽 ⊆ 𝑅 be a set of size at most (𝑐 − 𝜈)𝑟. Consider two sets 𝑆, 𝑇 ⊆ 𝐽 that are 𝜈-closure
independent. If 𝜎, 𝜎′ are the locally consistent assignments on 𝑆 and 𝜅 is a locally consistent
assignment on 𝑇 , then:

Pr
𝜌∼𝔘𝐽

[𝜅 ⊆ 𝜌 ∣ 𝜎 ⊆ 𝜌] = Pr
𝜌∼𝔘𝐽

[𝜅 ⊆ 𝜌 ∣ 𝜎′ ⊆ 𝜌].

Proof. Fix an arbitrary locally consistent assignment 𝜂 on 𝑆. The condition 𝜂 ⊆ 𝜌 is a linear system,
since it can be rewritten in the following way: 𝜌(𝑥) = 𝜂(𝑥) for all 𝑥 ∈ supp(𝜂). Since 𝜂 is locally
consistent and by Lemma 3.3 |ICl𝜈 (𝐽) | ≤ 𝑟 then by Lemma 4.5 the system 𝐴ICl𝜈(𝐽)|𝜂 is satisfiable.
Hence the number of extensions of 𝜂 to the supp(𝜌) is independent on the values that we assign in
𝜂 and under the condition 𝜂 ⊆ 𝜌 the assignment 𝜌 is generated as an assignment that satisfies linear
system 𝐴ICl𝜈(𝐽)|𝜂 uniformly at random.

Again the condition 𝜅 ⊆ 𝜌 is a linear system hence:

Pr
𝜌∼𝔘𝐽

[𝜅 ⊆ 𝜌 ∣ 𝜂 ⊆ 𝜌] = sol(𝐴ICl𝜈(𝐽)|𝜂∪𝜅)
sol(𝐴ICl𝜈(𝐽)|𝜂) ,

where sol is the number of solutions. We have already shown the denominator is independent of the
exact values that we assign in 𝜂, hence to conclude the proof it is enough to show that numerator is
also independent of 𝜂 and 𝜅. To do it we show that the system 𝐴ICl𝜈(𝐽)|𝜂∪𝜅 is satisfiable and hence
number of solutions depends only on sizes of 𝜂 and 𝜅.

By Lemma 3.1 there is an enumeration 𝐻 ≔ {𝑣1, … , 𝑣|𝐻|} and sequence 𝑅𝑖 such that:

• 𝑅𝑖 = N (𝑣𝑖) ⧵ (
𝑖−1
⋃

𝑗=1
N (𝑣𝑗));

• |𝑅𝑖| ≥ 𝑐.

By Lemma 3.3 |ICl𝜈 (𝑆) | ≤ 𝑟, hence by Lemma 4.4 system 𝐴ICl𝜈(𝑆)|𝜂 is satisfiable, hence there
is an assignment 𝜂′ on Ext𝜈 (𝑆) that is an extension of 𝜂 and satisfies 𝐴ICl𝜈(𝑆)|𝜂. By Remark 3.5 (by
Lemma 3.4) (ICl𝜈 (𝑆) , Ext𝜈 (𝑆)) is (𝑐 − (Δ − 𝜈))-reasonable and hence 𝜂′ is locally consistent. By the
similar argument we can pick as assignment 𝜅′ that is locally consistent extension of 𝜅 on Ext𝜈 (𝑇 ).
By induction on 𝑖 ∈ [|ICl𝜈 (𝐽) |] we create an assignment 𝛽𝑖 such that:

• supp(𝛽𝑖) = 𝑅𝑖;

• 𝛽𝑖 is consistent with 𝜂′ ∪ 𝜅′;

• 𝐴𝑣𝑖 is satisfied by
𝑖
⋃

𝑗=1
𝛽𝑖.

Suppose we have already done this for all 𝑗 ∈ [𝑖 − 1]. Let us consider the following cases.
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1. 𝑣𝑖 ∈ ICl𝜈 (𝑆). In this case 𝜂′ assigns all variables in𝑅 ⊆ N (𝑣𝑖) and 𝛽𝑖 assigns all variables wrt to
𝜂′. By induction hypothesis 𝛽𝑗 is consistent with 𝜂, hence by construction of 𝑅𝑖 the assignment

𝑖
⋃

𝑗=1
𝛽𝑖 assigns all variables in N (𝑣𝑖) wrt to 𝜂′ and hence it satisfies 𝐴𝑣𝑖 since 𝜂′ satisfies it.

2. 𝑣𝑖 ∈ ICl𝜈 (𝑇 ). Similar to the previous case (we should consider 𝜅′ instead of 𝜂′).

3. 𝑣𝑖 ∉ (ICl𝜈 (𝑆) ∪ ICl𝜈 (𝑇 )). By definition of individual closure 𝜂′ can assign at most Δ − 𝜈
variables in N (𝑣𝑖), the same holds for 𝜅′. Hence 𝜂′ and 𝜅′ together assign at most 2(Δ − 𝜈)
variables, which is strictly less than 𝑐 ≤ |𝑅𝑖| and there is a variable in 𝑅𝑖 that is unassigned by
𝜅′ ∪ 𝜂′ and we can use it to satisfy the equation 𝐴𝑣𝑖 . Hence we can find an assignment 𝛽𝑖 that
respects 𝜅′ ∪ 𝜂′ and satisfies 𝐴𝑣𝑖 . Here we use the fact that 𝑆 and 𝑇 are closure independent
and hence 𝜅′ and 𝜂′ are disjoint.

The assignment ⋃
𝑖∈[|ICl𝜈(𝐽)|]

𝛽𝑖 satisfies 𝐴ICl𝜈(𝐽)|𝜅∪𝜂 by construction. Hence Pr
𝜌∼𝔘𝐽

[𝜅 ⊆ 𝜌 ∣ 𝜂 ⊆ 𝜌] is

independent of the choice of 𝜂 and the statement holds.

Corollary 4.9

Let 𝐴 be a linear system based on a graph 𝐺 ≔ (𝐿, 𝑅, 𝐸) that is (𝑟, Δ, 𝑐)-boundary expander
where 𝑐 > 2(Δ − 𝜈) for some positive 𝜈 < 𝑐.

Let 𝐽 ⊆ 𝑅 be a set of size at most (𝑐 − 𝜈)𝑟. Consider two sets 𝑆, 𝑇 ⊆ 𝐽 that are 𝜈-closure
independent. If 𝜎, 𝜎′ are the locally consistent assignments on 𝑆 and 𝜅 is a locally consistent
assignment on 𝑇 then:

Pr
𝜌∼𝔘𝐽

[𝜅 ⊆ 𝜌 ∣ 𝜎 ⊆ 𝜌] = Pr
𝜌∼𝔘𝐽

[𝜅 ⊆ 𝜌].

Proof. Follows from Lemma 4.8 and observation that Pr
𝜌∼𝔘𝐽

[𝜅 ⊆ 𝜌] can be obtained from Pr
𝜌∼𝔘𝐽

[𝜅 ⊆ 𝜌 ∣
𝜎′ ⊆ 𝜌] by averaging over all proper 𝜎′.

5 Lower Bound

In this section we give a proof of the main technical Theorem.

Theorem 5.1 (Reformulation of Theorem 1.1)

Let 𝐴 be the linear system such that 𝐺𝐴 is an (𝑟, Δ, (1 − 𝜀)Δ)-boundary expander where
𝜀 = 0.05. Then for any 𝛿 > 0 if:

𝑛𝛿 ( 𝑛
8𝜀𝑟)

𝑘2/𝜀
= 𝑜(𝑟/𝑘)

then any Res(𝑘) proof of 𝐴 has size at least 2𝑛𝛿 .

The plan of the proof of the Theorem 5.1 now is as follows.

• We start with the “Restriction Lemma” that transforms the notion of closure independent terms
into the language of probabilities. It is our crucial technical tool.

• For the sake of contradiction we assume that we have a short proof.
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• In the first step we transform a given short proof into a sequence of “DNF trees” (which is a mix
of decision trees and DNF formulas).

• In the second step we modify the trees. We want to transform them into a sequence of ordinary
decision tree (since we know that such a sequence may be transfomed into a small resolution
proof), but we reach much less ambitious goal and create a sequence of “perfect DNF trees” of
small height (here we hit our formula and sequence of trees by random restriction).

• In the last step we give a direct proof of the lower bound on the height of perfect DNF trees.

We deal with linear system based on the expander graphs and we associate variables with the
vertices of the right part of the graph. Hence we can define closure independent terms and a closure
covering number of a collection of terms in a natural way.

Let us start the realization of our plan.

5.1 Restriction vs. Closure Covering Number

We start with a technical lemma. It gives a way to translate a knowledge that some terms are closure-
independent to the language of probabilities.

Lemma 5.2

Let 𝐴 be a linear system such that 𝐺𝐴 ≔ (𝐿, 𝑅, 𝐸) is an (𝑟, Δ, 𝑐)-boundary expander where
𝑐 > 2(Δ − 𝜈) for some positive 𝜈 < 𝑐. Let 𝐽 ⊆ 𝑅 be a set of size at most (𝑐 − 𝜈)𝑟. If
𝑇 ≔ {𝑡1, … , 𝑡ℓ} is a sequence of locally consistent terms such that:

• 𝑡𝑖 ⊆ 𝐽 ;

• 𝑡𝑖 is a 𝜈-closure-independent of
𝑖−1
⋃

𝑗=1
𝑡𝑗;

then:

Pr
𝜌∼𝔘𝐽

[∀𝑖 ∈ [ℓ] : 𝑡𝑖 ∣𝜌≠ 1] ≤ (1 − 1
2𝑘 )

|𝑇 |
.

Proof. We argue by induction on a number of terms that:

Pr
𝜌∼𝔘𝐽

[(
𝑖

⋁
𝑗=1

𝑡𝑗) |𝜌 = 0] ≤ (1 − 1
2𝑘 )

𝑖
.

For 𝑖 ≔ ℎ we get the statement of the Lemma.
The base of induction follows from Lemma 4.6 since 𝑡1 is locally consistent (and by Lemma 4.4 the

probability that it is mapped to 1 by 𝜌 is not zero): Pr[𝑡1|𝜌 = 0] ≤ (1 − 1
2𝑘 ). Now suppose we proved

the statement for the collection {𝑡1, … , 𝑡𝑖−1}. Let us now do the induction step for term 𝑡𝑖.
We aim to satisfy 𝑡𝑖 with its closure simultaneously, so let us impose even stronger conditions than

simply satisfying 𝑡𝑖. We can pick some locally consistent assignment 𝜎 such that:

• supp(𝜎) = 𝑡𝑖,

• 𝑡𝑖|𝜎 = 1,
since 𝑡𝑖 is locally consistent. If 𝜌 is consistent with 𝜎 then 𝑡𝑖 is mapped to 1 by 𝜌 hence Pr

𝜌∼𝔘𝐽
[𝑡𝑖|𝜌 =

1] ≥ Pr
𝜌∼𝔘𝐽

[𝜎 ⊆ 𝜌].
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Let 𝑆𝑖 be an event that (
𝑖
⋁

𝑗=1
𝑡𝑗) |𝜌 = 0. And let 𝔘𝑖 be the distribution 𝔘𝐽 conditioned on 𝑆𝑖.

Pr
𝜌∼𝔘𝐽

[𝑆𝑖] ≤

Pr
𝜌∼𝔘𝐽

[𝑆𝑖−1] ⋅ Pr
𝜌∼𝔘𝐽

[𝑡𝑖|𝜌 = 0 ∣ 𝑆𝑖−1] ≤

(1 − 1
2𝑘 )

𝑖−1
Pr

𝜌∼𝔘𝐽
[𝑡𝑖|𝜌 = 0 ∣ 𝑆𝑖−1] ≤ by induction hyp.

(1 − 1
2𝑘 )

𝑖−1
(1 − Pr

𝜌∼𝔘𝐽
[𝑡𝑖|𝜌 = 1 ∣ 𝑆𝑖−1]) ≤ 𝜌 assigns all variables in 𝑡𝑖

(1 − 1
2𝑘 )

𝑖−1
(1 − Pr

𝜌∼𝔘𝐽
[𝜎 ⊆ 𝜌 ∣ 𝑆𝑖−1]) ≤

(1 − 1
2𝑘 )

𝑖−1
(1 − E

𝜅∼𝔘𝑖−1
[ Pr

𝜌∼𝔘𝐽
[𝜎 ⊆ 𝜌 ∣ 𝜅 ⊆ 𝜌]]) ≤

(1 − 1
2𝑘 )

𝑖−1
(1 − E

𝜅∼𝔘𝑖−1
[ Pr

𝜌∼𝔘𝐽
[𝜎 ⊆ 𝜌]]) ≤ by Corollary 4.9

(1 − 1
2𝑘 )

𝑖−1
(1 − Pr

𝜌∼𝔘𝐽
[𝜎 ⊆ 𝜌]) .

We can use Corollary 4.9 since ⋃
𝑖

𝑡𝑖 ⊆ 𝐽 and the support of all assignment does not exceed (𝑐 −
𝜈)𝑟, moreover 𝜅 is taken over locally consistent assignments since 𝔘𝐽 is a distribution over locally
consistent assignments.

It remains to show that Pr
𝜌∼𝔘𝐽

[𝜎 ⊆ 𝜌] ≥ 1
2𝑘 . Note that 𝜌 is consistent with 𝜎 iff 𝜌 maps 𝑡𝑖 to 1.

Hence by Lemma 4.6 Pr
𝜌∼𝔘𝐽

[𝜎 ⊆ 𝜌] = Pr
𝜌∼𝔘𝐽

[𝑡𝑖|𝜌 = 1] ≥ 1
2|𝑡𝑖| ≥ 1

2𝑘 .

5.2 Tree and DNF

In this section we describe a technical structure that is mix of DNF and decision tree. Let 𝐴 be a linear
system based on the (𝑟, Δ, 𝑐)-expander graph.

Definition 5.3
A DNF-tree is a rooted binary tree such that:

• every internal node is labelled with a variable;

• the edges leaving this node correspond to whether the variable is set to 0 or 1;

• the leaves are labelled either with constant from {0, 1} or with DNF-formulas.

As usual, we assume that on every given path no variable appears more than once. Then
every path from the root to a leaf may be viewed as a partial assignment, and this assignment,
in turn, will be sometimes identified with the corresponding leaf.

For a decision tree 𝑇 , we denote the set of paths (partial assignments) that lead from the
root to a leaf labelled by 𝑎 ∈ {0, 1} as Br𝑎

𝑇 . We denote the set of paths (partial assignments)
that lead from the root to a leaf labelled by non-trivial formula by Br∗

𝑇 . We say that a decision
tree 𝑇 strongly represents a DNF formula 𝐷 if for every 𝜋 ∈ Br0

𝑇 and for all 𝑡 ∈ 𝐷, 𝑡|𝜋 = 0
and for every 𝜋 ∈ Br1

𝑇 , there exists 𝑡 ∈ 𝐷 such that 𝑡|𝜋 = 1.
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Consider a DNF-tree 𝑇 and a partial assignment 𝜌. An application of 𝜌 to 𝑇 denoted by 𝑇 |𝜌 is
defined in a natural way by induction from leaves to root:

• if ℓ is a leaf marked by 0 or 1 then ℓ|𝜌 ≔ ℓ;

• if ℓ is a leaf marked by DNF 𝐷 then ℓ|𝜌 is also a single vertex marked by 𝐷|𝜌 (note that if some
term in 𝐷 is mapped to 1 by 𝜌 then 𝐷|𝜌 = 1 or if all terms are mapped to 0 then 𝐷|𝜌 = 0);

• if 𝑇 is a tree with the root marked by a variable 𝑥 and two children 𝑇0 and 𝑇1 then:

– if 𝑥 ∉ supp(𝜌) then 𝑇 |𝜌 is a tree with a root marked by 𝑥 and two children 𝑇0|𝜌 and 𝑇1|𝜌;
– if 𝑥 ∈ supp(𝜌) then 𝑇 |𝜌 ≔ 𝑇𝜌(𝑥)|𝜌.

5.3 Proof of Theorem 5.1

Fix some parameters:

• 𝜁𝑖 ≔ (1 − 𝑖𝜀)Δ are various expansion parameters of graphs that appear in the proof;

• 𝑝 ≔ 𝜀 𝑟
𝑛 .

Let 𝜋 ≔ {𝐷1, 𝐷2, … , 𝐷𝑠} be a Res(𝑘) proof of 𝐴 of size at most 2𝑛𝛿 .

5.3.1 Plan of the Proof

We say that a partial assignment 𝜎 is 𝜈-closedwrt𝐺 iff there is a set 𝐽𝜎 such that supp(𝜎) = Ext𝜈𝐺 (𝐽𝜎).
For a collection of 𝜈-closed partial assignments 𝜎1, 𝜎2, … , 𝜎ℓ we define a graph 𝐺𝜎1,𝜎2,…,𝜎ℓ ≔ (𝐿 ⧵

ℓ
⋃

𝑖=1
ICl𝜈𝐺 (𝐽𝜎𝑖

) , 𝑅 ⧵
ℓ
⋃

𝑖=1
Ext𝜈𝐺 (𝐽𝜎𝑖

) , 𝐸).
Let us say that a DNF-tree 𝑇 is closed (wrt a system 𝐴) iff for every branch 𝜎 the assignment 𝜎 is

𝜁2-closed wrt 𝐺.
We think of 𝜋 as about the sequence of closed DNF-trees {𝑇 1

1 , 𝑇 1
2 , … , 𝑇 1

𝑠 } where 𝑇 1
𝑖 is a tree that

consists of single node marked by the formula 𝐷𝑖.
We make 𝑘

𝜀 iterations of modification of these trees. On 𝑖-th iteration we create a collection
{𝑇 𝑖+1

1 , 𝑇 𝑖+1
2 , … , 𝑇 𝑖+1

𝑠 }. We also divide branches into three groups:

• 𝐵𝑖+1
𝑗 ⊆ Br∗

𝑇 𝑖+1
𝑗

is a collection of broken branches that we create during our process;

• 𝜎 ∈ 𝑇 𝑖+1
𝑗 that are locally inconsistent wrt 𝐺 are dead branches;

• all other branches are alive.

For all 𝑗 ∈ [𝑠] the set 𝐵1
𝑗 is empty.

We maintain an upper bound of the height of the trees and the correctness property, i.e.

• 𝑇 𝑖
𝑗 strongly represents 𝐷𝑗,

• moreover each branch 𝜎 ∈ 𝑇 𝑖
𝑗 is marked by 𝐷𝑗|𝜎 (it can be a constant if it is allowed by the

definition of strong representation).

After 𝑘
𝜀 iterations we stop modifications and try to find a set of variables 𝐽 ⊆ 𝑅 and some 𝜁2-closed

partial assignment 𝜌 on Ext𝜁2
𝐺 (𝐽) that helps to achieve an additional property for each branch 𝜎 of tree

𝑇 𝑖
𝑗 :

• if 𝜎 ∈ 𝐵𝑖
𝑗 then:
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– either 𝜎 is inconsistent with 𝜌,
– or there is a term 𝑡 ∈ 𝐷𝑗 such that 𝑡|𝜎∪𝜌 = 1;

• if 𝜎 is alive then it is marked by a constant or by a collection of locally inconsistent terms wrt
𝐺𝜎,𝜌 (or in other words 𝐺 without (ICl𝜁2

𝐺 (𝐽𝜎) ∪ ICl𝜁2
𝐺 (𝐽) , Ext𝜁2

𝐺 (𝐽𝜎) ∪ Ext𝜁2
𝐺 (𝐽))).

We say that a tree that satisfies all required properties is perfect. In section 5.3.5 we show the lower
bound on the height of trees in the collection of perfect trees that corresponds to the proof of 𝐴|𝜌.

5.3.2 From Res(𝑘) to Perfect DNF-trees

Let us fix some parameters:

• 𝑑𝑖 ≔ 2𝑛𝛿 (8
𝑝)(𝑖−1)𝑘

is an upper bound on the sizes of sets 𝐽𝜎 for branches 𝜎 that appear in the
trees 𝑇 𝑖

𝑗 ;

• 𝑠𝑖 ≔ 𝑠2𝑑𝑖/𝜀 is an upper bound on the total number on branches in these trees;

• 𝑏𝑖 ≔ 𝑛𝛿 (8
𝑝)𝑖𝑘

is a threshold for coverings.

Now we describe a construction of {𝑇 𝑖+1
1 , 𝑇 𝑖+1

2 , … , 𝑇 𝑖+1
𝑠 } from {𝑇 𝑖

1, 𝑇 𝑖
2, … , 𝑇 𝑖

𝑠}. Suppose that
before 𝑖-th iteration we have a sequence {𝑇 𝑖

1, 𝑇 𝑖
2, … , 𝑇 𝑖

𝑠} of consistent DNF-trees that satisfy 𝜌-
consistency property. Let 𝑇 ≔ 𝑇 𝑖

𝑗 . Consider a branch 𝜎 ∈ 𝑇 . If 𝜎 ∈ Br∗
𝑇 then it is marked by

𝐷𝑗|𝜎, so let 𝐹𝜎 be a DNF formula that consists of terms of 𝐷𝑗|𝜎 that are locally consistent wrt 𝐺𝜎.
There are four cases:

• Branch 𝜎 ∈ 𝐵𝑎
𝑗 for some 𝑎 ≤ 𝑖 or dead. We do not modify 𝜎.

• Branch 𝜎 is marked by a constant. We do not modify 𝜎.

• clv𝜁4
𝐺𝜎 (𝐹𝜎) ≤ 𝑏𝑖. We add a full binary tree that splits over all variables from

Ext𝜁2
𝐺 (𝐽𝜎 ∪ clv𝜁4

𝐺𝜎 (𝐹𝜎)) ⧵ Ext𝜁2
𝐺 (𝐽𝜎)

(see fig. 1). We mark new leaves by proper DNF formulas and a set 𝐽𝜎 ∪ clv𝜁4
𝐺𝜎 (𝐹𝜎). Note

that |𝐽𝜎 ∪ clv𝜁4
𝐺𝜎 (𝐹𝜎) | ≤ 2𝑛𝛿 (8

𝑝)(𝑖−1)𝑘 + 𝑛𝛿 (8
𝑝)𝑖𝑘 ≤ 2𝑛𝛿 (8

𝑝)𝑖𝑘 = 𝑑𝑖+1. The height of these
branches is |Ext𝜁2

𝐺 (𝐽𝜎 ∪ clv𝜁4
𝐺𝜎 (𝐹𝜎)) | which is at most 𝑑𝑖+1

𝜀 by Lemma 3.3.

• clv𝜁4
𝐺𝜎 (𝐹𝜎) > 𝑏𝑖. We put 𝜎 into 𝐵𝑖+1

𝑗 .

We say that 𝑇 𝑖+1
𝑗 ≔ 𝑇 . We satisfy the correctness property by construction.

5.3.3 Perfectness. Broken Branches

We pick an assignment 𝜌 from distribution𝔘𝑝,𝜁2
. By construction, this assignment is 𝜁2-closed, and the

witness of this property is 𝐽𝜌 ≔ 𝐽 , where 𝐽 is a set from the algorithm that generates this assignment.
Note that by Chernoff bound:

Pr[|𝐽 | > 2𝑝𝑛] ≤ exp [−4
3𝑝𝑛] ≤ exp [−4

3𝜀𝑟] .

So we assume that |𝐽 | ≤ 2𝑝𝑛.
Consider some branch 𝜎 ∈ 𝐵𝑖

𝑗 that is consistent with 𝜌. Note that:
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𝜎

Ext𝜁2
𝐺 (𝐽𝜎 ∪ clv𝜁4

𝐺𝜎 (𝐹𝜎)) ⧵ Ext𝜁2
𝐺 (𝐽𝜎)

Ext𝜁2
𝐺 (𝐽𝜎)

Figure 1: Modification of a branch

• 𝐺𝜎 is a dependency graph of 𝐴|𝜎;

• 𝐺𝜎 is the (𝑟, Δ, 𝜁3)-boundary expanders by Lemma 3.4.

Let us remind that 𝐹𝜎 consists of locally consistent (wrt graph 𝐺𝜎) terms of the label of branch
𝜎 ∈ 𝐵𝑖

𝑗.
We want to show that if clv𝜁4

𝐺𝜎 (𝐹𝜎) > 𝑏𝑖 then 𝜌 satisfies 𝐹𝜎 whp.
Since 𝜎 ∈ 𝐵𝑖

𝑗 then clv𝜁4
𝐺𝜎 (𝐹) > 𝑏𝑖. We apply Lemma B.1 for graph 𝐺𝜎, a collection of terms 𝐹𝜎,

and 𝑐 ≔ 𝜁3 and 𝜈 ≔ 𝜁4 and get a sequence of terms 𝑇 ≔ {𝑡1, … , 𝑡𝑎} from 𝐹 such that:

• 𝑡𝑗 is an 𝜁4-closure independent of
𝑗−1
⋃

𝑒=1
𝑡𝑒;

• 𝑎 ≥ 1
(1+ 1

𝜀 )𝑘𝑏𝑖 > 𝜀
2𝑘𝑏𝑖.

The set 𝐽 contains the set 𝑡𝑗 with probability at least 𝑝|𝑡𝑗| ≥ 𝑝𝑘. And since for any 𝑗, 𝑗′ ∈ [𝑎]:
𝑡𝑗 ∩ 𝑡𝑗′ = ∅ we can apply Chernoff bound and say:

Pr [𝐽 contains less than 1
2 ⋅ 𝜀

2𝑘𝑏𝑖𝑝𝑘 terms of 𝑇 ] ≤

exp [−1
8 ⋅ 1

2 ⋅ 𝜀
2𝑘𝑏𝑖𝑝𝑘] ≤

exp[−1
8 ⋅ 1

2 ⋅ 𝜀
2𝑘𝑛𝛿 (8

𝑝)
𝑖𝑘

𝑝𝑘] ≤

exp[−1
8 ⋅ 1

2 ⋅ 𝜀8𝑘

2𝑘 𝑛𝛿 (8
𝑝)

(𝑖−1)𝑘
] ≤

exp [−1
8 ⋅ 1

2 ⋅ 𝜀28𝑘

2𝑘 log 𝑠𝑖] ≤

( 1
𝑠𝑖

)
4𝑘

.
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Consider some 𝐽 that contains at least 𝜀
4𝑘𝑏𝑖𝑝𝑘 terms of 𝑇 . Let 𝑇 ′ ≔ {𝑡′

1, … , 𝑡′
𝑎′} be a subsequence

of 𝑇 that consists of terms that are subsets of 𝐽 . Note that 𝑡′
𝑗 and

𝑗−1
⋃

𝑒=1
𝑡′
𝑒 are 𝜁4-closure-independent

wrt 𝐺𝜎. See fig. 2.

𝐿 𝑅

𝐽𝜎

ICl𝜁2
𝐺 (𝐽𝜎)

Ext𝜁2
𝐺 (𝐽𝜎)

𝐽ICl𝜁2
𝐺 (𝐽) Ext𝜁2

𝐺 (𝐽)
aka supp(𝜌)

𝑡′
𝑗

𝑡′
𝑗′

Figure 2: Graph 𝐺 and sets (proportions may be incorrect)

To estimate probability that we satisfy at least one term from 𝑇 ′ we want to use Lemma 5.2. In
order to do that, let us make the following observation.

Remark 5.4

A pair (ICl𝜁2
𝐺 (𝐽) , supp(𝜌)) is 𝜁5-reasonable wrt 𝐺𝜎.

Proof. Note that 𝐺𝜎 = (𝐿 ⧵ ICl𝜁2
𝐺 (𝐽𝜎) , 𝑅 ⧵ Ext𝜁2

𝐺 (𝐽𝜎) , 𝐸). Hence if we erase the pair
(ICl𝜁2

𝐺 (𝐽) , supp(𝜌)) from 𝐺𝜎, the resulting graph will be 𝐺𝜎,𝜌 and the statement follows from Lemma
3.4.

Let 𝐺𝜎 ≔ (𝐿𝜎, 𝑅𝜎, 𝐸). For fixed 𝐽 , assuming that 𝜌 is consistent with 𝜎, we may think that 𝜌
is taken from 𝔘

Ext𝜁2
𝐺 (𝐽)∩𝑅𝜎 and the Remark 5.4 states that it is locally consistent assignment wrt 𝐺𝜎,

which gives us an access to Lemma 5.2. So we apply Lemma 5.2 with the following parameters: a graph
𝐺𝜎, 𝐽 ≔ supp(𝜌) ∩ 𝑅𝜎 and a collection 𝑇 ′. Here we use an assumption that |𝐽 | ≤ 2𝜀𝑟 and hence
| supp(𝜌)| is at most (1 + 1

𝜀Δ) ⋅ 2𝜀𝑟 ≤ 𝜀Δ𝑟 by Lemma 3.3. We conclude that probability that 𝜌 does
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not satisfy any term from 𝑇 ′ is at most:

(1 − 1
2𝑘 )

𝜀
4𝑘 𝑏𝑖+1𝑝𝑘

≤

exp [− 𝜀
4𝑘2𝑘 𝑏𝑖+1𝑝𝑘] ≤

exp[− 𝜀
4𝑘2𝑘 𝑛𝛿 (8

𝑝)
𝑖𝑘

𝑝𝑘] ≤

exp [− 𝜀28𝑘

8𝑘2𝑘 log 𝑠𝑖] ≤

( 1
𝑠𝑖

)
4𝑘

.

Probability of Fail. We fail the process in two cases:

• 𝐽 is too large and we cannot use our lemmas for expander graphs. That happens with probability
exp [−4

3𝜀𝑟];

• 𝜌 does not map to 1 any term in some branch 𝜎 ∈ 𝐵𝑖
𝑗. That happens with probability at most

∑
𝑖∈[𝑘/𝜀]

|
𝑠
⋃

𝑗=1
𝐵𝑖

𝑗| ⋅ 2 ( 1
𝑠𝑖

)4𝑘

(either 𝐽 does not cover enough terms or 𝜌 does not satisfy at least one

of covered terms). To conclude the counting, note that ∣
𝑠
⋃

𝑗=1
𝐵𝑖

𝑗∣ ≤ 𝑠𝑖.

Hence whp our transformation satisfies perfectness for branches from all sets 𝐵𝑖
𝑗.

5.3.4 Perfectness. Alive Branches

This is the place where we use the properties of individual closure. Let us consider some 𝜎 ∈ Br∗
𝑇 𝑖

𝑗
⧵𝐵𝑖

𝑗

that is marked by a DNF 𝐷 and an arbitrary locally consistent term 𝑡 ∈ 𝐷. Note that clv𝜁2
𝐺𝜎 (𝐷) ≤ 𝑏𝑖,

and we split according to the variables in the set 𝑆 ⊇ clv𝜁2
𝐺𝜎 (𝐷). Consider an assignment 𝜎′ to the

variables of 𝑆. Note that |Ext𝜁4
𝐺𝜎 (𝑡|𝜎′) | ≤ |Ext𝜁4

𝐺𝜎 (𝑡) | − 1 by the definition of closure covering and
Lemma 3.6. Again note that |Ext𝜁4

𝐺𝜎∪𝜎′ (𝑡|𝜎′) | ≤ |Ext𝜁4
𝐺𝜎 (𝑡|𝜎′) | by Lemma 3.6. Hence for any term

𝑡′ that corresponds to some branch 𝜎′ ∈ 𝑇 𝑖
𝑗 ⧵ 𝐵𝑖

𝑗 and survives after 𝑖 + 1-th iteration we note that
|Ext𝜁4

𝐺𝜎′ (𝑡′) | is strictly less than |Ext𝜁4
𝐺𝜎 (𝑡) |where 𝑡 is term in 𝜎 ∈ 𝑇 𝑖

𝑗 that generates 𝑡′ after application
of our transformation of the trees.

Note that for any term 𝑡″ that appears in the original proof |Ext𝜁4
𝐺 (𝑡″) | ≤ (1 + 1

3𝜀) 𝑘 ≤ 𝑘
𝜀 by

Lemma 3.3. Hence after 𝑘
𝜀 iterations for any locally consistent term 𝑡: |Ext𝜁4

𝐺𝜎 (𝑡) | = 0, or in other
words it is mapped to a constant and the desired statement follows.

5.3.5 Lower Bound on Height

Now we have a sequence of perfect trees {𝑇 𝑘/𝜀+1
1 , 𝑇 𝑘/𝜀+1

2 , … , 𝑇 𝑘/𝜀+1
𝑠 } and we want to show non-

existence of such sequence. We say that a branch 𝜎 ∈ 𝑇 𝑘/𝜀+1
𝑗 have survived iff 𝜎 is consistent with 𝜌

and 𝜎 ∪ 𝜌 is locally consistent.
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Remark 5.5

In fact, one can extract a resolution proof of 𝐴|𝜌 of small enough width from these trees, but it
requires much more technical work and accuracy. And we believe that the direct proof of the
height lower bound is more useful for future generalizations.

Let 𝑇𝑗 ≔ 𝑇 𝑘/𝜀+1
𝑗 . Note that 𝑇𝑗 strongly represents 𝐷𝑗|𝜌 by construction. We consider a dag of the

proof 𝜋. Starting from the vertex 𝑠 in this dag, we trace the path 𝑝 to the initial clause. In the node
𝑣 ∈ 𝑝 we maintain a partial assignment 𝜅𝑣 such that:

• 𝜅𝑣 ∈ Br∗
𝑇𝑣

∪ Br0
𝑇𝑣
;

• 𝜅𝑣 have survived.

Tree 𝑇𝑠 is a tree that consists of a single node marked by 0 and we take 𝜅𝑠 ≔ ∅.
Consider a node 𝑣 of the dag of 𝜋. Assume that 𝐷𝑣 is derived from 𝐷𝑖1

, … , 𝐷𝑖𝑘
. We have an

assignment 𝜅𝑣 that satisfies the required properties. Our goal is to find a branch among branches of
trees 𝑇𝑖1

, … , 𝑇𝑖𝑘
that also satisfies the required properties. We will do it by increasing 𝜅𝑣 step by step.

On each step we will have a closed assignment 𝜅 ⊇ 𝜅𝑣 and a set 𝐽𝜅 such that:

• 𝜅 and 𝜌 are consistent;

• supp(𝜅) = Ext𝜁2
𝐺 (𝐽𝜅);

• 𝜅 satisfies 𝐴ICl𝜁2
𝐺 (𝐽𝜅);

• | supp(𝜅)| = 𝑜(𝑟).
Note that assignment 𝜅𝑣 ∈ 𝑇𝑣 is closed. Hence the set 𝐽𝜅𝑣

satisfies the required properties, and in
the beginning 𝜅 is well-defined. Now we apply the following procedure to the assignment 𝜅.

Algorithm 1 Branch search
1: 𝑗 ≔ 1
2: 𝜅 is the current partial assignment
3: while 𝑗 ≤ 𝑘 do
4: 𝑢 is the root of 𝑇𝑖𝑗
5: while 𝑢 is not a leaf do
6: 𝑥 is a label of 𝑢
7: if 𝑥 ∈ supp(𝜅) ∪ supp(𝜌) then
8: Let 𝑣 be a child of that correspond to (𝜅 ∪ 𝜌)(𝑥)
9: 𝑢 ≔ 𝑣
10: else
11: Pick 𝜂 on Ext𝜁2

𝐺 (𝐽𝜅 ∪ {𝑥}) ⧵ Ext𝜁2
𝐺ℓ

(𝐽𝜅) in a way that:

• it satisfies 𝐴ICl𝜁2
𝐺ℓ (𝐽𝜅∪{𝑥})⧵ICl𝜁2

𝐺ℓ (𝐽𝜅);
• it is consistent with 𝜌

12: 𝜅 ≔ 𝜅 ∪ 𝜂
13: 𝐽𝜅 ≔ 𝐽𝜅 ∪ {𝑥}
14: if 𝑢 ∈ Br∗

𝑇𝑖𝑗
∪ Br0

𝑇𝑖𝑗
then return 𝑖𝑗, 𝑢, 𝜅

Note that height of the trees is at most 𝑑𝑘/𝜀+1
𝜀 = 2

𝜀 𝑛𝛿 (8
𝑝)𝑘2/𝜀 = 𝑜(𝑟/𝑘) and hence 𝜅 has size 𝑜(𝑟)

by construction and Lemma 3.3.
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We have to show the existence of 𝜂 and that we stop on some iteration. We start with the existence.
Fix some iteration of the inner loop. Note that supp(𝜅) = Ext𝜁2

𝐺 (𝐽𝜅) and supp(𝜌) = Ext𝜁2
𝐺 (𝐽𝜌) which

by Lemma 3.4 implies that 𝐺𝜎,𝜌 is an (𝑟, Δ, 𝜁5)-expander. Moreover 𝐺𝜎,𝜌 is a dependency graph of
𝐴|𝜅∪𝜌. Hence by Lemma 4.4 there is a total assignment 𝜂′ that satisfies 𝐴ICl𝜁2

𝐺ℓ (𝐽𝜅∪{𝑥})⧵ICl𝜁2
𝐺ℓ (𝐽𝜅)|𝜅∪𝜌. Let

𝜂 be a restriction of 𝜂′ on Ext𝜁2
𝐺 (𝐽𝜅 ∪ {𝑥}) ⧵ Ext𝜁2

𝐺ℓ
(𝐽𝜅).

Now we want to show that we stop after some iteration. Note that:

• 𝜅 and 𝜌 are consistent (by construction);

• 𝜅 is an extension of 𝜅𝑣 (by construction);

• 𝜅 ∪ 𝜌 satisfies 𝐴ICl𝜁2
𝐺 (𝐽𝜅)∪ICl𝜁2

𝐺 (𝐽𝜌) (by construction);

• For any 𝐼 of size at most 𝑟: 𝐴𝐼 |𝜌∪𝜅 is satisfiable (by Lemma 4.4).

For the sake of contradiction, assume that on each iteration of outer loop we found some leaf from
Br1

𝑇𝑖𝑗
. Consider three cases.

• 𝐷𝑣 is obtained by using weakening or And-elimination rule from 𝐷𝑖1
. Assignment 𝜅 ∪ 𝜌 maps

some term of 𝐷𝑖1
to 1 and hence it is also maps some term of 𝐷𝑣 to 1.

• 𝐷𝑣 is obtained by using And-introduction 𝐹∨ℓ1,…,𝐹∨ℓ𝑤

𝐹∨(
𝑤
⋀

𝑖=0
ℓ𝑖)

. If 𝜅 ∪ 𝜌 maps some term 𝑡 ∈ 𝐹 to 1,

then 𝑡 ∈ 𝐷𝑣 is also mapped to 1. If 𝜅 ∪ 𝜌 maps all ℓ𝑗 to 1 then (
𝑤
⋀

𝑖=0
ℓ𝑖) ∈ 𝐷𝑣 is also mapped to 1.

• 𝐷𝑣 is obtained by using cut rule
𝐹∨(

𝑤
⋀

𝑖=0
ℓ𝑖),𝐺∨(

𝑤
⋁

𝑖=0
¬ℓ𝑖)

𝐹∨𝐺 . Note that 𝜅 ∪ 𝜌 maps some term 𝑡 ∈
𝐹 ∨ (

𝑤
⋀

𝑖=0
ℓ𝑖) to 1 and some term 𝑡′ ∈ 𝐺 ∨ (

𝑤
⋁

𝑖=0
¬ℓ𝑖), hence 𝜅 ∪ 𝜌 maps some term in 𝐹 ∨ 𝐺 = 𝐷𝑣

to 1.

In all cases we conclude that 𝜅 ∪ 𝜌 maps some term 𝑡 ∈ 𝐷𝑣 to 1. But note that a pair (ICl𝜁2
𝐺 (𝐽𝜅) ∪

ICl𝜁2
𝐺 (𝐽𝜌) , Ext𝜁2

𝐺 (𝐽𝜅) ∪ Ext𝜁2
𝐺 (𝐽𝜌)) is 𝜁5-reasonable by Lemma 3.4, hence 𝜅 ∪ 𝜌 is the witness of local

satisfiability of 𝑡. That contradicts with the choice of branch 𝜅𝑣, since any term of 𝐷𝑣 is mapped by 𝜅𝑣
either to constant 0 or to locally inconsistent term, and 𝜅 ∪ 𝜌 is an extension of 𝜅𝑣.

Our algorithm returns some triple (𝑖𝑗, 𝑢, 𝜅). We define 𝜅𝑖𝑗
≔ 𝑢. Note that 𝜅𝑖𝑗

⊆ 𝜅 hence 𝜅𝑖𝑗
∪ 𝜌

does not violate any initial clause and 𝜅𝑖𝑗
∈ Br0

𝑇𝑖𝑗
∪ Br∗

𝑇𝑖𝑗
.

By tracing the path in 𝜋 we reach a tree 𝑇 that strongly represents an initial clause 𝐷. We have a
branch 𝜅 ∈ 𝑇 such that:

• 𝜅 and 𝜌 are consistent;

• 𝜅 ∈ Br∗
𝑇 ∪ Br0

𝑇 , which implies that 𝜅 violates 𝐷;

• 𝜅 ∪ 𝜌 does not violate any initial clause.

That is a contradiction.

19



6 Application to Random Formulas

Theorem 6.1

For any 𝜂 > 0 there is Δ > 0 such that if 𝜑 ∼ 𝜑(𝑚, 𝑛, Δ) where 𝑚 ≤ 𝜂𝑛, then there are
constants 𝛿, 𝜈 > 0 such that whp any Res(𝑘) proof of𝜑 has size at least 2𝑛𝛿 where 𝑘 ≤ 𝜈√log𝑛.

Proof. Applying Theorem C.1 we conclude that there is Δ > 0 such that dependency graph of our
formula is an (𝑟, Δ, 0.95Δ)-boundary expander where 𝑟 ≔ 𝛿𝑛 for some constant 𝛿 that depends only
on 𝜂 and Δ.

Note that:

𝑛𝛿 ( 𝑛
8𝜀𝑟)

𝑘2/𝜀
= 𝑛𝛿 ( 1

8𝜀𝛿 )
𝜈2 log𝑛/𝜀

≤ 𝑛𝛿𝑛𝜈2 log(1/8𝜀𝛿)/𝜀 = 𝑜(𝑟/𝑘)

where the last inequality holds by the choice of 𝜈. The statement follows fromTheorem 5.1.

Theorem 6.2

For any ℎ > 0 there is Δ > 0 such that if 𝜑 ∼ 𝜑(𝑚, 𝑛, Δ) where 𝑚 ≤ 𝑛 logℎ 𝑛, then there
are constants 𝛿, 𝜈 > 0 such that whp any Res(𝑘) proof of 𝜑 has size at least 2𝑛𝛿 where 𝑘 ≤
𝜈√ log𝑛

log log𝑛 .

Proof. Applying Theorem C.2 we conclude that there is Δ > 0 such that dependency graph of our
formula is an (𝑟, Δ, 0.95Δ)-boundary expander where 𝑟 ≔ 𝑛/ logℓ 𝑛 for some constant ℓ that depends
only on ℎ and Δ.

Note that:

𝑛𝛿 ( 𝑛
8𝜀𝑟)

𝑘2/𝜀
= 𝑛𝛿 ( logℓ 𝑛

8𝜀 )
𝜈2 log𝑛/𝜀 log log𝑛

≤ 𝑛𝛿𝑛𝜈2ℓ log(1/8𝜀)/𝜀 = 𝑜(𝑟/𝑘)

where the last inequality holds by the choice of 𝜈. The statement follows fromTheorem 5.1.

Theorem 6.3

For any ℎ > 0 there is Δ > 0 such that if 𝜑 ∼ 𝜑(𝑚, 𝑛, Δ) where𝑚 ≤ 𝑛ℎ, then for any constant
𝑘 there is constant 𝛿 > 0 such that whp any Res(𝑘) proof of 𝜑 has size at least 2𝑛𝛿 .

Proof. Applying Theorem C.3 we can choose any constant 𝛿′ > 0 and Δ > 0 that depends only on 𝛿
such that dependency graph of our formula is an (𝑟, Δ, 0.95Δ)-boundary expander where 𝑟 ≔ 𝑛1−𝛿′ .

Note that:

𝑛𝛿 ( 𝑛
8𝜀𝑟)

𝑘2/𝜀
= 𝑛𝛿 (𝑛𝛿′

8𝜀 )
𝑘2/𝜀

≤ 𝑛𝛿𝑛𝛿′𝑘2 log(1/8𝜀)/𝜀 = 𝑜(𝑟/𝑘)

where the last inequality holds by the choice of 𝛿′. The statement follows fromTheorem 5.1.

20



Theorem 6.4

For any ℎ > 0 there are 𝛿, 𝜈 > 0 such that if 𝜑 ∼ 𝜑(𝑚, 𝑛, Δ) where 𝑚 ≤ 𝑛log logℎ 𝑛 and
Δ ≔ log𝑛, then whp any Res(𝑘) proof of 𝜑 has size at least 2𝑛𝛿 where 𝑘 ≤ 𝜈√ log𝑛

log log𝑛 .

Proof. Applying Theorem C.4 we conclude that dependency graph of our formula is an (𝑟, Δ, 0.95Δ)-
boundary expander where 𝑟 ≔ 𝑛/ logℓ 𝑛 for some constant ℓ that depends only on ℎ.

Note that:

𝑛𝛿 ( 𝑛
8𝜀𝑟)

𝑘2/𝜀
= 𝑛𝛿 ( logℓ 𝑛

8𝜀 )
𝜈2 log𝑛/𝜀 log log𝑛

≤ 𝑛𝛿𝑛𝜈2ℓ log(1/8𝜀)/𝜀 = 𝑜(𝑟/𝑘)

where the last inequality holds by the choice of 𝜈. The statement follows fromTheorem 5.1.
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A Chernoff Bound

Lemma A.1 (Chernoff bound)

Let 𝑋1, … , 𝑋𝑛 be independent random variables taking values in {0, 1}, 𝑋 ≔ ∑ 𝑋𝑖 and 𝜇 ≔
E[𝑋].

• Pr[𝑋 ≤ (1 − 𝛿)𝜇] ≤ exp [− 𝛿2
2 𝜇];

• Pr[𝑋 ≥ (1 + 𝛿)𝜇] ≤ exp [− 𝛿2
2+𝛿𝜇].
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B Graph Properties

Lemma B.1

Let 𝐺 ≔ (𝐿, 𝑅, 𝐸) be an (𝑟, Δ, 𝑐)-boundary expander, 𝒮 ≔ {𝑆1, 𝑆2, … , 𝑆ℓ} be a collection
of subsets of 𝑅 such that |𝑆𝑖| ≤ 𝑘. Then for each 𝜈 < 𝑐 it is possible to pick a sequence
{𝐵1, … , 𝐵ℎ} where:

• for all 𝑖 ∈ [ℎ] there is 𝑗 ∈ [ℓ] such that 𝐵𝑖 = 𝑆𝑗;

• 𝐵𝑖 is a 𝜈-closure-independent of
𝑖−1
⋃

𝑗=1
𝐵𝑗;

• ℓ ≥ clv(𝒮)
(1+ Δ

𝑐−𝜈 )𝑘 .

Proof. Let us start picking 𝐵’s in a greedy way. Suppose we picked 𝑖 terms for some 𝑖 > 0, and we are

not able to pick the term 𝑖 + 1. This means that the set of vertices Ext𝜈 ( ⋃
𝑗<𝑖

𝐵𝑗) is a closure covering

for 𝒮.

clv (𝒮) ≤ |Ext𝜈 (⋃
𝑗<𝑖

𝐵𝑗) | ≤

(1 + Δ
𝑐 − 𝜈 ) | ⋃

𝑗<𝑖
𝐵𝑗| ≤

(1 + Δ
𝑐 − 𝜈 ) 𝑖𝑘,

hence 𝑖 ≥ clv(𝒮)
(1+ Δ

𝑐−𝜈 )𝑘 .

C Random Graph is an Expander

For 𝑚, 𝑛, Δ ∈ N, we denote by 𝔊(𝑚, 𝑛, Δ) the distribution over bipartite graphs with disjoint vertex
sets 𝑈 ≔ {𝑢1, … , 𝑢𝑚} and 𝑉 ≔ {𝑣1, … , 𝑣𝑛} where the neighbourhood of a vertex 𝑢 ∈ 𝑈 is chosen
by sampling a subset of size Δ uniformly at random from 𝑉 .

Let us make some standard computations. Let 𝐺 be a randomly sampled graph from 𝔊(𝑚, 𝑛, Δ).
Fix 𝜀 ≔ 0.01 and try to estimate the probability that 𝐺 is not an (𝑟, Δ, (1 − 𝜀)Δ)-boundary expander
for some parameter 𝑟.

Let 𝐺 ≔ (𝑈, 𝑉 , 𝐸). We first estimate the probability that a set 𝑆 ⊆ 𝑈 of size at most 𝑟 violates
the boundary expansion. For brevity, let us write 𝑠 = |𝑆| and 𝑐 = (1 − 𝜀

2)Δ. The probability that 𝑆
violates the boundary expansion can be bounded by:

Pr[|𝜕(𝑆)| < (1 − 𝜀)Δ𝑠] ≤ Pr[|N (𝑆) < 𝑐𝑠]

≤ ( 𝑛
𝑐𝑠) ⋅ ((𝑐𝑠

Δ)
(𝑛

Δ) )
𝑠

≤ ( 𝑛
𝑐𝑠) ⋅ (𝑐𝑠

𝑛 )
Δ𝑠

≤ [(𝑒𝑛
𝑐𝑠 )

𝑐
⋅ (𝑐𝑠

𝑛 )
Δ

]
𝑠
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Hence, the probability that 𝐺 is not a boundary expander can be bounded by

Pr[𝐺 is not an expander] ≤ ∑
𝑠∈[𝑟]

(𝑚
𝑠 ) [(𝑒𝑛

𝑐𝑠 )
𝑐

⋅ (𝑐𝑠
𝑛 )

Δ
]

𝑠

≤ ∑
𝑠∈[𝑟]

(𝑚𝑒
𝑠 )

𝑠
[(𝑒𝑛

𝑐𝑠 )
𝑐

⋅ (𝑐𝑠
𝑛 )

Δ
]

𝑠

≤ ∑
𝑠∈[𝑟]

[𝑚𝑒
𝑠 (𝑒𝑛

𝑐𝑠 )
𝑐

⋅ (𝑐𝑠
𝑛 )

Δ
]

𝑠

≤ ∑
𝑠∈[𝑟]

[𝑒1+𝑐 𝑚
𝑠 (𝑐𝑠

𝑛 )
𝜀
2 Δ

]
𝑠

Now we can formulate some classical results about the existence of expander graphs.
Theorem C.1

Let𝑚 ≤ 𝜂𝑛 for some universal constant 𝜂 and 𝜀 ≔ 0.01. There are constantsΔ, 𝛿 > 0 such that
whp for 𝑟 ≔ 𝛿𝑛 a randomly sampled graph 𝐺 ∼ 𝔊(𝑚, 𝑛, Δ) is an (𝑟, Δ, (1 − 𝜀)Δ)-boundary
expander.

Proof. Let 𝑐 ≔ (1 − 𝜀
2)Δ and 𝛿′ ≔ Δ𝑟

𝑛 . Note that 𝐺 is not a boundary expander with probability at
most:

∑
𝑠∈[𝑟]

[𝑒1+𝑐 𝑚
𝑠 (𝑐𝑠

𝑛 )
𝜀
2 Δ

]
𝑠

≤ ∑
𝑠∈[𝑟]

[𝑒1+𝑐 𝜂𝑛
𝑠 (𝑐𝑠

𝑛 )
𝜀
2 Δ

]
𝑠

= ∑
𝑠∈[𝑟]

[𝑒1+𝑐𝜂𝑐 (𝑐𝑠
𝑛 )

𝜀
2 Δ−1

]
𝑠

≤ ∑
𝑠∈[𝑟]

[𝑒1+𝑐𝜂𝑐 (𝛿′)
𝜀
2 Δ−1]

𝑠
.

And if Δ > 6/𝜀 we can choose 𝛿 to make sure that this sum is at most 0.01.

Theorem C.2

Let 𝑚 ≤ 𝑛 logℎ 𝑛 for some universal constant ℎ and 𝜀 ≔ 0.01. For any constant ℓ > 0 there is
a constant Δ > 0 such that whp for 𝑟 ≔ 𝑛/ logℓ 𝑛 a randomly sampled graph 𝐺 ∼ 𝔊(𝑚, 𝑛, Δ)
is an (𝑟, Δ, (1 − 𝜀)Δ)-boundary expander.

Proof. Let 𝑐 ≔ (1 − 𝜀
2)Δ. Note that 𝐺 is not a boundary expander with probability at most:

∑
𝑠∈[𝑟]

[𝑒1+𝑐 𝑚
𝑠 (𝑐𝑠

𝑛 )
𝜀
2 Δ

]
𝑠

= ∑
𝑠∈[𝑟]

[𝑒1+𝑐 𝑚𝑐
𝑛 (𝑐𝑠

𝑛 )
𝜀
2 Δ−1

]
𝑠

.

≤ ∑
𝑠∈[𝑟]

[𝑒1+𝑐𝑐 logℎ 𝑛 (Δ log−ℓ 𝑛)
𝜀
2 Δ−1

]
𝑠

.
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And if Δ > 6(ℎ+ℓ)
𝜀ℓ this sum is 𝑜(1).

Theorem C.3

Let 𝑚 ≤ 𝑛ℎ for some universal constant ℎ and 𝜀 ≔ 0.01. For any constant 𝛿 > 0 there is a
constant Δ > 0 such that whp for 𝑟 ≔ 𝑛1−𝛿 a randomly sampled graph 𝐺 ∼ 𝔊(𝑚, 𝑛, Δ) is an
(𝑟, Δ, (1 − 𝜀)Δ)-boundary expander.

Proof. Let 𝑐 = (1 − 𝜀
2)Δ. Note that 𝐺 is not a boundary expander with probability at most:

∑
𝑠∈[𝑟]

[𝑒1+𝑐 𝑚
𝑠 (𝑐𝑠

𝑛 )
𝜀
2 Δ

]
𝑠

≤ ∑
𝑠∈[𝑟]

[𝑒1+𝑐𝑛ℎ (𝑛−𝛿/2)
𝜀
2 Δ]

𝑠
.

And if Δ > 6ℎ
𝜀𝛿 this sum is 𝑜(1).

Theorem C.4

Let 𝑚 ≤ 𝑛log logℎ 𝑛 for some universal constant ℎ, 𝜀 ≔ 0.01. For any constant 𝛿 > 0 there is a
constant ℓ > 0 such that whp for 𝑟 ≔ 𝑛/ logℓ 𝑛 a randomly sampled graph 𝐺 ∼ 𝔊(𝑚, 𝑛, Δ) is
an (𝑟, Δ, (1 − 𝜀)Δ)-boundary expander where Δ ≔ log𝑛.

Proof. Let 𝑐 = (1 − 𝜀
2)Δ. Note that 𝐺 is not a boundary expander with probability at most:

∑
𝑠∈[𝑟]

[𝑒1+𝑐 𝑚
𝑠 (𝑐𝑠

𝑛 )
𝜀
2 Δ

]
𝑠

≤ ∑
𝑠∈[𝑟]

[𝑒1+𝑐𝑛log logℎ 𝑛 (log−ℓ/2 𝑛)
𝜀
2 Δ

]
𝑠

.

And if ℓ > 6ℎ
𝜀 this sum is 𝑜(1).

D Proof of Lemma 4.4

Lemma D.1

Let 𝐴 be a linear system based on a graph 𝐺 ≔ (𝐿, 𝑅, 𝐸) that is an (𝑟, Δ, 𝑐)-expander. If 𝜎 is
a locally consistent assignment, then for any 𝐼 of size at most 𝑟 the system 𝐴𝐼 |𝜎 is satisfiable.

Proof. Let a pair (𝑆, 𝑇 ) be a witness of the consistency of 𝜎. So (𝑆, 𝑇 ) is a 𝜁-reasonable pair for some
𝜁 > 0. Let 𝜎′ be an extension of 𝜎 on 𝑇 ∪ N (𝑆) such that 𝐴𝑆|𝜎′ is satisfied (it exists since 𝐴𝑆|𝜎 is
satisfiable).

Pick an arbitrary set 𝐼 of size at most 𝑟. Note that 𝜎′ satisfies all constraints from 𝐼 ∩ 𝑆. Let
𝐼′ ≔ 𝐼 ⧵𝑆. Consider a graph 𝐺′ obtained by removing a pair (𝑆, 𝑇 ∪N (𝑆)), that is (𝑟, Δ, 𝜁)-boundary
expander. By Lemma 3.1 (applied to 𝐺′) there is an enumeration 𝐼′ = {𝑣1, 𝑣2, … , 𝑣|𝐼′|} and a partition
⨆
𝑖

𝑅𝑖 = N𝐺′ (𝐼′) such that:

• 𝑅𝑖 = N (𝑣𝑖) ⧵ (
𝑖−1
⋃

𝑗=1
N (𝑣𝑗));
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• |𝑅𝑖| ≥ 𝜁.

For each 𝑖 ∈ [|𝐼 ′|] we extend 𝜎′ on 𝑅𝑖 by choosing an arbitrary assignment that satisfies constraint
𝐴𝑣𝑖 |𝜎′ . Since |𝑅𝑖| > 0 there is at least one such assignment and we are done.
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