
When Arthur has Neither Random Coins nor Time to
Spare: Superfast Derandomization of Proof Systems

Lijie Chen * Roei Tell †

November 15, 2022

Abstract

What is the actual cost of derandomization? And can we get it for free? These
questions were recently raised by Doron et. al (FOCS 2020) and have been attracting
considerable interest. In this work we extend the study of these questions to the setting
of derandomizing interactive proofs systems.

First, we show conditional derandomization ofMA and of AM with optimal run-
time overhead, where optimality is under the #NSETH assumption. Specifically, denote
by AMT IME [
c][T] a protocol with c turns of interaction in which the verifier runs
in polynomial time T. We prove that, for every constant ε > 0,

MAT IME [T] ⊆ NT IME [T2+ε] ,

AMT IME [
c][T] ⊆ NT IME [n · Tdc/2e+ε] ,

assuming the existence of properties of Boolean functions that can be recognized quickly
from the function’s truth-table such that functions with the property are hard for proof
systems that receive near-maximal amount of non-uniform advice.

To obtain faster derandomization, we introduce the notion of a deterministic ef-
fective argument system. This is an NP-type proof system in which the verifier is
deterministic, and the soundness is relaxed to be computational, as follows: For every
probabilistic polynomial-time adversary P̃, the probability that P̃ finds an input x /∈ L
and misleading proof π such that V(x, π) = 1 is negligible.

Under strong hardness assumptions, we prove that any constant-round doubly ef-
ficient proof system can be compiled into a deterministic effective argument system,
with essentially no time overhead. As one corollary, under strong hardness assump-
tions, for every ε > 0 there is a deterministic verifier V that gets an n-bit formula Φ
of size 2o(n), runs in time 2ε·n, and satisfies the following: An honest prover running
in time 2O(n) can print, for every Φ, a proof π such that V(Φ, π) outputs the number
of satisfying assignments for Φ; and for every adversary P̃ running in time 2O(n), the
probability that P̃ finds Φ and π such that V(Φ, π) outputs an incorrect count is 2−ω(n).

*Miller Institute for Basic Research in Science at University of California, Berkeley, CA. Email:
wjmzbmr@gmail.com

†The Institute for Advanced Study at Princeton NJ and the DIMACS Center at Rutgers University, NJ. Email:
roei.tell@gmail.com

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Revision 2 of Report No. 57 (2022)

Contents

1 Introduction 1
1.1 Superfast worst-case derandomization ofMA and of AM 2
1.2 A lunch that looks free: Deterministic effective argument systems 4
1.3 Implications for derandomization of prBPP 9

2 Technical overview 9
2.1 Warm-up: Proof of Theorem 1.1 . 10
2.2 Proof of Theorem 1.2 . 11
2.3 Proofs of the results from Section 1.2 . 12
2.4 Proof of Theorem 1.3 . 14

3 Preliminaries 15

4 Superfast derandomization ofMA 23

5 Superfast derandomization of AM 26
5.1 Refining the reconstructive PRG from Proposition 4.1 26
5.2 The outer PRG . 30
5.3 The inner PRG . 33
5.4 Composing the two PRGs . 41
5.5 Uniform trade-offs for AM∩ coAM . 43

6 Optimality under #NSETH 48

7 Deterministic effective argument systems 49
7.1 Warm-up: The case of anMA-style system . 50
7.2 Basic case: Doubly efficient proof systems with few random coins 52
7.3 A deterministic argument system for #SAT with runtime 2ε·n 62
7.4 The general case: Constant-round doubly efficient proof systems 64

A Useful properties are necessary for derandomization ofMA 74

B Proof of Lemma 7.4.3.4 75

i

1 Introduction

We study the well-known problem of eliminating randomness from interactive proof sys-
tems. While we do not expect to be able to eliminate randomness from general proof
systems (as that would imply that NP = IP = PSPACE , by [Sha92]), a classical
line of works suggests that for proof systems that only use constantly many rounds
of interaction, this might be doable. In particular, assuming sufficiently strong circuit
lower bounds,1 we have that AM = NP (for a subset of prominent works in this area,
see e.g., [KM98; IKW02; MV05; SU05; GSTS03; SU07]).

Recently, Doron et al. [DMO+20] raised the fine-grained derandomization question
of what is the minimal time overhead that we need to pay when eliminating randomness
from probabilistic algorithms. In their paper and in two subsequent works [CT21b;
CT21a], the following picture emerged: Under sufficiently strong lower bounds for
algorithms that use non-uniformity, we can derandomize probabilistic algorithms that
run in time T by deterministic algorithms that run in time n · T1+ε, for an arbitrarily
small ε > 0 (see [CT21b] for details);2 and furthermore, if we are willing to settle for
derandomization that errs on a negligible fraction of inputs over any polynomial-time
samplable distribution, then we can derandomize probabilistic time T in deterministic
time nε · T for an arbitrarily small ε > 0 (see [CT21a]).

The current paper studies the question of superfast derandomization of proof systems:
We ask what is the minimal time overhead that we need to pay when eliminating
randomness from proof systems such as MA and AM. While it is well-known that
proof systems with constantly many rounds can be simulated by proof systems with
two rounds (see [BM88]), in this work we care about fine-grained time bounds, and
therefore we care about the precise number of rounds in any such system. We denote
by AMT IME [
c][T] the set of problems solved by proof systems that use c turns of
interaction, where in each turn the relevant party communicates T(n) bits (recall that
the verifier just sends random bits; see Definition 3.5 for precise details).

Our contributions, at a bird’s eye. First, we construct essentially optimal derandom-
ization algorithms for MA, and for AM protocols with constantly many rounds. The
derandomization algorithms are constructed under appealing hardness hypotheses,
which compare favorably to hypotheses from previous works (and the claim that they
are essentially optimal is under the assumption #NSETH, which is a strong assump-
tion from the exponential-time hypotheses family; see Assumption 3.20). The results
forMA and for AM are presented in Section 1.1.

Secondly, we introduce the notion of deterministic effective argument systems, which
are deterministic proof systems (i.e., NP-type verifiers) such that no polynomial-time
adversary can find, with non-negligible probability, an input x /∈ L and a proof π
such that the verifier accepts x given proof π. Under strong hardness assumptions,
we compile every constant-round doubly efficient proof system into a deterministic
effective argument system with essentially no time overhead.

As a special case of the latter result, under strong hardness assumptions, we con-
struct a verifier that certifies the number of solutions for a given n-bit formula of size
2o(n) in time 2ε·n, for any ε > 0, such that no 2O(n)-time algorithm can find a formula
and a proof on which this verifier errs. The general result mentioned in the preceding
paragraph as well as the special case of #SAT are presented in Section 1.2.

1For example, it suffices to assume that for some ε > 0 it holds that E = DT IME [2O(n)] is hard for
SVN circuits of size 2ε·n on all input lengths (see [MV05]).

2This is tight for worst-case derandomization, under the hypothesis #NSETH (see Assumption 3.20).

1

1.1 Superfast worst-case derandomization ofMA and of AM
Our hardness hypotheses in this section will rely on the existence of useful properties,
in the sense of Razborov and Rudich [RR97]: Loosely speaking, these are algorithms
verifying that a given string is the truth-table of a function that is hard for a certain
class. Specifically, for two complexity classes C and C ′, we say that a property Π of
truth-tables is C ′-constructive and useful against C if there is a C ′-algorithm that decides
whether a truth-table is in Π, and if every truth-table in Π is hard for algorithms from
C (see Definition 3.3 for precise details).3

The reason that we consider useful properties is that they are necessary for any de-
randomization of proof systems, even just of MA. In fact, the useful properties that are
necessary are constructive in quasilinear time (this follows using the well-known ap-
proach of Williams [Wil13; Wil16]; see Appendix A for a proof). Accordingly, we will
consider useful properties in which truth-tables of length N = 2n can be recognized in
non-deterministic polynomial time Nk = 2k·n or even in non-deterministic near-linear
time N1+ε = 2(1+ε)·n, for a small constant ε > 0.

Previous works deduced superfast derandomization from hard functions whose
truth-tables can be printed quickly (i.e., they have bounded amortized complexity;
see, e.g., [CT21b]). The assumptions above are more relaxed: We only require recog-
nizing the truth-table (rather than printing it), we allow non-determinism (i.e., proof)
in recognizing the truth-table, and we allow for a collection of hard truth-tables per
input length, rather than just a single hard truth-table per input length.

1.1.1 Superfast derandomization ofMA

Our first result is a derandomization of MA that induces a (near-)quadratic time
overhead. This derandomization is (conditionally) tight, and it relies on the existence
of constructive properties that are useful against NP ∩ coNP machines that receive
near-maximal non-uniform advice. That is:

Theorem 1.1 (quadratic derandomization ofMA and useful properties). For every ε >
0 there exists δ > 0 such that the following holds. Assume that there exists anNT IME [N2+ε/4]-
constructive property useful against (N ∩ coN)T IME [2(2−δ)·n]/2(1−δ)·n. Then,

prMAT IME [T] ⊆ prNT IME [T2+ε] .

We stress that, in contrast to derandomization of prBPP , for MA the quadratic
time overhead above might be unavoidable. Specifically, under the assumption #NSETH,
for every ε > 0 we have that MAT IME [T] 6⊆ NT IME [T2−ε]. For details and a
more general statement, see Assumption 3.20 and Theorem 6.1.

The technical result underlying Theorem 1.1 is stronger: It allows for derandom-
ization of prBPP , under hypotheses that compare favorably to ones needed to get
similar conclusions in previous works [DMO+20; CT21b]; see Section 1.3 for details.

1.1.2 Superfast derandomization of AM

Our second main result is a derandomization of AMT IME [
c][T], for any constant
number c ∈ N of turns, that is (conditionally) tight. Loosely speaking, we prove
that any such protocol can be simulated in non-deterministic time ≈ Tc/2, assuming
that for every k ≥ 1 there are constructive properties that can be recognized in time

3We also assume non-triviality, i.e. for every n ∈N the property Π contains functions on n input bits.

2

Nk = 2k·n and are useful against verifiers with running time 2(1−δ)·k·n that receive
near-maximal non-uniform advice. In more detail:

Theorem 1.2 (superfast derandomization of AM; see Corollary 5.19). For every ε > 0
there exists δ > 0 such that the following holds. Assume that:

1. There exists an NT IME [N1+ε/3]-constructive property L1 that is useful against
MAT IMESAT[2(1−δ)·n]/2(1−δ)·n.4

2. For every k > 1 there exists an NT IME [Nk+ε/3]-constructive property Lk that is
useful against (N ∩ coN)T IME [2(1−δ)·k·n]/2(1−δ)·n.

Then, for every polynomial T and constant c ∈N it holds that

prAMT IME [
c][T] ⊆ prNT IME [n · Tdc/2e+ε] .

Moreover, if we only want to derandomize prAMT IME [
c][T] verifiers with perfect
completeness (in non-deterministic time n · Tdc/2e+ε as above), then it suffices to assume that
L1 is useful againstMAM[2(1−δ)·n]/2(1−δ)·n.

Similarly to Theorem 1.1, the conclusions in Theorem 1.2 are tight, assuming
#NSETH (see Theorem 6.2). Moreover, the hardness assumption is quite mild com-
pared to what one might expect; let us explain why we claim so. Recall that in classical
results, to derandomize AM we assume lower bounds for the non-uniform analogue
of NP ∩ coNP (see, e.g., [SU05]). The assumption above about Lk is simply an exten-
sion of the classical assumptions to “higher” time bounds (of the form 2k·n) and with a
narrow gap between the upper-bound and lower-bound (as one can expect when de-
ducing superfast derandomization). Our assumption about L1 is for a stronger class,
namely the non-uniform analogue of MANP (or of MAM). However, this assump-
tion suffices to optimally derandomize AM with any constant number of turns.

The hardness assumption for “high” time bounds 2k·n is quantitatively reminiscent
of a hardness assumption from [CT21b] that was used to deduce that prBPT IME [T] ⊆
prDT IME [n · T1+ε]. However, the latter result also needed an additional hardness
assumption, namely the existence of one-way functions; in contrast, in Theorem 1.2
we do not rely on any cryptographic assumption. In fact, similarly to Section 1.1.1, the
techniques underlying Theorem 1.2 also extend to the setting of derandomization of
prBPP , and allow us to deduce a conclusion as in [CT21b] without cryptographic
assumptions. For further details see Section 1.3.

1.1.3 Uniform tradeoffs for AM∩ coAM

The results above relied on hardness for protocols that use a large number of non-
uniform advice bits. Classical results were able to deduce derandomization of the
more restricted class AM∩ coAM relying only on hardness assumptions for uniform
protocols (see, e.g., [GSTS03; SU07]).

Indeed, we are able to show an “extreme high-end” analogue of these results too.
Assuming that there exists a function whose truth-tables can be recognized in near-
linear time but that is hard for 7-round protocols running in time 2(1−δ)·n, we show
that AM∩ coAM can be derandomized with only a quadratic time overhead:

4For a definition ofMAT IMESAT see Definition 5.4.

3

Theorem 1.3 (uniform tradeoffs for superfast derandomization). For every ε > 0 there
exists δ > 0 such that the following holds. Assume that there exists L /∈ i.o.(MA ∩
coMA)T IME [
7][2(1−δ)·n] such that truth-tables of L of length N = 2n can be recognized
in non-deterministic time N1+ε/3. 5 Then, for every time-computable T it holds that

(AM∩ coAM)T IMEp[T] ⊆ (N ∩ coN)T IME [T2+ε] ,

where the subscript “p” indicates protocols that have perfect completeness (see Definition 3.6).

Needless to say, hardness for protocols with constantly many rounds did not ap-
pear in previous results [GSTS03; SU07], and this is because previous results did not
consider fine-grained time bounds (in which case constantly many rounds can be sim-
ulated by two rounds [BM88]).

1.2 A lunch that looks free: Deterministic effective argument systems

In two previous works [CT21b; CT21a], the way to bypass the #NSETH barrier and
obtain faster derandomization results was to consider derandomization that is allowed
to err, but errors are infeasible to find (i.e., no efficient algorithm can find errors), and
(in [CT21a]) to achieve such derandomization by crucially relying on new non-black-
box techniques. In the current work we follow in the same vein.

1.2.1 A general notion: Deterministic effective argument systems

In proof systems such as AM, soundness is guaranteed for every input, and against
every possible prover strategy. The classical relaxed notion of argument systems, intro-
duced in [BCC88; BC86] (see also [Kil92; Mic00]), only requires computational sound-
ness, in the sense that for every input, soundness is only guaranteed against efficient
adversaries (usually modeled as circuits of bounded size).

We initiate a study of e�ective argument systems, which are argument systems in
which the soundness condition is further relaxed: Instead of requiring soundness on
every input, we only require soundness on inputs that can be efficiently found. That
is, we model the adversary as an efficient uniform algorithm, and assert that no such
algorithm can find an input and implement a proof strategy such that the verifier will
be misled.6 This models a real-world scenario in which bad inputs might exist, but
they are extremely unlikely to be encountered (by efficient procedures).

Our main question about such systems is in the context of derandomization: Can
we derandomize interactive proof systems into deterministic, e�ective argument systems,
while avoiding the time overhead incurred in Section 1.1.2? Note that in deterministic
effective argument system there is no interaction (since the verifier is deterministic),
and thus it is an NP-type system with a computational soundness condition.

Definition 1.4 (deterministic effective argument system). We say that L ⊆ {0, 1}∗ is in
deARG[T] if there exists a deterministic T-time verifier V such that the following holds:

1. (Completeness.) There is an algorithm P that, when given x ∈ L, runs in time
poly(T) and prints π such that V(x, π) = 1.

5That is, we have that tt(L) ∈ NT IME [N1+ε/3], where tt(L) =
{

fn ∈ {0, 1}N=2n}
n∈N

and fn is the
truth-table of L on n-bit inputs.

6Note that the notion of “efficiently finding a bad input” is meaningful only for uniform adversaries,
because a non-uniform adversary can always hard-wire a bad input.

4

2. (Computational soundness.) For every polynomial p, and every probabilistic algo-
rithm P̃ running in time p(T), and every sufficiently large n ∈ N, the probability that
P̃(1n) prints x /∈ L of length n and π ∈ {0, 1}T(n) such that V(x, π) = 1 is T(n)−ω(1).

Note that the (honest) prover in Definition 1.4 is required to be efficient; just as in
classical argument systems, this is necessary for the definition to make sense.7 How-
ever (again, analogously to classical argument systems) one can extend Definition 1.4
and equip the honest prover with a witness in an underlying relation, in order to con-
struct deterministic effective argument systems for NP-relations. As explained in
Remark 7.6, our results indeed extend to work in the latter model; we present our
results in the more restricted model of Definition 1.4 for simplicity, and because we
are aware of more appealing applications in this model.

1.2.2 Derandomizing doubly efficient proofs into deterministic effective arguments

Recall that doubly e�cient proof systems, introduced by Goldwasser, Kalai, and Roth-
blum [GKR15] (for a survey see [Gol18]), are proof systems in which the verifier is
very fast (say, runs in quasilinear time) and the honest prover is slower, but still effi-
cient (say, runs in polynomial time). Extending the original definition to work with
a general time bound T, we denote by deIP [
c][T] the class of problems solvable by
proof systems with c turns of interaction, a verifier that runs in time T, and an honest
prover with perfect completeness that runs in time poly(T) (see Definition 3.7).

Our main result in this section is that, under strong hardness hypotheses, every
constant-round doubly efficient proof system can be simulated by a deterministic effective
argument system with essentially no time overhead. We stress that even if we start with
a system that has many turns of interaction, after this simulation we still end up with
an NP-type verifier that has essentially the same time complexity.

As a first step, let us consider deIP [
c][T] protocols in which the verifier uses
only R(n) � T(n) random coins, and denote the class of problems solvable by such
protocols by deIP [
c][T, R]. We simulate any such protocol by a deterministic effective
argument system with time overhead poly(R), under a strong hardness assumption.

Theorem 1.5 (“free lunch” derandomization of doubly efficient proof systems that use
few random coins; see Theorem 7.4). Let c ∈ N, and let T(n) ≥ n and R(n) < T(n) be
time-computable and non-decreasing. Assume that there exist α, β ∈ (0, 1) and f : {0, 1}N →
{0, 1}K, where N = N(n) = n + c · T and K = K(n) = poly(R(n)), such that:

1. (Each output bit is computable in time T̄.) There exists a deterministic algorithm
that gets input (z, i) ∈ {0, 1}N × [K] and outputs the ith bit of f (z) in time T̄ = T · K.

2. (The entire output string cannot be approximately-printed in time T̄ · Kβ with
a restricted oracle.) For every oracle machine M that runs in time T̄ · Kβ and makes
oracle queries of length O(T), and every O ∈ prAMT IME [
c][n], and every dis-
tribution z over {0, 1}N that is samplable in time poly(T), with probability at least
1− (T̄)−ω(1) over choice of z ∼ z it holds that Pr[MO(z)i 6= f (z)i] ≥ α, where the
probability is over i ∈ [K] and the random coins of M.8

Then deIP [
c][T, R] ⊆ deARG[T · poly(R)].

7Otherwise the definition would be too relaxed, potentially allowing the class to contain all problems
(even uncomputable ones); see Section 3.3 for further discussion.

8Note that the AMT IME [
c] oracle O gets queries of length O(T), and the time bound for its
verifier is linear in its input length O(T).

5

Recall that Reingold, Rothblum, and Rothblum [RRR21] constructed a constant-
round doubly efficient proof system for every problem that can be decided in polyno-
mial time and with small space (say, space nδ for a small δ > 0). In their proof system,
the verifier runs in near-linear time, and uses only nO(δ) random coins. Thus, as an
immediate corollary of Theorem 1.5 and of their result, we have that:

Corollary 1.6 (NP-type arguments for a subclass of P). For every ε > 0 there exist
δ > 0 and c ∈ N such that the following holds. Assume that the hypothesis of Theorem 1.5
holds for the constant c and for T(n) = Õ(n) and R(n) = nO(δ). Then,

DT ISP [poly, nδ] ⊆ deARG[n1+ε] ,

where DT ISP [poly, nδ] is the class of sets decidable in time poly(n) and space nδ.

For R(n) ≤ no(1), the derandomization overhead in Theorem 1.5 essentially does
not depend on the number of turns. This suggests the following generic algorith-
mic approach: First use a protocol with R coins and many turns to solve a problem
quickly (for problems solvable by such a protocol), and then simulate this protocol by
a deterministic effective argument system with essentially the same complexity.

We show one striking case where this algorithmic approach bears fruit: Counting
the number of solutions of a given Boolean formula (i.e., solving #SAT). An interactive
protocol for this task was shown by Williams [Wil16], based on the classical sumcheck
protocol, and this protocol works in time 2ε·n when the number of turns is O(1/ε).
Under an assumption similar to the one in Theorem 1.5 (in fact more relaxed, using
particular properties of this proof system), we show that Williams’ protocol can be
derandomized to obtain a NP-type verifier that counts the number of solutions of an n-bit
formula in time 2ε·n, where ε > 0 can be an arbitrarily small constant, while maintaining
computational soundness against adversaries running in time 2O(n).9

Theorem 1.7 (effectively certifying #SAT in deterministic time 2ε·n; see Theorem 7.8).
Assume that for every constant c ∈ N there exist α, β ∈ (0, 1) and a function f : {0, 1}N →
{0, 1}K, where N = N(n) = n + c · T and K = K(n) = nΩc,α,β(1), such that:

1. (Each output bit is computable in time T̄.) There exists a deterministic algorithm
that gets input (z, i) ∈ {0, 1}N × [K] and outputs the ith bit of f (z) in time T̄ = T · K.

2. (The entire output string cannot be approximately-printed in time T̄ · Kβ with
a restricted oracle.) For every oracle machine M that runs in time T̄ · Kβ and makes
oracle queries of length O(T), and every O ∈ pr-deIP [
c][n], and every distribution z
over {0, 1}N that is samplable in time poly(T), with probability at least 1− (T̄)−ω(1)

over choice of z ∼ z it holds that Pr[MO(z)i 6= f (z)i] ≥ α, where the probability is over
i ∈ [K] and the random coins of M.

Then, for every ε > 0 there is a deterministic verifier V that gets as input an n-bit formula
Φ of size at most 2o(n), runs in time 2ε·n, and satisfies the following:

1. (Completeness.) There is an algorithm that, given any input formula Φ as above, runs
in time 2O(n) and outputs a proof π such that V(Φ, π) = #SAT(Φ).10

9A similar result can be proved as a corollary of Corollary 1.6, using the fact that #SAT of n-bit
formulas of size 2o(n) can be solved in time poly(N) and space No(1), where N = 2ε·n. However, working
with the proof system of [Wil16] rather than that of [RRR21] allows us to rely on a weaker hypothesis.

10We denote by #SAT(Φ) the number of assignments that satisfy the formula Φ.

6

2. (Computational soundness.) For every probabilistic algorithm P̃ running in time
2O(n), the probability that P̃(1n) prints an n-bit formula Φ of size 2o(n) and proof π
such that V(Φ, π) /∈ {⊥, #SAT(Φ)} is 2−ω(n).

We remind the reader that constructing a verifier as above without the relaxation of
computational hardness (i.e., a verifier that is sound for all inputs and with any proof)
is believed to be impossible; this is known as the #NETH assumption, which is weaker
than the “strong” version #NSETH mentioned above. To the best of our knowledge,
the existence of a verifier such as the one in Theorem 1.7 was not conjectured before.

The hardness hypothesis. The crux of the hardness hypothesis in Theorems 1.5
and 1.7 is a non-batch-computability phenomenon: Fixing a function f with K output
bits, where each bit is computable in time T̄, we assume that the entire K-bit string
cannot be printed in time T̄ · Kβ. Of course, a trivial algorithm can print the entire
string in time T̄ · K, but it seems very plausible that for some functions, a significant
improvement on this running time isn’t possible. The latter statement is known as a
strong direct-product assumption, and our version – which only assumes a lower bound
of T̄ · Kβ rather than close to T̄ · K – can be thought of as a mildly strong direct-product

assumption. (Indeed, a mildly-strong direct-product hypothesis was used in previous
work [CT21a], where it was shown to be necessary for “free lunch” derandomization
in limited special cases [CT21a, Section 6.3].)

The hardness hypothesis in Theorems 1.5 and 1.7 is stronger than the one described
above, in several aspects. First, it assumes average-case hardness over all polynomial-
time samplable distributions, rather than only worst-case hardness (or only average-
case hardness under the uniform distribution). Secondly, it assumes hardness of print-
ing even a “corrupted” version of the output string, rather than only hardness of
printing the output string precisely. And lastly, it assumes hardness for algorithms
running in time T̄ · Kβ that issue oracle queries of length O(T) to linear-time verifiers
in constant-round protocols (i.e., to AMT IME [
c][O(n)], or to deIP [
c][O(n)]).

While the latter oracle access might seem strong, we stress that it does not even
seem to suffice to compute a single output bit of f ; this is because the protocol gets
queries of length O(T) and runs in time linear in O(T), whereas computing each of
the output bits of f is only assumed possible in time T̄ = T · K > T. In fact, for this
reason, even a stronger hypothesis in which the oracle is a linear-space machine (rather
than a constant-round interactive protocol with a linear-time verifier) still seems plau-
sible. We refer the reader to Section 7.2.1 for a detailed discussion, which includes a
comparison of the hypothesis with known results about batch-computing functions by
interactive protocols, by Reingold, Rothblum and Rothblum [RRR21; RRR18].

An additional relaxation. For the special case of #SAT (i.e., Theorem 1.7), if the given
n-bit formula is only of size poly(n) rather than 2o(n), we can further relax the hardness
hypothesis: Instead of allowing the algorithm to make queries of length O(T) to a
pr-deIP [
c][n] oracle, the theorem holds even if we only allow it queries to #SAT with
a formula over O(log(T)) variables and of size polylog(T) (see Theorem 7.9).

1.2.3 The general case

Finally, we turn to the general case of simulating doubly efficient proof systems (with-
out restricting the number of random coins) by deterministic effective argument sys-
tems. We show how to do so under an additional hardness hypothesis (on top of the

7

one in Theorem 1.5), which refers to hardness for interactive protocols with constantly
many rounds and near-maximal advice.

Theorem 1.8 (“free lunch” derandomization of general doubly efficient proof systems;
informal, see Corollary 7.12). For every α, β, ε ∈ (0, 1) there exist η, δ > 0 such that for
every polynomial T(n) and constant c ∈N the following holds. Assume that:

1. The hardness hypothesis in Theorem 1.5 holds for the constant c and time bound T1+ε/2

and R = TΩε(1) random coins.

2. There exists Lhard /∈ MAT IME [
c+1][2(1−δ)·n]/2(1−δ)·n such that given n ∈ N, the
truth-table of Lhard of n-bit inputs can be printed in time 2(1+ε/3)·n.

Then, deIP [
c][T] ⊆ deARG[T1+ε].

The additional hypothesis in Theorem 1.8 (i.e., the one in Item (2)) can be viewed
as a strengthening of assumptions used in previous works [DMO+20; CT21b] and
in the “moreover” part of Theorem 1.2, all of which assume hardness for interactive
protocols with near-maximal amount of advice. The strengthening is because we con-
sider hardness for protocols with c + 1 turns (rather than 2 or 3 turns as in previous
works and in Theorem 1.2), and the upper-bound on the complexity of truth-tables
is stronger: It is deterministic (rather than non-deterministic as in Theorem 1.2) and
refers to time slightly larger than 2n (rather than time 22n as in previous works).

1.2.4 Perspective: A complexity-theoretic analysis of the Fiat-Shamir heuristic

Recall that in cryptography, the Fiat-Shamir heuristic [FS86] is an algorithmic tech-
nique used to reduce interaction in proof systems: The verifier first chooses a suit-
able hash function h and sends it to the prover, and the prover sends back the entire
transcript of interaction, when the verifier’s answers at each step are determined by
applying h to the existing partial transcript at that step. The hope is that the resulting
two-turn protocol will be computationally sound (i.e., an argument system).

The Fiat-Shamir heuristic is secure when the hash function is modeled as a ran-
dom oracle (i.e., in the random oracle model; see [BR93; PS96; BCS16]). However,
in the standard model, its security can only be established for certain subclasses of
proof/argument systems.11 Known results establish it under cryptographic assump-
tions (such as Learning With Errors; see [PS19; CCH+19; HLR21; CJJ21] and the refer-
ences therein), which are all stronger than the existence of one-way functions.

The conclusions in Theorems 1.5 and 1.8 are reminiscent of results in this line of
works, since our derandomization eliminates the interaction in certain proof systems.
In fact, even the underlying technique bears some similarity to the Fiat-Shamir heuris-
tic – to prove our results we apply a targeted PRG to the partial transcript at each turn
(this radically reduces the number of random coins of the verifier; see Section 2.3).

The main difference is that our results only rely on complexity-theoretic assumptions,
and in particular do not even assume the existence of one-way functions. Two addi-
tional differences are that in our results, the number of turns is one rather than two
(i.e., we obtain a deterministic NP-type system rather than a system with a common
random string); and that the soundness condition in our argument systems is relaxed,
allowing failure on some inputs (as long as those inputs cannot be efficiently found).

11Readers are referred to [Bar01; GK03; BBH+19] for examples of interactive argument systems such
that the corresponding Fiat-Shamir heuristic is unsecure for any choice of hash function.

8

1.3 Implications for derandomization of prBPP
The proof techniques from Section 1.1 apply in the setting of worst-case derandom-
ization of prBPP , and in this setting they yield results that compare favorably to
previous works. In the prBPP setting we replace the assumptions about useful prop-
erties with assumptions that truth-tables of hard functions can be efficiently printed.
(This is since our derandomization algorithm cannot guess-and-verify a hard truth-
table, but needs to efficiently print it.) It is useful to think of an algorithm that prints
a truth-table of a function as “batch-computing” the function.

The techniques underlying Theorem 1.1 extend to show a quadratic-time deran-
domization of prBPP , assuming that a function whose truth-tables can be printed in
time 2(2+ε/3)·n is hard for NT IME [2(2−δ)·n]/2(1−δ)·n (see Theorem 4.3).12 This com-
pares favorably to two relevant results in the previous works [DMO+20; CT21b], as
follows. (In the table below, the upper-bound is for a deterministic algorithm that
prints the truth-table of the hard function on n bits.)

Upper bound Lower bound Time overhead

2(2+Θ(ε))·n NT IME [2(2−δ)·n]/2(1−δ)·n T2+ε Theorem 4.3

2(2+Θ(ε))·n MAT IME [2(1−δ)·n]/2(1−δ)·n T2+ε [DMO+20]

2(3/2)·n NT IME [2(1−δ)·n]/2(1−δ)·n T3+ε [CT21b, Thm 1.8]

While the three results above are formally incomparable, in the current work we
are able to obtain derandomization with quadratic time overhead from hardness for
NT IME machines with advice, whereas previous works either assumed hardness
forMAT IME machines with advice, or paid a cubic time overhead.

Moreover, the techniques underlying Theorem 1.2 extend to yield the conclusion
prBPT IME [T] ⊆ prDT IME [n · T1+ε], which is optimal under #NSETH, under an
assumption that compares favorably to the one used to obtain derandomization with
such overhead in previous work [CT21b]. The previous work obtained this conclusion
using a cryptographic assumption (the existence of one-way functions) as well as a
hardness assumption that is necessary for obtaining the conclusion using PRGs. In
the current work we are able to replace the cryptographic assumption with a hardness
assumption forMA protocols with advice (see Theorem 5.6 for precise details).

2 Technical overview

Most of the proofs in this work sequentially build on the ideas of each other, and
therefore we encourage readers read the current section sequentially.

In Section 2.1 we describe the simplest proof, which is of Theorem 1.1. Then in
Section 2.2 we build on this proof to prove Theorem 1.2. In Section 2.3 we describe
the more involved proofs in this paper, which are for the results Section 1.2; these are
inherently different from other proofs, and use non-black-box techniques while also
relying on the previous proofs. We conclude by explaining the proof of Theorem 1.3
in Section 2.4 (this proof does not rely on Section 2.3).

12For simplicity, in this section we assert lower bounds for NT IME and MAT IME . The results
that we mention only require hardness for (N ∩ coN)T IME and (MA∩ coMA)T IME , respectively.

9

Basic building-block: A simple and efficient PRG. The starting point for our re-
sults is a very simple PRG, which was recently used for superfast derandomization
in [DMO+20; CT21b]. (Its ideas date back to [Sip88] and variations on them have been
used for derandomization of proof systems, e.g. [MV05].) Recall that a reconstructive

PRG is a pair of efficient algorithms: A generator Gen maps a truth-table f to a list
Gen f of strings; and a reconstruction Rec maps every distinguisher D for Gen f to an
efficient procedure RecD that computes f . 13 Indeed, if f is hard for algorithms with
complexity as that of RecD, then it follows that Gen f is pseudorandom.

The reconstructive PRG (Gen,Rec) that we use has the following properties, for
an arbitrarily small ε > 0. Given f , the generator Gen runs in near-linear time | f |1+ε

and outputs | f |1+ε/T strings of length T = | f |1−ε, and is thus particularly suitable
for superfast derandomization. In contrast, the reconstruction Rec is inefficient: It
is a non-deterministic circuit of size | f |1−δ(ε), and in addition it only works when the
distinguisher D : {0, 1}T → {0, 1} is extremely biased; that is, it works when D accepts
all but 2T1−γ(ε)

strings and yet rejects 1% of the strings in Gen f .14

Preliminary observations: Using the building-block for derandomizing proof sys-
tems. Since the reconstruction Rec is non-deterministic, we need to assume hardness
for non-deterministic procedures. In the context of derandomizing proof systems,
such assumptions are natural. In addition, the natural way to use Gen for derandom-
izing proof systems is to receive a truth-table f from a prover, verify that f is indeed
hard (using an assumption that there is a constructive and useful property), and then
instantiate the PRG Gen f ; we will indeed use this approach in some proofs.

2.1 Warm-up: Proof of Theorem 1.1

As usual in derandomization ofMAT IME [T], we think of the distinguisher D : {0, 1}T →
{0, 1} as a linear-sized circuit (representing the computation of the MA verifier on a
fixed input and a fixed proof, as a function of the randomness). The main bottleneck
in previous proofs [DMO+20; CT21b] that used (Gen,Rec) came from the fact that Gen
only fools extremely biased distinguishers, whereas our goal is to construct a PRG
that fools all distinguishers. In previous works this was bridged by straightforward
error-reduction: They considered a procedure D̂(z) that uses a randomness-efficient
sampler Samp and verifies that z satisfies

Pr
i∈[T1.01]

[D(Samp(z, i)) = 1] ≈ Pr
r∈{0,1}T

[D(r) = 1] ,

and noted that if Gen f fools D̂, then S ◦ Gen f =
{
Samp(z, s) : z ∈ Gen f , s ∈ [T1.01]

}
fools D. The number of pseudorandom strings that S ◦ Gen f outputs is | f |1+ε · T0.01.
(See Proposition 4.1 for details and [CT21b, Section 5.2] for a detailed explanation.)

To see why this is a bottleneck, note that the resulting D̂ is of size O(T2.01) (because
Samp uses T1.01 seeds s), and thus RecD̂ will be a non-deterministic circuit of size at
least T2.01. If we want f to be hard for such circuits, we need | f | > T2.01 and the
number of pseudorandom strings is at least T2.01. Evaluating D on each string, this

13When we say that D is a distinguisher for a list Gen f ⊆ {0, 1}n, we mean that D distinguishes the
uniform distribution over the list Gen f from a truly uniform n-bit string.

14Thus, the reconstructive PRG (Gen,Rec) is particularly suitable for the task of quantified derandomiza-
tion; see [GW14; DMO+20; CT21b; Tel22] for further details about this application.

10

yields derandomization in time > T3.15

The observation leading the way to Theorem 1.1 is that we do not really need f to
be hard for non-deterministic circuits of size T2.01. Specifically, the overhead incurred
when adding a sampler to D to obtain D̂ is only an overhead in running time, and not
in the amount of non-uniform advice. Thus, it suffices to assume hardness only for
non-deterministic algorithms that run in time T2.01 and use T + | f |1−δ(ε) bits of advice.16

This allows using a hard truth-table of size only | f | = T1.01 (recall that a random truth-
table of such length will be hard for the foregoing class), in which case the number of
pseudorandom strings is only T1.01 and we obtain derandomization in quadratic time.
(Recall that, conditioned on #NSETH, this is optimal; see Theorem 6.1.)

2.2 Proof of Theorem 1.2

Turning to AM protocols, let V be an AMT IME [T] verifier, for T(n) = nk. Our
goal is to derandomize V in NT IME [n · T1.01]. (The general case of protocols with
constantly-many turns reduces to this case, by a careful application of the classical
round-reduction procedure of Babai and Moran [BM88]; see Section 5.4 for details.)

The approach above yields derandomization in quadratic time, which is too slow.
The main idea in the proof is to compose the generator S ◦ Gen with itself, using different
hard truth-tables, to get a PRG with only n1.01 seeds (rather than T1.01 seeds):17

• Outer PRG: We first use S ◦ Gen f1 with a truth-table of size | f1| = T1.01 to trans-
form V into a verifier V ′ with running time T1.01 that uses only O(log T) random
coins. This truth-table comes from the useful property L1.

• Inner PRG: Then we use S ◦ Gen f2 with a much shorter truth-table, of size | f2| =
n1.01, to fully derandomize V ′, using a seed of length (1.01) · log(n). This truth-
table comes from the useful property Lk′ , for a suitable value k′ ≈ k.

The composition of these PRGs runs in time that is near-linear in T, and has seed
length close to log(n), yielding derandomization in time n · T1.01. The main thing to
prove is that the PRGs are pseudorandom, relying on the usefulness of L1 and Lk′ .

First step: Hardness for non-uniform MAM. For simplicity, let us focus on pro-
tocols with perfect completeness, and as a first step assume that for all k ≥ 1, the
property Lk is useful againstMAM[2(1−δ)·k·n]/2(1−δ)·n.

We will use the following refined version of (S ◦ Gen,Rec). Since we are assuming
hardness for probabilistic procedures (and following an idea from [DMO+20]), the
reconstruction can now compute D̂ probabilistically rather than deterministically; this
allows us to use only a small number ≈ T.01 of queries to D, rather than N1.01, and thus
reduce the running time of RecD to be close to T rather than to T2. Furthermore, we
observe that the reconstruction Rec does not actually need “true” oracle access to D: Loosely
speaking, it suffices to prove to Rec that a significant fraction α > 0 of its queries are
accepted by D. (This is a simplified description, and the precise formulation is more
involved; see Propositions 5.1 and 5.3 for precise details.)

15An alternative approach from these works is to allow D̂ to use randomness, in which case it is only
of size O(N) and the derandomization runs in quadratic time. However, this requires assuming that f is
hard for non-uniformMA circuits, an assumption we are trying to avoid.

16The additive term of T represents the proof sent to theMA verifier, which is “hard-wired” into D.
17This approach follows an idea from [CT21b], wherein superfast derandomization was achieved by

composing two PRGs in a similar way. However, in [CT21b] one of the PRGs relied on cryptographic
assumptions, whereas in this work there are no cryptographic assumptions.

11

Recall that when derandomizing AM, the distinguisher D is a non-deterministic
procedure.18 OurMAM reconstruction algorithm for both f1 and f2 simulates RecD̂,
as follows. We first receive a proof w from the prover, which we use as the non-
determinism of Rec; now, we toss random coins to choose T.01 queries for D (to com-
pute D̂ probabilistically, as explained above) and send these coins to the prover; and
finally, instead of querying D, the prover sends back a proof π, which we hope will
convince us that at least a α of the queries would have been accepted by D.

The analysis of thisMAM protocol relies on the refined properties of Rec (e.g., one
such property is that for any w sent in the first turn, with high probability over choice
of queries, if π convinces us that at least α of the queries would have been accepted by
D, then we output either the correct decision or ⊥; see Proposition 5.3). The protocol
runs in time T1.01 = n(1.01)·k; carefully setting the parameters, the running time equals
| f1|1−δ and | f2|(1−δ)·k, and in both cases it uses | fi|1−δ bits of advice, matching our
hardness assumption. For details see Propositions 5.5 and 5.7.

Relaxing the hypothesis: Hardness for non-uniform NP ∩ coNP . Recall that in
Theorem 1.2, for k > 1 we only assume that Lk is useful against the class (N ∩
coN)T IME [2(1−δ)·k·n]/2(1−δ)·n. To relax the hypothesis in this way, we replace the
inner PRG S ◦ Gen f2 above with the Nisan-Wigderson generator [NW94]. This can be
useful for us, because the NW generator is suitable for our superfast parameter setting
when it is instantiated for a small output length (i.e., | f |η where | f | is the truth-table
length and η � ε is a sufficiently small constant; see Theorem 5.16), and S ◦ Gen f1

reduces the number of random coins to O(log(T)) = O(log(n)).
The main obstacle towards applying the NW generator in this setting is that it

requires hardness against machines with advice and (non-adaptive) oracle access to
NT IME (i.e., to the distinguisher, which in this case is an NT IME machine),
whereas we only assume hardness against (N ∩ coN)T IME machines with advice.
To bridge this gap, we use an idea of Shaltiel and Umans [SU06] (following [FF93;
SU05]), which allows to transform truth-tables that are hard for (N ∩ coN)T IME
machines with advice into truth-tables that are hard for machines with advice and
non-adaptive oracle access to NT IME . We use their transformation while analyzing
it in a more careful way, which allows us to bound the overheads in the hardness of
the truth-table incurred by the transformation. See Section 5.3.2 for further details.

2.3 Proofs of the results from Section 1.2

Our goal now is to simulate constant-round doubly efficient proof systems in which
the verifier runs in time T by deterministic effective argument systems with a verifier
running in time very close to T. The natural approach to try to do so is to replace the
coins at each round by pseudorandom coins chosen using a suitable PRG (i.e., at each
round we independently choose a seed for a PRG, instead of truly random coins), and
argue that for any partial transcript (up to that round), the residual probability that
the verifier accepts remains the same as it would with truly random coins.

18That is, the distinguisher receives an input x and random coins r in the AM protocol, and tests
whether there exists a proof that will convince the verifier with the fixed (x, r). In works concerning
derandomization of AM with perfect completeness, the output of D is often negated, and it is then
thought of as co-nondeterministic circuit. (This is because these works want to “hit” the set of random
strings for which satisfying witnesses do not exist, and want to define this set as the set of inputs that
the distinguisher accepts.) We avoid doing so, since our result also extends to protocols with imperfect
completeness, and we think of our construction as a PRG rather than as a HSG.

12

Unfortunately, the classical PRG approach cannot yield such a fast derandomization.
This is since at each round, the distinguisher receives T bits of arbitrary auxiliary in-
formation (i.e., the partial transcript): This warrants using a seed of length at least
log(T) at each round, yielding derandomization in time TΘ(c). One might try to cap-
italize on the fact that we are only trying to obtain an effective argument system, in
which case the partial transcript is not arbitrary, but rather comes from a poly(T)-time
samplable distribution (i.e., since the input and proofs are chosen by an efficient ad-
versary). However, this still does not solve our problem, since there is no PRG running
in time T1.01 with seed o(log(T)) that fools all algorithms running in time poly(T).

Non-black-box derandomization. The source of trouble in both approaches above is
that they try to use a single PRG that is good for all relevant partial transcripts. To solve
this, we will use a weaker object, namely a targeted pseudorandom generator (targeted

PRG): This targeted PRG explicitly receives the partial transcript as part of its input, and
generates pseudorandom strings that are only guaranteed to fool distinguishers that
are given the same partial transcript as auxiliary information.

Our targeted PRG will be reconstructive (i.e., based on a hard function), and will
thus yield an “instance-wise” hardness-vs-randomness tradeoff: If the underlying
function is hard to compute on a set S of inputs, then the targeted PRG is pseu-
dorandom on each and every input in S. The specific generator that we will use,
from [CT21a], is denoted G f and relies on a function f : {0, 1}∗ → {0, 1}∗ with multiple
output bits such that each individual output bit of the string f (z) can be computed in
time T′; and it has the following “instance-wise” reconstruction algorithm Rec:

For every fixed input z, if D distinguishes the output of G f (z) from ran-
dom strings, then RecD(z) approximately prints the string f (z) in time
T′ · | f (x)|β, where β > 0 is an arbitrarily small constant.19

As usual, the contra-positive direction is the interesting one: If RecD(z) fails to
approximately print f (z) on 1− µ of its inputs z over some distribution, then G f (z) is
pseudorandom for 1− µ of the z’s over that distribution. Recall that we think of z as a
transcript chosen by the poly(T)-time prover, which yields a poly(T)-time samplable
distribution. Thus, at a high level, we assume that f is hard to approximately print
with probability 1− T−ω(1) over z chosen from any poly(T)-time samplable distribu-
tion, and deduce that G f is pseudorandom (and the derandomization succeeds) on all
but T−ω(1) of possible inputs and transcripts chosen by a poly(T)-time adversary.

The key step: Proof of Theorem 1.5. We start by derandomizing deIP [
c] protocols
with few random coins, say no(1) coins. In this setting we can use f that has no(1)

output bits, where each bit is computable in time T′ that is slightly larger than T; then
G f runs in time T′ · no(1) and prints no(1) random strings (see Theorem 7.1). This allows
us to reduce the total number of random coins to o(log(n)) without increasing the time
complexity. At this point, instead of interacting, the prover can send all possible no(1)

possible transcripts in advance to the verifier, resulting in an NP-type system.
The last step is to consider which hardness assumption we need for f in order for

G f to be pseudorandom. By the above, this hardness assumption is of the form “With
very high probability over z sampled from any poly(T)-time samplable distribution,

19The meaning of “approximately print” here is as in Theorem 1.5: A probabilistic algorithm M ap-
proximately prints f (x) with error δ if Pr[M(x)i = f (xi)] ≥ 1 − δ, where the probability is over the
random coins of M and an output index. For simplicity, we think of δ as a small constant for now.

13

RecD(z) fails to approximately print f (z)”, where Rec is the algorithm described above.
Thus, we just need to figure out which class the distinguisher D belongs to.

Intuitively, the distinguisher D tests whether the acceptance probability of the ver-
ifier changes when replacing random coins by pseudorandom ones. Materializing this
intuition turns out to be considerably more subtle than it might seem, and we do
so using a hybrid argument that involves gradually replacing both random coins by
pseudorandom ones, and an all-powerful prover by a poly(T)-time computable prover,
turn-by-turn. For general deIP [
c] systems, the resulting D is a prAMT IME [
c][n]
protocol, yielding Theorem 1.5 (see the proof of Theorem 7.4 for details). We also show
a natural subclass of systems for which we can get D to be more efficient, namely a
pr-deIP [
c][n] protocol (see Definition 3.8 and Theorem 7.7). And using a particular
system for #SAT, we are able to relax this even further, obtaining D that is the function
#SAT itself, where queries are of length polylog(T) (see Theorem 7.9).

The general case: Proof of Theorem 1.8. We reduce the general case of proof sys-
tems that use an arbitrary number of random coins to the case above (with only
no(1) coins) using an additional hardness assumption, namely that there exist func-
tions whose truth-tables can be printed in near-linear time, but that are hard for
AMT IME [
c+1][2(1−δ)·n]/2(1−δ)·n. We will use this additional assumption to re-
duce the number of random coins in each round from poly(n) to O(log(n)), using
the reconstructive PRG (S ◦ Gen,Rec), and then invoke Theorem 1.5 as a black-box.

The argument here follows in the same spirit as the one above, using a careful hy-
brid argument (and a reconstruction argument) to obtain a contradiction. To support
the setting that is obtained via the hybrid argument, we refine the reconstructive PRG
(S ◦ Gen,Rec) yet again, this time showing that Rec works when the oracle is any func-
tion D̃ that agrees with a certain “distinguisher promise problem”, where the advice
to Rec depends only on the promise problem rather than on D̃. (See Section 7.4.1.)

2.4 Proof of Theorem 1.3

Finally, we briefly explain the ideas in the proof of Theorem 1.3. The most important
change, compared to the proofs of Theorem 1.1 and Theorem 1.2, is that since now
we are only assuming hardness against uniform protocols (our hardness assumption is
that L /∈ i.o.(MA∩ coMA)T IME [
7][2(1−δ)·n]), we need to make the reconstruction
algorithm uniform as well.

We will use yet another refinement of (S ◦ Gen,Rec) above. Recall that the refined
reconstruction Rec gets advice adv, and can then compute the function f whenever
the oracle “proves” to the verifier that sufficiently many queries are accepted by the
distinguisher. Following [MV05; GSTS03; SU07], we strengthen Rec so that it meets a
resiliency condition: Namely, using a small number of rounds of interaction, Rec is able
to get any prover to send advice adv and commit to a single truth-table fadv specified
by the advice.20 That is, given adv and a few rounds of interaction, there is a single
fadv such that Rec answers according to it. Working carefully, we are able to make Rec
resilient without significant time overhead (see Definition 5.2 and Proposition 5.1).

If our reconstruction could be convinced that fadv to which the prover commit-
ted is the “right” truth-table (i.e., fadv = f), then on query x it could simply output
fadv(x). But what if the prover committed to a truth-table different than f ? To resolve
this issue we initially encode f using a highly efficient PCP of proximity (i.e., the one

20To see the challenge, assume that adv is a non-deterministic circuit that supposedly computes the
truth-table. In this case, different non-deterministic guesses could yield different truth-tables.

14

of [BGH+05]), which then allows us to locally test the encoded string without incur-
ring significant time overheads and deduce that fadv is close to f (otherwise we reject;
see Theorem 3.17). We combine this with local error correction, to compute f given
any truth-table that is close to f . The price that we pay for using the PCPP is that the
truth-table (which is now a PCPP witness of the original truth-table) is necessarily of
size T1.01, and thus our PRG uses (1.01) · log(T) seeds and we get derandomization in
quadratic time T2.01 rather than in time n · T1.01.

3 Preliminaries

Throughout the paper, we will typically denote random variables by boldface, and
will denote the uniform distribution over {0, 1}n by un and the uniform distribution
over a set [n] by u[n]. Recall the following standard definition of a distinguisher for
a distribution w, by which we (implicitly) mean a distinguisher between w and the
uniform distribution.

Definition 3.1 (distinguisher). We say that a function D : {0, 1}n → {0, 1} is an ε-
distinguisher for a distribution w over {0, 1}n if Pr[D(w) = 1] /∈ Pr[D(un) = 1] ± ε.
We say that D is an (α, β)-distinguisher if Pr[D(w) = 1] ≥ α and Pr[D(un) = 1] ≤ β.

We also fix a standard notion of “nice” time bounds for complexity classes, where
we are only concerned of time bounds that are not sub-linear.

Definition 3.2 (time bound). We say that T : N → N is a time bound if T is time-
computable and non-decreasing, and for every n ∈N we have that T(n) ≥ n.

Recall that prMAT IME [T] denotes the class of promise problems (rather than lan-
guages) that can be solved by MA protocols with a verifier running in time T. De-
randomization of prMAT IME [T] as in the conclusions of Theorems 1.1 and 1.2 is
stronger than derandomization ofMAT IME [T].

3.1 Useful properties

Following Razborov and Rudich [RR97], we now define useful properties, which are
sets of truth-tables that can be efficiently recognized and that describe functions hard
to compute in a certain class C. Our definition is a bit more careful than usual, since
we are interested in the case where C is a class decidable by uniform machines that
gets non-uniform advice (rather than a class decidable by non-uniform circuits).

Definition 3.3 (useful property). Let L ⊆ {0, 1}∗ be a collection of strings such that every
f ∈ L is of length that is a power of two, and let C be a class of languages. We say that L is a
C ′-constructive property useful against C if the following two conditions hold:

1. (Non-triviality.) For every N = 2n it holds that Ln = L ∩ {0, 1}N 6= ∅.

2. (Constructivity.) L ∈ C ′.

3. (Usefulness.) For every L ∈ C and every sufficiently large n ∈N it holds that Ln /∈ Ln,
where Ln ∈ {0, 1}2n

is the truth-table of L on n-bit inputs.

To clarify the meaning of the “usefulness” condition above, let us consider the case
where C is a class of Turing machines with advice of bounded length. In this case, the
condition asserts that for every fixed machine M and infinite sequence adv of advice

15

strings, and every sufficiently large n ∈ N, the machine M with advice adv fails to
compute any truth-table in Ln.

Since each string in L is of length 2n for some n ∈ N, and we think of it as a
truth-table of a function over n bits, we will usually denote the input length to L as
N = 2n. For example, when we refer to an NT IME [N2]-constructive property useful
against NT IME [21.99·n] we mean that 2n-length truth-tables in L can be recognized
in non-deterministic time 22n, but that the corresponding n-bit functions cannot be
computed in non-deterministic time 21.99·n.

3.2 Proof systems

The following definition refers to non-deterministic unambiguous computation, which
captures non-deterministic computation of both the language and its complement:

Definition 3.4 (non-deterministic unambiguous computation). We say that a machine
M is non-deterministic and unambiguous if for every x ∈ {0, 1}∗ there exists a value L(x) ∈
{0, 1} such that the following holds:

1. There exists a non-deterministic guess π such that M(x, π) = L(x).

2. For every non-deterministic guess π′ it holds that M(x, π′) ∈ {L(x),⊥}.

3.2.1 Arthur-Merlin proof systems

Let us now recall the definition of Arthur-Merlin proof systems (i.e., of AM). Since
we will be concerned with precise time bounds, we also specify the precise structure
of the interaction, as follows.

Definition 3.5 (Arthur-Merlin proof systems). We say that L ∈ AMT IME [
c][T] if
there is a proof system in which on a shared input x ∈ {0, 1}∗, a verifier interacts with a
prover, taking turns in sending each other information, such that the following holds.

• Public coins: Whenever the verifier sends information to the prover, that information is
just uniformly chosen bits.

• Structure of the interaction: The number of turns is c, and we always assume that
the first turn is the verifier sending random bits to the prover.

• Running time: The number of bits that are sent in each turn is exactly T(|x|), and in
the end the verifier performs a deterministic linear-time computation on the transcript
(which is of length c · T(|x|) = O(T(|x|)) and outputs a single bit.

• Completeness and soundness: For every x ∈ L there exists a prover such that the
verifier accepts with probability at least 2/3; for every x /∈ L and every prover, the
verifier rejects, with probability at least 2/3.

Furthermore, if the verifier sends at most R(n) random coins in each round, then we say
that L ∈ AMT IME [
c][T, R]. When L can be decided by an interaction as above in which
the prover takes the first turn, we say that L ∈ MAT IME [
c][T]. In all the definitions
above, when omitting the number of messages c, we mean that c = 2.

Following standard conventions, we will sometimes refer to the verifier as Arthur
and to the prover as Merlin. Note that when c is odd (meaning that the last turn is the
verifier’s), in the last turn the verifier does not need to send any random bits to the

16

verifier, but may run a randomized linear-time computation on the transcript rather
than a deterministic one.21

Recall that AM protocols can be modified to have perfect completeness, at the cost
of a runtime overhead that is multiplicative in the number of random coins used by
the verifier (see [FGM+89], and see further details in the proof of Theorem 7.4). Since
our results are sensitive to such a runtime overhead, we cannot assume without loss of
generality that AM protocols have perfect completeness, and thus we explicitly define
the subclass of protocols with perfect completeness:

Definition 3.6 (perfect completeness). We say that L ∈ AMT IME [
c]
p [T] if it satis-

fies all the conditions in Definition 3.5, and in addition, for every x ∈ L there is a prover
such that the verifier accepts with probability 1. We extend the definition of (AM ∩
coAM)T IME [T] to (AM∩ coAM)T IMEp[T] in a similar way, by requiring that for
every x ∈ L there is a prover such that the verifier accepts with probability 1, and for every
x /∈ L there is a prover such that the verifier rejects with probability 1.

3.2.2 Doubly efficient proof systems

As mentioned in Section 1.2, our derandomization results will apply to proof systems
in which the honest prover is efficient. We define this notion as follows:

Definition 3.7 (doubly efficient proof systems). We say that L ∈ deIP [
c][T] if it meets
all the conditions in Definition 3.5, and in addition meets the following condition: There exists
a probabilistic algorithm P running in time polynomial in T such that for every x ∈ L, when
the verifier interacts with P on common input x, it accepts with probability 1. We define
deIP [
c][T, R] by imposing the additional condition that the verifier only uses R random
coins.

Note that Definition 3.7 focuses on doubly efficient proof systems with public
coins; the known constructions of doubly efficient proof systems all use public coins
(see [GKR15; RRR21; GR18; Gol18]). In addition, one could use a broader definition
that allows the honest prover to run in time T̄ � T that is not necessarily polynomial
in T; in this work the narrower definition will suffice for us.

Doubly efficient proof systems with a universal prover. We will also be interested
in a natural subclass of doubly efficient proof systems, which we now define. Loosely
speaking, we say that a system has an efficient universal prover if for any partial tran-
script, the maximum acceptance probability of the residual protocol across all provers
is (approximately) attained by an efficient prover. That is:

Definition 3.8 (universal provers). Let L ∈ {0, 1}∗ and let V be a verifier in a proof system
for L. For µ : N → [0, 1), we say that the proof system has a µ-approximate universal prover

with running time T̄ if there exists an algorithm P that on any input x and π, where π is a
partial transcript for the proof system, runs in time T̄(|x|), and satisfies that

Pr [〈V, P〉 (x, π) = 1] > max
P̄
{Pr [〈V, P̄〉 (x, π) = 1]} − µ(|x|) ,

where the notation 〈V, P〉 (x, π) denotes the outcome of interaction of V and P on input x and
when the first part of the transcript is fixed to π, and the maximum on the RHS is over all
prover strategies (regardless of their efficiency).

21This is equivalent to the definition above, in which the verifier sends random coins in the last turn
then runs a deterministic linear-time computation on the transcript (which includes these random coins).

17

Note that given x ∈ L, the universal prover acts as an honest prover that convinces
the verifier to accept with probability at least 1 − µ. In particular, a proof system
with an efficient universal prover is a doubly efficient proof system. However, we do
not think of the universal prover as an honest prover, since given x /∈ L or a dishonest
partial transcript, the universal prover still tries to maximize the acceptance probability
of the verifier.

A well-known doubly efficient proof system that has a universal prover is the
sumcheck protocol; see Theorem 3.18 for details.

3.3 Deterministic effective argument systems

Let us now recall Definition 1.4 of deterministic effective argument systems and dis-
cuss a few definitional issues.

Definition 3.9 (deterministic effective argument system; Definition 1.4, restated). We
say that L ⊆ {0, 1}∗ is in deARG[T] if there exists a deterministic T-time verifier V such
that the following holds:

1. (Completeness.) There is an algorithm P that, when given x ∈ L, runs in time
poly(T) and prints π such that V(x, π) = 1.

2. (Computational soundness.) For every polynomial p, and every probabilistic algo-
rithm P̃ running in time p(T), and every sufficiently large n ∈ N, the probability that
P̃(1n) prints x /∈ L of length n and π ∈ {0, 1}T(n) such that V(x, π) = 1 is T(n)−ω(1).

Removing the efficiency restriction on the honest prover in Definition 3.9 would
make the definition too broad to be meaningful: Under a plausible hardness assump-
tion, every language (regardless of is complexity) has a proof system as above in which
the honest prover P runs in time larger than that of the adversaries P̃. 22

Thus, for the definition to be meaningful we need to have T = TV < TP < TP̄,
where the three latter notations represent the running times of the verifier V, of the
honest prover P, and of the adversaries P̃, respectively. While Definition 3.9 couples
these bounds so that they are all polynomially related, a broader definition in which
the gaps are super-polynomial still makes sense. We use the narrower definition only
because it suffices for our purposes in the current work.

3.4 Error-correcting codes

We recall the definition of locally list-decodable codes, and state a standard construc-
tion that we will use.

Definition 3.10 (locally list decodable codes). We say that Enc : ΣN → ΣM is locally list-

decodable from agreement ρ in time t and with output-list size L if there exists a randomized
oracle machine Dec : [N]× [L]→ Σ running in time t such that the following holds. For every
z ∈ ΣM that satisfies Pri∈[M][zi = Enc(x)i] ≥ ρ for some x ∈ ΣN there exists a ∈ [L] such
that for every i ∈ [N] we have that Pr[Decz(i, a) = xi] ≥ 2/3, where the probability is over
the internal randomness of Dec.

22To see this, assume that there exists a relation R = {(x, π)} that can be decided in time T, but every
probabilistic algorithm P̃ getting input x and running in time poly(T) fails to find π such that (x, π) ∈ R,
except with negligible probability (over x and over the random coins of P̃). Then, for every L, define V
that accepts (x, π) iff (x, π) ∈ R, and observe that this verifier meets the relaxed definition of deARG.

18

Theorem 3.11 (a locally list-decodable code, see [STV01]). For every constant η > 0 there
exists a constant η′ > 0 such that the following holds. For every m ∈ N and ρ = ρ(m) there
exists a code Enc : {0, 1}m → Σm̄, where |Σ| = O(mη′/ρ2) and m̄ = Oη′(m/ρ2/η′), such
that:

1. The code is computable in time Õ(m̄ · log(|Σ|)) = Õ(m/ρ2/η′).

2. The code is locally list-decodable from agreement ρ in time mη · (1/ρ)1/η′ and with
output list size O(1/ρ). Furthermore, the local decoder issues its queries in parallel, as
a function of the randomness and the input.

We also need the following two uniquely decodable codes:

Theorem 3.12 (uniquely decodable code, see e.g., [GLR+91] and [AB09, Section 19.4]).
For every constant η > 0 the following holds. For every m ∈N there exists a code Enc : {0, 1}m →
{0, 1}m̄, where m̄ = Õ(m), such that:

1. The code is computable in time Õ(m̄) = Õ(m).

2. The code is locally decodable from agreement 0.9 with decoding circuit size mη . Fur-
thermore, the decoding circuit issues its queries in parallel and outputs correctly with
probability at least 1− 1/m.

Lemma 3.13 (unique decoding for low-degree univariate polynomials; see [WB86]).
Let q be a prime power. Given t pairs (xi, yi) of elements of Fq, there is at most one polyno-
mial g : Fq → Fq of degree at most u for which g(xi) = yi for more than (t + u)/2 pairs.
Furthermore, there is a polynomial time algorithm that finds g or report that g does not exist.

3.5 Near-linear time constructions: Extractors, hash functions, cryptographic
PRGs

In this section we state several known algorithms that we will use in our proofs and
that run in near-linear time. The first is a pairwise-independent hash function based
on convolution hashing [MNT93].

Theorem 3.14 (a quasilinear-time computable pairwise independent hash function;
for proof see, e.g., [CT21b, Theorem 3.12]). For every m, m′ ∈ N there exists a family
H ⊆

{
{0, 1}m → {0, 1}m′

}
of quasilinear-time computable functions such that for every

distinct x, x′ ∈ {0, 1}m it holds that Prh∈H[h(x) = h(x′)] ≤ 2−m′ .

The second construction is of a seeded randomness extractor that runs in linear
time, which was presented by Doron et al. [DMO+20] following [TSZS06, Theorem 5].

Theorem 3.15 (a linear-time computable extractor, see [DMO+20]). There exists c ≥ 1
such that for every γ < 1/2 the following holds. There exists a strong oblivious (δ, ε)-
sampler Samp : {0, 1}n × {0, 1}d → {0, 1}m for δ = 2n1−γ−n and ε ≥ c · n−1/2+γ and
d ≤ (1 + c · γ) · log(n) + c · log(1/ε) and m = 1

c · n1−2γ that is computable in linear time.

The third construction is that of a cryptographic PRG that works in near-linear
time. Such a PRG can be obtained assuming standard one-way functions, by starting
with a fast PRG that has small stretch and then applying standard techniques for
extending the output length.

19

Theorem 3.16 (OWFs yield PRGs with near-linear running time; see [CT21a, The-
orem 3.4]). If there exists a polynomial-time computable one-way function secure against
polynomial-time algorithms, then for every ε > 0 there exists a PRG that has seed length
`(n) = nε, is computable in time n1+ε, and fools every polynomial-time algorithm with negli-
gible error. Moreover, if the one-way function is secure against polynomial-sized circuits, then
the PRG fools every polynomial-sized circuit.

3.6 Pair languages and PCPPs

A pair language L is a subset of {0, 1}∗ × {0, 1}∗. We say that L ∈ NT IME [T] if
L(x, y) can be computed by a nondeterministic algorithm in time T(|x| + |y|). We
also say L has stretch K for a function K : N → N, if for all (x, y) ∈ L, it holds that
|y| = K(|x|). We will use the following PCP of proximity for pair languages by Ben-
Sasson et al. [BGH+05]:

Theorem 3.17 (PCPP with short witnesses [BGH+05]). Let K : N→N such that K(n) ≥
n for all n ∈ N. Suppose that L is a pair language in DT IME [T] for some non-decreasing
function T : N→N such that L has stretch K. There is a verifier V and an algorithm A such
that for every x ∈ {0, 1}n, denoting T = T(n + K(n)) and K = K(n):

1. (Efficiency.) When V is given input x and oracle access to y ∈ {0, 1}K and to a
proof π ∈ {0, 1}2r

, where r ≤ log(T) + O(log log(T)), the verifier V uses r bits of
randomness, makes at most polylog(T) non-adaptive queries to both y and π, and
runs in time poly(n, log(K), log(T)).

2. (Completeness.) Let M be an O(T)-time nondeterministic machine that decides L. That
is, (x, y) ∈ L if and only if there exists w ∈ {0, 1}O(T) such that M((x, y), w) = 1.
For every y ∈ {0, 1}K and w ∈ {0, 1}O(T) such that M((x, y), w) = 1, the algorithm
A(x, y, w) runs in time Õ(T) and outputs a proof π ∈ {0, 1}2r

such that

Pr [Vy,π(x, ur) = 1] = 1 .

3. (Soundness.) Let Z =
{

z ∈ {0, 1}K : (x, z) ∈ L
}

. Then, for every y ∈ {0, 1}K that
has Hamming distance at least K/ log(T) from every z ∈ Z and every π ∈ {0, 1}2r

,

Pr [Vy,π(x, ur) = 1] ≤ 1/3 .

3.7 Constant-round sumcheck and #NSETH

The following result is an “asymmetric” version of Williams’ [Wil16] adaptation of the
sumcheck protocol [LFK+92] into a constant-round protocol for counting the number
of satisfying assignments of a given formula. Specifically, while in [Wil16] the n vari-
ables are partitioned into symmetric subsets and each sumcheck round is a summation
over one of the subsets, here we partition the variables such that the first set is smaller,
and in the corresponding sumcheck protocl the first round is shorter.

Theorem 3.18 (a constant-round protocol for counting satisfying assignments of a for-
mula). Let k ∈ N, δ ∈ (0, 1), and γ = 1−δ

k be constants. For any s(n) ≤ 2o(n), there is
anMAT IME [
2k][2max(δ,γ)·n+o(n)] protocol Π that gets as input a formula C : {0, 1}n →
{0, 1} of size s(n) and (with probability 1) outputs the number of satisfying assignments of
C, such that the first prover message has length at most 2δn+o(n), and the rest k − 1 prover
messages have length at most 2γn+o(n).

Moreover, the protocol has the following two properties:

20

1. After the prover sends its first message, the maximum acceptance probability of the sub-
sequent protocol is either 1 or at most 1/3.

2. There is a 1/n-approximate universal prover running in 2O(n) for Π.23

Proof. The protocol is essentially identical to that of [Wil16, Theorem 3.4]. The only
difference is that in [Wil16, Theorem 3.4] the n input variables are partitioned into
k + 1 blocks, each of length n/(k + 1), whereas we will partition them into a single
block of length δ · n and k other blocks of length γ · n. Due to this fact, and since we
are also claiming additional properties in the “moreover” part that were not stated
in [Wil16], we include a complete proof.

Let s(n) ≤ 2o(n), and let C : {0, 1}n → {0, 1} be a formula of size s(n). The prover
and verifier will work with a prime p ∈ (2n, 2n+1].24 Let P : Fn

q → Fq be the arithmetic
circuit constructed by the standard arithmetization of the Boolean circuit C (see the
proof of [Wil16, Theorem 3.3] for details) such that P has size poly(s(n)) ≤ 2o(n) and
degree at most poly(s(n)) ≤ 2o(n).

For simplicity, we assume that δ · n and γ · n are integers. We partition the n
variables x1, . . . , xn into k + 1 blocks S1, . . . , Sk+1, such that |S1| = δ · n and |Si| = γ · n
for every i ≥ 2. For each i ∈ [k + 1], via interpolation similar to the proof of [Wil16,
Theorem 3.4], we define a degree-2|Si | polynomial Φi : Fq → F

|Si |
q such that for every

j ∈ {0, 1, . . . , 2|Si | − 1}, (Φi(j))` is the `-th bit in the |Si|-bit binary representation of j
. Using a fast interpolation algorithm (see [Wil16, Theorem 2.2]), the polynomial Φi
(i.e., the list of the coefficients of |Si| univariate polynomials, each corresponding to
one of Φi’s output values) can be constructed in 2|Si | · poly(n) time.

The protocol Π is specified as follows:

• In the first round, the honest prover computes the coefficients of the polynomial

Q1(y) = ∑
j2,...,jk+1

∈{0,1,...,2γ·n−1}

P(Φ1(y), Φ2(j2), . . . , Φk+1(jk)) (3.1)

via interpolation, and sends Q1 to the verifier (Note that Q1 has degree 2o(n)+δ·n,
so this message has size 2o(n)+δ·n). The verifier then chooses r1 ∈ Fq uniformly
at random and sends it to the prover.

• In the t-th round for t ∈ {2, 3, . . . , k}, the honest prover sends the coefficients of
the degree-2o(n)+γ·n polynomial

Qt(y) = ∑
jt+1,...,jk+1

∈{0,1,...,2γ·n−1}

P(Φ1(r1), . . . , Φt−1(rt−1), Φt(y), Φt+1(jt+1), . . . , Φk+1(jk+1))

(3.2)

to the verifier. The verifier first checks if

∑
jt∈{0,1,...,2γ·n−1}

Qt(jt) = Qt−1(rt−1), (3.3)

and rejects immediately if the equality does not hold. The verifier then picks
rt ∈ Fq uniformly at random. The verifier then picks rτ ∈ Fq uniformly at
random, and sends it to the prover if τ < k

23For the definition of a universal prover, see Definition 3.8.
24The honest prover can find the smallest prime p that is larger than 2n, which is at most 2n+1 by

Bertrand’s postulate, in time 2O(n) and send p to the verifier. The verifier checks that the received
number lies in (2n, 2n+1] and is a prime, in deterministic time poly(n) (e.g., using [AKS04; AKS19]).

21

• Finally, at the end of the k-th round, the verifier checks if

Qk(rk) = ∑
jk+1∈{0,1,...,2γ·n−1}

P((Φ1(r1), . . . , Φk(rk), Φk+1(jk+1)),

and rejects immediately if the equality does not hold. Otherwise, it outputs

∑
j1∈{0,1,...,2δ·n−1}

Q1(j1) .

The upper bound on message lengths and the running time of the verifier can be
verified directly from the protocol above. The analysis establishing the completeness
and soundness of this protocol, as well as the upper bound on the complexity of
the honest prover, follow a standard analysis of the sumcheck protocol; see [Wil16,
Theorem 3.4]. We therefore focus on establishing the moreover part.

To see the “moreover” part, for every i ∈ [k], let Di be the degree of the polynomial
Qi. Fix a partial transcript π for all the interaction before the t-th prover message, and
without loss of generality assume that π = (Q̃1, r1, . . . , Q̃t−1, rt−1) (if t = 1 then π is
empty). We prove the following claim.

Claim 3.19. Given a partial transcript π = (Q̃1, r1, . . . , Q̃t−1, rt−1), if t = 1 or Q̃t−1(rt−1) =
Qt−1(rt−1), then the maximum acceptance probability of the subsequent protocol is 1, and can
be achieved by a 2O(n)-time prover. Otherwise, it is at most (k + 1− t)/n2.

Proof. We prove the claim by an induction on t, starting from k + 1 and moving down-
ward to 1. In the base case t = k + 1 all messages have been sent, and the verifier
accepts if and only Q̃t−1(rt−1) = Qt−1(rt−1). Hence the claim holds immediately.

Now, for t ∈ [k], assuming the claim holds for t + 1. If t = 1 or Q̃t−1(rt−1) =
Qt−1(rt−1), then the prover simply sends the correct polynomial Qt defined by (3.1)
or (3.2) and proceeds as the honest prover (note that the check (3.3) will pass).

Otherwise, we have that t ≥ 2 and Q̃t−1(rt−1) 6= Qt−1(rt−1). In this case, in order
to not be rejected immediately, the prover has to send a polynomial Q̃t such that
∑jt∈{0,1,...,2γ·n−1} Q̃t(jt) = Q̃t−1(rt−1). In particular, it means that Q̃t 6= Qt, where Qt

is defined by (3.2). Therefore, with probability at most Dt/q ≤ 1/n2 over the choice
of rt, it holds that Q̃t(rt) = Qt(rt). By the induction hypothesis, we know that the
maximum acceptance probability is at most 1/n2 + (k− t)/n2 ≤ (k + 1− t)/n2. �

The existence of a 1/n-approximate universal prover with running 2O(n) (the sec-
ond item of the “moreover” part) follows immediately from Claim 3.19.

To see the first item, we note that if Q̃1 = Q1, where Q1 is defined by (3.1), then
the maximum acceptance probability is 1, by Claim 3.19. If Q̃1 6= Q1, then since
both of them have degree at most D1, the probability of Q̃1(r1) = Q1(r1) is at most
D1/q ≤ 1/n2, hence the overall acceptance probability is at most 1/n, using the same
argument as in the proof of Claim 3.19.

The “savings” in running time above (i.e., the improvements over the brute-force
algorithm that runs in time 2(1+o(1))·n) were achieved via a probabilistic interactive pro-
tocol. The following assumption, denoted #NSETH, asserts that without randomness
it is impossible to achieve running time 2(1−ε)·n, for any constant ε > 0.

Assumption 3.20 (#NSETH). There does not exist a constant ε > 0 and a non-deterministic
machine M that gets as input a formula Φ over n variables of size 2o(n), runs in time 2(1−ε)·n,
and satisfies the following:

22

1. There exists non-deterministic choices such that M outputs the number of satisfying
assignments for Φ.

2. For all non-deterministic choices, M either outputs the number of satisfying assignments
for Φ or outputs ⊥.

Recall that the standard strong exponential-time hypotheses SETH asserts that for
every ε > 0 it is hard to solve k-SAT with n variables in time 2(1−ε)·n, where k = kε

is sufficiently large. The assumption #NSETH is incomparable to SETH: On the one
hand, in #NSETH we assume hardness with respect to a larger class of formulas (i.e.,
n-bit formulas of size 2o(n)), and also assume hardness of the counting problem; but on
the other hand, the hardness in #NSETH is for non-deterministic machines rather than
just for deterministic algorithms.

4 Superfast derandomization ofMA
The following is the “basic version” of the highly efficient reconstructive PRG, which
was mentioned in the beginning of Section 2. We will further refine this version later
on in Propositions 5.1, 5.3, and 7.10.

Proposition 4.1 (a reconstructive PRG with unambiguous non-deterministic recon-
struction). For every ε0 > 0 there exists δ0 > 0 and a pair of algorithms G and R that for any
N ∈N and f ∈ {0, 1}N1+ε0/3

satisfy the following:

1. (Generator.) The generator G gets input 1N , oracle access to f , and a random seed of
length (1 + ε0) · log(N), and outputs an N-bit string in time N1+ε0 .

2. (Reconstruction.) For any (1/10)-distinguisher D for G f (1N , u(1+ε0)·log(N)) there ex-
ists a string adv of length | f |1−δ0 such that the following holds. When the reconstruction
R gets input x ∈ [| f |] and oracle access to D and advice adv, it runs in non-deterministic
time | f |1−δ0 , issues parallel queries to D, and unambiguously computes fx.

Proof. For a sufficiently small γ = γ(ε0) to be determined later, let Samp : {0, 1}N̄ ×
[L̄]→ {0, 1}N be the sampler from Theorem 3.15, instantiated with parameter γ, with
a a sufficiently small constant error, and with N̄ = N1+O(γ) and L̄ = N̄1+O(γ).

The generator G. The generator encodes f to f̄ = Enc(f) using the code Enc in
Theorem 3.11, instantiated with parameters m = N and ρ, η that are sufficiently small
constants. We think of f̄ as a binary string (by naively encoding each symbol using
log(|Σ|) bits, in which case | f̄ | = m̄ · log(|Σ|) = Õ(N1+ε0/3). The generator then
partitions f̄ into L = | f̄ |/N̄ consecutive substrings f̄1, . . . , f̄L, and given seed (i, j) ∈
[L]× [L̄] it outputs the N-bit string Samp(f̄i, j). The number of strings in the set is

L · L̄ = (| f̄ |/N̄) · (N̄1+O(γ)) = N1+ε0/3+O(γ) < N1+ε0 ,

and the running time of the generator is Õ(N1+ε0/3) < N1+ε0 .

The reconstruction R. Fix a (1/10)-distinguisher D : {0, 1}N → {0, 1}. Denoting the
uniform distribution over the output-set of G f by G, without loss of generality we can
assume that Pr[D(G) = 1] > Prr∈{0,1}N [D(r) = 1] + 1/10.25

25This is without loss of generality because R receives non-uniform advice, and thus it can flip the
output of D if necessary.

23

Let D̄ : {0, 1}N̄ → {0, 1} be the function

D̄(z) = 1 ⇐⇒ Pr
j∈[L̄]

[D(Samp(z, j)) = 1] ≤ Pr
r∈{0,1}N

[D(r) = 1] + .01 , (4.1)

and let S = D̄−1(1) and T = S̄ = D̄−1(0). 26 Note that |S̄| ≤ 2N̄1−γ
, by the properties

of Samp. Then, by the definition of T we have that

Pr[D(G)) = 1] = Pr
i∈[L],j∈[L̄]

[D(Samp(f̄i, j))]

≤ Pr
i
[f̄i ∈ T] + Pr

i,j
[D(Samp(f̄i, j)) = 1| f̄i /∈ T]

≤ Pr
i
[f̄i ∈ T] +

(
Pr

r∈{0,1}N
[D(r) = 1] + .01

)
. (4.2)

Since Pr[D(G) = 1]− Prr[D(r) = 1] > (1/10), we deduce that Pri[f̄i ∈ T] > (1/10)−
.01 > ρ, where the last inequality is by a sufficiently small choice of ρ.

Computing a “corrupted” version of f̄ . We first construct a machine M that computes
a “corrupted” version of f̄ , as follows. Let H be the hash family in Theorem 3.14,
using parameters m = N̄ and m′ = N̄1−γ/2. We argue that:

Fact 4.1.1. With probability at least 1− 2−N̄1−γ
over h ∼ H, for every distinct z, z′ ∈ S̄ it

holds that h(z) 6= h(z′).

Proof. For every distinct z, z′ ∈ S̄, the probability over h ∼ H that h(z) = h(z′) is at
most 2−N̄1−γ/2

. By a union bound over |S̄|2 ≤ 22N̄1−γ
pairs, with probability at least

1− 2−N̄1−γ/2 · 22N̄1−γ
> 1− 2−N̄1−γ

there does not exist a colliding pair in S̄. �

Let I =
{

i ∈ [L] : f̄i ∈ T
}

. The machine M gets as advice the foregoing h, the set{
(i, h(f̄i)) : i ∈ I

}
, and the value Prr∈{0,1}N [D(r) = 1]. Given x ∈ [f̄], the machine

computes i ∈ [L] such that the index x belongs to the ith substring of f̄ , and if i /∈ I it
outputs zero. Otherwise, the machine:

1. Non-deterministically guesses a preimage z ∈ {0, 1}N̄ for f̄i under h.

2. Verifies that h(z) = f̄i using the advice value (i, h(f̄i)).

3. Verifies that z /∈ S, using the oracle access to D, the sampler Samp, and the
acceptance probability of D (that is given as advice).

4. If either of the two verifications failed, the machine aborts. Otherwise, it outputs
the bit in z corresponding to index x.

Note that the foregoing machine computes, in an unambiguous non-deterministic
manner, a string f̃ such that Prx[f̄x = f̃x] ≥ ρ. (This is because for every x belonging
to a substring indexed by i /∈ I it holds that f̃x = 0, and for every other x it holds that
f̃x = f̄x.) The number of advice bits that M uses is at most Õ(N̄ + L · N̄1−γ/2 + N) ≤
N1+O(γ), and its running time is dominated by computing the hash function once
(which takes time Õ(N̄)) and computing D̄ once.

Computing f̄ , and thus also f . Consider the execution of the local list-decoder Dec
from Theorem 3.11 with agreement ρ, when it is given oracle access to the “corrupted”

26Denoting the complement of S both by S̄ and by T might seem unnecessarily cumbersome. However,
this formulation will generalize more easily later on when we prove the “furthermore” statement.

24

version of f̄ computed by M (i.e., the version in which a block f̄i indexed by i ∈ I has
the correct values of f̄ , and all other blocks are filled with zeroes). Fixing the “right”
index η ∈ [O(1/ρ)] of f in the corresponding list of codewords, we reduce the error
probability of Dec to less than 1/N2 (by O(log(N)) repetitions) and now consider its
execution with a fixed random string.

The reconstruction procedure R gets as advice the non-uniform advice for M, the
index η, and the fixed random string for Dec (we will see that the latter string is of
length NO(γ)). Given x ∈ [| f̄ |], it runs Dec and answers its queries using M. If any
of the queries to M was answered by ⊥, we abort and output ⊥, and otherwise we
output the result of the list-decoder’s computation. Note that Dec can be described by
an oracle circuit of size poly(1/ρ) · Nη + log(1/ρ) + O(1) ≤ N2η ≤ NO(γ), where we
relied on a sufficiently small choice of η. It issues its queries in parallel, since both Dec
and the machine M issue their queries in parallel.

We thus obtained a procedure for f̄ that is non-deterministic and unambiguous,
and uses at most N1+O(γ) < | f |1−δ0 advice bits, where the inequality relies on suffi-
ciently small choices of γ and of δ0. Denoting the time for verifying that z ∈ T by K,
the running time of the procedure for f̄ is at most

NO(γ) ·
(
Õ(N̄) + K

)
= N1+O(γ) + NO(γ) · K ,

and using the naive algorithm for D̄ (which enumerates over i ∈ [L̄]) this is at most
N1+O(γ) < | f |1−δ0 .

Given the reconstructive PRG in Proposition 4.1, we can now prove Theorem 1.1:

Theorem 4.2 (derandomization with quadratic overhead from useful properties against
SVN circuits). For every ε > 0 there exists δ > 0 such that the following holds. As-
sume that there exists an NT IME [N2+ε/4]-constructive property L useful against (N ∩
coN)T IME [2(2−δ)·n]/2(1−δ)·n. Then, for any time bound T we have that prBPT IME [T] ⊆
pr(N ∩ coN)T IME [T2+ε].

Proof. Let A be a prBPT IME [T] machine, fix a sufficiently large input length |x|,
and let N = T(|x|). Given input x, our derandomization algorithm guesses a string fn
of length 2n = N1+ε/3 and verifies that fn ∈ L (if the verification fails, it aborts).27 It
then enumerates over the seeds of the generator from Proposition 4.1, when the latter
is instantiated with ε0 = ε/2 and with fn as the oracle, to obtain N1+ε/2 pseudoran-
dom strings w1, . . . , wN1+ε/2 ∈ {0, 1}N ; and it outputs MAJ {A(x, wi)}i∈[N1+ε/2]. This
derandomization algorithm runs in time O(N2+ε) = O(T(n)2+ε).

Let δ ≤ δ0/2 be sufficiently small. For any n ∈ N and N = 2n/(1+ε/3), assume that
there is x ∈ {0, 1}T−1(N) and fn ∈ (L ∩ {0, 1}2n

) such that Dx(r) = A(x, r) is a (1/10)-
distinguisher for the generator above, when the latter guesses the truth-table fn. By
Proposition 4.1, there is a reconstruction algorithm R for fn that runs in time | fn|1−2δ

and uses oracle access to Dx and | fn|1−2δ bits of advice. To simulate the oracle for R, we
supply R with additional advice x of length |x| = T−1(2n/(1+ε/3)) ≤ | fn|1−2δ and with
an advice bit indicating whether or not to flip the output of Dx. Plugging in the time
complexity of Dx as N = | fn|1/(1+ε/3), the running time of R is | fn|(1−2δ)+1/(1+ε/3) <
| fn|2−δ, and it non-deterministically and unambiguously computes the function whose
truth-table is fn.

27For simplicity we assume that N1+ε/3 is a power of two, since rounding issues do not meaningfully
affect the proof.

25

Now, assume towards a contradiction that there are infinitely many x ∈ {0, 1}∗ and
fn such that Dx is a (1/10)-distinguisher for the generator with fn, and fix correspond-
ing advice strings for R as above. (On input lengths for which there are no suitable
x and fn, the advice string indicates that R should compute the all-zero function.)
This yields L ∈ (N ∩ coN)T IME [2(2−δ)·n]/2(1−δ)·n whose truth-tables are included,
infinitely often, in L, contradicting the usefulness of L.

The proof of Theorem 4.2 also yields the following result, in which both the hy-
pothesis and the conclusion are stronger:

Theorem 4.3 (derandomization with quadratic overhead from batch-computable truth-ta-
bles). For every ε > 0 there exists δ > 0 such that the following holds. Assume that there
exists L /∈ i.o.(N ∩ coN)T IME [2(2−δ)·n]/2(1−δ)·n such that there is an algorithm that gets
input 1n and prints the truth-table of L on n-bit inputs in time 2(2+ε/4)·n. Then, for any time
bound T we have that prBPT IME [T] ⊆ prDT IME [T2+ε].

We think of the algorithm in the hypothesis of Theorem 4.3 as “batch-computing”
the hard function: It prints the entire truth-table in time slightly larger than 22n,
whereas computing individual entries in the truth-table cannot be done in time slightly
less than 22n (even using unambiguous non-determinism). The only difference be-
tween the proof of Theorem 4.2 and in the proof of Theorem 4.3 is that in the latter,
instead of guessing and verifying the truth-table of a hard function, we explicitly com-
pute the truth-table using the hypothesized algorithm.

5 Superfast derandomization of AM
In this section we prove Theorems 1.2 and 1.3. Towards this purpose, in Section 5.1 we
refine the reconstructive PRG from Proposition 4.1. Then, we conditionally construct
two PRGs that rely on different hardness hypotheses and have different parameters;
the proof of Theorem 1.2 will rely on a composition of these two PRGs. We present
the “outer PRG” in Section 5.2, and the “inner PRG” in Section 5.3, and the com-
position (and proof of Theorem 1.2) in Section 5.4. Lastly, in Section 5.5 we use the
reconstructive PRG from Section 5.1 in a different way to prove Theorem 1.3.

5.1 Refining the reconstructive PRG from Proposition 4.1

We now extend Proposition 4.1 in two ways. First, in Proposition 5.1, we argue that by
allowing randomness in the reconstruction, we can reduce its query complexity (this
is along the lines of ideas from [DMO+20; CT21b]). Secondly, in Proposition 5.3, we
claim that the reconstruction does not need “full oracle access” to D, and continues to
work as long as its oracle satisfies certain conditions that are related to D (which will
be specified below).

Proposition 5.1 (an extension of the PRG from Proposition 4.1). For every ε0 > 0 there
exists δ0 > 0 and a pair of algorithms G and R that for any N ∈ N and f ∈ {0, 1}N̄ , where
N̄ = N1+ε0/3, satisfy the following:

1. (Generator.) The generator G gets input 1N , oracle access to f , and a random seed of
length (1 + ε0) · log(N), and outputs an N-bit string in time N1+ε0 .

2. (Reconstruction.) For any (1/10)-distinguisher D for G f (1N , u(1+ε0)·log(N)) there
exists a string adv of length | f |1−δ0 such that the following holds. When the recon-
struction R gets input x ∈ [| f |] and oracle access to D and advice adv, it runs in

26

non-deterministic probabilistic time | f |1−δ0 , issues t̄ = Nε0/10 parallel queries to D,
and satisfies the following: There exists w such that Pr[RD(x, w) = fx ≥ 2/3, and for
all w there exists vx,w ∈ {0, 1} fx ,⊥ such that Pr[RD(x, w) = vx,w] ≥ 2/3.

Proof. We follow the same proof as for Proposition 4.1 and explain the necessary
changes. Let us start with proving the bound of Nε/10 on the number of queries when
R is allowed to use randomness.

We modify the definition of D̄ in Eq. (4.1). Specifically, let ν = Prr∈{0,1}N [D(r) = 1],
and let D̄ be a probabilistic procedure that gets z ∈ {0, 1}N̄ , uniformly samples s =
O(log(N)) values i1, . . . , is ∈ [L̄] and outputs 1 if and only if Prj∈[s][D(Samp(z, ij)) =
1] < ν + .005. We also modify the definitions of S and of T, as follows:

S =

{
z ∈ {0, 1}N̄ : Pr

j∈[L̄]
[D(Samp(z, j)) = 1] ≤ ν + .001

}
,

and

T =

{
z ∈ {0, 1}N̄ : Pr

j∈[L̄]
[D(Samp(z, j)) = 1] > ν + .01

}
.

Note that T ⊆ S̄, that |S̄| ≤ 2N̄1−γ
(by the properties of Samp, assuming we instantiate

it with a sufficiently small error), and that Pri[f̄i ∈ T] > ρ (using the exact same
calculation as in Eq. (4.2)). Also, D̄ accepts every z ∈ S, with probability at least
1− 1/N2, and rejects every z ∈ T, with probability at least 1− 1/N2.

Given these properties, the rest of the proof continues with only one change.
Specifically, in the third step of the execution of M, we compute D̄(z) (using ran-
domness), and continue only if the output is zero. Since any z ∈ S will be accepted
with high probability, if we continue then we are confident that z ∈ S̄, and thus (given
that we verified h(z) = h(f̄i)) we are certain that z = f̄i. The final procedure that uses
Dec and M uses at most t̄ = s · NO(γ) < Nε0/10 queries to D.

We now prove Proposition 5.3, in which we extend the reconstruction algorithm
to work also when given oracle access to functions other than the distinguisher D, as
long as the oracle answers meet certain conditions. In this result we only care about
distinguishers whose acceptance probability on a pseudorandom input is higher than
their acceptance probability on a random input.28

The following definition refers to two sequences of bits, denoted by d and q. We
think of these sequences as the “real” answers of D to the oracle queries, and as the an-
swers of the actual oracle (which might be different from D), respectively. Intuitively,
a sequence (either d or q) is valid if it represents useful answers for the reconstruction
(recall that there can be witnesses w for R such that, even with oracle access to the true
distinguisher D, the answers are not useful and R outputs ⊥); and q is indicative of d
if it “agrees enough” with D to be useful.

Definition 5.2 (α-indicative sequences). Let t, s ∈ N such that s|t, let α ∈ (0, 1), and let
d ∈ {0, 1}t.

1. For b ∈ {d, q}, we say that b is (s, α)-valid if for every i ∈ [t/s] it holds that ∑j∈[s] b(i−1)+j ≥
α · s.

28The reason for this asymmetry is that we will use this result while simulating the oracle by a proof
system, in which proving that a claim is true (i.e., simulating an answer of “1” on a query) might be
easier than proving that a claim is false (i.e., simulating an answer of “0” on a query).

27

2. We say that a sequence q ∈ {0, 1}t is (s, α)-indicative of d if for every i ∈ [t/s] it holds
that ∑j∈[s](q(i−1)+j ∧ d(i−1)+j) ≥ α · s.

Proposition 5.3 (an extension of the PRG from Proposition 4.1). For every ε0 > 0 there
exists δ0 > 0 such that the following holds. Let G and R be as in Proposition 5.1. Then, for
every N ∈ N there exist s ∈ N satisfying s|t̄, and α ∈ (0, 1), and a random variable h over
{0, 1}N̄1−2δ0 that can be sampled in quasilinear time, such that for any D : {0, 1}N → {0, 1}
satisfying Prr∈{0,1}N [D(r) = 1] ≤ 1/3, with probability at least 1− 1/N over h ∼ h:

1. (Notation.) Denote by dx,w,γ ∈ {0, 1}t̄ the values of D on the queries made by R with
input x, witness w, and randomness γ. Denote by ax,w,γ ∈ {0, 1}t̄ the answers that R
received from its oracle to these queries.

2. (Honest oracle.) For every f ∈ {0, 1}N̄ satisfying Prs∈[N1+ε0][D(G f (s)) = 1] ≥ 1/2

there exists adv ∈ {0, 1}N̄1−2δ0 such that when R gets advice (h, adv):

(a) Completeness: For every x there exists w such that with probability 1− 1/N over
γ it holds that dx,w,γ is (s, α)-valid, and if ax,w,γ is (s, α)-indicative of dx,w,γ then
R(x, w) outputs fx.

(b) Soundness: For every (x, w), with probability at least 1− 1/N over γ, if ax,w,γ is
(s, α)-indicative of dx,w,γ, then R(x, w) outputs either fx or ⊥.

3. (Dishonest oracles.) For every adv ∈ {0, 1}N̄1−2δ0 there exists g ∈ {0, 1}N̄ such that
when R gets advice (h, adv) the following holds. For every (x, w), with probability at
least 1− 1/N over γ, if ax,w,γ is (s, α)-indicative of dx,w,γ then R(x, w) outputs either
gx or ⊥.

4. (Non-valid oracles.) For any advice (h, adv) to R and any (x, w) and any choice of γ,
if ax,w,γ is not (s, α)-valid then R outputs ⊥.

We stress that the “dishonest oracles” claim and the “non-valid oracles” claim do
not depend on any particular choice of f for the generator G. That is, the two claims
refer only to the behavior of the reconstruction R given advice (h, adv).

Proof of Proposition 5.3. Our starting-point is the construction of G and R in the
proof of Proposition 5.1, the only difference being that R never negates the answer
of its oracle.29 We partition the queries of R into t̄/s sets of size s in the natural way:
Each subset corresponds to a set of s queried made by one of the executions of M.
(Recall that the queries that Dec makes to M are non-adaptive and that the queries
that M makes to D are also non-adaptive.)

The variable h is the choice of hash function, and as proved in Fact 4.1.1, with
probability at least 1 − 2−N̄1−γ

> 1 − 1/N, there are no distinct z, z′ ∈ S̄ such that
h(z) = h(z′). We also modify the definition of D̄ and S and T above to use the value
ν = 1/3 instead of ν = Prr∈{0,1}N [D(r) = 1], and let α = 1/3 + .005.

Non-valid oracles. Assume, for a moment, that all the queries that R makes to M
during its execution are to indices in substrings f̄i such that i ∈ I. Then, the soundness
condition for non-valid oracles follows immediately by the definitions of M and R: If
in any execution of M less than α of its queries are answered by 1 then D̄(z) = 0 and
M aborts (in which case R outputs ⊥).

29Recall that in the original construction presented in the proof of Proposition 4.1, the reconstruction
R received an advice bit telling it whether to access its oracle or the negated version of its oracle.

28

The only gap is that some queries to M might be to indices in substrings f̄i where
i /∈ I. To handle this gap we change the definition of M as follows. Whenever i /∈ I,
the original machine just outputs 0, whereas our new modified machine will non-
deterministically guess z ∈ {0, 1}N̄ and verify that z /∈ S, and only if the verification
passes it outputs 0 (otherwise it aborts). This does not affect the original proof in any
way, but now the soundness condition for non-valid oracles holds even without the
assumption that queries to M are such that i ∈ I.

Honest oracle. We now assume that D accepts a pseudorandom string of G f with
probability at least 1/2. Observe that Prr[f̄i ∈ T] ≥ ρ as in the proof of Proposition 4.1;
to see this, use the same calculation as in Eq. (4.2) only replacing the original value
Prr∈{0,1}N [D(r) = 1] with the new value ν = 1/3.

The string adv consists of the hash values
{
(i, h(f̄i) : i ∈ I

}
where I =

{
i ∈ [L] : f̄i ∈ T

}
and of the local list decoding circuit Dec. (The circuit Dec is just as in the proof of
Proposition 4.1: We consider the execution of Dec on the corrupted codeword defined
by D and h and I, use naive error-reduction, and hard-wire a good random string.
This circuit is given to R as part of the advice adv.) We can assume that the advice
string is of length | f |1−2δ0 (rather than δ0) by choosing the parameter δ0 to be smaller
than in Proposition 4.1.

Now, recall that the non-determinism w for R yields non-deterministic strings for
each of the execution of M. For every execution of M on query q and with non-
determinism z, with probability at least 1− 1/N2, if at least α · t of M’s oracle queries
are answered by 1, and D indeed evaluates to 1 on these queries, then M outputs
the value σ ∈ {0, 1,⊥} such that Pr[MD(q, z) = σ] ≥ 2/3. By a union-bound, with
probability 1− 1/O(N) this happens for all queries to M.

In this case, we can think of the oracle that Dec gets access to as a fixed string
y in {0, 1,⊥}. Given any input, if Dec sees gets an answer of ⊥ from M, then it
outputs⊥; and otherwise it outputs the answer corresponding to the unique codeword
determined by y and by the list-decoding index.30

To prove completeness, note that for every x there exists w for which σ ∈ {0, 1}
for every possible query q to M. Also, for such w, all the corresponding z’s will be in
S̄. Thus, with probability 1− 1/O(N) over the coins of M, at least an α-fraction of the
queries of M to the oracle will be to 1-instances of D. In this case, when at least an
α-fraction of the received answers are 1, then Dec (and hence also R) outputs fx.

Dishonest oracles. Fix any advice adv to R. We can assume without loss of generality
that adv consists of hash values {(i, hi) : i ∈ I} where I ⊆ [L] such that |I| ≥ ρ and of
the index η ∈ [O(1/ρ)] of a codeword for the local decoder Dec and a random string
for Dec (otherwise R can always output ⊥, regardless of x and w).

We partition [L] into Ī = [L] \ I, and I0 =
{

i ∈ I : ∃z ∈ S̄, h(z) = hi
}

, and I1 = I \ I0.
For every i ∈ I0 let z(i) be the unique string in S̄ such that h(z(i)) = hi. Denote by
ḡ ∈ {0, 1}| f̄ | the following string: For every q ∈ [|ḡ|], let i(q) be the i ∈ [L] such that

q indexes a location in ḡi, and let ḡ(q) =

{
0 i(q) ∈ Ī ∪ I1

z(i)q i(q) ∈ I0
, where z(i)q is the bit

in z(i) corresponding to the location indexed by q. Note that ḡ along with the index η
define together a unique codeword g (i.e., g is the ηth codeword in the list of codewords
that agree with ḡ on at least ρ indices).

Now fix any (x, w). For any query q to M with non-determinism z′, if i(q) /∈ I
then by definition M can only output either ḡ(q) = 0 or ⊥. Also, with probability at

30To be accurate, in the latter case Dec returns the answer corresponding to the string y′ in which ⊥’s
are replaced with 0’s.

29

least 1− 1/N2 over γ, if at least α · s of M’s oracle queries are answered by 1 and D
evaluates to 1 on these queries:

1. If i(q) ∈ I0 then M outputs

{
ḡ(q) z′ = z(i)
⊥ o.w.

.

2. If i(q) ∈ I1 then M outputs ⊥. (Because the oracle answers guarantee that z′ /∈ S̄,
and hence h(z′) 6= hi.)

By a union bound, with probability 1− 1/O(N) the above holds for all queries that
Dec makes to M. Now, consider an execution of Dec on input x ∈ [| f |] with oracle
access to ḡ and with the index η and the randomness that R provides it. Denote by g
the string such that gx is the answer of Dec on input x ∈ [| f |] in such an execution.
Note that g depends only on D, on h and on the advice adv.

The last step is to analyze the behavior of Dec when its gets oracle access to M
rather than to ḡ, and under the condition on M’s random choices above and the as-
sumption that ax,w,γ is α-indicative of dx,w,γ. Recall that Dec issues its queries in par-
allel, and therefore it makes the same queries to M and to ḡ. We now consider two
cases: If at least one query of Dec to M is answered by ⊥, then R aborts and outputs
⊥ (by the definition of R). Otherwise, all of the queries of Dec to M are answered
according to ḡ; in this case Dec outputs gx.

5.2 The outer PRG

The first PRG used in the proof of Theorem 1.2, presented next, uses a truth-table that
can be recognized in near-linear time, and is hard for interactive protocols running in
time 2(1−δ)·n with 2(1−δ)·n bits of non-uniform advice, for a small constant δ > 0. This
PRG allows to reduce the number of coins the verifier uses in any T-time protocol to
be approximately log(T). (Recall that in our final result we want the number of coins
to be approximately log(n).)

Definition 5.4 (properties useful against MASAT). For T, ` : N → N, we say that a
property L of truth-tables is useful againstMAT IMESAT[T]/` if the following statement is
false. There exist a verifier V and an advice sequence {an}n∈N and infinitely many truth-tables
f ∈ L such that:

1. For n = log(| f |), when given input x ∈ {0, 1}n and witness w ∈ {0, 1}T(n) and advice
an ∈ {0, 1}`(n), the verifier V runs in time T(n) and makes oracle queries to SAT.

2. If f (x) = 1 then there exists w ∈ {0, 1}T(n) such that VSAT(x, w, an) = 1.

3. If f (x) = 0 then for every w ∈ {0, 1}T(n) it holds that VSAT(x, w, an) = 0.

Proposition 5.5 (the “outer PRG” – radically reducing the number of random coins).
For every ε > 0 there exists δ > 0 such that the following holds. Assume that there exists
an NT IME [N1+ε/3]-constructive property L useful against MASAT[2(1−δ)·n]/2(1−δ)·n.
Then, for every time bound T it holds that prAMT IME [T] ⊆ AMT IME [T1+ε, (1+ ε) ·
log(T)]. Furthermore, if we only assume that L is useful againstMAM[2(1−δ)·n]/2(1−δ)·n,
then prAMT IMEp[T] ⊆ AMT IMEp[T1+ε, (1 + ε) · log(T)].

Proof. We first prove the “furthermore” part, and then explain how to adapt the proof
to deduce the first part of the claim.

Fix a problem Π = (Y,N) ∈ prAMT IME [T], and let V be a T-time verifier for
Π. Given input x ∈ {0, 1}n, let N = T(n). We guess fn ∈ {0, 1}N1+ε/3

and verify

30

that fn ∈ L (otherwise we abort). Consider the generator G from Proposition 5.1 with
ε0 = ε and input 1N oracle access to fn, and denote its set of outputs by s1, . . . , sN1+ε ∈
{0, 1}N . The new verifier V ′ chooses a random i ∈ [N1+ε] and simulates V at input x
with random coins si. Note that this verifier runs in time O(N1+ε), uses (1+ ε) · log(N)
coins, and has perfect completeness.

The reconstruction argument. Assume towards a contradiction that there exists an in-
finite set S of pairs (x, fn) such that x ∈ N and Pri∈[N1+ε][∃w : V(x, si, w) = 1] ≥ .5,
where the si’s are the outputs of G on non-deterministic guess fn. For every such pair,
denote by Dx : {0, 1}N → {0, 1} the function

Dx(z) = 1 ⇐⇒ ∃w : V(x, z, w) = 1 ,

and note that Prr∈{0,1}N [Dx(r) = 1] ≤ 1/3 (because x ∈ N).
We design an MAM protocol for fn as follows. Consider the reconstruction al-

gorithm R from Proposition 5.3 with oracle access to Dx and with the corresponding
advice string. Given input z ∈ [| fn|], our protocol acts as follows:

1. The prover sends non-determinism w for R.

2. The verifier simulates R using random coins, computes a set q1, .., .qt of queries
to Dx, and sends them back to the prover.

3. The prover sends t responses w1, . . . , wt, to be used as non-determinism for Dx
with queries q1, . . . , qt.

4. (Deterministic step.) The verifier computes the values {di = V(qi, z, wi)}i∈[t].
Then it simulates R with witness w and with the query answers {di}i∈[t], and
accepts iff R accepts.

By the “honest oracle” part of Proposition 5.3, and our assumption about Dx, there
exists adv and s ∈ N and α ∈ (0, 1) such that for every x there exists w for which
with high probability over R’s random coins, the oracle queries can be answered in a
manner that will be (s, α)-indicative of the (s, α)-valid sequence of answers by Dx, and
whenever that happens R outputs fx; and whenever the sequence of answers to oracle
queries are (s, α)-indicative of the sequence of answers by Dx, then R outputs a value
in {⊥, fx}.

We hard-wire adv, s, α as non-uniform advice to the MAM protocol. For every x
the prover can send the “correct” w in the first step, and witnesses w1, . . . , wt in the
third step such that di = Dx(qi) for all i ∈ [t], in which case the output of R is fx, with
high probability. To establish the soundness of the protocol, observe that we always
have di ≤ Dx(qi) (i.e., it is impossible that di = 1 whereas Dx(qi) = 0). Then, by
Proposition 5.3, with high probability the following holds: If the sequence of answers
to the verifier’s queries is not (α, s)-valid, then R outputs ⊥; and otherwise, it means
that the answers are (s, α)-indicative of the sequence of answers by Dx, in which case
we are in the soundness case and the output is either fx or ⊥.

By hard-wiring appropriate advice for every input length n such that (x, fn) ∈ S,
the protocol above computes a language whose truth-tables are included in L infinitely
often. (As in the proof of Theorem 4.2, on input lengths for which there are no suitable
x and fn, the advice string indicates that the protocol should compute the all-zero
function.) The time complexity of the protocol is at most

O(| fn|1−δ0︸ ︷︷ ︸
complexity of R

+ Nε/10︸ ︷︷ ︸
number of queries (i.e. t)

· N︸︷︷︸
complexity of V

) < | fn|1−δ , (5.1)

31

where the inequality relies on a sufficiently small choice of δ; and similarly, the advice
needed for this protocol is of length |x|+ | fn|1−δ0 + O(1) < | fn|1−δ. This contradicts
the usefulness of L.

Proof of the first part of the statement. Under the stronger assumption, we prove that
the same derandomization algorithm works also when V has imperfect completeness.
Recall that the stronger assumption is that every fn ∈ L is hard forMAT IME [2(1−δ)·n]/2(1−δ)·n

protocols with oracle access to SAT. Without loss of generality, we assume that for ev-
ery x ∈ Y it holds that Prr∈{0,1}N [∃w : V(x, r, w) = 1] ≥ .99 (this only increases the
running time of V by a constant multiplicative factor).

Now, assume towards a contradiction that there exists an infinite set S of pairs
(x, fn) such that x ∈ Y and Pri∈[N1+ε][∃w : V(x, si, w) = 1] ≤ 2/3, where the si’s
are the outputs of G on non-deterministic guess fn. Let D(x, z) = 1 ⇐⇒ ∀w :
V(x, z, w) = 0, and note that D ∈ coNT IME [O(n)] (where n = |x| + |z| denotes
the input length to D), and that Dx(z) = D(x, z) is a (1/4)-distinguisher for G. The
reconstruction algorithm for fn gets input z ∈ [| fn|], guesses non-determinism w for R,
and simulates R while resolving its queries q1, ..., qt to Dx by reducing the computation
of D at (x, q1), ..., (x, qt) to t corresponding SAT queries. The reconstruction has the
same running time and advice complexity as the reconstruction algorithm above, and
by Proposition 5.1, it computes the function described by fn, a contradiction.

5.2.1 A tangent: Derandomization prBPP

Using the proof approach of Proposition 5.5, we can obtain a derandomization of
prBPP (rather than of AM) in time that is optimal under #NSETH, using hypotheses
that compare favorably to previous results. Specifically, we show that:

Theorem 5.6 (optimal derandomization of prBPP without OWFs). For every ε > 0
there exists δ > 0 such that for any polynomial T(n) the following holds. Assume that:

1. There exists L /∈ i.o.MAT IME [2(1−δ)·n]/2(1−δ)·n and a deterministic algorithm that
gets input 1n, runs in time 2(1+ε/3)·n, and prints the truth-table of L on n-bit inputs.

2. For a constant k = kT ≥ 1 there exists L /∈ i.o.DT IME [2(k−δ)·n]/2(1−δ)·n and a
deterministic algorithm that gets input 1n, runs in time 2(k+1)·n, and prints the truth-
table of L on n-bit inputs.

Then, prBPT IME [T] ⊆ prDT IME [n · T1+ε].

The conclusion in Theorem 5.6 is identical to that in [CT21b], and so is the hypoth-
esis in Item (2). The new part is that the hypothesis in Item (1) of Theorem 5.6 replaces
the cryptographic hypothesis that one-way functions exist in [CT21b].

Proof sketch for Theorem 5.6. Using the hypothesis in Item (1), we mimic the proof
of Proposition 5.5 to argue that prBPT IME [T] ⊆ prBPT IME [T1+ε/2, (1 + ε/2) ·
log(T)], where the latter class is that of problems that can be decided in time T with
(1 + ε/2) · log(T) random coins. (This follows since the generator in Proposition 5.5
can now deterministically print fn, which is the truth-table of L on (1 + ε/6) · log(N)
input bits; and since the reconstruction protocol does not need an additional round,
because the distinguisher is now just a deterministic function.)

We then use the hypothesis in Item (2) with the Nisan-Wigderson generator, when
the latter is instantiated for small output length (see Theorem 5.16 for a statement of
the generator’s parameters). Instantiating this generator with the truth-table of L on
inputs of length (1 + Θ(ε)) · log(n) as in [CT21b, Section 4.2] or in Proposition 5.8, we
deduce that prBPT IME [T1+ε/2, (1 + ε/2) · log(T)] ⊆ prDT IME [n · T1+ε]

32

5.3 The inner PRG

The next PRG that we present will allow us to deduce derandomization of AM pro-
tocols that run in time nk and use no(1) random coins, with time overhead that is
multiplicative in the input length.

5.3.1 Warm-up: Using a different parameterization of the outer PRG as the inner
PRG

We first present a PRG that uses stronger assumptions than the ones in our actual
result, but is simple to show; in fact, it is the same PRG used in Section 5.2 (i.e., the
one from Proposition 5.3), but used with a different parameters to serve as an “inner
PRG” in our construction. The hardness assumption needed for this “warm-up” result
is that there is a function whose truth-tables can be recognized in time approximately
nk and that is hard for interactive protocols running in time 2(1−δ)·k·n with 2(1−δ)·n bits
of non-uniform advice (again δ > 0 here is a small constant).

Proposition 5.7 (the “inner PRG” – derandomizing AM protocols with few random
coins). For every ε > 0 there exists δ > 0 such that the following holds. Fix k ≥ 1,
and assume that there exists an NT IME [Nk+ε]-constructive property Lk useful against
MASAT[2(1−δ)·k·n]/2(1−δ)·n. Then,

AMT IME [nk, n] ⊆ NT IME [n1+(1+ε)·k] .

Furthermore, if we only assume that Lk is useful against MAM[2(1−δ)·k·n]/2(1−δ)·n, then
AMT IMEp[nk, n] ⊆ NT IME [n1+(1+ε)·k].

Proof. Fix Π ∈ AMT IME [nk, n], and let V be the nk-time verifier that uses at most
n random coins. Given input x ∈ {0, 1}n and witness w ∈ {0, 1}nk

, we guess fn ∈
{0, 1}n1+ε/3

and verify that fn ∈ L. Consider G from Proposition 5.3 with ε0 = ε
and input 1n oracle access to fn. We enumerate over the output-set s1, . . . , sn1+ε ∈
{0, 1}n of G and output MAJi {V(x, si, w)}. Note that this verifier indeed runs in time
O(n(1+ε/3)·(k+ε) + n1+ε · nk) < n1+(1+ε)·k.

The reconstruction arguments – both for the first part of the statement and for
the “furthermore” part – are essentially identical to the ones in the proof of Proposi-
tion 5.5, the only difference being the time complexity of the reconstruction procedure.
Specifically, using a calculation analogous to Eq. (5.1), the time complexity of the re-
construction procedure in our parameter setting is

O(| fn|1−δ0︸ ︷︷ ︸
complexity of R

+ nε/10︸ ︷︷ ︸
number of queries

· nk︸︷︷︸
complexity of V

) < | fn|(1−δ)·k ,

where the inequality relies on the fact that k + ε/10 < (1 + ε/3)(1− δ) · k, using a
sufficiently small choice of δ > 0.

5.3.2 The actual inner PRG: Result statement and proof plan

Our main goal is to relax the hypothesis in Proposition 5.7 for values of k > 1, by
requiring hardness only against NT IME machines with advice, rather than against
MASAT (or against MAM protocols) with non-uniform advice. Specifically, we will
prove the following result:

33

Proposition 5.8 (the “inner PRG” – derandomizing AM protocols with few random
coins). For every ε > 0 there exist δ, η > 0 such that the following holds. Fix k ≥ 1,
and assume that there exists an NT IME [Nk+ε/3]-constructive property Lk useful against
NT IME [2(1−δ)·k·n]/2(1−δ)·n. Then,

prAMT IME [nk, nη] ⊆ prNT IME [n1+(1+ε)·k] .

To prove Proposition 5.8, we use the Nisan-Wigderson generator instead of the PRG
from Proposition 5.3 (this is similar to a proof in [CT21b]). The key challenge is that
the NW generator requires hardness against algorithms (with advice) that have oracle
access to NT IME , whereas we only want to assume hardness against NT IME ma-
chines (with advice). To bridge this gap, we first show, in Section 5.3.3, how to trans-
form a truth-table that is hard for NT IME machines with advice into a truth-table
that is hard for DT IME machines with advice that have oracle access to NT IME .
This proof follows an argument from [SU06], but uses a more careful analysis to obtain
tighter bounds on the running time. Then, in Section 5.3.4 we combine the foregoing
transformation with a standard analysis of the NW generator (instantiated for small
output length) to prove Proposition 5.8.

5.3.3 A refined analysis of the “random curve reduction”

In this section it will be more convenient to work with the notion of non-uniform pro-

grams, rather than with Turing machines that take advice. A non-uniform program A
on n-bit inputs with advice complexity α and running time T is a RAM program Π of
description size α (i.e., |Π| ≤ α). Given an input x ∈ {0, 1}n, A(x) is defined to be the
output of running the program Π on input x for at most T steps (if, Π does not stop,
we define the output to be 0). The notation “A on n-bit inputs” means that we only
care about A’s outputs on n-bit inputs.31

We will need the notions of non-uniform single-valued programs (which are non-
uniform programs analogous of NP ∩ coNP) and of non-uniform non-adaptive SAT-
oracle program (which are non-uniform programs analogous to P with oracle access to
NP), defined as follows.

Definition 5.9 (non-uniform SVN programs). A single-valued nondeterministic program
A on n-bit inputs with advice complexity α and running time T is a nonuniform program with
the same advice complexity and running time which receives two inputs: an input x ∈ {0, 1}n

and a second input y of length at most T, and outputs two bits: the value bit and the flag bit.
A computes the function f : {0, 1}n → {0, 1} if the following hold:

• For every x ∈ {0, 1}n and y, if the flag bit of A(x, y) equals 1, then the value bit of
A(x, y) equals f (x).

• For every x, there is y such that the flag bit of A(x, y) equals 1.

We note that if α = T, then a single-valued nondeterministic program is essentially
a single-valued nondeterministic circuit (see [SU06]).

Definition 5.10 (non-uniform programs). A non-adaptive non-uniform SAT-oracle pro-
gram A on n-bit inputs is a pair of non-uniform programs Apre and Apost. The program Apre

31This is the reason why we use program instead of algorithm. We want to emphasize the fact that a
non-uniform program is a non-asymptotic object and we only care about its behaviors on a fixed-input
length n; this is similar to a circuit with n-bit inputs.

34

has n-bit inputs, and an input x ∈ {0, 1}n, it outputs queries q1, . . . , qk. 32 The program Apost

receives x ∈ {0, 1}n together with k bits a1, . . . , ak where ai = 1 if and only if qi ∈ SAT, and
outputs a single answer bit.

The running time (resp. advice complexity) of A is defined as the sum of the running time
(resp. advice complexity) of Apre and Apost. We also call k the query complexity of A.

For convenience, we will assume that the SAT oracle takes the description of a for-
mula φ as input, and the number of variables in φ is at most the description length of
φ. In other words, to prove that a formula φ with m-bit description length is satisfiable,
one only needs to provide a satisfying assignment with at most m bits.

The transformation. The main result that we prove in this section is a transformation
of truth-tables of functions that are hard for nondeterministic programs to truth-tables
of functions that are hard for SAT-oracle programs, as follows:

Theorem 5.11 (the “random curve reduction” with a careful analysis of overheads).
There is a universal constant c > 1 and an algorithm Alow-d which takes an input function
f : {0, 1}n → {0, 1}, a real ε ∈ (0, 1), and an integer k ≤ 2εn/100 as input, and outputs
the truth-table of another function g : {0, 1}(1+ε)n → {0, 1} such that for all sufficiently large
n ∈N:

1. Alow-d(f , ε, k) runs in Õ(2(1+ε)n) time.

2. If f does not have a single-valued nondeterministic program with running time T and
advice complexity α, then g does not have a non-adaptive non-uniform SAT-oracle pro-
gram with running time T · (n1/ε · k)−c, advice complexity α −O(n2 · k), and query
complexity k.

To prove Theorem 5.11 we will need the following technical tools. First, we need
the standard low-degree extension of Boolean functions, and we use the precise defi-
nition from [SU06].

Definition 5.12 (low-degree extension). Let f : {0, 1}n → {0, 1} be a function, h, q be
powers of 2 such that h ≤ q and d ∈ N such that hd ≥ 2n. Let H be the first h elements from
Fq, and I be an efficiently computable injective mapping from {0, 1}n \ Hd. The low-degree
extension of f with respect to q, h, d is the unique d-variable polynomial f̂ : Fd

q → Fq with
degree h− 1 in each variable, such that f̂ (I(x)) = f (x) for all x ∈ {0, 1}n and f̂ (v) = 0 for
all v ∈ (Hd \ Im(I)).

We will also consider the Boolean function of f̂ , denoted as fbool : {0, 1}d log q+log log q →
{0, 1} and defined by fbool(x, i) = f̂ (x)i, where f̂ (x)i denotes the i-th bit of the binary repre-
sentation of f̂ (x).

Since in Definition 5.12 we always consider finite fields Fq whose size is a power
of 2, we can naturally encode each element in Fq by exactly log q bits. Hence, the
mapping I can be constructed as follows: given x ∈ {0, 1}n, partition it into d con-
secutive blocks x(1), . . . , x(d) each of size log h and ignore the remaining bits (note that
n ≥ d · log h), and then interpret each x(i) as an element of H via a natural bijection
(first interpret x(i) as an integer from [h], and then interpret the obtained integer u
as the u-th element from H). Also, by standard interpolation, the truth-table of f̂
or fbool can be computed in Õ(qd) time from the truth-table of f . For simplicity, we
will chose the representation of Fq in such that a way that for every u ∈ {0, 1}n,
f (u) = fbool(I(u), 1).

32On all inputs from {0, 1}n the program Apre outputs the same number of queries.

35

We also need the notion of parametric curves, and a concentration bound for func-
tions on random curves that was proved in [SU06].

Definition 5.13 (parametric curves). Let q be a prime power and f1, . . . , fq be an enu-
meration of elements from Fq. For convenience we will assume f1 = 0. Given r elements
v1, . . . , vr ∈ Fd

q for r ≤ q, we define the curve passing through v1, . . . , vr to be the unique
degree r− 1 polynomial function c : Fq → Fd

q such that c(fi) = vi for every i ∈ [r]. We say
that a curve c is one to one if c(fi) 6= c(f j) for every distinct pair i, j from [q].

The following technical lemma from [SU06] asserts that any function (or set of
functions) satisfy good concentration bounds on random curves. To state it, de-
note by c(x, c1, . . . , cr) the unique curve passing through x, c1, . . . , cr, and note that
c(x, c1, . . . , cr)(0) = x by its definition. We also use F∗q to denote Fq \ {0}. For two
finite sets W, Z such that W ⊆ Z and h : Z → [0, 1], we define

µW(h) =
1
|W| ∑

i∈W
h(i) .

Then, the technical lemma from [SU06] is as follows:

Lemma 5.14 (curves are good samplers; see [SU06]). Let q be a prime power and r be an
integer such that 2 ≤ r < q. For every point x ∈ Fd

q , a list of k functions h1, . . . , hk : Fd
q →

[0, 1], and δ ∈ (0, 1), the probability over a random choice of points v1, . . . , vr ∈ Fd
q that

c(x, c1, . . . , cr) is one to one and33∣∣∣µc(x,c1,...,cr)(F∗q)
(hi)− µFd

q
(hi)

∣∣∣ < δ

for every i ∈ [k] is at least

1−
(

8k ·
(

2r
(q− 1) · δ2

)r/2

+
1

qd−2

)
.

We now turn to the actual proof of Theorem 5.11.

Proof of Theorem 5.11. We mimic the proof of [SU06, Theorem 3.2] with a more care-
ful choice of parameters. We also keep track of the running time and non-uniformity
separately, instead of a single measure of non-uniform circuit size as in [SU06].

We define pw(x) = 2dlog xe. That is, pw(x) is the smallest power of 2 that is at
least x. Let c0 ∈ N be a large enough constant to be chosen later. We first define the
following parameters:

1. r = c0 · n.

2. h = pw(h̃) where h̃ = max
(

c0 · r2 · (kn)4, (c0 · (n + 3) · r)3/ε
)

.

3. d = dn/ log he+ 3.

4. q = pw(q̃/2), where q̃ = c0 · h · d · r.
33We use c(x, c1, . . . , cr)(F∗q) to denote the set {c(x, c1, . . . , cr)(u) : u ∈ F∗q}.

36

Construction of the function g. Now, we define f̂ : Fd
q → Fq and fbool : {0, 1}d·log q+log log q →

{0, 1} as the low-degree extension of f with respect to q, h, d, according to Defini-
tion 5.12. And we define our output function g so that given an input x ∈ {0, 1}(1+ε)·n,
g(x) computes fbool on the length-(d · log q + log log q) prefix of x.

Fact 5.14.1. By our parameter choices we have that (1 + ε) · n ≥ d · log q + log log q, and
hence g is well-defined.

Proof. By the definition of q, we have that q ≤ q̃ = h · (c0 · d · r). By the definition of h,
we have that

h ≥ h̃ ≥ (c0 · (n + 3) · r)3/ε ≥ (c0 · d · r)3/ε .

The above further implies that q ≤ q̃ ≤ h1+ε/3. Hence, for a sufficiently large
n ∈N, we have that

d · log q + log log q = (dn/ log he+ 3) · log q + log log q

≤ n · log q
log h

+ 5 · log q ≤ (1 + ε/3) · n + 5 · log q .

Next, from the definition of q and the assumption that k ≤ 2εn/100, we have

log q ≤ O(log n) + log h ≤ O(log n) + 4 · log k
≤ O(log n) + 4 · ε/100 · n ≤ ε/20 · n .

Putting the above together, we have

d · log q + log log q ≤ (1 + ε/3 + ε/4) · n < (1 + ε) · n .

�

As mentioned after Definition 5.12, the truth-table of g can be computed in Õ(2(1+ε)n)
time. This proves Item (1).

Construction of a probabilistic program B′ for fbool. To prove Item (2), it suffices to
show the following

• If fbool has a non-adaptive non-uniform SAT-oracle program A = (Apre, Apost)
with running time T ≥ 1, advice complexity α ≥ 0, and query complexity k,

• then fbool has a single-valued nondeterministic program B with advice complex-
ity α + O(n2 · k) and running time O(T · q + poly(q)).34

We will first construct a probabilistic single-valued nondeterministic program B′

that computes fbool and then fix its randomness to obtain the desired program that
computes f (the definition of such a probabilistic program will be clear later in the
proof). Using our assumption about fbool, we can construct a non-adaptive non-
uniform SAT-oracle program Â = (Âpre, Âpost) with query complexity m = k · log q,
advice complexity α, and running time T · log q that computes f̂ : Fd

q → Fq.
For x ∈ Fd

q , let Q1(x), . . . , Qm(x) and A1(x), . . . , Am(x) be the queries and answers
associated with Â, respectively, on input x. We then define pi = µFd

q
(Ai) for every

34By the discussion after Definition 5.12, we have f (u) = fbool(I(u), 1). Hence B can be used to
compute f as well with a minor overhead in the running time.

37

i ∈ [m] and δ = 1/(9m). The probabilistic program B′ takes the α-bit advice of Â
together with all the p1, . . . , pm as advice.35

On an input (x, b) ∈ {0, 1}d log q × [log q], B′ works as follows:

1. Pick v1, . . . , vr uniformly at random, and set xa = cx,v1,...,vr(a) for every a ∈ Fq.
Simulate Âpre to compute queries Qi(xa) for every i ∈ [m] and a ∈ F∗q .

2. Set ni = b(pi − δ) · (q− 1)c. For every i ∈ [m], guess zi ∈ {0, 1}F∗q with exactly ni
ones, and T-bit strings {wi,a}a∈F∗q .

3. For every i ∈ [m] and a ∈ F∗q , check that (zi)a = 1 implies that wi,a is a wit-
ness that query Qi(xa) is answered positively (recall that the query is to SAT);
otherwise, set the flag bit in the output to be 0 and halt.

4. For every a ∈ F∗q , compute ya = Âpost(xa, (z1)a, (z2)a, . . . , (zm)a).

5. Run the algorithm from Lemma 3.13 on the q− 1 pairs (fa, ya) with degree u =
hdr to obtain a polynomial τ : Fq → Fq of degree u. Set the flag bit in the output
to be 1. If no such τ exists, set the value bit in the output to be 0, and otherwise
set the value bit to be the b-th bit of τ(0).

Analysis of the program B′. We need the following claim.

Claim 5.15. For every (x, b) ∈ Fd
q × [log q], with probability more than 1− 2−n

2 log q over the
choice of v1, . . . , vr, the following two conditions hold:

1. For all guesses zi and wi,a such that the flag bit of the output is set to 1, then the value
bit of the output is fbool(x, b).

2. There exist guesses zi and wi,a such that the flag bit of the output is set to 1.

Proof. Fix x ∈ Fd
q . We apply Lemma 5.14 to show that over a random choice of points

v1, . . . , vr ∈ Fd
q ,

c(x,v1,...,vr) is one to one and for all i ∈ [m],
∣∣∣µc(x,c1,...,cr)(F∗q)

(Ai)− µFd
q
(Ai)

∣∣∣ < δ (1)

holds with probability at least

1−
(

8m ·
(

2r
(q− 1) · δ2

)r/2

+
1

qd−2

)
.

We need to show the above is lower bounded by 1− 2−n

2 log q . First, by our choices of
q, h, d, we have

1
qd−2 =

1
qdn/ log he+1

≤ 1
hdn/ log he ·

1
q
≤ 2−n

4 log q
.

Next, note that 2r
(q−1)·δ2 ≤ 4·92·rm2

q < 1/2 by our choice of q (note that q > h >

c0 · r2 · (kn)4 > c0 · r ·m2, and c0 is sufficiently large). We then have

8m ·
(

2r
(q− 1) · δ2

)r/2

< 8m · 2−r/2 ≤ 2−n

4 log q
,

35Note that each pi can be described by a single integer between 0 and qd. Hence these m reals take
m ·O(d · log q) = O(m · n) bits to store.

38

the last inequality follows from r = c0 · n for a sufficiently large c0 ∈ N, and m ≤
log q · k ≤ log q · 2εn/100. Putting everything together, we have that (1) holds with
probability more than 1− 2−n

2 log q .
Next we show whenever (1) holds, the two items in the claim hold. For the second

item, note that since (1) holds, for every i ∈ [m] we know that Ai(xa) = 1 for at least ni
distinct elements a ∈ F∗q . Therefore, if for every i ∈ [m], the guess zi is the string with
exactly ni ones in entries indexed by those a with Ai(xa) = 1, then there are witnesses
wi,aa∈F∗q

that pass the check together with all the zi.
For the first item, for all guesses zi and wi,a such that the flag bit is 1, we know

that for all i ∈ [m] and a ∈ F∗q , (zi)a = 1 implies Ai(xa) = 1, and there are exactly ni
ones in zi. On the other hand, by (1), for every i ∈ [m], the number of a ∈ F∗q such that
Ai(xa) = 1 is at most d(pi + δ) · (q− 1)e. Hence, we can bound the number of errors
associated with query i as follows:∣∣∣{a ∈ F∗q : Ai(xa) 6= (zi)a}

∣∣∣ ≤ d(pi + δ) · (q− 1)e − b(pi − δ) · (q− 1)c ≤ 2δq.

The above in particular means that for all but at most 2δq ·m many a ∈ F∗q , we have
(zi)a = Ai(xa) for all i ∈ [m], and consequently ya = f̂ (xa). Letting p be the restriction
f̂ ◦ c(x,v1,...,vr), from the discussions above, it follows that for at least (q− 1)− 2δqm =

(1− 2δm)q− 1 = 7
9 · q− 1 of the pairs (a, ya) we have ya = p(a). Note that the degree

of p is at most hdr (since f̂ a d-variate polynomial of individual degree at most h− 1,
and we compose it with a curve of degree r). and q ≥ q̃/2 ≥ c0/2 · hdr. Since c0 is
a sufficiently large constant, we can apply Lemma 3.13 to compute p(0) = f̂ (x), and
output the b-th bit of f̂ (x) as desired, which completes the proof. �

Finally, let I : {0, 1}n → Fd
q be the injective function associated the low-degree

extension f̂ . Let S = {(x, b) : x ∈ I({0, 1}n), b ∈ [log q]}. Since |S| ≤ 2n · log q,
by a union bound, there exists fixed v̂1, . . . , v̂r such that B′ with randomness fixed to
v̂1, . . . , v̂r correctly computes fbool on all inputs from S. We then define the single-
valued nondeterministic program B by fixing the randomness of B′ to v̂1, . . . , v̂r.

Verifying the complexity of B. We have already established that B computes fbool.
It remains to verify the running time and advice complexity of B. First, B takes the
following advice:

1. Advice for Â, of length α.

2. Description of the reals p1, . . . , pm ∈ [0, 1], of total length O(m · n).

3. Fixed randomness v̂1, . . . , v̂r, which takes d log q · r ≤ O(n2) bits.

Hence, the number of advice bits of B is α + O(mn) + O(n2) ≤ α + O(n2 · k).
Finally, the running time of B is dominated by the simulation of (q − 1) calls to

Â, the final decoding algorithm, and the time to compute the curve c(x, v̂1, . . . , v̂r) by
direct interpolation (which takes poly(r, q) = poly(q) time). The total running time of
B can thus be bounded by

O(q · T) + poly(q) ≤ T · poly(q) .

and the final bound follows since q ≤ n8/ε · k4.

39

5.3.4 Proof of Proposition 5.8

We will use the following version of the Nisan-Wigderson [NW94] generator, when it
is combined with the locally decodable code of Sudan, Trevisan, and Vadhan [STV01]
and with the weak designs of Raz, Reingold, and Vadhan [RRV02]. This version of the
generator is instantiated for a sufficiently small output length, and we carefully bound
its running time, the running time of the reconstruction argument, and the number of
advice bits that the reconstruction argument needs.

Theorem 5.16 (NW generator for small output length). There exists a universal constant
cNW > 1 such that for all εNW > 0 and µNW > cNW ·

√
εNW there exist two algorithms that

for any N ∈N and f ∈ {0, 1}N satisfy the following:

1. (Generator.) When given input 1N and oracle access to f , the generator G runs in time
N1+2c2

NW·µNW and outputs a set of strings in {0, 1}NεNW .

2. (Reconstruction.) For any (1/NεNW)-distinguisher D : {0, 1}NεNW → {0, 1} for
G(1N) f there exists a string adv of length N1−µNW such that the following holds. When
the reconstruction R gets input x ∈ [| f |] and oracle access to D and non-uniform advice
adv, it runs in time NcNW·

√
εNW , makes non-adaptive queries to D, and outputs fx.

Proof Sketch. The proof is the standard analysis of the NW generator as in [STV01;
RRV02]; specifically, we follow the proof in [CT21a, Appendix A.2] and explain the
necessary changes. (These changes are needed since in the current statement we de-
couple µNW and εNW, instead of choosing a fixed value for µNW.)

Denote ε = εNW and µ = µNW and M = Nε. Instead of using designs with
log(ρ) = (1− 3β) · ` we use designs with log(ρ) = (1− 2µ) · `. Then, the seed length
of the generator becomes (1 + O(β + µ)) · log(N) = (1 + O(µ)) · log(N). In the re-
construction, the oracle machine P computing a corrupted version of f runs in time
poly(M) = NO(ε) and uses M · N(1+β)·(1−2µ) = N1+2β−2µ bits of non-uniform advice.
Thus, the final reconstruction uses N1−µ bits of advice and runs in time NO(

√
ε).

We now use the NW generator above along with Theorem 5.11 to prove Proposi-
tion 5.8. Let us restate the result befor proving it, for convenience.

Proposition 5.17 (Proposition 5.8, restated). For every ε > 0 there exist δ, η > 0 such
that the following holds. Fix k ≥ 1, and assume that there exists an NT IME [Nk+ε/3]-
constructive property Lk useful against (N ∩ coN)T IME [2(1−δ)·k·n]/2(1−δ)·n. Then,

prAMT IME [nk, nη] ⊆ prNT IME [n1+(1+ε)·k] .

Proof. Let η > 0 be a sufficiently small constant to be determined later, let Π =
(Y,N) ∈ prAMT IME [nk, nη], and let V be an nk-time verifier for Π that uses at
most nη random coins. Given x ∈ {0, 1}n, the deterministic verifier guesses a witness
w ∈ {0, 1}nk

and fn ∈ {0, 1}n1+ε/7
and checks that fn ∈ Lk. It then uses the algorithm

from Theorem 5.11 with parameter ε/7 and with a bound of Q = n(1+ε/3)·cNW·
√

η on
the number of queries to obtain a truth-table gn ∈ {0, 1}n1+ε/3

. 36

The verifier now uses G from Theorem 5.16 with parameters εNW = η and N =
n1+ε/3 and µ = C · √η for a sufficiently large universal constant C > 0, giving G oracle
access to gn. Denoting the output strings of Ggn(1N) by s1, . . . , sL, the verifier outputs
MAJi {V(x, si, w)}. Note that the running time of G and its number of output strings
L are bounded by n(1+ε/3)·(1+O(

√
η)) < n1+ε, assuming that η > 0 is sufficiently small.

Thus, the deterministic verifier runs in time n1+(1+ε)·k.
36The truth-table that Theorem 5.11 outputs is of length n(1+ε/7)2

, and by padding it with zeroes we
can assume that it is of length n1+ε/3.

40

The reconstruction argument. For any x ∈ {0, 1}n, let Dx : {0, 1}nη → {0, 1} be the
function

Dx(r) = 1 ⇐⇒ ∃w : V(x, r, w) = 1 .

Assume towards a contradiction that for infinitely many pairs (x, fn) such that x ∈ N

and fn ∈ {0, 1}|x|1+ε/7
it holds that Pri∈[L][Dx(si) = 1] ≥ 1/2, where the si’s are the

result of running G with oracle access to gn and with the parameters above.
For every such pair, there is an advice string adv of length |gn|1−C·√η such that the

reconstruction R from Theorem 5.16 computes the function whose truth-table is gn in
time |gn|cNW·

√
η when given adv as non-uniform advice and oracle access to Dx. By

adding x to the advice (we can assume that |x| < |adv| by choosing η to be sufficiently
small), this is an algorithm that runs in time |gn|cNW·

√
η , uses |gn|1−C·√η bits of advice,

and makes Q non-adaptive oracle queries toNT IME [nk]. 37 Using an efficient reduc-
tion of NT IME [nk] to SAT (see [Tou01; FLM+05]), we obtain an algorithm that runs
in time T′ = Õ(nk), uses α′ = |gn|1−C·√η bits of advice, and makes Q non-adaptive
queries to a SAT oracle.

The algorithm R above yields a non-adaptive non-uniform SAT-oracle program
with running time T′ and advice complexity α′ and query complexity Q, in the sense
of Definition 5.10. By Theorem 5.11, it holds that gn can be computed by a single-
valued non-deterministic program with running time T = T′ ·γ and advice complexity
α = α′ · γ, where γ = (Q, log(| fn|)1/ε)cSU = ncSU·cNW·(1+ε/3)·√η = |gn|cSU·cNW·

√
η and cSU

is the constant from Theorem 5.11 that depends on ε > 0.
By the straightforward simulation of the infinite sequence of non-uniform pro-

grams to a Turing machine with advice,38 there exists an unambiguous non-deterministic
machine M that runs in time Õ(T) and an advice sequence of length α and infinitely
many gn ∈ L such that on input length log(|gn|), when M is given the appropriate
advice it computes gn. Plugging in the parameters, we have that

Õ(T) = Õ(nk · |gn|cSU·cNW·
√

η) = Õ(|gn|k/(1+ε/3)+cSU·cNW·
√

η) < |gn|k/(1+ε/4)

α = |gn|1−C·√η · |gn|cSU·cNW·
√

η ≤ |gn|1−
√

η

where the upper-bound on T follows by choosing a sufficiently small η = η(ε) > 0.
This contradicts the usefulness of Lk if we choose δ > 0 to be sufficiently small.

5.4 Composing the two PRGs

By a straightforward combination of Proposition 5.5 and Proposition 5.8, we obtain the
following result, which deduces derandomization of AMT IME [
2], under hardness
assumptions as in Theorem 1.2.

Corollary 5.18 (superfast derandomization of AMT IME [
2]). For every ε > 0 there
exists δ > 0 such that the following holds. Assume that:

1. There exists an NT IME [N1+ε/3]-constructive property L1 that is useful against
MASAT[2(1−δ)·n]/2(1−δ)·n.

2. For every k > 1 there exists an NT IME [Nk+ε/3]-constructive property Lk useful
against (N ∩ coN)T IME [2(1−δ)·k·n]/2(1−δ)·n.

37In more detail, queries to the oracle are of the form (x, r) ∈ {0, 1}n × {0, 1}nη
, and the oracle answers

“yes” iff there exists w such that V(x, r, w) = 1.
38That is, the machine gets as advice the description of the program and simulates it.

41

Then, for every polynomial T it holds that

prAMT IME [T] ⊆ prNT IME [n · T1+ε] .

Furthermore, if in Item (1) we only assume that L1 is useful againstMAM[2(1−δ)·n]/2(1−δ)·n,
then for every polynomial T it holds that prAMT IMEp[T] ⊆ prNT IME [n · T1+ε].

Proof. Let T(n) = nc. By Proposition 5.5 with parameter value ε/3 (using our hy-
pothesis with k = 1), we have that prAMT IME [T] ⊆ prAMT IME [T1+ε/3, (1 +
ε/3) · log(T)]. By Proposition 5.8 instantiated with parameter values ε/3 and k =
(1 + ε/3) · c, such that T1+ε/3 = nk, we have that prAMT IME [nk, O(log(n))] ⊆
prAMT IME [n1+(1+ε/3)·k], and note that n1+(1+ε/3)·k ≤ n · T1+ε. The proof of the
“furthermore” statement is identical, just using the “furthermore” part of Proposi-
tion 5.5 instead of the first part of Proposition 5.5.

To prove Theorem 1.2, we combine Corollary 5.18 with an application of the stan-
dard round-reduction procedure for AM protocols by Babai and Moran [BM88]. That
is, we first simulate AMT IME [
c] in AMT IME [
2], carefully accounting for the
time overhead, and then derandomize the latter verifier using Corollary 5.18.

Corollary 5.19 (superfast derandomization of AMT IME [
c]; Theorem 1.2, restated).
For every ε > 0 there exists δ > 0 such that the following holds. Assume that Items (1) and (2)
in Corollary 5.18 are true. Then, for every polynomial T and constant c ∈N,

prAMT IME [
c][T] ⊆ prNT IME [n · Tdc/2e+ε] .

and

prMAT IME [
c][T] ⊆ prNT IME [Tbc/2c+1+ε] .

Furthermore, if we only assume that L1 is useful against MAM[2(1−δ)·n]/2(1−δ)·n,
then for every polynomial T and constant c ∈ N it holds that prAMT IME [
c]

p [T] ⊆
prNT IME [n · Tdc/2e+ε] and prMAT IME [
c]

p [T] ⊆ prNT IME [n · Tdc/2e+ε].

Proof. Let us first prove the claim about prAMT IME [
c][T], and note that the case
of c = 2 was proved in Corollary 5.18. Denote by prAMT IME [
c,T′][T] (resp.,
prMAT IME [
c,T′][T]) a protocol with c turns in which the verifier runs in time
T in each turn and the prover sends T′ bits in each turn. We use the following result:

Proposition 5.19.1 (the round-reduction of [BM88] forAM; see, e.g., [Gol08, Appendix
F.2.2.1, Extension]). For every constant c ≥ 3 we have that

prAMT IME [
c,T′][T] ⊆ prAMT IME [
min{c−2,2},O(T′)][T · T′] ,

prAMT IME [
c,T′]
p [T] ⊆ prAMT IME [
min{c−2,2},O(T′)]

p [T · T′] .

For c ≥ 3, we can apply Proposition 5.19.1 for c′ = dc/2e − 1 times to deduce that

prAMT IME [
c][T] ⊆ AMT IME [O(Tdc/2e)] ,

and the claim follows from Corollary 5.18. (The “furthermore” part follows from the
“furthermore” part of Corollary 5.18.)

42

The case of MAT IME [
c]. Let Π = (Y,N) ∈ prMAT IME [
c][T] and let V be a
corresponding T-time protocol. Let V>1 be the sub-protocol of V after the first turn,
which takes an input x ∈ {0, 1}n to Π and a first prover message w1 ∈ {0, 1}T(n) as
input. Note that V>1 is an AMT IME [
c−1][O(n)] protocol on n + T(n) bits of input.

From the definition ofMAT IME [
c][T], we have that

x ∈ Y ⇒ ∃ w ∈ {0, 1}T(n) s.t. V>1(x, w) accepts with probability at least 2/3 ,

x ∈ N ⇒ ∀ w ∈ {0, 1}T(n) V>1(x, w) accepts with probability at most 1/3 .

Let Π̄ = (Ȳ, N̄) such that (x, w) ∈ Ȳ if V>1(x, w) accepts with probability at least
2/3, and (x, w) ∈ N̄ if V>1(x, w) accepts with probability at most 1/3. Note that
Π̄ ∈ prAMT IME [
c−1][O(n)], and hence (by the first part of the proof), we have
that Π̄ ∈ prNT IME [n1+d(c−1)/2e+ε] = prNT IME [n1+bc/2c+ε].

Let M(x, w) be the corresponding nondeterministic machine that decides Π̄. We
can decide Π as follows: Given input x ∈ {0, 1}n, guess w ∈ {0, 1}T(n), simulate
M(x, w) and accept iff M accepts. Note that for x ∈ Y, there exists w ∈ {0, 1}T(n) such
that (x, w) ∈ Ȳ, and hence M(x, w) accepts on this particular w. And when x ∈ N,
for all w ∈ {0, 1}T(n) we have (x, w) ∈ N̄, and thus M(x, w) rejects on all possible w.
Therefore, we have that Π ∈ prNT IME [T1+bc/2c+ε].

The proof of the “furthermore” part is essentially identical, the only difference
being that we observe that

x ∈ Y ⇒ ∃ w ∈ {0, 1}T(n) s.t. V>1(x, w) accepts with probability 1 ,

x ∈ N ⇒ ∀ w ∈ {0, 1}T(n) V>1(x, w) accepts with probability at most 1/3 ,

define Π̄ accordingly and observe that Π̄ ∈ prAMT IME [
c−1]
p [O(n)], and use the

“furthermore” part of the claim about AM.

5.5 Uniform trade-offs for AM∩ coAM
In this section we prove Theorem 1.3. The main claim in the proof is the following,
which shows that under the hardness assumption of Theorem 1.3, one can reduce
the randomness complexity of any (AM ∩ coAM)T IMEp[T] protocol to roughly
log(T(n)). That is:

Proposition 5.20 (radically reducing the number of random coins of AM∩ coAM).
For every ε > 0 there exists δ > 0 such that the following holds. Assume that there exists
L /∈ i.o.(MA∩ coMA)T IME [
7][2(1−δ)·n] such that truth-tables of L of length N = 2n

can be recognized in nondeterministic time N1+ε/3. Then, for every time-computable T it holds
that

(AM∩ coAM)T IMEp[T] ⊆ (AM∩ coAM)T IMEp[T1+ε, (1 + ε) · log(T(n))].

Note that Theorem 1.3 follows immediately from Proposition 5.20 by enumerating
all possible random choices; that is, the deterministic verifier asks the prover to send its
responses to all possible T1+ε random challenges, checks the responses for consistency,
and computes the probability that the original random verifier would have accepted.

Proof of Proposition 5.20. Fixing any L ∈ (AM∩ coAM)T IMEp[T], we prove that
L ∈ AMT IMEp[T1+ε, (1 + ε) · log(T(n))]; since the same argument can also be
applied to the complement of L, it follows that L ∈ coAMT IMEp[T1+ε, (1 + ε) ·
log(T(n))].

43

By definition, there are two T-time verifiers V1(x, y, z) and V0(x, y, z) with |y| =
|z| = T(|x|), such that the following holds for every x ∈ {0, 1}n and σ = L(x):

Pr
y∼uT(n)

[∃ z s.t. Vσ(x, y, z) = 1] = 1 ,

Pr
y∼uT(n)

[∃ z s.t. V1−σ(x, y, z) = 1] ≤ 1/3 .

Let δ0 be the corresponding constant from Proposition 5.1 when setting ε0 = ε, and
without loss of generality assume that δ0 < ε0.

Construction of the new verifier V ′. Given input x ∈ {0, 1}n, let N = T(n). Let
` = (1 + ε/3− δ0/10) · log N. V ′ guesses f` ∈ {0, 1}N1+ε/3−δ0/10

and verifies that f` ∈
tt(L) by guessing the witness for the nondeterministic algorithm that recognizes tt(L)
(otherwise V ′ rejects). V ′ then computes Enc(f`) using the encoder in Theorem 3.12
with parameters m = | f`| and η > 0 that is a sufficiently small constant.

Next, we consider the following pair language

Lpair = {(1`,Enc(f`))) : f` is the truth-table of Lhard on `-bit inputs}.

Note that Lpair has stretch K(`) = |Enc(f`)| = Õ(2`), and is decidable inNT IME [T̃(`))]
for some T̃(`) = Õ(2`). Let M be a T̃(`)-time nondeterministic machine such that
(x, y) ∈ Lpair if and only if there exists w ∈ {0, 1}T̃(|x|) such that M((x, y), w) = 1.

We apply Theorem 3.17 to Lpair to obtain a poly(`)-time verifier Vpair and a Õ(2`)
time algorithm Apair. By Theorem 3.17, for some r(`) ≤ ` + O(log `), and for every
sufficiently large ` ∈N, the followings hold:

1. For every w ∈ {0, 1}T̃(`) such that M((1`,Enc(f`)), w) = 1, Apair(1`,Enc(f`), w)

outputs a proof π ∈ {0, 1}2r(`)
such that

Pr[VEnc(f`),π
pair (1`, ur) = 1] = 1.

2. For every y ∈ {0, 1}K(`) that has hamming distance at least K(`)/20 from Enc(f`),
for every π ∈ {0, 1}2r

it holds that

Pr[VEnc(f`),π
pair (1`, ur) = 1] ≤ 1/3.

Then, V ′ guesses w ∈ {0, 1}T̃(`) such that M((1`,Enc(f`)), w) = 1 (V ′ reject imme-
diately if this does not hold), computes πw

` = Apair(1`,Enc(f`), w), which has length
2r(`). Now we define

Λw
` = |Enc(f`)| ◦ π` ◦ 0N1+ε/3−|Enc(f`)|−|πw

` |.

Note that |Λw
` | = N1+ε/3. Consider the generator G from Proposition 5.1 with ε0 =

ε, input 1N , and oracle access to Λ`, and denote its list of outputs by sw
1 , . . . , sw

N1+ε ∈
{0, 1}N . The new verifier V ′ chooses a random i ∈ [N1+ε] and simulates V1 at input
x with random coins sw

i . Note that this verifier indeed runs in time O(N1+ε). For
notational convenience, we now denoted the set of all accepted w by

W = {w : w ∈ {0, 1}T̃(`) ∧M((1`,Enc(f`)), w) = 1}.

We note that |W| ≥ 1 since M decides Lpair.

44

The reconstruction argument. Assume towards a contradiction that V ′ fails to solve
L. Since V1 has perfect completeness and |W| ≥ 1, V ′ can only make mistakes when
x /∈ L. In particular, there exist x ∈ {0, 1}n and w∗ ∈ W :

x /∈ L ∧ Pr
i∈[N1+ε]

[∃ω : V1(x, sw∗
i , ω) = 1] > .5 . (5.2)

Denote by Dx : {0, 1}N → {0, 1} the function Dx(z) = 1 ⇐⇒ ∃ω : V1(x, z, ω) = 1.
From now on, we will use Λ` to denote Λw∗

` for simplicity.
We first design an MAT IME [
7] protocol Π1 for f`. Let τ = c0 · log N for a big

enough constant c0 > 1. Given an input µ ∈ [| f`|], our protocol acts as follows. (See
Figure 1 for a visual diagram of the protocol.)

1. The prover sends a (supposedly bad) input x ∈ {0, 1}n. From now on, we con-
sider the reconstruction algorithm R from Proposition 5.1 with oracle access to
Dx. Let t̄ = Nε0/10 be the number of parallel queries R makes, and let s, α ∈ N

be the parameters from Proposition 5.1.

2. The verifier draws h ∼ h (h is defined in Proposition 5.1) and τ queries z1, z2, . . . , zτ ∈
{0, 1}N uniformly at random, and sends them to the prover. Note that h ∈
{0, 1}| f`|1−2δ0 .

3. The prover sends an advice adv ∈ {0, 1}| f`|1−2δ0 , together with witnesses ω1, ω2, . . . , ωτ ∈
{0, 1}N .

4. The verifier then performs the following:

(a) It rejects immediately if

Pr
i∈[τ]

[V0(x, zi, ωi) = 1] ≤ 1/2.

(b) Otherwise, it draws α1, α2, . . . , ατ ∈ {0, 1}r(`), and then simulates Vpair(1`, αi)
for each i ∈ [τ] to obtain a list of polylog(`) queries to the input oracle
(which it hopes will be Enc(f`)) and to the proof oracle (which it hopes will
be π). We can view those queries as queries q ∈ [N1+ε/3] to some values of
Λ`.39

(c) The verifier also simulates the local decoder for Enc with input µ, which
issues | f`|η many queries β1, β2, . . . , β| f`|η ∈ [|Enc(f`)|]. Again, we view all
these | f`|η queries as queries q ∈

[
N1+ε/3] to some values of Λ`.

(d) To summarize, in this turn, the verifier obtained Nq = O (| f`|η) many
queries q1, . . . , qNq ∈ [N1+ε/3] and sent them to the prover.

5. For every i ∈ [Nq], the prover sends a witness wi ∈ {0, 1}| f `|1−δ0 , which is sup-
posed to be the witness for the execution of R on qi.

6. For every i ∈ [Nq], the verifier simulates R on input qi with witness wi with fresh
random coins γi, obtains queries zi,1, . . . , zi,t̄ ∈ [N], and sends them to the prover.

7. For every i ∈ [Nq] and j ∈ [t̄], the prover sends a witness ωi,j ∈ {0, 1}N , which is
supposed to be the witness for Dx(zi,j).

39More formally, querying the i-th bit of the proof oracle corresponding to Enc(f`) translates to query-
ing (Λ`)i, and querying the i-th bit of the proof oracle corresponding to π translates to querying
(Λ`)i+|Enc(f`)|.

45

V P

x (for constructing a distinguisher Dx)

h, queries z1, . . . , zτ for verifying Prr[Dx(r) = 1] ≤ 1/2

adv (after seeing h), witnesses ω1,, ωτ for V0 on z1, . . . , zτ

queries q1, . . . , qNq by the local encoder and by Vpair

witnesses w1, . . . , wNq for executing R on the qi’s

queries zi,j (i ∈ [Nq], j ∈ [t̄]) for executing R on each qi with wi

witnesses ωi,j for Dx on each query zi,j

Figure 1: An illustration of the MAT IME [
7] protocol for f` in the reconstruction
argument. The verifier V is on the left-hand side and the prover P is on the right-hand
side, and observe that the prover speaks first.

8. (Deterministic step.) Finally, the verifier performs the following verifications:

(a) For every i ∈ [Nq], it constructs the sequence ρi ∈ {0, 1}t̄ such that (ρi)j =
V1(x, zi,j, ωi,j) for every j ∈ [t̄]. If for any i ∈ [Nq], ρi is (s, α)-deficient, then
it immediately rejects.

(b) Otherwise, for every i ∈ [Nq], let di ∈ {0, 1}t̄ be such that (di)j = Dx(zi,j)

for every j ∈ [t̄]. We know that ρi is (s, α)-indicative of di.40 The verifier
then finishes the executions of R on all the qi’s, and rejects immediately if
it gets ⊥ form any of these executions. Next, the verifier uses the obtained
values to finish the simulation of Vpair(1`, αi) for every i ∈ [τ], and rejects
immediately if any of the Vpair(1`, αi) = 0. Finally, the verifier finishes the
simulation of the local decoder for Enc to obtain an output ω ∈ {0, 1}, and
accepts iff ω = 1.

Completeness. For every µ ∈ [| f`|] such that (f`)µ = 1, we will show that there exists
a prover strategy in the protocol Π1 such that the verifier accepts, with high probability.
In Step (1) the prover sends the (“bad”) input x ∈ {0, 1}n such that (5.2) holds. Since
x /∈ L, we have that Pr[Dx(uN) = 1] ≤ 1/3 and that Prz∼uN [∃ ω V0(x, z, ω) = 1] = 1.
Therefore, in Step (3), the prover can always send ω1, . . . , ωτ so that the verifier does
not reject in Step (4a) in Π1.

By the completeness case of the “Honest oracle” part of Proposition 5.1, and since
Eq. (5.2) holds, with probability 1− 1/N over h ∼ h, there exists adv ∈ {0, 1}| f`|1−2δ0

40This holds since for every j ∈ [t̄] (ρi)j = 1 implies (di)j = 1 by the definition of ρi and Dx.

46

such that by sending adv to the verifier in Step (3), the following holds: Given correct
witnesses in Step (5), with probability at least 1−O(Nq)/N, for all of the verifier’s
O(Nq) simulations of R, given correct witnesses in Step (7), the verifier obtains the
correct values in Λ`. In particular, it means that Vpair(1`, αi) = 1 for all i ∈ [τ], and
the local decoder returns the correct value (f`)µ = 1. Putting the above together, the
verifier accepts with probability at least 2/3.

Soundness. Let µ ∈ [| f`|] such that (f`)µ = 0. We first note that if thr prover sends
x ∈ L in Step (1), then we have Prz∼uN [∃ ω V0(x, z, ω) = 1] ≤ 1/3, meaning that with
probability at least 1− 1/N, the verifier rejects in Step (4a), no matter what witnesses
ω1, . . . , ωτ it receives in Step (3). Therefore, we can assume that x /∈ L in Step (1) and
that the verifier does not reject immediately in Step (4a). In particular, since x /∈ L, we
have that Prz∼uN [Dx(z)] ≤ 1/3.

Now, by the “Dishonest oracles” case of Proposition 5.1, with probability 1− 1/N
over h ∼ h, for every possible adv sent by the prover in Step (3), there exists g ∈
{0, 1}N1+ε/3

such that the following holds for every i ∈ [Nq]: for every possible wi
sent by the prover in Step (5), with probability at least 1 − 1/N over the verifier’s
randomness γi drawn in Step (6), either the verifier rejects in Step (8a), or the simulated
R(qi, wi) in Step (8b) given advice (h, adv) outputs either g(qi) or ⊥ (this holds since
ρi in in Step (8) is either (s, α)-deficient, in which case the verifier rejects, or (s, α)-
indicative of di, in which case R(qi, wi) outputs either g(qi) or ⊥).

By the above discussions and a union bound, with probability at least 1−O(Nq)/N,
at Step (8b), either the verifier rejects (meaning that some of R(qi, wi) outputs ⊥), or
all the simulated R(qi, wi) outputs g(xi). We will denote the above as event E .

From now on we condition on the event E and we assume that the verifier does
not reject in Step (8a). Let y be the first |Enc(f`)| bits of g, and π be the next |π`| bits
of g. Note that g is already determined by the end of Step (3) and hence the verifier’s
randomness α1, . . . , ατ in Step (4) is independent of g. Hence, if y has Hamming
distance at least |Enc(f`)|/20 from Enc(f`), then with probability at least 1 − 1/N,
Vy,π
pair(1

`, αi) = 0 for at least one i ∈ [τ], and the verifier rejects in Step (8b).41 Hence,
we can assume that y has hamming distance at most |Enc(f`)|/20 from Enc(f`). By
Theorem 3.12, the local decoder returns the correct value (f`)µ = 0 with probability
at least 1− 1/N, and the verifier rejects at the end. Putting everything together, the
verifier rejects with probability at least 2/3.

Protocol Π0 for the complement of f`. Finally, we modify Π1 to obtain another
MAT IME [
7] protocol Π0. The only difference between Π0 and Π1 is that at Step
(8b) of Π0, the verifier in Π0 accepts if and only if ω = 0 instead of ω = 1. The
completeness and soundness of Π0 for computing the complement of f` follow from
the same proof as that for Π1.

41Here we crucially used the fact that g (and thus y and π) is fixed before the verifier draws the αi’s.

47

Running time of the protocols Π1 and Π0. Finally, we bound the running time of
the verifier in Π1 (and hence also in Π0), as follows:

Õ
(
|Λ`|1−2δ0

)
︸ ︷︷ ︸

Step (2)

+ Õ(N) + polylog(N) + | f`|η︸ ︷︷ ︸
Steps (4a)+ (4b)+ (4c)

+O(Nq · |Λ`|1−δ0)︸ ︷︷ ︸
Step (6)

+ O(Nq · N · t̄)︸ ︷︷ ︸
Step (8a)

+O(Nq · |Λ`|1−δ0 + polylog(N) + | f`|η)︸ ︷︷ ︸
Step (8b)

≤ Nq ·O(N · t̄ + |Λ`|1−δ0)

= | f`|η ·O(N1+ε0/10 + |Λ`|1−δ0) ,

and this can be made smaller than |Λ`|1−δ by choosing η and δ to be sufficiently small.
This contradicts the hardness of f`.

6 Optimality under #NSETH

In this section we prove that the derandomization conclusions in Theorems 1.1 and 1.2
are essentially optimal, under the assumption #NSETH. First we lower bound the
derandomization overhead of protocols in which the prover speaks first (i.e., of MA
andMAT IME [
c]), as follows:

Theorem 6.1 (a lower bound on derandomization ofMAT IME [
c], under #NSETH).
Suppose that #NSETH holds. Then, for every integer c ≥ 2 and real number d ≥ 1 and
ε ∈ (0, 1), letting T(n) = nd, it holds that

MAT IME [
c][T] 6⊆ NT IME [Tbc/2c+1−ε] .

Proof. Without loss of generality we can assume ε ∈ (0, 0.01). For the sake of contra-
diction, we assume that

MAT IME [
c][T] ⊆ NT IME [Tbc/2c+1−ε] .

We instantiate Theorem 3.18 with k = bc/2c and δ = 1
k+1 , in which case γ = 1

k+1 .
It follows that there is anMAT IME [
2k][2n/(k+1)+o(n)] protocol Π that computes the
number of satisfying assignment to a formula C with 2o(n) size and n bits input.

We first define a decisional MAT IME [
2k] protocol ΠD, such that ΠD(C, z) = 1
for an n-input formula C and an integer z ∈ {0, 1, . . . , 2n}, if the number of satisfying
assignments to C is z. (Indeed, ΠD can be constructed by simply simulating Π on the
input C and only accepting if Π accepts and the accepted output is z.)

Now we pad the input of the protocol ΠD to be of length N = 2
n(1+τ)
(k+1)d for a suf-

ficiently small constant τ ∈ (0, 1) to be specified later. Then, the running time of
the protocol ΠD is bounded by 2n/(k+1)+o(n) ≤ 2(1+τ)n/(k+1) = T(N). Hence, by our

assumption, ΠD has a T(N)k+1−ε = 2
(1+τ)n(k+1−ε)

(k+1) time nondeterministic algorithm MD.
Setting τ = ε/4(k + 1), it holds that (1+τ)n(k+1−ε)

(k+1) < (1 − τ) · n. Now we can
construct a nondeterministic algorithm refuting #NSETH as follows: given a formula
C : {0, 1}n → {0, 1} of size 2o(n), guess z ∈ {0, 1, . . . , 2n}, simulate MD on input (C, z),
output z if MD accepts and ⊥ otherwise. By the above discussion, this is a nondeter-
ministic algorithm that counts the number of solutions to n-bit formulas of size 2o(n)

in time 2(1−τ)·n, a contradiction to #NSETH.

48

By a more careful argument, we now lower bound the derandomization overhead
of protocols in which the verifier speaks first (i.e., of AMT IME [
c]), as follows:

Theorem 6.2 (a lower bound on derandomization of AMT IME [
c], under #NSETH).
Suppose that #NSETH holds. Then, for every integer c ≥ 2 and real number d ≥ 1 and
ε ∈ (0, 1), letting T(n) = nd, it holds that

AMT IME [
c][T] 6⊆ NT IME [n · Tdc/2e−ε] .

Proof. Without loss of generality we can assume ε ∈ (0, 0.01). For the sake of contra-
diction, we assume that

AMT IME [
c][T] ⊆ NT IME [n · Tdc/2e−ε] .

We instantiate Theorem 3.18 with k = dc/2e and δ = 1
dk+1 and γ = (1− δ)/k. Note

that since d ≥ 1, we have δ ≤ γ. It follows that there is anMAT IME [
2k][2γ·n+o(n)]
protocol Π that computes the number of satisfying assignment to a formula C with
2o(n) size and n bits input, and the first message of Π has length 2δ·n+o(n).

As in the proof of Theorem 6.1, we first define a decisional MAT IME [
2k] pro-
tocol ΠD, such that ΠD(C, z) = 1 for an n-input formula C and an integer z ∈
{0, 1, . . . , 2n}, if the number of satisfying assignments to C is z. We note that the
prover messages of the honest prover in ΠD are identical to those in Π. Furthermore,
by the moreover part of Theorem 3.18, the first message of ΠD is such that the accep-
tance probability of the subsequent protocol is either 1 or at most 1/3. (Indeed, ΠD

inherits this property from Π.)
Let ΠD

>1 be the sub-protocol of ΠD after the first message and let `(n) = 2(1+τ)·δn,
where τ ∈ (0, 1) is a small enough constant to be specified later. We define a new
language L′ such that L′(x, π, 1`(n)−|x|−|π|) = 1 if ΠD

>1 accepts the input/first-message
pair (x, π) with probability 1, and L′(x, π, 1`(n)−|x|−|π|) = 0 if ΠD

>1 accepts (x, π) with
probability at most 1/3. Note that (by the discussion above) the problem L′ is indeed
a language (i.e., a total function rather than a promise problem), and L′ can be decided
by ΠD

>1, which is an AMT IME [
2k−1] protocol with running time 2γ·n+o(n).
Note that ΠD

>1 takes `(n) bits as input, and that `(n)d = 2(1+τ)δ·d·n > 2γ·n+o(n)

by the definition of δ and γ. Hence, the language L′ ∈ AMT IME [
c][T]. By our
assumption, L′ ∈ NT IME [n · Tk−ε].

Now we construct an algorithm that refutes #NSETH: Given an n-bit formula C
of size 2o(n), guess z ∈ {0, 1, . . . , 2n}, guess a proof π of length 2δ·n+o(n), outputs z
if L′((C, z), π, 1`(n)−|(C,z)|−|π|) = 1, and outputs ⊥ otherwise. This nondeterministic
algorithm indeed counts the number of satisfying assignments, and its running time
is at most

`(n) · `(n)d(k−ε) = `(n)d(k−ε)+1 = 2
(1+τ)·(d(k−ε)+1)

dk+1 ·n < 2(1−Ω(1))·n,

where the last inequality follows by setting τ to be small enough. This is a contradic-
tion to #NSETH.

7 Deterministic effective argument systems

In this section we prove the results from Section 1.2 concerning derandomization of
doubly efficient proof systems; that is, we prove Theorems 1.5, 1.7 and 1.8.

Let us first set up some preliminaries. The derandomization algorithms in this
section will be non-black-box, and in particular will use the following construction of a
reconstructive targeted HSG from the recent work [CT21a].

49

Theorem 7.1 (a reconstructive targeted HSG, see [CT21a, Proposition 6.2]). For every
α′, β′ > 0 and sufficiently small η = ηα′,β′ > 0 the following holds. Let T̄, k : N → N

be time-computable functions such that T̄(N) ≥ N, and let g : {0, 1}N → {0, 1}k (where
k = k(N)) such that the mapping of (x, i) ∈ {0, 1}N × [k] to g(x)i is computable in time
T̄(N). Then, there exists a deterministic algorithm Gg and a probabilistic algorithm Rec that
for every z ∈ {0, 1}N satisfy the following:

1. Generator. When Gg gets input z and η > 0, it runs in time k · T̄(N) + poly(k) and
outputs a list of poly(k) strings in {0, 1}kη

. 42

2. Reconstruction. When Rec gets as input z and η > 0, and gets oracle access to
a function Dz : {0, 1}kη → {0, 1} that (1/kη)-distinguishes the uniform distribution
over the output-list of Gg(z, η) from a uniform kη-bit string, it runs in time Õ(k1+β′) +

kβ′ · T̄(N), makes Õ(k1+β′) queries to Dz, and with probability at least 1− 2−kη
outputs

a string that agrees with g(z) on at least 1− α′ of the bits.

The reconstruction algorithm above can be thought of as approximately printing the
string g(z) (i.e., printing a string that agrees with g(z) on at least 1− α′ of the bits).
For convenience, we define the following corresponding notion of hardness, which is
failing to approximately print.

Definition 7.2 (failing to approximately print). We say that a probabilistic algorithm M
fails to approximately print a function f : {0, 1}n → {0, 1}∗ with error α on a given string

x ∈ {0, 1}n if Pr[M(x)i = f (x)i] ≤ 1− α, where the probability is over i ∈ [| f (x)|] and over
the random coins of M. We will use shorthand notation and say that M fails to approximately

print f (x) with error α.

7.1 Warm-up: The case of anMA-style system

Towards presenting our result, we first present an appealing special case whose proof
is far less involved. Denote by deIP [
2]

MA [T] a doubly efficient proof system in which
the prover speaks first, sending a proof π, and then the verifier tosses random coins
and decides whether to accept or reject the input x with the proof π. Under suit-
able hardness assumptions, we simulate deIP [
2]

MA by deterministic effective argument
systems, with essentially no time overhead.

Theorem 7.3 (derandomizing deIP [
2]
MA into deterministic effective argument systems,

with almost no overhead). Suppose that non-uniformly secure one-way functions exist. Let
T(n) be any polynomial, and assume that for every ε′ > 0 there exist α, β ∈ (0, 1) and a
function f = f (ε

′) mapping n + T(n) bits to k(n) = nε′ bits such that:

1. There exists an algorithm that gets input ((x, π), i) ∈ {0, 1}n+T × [n1+ε′] and outputs
the ith bit of f (x, π) in time T̄ = T(n) · k.

2. For every probabilistic algorithm M running in time T̄ · nβ and every distribution P over
{0, 1}n+T that is samplable in polynomial time, with probability at least 1− n−ω(1) over
(x, π) ∼ P it holds that M fails to approximately print f (x, π) with error α.

Then, for every ε > 0 it holds that deIP [
2]
MA [T] ⊆ deARG[nε · T].

42The fact that the number of strings is poly(k) is not mentioned in the original statement in [CT21a,
Proposition 6.2], but this is just an omission. This fact is established in the proof of the proposition and
the applications of the proposition rely on it.

50

Proof. Let L ∈ deIP [
2]
MA [T], let V be a corresponding verifier for L, and let

YV =
{
(x, π) : Pr

r
[V(x, π, r) = 1] ≥ 2/3

}
NV =

{
(x, π) : Pr

r
[V(x, π, r) = 1] ≤ 1/3

}
,

where in the expressions V(x, π, r) above x is an input and π is a proof and r is a ran-
dom string. Note that the promise-problem (YV ,NV) can be decided in probabilistic
linear time.

Let ε′ = ε/c for a sufficiently large constant c > 1, and let k(n) = nε′ . Let f = f (ε
′)

be the corresponding function from our hypothesis, and note that the upper bound in
the first item is T̄ = T · k, whereas the lower bound in the second item is T̄ · k1+β.

First step: Reduce the number of random coins to nη . For a sufficiently small constant
µ = µ(ε′) > 0 that will be determined later, let Gcrypto be the PRG from Theorem 3.16,
instantiated with stretch nµ 7→ T(n). Consider the verifier V ′ that uses only nµ coins
and is defined by V ′(x, π, s) = V(x, π, Gcrypto(s)). Note that for every fixed x, π we
have that Prs[V ′(x, π, s) = 1] ∈ Prr[V(x, π, r) = 1]± n−ω(1). Hence, YV′ = YV , where

YV′
def
== {(x, π) : Prr[V ′(x, π, r) = 1] ≥ .66}, and similarly NV′ = NV where NV′

def
==

{(x, π) : Prr[V ′(x, π, r) = 1] ≤ .33}. The running time of V ′ is O(T1+µ) and its number
of random coins is nµ.

Main step: Targeted PRG using the transcript as a source of hardness. Now, let D be
the following deterministic verifier. On input x ∈ {0, 1}n and proof π ∈ {0, 1}T,
consider the generator from Theorem 7.1, instantiated with parameters

N = n + T , T̄(N) = T(n) · k ,

g = f ε : {0, 1}N → {0, 1}n1+ε′
, sufficiently small α′, β′, η ;

we now also fix the parameter µ of Gcrypto above to be such that kη = nµ. The verifier
D runs Gg to obtain a set of k · T̄ + poly(k) ≤ T · poly(k) strings of length nµ denoted
s1, . . . , sT·poly(k) and outputs MAJi∈[T·poly(k)] {V ′(x, π, si)}. Assuming that the constant
c > 1 is sufficiently large, the running time of this algorithm is at most T · nε.

Analysis. The honest prover for D is identical to that of V. We now show an algorithm
F that runs in time T̄ · nβ, and for every fixed (x, π) ∈ YV such that D(x, π) = 0 it holds
that F(x, π) α-approximates f (x, π). By a symmetric argument (which is identical
and omitted), there exists another algorithm F′ with precisely the same guarantee for
any (x, π) ∈ NV such that D(x, π) = 1. By our hypothesis, for every polynomial-
time samplable distribution P over {0, 1}n+T, with probability at least 1− n−ω(1) over
choice of (x, π) ∼ P both algorithms F and F′ fail to α-approximate f (x, π). Hence,
the probability that a probabilistic polynomial-time algorithm can find (x, π) such that
D(x, π) errs is at most n−ω(1).

Thus, it is left to construct the algorithm F. Fix (x, π) ∈ YV such that D(x, π) =
0, and denote by Dx,π : {0, 1}kη → {0, 1} the function Dx,π(r) = V(x, π, r). By our
assumption Dx,π is a (1/10)-distinguisher for the uniform distribution over the output-
set of Gg. We invoke the reconstruction Rec from Theorem 7.1; the running time of
algorithm, accounting for answering its Õ(k1+β′) queries to Dx,π, is

Õ(k1+β′) + kβ′ · T̄(n) + Õ(k1+β′) · T < Õ(T · k · kβ′) < T̄ · nβ ,

for a sufficiently small choice of β′; and with probability 1 − o(1) > 1 − α/2 the
reconstruction outputs a string string that agrees with f (x, π) on at least 1 − α′ >
1− α/2 of the bits, for a sufficiently small α′ > 0.

51

Note that the proof above works as-is even if the initial deIP [
2]
MA system has im-

perfect completeness.

7.2 Basic case: Doubly efficient proof systems with few random coins

The main goal in this section is to state and prove Theorem 1.5, which asserts that
under strong hardness assumptions, we can simulate every deIP [
c] protocol by a
deterministic effective argument system, with essentially no time overhead.

In Section 7.2.1 we restate Theorem 1.5 and discuss its hypothesis, and then in
Section 7.2.2 we prove the result. In Section 7.2.3 we state and prove a strong version
of the result that holds for effective proof systems that have an efficient univesal prover,
and in Section 7.3 we deduce Theorem 1.7 as a corollary of the latter.

7.2.1 The result statement and a discussion of the hypothesis

Let us restate Theorem 7.4, which deduces that deIP [
c][T, no(1)] ⊆ deARG[T · no(1)]
under a hardness hypothesis, and then discuss the latter hypothesis.

Theorem 7.4 (derandomizing constant-round doubly efficient proof systems into de-
terministic effective argument systems, with almost no overhead; Theorem 1.5, re-
stated). For every α, β ∈ (0, 1) there exists η > 0 such that the following holds. Let c ∈ N

be a constant, let T(n) be a time bound, and let R(n) < T(n) be time-computable. Assume
that there exists f : {0, 1}∗ → {0, 1}∗ that for every n ∈ N maps N(n) = n + c · T(n) bits
to K(n) = R(n)1/η bits and satisfies:

1. There exists a deterministic algorithm that gets input (z, i) ∈ {0, 1}N(n) × [K(n)] and
outputs the ith bit of f (z) in time T̄(n) = T(n) · K(n).

2. For every probabilistic oracle machine M running in time T̄ · Kβ and making oracle
queries of length O(T) to prAMT IME [
c][n],43 and every collection z =

{
zN(n)

}
n∈N

of distributions such that zN(n) is over {0, 1}N(n) and can be sampled in time polynomial
in T̄(n), and every sufficiently large n ∈N, with probability at least 1− T̄(n)−ω(1) over
choice of z ∼ zN(n) it holds that MprAMT IME [
c][n](z) fails to approximately print f (z)
with error η(n).

Then,

deIP [
c][T, R] ⊆ deARG[T · RO(c/η)] ,

where the O-notation hides a universal constant.

To discuss the hardness hypothesis, let us think of the parameter value R = Tδ for
some tiny constant δ > 0, which will be the value we use in the proofs of Theorems 1.7
and 1.8. As mentioned in Section 1.2, the crux of the hardness hypothesis is a non-

batch-computability phenomenon. Loosely speaking, the hypothesis is that for some
function f from T bits to K = TO(δ),

1. Each output bit of f can be computed in time T̄ (where T̄ = T1+O(δ)).

43We stress that the protocol in the AMT IME [
c] oracle gets queries of length O(T) and runs in
time linear in its input length O(T).

52

2. The entire string f (x) cannot be (approximately) printed in probabilistic time T̄ ·
Kβ, while making oracle queries of length O(T) to a prAMT IME [
c] protocol
that runs in time linear in T. (And this hardness holds whp over any polynomial-
time samplable distribution of T-bit inputs z.)

The existence of functions f : {0, 1}T → {0, 1}K where each output bit is com-
putable in a certain time T̄ (in our case, T̄ = T1+O(δ)) but the entire string cannot be
printed in time less than T · K is a natural conjecture; in fact, the strong direct-product

hypothesis asserts that for some computational devices and parameter settings, taking
f to be the K-wise direct product of some Boolean function f0 : {0, 1}T/K → {0, 1}
results in such f (see the work of Shaltiel [Sha03] for further discussion and results).

As mentioned in Section 1.2, our hypothesis is stronger because the hardness is as-
sumed over all polynomial-time distributions over the inputs, and even for printing an
approximate version of the output string f (z). A “non-batch-computability” hardness
assumption with these two properties was already used in the previous work [CT21a].
The new part in the hypothesis in Theorem 7.4 is in allowing the (T̄ · Kβ)-time proce-
dure trying to print f (z) to use oracle queries to an AM protocol.

Does the oracle help? The addition of the oracle makes the adversary in our hy-
pothesis stronger. However, it is not clear whether this additional strength can achieve
something meaningful in the context of our hypothesis. The main reason is that the
upper-bound on computing each output bit of f is T̄, whereas the allowed running-time of the
verifier in the oracle is only T = T̄1−Ω(1); in other words, it is not even clear that the
oracle can compute a single output bit of f (z), let alone aid in computing the entire
string in time significantly less than T̄ · Kβ.

For this reason, a hardness assumption that is even stronger than the one in The-
orem 7.4 still makes sense: The hypothesis would still seem reasonable if the prob-
abilistic machine would make queries of length T to a linear-space oracle (i.e., to a
machine running in space O(T) and time 2O(T)), rather than to a linear-time interac-
tive proof. Moreover, our proof allows relaxing the hypothesis further: For example,
the oracle machine against which we assume hardness only makes non-adaptive queries
to its oracle, and the number of queries is only poly(K). (We avoided including these
relaxations in the result statement merely for simplicity of presentation.)

A comparison with known results about batch-computability using interactive pro-
tocols. To illustrate our point about the oracle, let us compare the complexity of the
interactive protocol in the oracle to the complexity of unconditionally known interactive
protocols for batch-computing functions. For any f : {0, 1}T → {0, 1}K whose individ-
ual output bits are computable in time T̄, Reingold, Rothblum, and Rothblum [RRR18,
Theorem 13] (following their previous result in [RRR21]) constructed a constant-round
protocol for batch computing the K output bits of f with a verifier running in time
Õ(K · T) + Kβ · T̄1+β = O(Kβ · T̄1+β), where β > 0 is an arbitrarily small constant.44

The running time of their protocol almost matches (from above) the complexity
of our oracle machine, which might seem alarming. However, we stress that our
oracle machine is not an interactive protocol by itself, but rather only makes queries
to a protocol; these queries are of length T = T̄/K, and the protocol is only allowed

44The result of [RRR18] applies in a more general setting than the one we compare to, since they
consider applying f to K different inputs x1, . . . , xk, since their prover is efficient (i.e. runs in time
poly(T̄)), and since their result holds even when the upper bound on the complexity of f is UP rather
than P .

53

linear running time O(T). Therefore, the main point of difference is that the interactive
proof oracle in our hypothesized lower bound is allowed less running time than the upper
bound T̄ on computing even a single output bit of f . Needless to say, the techniques for
batch-verification from [RRR21; RRR18] do not extend to such a setting.

7.2.2 Proof of Theorem 7.4

Let L ∈ deIP [
c][T, R], and let V be a T-time verifier in a protocol with c turns for L
such that V sends at most R random coins in each turn. Denote by c′ = dc/2e be the
number of turns of the verifier in the interaction.

Given any deterministic prover strategy P and input x, we think of the correspond-
ing interaction as a function of c′ strings of R random coins that are chosen (uniformly)
in advance, but are revealed to P during the interaction. We denote by

〈V, P, x〉 (r1, . . . , rc′)

the result of the interaction between V and P on input x with random coins r1, . . . , rc′ .

A verifier for L with O(log(R)) random coins. Our first goal is to construct an alterna-
tive verifier V ′ for L such that in each round of interaction, V ′ uses O(log(R)) random
coins. Let G = G f be the generator from Theorem 7.1, instantiated with the function
f : {0, 1}N → {0, 1}R1/η

, with sufficiently small β′ < β and α′ < α, and with output

length R; the number of output strings of G f is R̄ def
== poly(K) = RO(1/η), where

η = ηα′,β′ is the parameter from Theorem 7.1, and its running time is T̄ · poly(K) =

T · RO(1/η). For any given z ∈ {0, 1}N and s ∈ [R̄], let Gz(s) = G(z)s ∈ {0, 1}R be the
sth output string of G when G is given input z.

In turn i ∈ [c′], the verifier V ′ chooses a random seed s ∈ [R̄] and sends Gx,πi(s)
to the prover, where x is the input and πi is the interaction communicated between
the parties up to turn i of the interaction, padded with zeroes to be of length precisely
N − n (for convience we denote π1 = 0N−n). Then it applies the same final predicate
to the interaction as V. In other words, continuing our notation for interactions as
functions of random coins, we have that〈

V ′, P, x
〉
(s1, . . . , sc′) = 〈V, P, x〉 (Gx,π1(s1), . . . , Gx,πc′ (sc′)) .

The running time of V ′ is larger than that of V, but we will carefully account for
it later on. For now it suffices to observe that the only runtime overhead of V ′ on top
of V comes from computing the generator G in each of the c′ rounds, rather than just
sending random coins.

Analysis: Soundness of V ′. For convenience, we will think of any probabilistic poly(T)-
time algorithm P as an efficiently samplable distribution over deterministic poly(T)-
time algorithms, obtained in the natural way (i.e., by randomly choosing coins in
advance and running the algorithm with the fixed chosen coins).

Consider an arbitrary probabilistic poly(T)-time algorithm P. Our analysis uses
the following hybrid argument. Let V0 be the original verifier, and for i ∈ [c′] let Vi be
the verifier in which in the first i turns, the verifier uses log(R̄) coins as above, instead
of R(n) random coins; that is, for any fixed P ∼ P,

〈Vi, P, x〉 (s1, . . . , si, ri+1, . . . , rc′) = 〈V, P, x〉 (Gx,π1(s1), . . . , Gx,πi(si), ri+1, . . . , rc′) .

Observe that V0 = V and that Vc′ = V ′. For any fixed prover P and 1 ≤ i <
j ≤ c′, denote by Pi...j the partial prover strategy of P that refers only to rounds

54

i, i + 1, . . . , j. 45 That is, we think of the prover as a sequence of c′ functions, where the
ith function maps a transcript in the ith round (which is of length i · R + (i− 1) · T) to
the prover’s response (which is of length T); then, Pi...j is simply a subsequence of the
c′ functions that define P. We use the notation Pi...j ∼ P to denote the random variable
that is obtained by sampling P ∼ P and outputting the partial prover strategy Pi...j.
And for two partial prover strategies P1...i−1 and Pi...c′ , we denote by P1...i−1 ◦ Pi...c the
(complete) prover strategy that is obtained by combining both partial strategies in the
obvious way (i.e., by simply concatenating the two sequences of functions).

Our main definition for the hybrid argument is a sequence of hybrids that in-
volves both a partial replacement of the random coins, and a partial replacement of
the “existential” prover strategy in the soundness condition (i.e., that there does not
exist an all-powerful prover that convinces the verifier) with a partial strategy chosen
according to P. In more detail, for any fixed i ∈ [c′] we denote

px,i = max
Pi+1...c′

{
Pr

s1,...,si ,ri+1,...,rc′ ,P1...i∼P

[〈
Vi, P1...i ◦ Pi+1,...,c′ , x

〉
(s1, . . . , si, ri+1, . . . , rc′) = 1

]}
.

Note that V ′ has perfect completeness with the same honest prover as in the orig-
inal system, since V ′ simply simulates V with pseudorandom choices of coins. Thus,
we focus on establishing the soundness of V ′. To do so, we first argue that:

Fact 7.4.1. For any fixed x /∈ L such that

Pr
P∼P,s1,...,sc′

[
〈
V ′, P, x

〉
(s1, . . . , sc′) = 1] > .4 , (7.1)

there exists i ∈ [c′] such that px,i − px,i−1 > 1/20c′.

Proof. Fix x /∈ L such that Eq. (7.1) holds. Observe that px,0 ≤ 1/3, by the soundness
of the original protocol V (which holds for every fixed x and an all-powerful P). On
the other hand, we have that px,c′ = PrP∼P,s1,...,sc′ [〈V

′, P, x〉 (s1, . . . , sc′) = 1], and thus
px,c′ > .4 by Eq. (7.1). Since px,c′ − px,0 = ∑i∈[c′] px,i − px,i−1, for some i ∈ [c′] it holds
that px,i − px,i−1 > (px,c′ − px,0)/c′ > 1/20c′. �

The main claim in the analysis is the following:

Claim 7.4.2. For any i ∈ [c′], the probability over x ∼ x that x /∈ L and

px,i > px,i−1 + 1/20c′

is at most T−ω(1).

Since the proof of Claim 7.4.2 is quite involved, we defer it for a moment, and first
complete the argument assuming that Claim 7.4.2 is true.

By combining Fact 7.4.1 and Claim 7.4.2, we deduce that for every probabilistic
polynomial-time algorithm P, with probability 1− T−ω(1) over x ∼ x, if x /∈ L then
PrP∼P,s1,...,sc′ [〈V

′, P, x〉 (s1, . . . , sc′) = 1] ≤ .4. (Intuitively, this establishes that the veri-
fier V ′ yields an argument system that uses few random coins.)

From V ′ to a deterministic effective argument system. Given any input x, the total num-
ber of possible messages from V ′ to a prover (across all turns) is R̄c′ , corresponding to
a choice of seeds s̄ ∈ [R̄]c

′
. Our deterministic verifier V ′′ expects the prover to send a

corresponding transcript for each choice of s̄. It then:

45Note that we are now referring to rounds rather than to turns. That is, the interaction consists of c
turns (where a turn is when one of the players speaks) and of c′ = dc/2e rounds (where a round consists
of two turns, except possibly the last round).

55

1. Verifies that the sent transcripts are consistent with a prover strategy (i.e., that
the prover did not respond to two identical prefixes in different ways).

2. For each transcript corresponding to a choice of s̄, it verifies that the pseudo-
random coins in each message (which are part of the transcript) are what one
obtains by applying G to the transcript at that point, using the corresponding
seed (which is part of s̄).

3. Computes the average acceptance probability of V ′ over all choices of s̄.

Observe that there is an honest prover with perfect completeness for V ′′ that runs
in time poly(T). This is because in time poly(T) we can compute G on all possible T̄c′

sequences of random choices s1, ..., sc′ , and evaluate the original honest prover (which
runs in time poly(T)) on each of these sequences.

Turning to soundness, the verifier V ′′ inherits its soundness immediately from that
of V ′.46 Relying on the fact that soundness holds against all poly(T)-time algorithms
P, we further argue that the soundness error is not only .4 but actually neg(T):

Claim 7.4.3. For every probabilistic poly(T)-time algorithm P, with probability 1−T(n)−ω(1)

over an n-bit x ∼ x, if x /∈ L then PrP∼P[V(x, P(x)) = 1] < T(n)−ω(1).

Proof. Assume towards a contradiction that for some P and polynomial p there are
infinitely many n ∈ N such that, with probability at least 1/p(T(n)) over an n-bit
x ∼ x it holds that x /∈ L and PrP∼P[V ′′(x, P(x)) = 1] ≥ 1/p(T(n)).

Consider the prover P′ that on input x runs P for t = p(T(n))2 times to obtain
candidate proofs π1, . . . , πt, for each i ∈ [t] checkes whether V ′′(x, πi) = 1, and
if it finds πi for which the latter holds then it prints this πi (otherwise it prints
some fixed default proof). Note that P′ runs in poly(T) time, and for every x such
that PrP∼P[V ′′(x, P(x)) = 1] ≥ 1/p(T(n) we have that PrP′∼P′ [V ′′(x, P′(x)) = 1] ≥
.99. Thus, there is a poly(T)-time prover P′ and infinitely many n ∈ N such that
with probability at least 1/p(T(n)) over an n-bit x ∼ x it holds that x /∈ L and
PrP∼P[V ′′(x, P(x)) = 1] > .4, contradicting the soundness of V ′′.

We now bound the running time of V ′′. Recall that the prover sends [R̄]c
′
transcripts

to V ′′, corresponding to all possible choices of seeds s̄ ∈ [R̄]c
′

by V ′. We assume that
the prover sends the transcripts in prefix-order of s̄. For each prefix s1, . . . , si of s̄, the
verifier checks that all transcripts corresponding to that prefix are identical (i.e., verifies
that the prover strategy is consistent); and then computes the set of pseudorandom
strings obtained by applying G to the foregoing transcript with all possible choices
of si+1, “in a batch”; by Theorem 7.1, for each prefix this can be done in time T̄ ·
K + poly(K) ≤ T · RO(1/η). In the end, it computes the original V on each of the
|R̄|c′ = RO(c/η) choices of seeds. The final running time of V ′′ is thus T · RO(c/η).

Finally, to complete the proof the only missing piece is to prove Claim 7.4.2.

Proof of Claim 7.4.2. Fix i ∈ [c′] and assume that with probability at least 1/poly(T)
over x ∼ x we have that px,i > px,i−1 + 1/20c′. For any fixed p̄ = P1...i−1 and s̄ =
s1, . . . , si−1, the interaction in the first i− 1 rounds between any prover whose partial
strategy in these rounds is p̄ and any verifier that behaves like Vi−1 in these rounds
is also fixed (i.e., it is a deterministic function of p̄ and s̄); we denote the transcript
of this interaction by π p̄,s̄. We denote by (x, π) the distribution that is obtained by

46To see this, note that if the prover sends consistent answers to all message sequences then those
answers yield a prover strategy that could have been used in the interaction with V′.

56

sampling x ∼ x and p̄ = P1...i−1 ∼ P and s̄ ∈ ([R̄])i−1 and outputting (x, π p̄,s̄). By our
assumptions about P and x and the fact that G runs in time poly(T), the distribution
(x, π) is samplable in time poly(T).

Fixing the first i− 1 rounds of interaction. For every fixed (x, πs̄,p̄), denote

(px,i−1|πs̄,p̄) = max
Pi...c′

{
Pr

ri ,ri+1,...,rc′

[〈
Vi−1, p̄ ◦ Pi...c′ , x

〉
(s̄, ri, ri+1, . . . , rc′)

]}
,

(px,i|πs̄,p̄) = max
Pi+1...c′

{
Pr

si ,ri+1,...,rc′ ,Pi∼P

[〈
Vi, p̄ ◦ Pi...c′ , x

〉
(s̄, si, ri+1, . . . , rc′)

]}
,

and observe that:

Claim 7.4.3.1. We have that px,i = Es̄,p̄
[
px,i|πs̄,p̄

]
and px,i−1 = Es̄,p̄

[
px,i−1|πs̄,p̄

]
.

Proof. Note that in px,i and in (px,i|πs̄,p̄) (resp., in px,i−1 and (px,i−1|πs̄,p̄)) the maximum
is over functions Pi+1...c′ (resp., Pi...c′) that take πs̄,p̄ as part of their input. Thus, first
choosing πs̄,p̄ from some distribution and then taking the maximum-achieving func-
tion is identical to first taking the maximum-achieving function and then choosing πs̄,p̄
from the same distribution.47 �

We call a pair (x, πs̄,p̄) good if (px,i|πs̄,p̄) > (px,i−1|πs̄,p̄) + 1/40c′, and argue that:

Claim 7.4.3.2. With probability at least 1/poly(T) over (x, πs̄,p̄) ∼ (x, π) we have that
(x, πs̄,p̄) is good.

Proof. By our assumption, with probability 1/poly(T) over x ∼ x we have that px,i >
px,i−1 + 1/20c′. Now, let ∆s̄,p̄ = (px,i|πs̄,p̄)− (px,i−1|πs̄,p̄), and note that

E
s̄,p̄
[∆s̄,p̄] = E

s̄,p̄

[
px,i|πs̄,p̄

]
− E

s̄,p̄

[
px,i−1|πs̄,p̄

]
= px,i − px,i−1 > 1/20c′ ,

where the second equality above relies on Claim 7.4.3.1. Thus, if it would be true
that Prs̄,p̄[∆s̄,p̄ > 1/40c′] < T−ω(1), then it would also be true that Es̄,p̄[∆s̄,p̄] ≤ T−ω(1) ·
(1/40c′) + (1/40c′) < 1/20c′, a contradiction. �

Obtaining an AMT IME [
c] distinguisher. Fixing a good (x, πs̄,p̄), we denote

p(ri) = max
Pi...c′

{
Pr

ri+1,...,rc′

[〈
Vi−1, p̄ ◦ Pi...c′ , x

〉
(s̄, ri, . . . , rc′) = 1

]}
,

and argue that:

Claim 7.4.3.3. The following two statements hold:

1. E
ri∈{0,1}R

[p(ri)] = (px,i−1|πs̄,p̄) .

2. E
si∈[R̄]

[p(Gx,πs̄,p̄(si))] ≥ (px,i|πs̄,p̄) .

47 In other words, we use the fact that for every D and R and ν : R → R it holds that

max
f : D→R

{
E

r∈D
[ν(f (r))]

}
= E

r∈D

[
max

f : D→R
{ν(f (r))}

]
= E

r∈D
[ν(f ∗(r))] ,

where f ∗ is the function that maps any r ∈ D to t = f (r) such that ν(t) is maximal.

57

Proof. For the first item, note that

E
ri∈{0,1}R

[p(ri)]

= E
ri∈{0,1}R

[
max
Pi...c′

{
Pr

ri+1,...,rc′

[〈
Vi−1, p̄ ◦ Pi...c′ , x

〉
(s̄, ri, . . . , rc′) = 1

]}]
= max

Pi...c′

{
Pr

ri ,ri+1,...,rc′

[〈
Vi−1, p̄ ◦ Pi...c′ , x

〉
(s̄, ri, . . . , rc′) = 1

]}
= (px,i−1|πs̄,p̄) ,

where the second inequality is because (as in the proof of Claim 7.4.3.2) the maximum
is over functions P1...c′ that take ri as part of their input (and thus first drawing a ran-
dom ri and then choosing a maximum-achieving function is identical to first choosing
a maximum-achieving function and then drawing a random ri).

For the second item, the argument is a bit more subtle, as follows:

E
si∈[R̄]

[p(Gx,πs̄,p̄(si))]

= E
si∈[R̄]

[
max
Pi...c′

{
Pr

ri+1,...,rc′

[〈
Vi−1, p̄ ◦ Pi...c′ , x

〉
(s̄, Gx,πs̄,p̄(si), ri+1, . . . , rc′) = 1

]}]
= max

Pi...c′

{
Pr

si ,ri+1,...,rc′

[〈
Vi−1, p̄ ◦ Pi...c′ , x

〉
(s̄, Gx,πs̄,p̄(si), ri+1, . . . , rc′) = 1

]}
= max

Pi...c′

{
Pr

si ,ri+1,...,rc′

[〈
Vi, p̄ ◦ Pi...c′ , x

〉
(s̄, si, ri+1, . . . , rc′) = 1

]}
≥ max

Pi+1...c′

{
Pr

si ,ri+1,...,rc′ ,Pi∼P

[〈
Vi, p̄ ◦ Pi...c′ , x

〉
(s̄, si, ri+1, . . . , rc′) = 1

]}
= (px,i|πs̄,p̄) ,

where the main difference from the proof of the first item is the inequality, which
asserts that taking the maximum-achieving prover strategy in round i can only increase
the acceptance probability compared to choosing Pi ∼ P. 48 �

Relying on Claim 7.4.3.3, for the fixed good (x, πs̄,p̄) we have that

E
si∈[R̄]

[p(Gx,πs̄,p̄(si))]− E
ri∈{0,1}R

[p(ri)] ≥ (px,i|πs̄,p̄)− (px,i−1|πs̄,p̄) > 1/40c′ .

The foregoing assertion implies that the real-valued function p(·) behaves differ-
ently on the pseudorandom distribution Gx,πs̄,p̄(u[R̄]) and on the uniform distribution
uT. To obtain a Boolean-valued distinguisher (rather than a real-valued one such
as p(·)), and furthermore a Boolean-valued distinguisher that is computable by an
AMT IME [
c] protocol, we rely on the following claim: It asserts that if two real-
valued RVs x and y in [0, 1] have expectations that differ by ε > 0, then there are
two thresholds `′ and `′ + Θ(ε) such that the probability that x exceeds `′ + Θ(ε) is
noticeably higher than the probability that y exceeds `′.

48To see that the third equality above holds, note the following. In the upper row we are referring to
the verifier Vi−1, which uses the ith random string given to it as-is, and are giving Vi the string Gx,πs̄,p̄ (si)
for a random si. In the bottom row we’re referring to the verifier Vi−1, which applies Gx,πs̄,p̄ to the ith

random string given to it, and are giving Vi−1 a random si. Thus, in both cases the random string used
in the ith round is Gx,πs̄,p̄ (si) for a random si.

58

Lemma 7.4.3.4. Let x, y be two random variables taking values from [0, 1] and ε ∈ (0, 1) such
that ε−1 ∈N. If E[x]−E[y] > ε, then there exists j ∈ [4/ε] such that

Pr[x ≥ (ε/4) · (j + 1)]− Pr[y ≥ (ε/4) · j] > ε/2.

The proof of Lemma 7.4.3.4 is elementary but tedious, so for convenience we de-
fer it to Appendix B. Now, denote ε = 1/40c′ and consider the following promise
problem:

Y =
{
(x, πs̄,p̄, ri, τ) : p(ri) ≥ τ + ε/4

}
N =

{
(x, πs̄,p̄, ri, τ) : p(ri) ≤ τ

}
.

Observe that the problem (Y,N) can be decided in prAMT IME [
c][O(n)], since the
verifier can run the original protocol Vi−1 from the definition of p(·) for O(1) times
in parallel, estimate the acceptance probability of Vi−1 with the given prover up to
accuracy ε/8 and with high probability, and accept if and only if this probability is
more than τ + ε/8. Note that the runtime of this protocol is linear, because ε = Ω(1)
and the input size to this problem is O(T).

Now, by instantiating Lemma 7.4.3.4 with the RVs x = p(Gx,πs̄,p̄(u[R̄])) and y =
p(uR), for some τ ∈ {0, ε/4, 2ε/4, . . . , 1} it holds that

Pr[(x, πs̄,p̄, Gx,πs̄,p̄(u[R̄], τ)) ∈ Y] > 1− Pr[(x, πs̄,p̄, uR, τ)) ∈ N] + ε/2 .

For any fixed (x, π) and τ ∈ {0, ε/4, 2ε/4, . . . , 1} we define the following proce-
dure D = Dx,π,τ: Given r ∈ {0, 1}R (which we think of as coming either from the
uniform distribution or from the pseudorandom distribution) the procedure creates
the string z = (x, π, r, τ) and solves the promise problem (Y,N) on input z. Note that
indeed D ∈ prAMT IME [
c][O(n)], and that

Pr[D(Gx,πs̄,p̄(u[R̄])) = 1] > Pr[D(uR) = 1] + ε/2 ,

where the inequality relies on the fact that Pr[D(uR) = 1] = 1 − Pr[D(uR) = 0 ≥
1− Pr[uT ∈ N].

The reconstruction argument. To obtain a contradiction, we show an algorithm that
runs in time T̄ · Kβ, where T̄ = T · K, and with probability at least 1/poly(T) over the
poly(T)-time samplable distribution (x, π) ∼ (x, π) approximately prints f (x, π).

Consider an algorithm F0 that gets input (x, π) and randomly chooses a value
τ ∈ {0, ε/4, 2ε/4, . . . , 1}. Then F0 runs the reconstruction Rec with input (x, π), giving
it oracle access to Dτ,x,π. Specifically, whenever Rec queries Dτ,x,π on input r, the
algorithm F0 queries Dτ on input (x, π, r, τ) and returns the corresponding answer.
The algorithm F0 runs in time

Õ(K1+β′)︸ ︷︷ ︸
#queries

· T︸︷︷︸
length of a query to Dτ

+ T̄ · Kβ′︸ ︷︷ ︸
add’l runtime of Rec

= Õ(T̄ · Kβ′)

and assuming that the guess of τ′ was correct, with high probability F0 prints a string
that agrees with f (x, π) on 1− α′ of the bits.

To construct an algorithm F that succeeds with high probability, we run F0 for O(c′)
times, such that with high probability at least one iteration successfully printed a string
that agrees with f (x, π) on 1− α′ of the bits. Then, for each of the O(c′) candidate
strings, the algorithm F estimates the agreement of this string with f (x, π) up to a
sufficiently small constant error, by randomly sampling output bits and computing

59

the corresponding bits of f (x, π) (recall that each bit can be computed in time T̄). The
running time of F is at most Õ(T̄ · Kβ′) < T̄ · Kβ, and with high probability it succeeds
in outputting a string that agrees with f on at least 1− α of the bits. �

Having proved Claim 7.4.2, this concludes the proof of Theorem 7.4.

Remark 7.5 (handling imperfect completeness). The proof of Theorem 7.4 implies sim-
ilar derandomization for deIP [
c] protocols with imperfect completeness that use a small
number of random coins. To see this, observe that the well-known transformation of
AM protocols into protocols with perfect completeness [FGM+89] yields the follow-
ing: Any deIP [
c] protocol in which the verifier uses only R coins can be simulated
by a deIP [
c] protocol with perfect completeness such that the new protocol has the
same number of rounds, the verifier uses R̄ = Õ(R) random coins, its communica-
tion complexity and running time increase by a multiplicative factor of O(R̄), and the
prover is still efficient but it is now probabilistic.49

Since we think of R as small in the result above (indeed, we will use this result
with R = O(log(T)) in Theorems 7.8 and Corollary 7.12), we can start from a protocol
with imperfect completeness, simulate it by a protocol with similar running time, and
appeal to Theorem 7.4 as a black-box. Indeed, the only gap is that the honest prover
in the resulting deIP [
c] protocol is now probabilistic rather than deterministic.

Remark 7.6 (argument systems for NP-relations). The honest prover in the argument
system that is constructed in the proof of Theorem 7.4 is very similar to the original
honest prover, and in particular has almost the same time complexity. (This is because
the new prover enumerates over all possible seeds for the targeted PRG, across all
rounds, and for each choice it simulates the verifier’s interaction with the original
prover using the chosen seeds to generate pseudorandom coins.) One implication
of this fact is that our results extend naturally to constant-round probabilistic proof
systems in which the honest prover gets a witness as auxiliary input.

In more detail, let R be a relation, let LR be the decision problem defined by R, and
let Π be a probabilistic proof system for LR with c turns of interaction such that the
verifier in Π runs in time T, and the honest prover in Π runs in time poly(T) when
given a witness for the input (in the relation R).50 Then, under the same assumption as
in Theorem 7.4, our proof gives a deterministic argument system for LR in which the
verifier runs in time T1+ε, soundness is precisely as in Definition 3.9, and the honest
prover runs in time poly(T) when given a witness (in the relation R) for the input.

7.2.3 A stronger result for doubly efficient proof systems with a universal prover

We now argue that in the special case of doubly efficient proof systems that have an
efficient universal prover, we can derandomize such systems under a hypothesis that
is weaker than the one in Theorem 7.4. Specifically, the hypothesis in the statement
below is identical to the one in Theorem 7.4, except that we only require hardness
against probabilistic algorithms that have oracle access to deIP [
c], rather than oracle

49These properties are not explicitly stated in the original work but they readily follow from the proof.
Specifically, in the original proof the message lengths by the verifier and the prover are coupled, but the
proof only relies on the error being smaller than 1/R; and the original proof shows that for every x ∈ L,
with high probability over choice of initial strings by the prover (as a basis for simulating copies of the
protocol in parallel) the verifier to accept with probability 1.

50That is, we consider the interaction between the verifier and the honest prover when the former is
given input x and the latter is given input (x, w) ∈ R.

60

access to AMT IME [
c]. (We will use this generic claim in the proof of Theorem 1.7,
since the proof system for #SAT indeed has an efficient universal prover.)

Theorem 7.7 (derandomizing constant-round doubly efficient proof systems with an
efficient universal prover into deterministic effective argument systems). For every
α, β ∈ (0, 1) there exists η > 0 such that the following holds. Let c ∈ N be a con-
stant, let T(n) be a polynomial, and let R(n) < T(n) be time-computable. Assume that
there exists f : {0, 1}∗ → {0, 1}∗ that for every n ∈ N maps N(n) = n + c · T(n) bits to
K(n) = R(n)1/η bits and satisfies:

1. There exists a deterministic algorithm that gets input (z, i) ∈ {0, 1}N(n) × [K(n)] and
outputs the ith bit of f (z) in time T̄(n) = T(n) · K(n).

2. For every probabilistic oracle machine M running in time T̄ · Kβ and making oracle
queries of length O(T) to pr-deIP [
c][n],51 and every collection z =

{
zN(n)

}
n∈N

of

distributions such that zN(n) is over {0, 1}N(n) and can be sampled in time polynomial
in T̄(n), and every sufficiently large n ∈ N, with probability at least 1− T̄(n)−ω(1)

over choice of z ∼ zN(n) it holds that MprdeIP [
c][n](z) fails to approximately print f (z)
with error η(n).

Then,

deIP [
c]
uni [T, R] ⊆ deARG[T · RO(c/η)] ,

where the O-notation hides a universal constant, and deIP [
c]
uni [T, R] denotes all problems

solvable by deIP [
c][T, R] systems that, for every constant µ > 0, have a µ-approximate
universal prover running in time poly(T).

Proof. The proof is very similar to that of Theorem 7.4, the only difference being
that the reconstruction algorithm in Claim 7.4.2 can now only access a pr-deIP [
c][n]
oracle rather than a AMT IME [
c][n] oracle.

Recall that in the proof of Claim 7.4.2, the algorithm uses an oracle that solves the
following promise problem, which is defined with respect to a parameter τ:

Y =
{
(x, πs̄,p̄, ri, τ) : p(ri) ≥ τ + ε/4

}
N =

{
(x, πs̄,p̄, ri, τ) : p(ri) ≤ τ

}
.

Our goal is to argue that (Y,N) ∈ pr-deIP [
c][n], by arguing that there is an efficient
honest prover. (The rest of the proof then continues without change.)

The key observation is that our current assumption asserts the existence of an
efficient prover that, on any x and (πs̄,p̄, ri), almost maximizes the residual acceptance
probability of the protocol when the prefix of the transcript is fixed to (πs̄,p̄, ri). For any
constant µ, we denote the µ-approximate universal prover by Pµ, and on a fixed x̄ =
(x, πs̄,p̄, ri), we denote by ν = νx̄ the maximal acceptance probability of the residual
protocol, across all provers.

The verifier for (Y,N) is identical to that in the original proof of Claim 7.4.2; that
is, the verifier simulates the residual protocol for poly(1/ε) times in parallel, and
accepts if and only if the average probability across simulations, denoted ν̃, satisfies
ν̃ ≥ τ + ε/8. When (x̄, τ) ∈ N, for any prover, with high probability we have that
ν̃ < τ + ε/8. On the other hand, when (x̄, τ) ∈ Y, a prover that simulates Pε/16 on
the poly(1/ε) parallel instantiations of the protocol yields ν̃ ≥ τ + ε/8, with high
probability. Thus, (Y,N) ∈ deIP [
c][n] as we wanted.

51The deIP [
c] verifier in the oracle runs in time linear in its input length O(T).

61

7.3 A deterministic argument system for #SAT with runtime 2ε·n

We now state and prove Theorem 1.7, as a particularly appealing special case of The-
orem 7.7. Specifically, we show that under strong hardness assumptions, we can solve
#SAT by a deterministic effective argument system running in time 2ε·n, for an arbi-
trarily small ε > 0.

Theorem 7.8 (a deterministic argument system for #SAT with runtime 2ε·n). For every
α, β ∈ (0, 1) there exists η > 0 such that the following holds. Let T(n) = O(n), and assume
that for every constant c ∈N there exists R(n) ∈ [Ωc(log(n)), nδc,η], where δc,η is sufficiently
small, and f : {0, 1}∗ → {0, 1}∗ that for every n ∈ N maps N(n) = n + c · T(n) = O(n)
bits to K(n) = R(n)1/η bits and satisfies:

1. There exists a deterministic algorithm that gets input (z, i) ∈ {0, 1}N(n) × [K(n)] and
outputs the ith bit of f (z) in time T̄(n) = T(n) · K(n).

2. For every probabilistic oracle machine M running in time T̄ · Kβ and making oracle
queries of length O(T) to pr-deIP [
c][n],52 and every collection z =

{
zN(n)

}
n∈N

of

distributions such that zN(n) is over {0, 1}N(n) and can be sampled in time polynomial
in T̄(n), and every sufficiently large n ∈ N, with probability at least 1− T̄(n)−ω(1)

over choice of z ∼ zN(n) it holds that MprAMT IME [
c][n](z) fails to approximately print
f (z) with error η(n).

Then, for every ε > 0 there exists a deterministic verifier V that gets as input an n-bit
formula Φ of size at most 2o(n), runs in time 2ε·n, and satisfies the following:

1. There exists an algorithm that gets input Φ, runs in time 2O(n), and prints a proof π
such that V(Φ, π) = #SAT(Φ).

2. For every probabilistic algorithm P running in time 2O(n) and every sufficiently large
n ∈ N, the probability that P(1n) outputs an n-bit formula Φ of size 2o(n) and proof π
such that V(Φ, π) /∈ {⊥, #SAT(Φ)} is 2−ω(n).

Proof. Without loss of generality, we assume that ε ∈ (0, 0.1). Let ε′ = ε/2. Using
Theorem 3.18 with a sufficiently large constant k ∈ N and with δ > 0 such that
δ/(1 − δ) = 1/k, we have an deIP [
2k+1]

uni [2ε′·n] protocol for counting the number
of satisfying assignments of an n-bit formula of size 2o(n), which uses at most O(n)
random coins.53

By a padding argument, we think of the input as of size n̄ = 2ε′·n and of the
protocol as running in linear time with logarithmically many coins. Also, we consider
the 2n = O(log n̄) Boolean protocols UU , . . . , Pn, Ū1, . . . , Ūn, where each Ui is a protocol
for proving that the ith bit of #SAT(Φ) is 1 and each Ūi is a protocol for proving that
the ith bit of #SAT(Φ) is 0.

We apply Theorem 7.7 to each of 2n protocols, with parameters T(n̄) = O(n̄) and
R(n̄) ≥ Ωk(log n̄), to obtain a sequence of 2n deterministic verifiers D1, . . . , Dn, D̄1, . . . , D̄n
each running in time T · RO(k/η). Given a formula Φ, our verifier V expects to receive
from the prover a value ρ ∈ {0, 1}n and n witnesses w1, . . . , wn ∈ {0, 1}Õ(n̄) such that

52The deIP [
c] verifier in the oracle runs in time linear in its input length O(T).
53Note that Theorem 3.18 yields an MAT IME [
2k] protocol that has a universal prover running in

time 2O(n). In particular, such a protocol can be simulated by a deIP [
2k+1] protocol with the same
verifier running time.

62

for every i ∈ [n] it holds that

{
Di(wi) = 1 ρi = 1
D̄i(wi) = 1 ρi = 0

. Whenever this happens V outputs

ρ, otherwise it outputs ⊥.
For every algorithm P running in time 2O(n), by a union-bound, the probability

over Φ ∼ Φ that P outputs a proof that falsely convinces some Di or D̄i is negligible
in N. Also, the running time of V is Õ(n · n̄ · R(n̄)O(k/η)) < 2ε·n.

Finally, we observe that the hardness assumption in Theorem 7.8 can be further
relaxed if we restrict our attention to #SAT formulas with n variables and size poly(n).
In this case, instead of hardness for algorithms that make queries of length T to a
deIP [
c] oracle, we only assume hardness for algorithms that make queries of length
polylog(T) to a #SAT oracle. That is:

Theorem 7.9 (a deterministic argument system for #SAT with runtime 2ε·n under
weaker hypotheses). Assume that for some k ∈ N, the hypothesis of Theorem 7.8 holds
if we replace the oracle access of M (which was to deIP [
c] with input length T) by oracle
access to #SAT of formulas with 2k · log(T) variables and size polylog(T). Then, there exists
a deterministic verifier V that gets as input an n-bit formula Φ of size at most nk, runs in time
2(1/k)·n, and satisfies the two conditions in the conclusion of Theorem 7.8.

Note that the hypothesis in Theorem 7.9 is indeed weaker than the hypothesis
in Theorem 7.8. This is because #SAT for formulas with 2k · log(T) variables and size
polylog(T) can be solved by a query of length O(T) to deIP [
c]

uni [n], where the constant
c depends only on k (relying on Theorem 3.18).

Proof sketch. Following the proof of Theorem 7.8 and Theorem 7.7, it suffices to show
that the following promise problem54

Y =
{
(x, πs̄,p̄, ri, τ) : p(ri) ≥ τ + ε/4

}
N =

{
(x, πs̄,p̄, ri, τ) : p(ri) ≤ τ

}
can be reduced to solving a single #SAT instance with 2 log T/ε0 variables and O(polylog(T))
size in quasi-linear time (in terms of the input length |(x, πs̄,p̄, ri, τ)|).

From Claim 3.19, solving (Y,N) can be reduced to computing Q̃t−1(rt−1) and
Qt−1(rt−1) (see the proof of Theorem 3.18 for the definition of Q̃t−1 and Qt−1). From
the definition of Q̃t−1(rt−1), it can be computed in quasi-linear time directly given its
description in the transcript πs̄,p̄. Similarly, from its definition (see (3.1) and (3.2)),
Qt−1(rt−1) can be reduced to solving a single #SAT instance with n variables and
O(poly(n)) size;55 that is, given the input formula Φ, we arithmetize it as in the proof
of Theorem 3.18, fix the first t− 2 variables according to the transcript πs̄,p̄, and fix the
(t− 1)th variable to be rt−1. This completes the proof by noting that T = 2ε′n = 2ε0/2·n.

54This problem is defined with respect to a parameter τ and the deIP [
2k+1]
uni [2ε′ ·n] protocol for count-

ing the number of satisfying assignments of an n-bit formula of size n1/ε0 from Theorem 7.8, here
ε′ = ε0/2.

55Here we crucially used the fact that we are only applying the sum-check protocol to formulas of
polynomial-size formulas instead of 2o(n) size.

63

7.4 The general case: Constant-round doubly efficient proof systems

In this section we prove Theorem 1.8. First, in Section 7.4.1, we show yet another
refinement of the reconstructive PRG from Proposition 5.1, which will be used in the
proof. Then in Section 7.4.2 we prove Theorem 1.8.

7.4.1 Yet another refinement of the reconstructive PRG

We now further refine the reconstructive PRG from Proposition 5.1. The goal now
will be for the PRG to work not only with distinguishers, but also with distinguishers
that solve a promise problem (i.e., evaluate to Y on a pseudorandom input more than
they evaluate to “not N” on a random input). The crux of the proof is to show that
the advice depends only on the promise-problem, rather than on any particular oracle
that solves the problem (and may behave arbitrarily on queries outside the promise).

Proposition 7.10 (an extension of the PRG from Proposition 5.3 to “promise problem”
distinguishers). Let ε′ > 0 be a constant, let G and R be as in Proposition 5.3, and fix a
promise-problem (Y,N) and f ∈ {0, 1}N̄ such that

Pr[G f (u(1+ε0)·log(N)) ∈ Y] > Pr[uN /∈ N] + ε′ .

Then, for every N ∈ N there exists s ∈ N satisfying s|t̄, and α ∈ (0, 1), and an advice
string adv of length | f |1−δ0 , such that the following holds. Denoting by ax,w,γ the sequence of
answers to R’s queries on input x ∈ [| f |] and witness w and random choices γ, we have that:

1. (Completeness.) For any x there exists w such that with probability 1− 1/N over γ,
any function that agrees with (Y,N) yields a sequence of answers to the oracle queries
that is (s, α)-valid, and if ax,w,γ is (s, α)-indicative of a sequence that agrees with (Y,N),
then R(x, w) outputs fx.

2. (Soundness.) For every (x, w), with probability at least 1− 1/N over γ, if ax,w,γ is
(s, α)-indicative of a sequence that agrees with (Y,N) on the oracle queries, then R(x, w)
outputs either ⊥ or fx.

3. (Non-valid oracles.) If ax,w,γ is not (s, α)-valid, then R outputs ⊥.

Proof. We instantiate Samp : {0, 1}N̄ × [L̄] → {0, 1}N just as in the proof of Propo-
sition 4.1, and recall that its accuracy δ is sub-constant. We instantiate Enc with an
agreement parameter ρ = ρ(ε′) that is now a sufficiently small constant that depends
on ε′ > 0. Other than that, we use the exact same generator G, and denote again the
uniform distribution over the output-set of G f by G.

In the current proof, instead of assuming that we have oracle access to a function
D : {0, 1}N → {0, 1} that is a (1/10)-distinguisher for G, we are first fixing a promise-
problem (Y,N) such that

Pr[G ∈ Y] > Pr[uN /∈ N] + ε′ , (7.2)

and are only assuming that we have access to some (arbitrary) D : {0, 1}N → {0, 1}
that solves (Y,N). Our goal is for the advice to depend only on (Y,N), but for the
reconstruction to work with any oracle D that agrees with (Y,N).

The error-reduced “promise distinguisher”. We define the following two sets:

S =

{
z ∈ {0, 1}N̄ : Pr

j∈[L̄]
[Samp(z, j) /∈ N] ≤ Pr[uN /∈ N] + ε′/100

}
,

64

and

T =

{
z ∈ {0, 1}N̄ : Pr

j∈[L̄]
[Samp(z, j) ∈ Y] > Pr[uN /∈ N] + ε′/10

}
.

Observe that T ⊆ S̄; this is the case because for any z we have that Prj[Samp(z, j) ∈
Y] ≤ Prj[Samp(z, j) /∈ N], and thus if z ∈ T then z /∈ S. Also note that |S̄| ≤ 2N̄1−γ

, by
the properties of Samp (we crucially use the fact that S is defined with respect to the
specific event of being not in N). Finally, similarly to Eq. (4.2), we have that

Pr[G ∈ Y] = Pr
i,j

[
Samp(f̄i, j) ∈ Y

]
≤ Pr

i
[f̄i ∈ T] + Pr

i,j

[
Samp(f̄i, j) ∈ Y| f̄i /∈ T

]
≤ Pr

i
[f̄i ∈ T] +

(
Pr[uN /∈ N] + ε′/10

)
,

and using Eq. (7.2) we deduce that Pri[f̄i ∈ T] ≥ ρ, relying on the assumption that
ρ = ρ(ε′) is sufficiently small.

Computing a corrupted codeword. Analogously to the proofs of Propositions 4.1 and 5.1,
we construct a machine M that, given any oracle D that agrees with (Y,N), computes
a “corrupted” version of f̄ . We first fix a hash function h ∈ H such that there are no
collision in S̄, as in the previous proofs. The machine M gets as advice h, the value
Pr[uN /∈ N], the set I =

{
(i, h(i)) :∈ [L] ∧ f̄i ∈ T

}
, and the value α = Pr[uN /∈ N] + .005.

We stress the following fact:

Observation 7.10.1. The advice to M depends only on (Y,N), on Samp, and on h.

Now, given q ∈ [| f̄ |], the machine M first guesses a preimage z ∈ {0, 1}N̄ for f̄i
and verifies that h(z) = f̄i using the stored hash value. Then, M uniformly samples
s = O(log(N)) values j1, . . . , js ∈ [L̄], calls its oracle D on these values, and proceeds if

and only if ν
def
== Prk∈[t][D(Samp(z, jk)) = 1] ≥ Pr[uN /∈ N] + ε′/50. If both verifications

succeeded, then M outputs the bit in z corresponding to index q, and otherwise M
outputs ⊥. The reconstruction R then uses the list-decoder (with fixed index and
randomness) just as in the proof of Proposition 5.1.

The claim about non-valid oracles follows immediately by the definition of M
above (recall that R outputs ⊥ whenever M returns ⊥ in at least one execution).
To demonstrate completeness, observe that for any x there exists w such that, with
probability at least 1 − 1/N, on every query q to M, any sequence of answers that
is consistent with (Y,N) will have at least an α-fraction of answers that are not in N
(since the corresponding z is in T); and any answers with an α-fraction of 1’s cause M
to correctly compute the corrupted codeword (since the corresponding z is the right
preimage for the query under h). When this happens, Dec (and R) output fx.

For the soundness case, fix (x, w) and again recall that the non-determinism w for
R yields non-deterministic strings for each of the execution of M. For every execution
of M on query q and with non-determinism z, if z ∈ S then with probability at least
1− 1/N2 it holds that

Pr
k∈[t]

[Samp(z, jk) /∈ N] < Pr[uN /∈ N] + ε′/50 ,

in which case there does not exist a sequence of answers with at least an α-fraction of
1’s that agrees with (Y,N). In this case the soundness claim holds vacuously (because
there does not exist (s, α)-valid sequence of answers that agrees with (Y,N)).

65

Therefore, by a union-bound over the queries, we may assume that z ∈ S̄ for all
queries to M and that M outputs either ⊥ (if z ∈ S̄ is not the unique preimage under
h for the corresponding query) or the corresponding bit in the corrupted codeword (if
z ∈ S̄ is indeed the unique preimage under h for the corresponding query). In case one
of the queries of Dec is answered by ⊥, then R outputs ⊥ by definition; and otherwise,
the execution of Dec is identical to an execution with access to the corrupted codeword,
in with case R(x, w) = fx.

7.4.2 The proof of Theorem 1.8

We now show that under strong hardness assumptions we can reduce the number of
random coins in an arbitrary doubly efficient proof system to be logarithmic, without
increasing the number of rounds. The hardness assumptions will refer to a function
whose truth-tables can be recognized in near-linear time, but that is hard for multi-
round AM protocols running in time 2(1−δ)·n with 2(1−δ)·n bits of non-uniform advice,
for a small δ > 0.

Theorem 7.11 (drastically reducing the number of random coins in a constant-round
proof system). For every ε > 0 there exists δ > 0 such that the following holds. Let c ∈N be
a constant, and assume that there exists Lhard /∈ MAT IME [
c+1][2(1−δ)·n]/2(1−δ)·n such
that given n ∈ N, the truth-table of Lhard of n-bit inputs can be printed in time 2(1+ε/3)·n.
Then, for every polynomial T(n) it holds that

deIP [
c][T] ⊆ deIP [
c][T1+ε, (1 + ε) · log(T)] .

Proof. Let L ∈ deIP [
c][T], and let V be the corresponding T-time verifier for L.
Denote by c′ = dc/2e the number of turns of the verifier in the interaction. As in the
proof of Theorem 7.4, we denote by 〈V, P, x〉 (r1, . . . , rc′) the result of an interaction
between V and P on common input x where the coins r1, . . . , rc′ are gradually revealed
in the c′ turns of V.

The new verifier. We define a verifier V ′ that gets input x ∈ {0, 1}n, and acts as
follows. For N = T(n), let fn be the truth-table of Lhard on inputs of length (1 + ε/3) ·
log(N). Consider the generator G from Proposition 7.10 with ε0 = ε and input 1N and
oracle access to fn, and denote the number of its outputs by N̄ = N1+ε.

The verifier V ′ computes fn, and in each turn i, it chooses a random si ∈ [N̄] and
sends G fn(si) it to the prover, instead of a random N-bit string. In the end V ′ applies
the predicate V to the transcript. Note that V ′ uses (1 + ε) · log(N) random coins in
each turn, and runs in time O(N1+ε).

Completeness and soundness. The honest prover for V ′ behaves identically to the
prover for V. Since the new protocol simulates the original protocol with a pseudoran-
dom subset of the random strings, completeness follows immediately. We thus focus
on proving the soundness of V ′. Fix x /∈ L.

Notation. Let us introduce some useful notation. For every i ∈ [c′] let Vi be the verifier
that in the first i turns uses pseudorandom coins as above, and in the rest of the
interaction uses random coins. By definition, we have that

〈Vi, P, x〉 (s1, . . . , si, ri+1, . . . , rc′) = 〈V, P, x〉
(

G fn(s1), . . . , G fn(si), ri+1, . . . , rc′
)

.

66

We define a sequence of hybrids, as follows:

px,i = max
P

{
Pr

s1,...,si ,ri+1,...,rc′
[〈Vi, P, x〉 (s1, . . . , si, ri+1, . . . , rc′) = 1]

}
, (7.3)

where i = 0, . . . , c′. Indeed px,0 is just the maximal acceptance probability of V on
input x whereas px,c′ is the maximal acceptance probability of V ′ on input x (where in
both cases the maximum is taken over all provers).

Now, let P̄ be the prover that maximizes px,c′ . For any i ∈ [c′] and prover P, we
think P as a concatenation P1...i ◦ Pi+1...c′ ,56 and for any i ∈ {0, . . . , c′} we denote

(px,i|P̄) = max
Pi+1...c′

{
Pr

s1,...,si ,ri+1,...,rc′

[〈
Vi, P̄1...i ◦ Pi+1...c′ , x

〉
(s1, . . . , si, ri+1, . . . , rc′) = 1

]}
.

A hybrid argument. Assume that px,c′ = (px,c′ |P̄) ≥ 1/2. Since x /∈ L, we have that
(px,0|P̄) ≤ 1/3. It follows that

1/6 < (px,c′ |P̄)− (px,0|P̄) = ∑
i∈[c′]

(px,i|P̄)− (px,i−1|P̄) ,

and hence for some i ∈ [c′] it holds that (px,i|P̄)− (px,i−1|P̄) > 1/20c′. Observe that

(px,i|P̄)− (px,i−1|P̄)

= max
Pi+1...c′

{
Pr

s1,...,si ,ri+1,...,rc′

[〈
Vi, P̄1...i ◦ Pi+1...c′ , x

〉
(s1, . . . , si, ri+1, . . . , rc′) = 1

]}
−max

Pi...c′

{
Pr

s1,...,si−1,ri ,...,rc′

[〈
Vi−1, P̄1...i−1 ◦ Pi...c′ , x

〉
(s1, . . . , si−1, ri, . . . , rc′) = 1

]}
≥ max

Pi...c′

{
Pr

s1,...,si ,ri+1,...,rc′

[〈
Vi, P̄1...i−1 ◦ Pi...c′ , x

〉
(s1, . . . , si, ri+1, . . . , rc′) = 1

]}
−max

Pi...c′

{
Pr

s1,...,si−1,ri ,...,rc′

[〈
Vi−1, P̄1...i−1 ◦ Pi...c′ , x

〉
(s1, . . . , si−1, ri, . . . , rc′) = 1

]}
= E

s1,...si

[
max
Pi...c′

{
Pr

ri+1,...,rc′

[〈
Vi, P̄1...i−1 ◦ Pi...c′ , x

〉
(s1, . . . , si, ri+1, . . . , rc′) = 1

]}]
− E

s1,...,si−1,ri

[
max
Pi...c′

{
Pr

ri+1,...,rc′

[〈
Vi−1, P̄1...i−1 ◦ Pi...c′ , x

〉
(s1, . . . , si−1, ri, . . . , rc′) = 1

]}]
,

(7.4)

where the last equality is justified using the precise same argument as in Claim 7.4.3.1.

Defining a distinguisher. For any s̄ = (s1, . . . , si−1) and ri ∈ {0, 1}N , denote

ps̄(ri) = max
Pi...c′

{
Pr

ri+1,...,rc′

[〈
Vi−1, P̄1...i−1 ◦ Pi...c′ , x

〉
(s̄, ri, . . . , rc′) = 1

]}
,

and observe that Eq. (7.4) can thus be rewritten as

E
s̄

[
E

si∈[N̄]

[
ps̄(G fn(si))

]
− E

ri∈{0,1}N
[ps̄(ri)]

]
> 1/20c′ .

56Recall that, as in the proof of Theorem 7.4, we think of P as a sequence of c′ functions, mapping
transcripts to N-bit responses.

67

We fix s̄ = (s1, . . . , si−1) such that the expected difference above is attained. Now,
using Lemma 7.4.3.4 with x = ps̄(G fn(u[N̄])) and y = p(uN) and ε = 1/20c′, there
exists τ ∈ {0, ε/4, 2ε/4, . . . , 1} such that

Pr
[

ps̄(G fn(u[N̄])) ≥ τ + ε/4
]
− Pr [p(uN) ≥ τ] > ε/2 . (7.5)

Now, consider the following promise problem:

Y =
{
(x, ri, πs̄,p̄, τ) : ps̄(ri) ≥ τ + ε/4

}
N =

{
(x, ri, πs̄,p̄, τ) : ps̄(ri) ≤ τ

}
.

Note that by Eq. (7.5), we have that

ε/2 > Pr[G fn(u[N̄]) ∈ Y]− Pr[uN /∈ N] .

We further argue that (Y,N) is in prAMT IME [
c][O(n)], via the following protocol
U. (Note that the input length to this problem is N, and thus the running time O(N)
that we will prove is linear in its input length.) The protocol U simulates the protocol
underlying ps̄ (i.e., interacts with its prover using random coins and applies the final
predicate that V applies to the interaction, when the prefix is π) for constantly many
times in parallel, to estimate its acceptance probability, with high probability, up to an
error of ε/8. The procedure accepts if and only if its estimate is more than τ + ε/8.
Note that U is indeed an AMT IME [
c] protocol that runs in linear time, uses a
linear number of advice bits, and solves (Y,N).

A reconstruction argument. Let D be a protocol for the prAMT IME [
c][O(n)] above.
Consider the reconstruction algorithm R from Proposition 7.10, with the advice string
adv and s ∈ N and α > 0 that correspond to (Y,N) above. Our protocol for the hard
function f will simulate R, and resolve its queries by simulating D with our prover.

By the completeness of R, for every z there exists w for which with high probability
over R’s random coins, any sequence of answers to oracle queries that agrees with
(Y,N) is (s, α)-valid, and any sequence of answers that is (s, α)-indicative of a sequence
that agrees with (Y,N) causes R to output fz. Thus, the prover can simply convince
the verifier of the veracity of all queries that are Y instances: In this case, regardless of
what the protocol answers for N instances, the sequence of answers agrees with (Y,N)
and is thus (s, α)-indicative of itself, causing R to output fz.

To establish the soundness of the protocol, denote the sequence of answers to the
queries of R by d1, . . . , dt̄, and observe that with high probability, for every query
qi we have di = 1 ⇒ qi /∈ N. Then, by Proposition 7.10, with high probability the
following holds: If the sequence of answers to the verifier’s queries is (α, s)-deficient,
then R outputs ⊥; and otherwise, it means that the answers are (s, α)-indicative of the
sequence of answers that agree with (Y,N), in which case we are in the soundness
case and the output is either fz or ⊥.

The procedure above is anMAT IME [
c+1] protocol (since we are using the first
round to receive w, then c rounds to simulate D) and it runs in time

| fn|1−δ0︸ ︷︷ ︸
complexity of R

+ Nε/10︸ ︷︷ ︸
number of queries

· O(N)︸ ︷︷ ︸
length of each query

< | fn|1−δ ,

relying on a sufficiently small choice of δ > 0. Similarly, the total number of advice
bits that it uses is | fn|1−δ0 + O(N) < | fn|1−δ. This contradicts the hardness of Lhard.

68

By combining Theorems 7.11 and 7.4, we now show that under strong hardness
assumptions we can simulate any AMT IME [
c] protocol by a deterministic effective
argument system, with essentially no time overhead.

Corollary 7.12 (simulating proof systems by deterministic effective argument systems;
Theorem 1.8, restated). For every ε ∈ (0, 1) there exists δ > 0 such that for every c ∈ N

the following holds. Let T be a polynomial, and assume that:

1. There exists Lhard /∈ MAT IME [
c+1][2(1−δ)·n]/2(1−δ)·n such that given n ∈ N, the
truth-table of Lhard of n-bit inputs can be printed in time 2(1+ε/3)·n.

2. The hypothesis in Theorem 7.4 holds with respect to some α, β > 0, with parameter
values c and R = Tµα,β,ε and time bound T1+ε/2 (where µα,β,ε > 0 is sufficiently small).

Then, deIP [
c][T] ⊆ deARG[T1+ε].

Proof. Let L ∈ deIP [
c][T]. By the first hypothesis and Theorem 7.11 we have that
L ∈ deIP [
c][T0, R0] for T0 = T1+ε/2 and R0 = (1 + ε/2) · log(T). And by the second
hypothesis and Theorem 7.4 with time bound T0 and randomness R > R0, we have
that L ∈ deARG[T0 · poly(R)] ⊆ deARG[T1+ε].

As in Remark 7.6, the derandomization in Corollary 7.12 extends to the setting
in which the original honest prover (in the probabilistic proof system) was efficient
only when given a witness in a relation, and in this case the honest prover in the
argument system is also efficient only when given a witness in the same relation.
(This is because, similarly to Remark 7.6, the honest prover in the argument system
underlying Theorem 7.11 is identical to the original honest prover.)

Acknowledgements

The authors are very grateful to Ron Rothblum, for explaining to us some of the
possibilities for batch-computing functions with doubly efficient interactive proofs.
We also thank Avi Wigderson, Ryan Williams, Oded Goldreich, Vinod Vaikuntanathan
and Alex Lombardi for useful discussions. The first author thanks Avi Wigderson for
hosting him at the IAS for a visit in which most of this work was carried out.

Part of this work was conducted while the the first author was supported by NSF
CCF-2127597 and an IBM Fellowship, and while the second author was at DIMACS
and partially supported by the National Science Foundation under grant number CCF-
1445755 and under grant number CCF-1900460.

References

[AB09] Sanjeev Arora and Boaz Barak. Computational complexity: A modern ap-
proach. Cambridge University Press, Cambridge, 2009.

[AKS04] Manindra Agrawal, Neeraj Kayal, and Nitin Saxena. “PRIMES is in P”.
In: Annals of Mathematics. Second Series 160.2 (2004), pp. 781–793.

[AKS19] Manindra Agrawal, Neeraj Kayal, and Nitin Saxena. “Errata: PRIMES is
in P [MR2123939]”. In: Annals of Mathematics. Second Series 189.1 (2019),
pp. 317–318.

69

[Bar01] Boaz Barak. “How to Go Beyond the Black-Box Simulation Barrier”. In:
42nd Annual Symposium on Foundations of Computer Science, FOCS 2001,
14-17 October 2001, Las Vegas, Nevada, USA. IEEE Computer Society, 2001,
pp. 106–115.

[BBH+19] James Bartusek, Liron Bronfman, Justin Holmgren, Fermi Ma, and Ron
D. Rothblum. “On the (In)security of Kilian-Based SNARGs”. In: Theory
of Cryptography - 17th International Conference, TCC 2019, Nuremberg, Ger-
many, December 1-5, 2019, Proceedings, Part II. Ed. by Dennis Hofheinz and
Alon Rosen. Vol. 11892. Lecture Notes in Computer Science. Springer,
2019, pp. 522–551.

[BC86] Gilles Brassard and Claude Crépeau. “Non-transitive transfer of confi-
dence: A perfect zero-knowledge interactive protocol for SAT and be-
yond”. In: Proc. 27th Annual IEEE Symposium on Foundations of Computer
Science (FOCS). 1986.

[BCC88] Gilles Brassard, David Chaum, and Claude Crépeau. “Minimum disclo-
sure proofs of knowledge”. In: vol. 37. 2. 1988, pp. 156–189.

[BCS16] Eli Ben-Sasson, Alessandro Chiesa, and Nicholas Spooner. “Interactive
Oracle Proofs”. In: Theory of Cryptography - 14th International Conference,
TCC 2016-B, Beijing, China, October 31 - November 3, 2016, Proceedings, Part
II. Ed. by Martin Hirt and Adam D. Smith. Vol. 9986. Lecture Notes in
Computer Science. 2016, pp. 31–60. doi: 10.1007/978-3-662-53644-
5_2. url: https://doi.org/10.1007/978-3-662-53644-5_2.

[BGH+05] Eli Ben-Sasson, Oded Goldreich, Prahladh Harsha, Madhu Sudan, and
Salil P. Vadhan. “Short PCPs Verifiable in Polylogarithmic Time”. In: 20th
Annual IEEE Conference on Computational Complexity (CCC 2005), 11-15
June 2005, San Jose, CA, USA. IEEE Computer Society, 2005, pp. 120–134.

[BM88] László Babai and Shlomo Moran. “Arthur-Merlin games: a randomized
proof system, and a hierarchy of complexity classes”. In: Journal of Com-
puter and System Sciences 36.2 (1988), pp. 254–276.

[BR93] Mihir Bellare and Phillip Rogaway. “Entity Authentication and Key Dis-
tribution”. In: Advances in Cryptology - CRYPTO ’93, 13th Annual Interna-
tional Cryptology Conference, Santa Barbara, California, USA, August 22-26,
1993, Proceedings. Ed. by Douglas R. Stinson. Vol. 773. Lecture Notes in
Computer Science. Springer, 1993, pp. 232–249.

[BSGH+06] Eli Ben-Sasson, Oded Goldreich, Prahladh Harsha, Madhu Sudan, and
Salil Vadhan. “Robust PCPs of proximity, shorter PCPs and applications
to coding”. In: SIAM Journal of Computing 36.4 (2006), pp. 889–974.

[CCH+19] Ran Canetti, Yilei Chen, Justin Holmgren, Alex Lombardi, Guy N. Roth-
blum, Ron D. Rothblum, and Daniel Wichs. “Fiat-Shamir: from practice
to theory”. In: Proceedings of the 51st Annual ACM SIGACT Symposium on
Theory of Computing, STOC 2019, Phoenix, AZ, USA, June 23-26, 2019. Ed.
by Moses Charikar and Edith Cohen. ACM, 2019, pp. 1082–1090.

[CJJ21] Arka Rai Choudhuri, Abhishek Jain, and Zhengzhong Jin. “SNARGs for
\mathcal{P} from LWE”. In: 62nd IEEE Annual Symposium on Foun-
dations of Computer Science, FOCS 2021, Denver, CO, USA, February 7-10,
2022. IEEE, 2021, pp. 68–79.

70

https://doi.org/10.1007/978-3-662-53644-5_2
https://doi.org/10.1007/978-3-662-53644-5_2
https://doi.org/10.1007/978-3-662-53644-5_2

[CT21a] Lijie Chen and Roei Tell. “Hardness vs Randomness, Revised: Uniform,
Non-Black-Box, and Instance-Wise”. In: Proc. 62nd Annual IEEE Sympo-
sium on Foundations of Computer Science (FOCS). 2021.

[CT21b] Lijie Chen and Roei Tell. “Simple and fast derandomization from very
hard functions: Eliminating randomness at almost no cost”. In: Proc. 53st
Annual ACM Symposium on Theory of Computing (STOC). 2021.

[DMO+20] Dean Doron, Dana Moshkovitz, Justin Oh, and David Zuckerman. “Nearly
Optimal Pseudorandomness From Hardness”. In: Proc. 61st Annual IEEE
Symposium on Foundations of Computer Science (FOCS). 2020.

[FF93] Joan Feigenbaum and Lance Fortnow. “Random-self-reducibility of com-
plete sets”. In: SIAM Journal of Computing 22.5 (1993), pp. 994–1005.

[FGM+89] Martin Fürer, Oded Goldreich, Yishay Mansour, Michael Sipser, and
Stathis Zachos. “On Completeness and Soundness in Interactive Proof
Systems”. In: Advances in Computing Research 5 (1989).

[FLM+05] Lance Fortnow, Richard Lipton, Dieter van Melkebeek, and Anastasios
Viglas. “Time-space lower bounds for satisfiability”. In: Journal of the
ACM 52.6 (2005), pp. 835–865.

[FS86] Amos Fiat and Adi Shamir. “How To Prove Yourself: Practical Solutions
to Identification and Signature Problems”. In: Proc. Advances in Cryptology
(CRYPTO). 1986, pp. 186–194.

[GK03] Shafi Goldwasser and Yael Tauman Kalai. “On the (In)security of the Fiat-
Shamir Paradigm”. In: 44th Symposium on Foundations of Computer Science
(FOCS 2003), 11-14 October 2003, Cambridge, MA, USA, Proceedings. IEEE
Computer Society, 2003, pp. 102–113.

[GKR15] Shafi Goldwasser, Yael Tauman Kalai, and Guy N. Rothblum. “Delegat-
ing computation: interactive proofs for muggles”. In: Journal of the ACM
62.4 (2015), Art. 27, 64.

[GLR+91] Peter Gemmell, Richard J. Lipton, Ronitt Rubinfeld, Madhu Sudan, and
Avi Wigderson. “Self-Testing/Correcting for Polynomials and for Ap-
proximate Functions”. In: Proceedings of the 23rd Annual ACM Symposium
on Theory of Computing, May 5-8, 1991, New Orleans, Louisiana, USA. Ed.
by Cris Koutsougeras and Jeffrey Scott Vitter. ACM, 1991, pp. 32–42.

[Gol08] Oded Goldreich. Computational Complexity: A Conceptual Perspective. New
York, NY, USA: Cambridge University Press, 2008.

[Gol18] Oded Goldreich. “On doubly-efficient interactive proof systems”. In: Foun-
dations and Trendsr in Theoretical Computer Science 13.3 (2018), front mat-
ter, 1–89.

[GR18] Oded Goldreich and Guy N. Rothblum. “Simple doubly-efficient inter-
active proof systems for locally-characterizable sets”. In: Proc. 9th Con-
ference on Innovations in Theoretical Computer Science (ITCS). Vol. 94. 2018,
Art. No. 18, 19.

[GSTS03] Dan Gutfreund, Ronen Shaltiel, and Amnon Ta-Shma. “Uniform hard-
ness versus randomness tradeoffs for Arthur-Merlin games”. In: Compu-
tational Complexity 12.3-4 (2003), pp. 85–130.

71

[GW14] Oded Goldreich and Avi Widgerson. “On derandomizing algorithms that
err extremely rarely”. In: Proc. 46th Annual ACM Symposium on Theory of
Computing (STOC). Full version available online at Electronic Colloquium
on Computational Complexity: ECCC, 20:152 (Rev. 2), 2013. 2014, pp. 109–
118.

[HLR21] Justin Holmgren, Alex Lombardi, and Ron D. Rothblum. “Fiat-Shamir
via list-recoverable codes (or: parallel repetition of GMW is not zero-
knowledge)”. In: STOC ’21: 53rd Annual ACM SIGACT Symposium on
Theory of Computing, Virtual Event, Italy, June 21-25, 2021. Ed. by Samir
Khuller and Virginia Vassilevska Williams. ACM, 2021, pp. 750–760.

[IKW02] Russell Impagliazzo, Valentine Kabanets, and Avi Wigderson. “In search
of an easy witness: exponential time vs. probabilistic polynomial time”.
In: Journal of Computer and System Sciences 65.4 (2002), pp. 672–694.

[Kil92] Joe Kilian. “A Note on Efficient Zero-Knowledge Proofs and Arguments”.
In: Proc. 24th Annual ACM Symposium on Theory of Computing (STOC).
1992.

[KM98] Adam Klivans and Dieter van Melkebeek. “Graph Nonisomorphism has
Subexponential Size Proofs Unless the Polynomial-Time Hierarchy Col-
lapses”. In: Electronic Colloquium on Computational Complexity: ECCC 5
(1998), p. 75.

[LFK+92] Carsten Lund, Lance Fortnow, Howard Karloff, and Noam Nisan. “Alge-
braic methods for interactive proof systems”. In: Journal of the Association
for Computing Machinery 39.4 (1992), pp. 859–868.

[Mic00] Silvio Micali. “Computationally sound proofs”. In: SIAM Journal of Com-
puting 30.4 (2000), pp. 1253–1298.

[MNT93] Yishay Mansour, Noam Nisan, and Prasoon Tiwari. “The computational
complexity of universal hashing”. In: vol. 107. 1. 1993, pp. 121–133.

[MV05] Peter Bro Miltersen and N. V. Vinodchandran. “Derandomizing Arthur-
Merlin games using hitting sets”. In: Computational Complexity 14.3 (2005),
pp. 256–279.

[NW94] Noam Nisan and Avi Wigderson. “Hardness vs. randomness”. In: Journal
of Computer and System Sciences 49.2 (1994), pp. 149–167.

[PS19] Chris Peikert and Sina Shiehian. “Noninteractive Zero Knowledge for NP
from (Plain) Learning with Errors”. In: Advances in Cryptology - CRYPTO
2019 - 39th Annual International Cryptology Conference, Santa Barbara, CA,
USA, August 18-22, 2019, Proceedings, Part I. Ed. by Alexandra Boldyreva
and Daniele Micciancio. Vol. 11692. Lecture Notes in Computer Science.
Springer, 2019, pp. 89–114.

[PS96] David Pointcheval and Jacques Stern. “Provably Secure Blind Signature
Schemes”. In: Advances in Cryptology - ASIACRYPT ’96, International Con-
ference on the Theory and Applications of Cryptology and Information Secu-
rity, Kyongju, Korea, November 3-7, 1996, Proceedings. Ed. by Kwangjo Kim
and Tsutomu Matsumoto. Vol. 1163. Lecture Notes in Computer Science.
Springer, 1996, pp. 252–265. doi: 10.1007/BFb0034852. url: https://
doi.org/10.1007/BFb0034852.

[RR97] Alexander A. Razborov and Steven Rudich. “Natural proofs”. In: Journal
of Computer and System Sciences 55.1, part 1 (1997), pp. 24–35.

72

https://doi.org/10.1007/BFb0034852
https://doi.org/10.1007/BFb0034852
https://doi.org/10.1007/BFb0034852

[RRR18] Omer Reingold, Guy N. Rothblum, and Ron D. Rothblum. “Efficient
Batch Verification for UP”. In: Proc. 33rd Annual IEEE Conference on Com-
putational Complexity (CCC). 2018, 22:1–22:23.

[RRR21] Omer Reingold, Guy N. Rothblum, and Ron D. Rothblum. “Constant-
round interactive proofs for delegating computation”. In: SIAM Journal
of Computing 50.3 (2021), STOC16–255–STOC16–340.

[RRV02] Ran Raz, Omer Reingold, and Salil Vadhan. “Extracting all the random-
ness and reducing the error in Trevisan’s extractors”. In: Journal of Com-
puter and System Sciences 65.1 (2002), pp. 97–128.

[Sha03] Ronen Shaltiel. “Towards proving strong direct product theorems”. In:
Computational Complexity 12.1-2 (2003), pp. 1–22.

[Sha92] Adi Shamir. “IP = PSPACE”. In: Journal of the ACM 39.4 (1992), pp. 869–
877.

[Sip88] Michael Sipser. “Expanders, randomness, or time versus space”. In: Jour-
nal of Computer and System Sciences 36.3 (1988), pp. 379–383.

[STV01] Madhu Sudan, Luca Trevisan, and Salil Vadhan. “Pseudorandom genera-
tors without the XOR lemma”. In: Journal of Computer and System Sciences
62.2 (2001), pp. 236–266.

[SU05] Ronen Shaltiel and Christopher Umans. “Simple extractors for all min-
entropies and a new pseudorandom generator”. In: Journal of the ACM
52.2 (2005), pp. 172–216.

[SU06] Ronen Shaltiel and Christopher Umans. “Pseudorandomness for Ap-
proximate Counting and Sampling”. In: Comput. Complex. 15.4 (2006),
pp. 298–341.

[SU07] Ronen Shaltiel and Christopher Umans. “Low-end uniform hardness vs.
randomness tradeoffs for AM”. In: Proc. 39th Annual ACM Symposium on
Theory of Computing (STOC). 2007, pp. 430–439.

[Tel22] Roei Tell. “How to Find Water in the Ocean: A Survey on Quantified
Derandomization”. In: Foundations and Trends(r) in Theoretical Computer
Science 15.1 (2022), pp. 1–125.

[Tou01] Iannis Tourlakis. “Time-space tradeoffs for SAT on nonuniform machines”.
In: Journal of Computer and System Sciences 63.2 (2001), pp. 268–287.

[TSZS06] Amnon Ta-Shma, David Zuckerman, and Shmuel Safra. “Extractors from
Reed-Muller codes”. In: Journal of Computer and System Sciences 72.5 (2006),
pp. 786–812.

[WB86] Lloyd R Welch and Elwyn R Berlekamp. Error correction for algebraic block
codes. US Patent 4,633,470. 1986.

[Wil13] Ryan Williams. “Improving Exhaustive Search Implies Superpolynomial
Lower Bounds”. In: SIAM Journal of Computing 42.3 (2013), pp. 1218–1244.

[Wil16] Richard Ryan Williams. “Strong ETH breaks with Merlin and Arthur:
short non-interactive proofs of batch evaluation”. In: Proc. 31st Annual
IEEE Conference on Computational Complexity (CCC). Vol. 50. 2016, Art.
No. 2, 17.

[Žák83] Stanislav Žák. “A Turing machine time hierarchy”. In: Theoretical Com-
puter Science 26.3 (1983), pp. 327–333.

73

A Useful properties are necessary for derandomization ofMA
In this appendix we prove that useful properties that are constructive in near-linear
time are necessary for derandomization of MA. We first prove that infinitely often
useful properties are necessary for any derandomization of MA, following the proof
approach of Williams [Wil13; Wil16]; and then we prove that useful properties (in the
standard sense, i.e. not only infinitely often) are necessary for black-box superfast
derandomization ofMA.

Definition A.1 (io-useful property; compare with Definition 3.3). We say that a collection
L ⊆ {0, 1}∗ of strings is a C ′-constructive property io-useful against C if for every N = 2n it
holds that Ln = L ∩ {0, 1}N 6= ∅, and L ∈ C ′, and for every L ∈ C there are infinitely many
n ∈N such that Ln /∈ Ln, where Ln ∈ {0, 1}2n

is the truth-table of L on n-bit inputs.

Proposition A.2 (io-useful properties are necessary for derandomization of MA). If
every unary language in MA is also in NP then there is a quasilinear-time-constructive
property io-useful against circuits of size 2ε·n, for some constant ε > 0.

Proof. We first use the well-known proof approach from [Wil13; Wil16] to argue that
witnesses for a certain unary language in NT IME [2n] have exponential circuit com-
plexity, infinitely often; and then follow [Wil16] in observing that the latter statement
yields an io-useful property for exponential-sized circuits. Details follow.

Let L be a unary language in NT IME [2n] \ NT IME [2n/2] (see [Žák83]), and let
V be a PCP verifier for L with running time poly(n) and randomness n + O(log n)
and perfect completeness and soundness error 1/3 (see [BSGH+06]). Consider an
MA verifier VPCP that on n-bit inputs guesses a circuit C of size 2ε·n, where ε > 0 is
sufficiently small, and runs V while resolving its oracle queries using C.

Assume towards a contradiction that for every sufficiently large n ∈ N, if 1n ∈ L
then there is w ∈ {0, 1}2n

that is the truth-table of a function computable by circuits
of size 2ε·n such that Pr[V(1n, w) = 1] = 1. In this case, VPCP is an MA verifier that
decides L in time Õ(2ε·n), and thus (by our hypothesis and relying on ε > 0 being
small) it holds that L ∈ NT IME [2n/2], a contradiction.

Thus, there is an infinite set S ⊆ N such that for every n ∈ S there exists w ∈
{0, 1}2n

such that Pr[V(1n, w) = 1] = 1, and every w satisfying this condition is the
truth-table of a function whose circuit complexity is more than 2ε·n. Our io-useful
property consists of all such w’s, for every n ∈ S. The constructive algorithm for the
property gets fn ∈ {0, 1}2n

and enumerates over the randomness of V to compute
Pr[V(1n, fn) = 1]; if the latter value is 1 then it accepts, otherwise it rejects. Indeed,
the property is non-trivial infinitely often, its truth-tables are hard for circuits of size
2ε·n, and it is constructive in time Õ(2n).

We now prove that useful properties (which are not only “infinitely often” useful)
that are constructive in near-linear time are necessary for any superfast derandomiza-
tion of MA that uses non-deterministic PRGs (NPRGs). The proof follows the stan-
dard transformation of PRGs into hard functions, adapting it to our setting: Replacing
PRGs with NPRGs, and hard functions with useful properties.

Definition A.3 (non-deterministic PRG). A non-deterministic machine M is a non-deterministic

ε-PRG (ε-NPRG, in short) for a circuit class C if for every n ∈ N, when M is given input 1n

it satisfies the following:

1. There exists a non-deterministic guess such that M prints S ⊆ {0, 1}n for which there
is no circuit on n inputs in C that is an ε-distinguisher.57

57That is, for every C ∈ C on n input bits it holds that Prs∈S[C(s) = 1] ∈ Prx∈{0,1}n [C(x) = 1]± ε.

74

2. For every non-deterministic guess, either M prints S ⊆ {0, 1}n for which there is no
circuit on n inputs in C that is an ε-distinguisher, or M outputs ⊥.

Proposition A.4 (useful properties are necessary for derandomization with NPRGs).
For every ε > 0 there exists δ > 0 such that the following holds. If there is a (1/10)-NPRG
for linear-sized circuits that is computable in time n1+ε, then there is an NT IME [N1+3ε]-
computable property L useful against circuits of size 2(1−δ)·n.

Proof. For every n ∈ N, let Sn be the collection of all possible sets S that the NPRG
can print on input length 1n (i.e., when considering all non-deterministic guesses that
do not cause M to output ⊥). Fix S ∈ Sn, and note that |S| ≤ n1+ε (due to the running
time of M). For `(n) = d(1 + 2ε) · log(n)e, let fS : {0, 1}` → {0, 1} such that fS(x) = 1
if and only if x is a prefix of some z ∈ S. Note that there is no circuit C of size
O(n) = 2Ω(`/(1+2ε)) = 2(1−δ)·` that computes fS (otherwise we could use C to construct
a circuit that avoids S but has high acceptance probability).

For every ` ∈ N, we include in L all the functions fS obtained from S ∈ Sn
such that ` = `(n). The argument above shows that L is useful against circuits of
size 2(1−δ)·`, and its non-triviality follows since the NPRG works on all input lengths.
Finally, the truth-tables of fS’s included in L can be recognized in non-deterministic
time Õ(N1+2ε) < N1+3ε, by computing the NPRG.

Indeed, the proof above works also with the weaker notion of non-deterministic
HSG (NHSG), and we formulated it using NPRGs merely since the latter notion is
more well-known.

B Proof of Lemma 7.4.3.4

We now restate Lemma 7.4.3.4 from the proof of Theorem 7.4 and prove it.

Lemma B.1. Let x, y be two random variables taking values from [0, 1] and ε ∈ (0, 1) such
that ε−1 ∈N, and let τ = 4/ε. If E[x]−E[y] > ε, then there exists ` ∈ [τ] such that

Pr[x ≥ (`+ 1)/τ]− Pr[y ≥ `/τ] > ε/2 .

Proof. For every i ∈ {0, 1 . . . , τ + 1}, let

pi = Pr
[
x ∈ [i/τ, (i + 1)/τ)

]
and qi = Pr

[
y ∈ [i/τ, (i + 1)/τ)

]
.

Note that pτ+1 = qτ+1 = 0 (we define them purely for notational convenience), and
that ∑τ

i=0 pi = ∑τ
i=0 qi = 1. Also, we have that

E[x] ∈
[

τ

∑
i=0

pi · (i/τ), τ−1 +
τ

∑
i=0

pi · (i/τ)

)
,

E[y] ∈
[

τ

∑
i=0

qi · (i/τ), τ−1 +
τ

∑
i=0

qi · (i/τ)

)
,

which by our hypothesis E[x]−E[y] > ε implies that[
τ

∑
i=0

pi · (i/τ)

]
−
[

τ

∑
i=0

qi · (i/τ)

]
> ε− τ−1 .

75

Now, denote p≥` = ∑τ
j=` pj and q≥` = ∑τ

j=` qj. Then, we have that

τ

∑
i=0

pi · (i/τ) =
τ

∑
`=1

p≥`/τ = E
`∈[τ]

[p≥`] ,

τ

∑
i=0

qi · (i/τ) = E
`∈[τ]

[q≥`] ,

and therefore

E
`∈[τ]

[
p≥` − q≥`

]
> ε− τ−1 .

Next, observe that

E
`∈[τ]

[p≥`+1] = E
`∈[τ]

[p≥`]− E
`∈[τ]

[p`] ≥ E
`∈[τ]

[p≥`]− 1/τ .

Putting them together, we have

E
`∈[τ]

[
p≥`+1 − q≥`

]
> ε− 2τ−1 = ε/2 ,

and hence there exists ` ∈ [τ] such that p≥`+1 − q≥` > ε/2.

76 ECCC ISSN 1433-8092

https://eccc.weizmann.ac.il

