
Separations in Proof Complexity and TFNP

Mika Göös Alexandros Hollender Siddhartha Jain Gilbert Maystre
EPFL University of Oxford UT Austin EPFL

William Pires Robert Robere Ran Tao
Columbia University McGill University Carnegie Mellon University

July 23, 2024

Abstract. It is well-known that Resolution proofs can be efficiently simulated by Sherali–
Adams (SA) proofs. We show, however, that any such simulation needs to exploit huge
coefficients: Resolution cannot be efficiently simulated by SA when the coefficients are
written in unary. We also show that Reversible Resolution (a variant of MaxSAT Resolution)
cannot be efficiently simulated by Nullstellensatz (NS).

These results have consequences for total NP search problems. First, we characterise
the classes PPADS, PPAD, SOPL by unary-SA, unary-NS, and Reversible Resolution,
respectively. Second, we show that, relative to an oracle, PLS ̸⊆ PPP, SOPL ̸⊆ PPA, and
EOPL ̸⊆ UEOPL. In particular, together with prior work, this gives a complete picture of
the black-box relationships between all classical TFNP classes introduced in the 1990s.

Contents

1 Separations in Proof Complexity . 1
2 Separations in TFNP . 4
3 Definitions . 9
4 Reversible Resolution vs. Nullstellensatz . 12
5 Resolution vs. Sherali–Adams . 17
6 Proofs of Characterisations . 20
7 Intersection Theorems . 35
8 Two Further Separations . 36
A Appendix: Coefficient Size in Algebraic Proofs 41
References . 44

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Revision 3 of Report No. 58 (2022)

1 Separations in Proof Complexity

The main results of this work are two separations between standard propositional proof systems, as
summarised in Figure 1. Moreover, these results can be further interpreted as black-box separations
in the theory of total NP search problems (TFNP), as we explain later in Section 2. This connection
between TFNP and proof complexity, which has proved fruitful in past works and which we further
explore here, also yields a new type of result in proof complexity, which we call intersection theorems;
see Section 2.4.

1.1 Resolution vs. Sherali–Adams

Our first separation is between the most basic and well-studied proof system Resolution (see
the textbooks [Juk12, Kra19] for an introduction) and the semi-algebraic proof system Sherali–
Adams [SA94, DM12] (see the monograph [FKP19] for an introduction). Let us briefly recall
these systems. Each system aims to refute a given CNF contradiction (unsatisfiable CNF formula)
F := C1 ∧ . . . ∧ Cm over the n boolean variables x = (x1, . . . , xn).

Resolution (Res). A Resolution refutation of F starts with the set of clauses of F and repeatedly
applies the resolution rule C ∨ xi, D ∨ x̄i ⊢ C ∨D. That is, if we have already deduced premise
clauses C ∨xi and D∨ x̄i for some i, then we can further deduce the clause C ∨D. Once this rule
has been applied enough times to produce the empty clause ⊥, the refutation is complete. The
size of the refutation is the number of deduction steps, and its width is the maximum width |C|
(number of literals) of any clause C appearing in the refutation.

Sherali–Adams (SA). Sherali–Adams refutes unsatisfiable sets of polynomial equations {ai(x) =
0 : i ∈ [m]} with real coefficients, ai ∈ R[x]. A CNF contradiction F can be translated into this
language by encoding each clause, say, C := (x1∨x2∨x3), as the equation (1−x1)x2(1−x3) = 0,
and by enforcing each variable xi to take boolean values by the equation x2i − xi = 0. An SA
refutation of {ai(x) = 0} is a polynomial identity of the form1∑

i∈[m]

pi(x) · ai(x) = 1 + J(x), (1)

where pi ∈ R[x] are polynomials and J is a conical junta: a nonnegative linear combination of
terms, that is, J(x) =

∑
j αj · tj(x) where αj ∈ R≥0 are nonnegative coefficients and each tj is a

conjunction of literals; for example, tj(x) = x1x2x3 = x1(1 − x2)x3. The size of the refutation
is the combined total number of monomials in pi, ai, and tj (viewed as a polynomial) and its
degree is the maximum of deg(pi) + deg(ai) and of deg(tj) over all i, j.

It is a basic fact that SA is strictly more powerful than Resolution. First, Resolution is p-simulated
by SA, that is, with only polynomial overhead in proof width/degree and size. Indeed, if F can be
refuted by width-w Resolution, then F can be refuted by SA in degree w + 1 [DMR09]. Moreover,
if one allows twin variables in SA, the simulation can also be made efficient relative to size [ALN16].
Second, SA is not p-simulated by Resolution: there are n-variate CNF contradictions F (e.g., graph
pigeonhole principles) that can be refuted by SA in constant degree but such that any Resolution
refutation of F requires width Ω(n) and size exp(Ω(n)) [AL19].

Our first result highlights a previously overlooked inefficiency in the way that SA simulates
Resolution. We show that any low-degree simulation needs to exploit huge coefficients.

1This particular form is valid for refuting sets of polynomial equations, and can be easily obtained from more
general forms used for refuting sets of polynomial inequalities.

1

TreeRes

RevRes

Res

uNS

uSA Z-NS

F-NSSA

Theorem 1

Theorem 2

Figure 1: Our new separations of proof systems. An arrow A → B means that A is p-simulated by B, that is,
with polynomial overhead in width/degree and size (when allowing twin variables). A dashed arrow A 99K B
means that A is not p-simulated by B.

Theorem 1. There are n-variate CNF formulas F that can be refuted by constant-width Resolution,
but such that any SA refutation of F in degree no(1) requires coefficients of magnitude exp(nΩ(1)).

Theorem 1 is qualitatively tight in that the singly-exponential lower bound exp(nΩ(1)) cannot
be improved much. Namely, if a CNF formula can be refuted by a degree-d SA proof, then there
also exist a degree-d SA proof with integer coefficients of magnitude exp(nO(d)) (see Appendix A).
To our knowledge, Theorem 1 is the first exponential coefficient lower bound for a constant-
width CNF formula in any semi-algebraic proof system. (Examples of systems of polynomial
equations—not coming from CNFs—requiring even doubly-exponential coefficients were known
previously [O’D17, RW17, Hak21].)

We also note that the conclusion of Theorem 1 can be slightly strenthened using standard
lifting/xorification techniques [Ben09, §4] to show that any SA refutation of F must either use
exponentially many monomials or exponentially large coefficients. This trade-off has consequences
for the unary Sherali–Adams (uSA) system where we restrict the coefficients to be integers written
in unary and where their magnitude counts towards proof size (more precisely, the size of a uSA
proof is the sum of the magnitudes of all coefficients appearing in the proof). Thus we conclude that
Resolution is not p-simulated by uSA. In particular, this answers a question raised in a concurrent
work by Bonacina and Bonet [BB22]. For comparison, proving a similar lower bound for the Cutting
Planes system (separating CP from unary-CP) is a long-standing open problem.

1.2 Reversible Resolution vs. Nullstellensatz

Our second separation is between the standard algebraic proof system Nullstellensatz [BIK+94]
and a subsystem of Resolution that we call Reversible Resolution. The latter is closely related to
fragments of Resolution that have been introduced to model the reasoning used by MaxSAT solvers
(which find an assignment that satisfies as many clauses as possible). Prior work has defined several
distinct such MaxSAT Resolution systems [BLM07, LHdG08, FMSV23]. Our variant is yet slightly
different (see Section 6.3 for a comparison to prior systems). Ultimately, our definition is motivated
by results that will be discussed in Section 2: Reversible Resolution captures an important TFNP

2

class, and, moreover, it equals the “intersection” of Resolution and uSA.

Reversible Resolution (RevRes). In this restricted fragment of Resolution we only allow the
symmetric resolution rule C ∨ xi, C ∨ x̄i ⊢ C and its inverse C ⊢ C ∨ xi, C ∨ x̄i. Moreover, we
stipulate that an application of either rule consumes its premises in the following sense. The
refutation begins with a multiset of clauses of F—we may choose the multiplicity of each clause
freely at start—and a single application of a deduction rule removes a single occurrence of each
premise clause from the multiset and then adds the concluded clauses back to the multiset. Once
we produce at least one empty clause, the refutation is complete. The size and width of the
refutation are defined as before.

Nullstellensatz (F-NS). Let F be a field. An F-Nullstellensatz refutation of a set of polynomial
equations {ai(x) = 0 : i ∈ [m]} over F is given by a set of polynomials {pi(x)} ⊆ F[x] such that∑

i∈[m]

pi(x) · ai(x) = 1. (2)

The size of the refutation is the combined total number of monomials in pi and ai and its degree
is the maximum of deg(pi) + deg(ai) over all i.

Reversible Resolution is p-simulated by uSA. Indeed, the usual simulations of Resolution by
SA [DMR09, ALN16] have the neat property that if they are applied to a RevRes proof instead,
the resulting coefficients become bounded by the size of the RevRes proof (see also [FMSV23] for
a simulation in a closely related MaxSAT system). This also means that RevRes is strictly less
powerful than Resolution, as per our first separation result.

It is a classic result that Resolution is not p-simulated by F-NS over any field F. This is
witnessed by CNF formulas expressing the sink-of-dag (SoD) principle [CEI96, Bus98] or the
pebbling principle [BCIP02, dRNMR19]. Our second result strengthens these classical separations
showing that RevRes cannot be simulated by low-degree F-NS.

Theorem 2. There are n-variate CNF formulas F that can be refuted by constant-width polynomial-
size RevRes, but such that any F-NS refutation (over any F) of F requires degree nΩ(1).

Again, we note that standard lifting techniques can be used to strengthen the degree lower bound
in Theorem 2 to an exponential size lower bound. We conclude that RevRes is not p-simulated by
F-NS. In particular, this strengthens a previous result by Filmus et. al. [FMSV23] who showed that
RevRes (actually, their closely related MaxSAT system) is not p-simulated by tree-like Resolution.

1.3 Techniques

Our separation between Resolution and uSA (Section 5) builds on the separation between RevRes
and F-NS (Section 4). We prove the latter separation for F = R in a particularly robust form,
namely we show that it holds even if we allow some small amount of “error” in the NS proof.
We introduce what we call ϵ-approximate Nullstellensatz (ϵ-NS) refutations where we relax the
polynomial identity (2) over F = R to hold only approximately:∑

i∈[m]

pi(x) · ai(x) = 1 ± ϵ, ∀x ∈ {0, 1}n. (3)

In the above expression and for the remainder of the article, “= 1 ± ϵ” stands for “∈ [1 − ϵ, 1 + ϵ]”,
meaning that the LHS is a polynomial that takes values in [1 − ϵ, 1 + ϵ] when evaluated on boolean

3

inputs. For example, an SA refutation where J(x) ≤ ϵ for all boolean inputs x is also an ϵ-NS
refutation (since J(x) ≥ 0 trivially holds).

We show that there is no low-degree approximate NS proof for the formulas that encode the
so called sink-of-potential-line (SoPL) principle. These formulas are easy for RevRes, and in fact,
we later show they are complete for RevRes (see Theorem 3). Naturally, our lower-bound proof
borrows techniques from polynomial approximation theory. We give a randomised decision-to-
search reduction, showing how a low-degree ϵ-NS refutation of SoPL would imply a low-degree
approximating polynomial for the Or function. It is well-known, however, that the n-bit Or requires
large approximate polynomial degree, namely Ω(

√
n). This proof idea is inspired by previous

works [RW92, HN12, GP18, IR21] that followed a similar strategy in the context of communication
complexity: they studied randomised reductions from set-disjointness (communication analogue
of Or) to various communication search problems. Finally, we also give a separate (non-robust)
proof that SoPL is hard for F-NS over any field F using the intersection theorem (Theorem 6).

Our lower bound for ϵ-NS, say with ϵ := 1/2, now helps us prove Theorem 1. We consider an SA
refutation (1) of the SoD principle (which is a stronger principle than SoPL). The non-existence of
a low-degree ϵ-NS refutation for SoPL immediately implies that in any SA refutation of SoD, the
conical junta J has to assume a value at least ϵ on some input: the RHS equals 1+J(x) ≥ 1+ϵ = 1.5
for some x. Our idea is to now iterate the ϵ-NS lower-bound argument by combining several SoPL
instances inside SoD with the aim of finding large values on the RHS. After i iterations, we show
the RHS equals 1 + J(xi) ≥ 1.5Ω(i) for some carefully constructed input xi that embeds i copies
of SoPL. Setting i = poly(n) concludes the proof.

2 Separations in TFNP

A major motivation for our proof complexity separations in Section 1 is that they have consequences
in terms of black-box separations between subclasses of TFNP. Together with prior work, our new
separations resolve all the black-box relationships between classes depicted in Figure 2. To explain
this connection in detail, we start with a short introduction to TFNP.

2.1 Introduction to TFNP

The class TFNP consists of all total NP search problems, that is, search problems where a solution
is guaranteed to exist, and where it can be efficiently checked whether a given candidate solution is
feasible. Some very important problems lie in TFNP, for example, Factoring (given a number,
compute a prime factor) or Nash (given a bimatrix game, compute a Nash equilibrium).

A crucial observation is that no TFNP problem can be NP-hard, unless NP = coNP [MP91].
Furthermore, it is believed that TFNP is unlikely to have complete problems [Pud15]. As a result, in
order to understand the complexity of important TFNP problems, researchers have defined syntactic
subclasses of TFNP, such as PLS [JPY88], PPAD, PPADS, PPA, PPP [Pap94]. These subclasses are
defined using canonical complete problems that correspond to very simple existence principles.

PLS: Every directed acyclic graph has a sink.
PPAD: Every directed graph with an unbalanced node (outdegree ̸= indegree) must have another

unbalanced node.
PPADS: Every directed graph with a positively unbalanced node (outdegree > indegree) must have

a negatively unbalanced node (outdegree < indegree).
PPA: Every undirected graph with an odd-degree node must have another odd-degree node.
PPP: Every function mapping [n + 1] to [n] must have a collision. (Pigeonhole Principle)

4

FP

UEOPL

EOPL

SOPL PPAD

PPADS

PLS PPP PPA

TFNP

Theorem 4

Corollary 2

Theorem 5

TreeRes =

Res = = F2-NS

uSA =

= uNSRevRes =

RevResT =

Figure 2: Class inclusion diagram for TFNP. An arrow A → B means A ⊆ B relative to all oracles. A dashed
arrow A 99K B means A ̸⊆ B relative to some oracle. We have only drawn new separations proved in this paper.
Together with prior oracle separations [BCE+98, Mor01, BM04], this resolves all black-box relationships
between the classes featured in the diagram. In the black-box model, some classes can be captured using
propositional proof systems, as indicated in blue.

These existence principles naturally give rise to corresponding total search problems. For example,
for PPAD that would be: given a directed graph and an unbalanced node in that graph, find another
unbalanced node. These problems are defined so that the search space (the set of nodes) has size
exponential in the size of the input. Otherwise, it would be trivial to find a solution in polynomial
time. In more detail, this is achieved by having the input of the problem consist of a boolean circuit
that can be used to compute the neighbours of any given node.

The theory of TFNP classes has been successful in capturing the complexity of many important
natural problems. Indeed, in a celebrated result [DGP09, CDT09], it was shown that Nash is
complete for PPAD. Following this breakthrough, other problems from game theory [DQS12, CDO15,
Meh18] and economics [CSVY08, CDDT09, CPY17] were also proved PPAD-complete. Similarly,
PLS has been found to capture the complexity of various interesting problems, mainly ones where
a local optimum of some sort is sought [Kre89, Kre90, Sch91, FPT04]. Finally, various problems
in fair division are PPA-complete [FG22], while some problems related to cryptography have been
shown PPP-complete [SZZ18].

5

New classes and collapses

More recently, newer classes CLS [DP11], EOPL [FGMS20, HY20], SOPL [GKRS18] were defined,
motivated chiefly by problems that were unlikely to be complete for any of the classical classes
discussed above. Indeed, it was noted that many interesting problems lie in both PLS and PPAD, but
are unlikely to be complete for PLS ∩ PPAD, a seemingly completely artificial class. To remedy this
situation, CLS, and later EOPL, were defined as more natural subclasses of PLS ∩ PPAD. However,
in a surprising turn of events, it was discovered that CLS = PLS ∩ PPAD [FGHS21] and also that
EOPL = PLS∩ PPAD and SOPL = PLS∩ PPADS [GHJ+22]. In other words, the new classes can be
completely defined in terms of the classical ones.

In order to rule out further surprising collapses in the future, it would thus makes sense, whenever
one defines a new subclass, to also provide some kind of evidence that the new class is indeed
new, and does not collapse to existing classes. Clearly, any unconditional separation is completely
out of reach, since it would immediately imply that P ̸= NP. However, it turns out that one can
indeed prove separations relative to oracles by proving unconditional separations between black-box
versions of the classes.

The black-box model

Recall that TFNP subclasses are defined in terms of very simple existence principles that are turned
into (white-box) total search problems by having the input be implicitly described by a boolean
circuit. Another—sometimes more natural—choice is to have the input be described by a black box,
instead of a white box. For example, in the case of PPAD, instead of being given the description of
a circuit that can be used to compute neighbours, we can consider the model where we can query
an oracle (black-box) to ask for the neighbours of a node.

More formally, a total query search problem is a sequence of relations Rn ⊆ {0, 1}n×On, one for
each size n ∈ N, such that for all inputs x ∈ {0, 1}n there is an output o ∈ On such that (x, o) ∈ Rn.
Here On is a finite set of outputs and we say that o is a solution to instance x, when (x, o) ∈ Rn.
We think of an instance x ∈ {0, 1}n as a very long bitstring that can only be accessed through
queries to individual bits. In this context, an efficient algorithm is a deterministic algorithm that,
for any x ∈ {0, 1}n, finds a solution o to x by performing a small number of queries to x, namely at
most poly(log n) queries. Thus, efficient algorithms correspond to decision trees (with leaves labelled
by elements of On) of depth at most poly(log n). Note that this model is non-uniform: the problem
admits an efficient algorithm, if for each n ∈ N, there exists a shallow decision tree solving Rn.

The notion of total search problems as defined above does not quite correspond to TFNP yet,
because it is missing the requirement for efficient verification of solutions. We enforce this in the
following natural way. A total search problem R = (Rn)n is in TFNPdt, if for each o ∈ On there
is a decision tree To with depth poly(log n) such that for every x ∈ {0, 1}n, To(x) = 1 if and only
if (x, o) ∈ Rn. We define the class PPADdt as the set of all TFNPdt problems that have an efficient
decision-tree reduction to (the query version of) the canonical complete problem for PPAD. We
denote by PPADdt(Rn) the decision tree complexity of a reduction from Rn to the canonical PPADdt-
complete problem (see Section 3 for a precise definition). Thus, problem R = (Rn)n lies in PPADdt

if and only if PPADdt(Rn) = poly(log n). The decision-tree analogues of the other classes are defined
in the same way.

Black-box separations

In the black-box model, it is now possible to prove unconditional separations, e.g., that PPADdt ̸⊆
PLSdt by showing that there is no shallow decision-tree reduction from some problem in PPADdt to

6

a complete problem for PLSdt. Importantly, a black-box separation also provides some evidence
that the separation might hold in the white-box setting too, in the following sense: any black-box
separation implies a corresponding separation in the white-box model relative to some oracle [BCE+98].
Moreover, all existing containment results (including the recent collapses [FGHS21, GHJ+22]) also
hold in the black-box setting. Thus, a black-box separation is quite significant, since it rules out
any collapse using existing techniques.

Previously, Beame et al. [BCE+98] proved all possible separations between the classes PPAdt,
PPADdt, PPADSdt, PPPdt. Subsequently, Morioka [Mor01] extended these results by proving that
PPADdt is not reducible to PLSdt. This implies that none of PPAdt, PPADdt, PPADSdt and PPPdt

are contained in PLSdt. Buresh-Oppenheim and Morioka [BM04] further proved that PLSdt is not
contained in PPAdt. It has so far remained open whether PLSdt ⊆ PPADSdt or PLSdt ⊆ PPPdt.

Connection to proof complexity

Propositional proof complexity is a major tool for proving black-box separations. There is a natural
correspondence between total query search problems and CNF contradictions. In one direction, a
CNF contradiction F := C1 ∧ · · · ∧ Cm over the variables x = (x1, . . . , xn) naturally gives rise to
a corresponding total search problem S(F): given an assignment x ∈ {0, 1}n, find an unsatisfied
clause of F . Formally, we define S(F) ⊆ {0, 1}n × [m] by (x, i) ∈ S(F) if and only if Ci(x) = 0.
Thus, a sequence of unsatisfiable CNF formulas F = (Fn), where Fn has n variables, defines the
total search problem S(F) = (S(Fn)). Note that S(F) ∈ TFNPdt if Fn has width poly(log n).

In the other direction, a problem R = (Rn) in TFNPdt can be written equivalently as S(F) for
some sequence of CNF contradictions F = (Fn). Specifically, for Rn ⊆ {0, 1}n ×On we define the
formula Fn :=

∧
o∈On

¬To(x), where we note that To(x) can naturally be written as a DNF formula
of width at most poly(log n) (with one term per accepting leaf of To), and thus ¬To(x) can be
written as a CNF formula of the same width.

2.2 New characterisations

The above connection to proof complexity opens up the possibility to characterise search problem
classes by propositional proof systems, in the following sense: the problem (S(Fn))n lies in class X
if and only if the CNF formulas (Fn)n have small refutations in proof system Y . To make this more
precise, for any proof system P and a CNF formula F , we define

P(F) := min
P-proof Π of F

[
log size(Π) + deg(Π)

]
.

Here, deg(Π) should be understood as width when P is Resolution (or RevRes) and as depth when P
is tree-like Resolution. Prior work has established the following characterisations.

− FPdt(S(F)) = Θ(TreeRes(F)) [LNNW95].
− PLSdt(S(F)) = Θ(Res(F)) [BKT14].
− PPAdt(S(F)) = Θ(F2-NS(F)) [GKRS18].
− PPAdt

p (S(F)) = Θ(Fp-NS(F)) for every prime p [Kam20].

We contribute the following new characterisations. For one of them, we need to introduce one
more proof system, Reversible Resolution with Terminals (RevResT), defined in Section 6.3.

Theorem 3. For any unsatisfiable CNF formula F , we have:

− PPADdt(S(F)) = Θ(uNS(F)).

7

− PPADSdt(S(F)) = Θ(uSA(F)).
− SOPLdt(S(F)) = Θ(RevRes(F)).
− EOPLdt(S(F)) = Θ(RevResT(F)).

Together with our proof complexity separations from Section 1, we immediately obtain the
following black-box separations (which yield white-box oracle separations as discussed above).

Corollary 1. PLSdt ̸⊆ PPADSdt.

Corollary 2. SOPLdt ̸⊆ PPAdt.

Additional characterizations, as well as separation results, were obtained in the subsequent
works [HKT24, LPR24].

2.3 Two further separations

We show two more black-box separations involving classes PPPdt and UEOPLdt, which currently
lack elegant proof system characterisations. The first separation strengthens Corollary 1.

Theorem 4. PLSdt ̸⊆ PPPdt.

Theorem 5. EOPLdt ̸⊆ UEOPLdt.

(An early preprint of this work did not include the above theorems. In an independent work,
Bonacina and Thapen [BT22] also proved Theorem 4, deriving it from Corollary 1 using essentially
the same proof as we do.)

Theorem 4 settles the last open oracle separation question between the five original TFNP classes
introduced in [JPY88, Pap94]. This question was re-asked recently by Daskalakis in his Nevanlinna
Prize lecture [Das19, Open Question 6]. Previously, Buresh-Oppenheim and Morioka [BM04] showed
a partial result in the direction of Theorem 4, namely, that there is no reduction from PLSdt to PPPdt

that preserves the number of solutions in each instance. Finally, Theorem 5 answers a question
of [FGMS20] who introduced the class UEOPL. They conjectured that EOPL ̸⊆ UEOPL and asked
whether this could be shown relative to an oracle.

2.4 Intersection theorems in proof complexity

Our new characterisations can be combined with the collapses SOPL = PLS ∩ PPADS and EOPL =
PLS ∩ PPAD [GHJ+22] (which hold in the black-box model) to produce completely new types of
results in propositional proof complexity that we call intersection theorems.

Stated plainly, the first of these results says that a CNF formula F admits an efficient (small
degree and size) Reversible Resolution refutation if and only if if it admits an efficient Resolution
refutation and an efficient unary Sherali–Adams refutation. In other words, Reversible Resolution is
the “intersection” of Resolution and unary Sherali–Adams. We can similarly show that Reversible
Resolution with Terminals is the “intersection” of Resolution and unary Nullstellensatz.

Theorem 6. For any unsatisfiable CNF formula F , we have:

− RevRes(F) = Θ(Res(F) + uSA(F)).
− RevResT(F) = Θ(Res(F) + uNS(F)).

8

To our knowledge, these are the first theorems of their type, that is, showing that efficient
proofs exist in one system P0 if and only if efficient proofs exist in two other systems P1 and P2.
This is all the more striking given that all three of these proof systems are quite natural, being
motivated from boolean logic and SAT-solving (Res), linear programming (uSA), and MaxSAT
solving (RevRes). Moreover, the proof of this theorem (Section 7) crucially uses both perspectives
of proof systems and total search problems. Starting with propositional proofs in Resolution and
unary Sherali–Adams, we convert them to efficient formulations of S(F) in PLSdt and PPADSdt,
respectively. We then apply the collapse theorem to argue there is an efficient formulation of S(F)
in SOPLdt, which we can finally convert back to a RevRes proof. We see no apparent way to prove
this theorem directly using classic proof complexity techniques.

2.5 Open problems

In our opinion, exploring the interplay between TFNP and propositional proof complexity holds
untapped potential. The results in this work arose from our core belief that a natural concept
introduced in one theory should have a natural counterpart in another theory. This philosophy
suggests many further directions for research and serves as a guiding principle for formulating new
beautiful connections between the two theories. For example:

(1) Can Theorem 1 be strengthened to show that the Sum-of-Squares system needs huge coefficients
to simulate Resolution in low degree?

(2) Can we characterise the class PPP by a proof system?

(3) Does unary-NS p-simulate Z-NS for refuting CNF formulas?

(4) Can we prove other intersection theorems in propositional proof complexity?

(5) Do Sum-of-Squares and Polynomial Calculus characterise some TFNP classes?

(6) Are there communication complexity analogues of our results? The recent column [dRGR22]
surveys the connections between total search problems and characterisations of various circuit
models in the language of communication complexity (via Karchmer–Wigderson games).

We note here that Buss, Fleming and Impagliazzo [BFI22] have recently provided an answer to
question (5) by giving a TFNP characterization of Polynomial Calculus. In fact, they show a
more general connection: every well-behaved proof system which can prove its own soundness is
characterized by a TFNP problem, and vice-versa. This also answers question (2), although ideally
we would like to characterize PPP by a more natural proof system than the one obtained through
this generic connection.

3 Definitions

In this section we give formal definitions of the total search problems that we consider in this
work. We emphasise that unlike the standard uniform setting of TFNP, we will be interested in
non-uniform variants of TFNP classes defined by decision trees.

3.1 Decision tree TFNP

Definition 1. A total (query) search problem is a sequence of relations R = {Rn ⊆ {0, 1}n ×On},
where On are finite sets, such that for all x ∈ {0, 1}n there is an o ∈ On such that (x, o) ∈ Rn.
A total search problem R is in TFNPdt if for each o ∈ On there is a decision tree To with depth
poly(log n) such that for every x ∈ {0, 1}n, To(x) = 1 iff (x, o) ∈ R.

9

(a) Sink-of-Dag (SoD) (b) Sink-of-Line (SoL) (c) SoPL

Figure 3: Examples of total search problems. The distinguished source node is drawn as a yellow square.
Red nodes are associated with solutions. (For visual clarity, we highlight the actual sink nodes for SoD
rather than their predecessors.) Nodes circled in green would be solutions for EoL and EoPL, respectively.

While total search problems are formally defined as sequences R = (Rn), it will often make
sense to speak of an individual search problem Rn in the sequence. We will therefore slightly abuse
notation and also call Rn a total search problem. It will also be convenient to encode total search
problems with inputs and outputs chosen from domains other than {0, 1}n. One common example
will be total search problems where the inputs are chosen from [n]n. We can simulate this simply by
encoding all elements of the non-boolean domain in binary in the usual way. In all examples in this
paper, performing this encoding will change the complexities of the involved problems by no more
than a O(log n) factor. We also allow the n-th problem Rn in a sequence to have poly(n) input bits
(instead of n) for notational convenience.

The canonical examples of total search problems in TFNPdt are the search problems associated
with an unsatisfiable CNF formula F .

Definition 2. For any unsatisfiable CNF formula F := C1 ∧ · · · ∧ Cm over n variables, define
S(F) ⊆ {0, 1}n × [m] by (x, i) ∈ S(F) if and only if Ci(x) = 0.

Therefore, given any sequence of unsatisfiable CNF formulas F = {F1, F2, . . .} we get a total
search problem S(F) = {S(F1), S(F2), . . . } in the natural way. Observe that S(F) ∈ TFNPdt if each
unsatisfiable CNF formula has width poly(log n). Conversely, these examples are also complete, in
the sense that any search problem in TFNPdt can be re-encoded as unsatisfiable CNF formulas.

Definition 3. For any total search problem R ⊆ {0, 1}n ×O with solution verifiers To, o ∈ O, its
encoding as an unsatisfiable CNF formula is given by F :=

∧
o∈O ¬To(x) where we think of ¬To(x)

written as a CNF formula (of width determined by the decision tree depth of To).

3.2 Search problem zoo

We now define several search problems that will be of interest to us. See also Figure 3 for helpful
illustrations of some of them. We start with the problems that are complete for the classical classes
introduced in [JPY88, Pap94].

PPP: Pigeon (Pigeonn). This problem features n pigeons, denoted by [n], and as input we are
given, for each pigeon u ∈ [n] a hole su ∈ [n− 1]. The goal is to output

1. u, v ∈ [n], if u ̸= v and su = sv. (pigeon collision)

10

PPADS: Sink-of-Line (SoLn). This problem is defined on a set of n nodes, denoted by [n], where
the node 1 is “distinguished”. For input, we are given a successor su ∈ [n] for each node u ∈ [n]
and a predecessor pu ∈ [n] for each node u ̸= 1. Given this list of successor/predecessor pointers
we create a directed graph G where we add an edge (u, v) if and only if su = v and pv = u. We
say u is a proper sink if it has in-degree 1 and out-degree 0, and it is a proper source if it has
in-degree 0 and out-degree 1. The goal of the search problem is to output any of the following

1. 1, if 1 is not a proper source node in G, or (no distinguished source)

2. i ̸= 1, if i is a proper sink node in G. (proper sink)

PPAD: End-of-Line (EoLn). Same as SoL, except we add the following feasible solution.

3. i ̸= 1, if i is a proper source node in G. (proper source)

PLS: Sink-of-Dag (SoDn). This problem is defined on the [n] × [n] grid, where the node (1, 1)
is “distinguished”. As input, for each grid node u = (i, j) ∈ [n] × [n], we are given a successor
su ∈ [n] ∪ {null}, interpreted as naming a node (i + 1, su) on the next row. We say a node u is
active if su ≠ null, otherwise it is inactive. A node u is a proper sink if u is inactive but some
active node has u as a successor. The goal of the search problem is to output any of the following

1. (1, 1), if (1, 1) is inactive (inactive distinguished source)

2. (n, j), if (n, j) is active, (active sink)

3. (i, j) for i ≤ n− 1, if (i, j) is active and its successor is a proper sink. (proper sink)

For SoD, it is helpful to think of the successors su as describing a fan-out 1 dag on an n× n grid of
nodes such that all edges are between adjacent rows. Active nodes are those nodes which have some
edge leaving them. Then, if we require that (1, 1) is active and all nodes on row n are inactive, the
goal is to find a proper sink, that is, an active node with an inactive successor node.

We next define complete problems for the more modern classes introduced in [HY20, FGMS20,
GKRS18]. They are variations of the SoD problem where all nodes in the grid have predecessor
pointers and we only add an edge if the successor and predecessor pointers agree. In particular, this
implies that every node has fan-out and fan-in 1.

SOPL: Sink-of-Potential-Line (SoPLn). As input we are given a successor su ∈ [n] ∪ {null}
for each u ∈ [n] × [n] and a predecessor pu ∈ [n] ∪ {null} for each u ∈ {2, . . . , n} × [n]. A node
(i, j) ∈ [n− 1] × [n] is active if s(i,j) = k ̸= null and p(i+1,k) = j, otherwise it is inactive; a node
(i, j) ∈ {n} × [n] is active if s(i,j) ≠ null and inactive otherwise. A node u is a proper sink if u is
inactive but some active node has u as a successor. The goal is to output any of the following

1. (1, 1), if (1, 1) is inactive, (inactive distinguished source)

2. (n, j), if (n, j) is active, (active sink)

3. (i, j), if (i, j) is a proper sink. (proper sink)

EOPL: End-of-Potential-Line (EoPLn). Add the following feasible solutions to SoPL. A
node (i, j) is a proper source if (i, j) is active and, either, i = 1 or 1 < i < n and there is no
active node with (i, j) as a successor.

4. (i, j), if (i, j) ̸= (1, 1) and (i, j) is a proper source. (proper source)

UEOPL: Unique-EoPL (UEoPLn). Add the following feasible solution to EoPL.

5. (i, j) and (i, j′), if j ̸= j′ and both nodes are active. (two parallel lines)

11

3.3 Reductions and formulations

Given any problem defined above we can consider complexity classes of total search problems
obtained by taking reductions to these problems. In this work we are particularly interested in the
case where the reduction is defined by a low-depth decision tree.

Definition 4. Let R ⊆ {0, 1}n×O and S ⊆ {0, 1}m×O′ be total search problems. An S-formulation
of R is a decision-tree reduction (fi, go)i∈[m],o∈O′ from R to S. Formally, for each i ∈ [m] and o ∈ O′

there are functions fi : {0, 1}n → {0, 1} and go : {0, 1}n → O such that

(x, go(x)) ∈ R ⇐= (f(x), o) ∈ S

where f(x) ∈ {0, 1}m is the string whose i-th bit is fi(x). The depth of the reduction is

d := max
(
{D(fi) : i ∈ [m]} ∪ {D(go) : o ∈ O′}

)
,

where D(h) denotes the decision-tree depth of h. The size of the reduction is m, the number of
input bits to S. The complexity of the reduction is logm + d. We write Sdt(R) to denote the
minimum complexity of an S-formulation of R.

We extend these notations to sequences in the natural way. If R is a single search problem
and S = (Sm) is a sequence of search problems, then we denote by Sdt(R) the minimum of Sdt

m(R)
over all m. If R = (Rn) is also a sequence, then we denote by Sdt(R) the function n 7→ Sdt(Rn).

Using the previous definition we can now define complexity classes of total search problems via
reductions. For total search problems R = (Rn),S = (Sn), we write

Sdt := {R : Sdt(R) = poly(log n)}.

We can now define the decision-tree variants of the standard classes: PPPdt = Pigeondt, PPADSdt =
SoLdt, and so on, according to the problems defined in Section 3.2.

4 Reversible Resolution vs. Nullstellensatz

In this section we prove Theorem 2, restated below.

Theorem 2. There are n-variate CNF formulas F that can be refuted by constant-width polynomial-
size RevRes, but such that any F-NS refutation (over any F) of F requires degree nΩ(1).

We prove Theorem 2 in two ways. First (Sections 4.1 to 4.3), we give a particularly robust proof
in the special case F = R, which will be useful in Section 5 when we prove our other separation
result. Second (Section 4.4), we give a (non-robust) proof for all F using the intersection theorem.
In both proofs we consider the SoPL principle and show that it does not admit a low-degree NS
proof, and that it can be refuted in low-width small-size RevRes.

4.1 Approximate Nullstellensatz

We define a generalisation of R-NS that we call ϵ-approximate Nullstellensatz (ϵ-NS) where ϵ ∈ (0, 1)
is an error parameter. An ϵ-NS refutation of a set of real polynomial equations {ai(x) = 0 : i ∈ [m]}
is a set of polynomials {pi(x)} such that∑

i∈[m]

pi(x) · ai(x) = 1 ± ϵ, ∀x ∈ {0, 1}n (4)

12

where we recall that “= 1 ± ϵ” stands for “∈ [1 − ϵ, 1 + ϵ]”, meaning that the LHS is a polynomial
that takes values in [1 − ϵ, 1 + ϵ] when evaluated on boolean inputs. The ϵ-NS system is not a
standard proof system in the sense of Cook and Reckhow [CR79]. In particular, it is not hard to
show (using the PCP theorem) that testing the condition in (4) is in fact coNP-complete. Another
feature of the new system is that the error parameter can be efficiently reduced using standard
error reduction techniques for polynomial approximation. For example, if we compose any ϵ-NS
proof

∑
i piai = 1 ± ϵ with the univariate polynomial q(z) := z(2 − z), we obtain an ϵ2-NS proof

q(
∑

i piai) = 1 ± ϵ2.

4.2 Lower bound for ϵ-NS

Recall that the input to SoPLn consists of successor pointers su ∈ [n] ∪ {null} and predecessor
pointers pu ∈ [n] ∪ {null} for each grid node u ∈ [n] × [n]. For the purposes of NS, we encode this
input in binary by a string y ∈ {0, 1}n′

over n′ = O(n2 log n) variables. Moreover, we can think
of SoPLn as an unsatisfiable set of polynomial equations {ai(y) = 0} each of degree O(log n). These
equations can be obtained by taking the unsatisfiable CNF encoding of SoPLn (Definition 7) and
encoding each clause as the corresponding polynomial equation in the usual way.

Our goal is to prove the following lemma.

Lemma 1. Every 1
2 -NS refutation of SoPLn requires degree nΩ(1).

It suffices to prove the lemma for error ϵ := 0.01, because of efficient error reduction. Fix any ϵ-NS
refutation

∑
i pi(y)ai(y) = 1 ± ϵ of degree k for SoPLn. Our goal is to show a lower bound on k.

We will give a randomised decision-to-search reduction, in the style of [RW92, HN12, GP18, IR21],
showing that a low-degree ϵ-NS refutation would imply a low-degree approximating polynomial for
the (n− 1)-bit Or function. The following well-known fact then concludes the proof.

Fact 1 ([NS94]). Suppose that p is an n-variate real polynomial such that p(x) = Orn(x) ± 1/3 for
all x ∈ {0, 1}n. Then deg(p) ≥ Ω(

√
n).

Definition of reduction. We define a depth-d deterministic reduction as a pair (f, u) such that

(1) f : {0, 1}n−1 → {0, 1}n′
is a function that maps an input x of Orn−1 to an input y = f(x)

of SoPLn. Moreover, each output bit fi(x) ∈ {0, 1} is a depth-d decision tree function of x.

(2) For any input x, the only solutions of y = f(x) are active sinks on the last row {n} × [n]. We
write Sol(y) ⊆ {n} × [n] for the set of solutions in y. Moreover, u ∈ Sol(y) is a solution called
the planted solution. (Note that u does not depend on x.)

(3) If Or(x) = 0, then y = f(x) contains a unique solution, namely Sol(y) = {u}.

(4) If Or(x) = 1, then y = f(x) contains at least two solutions, |Sol(y)| ≥ 2.

We then define a depth-d randomised reduction R as a probability distribution over depth-d
deterministic reductions (f ,u) ∼ R. For every x, we write Rx for the distribution of (f(x),u) =
(y,u). We say that a pair (y,u) is ideal if it satisfies the following.

Ideal (y,u): Let y be any outcome of y and consider u conditioned on y = y, namely,
u′ := (u | y = y). Then u′ is uniformly distributed over Sol(y); in short, u′ ∼ Sol(y).

We say R is ideal if Rx is ideal for every x.

13

Ideal reduction ⇒ Approximation to Or. Next, we show that if we had an ideal reduction,
we could construct an approximating polynomial for Or. We write iu for the unique i such that the
polynomial equation ai(y) = 0 encodes the SoPLn constraint that u is not an active sink. Namely,
this corresponds to the equation su = 0, where the bit su ∈ {0, 1} of the input y encodes whether or
not u is active (see Definition 7). If we think of u ∈ {n} × [n] as encoded by an O(log n)-bit string,
we can define an [n′ + O(log n)]-variate polynomial

q(y, u) := piu(y)aiu(y) =
∑

i 1[i = iu]pi(y)ai(y). (5)

Here, for every i, the indicator function 1[i = iu] ∈ {0, 1} is computed by an O(log n)-degree
polynomial. This means q has degree deg(q) ≤ O(k log n). If (y,u) is ideal, then

E[q(y,u)] = Ey∼y

[
Eu′∼(u|y=y)[piu′ (y)aiu′ (y)]

]
= Ey∼y

[
Eu′∼Sol(y)[piu′ (y)aiu′ (y)]

]
= Ey∼y

[
|Sol(y)|−1

∑
u′∈Sol(y) piu′ (y)aiu′ (y)

]
= Ey∼y

[
|Sol(y)|−1

∑
i pi(y)ai(y)

]
= Ey∼y

[
|Sol(y)|−1] · (1 ± ϵ)

= (1 ± ϵ) · E
[
|Sol(y)|−1

]
(6)

where we used the fact that
∑

u′∈Sol(y) piu′ (y)aiu′ (y) =
∑

i pi(y)ai(y), because ai(y) = 0 for all

i /∈ {iu′ : u′ ∈ Sol(y)}, given that y satisfies all the SoPLn constraints, except the equations
requiring that u′ not be an active sink, for u′ ∈ Sol(y).

Suppose for a moment we had an ideal depth-d randomised reduction R. Then, we could
construct the polynomial

r(x) := ERx [q(y,u)] =
∑

f,u PrR[(f ,u) = (f, u)] · q(f(x), u).

We have deg(r) ≤ O(dk log n). Moreover, if Or(x) = 0 then r(x) = 1 ± ϵ; and if Or(x) = 1
then r(x) ∈ [0, (1 + ϵ)/2], since E

[
|Sol(y)|−1

]
∈ [0, 1/2]. Thus for ϵ = 0.01, if we consider

t(x) := 1 − r2(x) we get that t approximates Or to within error 1/3. Using Fact 1, we deduce that
k ≥ Ω(

√
n/(d log n)).

In summary, all that remains is to find an ideal reduction of shallow depth. Unfortunately, we
do not know how to design an ideal reduction for SoPL. We instead give a reduction that is locally
indistinguishable from an ideal one, which will suffice for us.

A locally ideal reduction. Consider the following depth-1 randomised reduction R; see Figure 4.

1. Let y = y(x) be the input to SoPLn that has a directed path running down the first column
of nodes, starting at distinguished node (1, 1) and terminating at the active sink u := (n, 1)
(say u is made active by being assigned 1 as successor). Moreover, we activate a path in y
down column i ≥ 2 iff xi−1 = 1. Note that y is a depth-1 decision tree function of x, and u
does not depend on x at all.

2. Let y = y(x) be obtained from y so that, for each row except the first, i ∈ [n] \ {1}, randomly
permute the nodes {i} × [n] on that row (updating the successor/predecessor pointers). Let u
be the sink node that u is mapped to.

3. Output (f ,u) where f(x) := y(x).

14

x1 =1 x2 =0 x3 =1

u

(a) Input y(x).

x1 =1 x2 =0 x3 =1

u

(b) Input y(x).

Figure 4: Randomised reduction R. First, we compute y(x) deterministically from x. This input always
contains a path down the left-most column, which terminates at the active sink u (planted solution). Moreover,
for every i with xi = 1 there is a path down the (i+1)-st column. The number of active sinks is |Sol(y)| = 1+|x|,
where |x| denotes the Hamming weight. In the second step, we randomly permute every row of nodes, except
the first one. This yields the random output (y,u) of the reduction.

It is easy to check that R satisfies items (1)–(4) for every outcome of randomness. In particular,
we have |Sol(y)| = 1 + |x|. Unfortunately, R is not ideal: u is always the active sink at the end
of the path starting at the distinguished node. What we would really like instead is that Rx was
distributed as the ideal pair (y,u) ∼ Ix defined by the following procedure: Sample (y,u′) ∼ Rx;
define u such that for every outcome y, (u | y = y) ∼ Sol(y); and output (y,u).

Define two functions {0, 1}n−1 → R by

r(x) := ERx [q(y,u)], (7)

r′(x) := EIx [q(y,u)]. (8)

We know that r has low degree as a polynomial, deg(r) ≤ O(k log n), and r′ has the ideal output
behaviour, r′(x) = (1 ± ϵ) · E

[
|Sol(f(x))|−1

]
by (6). The following claim shows that, in fact, r = r′,

and hence we can get the best of both worlds. By the discussion above, we are then able to construct
an O(k log n)-degree approximating polynomial for Or, which concludes the proof of Lemma 1.

Claim 1. We have r(x) = r′(x) for all x ∈ {0, 1}n−1.

Proof. By linearity of expectation, it suffices to show ERx [m(y,u)] = EIx [m(y,u)] for any mono-
mial m of q and every x. Fix a monomial m. We claim that Rx and Ix have the same marginal
distribution over the variables read by m, which would prove the claim. We may assume that
deg(m) ≤ O(k log n) ≤ o(n) because otherwise Lemma 1 is proved. Hence there exist two consecutive
rows i, i + 1 ∈ [n/3, 2n/3] such that m does not read any variables associated with either row.
Starting with a sample (y,u) ∼ Rx we can generate a sample from Ix as follows: Consider active
nodes A ⊆ {i}× [n] and B ⊆ {i+ 1}× [n] on rows i and i+ 1 in y and the |A| = |B| = 1 + |x| many
directed edges joining them (defined by successor pointers for row i and predecessor pointers for
row i + 1). Reroute these edges by choosing a random bijection A → B, and denote the resulting
input by y′. Then (y′,u) ∼ Ix. This proves our claim about the marginals, since our modification
to the input y was done outside the variables read by m.

15

4.3 Upper bound for RevRes

Our characterisation of SOPLdt by RevRes in Section 6.3 involves proving that SoPLn (understood as
an O(log n)-width CNF contradiction) admits an O(log n)-width polynomial-size RevRes refutation
(Theorem 10). If we want to further optimise this down to a constant-width polynomial-size RevRes
refutation, as claimed by Theorem 2, then we can consider instead a sparse constant-width variant
of SoPLn. Indeed, the following sparsifying construction is standard and so we only sketch it.

We start by defining a bounded-degree dag G that models the connectivity structure of the [n]×[n]
grid with successor/predecessor pointers. The nodes of G include all the grid nodes [n]×[n]. Moreover,
for each u ∈ [n− 1] × [n] we include in G a successor tree Su that is a full binary tree with n leaves,
and has edges directed from the root towards the leaves. Similarly, for each u ∈ ([n] \ {1}) × [n]
we include in G a predecessor tree Pu whose edges are directed from leaves towards the root. We
identify the root nodes of Su and Pu with u. Moreover, for grid nodes (i, j) and (i + 1, k) appearing
on consecutive rows, we identify the k-th leaf of S(i,j) and the j-th leaf of P(i+1,k). This completes
the description of G. Note that the in/out-degree of every node is at most 2.

We can now define a search problem SoPLG relative to G. As input, each node u in G gets
a successor su and a predecessor pu picked from {0, 1} ∪ {null}. For example, su = 0 (su = 1)
means that u’s successor is the left (right) child of u in G. The constraints of SoPLG can now be
written in constant width. The RevRes upper bound in Theorem 10 can be adapted to yield a
constant-width polynomial-size refutation of SoPLG. Moreover, the original grid version SoPLn

can be reduced to the graph version SoPLG using an O(log n)-depth decision tree reduction; see,
for example, [FGGR22, §4.2] for details (but for SoD instead of SoPL). The existence of this
reduction implies that SoPLG needs large ϵ-NS degree, because we showed that SoPLn does.

This concludes the proof of Theorem 2 in case F = R.

4.4 Lower bound for F-NS

We now prove the lower bound in Theorem 2 for any field F.

Lemma 2. F-NS(SoPLn) ≥ nΩ(1).

Proof. Prior work has shown that SoDn (understood as an O(log n)-CNF) requires nΩ(1)-degree
F-NS refutations [Bus98, BCIP02, dRNMR19], and similarly that SoLn (undestood as an O(log n)-
CNF) requires nΩ(1)-degree F-NS refutations [BCE+98, BR98]. Define the CNF formula

Fn := SoDn ∧ SoLn

where SoDn and SoLn are defined on disjoint sets of variables. The following claim (proved below)
states that Fn requires nΩ(1)-degree F-NS refutations, or, in other words, F-NS(Fn) ≥ nΩ(1).

Claim 2. Let F and G be two CNF contradictions over disjoint sets of variables. If F and G
require F-NS refutations of degree ≥ d, then F ∧G requires F-NS refutations of degree ≥ d.

By the definition of Fn, we have

Θ(Res(Fn)) = PLSdt(S(Fn)) = SoDdt(S(Fn)) ≤ O(log n),

Θ(uSA(Fn)) = PPADSdt(S(Fn)) = SoLdt(S(Fn)) ≤ O(log n).

By the intersection theorem (Theorem 6) corresponding to SOPL = PLS ∩ PPADS we conclude that
S(Fn) has an efficient SoPL-formulation:

Θ(RevRes(Fn)) = SOPLdt(S(Fn)) = SoPLdt(S(Fn)) ≤ O(log n).

16

If we had F-NS(SoPLn) ≤ no(1), then because S(Fn) reduces to SoPLnO(1) via an O(log n)-depth
decision tree reduction, we would have F-NS(Fn) ≤ no(1), which is a contradiction.

Proof of Claim 2. The least degree of an F-NS refutation of a set of polynomial equations F :=
{ai(x) = 0} can be characterised by the maximum d such that F admits a d-design [Bus98, §2],
that is, an F-linear map φ : F[x] → F satisfying (i) φ(1) = 1, and (ii) φ(q(x) · ai(x)) = 0 for all ai
and q ∈ F[x] such that deg(q) + deg(ai) < d. Let φ and φ′ be d-designs for F and G (encoded as
sets of polynomial equations) over variables x and y, respectively. For each monomial m(x)m′(y)
in variables x, y, we define Φ(m(x)m′(y)) := φ(m(x)) · φ(m′(y)). We can extend this definition
linearly into a map Φ: F[x, y] → F. We claim that Φ is a d-design for F ∧ G. Indeed, for (i)
we have Φ(1) = φ(1)φ′(1) = 1. For (ii) it suffices to check the condition for each monomial
q(x, y) = m(x)m′(y) and an axiom ai(x) of F (the case of G is analogous) with deg(q) + deg(ai) < d.
We have Φ(m(x)m′(y) · ai(x)) = φ(m(x) · ai(x))φ′(m′(y)) = 0 · φ′(m′(y)) = 0.

5 Resolution vs. Sherali–Adams

In this section we prove Theorem 1, restated below.

Theorem 1. There are n-variate CNF formulas F that can be refuted by constant-width Resolution,
but such that any SA refutation of F in degree no(1) requires coefficients of magnitude exp(nΩ(1)).

We consider the SoD principle. We first show that it requires large coefficients to refute in
low-degree SA, and then we recall why it has low-width Resolution refutations.

5.1 Lower bound for SA

We consider the SoDn2 search problem on the grid [n2] × [n2]. We think of this large grid as being
further subdivided into n2 many subgrids, each of size n× n. The (i, j)-subgrid consists of nodes

((i− 1)n, (j − 1)n) + [n] × [n] :=
{

((i− 1)n + i′, (j − 1)n + j′) : (i′, j′) ∈ [n] × [n]
}
.

Recall that the input to this search problem consists of a successor su ∈ [n2] ∪ {null} for each grid
node u. For the purposes of SA, we encode this input by a string x ∈ {0, 1}n′

over n′ = O(n4 log n)
variables. Moreover, we can think of SoDn2 as a set of unsatisfiable polynomial equations {ai(x) = 0}
each of degree O(log n). Our goal is to prove the following lemma.

Lemma 3. Any degree-no(1) SA proof of SoDn2 requires coefficients of magnitude exp(Ω(n)).

Suppose we are given a degree-no(1) SA refutation of SoDn2 over the reals,∑
i∈[m]

pi(x)ai(x) = 1 + J(x). (9)

Our idea is to apply Lemma 1 iteratively in stages to find a sequence of inputs x1, . . . , xn with
a RHS value 1 + J(xi) ≥ 2Ω(i). Hence Lemma 3 follows at stage i = n, since there are at most
exp(no(1)) many monomials, and so one of them must have a coefficient of exponential magnitude.

We start by preprocessing the SA refutation (9) for technical convenience. We may assume wlog
that each term t appearing in J =

∑
t αtt satisfies the following.

1. t is node-aligned : if t reads some variable associated with a node u, then it reads all the O(log n)
variables associated with u. To ensure this, we may replace a term t with an equivalent sum
of two terms, t = txi + tx̄i, which reads one more variable. Adding more literals to terms like
this will only increase the degree of the proof by an O(log n) factor.

17

(a) Input x1. (b) Input xn.

Figure 5: Illustration of the proof of Lemma 3. (a) In the first stage, we construct an input x1 to SoDn2

that embeds an input y1 to SoPLn in the top-left (1, 1)-subgrid, and moreover, all the active sinks of y1 are
assigned as successor the top-left corner of some (2, j)-subgrid. (b) The completed construction after n stages.

2. t is curious: if t reads a node u that lies on the last row of a subgrid, that is, u ∈ {in} × [n2]
for some i ∈ [n], then t also reads the successor su of u (if any) on the next row. Similarly as
above, this can be ensured by at most doubling the degree of the proof.

3. t is non-witnessing : it does not witness a solution to the search problem. Formally, t witnesses
a violation ai ̸= 0 if for all x, t(x) = 1 ⇒ ai(x) ̸= 0 (or contrapositively, ai(x) = 0 ⇒ t(x) = 0).
To ensure this, if t is witnessing, we can factor2 t = p′iai and move t to the LHS of the proof.

First stage. Let y1 be an input to SoPLn defined on nodes [n] × [n]. We can embed y1 inside an
input to SoDn2 as follows. We write (null∗ � y1) for the input to SoDn2 where we start with an
assignment of null to all nodes [n2]×[n2] (denoted null∗), and then overwrite the top-left (1, 1)-subgrid
with the successor pointers in y1 (aligning the distinguished nodes of SoDn2 and SoPLn). In this
reduction, we can forget the predecessor pointers, as they are not part of the input to SoD. Now
every solution of (null∗ � y1) for SoDn2 corresponds naturally to a solution of y1 for SoPLn. (A
minor detail is that the active sinks in y1 correspond to proper sinks in (null∗ � y1).) Using this
reduction, we can view our SA refutation of SoDn2 also as a refutation of SoPLn.

We claim that there is some input y1 to SoPLn such that for x′1 := (null∗ � y1) we have a RHS
value 1 + J(x′1) ≥ 1.5. Suppose not: then the RHS is always in [1, 1.5] for all y1, which means we
have a low-degree 1

2 -NS proof of SoPLn. But this contradicts Lemma 1.
We have now found an input x′1 = (null∗ � y1) with RHS at least 1.5. Before we iterate this

argument in the second stage, we have to clean up x′1 slightly.

2The existence of such a factorization is easy to see here since both ai and t are conjunctions of literals. More
generally, the existence of such a factorization is guaranteed for any multilinear polynomials ai and t satisfying
ai(x) = 0 ⇒ t(x) = 0 on the boolean hypercube, where we simplify expressions using the constraints x2

i − xi = 0. One
way to prove this is by using the fact that two multilinear polynomials are syntactically identical if and only if they
agree on the boolean hypercube.

18

First stage: Clean-up. Recall that the instances considered in the proof of Lemma 1 consist
of some number of directed paths that terminate at sinks Sol(y1) ⊆ {n} × [n]. We will modify x′1
by making the nodes Sol(y1) point to the same top-left corner of a (2, j)-subgrid for some j ∈ [n].
Indeed, let ρj : Sol(y1) → [n2] be the partial assignment that assigns (n, (j − 1)n) + (1, 1) (top-left
corner of the (2, j)-subgrid) as the successor of all nodes in Sol(y1). Let (x′1 � ρj) be the input
obtained from x′1 by applying ρj . (We actually have x′1 = x′1 � ρ1, as this is how we decided to make
every node in Sol(y1) an active sink in y1.) By defining x1 := (x′1 � ρj) for a carefully chosen j ∈ [n]
(see Figure 5a), we establish the following properties for the start of the next stage.

(1a) The only solutions in x1 are proper sinks pointing to the corner of the (2, j)-subgrid.

(1b) We have 1 + J(x1 � y2) ≥ 1.4 for any partial assignment y2 to nodes in the (2, j)-subgrid.

Property (1a) is true by construction and we prove property (1b) below.

Claim 3. There exists a j ∈ [n] such that (1b) holds.

Proof. Let us first prove that for every term t appearing in J =
∑

t αtt, we have

t(x′1) = t(x′1 � ρj) ∀j. (10)

It suffices to show that any term t in J with t(x′1) = 1 (or t(x′1 � ρj) = 1) does not read any nodes
in Sol(y1). Assume for contradiction that such a t reads a node u ∈ Sol(y1). Then, because t is
curious, it also reads u’s successor node (note that su ≠ null in both x′1 and x′1 � ρj) on the next row.
This successor node is set to null in x′1 (and (x′1 � ρj)) and hence t witnesses that u is a solution
(proper sink). But this contradicts our assumption that t is non-witnessing. This proves (10).

Define Jj :=
∑

t∈Tj
αtt where Tj is the set of terms t in J that do not read any node from

the (2, j)-subgrid. Note that each t can read from at most deg(t) ≤ no(1) many different subgrids,
and hence if we choose j ∼ [n] at random, Pr[t ∈ Tj] ≥ 99%. We now have

E[1 + Jj(x′1)] = 1 +
∑

t Pr[t ∈ Tj]αtt(x
′
1) ≥ 99% · (1 + J(x′1)) ≥ 99% · 1.5 ≥ 1.4.

By averaging, there is some fixed j ∈ [n] such that 1 + Jj(x
′
1) ≥ 1.4. Defining x1 := (x′1 � ρj) for

this particular j, we have, for every assignment y2 to the (2, j)-subgrid,

1 + J(x1 � y2) ≥ 1 + Jj(x1 � y2) = 1 + Jj(x1)
(10)
= 1 + Jj(x

′
1) ≥ 1.4.

Second stage. Here we start with the input x1 satisfying (1a)–(1b) for some j ∈ [n]. Let y2 be any
input to SoPLn. We think of y2 (ignoring predecessor pointers) as embedded in the (2, j)-subgrid.
Consider the input (x1 � y2) where the distinguished node of y2 is aligned with corner of the
(2, j)-subgrid, which is the only sink in x1 by (1a). Then every solution of (x1 � y2) for SoDn2

corresponds to a solution of y2 for SoPLn. Hence we can view our SA refutation of SoDn2 as a
refutation of SoPLn (this time in the (2, j)-subgrid). Moreover, we have from (1b) that the RHS
of the proof evaluates to 1 + J(x1 � y2) ≥ 1.4 for all y2. If we scale our original SA proof by a
factor 1/1.4, we get another polynomial identity

1

1.4

∑
i∈[m]

pi(x)ai(x) =
1

1.4
(1 + J(x)), (11)

where the RHS evaluates to at least 1 on any input of the form x = (x1 � y2). Using Lemma 1 we
can now conclude that there must exist an input x′2 = (x1 � y2) such that 1

1.4(1 + J(x′2)) ≥ 1.5, or
equivalently, 1 + J(x′2) ≥ 1.5 · 1.4.

19

Second stage: Clean-up. Using exactly the same argument as in the first clean-up stage, we
conclude that x′2 can be cleaned up into x2 such that for some j ∈ [n] (different j than in first stage):

(2a) The only solutions in x2 are proper sinks pointing to the corner of the (3, j)-subgrid.

(2b) We have 1 + J(x2 � y3) ≥ 1.42 for any partial assignment y3 to nodes in the (3, j)-subgrid.

By continuing this argument in the same fashion, we can eventually, at stage n, find an input xn
with 1 + J(xn) ≥ 1.4n (see Figure 5b). This concludes the proof of Lemma 3.

5.2 Upper bound for Resolution

It is well-known that SoDn (understood as an O(log n)-width CNF contradiction) admits an O(log n)-
width Resolution refutation (e.g., [Kam20, Theorem 8.18]). If we want to further optimise this down
to a constant-width refutation, as claimed by Theorem 1, then we can consider a sparse variant
of SoDn similarly as we did in Section 4.3. We omit the details.

6 Proofs of Characterisations

In this section we prove Theorem 3, restated below.

Theorem 3. For any unsatisfiable CNF formula F , we have:

− PPADdt(S(F)) = Θ(uNS(F)).
− PPADSdt(S(F)) = Θ(uSA(F)).
− SOPLdt(S(F)) = Θ(RevRes(F)).
− EOPLdt(S(F)) = Θ(RevResT(F)).

Recall that the notation Adt(B) for total search problems A,B is the minimum complexity
(namely, log size + depth) of an A-formulation of B. Similarly, for a proof system P and CNF
formula F the notation P(F) is the minimum of log size(Π) + deg(Π) where Π is a P-proof of F .

6.1 Unary Nullstellensatz and PPAD

We first argue that unary Nullstellensatz corresponds to the decision tree class PPADdt.

Theorem 7. Let F be an unsatisfiable CNF formula. Then,

− If F has a degree-d size-L uNS proof, then S(F) has a depth-O(d) EoLO(L)-formulation.

− If S(F) has a depth-d EoLL-formulation, then F has a degree-O(d) size-L2O(d) uNS proof.

In particular, PPADdt(S(F)) = Θ(uNS(F)).

Corollary 3. For any sequence Fn of poly(log n)-width CNF formulas, Fn has a degree-poly(log n),
size-npoly(logn) unary Nullstellensatz proof if and only if S(F) ∈ PPADdt.

We prove Theorem 7 in the next two lemmas. The proof of this theorem is itself modelled on a
similar characterization of PPA-formulations by F2-Nullstellensatz, proved by [BCE+98, GKRS18].
It turns out to be easier to show that EoL-formulations imply Nullstellensatz proofs, so we do that
first. Furthermore, we will assume that all of our Nullstellensatz proofs are multilinearized : that is,
we work modulo the x2i − xi = 0 equations, and so the individual degree of any variable in the proof
is at most 1. It is well-known that making this assumption will not change the degree or size of the
proof by more than a constant factor [Bus98].

20

Lemma 4. Let F be an unsatisfiable CNF formula. If there is a depth-d EoLL-formulation of S(F)
then there is a unary Nullstellensatz refutation of F with degree O(d) and size L2O(d).

Proof. Suppose F := C1 ∧ · · · ∧ Cm is on n variables x1, . . . , xn, and let Ci be the negation of
Ci represented as a polynomial. Assume that there is a depth-d EoLL-formulation of S(F). Let
V := [L] be the set of nodes in the EoL formulation and let v∗ = 1 denote the distinguished source
node. Each node v ∈ V is equipped with successor and predecessor functions sv, pv : {0, 1}n → V ,
respectively, each computed by decision trees of depth at most d, as well as a solution decision
tree gv : {0, 1}n → [m] that outputs a corresponding solution of S(F). For any input assignment
x ∈ {0, 1}n let Gx denote the directed graph obtained by evaluating all the successor and predecessor
decision trees on input x and adding an edge (u, v) iff su(x) = v and pv(x) = u.

For each v ∈ V define the function Sv : {0, 1}n → {−1, 0, 1} by

Sv(x) :=

−1 if v ̸= v∗ is a source in Gx

1 if v ̸= v∗ is a proper sink in Gx or v = v∗ and v∗ is not a source

0 otherwise.

We compute Sv for each node v by a depth at most 5d decision tree as follows. First, we compute
sv(x) = u and pv(x) = w, and then compute pu(x) and sw(x). From this information we can
determine the output value of Sv, and we have used at most 4d queries. If Sv = 0 then the leaf of
the decision tree is labelled with 0. Otherwise, if Sv ̸= 0 then v is a solution to EoL, and so in this
case we will also run the decision tree for gv and label each leaf with either 1 or −1 according to the
output value of Sv. Overall this requires at most 5d queries.

Now, for any leaf ℓ in the decision tree for Sv let Dℓ denote the polynomial representation of the
conjunction of literals on the path from the root of the tree to ℓ. Observe that we can represent

Sv =
∑

(−1)-leaf ℓ

−Dℓ +
∑

1-leaf ℓ

Dℓ,

where the first sum is over leaves of Sv labelled with −1 and the second is over leaves of Sv labelled
with 1. If ℓ is a non-zero leaf then v is a solution to the EoL instance, so let Cℓ denote the solution
of S(F) output by the decision tree gv at this leaf. Observe that at every non-zero leaf ℓ, the clause
Cℓ must be falsified by the assignment on the path to ℓ, since Cℓ is a solution to S(F) by the
correctness of the EoL formulation and by the fact that we ran the gv decision tree in Sv. This
implies that for each non-zero leaf ℓ of Sv we can write Dℓ = D′

ℓCℓ, and thus

Sv =
∑

(−1)-leaf ℓ

−Dℓ +
∑

1-leaf ℓ

Dℓ =
∑

(−1)-leaf ℓ

−D′
ℓCℓ +

∑
1-leaf ℓ

D′
ℓCℓ.

If we sum up these polynomials for each v ∈ V and gather terms then∑
v∈V

Sv =
m∑
i=1

piCi

for some polynomials pi. Note that each polynomial has degree at most 5d since they are obtained
from the underlying Sv decision trees.

To see that
∑m

i=1 piCi is a unary Nullstellensatz refutation of F , observe that since each Sv

came from an EoL formulation we have

m∑
i=1

pi(x)Ci(x) =
∑
v∈V

Sv(x) = (# sinks in Gx) − (# non-distinguished sources in Gx) = 1

21

v∗

V1 V2 V3

Figure 6: High level illustration of the EoL instance constructed in the proof of Lemma 5. Edges of the
outer matching are shown in black, while those from the inner matching are in blue. In this example, the
clause corresponding to V3 is not satisfied by assignment x and as a result no internal edges are added in V3.
Note that EoL solutions indeed only occur in V3.

for any input x ∈ {0, 1}n. Finally, we observe that all coefficients used in this proof are integers,
and the number of distinct monomials produced is at most |V |2O(d) = L2O(d) from expanding the
depth-d decision trees as polynomials.

The more difficult direction is the converse, proved next.

Lemma 5. Let F be an unsatisfiable CNF formula. If there is a unary Nullstellensatz refutation of
F with degree d and size L then there is a depth-O(d) EoLO(L)-formulation of S(F).

Proof. Let F = C1 ∧ · · · ∧ Cm and consider a degree-d, size-L unary Nullstellensatz refutation of F ,
which we write as

m∑
i=1

piCi = 1

where each pi is a multilinear polynomial over x1, . . . , xn and all coefficients are integers.
To build the EoL formulation, we expand the above proof out into its constituent monomials

with multiplicity. That is, for each i ∈ [m] write the polynomial

piCi =
∑
j

ci,jqi,j

where ci,j ∈ Z and qi,j is a monomial obtained by expanding the polynomial directly and performing
all necessary cancellations. Each node in our EoL formulation will represent one of the above
monomials qi,j and is considered a “+” or a “−” node, depending on that monomial’s sign. In
total, we create m + 1 sets of nodes V ∗, V1, . . . Vm, defined as follows. The set V ∗ only contains the
distinguished source node v∗, which we consider as a “−” node. For each i ∈ [m] the set Vi contains
a node for each monomial qi,j from the above expansion with multiplicity. So, in particular, we add
|ci,j | copies of the monomial qi,j to Vi for each monomial qi,j in the above expansion. Let V denote
the set of all nodes produced by this construction. For every node v ∈ V , the decision tree for gv
will query no variables and output Ci if v ∈ Vi and an arbitrary clause if v = v∗; our construction
will explicitly prevent the source node v∗ from being a solution.

Now, we must describe the successor and predecessor decision trees sv, pv at each node. It will
be easier to describe the possible edges in Gx on an input x ∈ {0, 1}n; all of the edges are organized
into two different matchings as detailed next. See Figure 6 for a high-level illustration.

22

Outer Matching. In this matching we add edges between nodes in different node groups. All
directed edges will be oriented from “−” nodes to “+” nodes. Since the polynomials form a
Nullstellensatz refutation over Z, we know that each time the monomial q appears with a “+”
sign, it must also appear with a “−” sign, except for the single 1 term. Thus by treating the
distinguished source v∗ as “−1”, we can create a perfect matching M on the nodes of V where
all matched nodes are between a “+” and a “−” node standing for the same monomial. Since
we have gathered terms within the expansions piCi, all occurrences of monomials q within a
set Vi have the same sign, and thus all the edges in this matching will be between nodes in
different sets. Formally, in the EoL formulation, for each edge e = (u, v) in M corresponding to
a monomial q, we add a directed edge from the “−” to the “+” node if and only if q(x) = 1.
This condition can be determined by su and pv by querying the variables occurring in q.

Inner Matching. In this matching we add directed edges from “+” nodes to “−” nodes within
the same node group. Consider any set Vi. Formally, at each node occurring in the group Vi, we
query all variables of the corresponding clause Ci in both the successor and predecessor functions
for that node. For any x ∈ {0, 1}n, if Ci(x) = 1 then Ci = 0 and thus pi(x)Ci(x) = 0. This
means that under the partial restriction ρ consistent with x at the variables of Ci, all monomials
remaining in piCi ↾ ρ must cancel. We can therefore fix a perfect matching between the negative
and positive instances of monomials in Vi under ρ, representing the cancellation of monomials
under ρ. Then, each edge of this matching is included in the graph if and only if the monomials
corresponding to its endpoints evaluate to 1 at x (note that the two endpoints will both evaluate
to the same value, since they are matched under ρ). On the other hand, if Ci(x) = 0 then we
will simply not add any edges to the internal matching of Vi.

Let x ∈ {0, 1}n be any assignment to the variables of F . The edges of any node v ∈ Vi associated
with a monomial q are determined by querying the variables of Ci and q. This implies that the
depth of each decision tree Tv is at most d, and the size is clearly O(L) since every monomial in the
proof is represented as a node.

We now verify correctness of the EoL formulation. Since it is well-defined, on every input x the
graph Gx will have a solution. Let v be such a solution (either a sink or proper source node) in
Gx. By construction, v ̸= v∗ since the node v∗ is always a source node. This implies that v ∈ Vi for
some i ∈ [m], and so v must be associated with a monomial q. By the construction of the inner and
outer matching, v can only be a source or sink node in Vi if the inner matching is empty. But this
can only happen if Ci(x) = 0, and thus Ci is a valid solution to S(F).

6.2 Unary Sherali–Adams and PPADS

We now show that low-degree unary Sherali–Adams proofs characterise PPADSdt. The proof of this
fact follows the proof from the previous section quite closely, but requires some extra work to handle
the extra conical junta terms.

Theorem 8. Let F be an unsatisfiable CNF formula. Then,

− If F has a degree-d, size-L unary Sherali–Adams proof, then S(F) has a depth-O(d) SoLO(L)-
formulation.

− If S(F) has a depth-d SoLL-formulation, then F has a degree-O(d), size-L2O(d) unary Sherali–
Adams proof.

In particular, PPADSdt(S(F)) = Θ(uSA(F)).

23

Corollary 4. For any sequence F of poly(log n)-width CNF formulas, F has a poly(log n)-degree,
npoly(logn)-size unary Sherali–Adams proof if and only if S(F) ∈ PPADSdt.

Before we prove the theorem, it will be convenient to have the following simple normal form
for Sherali–Adams proofs. Just like in the previous section we will assume that all Sherali–Adams
proofs are multilinearized, and it is known that this assumption does not change the degree or size
of the proof by more than a constant factor [FKP19].

Lemma 6. Let F be an unsatisfiable CNF formula. If
∑m

i=1 piCi = 1 +J is a unary Sherali–Adams
refutation of F with degree d and size L, then there is a degree-d, size-L unary Sherali–Adams
refutation of F of the form

∑m
i=1 JiCi = 1 + J0 where Ji is a conical junta for each i = 0, 1, . . . ,m.

Proof. For each i ∈ [m] we can expand pi =
∑

j ci,jqi,j where ci,j are integers and qi,j are monomials.
Each monomial qi,j is a conjunction, so the expressions

J−
i =

∑
j:ci,j<0

|ci,j |qi,j , J+
i =

∑
j:ci,j>0

ci,jqi,j

are conical juntas for each i ∈ [m]. Writing pi = J+
i − J−

i , substituting into the Sherali–Adams
refutation, and rearranging completes the proof.

We now begin the proof of Theorem 8. As before we split the proof into two lemmas, one for
each direction of the characterisation. The easier direction is again that an SoL-formulation implies
a unary Sherali–Adams proof, and it almost exactly follows the proof of Lemma 4.

Lemma 7. Let F be an unsatisfiable CNF formula. If there is a depth-d SoLL-formulation of S(F)
then there is a unary Sherali–Adams refutation of F with degree O(d) and size L2O(d).

Proof. The proof of this lemma is essentially the same as the proof of Lemma 4, so we will simply
sketch it and note what needs to be modified. Suppose F := C1∧· · ·∧Cm and let Ci be the negation
of Ci represented as a polynomial. We have an SoL-formulation for S(F), and so we have decision
trees computing successors sv and predecessors pv for each of the nodes v ∈ V . As in the proof of
Lemma 4, for each v ∈ V we define a depth at most 5d decision tree Sv, defined by

Sv(x) =

1 if v ̸= v∗ is a source in Gx

−1 if either v is a proper sink in Gx or if v = v∗ and v∗ is not a source

0 otherwise,

where we note that we have switched the “−1” and the “+1” in the definition of Sv when compared
to Lemma 4. As before, Sv(x) can be determined by first running the decision trees for sv(x) = u
and pv(x) = w, then the decision trees for pu(x), sw(x), and finally the decision tree for gv(x) if the
node v is a solution to SoL. From this, we can again represent

Sv =
∑

(−1)-leaf ℓ

−Dℓ +
∑

1-leaf ℓ

Dℓ,

where the first sum is over leaves of Sv labelled with −1 and the second is over leaves of Sv labelled
with 1. However, now a node v is only a solution to SoL if Sv(x) = −1, and so for each (−1)-leaf ℓ
of Sv we can write Dℓ = D′

ℓ · Cℓ where Cℓ is the clause of F falsified at that leaf. This allows us to
write

Sv =
∑

(−1)-leaf ℓ

−Dℓ +
∑

1-leaf ℓ

Dℓ =
∑

(−1)-leaf ℓ

−D′
ℓ · Cv +

∑
1-leaf ℓ

Dℓ.

24

If we sum up these polynomials for each v ∈ V and gather terms we get

∑
v∈V

Sv =
m∑
i=1

−JiCi + J0

for some degree-O(d) conical juntas J0, J1, . . . , Jm. As in the proof of Lemma 4 we have that∑
v Sv(x) = −1 and the size and degree calculations are identical.

The proof of the converse direction is also similar to the proof of Lemma 5, but requires some
more substantial modification when compared to the previous proof. The main issue is how to
handle the extra conical junta terms J0 in the unary Sherali–Adams refutation. As in the proof of
Lemma 5, we will create a graph representing all the monomials in the unary Sherali–Adams proof.
However, we will do some extra work to ensure that the nodes corresponding to monomials from
the conical junta term J0 will always be source nodes. This ensures that any solutions will occur at
nodes corresponding to some falsified clause in the formula.

Lemma 8. Let F be an unsatisfiable CNF formula. If there is a unary Sherali–Adams refutation of
F with degree d and size L then there is a degree-O(d) SoLO(L)-formulation of S(F).

Proof. Suppose F := C1 ∧ · · · ∧Cm is on n variables and consider a unary Sherali–Adams refutation

m∑
i=1

−JiCi + J0 = −1

of F where each Ji for i = 0, 1, . . . ,m are integral conical juntas. For notational convenience, we
will let C0 := −1 and we will expand each conical junta Ji as a non-negative sum of conjunctions.
While this notation is somewhat unusual, it allows us to write the refutation in a uniform way as

m∑
i=1

−JiCi + J0 =
m∑
i=0

ti∑
j=1

−λi,jDi,jCi = −1

where ti is a non-negative integer, λi,j is a positive integer, and Di,j is a conjunction for every i, j.
To build the SoL formulation, we expand the above proof out into its constituent monomials

with multiplicity. As in the proof of Lemma 5, each node in our SoL formulation will represent a
monomial in the proof and is either a “+” or a “−” node, depending on that monomial’s sign. This
time, however, we create a group of nodes Vi,j for each i = 0, 1, . . . ,m and each j ∈ [ti], as well as a
special group V ∗. The group V ∗ only contains the distinguished node v∗, which we now consider
as a “+” node. On the other hand, for each i, j, the group Vi,j will correspond to the polynomial
−λi,jDi,jCi,j . We expand this polynomial into a sum of monomials −λi,jDi,jCi,j =

∑
q cqq for some

integers cq and monomials q, and for each monomial q in this expansion we create |cq| nodes in Vi,j ,
each of which are “+” nodes if cq > 0 and “−” nodes otherwise. Let V denote the set of all nodes
produced by this construction. For any node v ∈ V , if v ∈ Vi,j for some i > 0 then the solution
decision tree gv will query no variables and simply output Ci as the solution to S(F). Otherwise, gv
will output an arbitrary solution, as in this case by construction of the formulation the node v will
never be a solution to SoL.

Now, we must describe the successor and predecessor decision trees at each node. As in the
proof of Lemma 5, it will be easier to describe the possible edges in Gx as all of the edges are
organized into two different matchings.

25

Outer Matching. The definition of the outer matching is the same as in Lemma 5. In this
matching we add edges between nodes in different node groups. All directed edges will be
oriented from “+” nodes to “−” nodes. Since the polynomials form an SA refutation over Z, we
know that each time the monomial q appears with a “+” sign, it must also appear with a “−”
sign, except for the single −1 term. Thus by considering v∗ as “+1”, we can create a perfect
matching M of the nodes of V where all edges are between a “+” and a “−” node standing
for the same monomial. Since we have gathered terms within the expansions of −λi,jDi,jCi,
all occurrences of monomials q within a single group Vi,j have the same sign and thus all the
matchings are between nodes in different sets. For each edge e in M , we will add a directed edge
between the “+” and the “−” node if and only if q(x) = 1; this can be determined by querying
all variables in q.

Inner Matching. The inner matching is constructed similarly as in the proof of Lemma 5, but
requires some modification. As in that proof, in the inner matching we add directed edges from
“−” nodes to “+” nodes within the same node group. However, we will now be careful to force
any solution (i.e. a sink node) to occur at a “−” node in Gx. By our construction, the V ∗ group
has no “−” nodes, and all “−” nodes in the group V0,j for any j ∈ [t0] will have successors, and
thus any sink node must be associated with Vi,j for some i > 0.

Consider any set of the form Vi,j , since V ∗ has a single node corresponding to +1 and so no
internal edges will be matched. Formally, at each node occurring in the group Vi,j , we query all
variables of Ci and Di,j (note that when i = 0, C0 = 1 and so we only query Di,j variables).
For any assignment x ∈ {0, 1}n, if Ci(x) = 1 then Ci(x) = 0 and thus Di,j(x)Ci(x) = 0. This
means that under the partial restriction ρ consistent with x at the variables of Ci, all monomials
in Di,jCi ↾ ρ must cancel to 0. We can therefore fix a directed perfect matching between the
negative and positive copies of monomials in Vi,j , as in the proof of Lemma 5.

On the other hand, if Ci(x) ̸= 0 then −λi,jDi,j(x)Ci(x) = c for some integer c. If i > 0
then c ≤ 0, and so in this case, there will be |c| copies of “−” monomials in Vi that are not
cancelled by + monomials internally. We can then fix a directed partial matching between
monomials accordingly, but leaving the |c| “−” monomials without successors if required (these
will become sink nodes). If i = 0 then c ≥ 0 since Ci = −1, and so in this case there may be
more “+” monomials than “−” monomials evaluating to 1. We can therefore fix a directed
partial matching between monomials, now leaving some “+” monomials without predecessors
(these will become new source nodes), but all “−” monomials will have successors and so they
will not become proper sink nodes.

As we have described above, we will need at most d queries in any decision tree in the reduction, and
also the number of nodes in the final SoL instance is no more than the size (number of monomials)
of the underlying unary Sherali–Adams proof.

We finally verify correctness of the SoL-formulation. This is a well-defined SoL formulation and
thus on every input x ∈ {0, 1}n the graph Gx will have a solution v ∈ V . This must be a sink node
by the definition of SoL and therefore, by construction, v must be a “−” node since “+” nodes
always have successors by the construction of the outer matching. As we have described in the
definition of the inner matching, any “−” node v ∈ V0,j for any j will have a successor, and thus
v ∈ Vi,j for some i > 0. But then, by definition of the inner matching, if v is a sink node in Vi,j for
i > 0 then Ci(x) = 0 and the label of v is Ci, thus the SoL formulation correctly outputs a solution
to S(F).

26

6.3 Reversible Resolution, SOPL, and EOPL

In this section we define the Reversible Resolution systems (RevRes and RevResT), and prove our
final characterisations capturing SOPLdt and EOPLdt.

Theorem 9. Let F be an unsatisfiable CNF formula. Then,

− If F has a width-d, size-L Reversible Resolution proof (with Terminals, resp.), then S(F) has
a depth-O(d) SoPLO(L)-formulation (EoPL-formulation, resp.).

− If S(F) has a depth-d SoPLL-formulation (EoPLL-formulation, resp.), then F has a width-
O(d), size-LO(1)2O(d) Reversible Resolution proof (with Terminals, resp.).

In particular, SOPLdt(S(F)) = Θ(RevRes(F)) and EOPLdt(S(F)) = Θ(RevResT(F)).

Corollary 5. For any sequence F of poly(log n)-width CNF formulas, F has a poly(log n)-width,
npoly(logn)-size Reversible Resolution proof (with Terminals, resp.) if and only if S(F) ∈ SOPLdt

(S(F) ∈ EOPLdt, resp.).

Reversible Resolution and MaxSAT

We begin by formally defining Reversible Resolution refutations and comparing them to MaxSAT
systems from the literature [BLM07, LHdG08, FMSV23].

Definition 5. Let F be an unsatisfiable CNF formula. If C is a clause then the reversible
weakening rule is the proof rule C ⊢ C ∨ x,C ∨ x, and the reversible resolution rule is the proof
rule C ∨ x,C ∨ x ⊢ C. A reversible resolution refutation (RevRes) of F is a sequence of multisets of
clauses C1, C2, . . . , Ct such that the following holds:

1. Every clause in C1 occurs in F , possibly with multiplicity.

2. The multiset Ct contains the empty clause ⊥.

3. For each i = 1, 2, . . . , t− 1, the multiset Ci+1 is obtained from Ci by selecting clauses in Ci and
replacing them with the result of one of the two reversible rules applied to those clauses.

The proof is a reversible resolution refutation with terminals (RevResT) if every clause in Ct other
than ⊥ is a weakening of a clause from F . The size of the proof is

∑t
i=1 |Ci| — the number of

clauses in all configurations. The width of the proof is the maximum width of any clause occuring
in any configuration.

The key difference between the reversible resolution rule and the standard resolution rule is that
the output of the reversible rule (as a CNF formula) is logically equivalent to the input of the rule.
Despite this restriction, it is clear that we can use the reversible rule to simulate tree-like resolution.
If we use clauses C ∨ x and D ∨ x to derive C ∨D, then we can derive this in RevRes as follows.
First, for each literal in C ∨ x, apply the reversible weakening rule repeatedly to derive C ∨D ∨ x
(along with some extra clauses which we can ignore). Similarly, derive D ∨ C ∨ x. Then apply the
reversible resolution rule to these two clauses to derive C ∨D.

However, Theorem 1 implies that RevRes cannot efficiently simulate Resolution. Intuitively, this
is because of property (3) in the definition of a reversible refutation: we must replace the clauses
used in the rule with new clauses. Therefore we cannot “duplicate” derived clauses for free, which
is essential to obtain the full power of Resolution.

Indeed, the RevRes proof system is a slight strengthening of the proof system MaxSAT Resolution
with Weakening (also denoted MaxResW) studied in the literature on MaxSAT solvers [BLM07,

27

LHdG08, FMSV23]. The principal difference between MaxSAT Resolution and standard Resolution
is that MaxSAT Resolution seeks to preserve the number of satisfied clauses under any assignment.
For completeness, we define the MaxSAT Resolution proof system next.

Definition 6. Let A = a1 ∨ · · · ∨ as and B = b1 ∨ · · · ∨ bt be clauses over boolean literals ai, bj . The
MaxSAT resolution rule is the proof rule that, given x ∨A and x ∨B, deduces the following set of
clauses:

a1 ∨ · · · ∨ as ∨ b1 ∨ · · · ∨ bt

x ∨A ∨
j∨

i=1

bi ∨ bj+1 ∀j = 0, 1, . . . , t

x ∨B ∨
j∨

i=1

ai ∨ aj+1 ∀j = 0, 1, . . . , s.

A MaxRes refutation of an unsatisfiable CNF F is a sequence of multisets of clauses C1, . . . , Ct where
C1 contains exactly the clauses in F , Ct contains a copy of the empty clause ⊥, and the configuration
Ci for i > 1 is obtained from Ci−1 by applying the MaxSAT resolution rule to some clauses in
Ci−1 and replacing those clauses with the output of the rule. A MaxResW refutation is a MaxRes
refutation that is also allowed to use the weakening rule C ⊢ C ∨ x,C ∨ x.

RevRes can simulate MaxResW proofs without much difficulty. The weakening rule in MaxResW
is the reversible weakening rule. To simulate the MaxSAT resolution rule, starting from x∨A, x∨B,
apply the reversible weakening rule on x∨A to weaken it with the variable b1, obtaining x∨A∨b1, x∨
A∨ b1. Then, weaken x∨A∨ b1 on the variable b2 to obtain the clauses x∨A∨ b1∨ b2, x∨A∨ b1∨ b2.
Repeating in this fashion on all literals in B, and similarly weakening x ∨B, we obtain x ∨A ∨B,
x ∨A ∨B, and all the extra clauses output by the MaxSAT rule. Finally applying the reversible
resolution rule to x ∨A ∨B and x ∨A ∨B deduces A ∨B.

The converse direction, however, is not clear and could very well be false. A significant difference
between RevRes and MaxResW is the fact that MaxResW proofs must have the initial configuration
exactly equal to F , while RevRes can start with any multiset of clauses from F . As discussed
above, this is because the goal of MaxRes is to preserve the number of satisfied clauses under any
assignment, while RevRes has no such requirements and simply seeks to prove unsatisfiability.

We can formally interpret this as follows. Suppose we are given an unsatisfiable CNF formula
F = C1 ∧ · · · ∧ Cm, where every clause Ci is equipped with a positive integer weight wi. Since F is
unsatisfiable, the maximum possible weight of satisfied clauses in any assignment to the variables
of F is at most

∑m
i=1wi − 1. Thus, if we could prove that this is true for some choice of weights

wi > 0, then we have verified that the formula F is unsatisfiable.
RevRes implements this idea. Given F , we start by choosing positive integer weights wi for each

clause Ci, and make wi copies of Ci in the initial configuration C1. The two proof rules in RevRes
preserve the number of satisfied clauses under any assignment, and so it follows that if C1, . . . , Ct
is a RevRes refutation of F then, since Ct contains at least one instance of ⊥, it must be that the
maximum weight of satisfied clauses under any assignment is at most

∑m
i=1wi − 1 since ⊥ is always

false. Hence the formula F must be unsatisfiable. Interpreted in this way, RevRes sits between
MaxResW and the weighted MaxSAT resolution systems defined in [LHdG08].

Characterisation theorems

Unlike the characterisation theorems for unary Nullstellensatz and unary Sherali–Adams, the easier
direction for this characterisation theorem is showing that RevRes proofs imply SoPL-formulations.

28

Lemma 9. Let F be an unsatisfiable CNF formula. If there is a RevRes refutation of F with width
d and size L, then there is a depth-(d + 1) SoPLL-formulation of S(F). Furthermore, if there is a
RevResT refutation, then there is a depth-(d + 1) EoPLL-formulation of S(F).

Proof. We focus on the case of RevRes and then describe what needs to be modified in the case of
RevResT. Let F = C1 ∧ · · · ∧ Cm be an unsatisfiable CNF formula. Let C1, C2, . . . , Cℓ be a RevRes
refutation of F of the prescribed size and width and let t := maxi∈[ℓ] |Ci|. By the size bound we
know that t, ℓ ≤ L.

We create an SoPL-formulation of S(F) on a grid of size L× L, although we will only use the
subgrid of size ℓ× t and hardwire all other nodes to be inactive. This can be done for each node
(i, j) outside of the ℓ × t grid by setting the successor for (i, j) to be null and the predecessor to
be arbitrary. The relationship between the grid of the SoPL-formulation and the RevRes proof
is straightforward: the node (i, j) ∈ [ℓ] × [t] corresponds to the j-th clause in the multiset Cℓ−i+1.
Without loss of generality, we assume Cl is ordered so that the first clause is ⊥, and thus the
distinguished node (1, 1) in the SoPL instance corresponds to ⊥.

Let (i, j) ∈ [ℓ] × [t] be any node in the grid and let Ci,j denote the corresponding clause in
the proof. We define the successor function si,j : {0, 1}n → [t] ∪ {null}, the predecessor function
pi,j : {0, 1}n → [t], and the solution function gi,j : {0, 1}n → [m]. The solution function gi,j queries
no variables and outputs Ci,j if Ci,j ∈ F , and otherwise outputs an arbitrary solution (in the second
case, by construction (i, j) will never be a solution to SoPL). To define si,j and pi,j we introduce
some notation. If C ∈ Ci and C ′ ∈ Ci+1 are clauses in adjacent configurations then C ′ is derived
from C, written C ⊢ C ′, if either C ′ is the output of a reversible proof rule applied to C or if no
proof rule was applied to C and C ′ = C is just the same copy of C in the next configuration. For
any x ∈ {0, 1}n define

si,j(x) :=

null if Ci,j(x) = 1

k if i < ℓ, Ci,j(x) = Ci+1,k(x) = 0, and Ci+1,k ⊢ Ci,j

1 if i = ℓ and Ci,j(x) = 0,

and similarly, if i > 1, define

pi,j(x) :=

{
1 if Ci,j(x) = 1

k if Ci,j(x) = Ci−1,k(x) = 0 and Ci,j ⊢ Ci−1,k.

Intuitively, if Ci,j(x) = 0 then we will make the successor and predecessors of Ci,j point to the
unique clauses in the adjacent configurations that are guaranteed to be false. These functions are
well-defined since the reversible rules are of the form C ∨ xi, C ∨ xi ⊢ C and C ⊢ C ∨ xi, C ∨ xi.
In particular, under any assignment to the variables, the number of false clauses in the input and
output of the rules are equal and at most 1, and thus if C is false then there are unique false clauses
in the adjacent configurations that are derived from or used to derive C. Finally, we note that the
successor and predecessor functions can each be computed by querying all the variables in Ci,j and
possibly one more variable (the one that was resolved or weakened on), and thus the decision tree
depth of both of these functions is at most d + 1.

Now we argue that the SoPL formulation correctly solves S(F). By the definition of the
successor and predecessor functions, if any node (i, j) on layer i < ℓ is active, then that node has
consistent pointers to successor nodes and predecessor nodes on the adjacent layers. This means
that the node (i, j) is a solution only if it is an active node on layer i = ℓ, but such a node is active
only if the corresponding clause Ci,j ∈ C1 is false. But all such clauses occur in F , and in this case
the solution function gi,j outputs Ci,j , which is a correct solution to S(F).

29

In case we started with a RevResT refutation, we observe that the same argument described
above also works for EoPL with one extra observation: any clause in the final configuration Ct that
is falsified under an input x is now a weakening of an input clause of F , and so this is a valid source
node solution to the EoPL problem.

It remains to prove the converse, which is harder. As a warmup, we begin by showing that the
encoding of SoPL (EoPL) as an unsatisfiable CNF formula can be efficiently refuted in RevRes
(RevResT resp.). The general case will follow the structure of this proof closely. For the warmup it
will be helpful to explicitly write the CNF encoding of SoPL and EoPL (Section 3).

Explicit Encodings for SoPL and EoPL. As we have discussed in Section 2, any total search
problem Rn ⊆ {0, 1}n×On has a natural encoding as an unsatisfiable CNF formula by

∧
o∈On

¬To(x)
where To(x) is the decision tree that checks if (x, o) ∈ Rn. Since To is a low-depth decision tree we
can encode it as a low-width DNF formula, and thus the resulting CNF formula also has low width.
In this section we describe the unsatisfiable CNF formulas corresponding to SoPLn and EoPLn

explicitly.
The successor and predecessor pointers in the SoPLn instance will be encoded in binary, so, for

the sake of convenience assume n = 2λ − 1 for some integer λ ≥ 1 and other cases can be handled
similarly. For each node (i, j) the successor and predecessor pointers will be encoded by blocks
of boolean variables si,j ∈ {0, 1}λ, pi,j ∈ {0, 1}λ encoding the value of the pointer in binary. The
pointer null will always be encoded by the all-0 string. We will abuse notation and often consider
si,j and pi,j as actual elements of [n]∪{null}, rather than as short boolean strings. So, we may write
things like si,j = k for k ∈ [n] to mean that the bits of si,j are equal to the binary encoding of k.

As everything is encoded in binary, it will be helpful to introduce the following notation. In
general, for a predicate P : {0, 1}n → {0, 1} we let JP K represent the CNF encoding of P over the n
underlying boolean variables. For example, Jsi,j = ℓK for ℓ ∈ [n] represents the CNF encoding of the

predicate “si,j = ℓ” over the boolean variables underlying si,j . Explicitly, Jsi,j = nullK =
∧λ

t=1 si,j,t,

and similarly Jsi,j ̸= nullK can be represented by the clause
∨λ

t=1 si,j,t. We can also form more
complicated statements, writing e.g. Jsi,j = k ∧ pi+1,k = jK to mean the CNF encoding of “the
successor of (i, j) is (i + 1, k) and the predecessor of (i + 1, k) is (i, j)”.

Definition 7. Let n be a positive integer, and for simplicity assume n = 2λ − 1 for some integer
λ ≥ 1. Consider the following unsatisfiable CNF formula SoPLn. For each (i, j) ∈ {2, . . . , n−1}×[n]
we have two blocks of λ variables si,j ∈ {0, 1}λ, pi,j ∈ {0, 1}λ encoding the successor and predecessor
pointers of the node (i, j) in binary, where null is encoded by 0λ. For each j ∈ [n], we additionally
have a block of λ variables s1,j ∈ {0, 1}λ encoding the successor of (1, j), a block of λ variables
pn,j ∈ {0, 1}λ encoding the predecessor of (n, j), and a single variable sn,j ∈ {0, 1} encoding whether
or not (n, j) is active.

The clauses of SoPLn are the following:

− For each j ∈ [n], Js1,1 ̸= j ∨ p2,j = 1K and Js1,1 ̸= 0K (active distinguished source)
− For each j ∈ [n], sn,j for each j ∈ [n], (inactive sink)
− For each (i, j) ∈ {1, . . . , n− 2} × [n] and each a, b ∈ [n], c ∈ [n]∪ {0}, a ̸= c, (no proper sinks)

Jsi,j ̸= a ∨ pi+1,a ̸= j ∨ si+1,a ̸= b ∨ pi+2,b ̸= cK

as well as Jsi,j ̸= a ∨ pi+1,a ̸= j ∨ si+1,a ̸= 0K. Similarly, for each a, b ∈ [n],

Jsn−1,a ̸= b ∨ pn,b ̸= a ∨ sn,b = 1K

30

The EoPLn formula is obtained by adding the following extra clauses to SoPLn:

− For each (i, j) ∈ {2, . . . , n− 1} × [n] and each a, b ∈ [n], c ∈ [n] ∪ {0}, c ̸= j, (no proper
sources)

Jsi,j ̸= a ∨ pi+1,a ̸= j ∨ pi,j ̸= b ∨ si−1,b ̸= cK

as well as Jsi,j ̸= a ∨ pi+1,a ̸= j ∨ pi,j ̸= 0K. Similarly, for any a, b ∈ [n] with a ̸= 1,

Js1,a ̸= b ∨ p2,b ̸= aK.

From the above definition we can see that both SoPLn and EoPLn are polynomial-size, O(log n)-
width CNF formulas, and they are unsatisfiable since the families of clauses simply encode the
contradictory statements “the SoPL/EoPL problem has no solution”.

Proofs of Characterisations. Now, before proving that we can refute SoPLn in RevRes, we
first prove a technical lemma that allow us to manipulate binary encodings in RevRes.

Lemma 10. Let λ > 0 be a positive integer, and let n = 2λ − 1. Let C be a width-k clause that does
not depend on a block of boolean variables z ∈ {0, 1}λ. Using the reversible weakening rule we can
prove, from C, the set of clauses {JC ∨ z ̸= iK : i = 0, . . . , n} in width k + λ and size 2λ. Conversely,
from the above set of clauses we can prove C using the reversible resolution rule in the same size
and width.

Proof. Starting from C, apply the reversible weakening rule on the first bit z1 to obtain C ∨ z1 and
C ∨ z1. Weakening each of the results on z2, z3, . . . , zλ in turn yields exactly the CNF formula
described in the lemma, and the second statement follows from the reversibility of RevRes.

Theorem 10. For each positive integer n, there is a O(log n)-width, polynomial-size RevRes
refutation (RevResT refutation, resp.) of SoPLn (EoPLn, resp.).

Proof. We give the proof for SoPLn and then describe what needs to be modified for EoPLn. For
each (i, j) ∈ [n− 1] × [n] and each k ∈ [n] define the clause Ii,j,k := Jsi,j ≠ k ∨ pi+1,k ≠ jK, and note
that Ii,j,k has width 2 log n in the variables si,j and pi+1,k. With this notation, the set of clauses

Ii,j := {Jsi,j ̸= k ∨ pi+1,k ̸= jK | k ∈ [n]}

encodes the statement “the node (i, j) is inactive”. Similarly, for any j ∈ [n] we define

In,j := sn,j

encoding that the node (n, j) is inactive, and note that In,j is a clause in SoPLn. Thus, for any
i ∈ [n], the collection of clauses Ii :=

⋃n
j=1 Ii,j encodes the statement “every node on layer i is

inactive”. We now state the main claim of the proof.

Claim 4. For any i ∈ {2, . . . , n}, there is a polynomial-size, O(log n)-width RevRes proof of Ii−1

from Ii and a polynomial-size collection of clauses from SoPLn.

Let us first use the claim to finish the proof of the theorem. We start with the collection of
clauses In =

⋃n
j=1 In,j , each of which is a clause from SoPLn. Applying the claim yields the

collection In−1 in polynomial-size and O(log n) width from In and a polynomial-size collection of
clauses from SoPLn. Applying the claim n− 2 more times then yields I1 in polynomial-size and
O(log n) width. However, the clauses I1,1 ⊆ I1 are exactly

Js1,1 ̸= j ∨ p2,j ̸= 1K

31

j k a b

(a) A clause in Ji ⊆ Ai.

j k a b

(b) A clause in Fi ⊆ Bi.

j k a b

(c) A clause in Ti = Ai ∩ Bi.

Figure 7: Illustration of the objects in the proof of Claim 4. The blue edges are successor pointers and
the red edges are predecessor pointers. Each clause says that at least one of the pointers in the above
configuration must not be present.

for each j ∈ [n]. By resolving these clauses with the clauses in Js1,1 ̸= j ∨ p2,j = 1K in SoPLn, we
can deduce the family of clauses Js1,1 ̸= jK for all j ̸= 0, and the clause Js1,1 ̸= 0K is already in
SoPLn. Applying Lemma 10 to the clauses {Js1,1 ≠ iK | i = 0, . . . , n} deduces the empty clause ⊥
in O(log n) width and O(n) size. In sum, the entire proof will have polynomial size and O(log n)
width.

So, it suffices to prove the claim.

Proof of Claim. We show how to prove the general case where i ≤ n− 1, and the case where i = n
is handled by an essentially identical argument. Consider the family of clauses Ii =

⋃n
j=1 Ii,j . For

each clause Ii,j,k apply Lemma 10 to weaken as follows. Initially, we weaken over all values of the
predecessor pointer pi,j , obtaining the family of clauses JIi,j,k ∨ pi,j ≠ aK for each a ∈ [n]. Then,
from the clause in this family containing pi,j ≠ a, we weaken over all values of the successor pointer
si−1,a, obtaining the family of clauses

Ai = {JIi,j,k ∨ pi,j ̸= a ∨ si−1,a ̸= bK | j, k, a, b ∈ [n]}
= {Jsi,j ̸= k ∨ pi+1,k ̸= j ∨ pi,j ̸= a ∨ si−1,a ̸= bK | j, k, a, b ∈ [n]}.

Partition this family of clauses into two sets as follows. Define

Ti = {Jsi,j ̸= k ∨ pi+1,k ̸= j ∨ pi,j ̸= a ∨ si−1,a ̸= jK | j, k, a ∈ [n]},

which is the subfamily of clauses in Ai that have b = j, and let Ji = Ai \ Ti denote the subfamily
where b ≠ j. Next, we show how to use Ti, along with some clauses in SoPLn, to deduce Ii−1 in
width O(log n) and polynomial size. The clauses Ji are “junk” clauses that are maintained for the
rest of the proof and output along with the bottom clause ⊥ in the final configuration.

To do this, we exploit the reversibility of RevRes and show how to deduce from Ii−1 the collection
Ti ∪ Fi using the reversible weakening rule, where Fi is a polynomial-size set of clauses all from
SoPLn. By running this proof in reverse and connecting it with the proof described above we prove
Ii−1 from Ii, and we can add the clauses Fi to the initial configuration of the RevRes proof.

This proof is very similar to the proof of Ai from Ii. Starting from an arbitrary clause
Ii−1,a,j ∈ Ii−1, we apply Lemma 10 to weaken the clause on all possible values of the successor
pointer si,j , obtaining JIi−1,a,j ∨ si,j ≠ kK for all k ∈ [n]. Then, starting from the clause containing
si,j ̸= k, we weaken on all values of pi+1,k, obtaining the family

Bi = {JIi−1,a,j ∨ si,j ̸= k ∨ pi+1,k ̸= bK | j, k, a, b ∈ [n]}

32

= {Jsi−1,a ̸= j ∨ pi,j ̸= a ∨ si,j ̸= k ∨ pi+1,k ̸= bK | j, k, a, b ∈ [n]}

We again partition into two sets. The first is, of course, Ti, which is the case where j = b in Bi. The
second set is Fi = Bi \ Ti, which is the case where j ̸= b, and observe that every clause in Fi is a no
proper sink clause from SoPLn.

We can now finish the proof of the claim. Starting from Ii ∪ Fi, use the clauses in Ii to deduce
the set of clauses Ti ∪ Fi ∪ Ji. Then, run the proof deducing Ti ∪ Fi from Ii−1 in reverse to finally
deduce Ii−1 ∪ Ji. The total proof has polynomial size and O(log n)-width, and therefore the claim
is proved.

To modify the proof for EoPLn and RevResT, we make the following changes. First, we observe
that all clauses in I1 that come from I1,a for a ̸= 1 are proper source clauses from EoPLn. All
other clauses in the above proof that occur in the final line come from sets of the form Ji in the
proof of the above claim. However, just like the clauses Fi are proper sink clauses from SoPLn, the
clauses in Ji are exactly proper source clauses from the EoPLn. This completes the proof.

It remains to modify the previous proof in order to accommodate decision-tree reductions to
SoPL and EoPL. To do this we mimic the previous proof, but replace the construction of the sets
of clauses in the proof with appropriate queries to the decision trees (which RevRes can simulate)
in the reduction.

Before we prove the theorem we introduce some helpful notation for manipulating decision trees.
If T is a decision tree then P(T) is the set of root-to-leaf paths in T . If o is an output (i.e. leaf
label) of T , then define Po(T) to be the set of root-to-leaf paths in T that output o. Given any
path P ∈ P(T), let CP :=

∨
ℓ∈P ¬ℓ be the negation of the literals along P ; so, CP (x) = 1 iff P is

not followed when T is evaluated on x. We also need an appropriate modification of Lemma 10 to
arbitrary decision trees, which we prove next.

Lemma 11. Let C be a width-k clause, and let T be a depth-d decision tree querying a set of
variables disjoint from C. Using the reversible weakening rule we can prove, from C, the set of
clauses {C ∨ CP | P ∈ P(T)} in width d + k and size at most 2d. Conversely, from the above set of
clauses we can prove C using the reversible resolution rule in the same size and width.

Proof. This proof is essentially the same as in Lemma 10. Now, starting from C, apply the
reversible weakening rule on the first variable xi queried in the decision tree T to derive the clauses
{C ∨ xi, C ∨ xi}. From there we can continue to apply the reversible weakening rule to simulate the
queries of the decision tree. For instance, if after the decision tree learns xi = 0 it queries xj , we
apply the reversible weakening rule to xi to obtain xi ∨ xj , xi ∨ xj . Continuing in this manner we
can derive all clauses C ∨ CP for P ∈ P(T), and running the proof in reverse yields the lemma.

Theorem 11. Let F be an unsatisfiable CNF formula. If there is a depth-d SoPLL-formulation
(EoPLL-formulation, resp.) of S(F) then there is a RevRes refutation (with terminals, resp.) of F
with width O(d) and size LO(1)2O(d).

Proof. We follow the proof of Theorem 10 and focus on the case of SoPL. Assume F = C1∧· · ·∧Cm

is defined on n variables x1, . . . , xn. In this proof we think of CNF formulas and sets of clauses
interchangeably. In the SoPLL-formulation of S(F) we have functions

si,j : {0, 1}n → [L] ∪ {null}, pi,j : {0, 1}n → [L] ∪ {null}, gi,j : {0, 1}n → [m]

computing successors, predecessors, and solutions for each internal node, and we identify each
function with the depth-d decision tree computing it.

33

For each (i, j) ∈ [L− 1] × [L] consider the CNF formula

Ii,j,k(x) = Jsi,j(x) ̸= k ∨ pi+1,k(x) ̸= jK.

In other words, Ii,j,k is the analogue of the clause using the same notation from the proof of
Theorem 10. We can use the decision trees for si,j and pi,j to encode Ii,j,k as a CNF formula
explicitly. To do this, define the decision tree Ti,j as follows: take the decision tree si,j and at
each leaf labelled k, simulate the decision tree pi+1,k (skipping queries to variables already made)
to obtain an output a, and then output the pair (k, a). With this decision tree we can define
Ii,j,k = {CP | P ∈ P(k,j)(Ti,j)}. As in the proof of Theorem 10, define

Ii,j :=

n⋃
k=1

Ii,j,k, Ii :=

n⋃
j=1

Ii,j ,

where we recall that we consider CNFs and sets of clauses interchangeably. When i = L, then
for any j ∈ [L] define the decision tree TL,j that simulates the decision tree sL,j and outputs 1
if (L, j) is active and 0 otherwise. With this we define IL,j = {CP | P ∈ P1(TL,j)}, and similarly

define IL =
⋃L

j=1 IL,j . In this notation, the set of clauses Ii again encodes “every node on layer i is
inactive”, where now the activity of a node is determined by the underlying decision trees in the
formulation.

The main step in this theorem is the following claim.

Claim 5. For any i ∈ {2, . . . , L}, there is a size LO(1)2O(d), O(d)-width RevRes proof of Ii−1 from
Ii and a collection of weakenings of clauses from F .

First we use the claim to finish the proof of the theorem. We begin by deriving from F the
clauses IL (let us briefly postpone this argument), and then apply the claim L− 1 times to derive
I1. Let Q =

⋃
k ̸=0 P(k,1)(T1,1) be the set of paths of T1,1 that end in a leaf labelled with (k, 1) for

some k ̸= 0, and let R = P(T1,1) \ Q. Observe that I1,1 ⊆ I1 is, by definition, the set of clauses
{CP | P ∈ Q}.

Consider any path P ∈ R, and note that P ends in a leaf labelled with (k, a) where either
k = 0 or a ̸= 1. Each leaf witnesses that the distinguished node (1, 1) is inactive, and so we
can then simulate the decision tree g1,1 and learn a solution of S(F). Therefore, for every path
P ′ ∈ P(g1,1) the clause CP ∨ CP ′ is either a weakening of a clause in F , or, is trivially true if it
contains both a literal and its negation. Therefore, by applying Lemma 11 we can deduce the clause
CP from weakenings of clauses in F in size 2O(d) and width O(d). Applying this argument for
every P ∈ R allows us to deduce the clauses {CP | P ∈ R}. We have now deduced all the clauses
{CP | P ∈ P(T1,1)}, and so applying Lemma 11 to all of these clauses allows us to deduce ⊥.

Let us now describe how to derive from F the clauses

IL = {J(L, j) is inactiveK | j ∈ [L]} =

n⋃
j=1

{CP | P ∈ P1(TL,j)}.

For any j ∈ [L] consider the following decision tree T ′
L,j : first run the decision tree TL,j that checks

if (L, j) is active and then, if (L, j) is active, simulate the decision tree gL,j to find a solution to
S(F). It follows that for any P ∈ P1(TL,j) and any P ′ ∈ P(gL,j) the clause CP ∨CP ′ is a weakening
of a clause of F or is trivially true. We can therefore deduce CP from weakenings of clauses of F
using Lemma 11, and repeating this argument for every j ∈ [L] and every P ∈ Pj we can derive
every clause in IL. So, all that remains is to prove the claim.

34

Proof of Claim. The proof of this claim is modelled on the proof of the similar claim from the
previous theorem. We again do the general case where i ≤ L− 1; the case where i = L proceeds
similarly. Consider the set of clauses Ii and Ii−1. Our first goal is to derive the analogue of the set
Ai in the proof of Claim 4.

Let j ∈ [L] be arbitrary and consider any clause C ∈ Ii,j . By definition, there is a k ̸= 0 such
that C = CP for some P ∈ P(k,j)(Ti,j). Starting from C in the proof apply Lemma 11 to the decision
tree pi,j to derive a set of clauses, each of the form C ∨ CP , where P ∈ P(pi,j). Then, for every
a ∈ [L] and any P ′ ∈ Pa(pi,j), apply Lemma 11 again to C ∨ CP and the decision tree si−1,a to
obtain C ∨ CP ∨ CP ′ for every P ′ ∈ P(si−1,a). Performing this procedure for all C ∈ Ii yields

Ai := {Jsi,j ̸= k ∨ pi+1,k ̸= j ∨ pi,j ̸= a ∨ si−1,a ̸= bK | j, k, a, b ∈ [n]}
= {C ∨ CP ∨ CP ′ | a ∈ [L], P ∈ Pa(pi,j), P

′ ∈ P(si−1,a)}.

We partition Ai into two sets: the clauses in Ti where b = j, and the clauses in Ji = Ai \ Ti.
Now, as in the proof of Claim 4, we use Ti along with some clauses in F to deduce Ii−1, and

we again will exploit the reversibility of RevRes to do so. Namely, starting from Ii−1 we deduce
Ti ∪ Fi, where Fi is a collection of (weakenings of) clauses from F , and we can then just run the
proof in reverse.

Let D be any clause in Ii−1, and note that there is a j ∈ [L] such that D = CP for some
P ∈ P(j,a)(Ti−1,a). Starting from D, apply Lemma 11 with the decision tree Ti,j to obtain a collection
of clauses of the form D ∨ CP ′ where P ′ ∈ P(Ti,j). Let (k, b) be the output of the decision tree
Ti,j on the path P ′. If b = j, then the clause D ∨ CP ′ belongs to Ti. Moreover, if we repeat this
argument for all D ∈ Ii−1 then the collection of all such clauses obtained is exactly Ti. This is
because from Ii, the collection of clauses Ti was obtained by starting from all clauses at leaves of
Ti,j labelled with (k, j) and then querying pi,j and si−1,a; here, we have performed the exact same
queries except we have reversed the order in which we simulated the decision trees pi,j and si−1,a.

On the other hand, if b ̸= j, then the literals queried on the paths P ∈ P(j,a)(Ti−1,a) and
P ′ ∈ P(k,b)(Ti,j) together witness that the node (i, j) is a proper sink node, and thus is a solution to
the SoPL problem. Therefore, at the end of the path P ∪ P ′ we can run the decision tree gi,j to
determine a solution to S(F). This means that if P ′′ ∈ P(gi,j) is any root-to-leaf path in gi,j , then
the clause D ∨ CP ′ ∨ CP ′′ = CP ∨ CP ′ ∨ CP ′′ must be a weakening of a clause in F (or, again, is
trivially true). Let Fi denote the set of all of these weakenings of clauses of F , obtained by running
the above procedure for every clause D ∈ Ii−1. We have therefore shown that from Ii−1 we can
derive Ti ∪ Fi.

To finish the proof of the claim, we start with the clauses in Ii ∪ Fi, deduce Ti ∪ Ji from Ii to
obtain the clauses Ti ∪Ji ∪Fi, and then deduce Ii−1 from Ti ∪Fi. This yields the clauses Ii−1 ∪Ji,
and all of these steps required size LO(1)2O(d) and width at most O(d), completing the proof of the
claim and the theorem.

The above proof can be modified to capture EoPL in the same manner as the proof of Theorem 10.
In particular, we can argue via the same techniques that the “junk” clauses in Ji and the clauses in
I1 \ I1,1 each encode violations of the “no proper source” constraints of EoPL, and thus can be
used to deduce weakenings of clauses in F by querying the appropriate solution decision trees gi,j .
We omit the details.

7 Intersection Theorems

We can now finally prove Theorem 6, our intersection theorem for Reversible Resolution. To prove
the theorem we use the collapse theorems SOPL = PLS∩PPADS and EOPL = PLS∩PPAD [GHJ+22].

35

In particular, examining the proofs of the collapse theorems from [GHJ+22], we can extract the
following black-box analogues.

Theorem 12. Let R ⊆ {0, 1}n ×O be a total search problem, and suppose that there is a depth-d1,
SoDs1-formulation of R and a depth-d2, SoLs2-formulation of R. Then there is a depth O(d)
SoPLs3-formulation of R where d = max{d1, d2} and s = max{s1, s2}.

Theorem 13. Let R ⊆ {0, 1}n ×O be a total search problem, and suppose that there is a depth-d1,
SoDs1-formulation of R and a depth-d2, EoLs2-formulation of R. Then there is a depth O(d)
EoPLs3-formulation of R where d = max{d1, d2} and s = max{s1, s2}.

Theorem 6 is now an immediate corollary of the next theorem.

Theorem 14. Let F be an unsatisfiable CNF formula. Let d1, d2, s1, s2 be positive integers and let
d = max{d1, d2} and s = max{s1, s2}.

− If there is a width-d1, size-s1 Resolution proof and a degree-d2, size-s2 unary Sherali–Adams
proof of F then there is width O(d) and size sO(1)2O(d) RevRes proof of F .

− If there is a width-d1, size-s1 Resolution proof and a degree-d2, size-s2 unary Nullstellensatz
proof of F then there is width O(d) and size sO(1)2O(d) RevResT proof of F .

In particular, RevRes(F) = Θ(Res(F) + uSA(F)) and RevResT(F) = Θ(Res(F) + uSA(F)).

Proof. Since RevRes can be efficiently simulated by both Resolution and unary Sherali–Adams we
have Res(F) = O(RevRes(F)) and uSA(F) = O(RevRes(F)). For the converse direction, suppose
that we have a width-d1, size-s1 Resolution proof and a degree-d2, size-s2 unary Sherali–Adams
proof. By [Kam20, Theorem 8.18] there is a depth-O(d1) SoDO(s1)-formulation of S(F) and by
Theorem 8, there is a depth-O(d2) EoLO(s2)-formulation for S(F). Applying the above collapse
theorem, this implies that there is a depth-O(d) SoPLs3-formulation of S(F), where d = max{d1, d2}
and s = max{s1, s2}. Finally, applying Theorem 9, we obtain a RevRes proof of F with width O(d)
and size sO(1)2O(d). We therefore have

RevRes(F) = O(d + log s) = O(d1 + d2 + log s1 + log s2) = O(Res(F) + uSA(F)).

A similar proof using Theorem 7 instead yields the characterisation of RevResT.

8 Two Further Separations

In this section we prove Theorems 4 and 5, restated below.

Theorem 4. PLSdt ̸⊆ PPPdt.

Theorem 5. EOPLdt ̸⊆ UEOPLdt.

The proofs of these theorems rely on a “glueing” technique that was implicitly used in [BCE+98]
and which we make more explicit in this paper. We use the glueing technique as a tool to alleviate
the lack of good proof systems characterizing PPP and UEOPL. In particular, The glueing technique
reduces the separation in Theorem 4 to the easier separation PLSdt ̸⊆ PPADSdt, which we already
proved in Corollary 1 and Theorem 5 uses the glueing technique together with a query lower bound
for EoPL from [HY20]. This glueing technique was also recently generalized by Jain, Li, Robere
and Xun [JLRX24] to prove lower bounds for classes above PPP corresponding to the generalized
pigeonhole principles.

36

8.1 Glueability

Let R = (Rn), Rn ⊆ {0, 1}n × On, be a TFNPdt problem. We consider partial assignments
x ∈ {0, 1, ∗}n that define partial inputs to Rn. An index i with xi = ∗ is interpreted as a boolean
variable whose value is not yet assigned. The size of a partial assignment is its number of non-∗
bits. We say that two partial assignments x, y ∈ {0, 1, ∗}n are consistent if x and y agree on their
non-∗ bits. If x and y are consistent, we can form the partial assignment x ∪ y that assigns values
to all variables assigned values in x or y. We further say that x is witnessing if there exists some
solution o ∈ On such that for any y ∈ {0, 1}n consistent with x we have o ∈ Rn(y).

Definition 8 (Glueable sets of assignments). A set of partial assignments P ⊆ {0, 1, ∗}n is k-glueable
if for each non-witnessing and consistent p, p′ ∈ P , their union p∪p′ is non-witnessing, and moreover,
if we restrict Rn by the assignment p ∪ p′, the resulting search problem (Rn ↾ p ∪ p′) has decision
tree complexity greater than k.

This and following definitions are mostly motivated by their use in Lemma 12 and Lemma 14.
For instance, in Lemma 12 we consider P to be the set of all partial assignments obtained by
collecting leaves pointing to a particular hole in the PPPdt-reduction. The main idea is that the
glueability property of P then allows to disambiguate between pigeons to find which (if any) is
mapping to the particular hole.

Definition 9 (Completions). Let x ∈ {0, 1, ∗}n be a partial assignment and T a decision tree
over {0, 1}n. The completion C(T, x) of x by T is the set obtained by collecting all the partial
assignments corresponding to leaves of T that are consistent with x and taking their union with x.
That is, C(T, x) := {x ∪ p : p is a leaf of T consistent with x}.

Definition 10 (Glueable problem). Let f : N → N be a function. We say R is f(k)-glueable if any
set P ⊆ {0, 1, ∗}n of partial assignments of size at most k, where k ≤ poly(log n), can be completed
by decision trees of depth at most f(k) such that the union of the completions is k-glueable. That
is, if there exists for each x ∈ P , some decision tree Tx such that ∪x∈PC(Tx, x) is k-glueable. We
further say that R is glueable if it is poly(k)-glueable.

For example, it is implicit in [BCE+98, §3.1] that the PPAdt-complete problem Lonely (given a
matching of an odd number of nodes, find an isolated node) is O(k)-glueable. In the case of Lonely,
if x ∈ {0, 1, ∗}n asserts that node u points to node v, then Tx queries the pointing node for v so
that a solution is immediately witnessed if u is isolated. We will shortly prove that SoD and EoPL
are glueable, too. In what follows, we slightly depart from the above notation and also consider
pointer-like partial assignments (as opposed to assignments over {0, 1, ∗} only). Those are treated
naturally; for instance, we can assume that reductions are constrained to query either all or no bits
corresponding to a pointer.

8.2 PLSdt ̸⊆ PPPdt

We introduce for convenience the Reversible-Pigeon problem, which is a variant of Pigeon
where a reverse pointer is provided for each hole.

Reversible-Pigeon (RPigeonn). This problem is the same as Pigeon except that we are also
given reverse pointers pu ∈ [n] ∪ {null} for each hole u ∈ [n − 1]. The goal is to output any
solution of Pigeon or

2. u ∈ [n] such that psu ̸= u. (successor/predecessor mismatch)

37

This problem is known to be PPADSdt-complete (see, e.g., [GHJ+22, Lemma 1]) so that RPigeondt =
PPADSdt. The following key lemma is implicit in [BCE+98, §3.1].

Lemma 12. If R ∈ PPPdt and R is glueable, then R ∈ PPADSdt.

Proof. Fix a Pigeonm-formulation (fi, gi,i′)i,i′∈[m] of Rn that witnesses R ∈ PPPdt and let (Ti, Si,i′)
be decision trees of depth k = poly(log n) implementing this reduction. Since R is glueable, it
is possible to complete the root-to-leaf paths of each Ti to get a reduction (T ′

i , Si,i′) of depth
d = poly(log n) for which the set P = ∪i∈[m]leaves(T ′

i) is k-glueable. (Note that each Si,i′ remains
unchanged and has depth at most k.) We show how to construct decision trees (Hj)j∈[m] of depth
≤ d2 that compute reverse pointers for each hole of the Pigeonm instance. We start with the
following claim.

Claim 6. Suppose p ∈ leaves(T ′
i) and p′ ∈ leaves(T ′

i′) are distinct leaves that are both non-witnessing
and labelled with the same hole. Then p and p′ are inconsistent.

Proof. If i = i′, then the claim is true since any two distinct leaves of the same tree are inconsistent.
Suppose i ̸= i′ and suppose for contradiction that p and p′ are consistent. Then, (i, i′) is a valid
solution to the Pigeonm instance (T ′

1(z), T ′
2(z), . . . , T ′

m(z)) for any z ∈ {0, 1}n extending p ∪ p′. By
correctness of the reduction, this further implies that Si,i′ can solve (Rn ↾ p ∪ p′) with at most k
queries—but this contradicts the fact that P is k-glueable.

Let us write Pj ⊆ P for the set of all non-witnessing partial assignment corresponding to leaves
labelled with hole j. The predecessor tree Hj computes as follows. Pick an arbitrary leaf p ∈ Pj

and query all the variables contained in p. At every leaf x ∈ {0, 1, ∗}n of the current version of Hj ,
the next step depends on the set of x-consistent assignments P x

j = {p ∈ Pj : p consistent with x}.

1. If |P x
j | = 0, then output label null.

2. If |P x
j | = 1, then output the unique i ∈ [m] (by Claim 6) such that P x

j ∩ leaves(T ′
i) ̸= ∅.

3. If |P x
j | ≥ 2, pick an arbitrary p ∈ P x

j and recurse by querying its variables, etc.

Note that each predecessor tree Hj has depth at most d2: by pairwise inconsistency of Pj , at most
d paths are queried each of depth at most d. To complete the RPigeonm-formulation of Rn, it
remains to specify decision trees (Si)i∈[m] that transform RPigeonm-solutions of type (2) into
Rn-solutions. Indeed, suppose T ′

i (z) = j but Hj(z) ̸= i for some input z to Rn. Then, since Hj

decides unambiguously which non-witnessing assignment in Pj is consistent with z (if any), it must
be the case that the leaf outputting T ′

i (z) = j is not in Pj , which means that it is witnessing. Thus,
Si(z) simply runs T ′

i (z) and an Rn-solution must be witnessed during its execution.

We note that the method used to disambiguate pigeons in Lemma 12 is common. For instance,
it is key to prove the folklore certificate-to-query result D(f) ≤ C1(f) ·C0(f) for boolean functions f .
To show Theorem 4, the last missing piece is to show that SoD is glueable. Indeed, if SoD ∈ PPPdt,
then Lemma 12 would imply that PLSdt ⊆ PPADSdt, which contradicts Corollary 1. We show that
SoD is glueable in Lemma 13 below.

For technical convenience, we consider here a minor variation of how we encode the successor
pointers in the input to SoD. We let the input consist of successor pointers su ∈ [n] for each grid
node u ∈ [n]× [n] as well as an “active” bit au ∈ {0, 1}, where au = 0 means that u has a null pointer.
This is merely a different way to encode null successors, and indeed, there is a trivial reduction
to and from the original SoD problem. The advantage of this new encoding is that it allows for
querying the activity of a node without querying its successor. This simplifies the completion process
in the proof below.

38

Lemma 13. SoD is glueable.

Proof. We show that SoDn is O(k)-glueable. Fix some partial SoDn-assignment x = (s, a) of
size k = poly(log n), that is, su ∈ [n] ∪ {∗} and au ∈ {0, 1, ∗} for each grid node u ∈ [n] × [n].
The decision tree T completing x starts by checking whether x queries any active node below row
n− k − 1. If yes, T picks any one such active node and follows the successor path until a sink is
found, making the completion witnessing. Note that this step incurs at most O(k) queries. Finally,
T ensures that any successor query in x is followed by a query to the active bit of the successor.
This costs at most O(k) further queries.

Let P be an arbitrary set of partial assignments each of size at most k = poly(log n) and let P ′

be its completion with respect to the procedure defined above. We first show that P ′ is k-gluable.
Pick any two non-witnessing and consistent p, p′ ∈ P ′ and suppose toward contradiction that their
union p∪p′ is witnessing. If it reveals a SoD solution u of type (1) or (2), then it must be that one of
p and p′ checks for the active bit of u: a contradiction with the fact that p and p′ are non-witnessing.
On the other hand, if p ∪ p′ reveals a solution u of type (3), then it must be that one of p and p′

checks for the successor su of u, but the completion T forces this check to be followed by a query to
the active bit of su, making one of the initial partial assignments witnessing as well. Hence p ∪ p′ is
non-witnessing.

We finally argue that (Rn ↾ p∪p′) has query complexity greater than k by describing an adversary
that can fool any further k queries to p ∪ p′ without witnessing a solution. Recall that p ∪ p′ makes
no queries to nodes below row n− k − 1. The adversary answers queries as follows. If the successor
pointer of an active node is queried, then we answer with a pointer to any unqueried node on the
next row and make it active (there always exists one as k ≪ n). If a node u is queried that is not
the successor of any node, we make u inactive (au = 0 and su is arbitrary). This scheme ensures
that a solution can only lie on the very last row n, which is not reachable in k queries starting from
row n− k − 1.

8.3 EOPLdt ̸⊆ UEOPLdt

We prove Theorem 5 using a similar plan as in Section 8.2 above. Namely, we first show (Lemma 14)
that if we have a problem R ∈ UEOPLdt that is glueable, then in fact R ∈ FPdt, that is, Rn admits
a shallow decision tree solving it. Second, we show (Lemma 15) that EoPLn is glueable. The
combination of these two lemmas implies that if EOPLdt ⊆ UEOPLdt, then EOPLdt = FPdt. But it
is known from prior work [HY20] (building on [Ald83, Zha09]) that EOPLdt ̸= FPdt. This proves
Theorem 5.

It remains to prove Lemmas 14 and 15.

Lemma 14. If R ∈ UEOPLdt and R is glueable, then R ∈ FPdt.

Proof. Fix an UEoPLm-formulation (fu, gu,u′)u,u′∈[m]×[m] of Rn that witnesses R ∈ UEOPLdt and
let (Tu, Su,u′) be decision trees of depth k = poly(log n) implementing this reduction. Note that the
leaves of each Tu are labelled by a successor and predecessor pointers in [m]. At the cost of doubling
the depth of each Tu, we may assume that each leaf is additionally labelled with an “activity” bit,
which can be computed by appending to each leaf labelled with successor v the decision tree Tv.
Since R is glueable, it is possible to further complete the leaves of each Tu to get a reduction
(T ′

u, Su,u′) of depth d = poly(log n) for which the set of leaves P = ∪u∈[m]×[m]leaves(T ′
u) is k-glueable

and each leaf label carries the aforementioned activity bit. Let us say that a node u is good for
input z if the leaf reached by T ′

u(z) is non-witnessing and u is active.

Claim 7. For every input z, there is at most one good node on each row.

39

⇝T

k + 1

k + 1

⊥

⊥

⊥

Completion by T

⊥

⊥

⊥

Partial assignment x

Figure 8: Example of a non-witnessing completion. A node is blue if au = 1, orange if au = 0, and white
if au = ∗ is not queried. The symbol ⊥ indicates a null pointer. The first and last k + 1 rows contain no
active nodes, besides those lying on the path starting at the distinguished node (1, 1).

Proof. Fix a row j ∈ [m] and suppose for the sake of contradiction that the j-th row contains two
good nodes u′ and u on some input z. Let p ∈ leaves(T ′

u) and p′ ∈ leaves(T ′
u′) be the leaves reached

on input z. Then p and p′ are a pair of non-witnessing and consistent assignments. Thus, (u, u′)
is a solution to UEoPLm on any input that extends p ∪ p′. Hence the depth-k decision tree Su,u′

solves the search problem (Rn ↾ p ∪ p′). But this contradicts the fact that P is k-glueable.

Using this claim similarly as in the proof of Lemma 12, we can construct, for each row j ∈ [m], a
decision tree Aj of depth ≤ d2 that computes the column-index of a good node on row j or outputs
null if the row contains no good node. The main argument is again the disambiguation trick.

We can now design an efficient decision tree for Rn: At the cost of running O(logm) = poly(log n)
of the Aj trees, perform a binary search over the m rows to find a good node u on row j such that
the next row j + 1 contains no good nodes. This means that either (i) the successor of u is inactive,
in which case we have found a solution to UEoPLm and we can use the S-trees to find a solution
to Rn, or (ii) the successor u′ of u is active and T ′

u′(z) is witnessing, which solves Rn.

We next show that an EOPLdt-complete problem is glueable. Instead of working with EoPLn,
it is convenient again to vary the input encoding. We define EoPL∗ as a version of EoPL where in
addition to successor/predecessor pointers, we are also given an “activity” bit.

End-of-Potential-Line∗ (EoPL∗
n). In addition to predecessor/successor pointers, each u ∈

[n] × [n] has an activity indicator bit au ∈ {0, 1}. We add the following solutions to EoPL:

5. u, if u’s activity does not match au. (active bit mismatch)

6. u, if av = 0 and (sv ̸= null or pv ̸= null). (inactive node with a pointer)

7. u, if av = 1 and (sv = null or pv = null). (active node with a null-pointer)

Note that EoPL∗ is efficiently reducible to and from EoPL, so that EoPL∗ is EOPLdt-complete.

Lemma 15. EoPL∗ is glueable.

40

Proof. We show that EoPL∗ is O(k)-glueable. Fix some partial EoPL∗-assignment x = (p, s, a) of
size k = poly(log n). The tree T that completes x proceeds as follows. We start by querying all
variables assigned in x. Then we iterate each of the following steps until a solution is found or no
further queries are made.

1. Always query activity bits and reverse pointers. If we have queried a null-pointer sv = null or
pv = null, then we also query the activity bit av. This activity bit is av = 0 unless we have
found a solution of type (7).

Moreover, if we have queried a non-null pointer su = v (resp. pu = v), then we also query
the bits au, av and the pointer pv (resp. sv). Note that both activity bits must be 1 and the
reverse pointer must point back, pv = u (resp. sv = u), as otherwise we can find a solution by
making a couple more queries. Indeed, if au = 0, then there is a solution of type (6). If au = 1
and av = 0, then we can find a solution by determining the activity of v: either v is active,
which is a mismatch with av = 0 (type (5)), or v is inactive, which creates a sink. Finally,
if au = 1 and pv ̸= u, then u is inactive, which is a mismatch with au = 1 (type (5)).

2. Follow the distinguished path. Follow the successor path starting at the distinguished source
node (1, 1) until some node on row k + 1 is reached or a sink is found.

3. Follow early paths. If we have queried au = 1 for some node u in the first k + 1 rows that does
not lie on the path discovered in Item 2, then we follow u’s predecessor path until a solution
is found.

4. Follow late paths. If we have queried au = 1 for some node u in the last k + 1 rows, then we
follow u’s successor path until a solution is found.

This completion adds at most O(k) queries to x. An example of a completion that is non-witnessing
is given in Figure 8. It is straightforward to argue that the resulting set of completed assignments is
k-glueable using an adversary strategy similar to the one described in the proof of Lemma 13.

A Appendix: Coefficient Size in Algebraic Proofs

In this appendix we show that if there are low-degree Nullstellensatz and Sherali–Adams refutations
over Z, then the coefficients in the refutations will also be not too large in magnitude. In particular,
if the degree of the proofs are d, the the magnitude of the coefficients can be assumed to be at
most exp(nO(d)) without loss of generality. For Sherali–Adams this follows easily as any Sherali–
Adams refutation over the reals can be converted into a Sherali–Adams refutation over Z without
badly affecting the coefficient size.

Theorem 15. Let F be an unsatisfiable CNF formula on n variables and m clauses. If there is a
degree-d Sherali–Adams refutation of F then there is a degree-d Sherali–Adams refutation of F over
Z where every coefficient is bounded in magnitude by exp(nO(d)).

Proof. This is essentially the usual proof of completeness for Sherali–Adams (see e.g. [FKP19]).
Consider a degree-d Sherali–Adams refutation of F which, by Lemma 6, we can write as

m∑
i=1

−JiCi + J = −1.

We can express the existence of such a proof as a system of integer linear inequalities of the form
Ax = b, x ≥ 0 over mnO(d) = nO(d) variables and over nO(d) constraints where all coefficients of the

41

matrix A and b are in {1, 0,−1}, and indeed b has a single non-zero entry with value −1 (see [FKP19,
Chapter 2] for an explicit description of the system). By known results on linear programming this
implies that the coefficients of the above Sherali–Adams refutation can be assumed to be rational
with description length nO(d). Let L be the least common multiple of the denominators all rational
numbers occurring in the refutation. By multiplying through by L we obtain the identity

m∑
i=1

−LJiCi + LJ = −L.

We can then add the integer L − 1 to both sides (noting that LJ + L − 1 is a conical junta) to
obtain an integer-coefficient Sherali–Adams refutation with the desired coefficient bound.

For Nullstellensatz the proof is slightly different as we need to recruit known bounds for integer
solutions to systems of linear equations.

Theorem 16. Let F be an unsatisfiable CNF formula on n variables and m clauses. If there is a
degree-d Nullstellensatz refutation of F over Z, then there is a degree-d Nullstellensatz refutation
over Z where every coefficient has magnitude at most exp(nO(d)).

Proof. This follows the standard proof of completeness for Nullstellensatz proofs (see e.g. [Pit96,
Bus98]). Write F = C1 ∧ · · · ∧ Cm and suppose F has n variables. A degree-d Z-Nullstellensatz
proof of F can be written as

m∑
i=1

qiCi = 1

for some integer-coefficient multilinear polynomials qi. We can express the existence of such a proof
as a system of Z-linear equations Ax = b over mnO(d) variables — roughly one variable for each
monomial m of degree at most d — where each coefficient in A and b is small. The result then
follows by the known strongly-polynomial time algorithms for finding integer solutions to systems of
linear equations over Z (in particular, via the Hermite Normal Form [KB79]).

The system of linear equations is defined as follows. For each i ∈ [m] and S ⊆ [n] with |S| ≤ d
we let q̂i(S) ∈ Z denote the coefficient of the monomial xS =

∏
i∈S xi in the polynomial qi. Letting

Cn,d denote all subsets of [n] of size d, we can write the Nullstellensatz refutation as

m∑
i=1

∑
S∈Cn,d

q̂i(S)xSCi = 1.

From this, we get a system of Z-linear equations over variables q̂i(S) for each i ∈ [m], S ∈ Cn,d

enforcing that all monomials in the proof of degree d > 1 must cancel out to 0, and the monomials
of degree 0 must sum to 1. The system of equations has one constraint for each monomial xS with
S ∈ Cn,d and at most m|Cn,d| ≤ mnO(d) variables; each coefficient in the system of linear equations
is ±1 from the expansion of xSCi into a sum of monomials. By reducing to Hermite Normal Form
we can find an integer solution to this system with coefficients of size at most exp(nO(d)).

Finally, we can consider RevRes proofs. An obvious fact is that any Resolution proof with width
w has nO(w) distinct clauses without loss of generality. However, this result fails for RevRes, since
we can no longer reuse clauses an unlimited number of times. By combining the previous results
with the intersection theorem (Theorem 14), one can also immediately deduce the following result
that gives a weak bound on the size of RevRes and RevResT proofs with bounded width. We omit
the proof.

42

Corollary 6. Let F be an unsatisfiable CNF formula on n variables. If there is a width-d RevRes
refutation of F (RevResT resp.) then there is a width-O(d) and size exp(nO(d)) RevRes refutation
of F (RevResT resp.).

Acknowledgements

We thank Albert Atserias, Ilario Bonacina, Pritish Kamath, and David Steurer for discussions,
and the anonymous reviewers for their suggestions that helped us improve the presentation of the
paper. M.G., A.H., S.J., and G.M. were supported by the Swiss State Secretariat for Education,
Research and Innovation (SERI) under contract number MB22.00026. S.J. did part of the work
while being supported by the Quantum Systems Accelerator through DOE. W.P., R.R., and R.T.
were supported by NSERC.

43

References

[AL19] Albert Atserias and Massimo Lauria. Circular (yet sound) proofs. In Proceedings of
the 22nd Theory and Applications of Satisfiability Testing (SAT), pages 1–18. Springer,
2019. doi:10.1007/978-3-030-24258-9 1.

[Ald83] David Aldous. Minimization algorithms and random walk on the d-cube. The Annals
of Probability, 11(2):403–413, 1983. URL: http://www.jstor.org/stable/2243696.

[ALN16] Albert Atserias, Massimo Lauria, and Jakob Nordström. Narrow proofs may be
maximally long. ACM Transactions on Computational Logic, 17(3):1–30, 2016. doi:

10.1145/2898435.

[BB22] Ilario Bonacina and Maria Luisa Bonet. On the strength of Sherali-Adams and
Nullstellensatz as propositional proof systems. In Proceedings of the 37th Symposium
on Logic in Computer Science (LICS). ACM, aug 2022. doi:10.1145/3531130.3533344.

[BCE+98] Paul Beame, Stephen Cook, Jeff Edmonds, Russell Impagliazzo, and Toniann Pitassi.
The relative complexity of NP search problems. Journal of Computer and System
Sciences, 57(1):3–19, 1998. doi:10.1006/jcss.1998.1575.

[BCIP02] Joshua Buresh-Oppenheim, Matthew Clegg, Russell Impagliazzo, and Toniann Pitassi.
Homogenization and the polynomial calculus. Computational Complexity, 11(3-4):91–
108, 2002. doi:10.1007/s00037-002-0171-6.

[Ben09] Eli Ben-Sasson. Size-space tradeoffs for resolution. SIAM Journal on Computing,
38(6):2511–2525, 2009. doi:10.1137/080723880.

[BFI22] Sam Buss, Noah Fleming, and Russell Impagliazzo. TFNP characterizations of proof
systems and monotone circuits, 2022. URL: https://eccc.weizmann.ac.il/report/2022/141/.

[BIK+94] Paul Beame, Russell Impagliazzo, Jan Kraj́ıček, Toniann Pitassi, and Pavel Pudlák.
Lower bounds on Hilbert’s Nullstellensatz and propositional proofs. In Proceedings
of the 35th Symposium on Foundations of Computer Science (FOCS), pages 794–806,
1994. doi:10.1109/SFCS.1994.365714.

[BKT14] Samuel Buss, Leszek Aleksander Ko lodziejczyk, and Neil Thapen. Fragments of
approximate counting. The Journal of Symbolic Logic, 79(2):496–525, 2014. URL:
http://www.jstor.org/stable/43303745.

[BLM07] Maŕıa Luisa Bonet, Jordi Levy, and Felip Manyà. Resolution for Max-SAT. Artificial
Intelligence, 171(8-9):606–618, 2007. doi:10.1016/j.artint.2007.03.001.

[BM04] Joshua Buresh-Oppenheim and Tsuyoshi Morioka. Relativized NP search problems
and propositional proof systems. In Proceedings of the 19th IEEE Conference on
Computational Complexity (CCC), pages 54–67, 2004. doi:10.1109/CCC.2004.1313795.

[BR98] Paul Beame and Søren Riis. More on the relative strength of counting principles. In
Proceedings of the DIMACS Workshop on Proof Complexity and Feasible Arithmetics,
volume 39, pages 13–35, 1998.

44

https://doi.org/10.1007/978-3-030-24258-9_1
http://www.jstor.org/stable/2243696
https://doi.org/10.1145/2898435
https://doi.org/10.1145/2898435
https://doi.org/10.1145/3531130.3533344
https://doi.org/10.1006/jcss.1998.1575
https://doi.org/10.1007/s00037-002-0171-6
https://doi.org/10.1137/080723880
https://eccc.weizmann.ac.il/report/2022/141/
https://doi.org/10.1109/SFCS.1994.365714
http://www.jstor.org/stable/43303745
https://doi.org/10.1016/j.artint.2007.03.001
https://doi.org/10.1109/CCC.2004.1313795

[BT22] Ilario Bonacina and Neil Thapen. A separation of PLS from PPP. Technical report,
Electronic Colloquium on Computational Complexity (ECCC), 2022. URL: https:

//eccc.weizmann.ac.il/report/2022/089/.

[Bus98] Samuel Buss. Lower bounds on Nullstellensatz proofs via designs. In Proof Complexity
and Feasible Arithmetics, pages 59–71. AMS, 1998.

[CDDT09] Xi Chen, Decheng Dai, Ye Du, and Shang-Hua Teng. Settling the complexity of
Arrow-Debreu equilibria in markets with additively separable utilities. In Proceedings
of the 50th Symposium on Foundations of Computer Science (FOCS), pages 273–282,
2009. doi:10.1109/FOCS.2009.29.

[CDO15] Xi Chen, David Durfee, and Anthi Orfanou. On the complexity of Nash equilibria in
anonymous games. In Proceedings of the 47th Symposium on Theory of Computing
(STOC), pages 381–390, 2015. doi:10.1145/2746539.2746571.

[CDT09] Xi Chen, Xiaotie Deng, and Shang-Hua Teng. Settling the complexity of computing
two-player Nash equilibria. Journal of the ACM, 56(3):14:1–14:57, 2009. doi:10.1145/

1516512.1516516.

[CEI96] Matthew Clegg, Jeff Edmonds, and Russell Impagliazzo. Using the Groebner basis
algorithm to find proofs of unsatisfiability. In Proceedings of the 28th Symposium on
Theory of Computing (STOC), pages 174–183, 1996. doi:10.1145/237814.237860.

[CPY17] Xi Chen, Dimitris Paparas, and Mihalis Yannakakis. The complexity of non-monotone
markets. Journal of the ACM, 64(3):20:1–20:56, 2017. doi:10.1145/3064810.

[CR79] Stephen Cook and Robert Reckhow. The relative efficiency of propositional proof
systems. Journal of Symbolic Logic, 44(1):36–50, 1979. doi:10.2307/2273702.

[CSVY08] Bruno Codenotti, Amin Saberi, Kasturi Varadarajan, and Yinyu Ye. The complexity of
equilibria: Hardness results for economies via a correspondence with games. Theoretical
Computer Science, 408(2–3):188–198, 2008. doi:10.1016/j.tcs.2008.08.007.

[Das19] Constantinos Daskalakis. Equilibria, fixed points, and computational complexity. In
Proceedings of the International Congress of Mathematicians (ICM). World Scientific,
2019. doi:10.1142/9789813272880 0009.

[DGP09] Constantinos Daskalakis, Paul Goldberg, and Christos Papadimitriou. The complexity
of computing a Nash equilibrium. SIAM Journal on Computing, 39(1):195–259, 2009.
doi:10.1137/070699652.

[DM12] Stefan Dantchev and Barnaby Martin. Rank complexity gap for Lovász-Schrijver
and Sherali-Adams proof systems. computational complexity, 22(1):191–213, nov 2012.
doi:10.1007/s00037-012-0049-1.

[DMR09] Stefan Dantchev, Barnaby Martin, and Mark Rhodes. Tight rank lower bounds for the
Sherali–Adams proof system. Theoretical Computer Science, 410(21-23):2054–2063,
2009. doi:10.1016/j.tcs.2009.01.002.

[DP11] Constantinos Daskalakis and Christos Papadimitriou. Continuous local search. In
Proceedings of the 22nd Symposium on Discrete Algorithms (SODA), pages 790–804.
SIAM, 2011. doi:10.1137/1.9781611973082.62.

45

https://eccc.weizmann.ac.il/report/2022/089/
https://eccc.weizmann.ac.il/report/2022/089/
https://doi.org/10.1109/FOCS.2009.29
https://doi.org/10.1145/2746539.2746571
https://doi.org/10.1145/1516512.1516516
https://doi.org/10.1145/1516512.1516516
https://doi.org/10.1145/237814.237860
https://doi.org/10.1145/3064810
https://doi.org/10.2307/2273702
https://doi.org/10.1016/j.tcs.2008.08.007
https://doi.org/10.1142/9789813272880_0009
https://doi.org/10.1137/070699652
https://doi.org/10.1007/s00037-012-0049-1
https://doi.org/10.1016/j.tcs.2009.01.002
https://doi.org/10.1137/1.9781611973082.62

[DQS12] Xiaotie Deng, Qi Qi, and Amin Saberi. Algorithmic solutions for envy-free cake cutting.
Operations Research, 60(6):1461–1476, 2012. doi:10.1287/opre.1120.1116.

[dRGR22] Susanna de Rezende, Mika Göös, and Robert Robere. Proofs, circuits, and communi-
cation. SIGACT News, 53(1), 2022. doi:10.1145/3532737.3532745.

[dRNMR19] Susanna de Rezende, Jakob Nordström, Or Meir, and Robert Robere. Nullstellensatz
size-degree trade-offs from reversible pebbling. In Amir Shpilka, editor, Proceedings of
the 34th Computational Complexity Conference (CCC), volume 137, pages 18:1–18:16.
Schloss Dagstuhl, 2019. doi:10.4230/LIPIcs.CCC.2019.18.

[FG22] Aris Filos-Ratsikas and Paul Goldberg. The complexity of necklace splitting, consensus-
halving, and discrete ham sandwich. SIAM Journal on Computing, 2022. (to appear).
doi:10.1137/20m1312678.

[FGGR22] Noah Fleming, Mika Göös, Stefan Grosser, and Robert Robere. On semi-algebraic proofs
and algorithms. In Proceedings of the 13th Innovations in Theoretical Computer Science
Conference (ITCS), volume 215 of Leibniz International Proceedings in Informatics
(LIPIcs), pages 69:1–69:25. Schloss Dagstuhl, 2022. doi:10.4230/LIPIcs.ITCS.2022.69.

[FGHS21] John Fearnley, Paul W. Goldberg, Alexandros Hollender, and Rahul Savani. The
complexity of gradient descent: CLS = PPAD ∩ PLS. In Proceedings of the 53rd
Symposium on Theory of Computing (STOC), pages 46–59, 2021. doi:10.1145/3406325.

3451052.

[FGMS20] John Fearnley, Spencer Gordon, Ruta Mehta, and Rahul Savani. Unique end of
potential line. Journal of Computer and System Sciences, 114:1–35, 2020. doi:10.1016/j.

jcss.2020.05.007.

[FKP19] Noah Fleming, Pravesh Kothari, and Toniann Pitassi. Semialgebraic proofs and
efficient algorithm design. Foundations and Trends in Theoretical Computer Science,
14(1-2):1–221, 2019. doi:10.1561/0400000086.

[FMSV23] Yuval Filmus, Meena Mahajan, Gaurav Sood, and Marc Vinyals. Maxsat resolution and
subcube sums. ACM Trans. Comput. Log., 24(1):8:1–8:27, 2023. doi:10.1145/3565363.

[FPT04] Alex Fabrikant, Christos Papadimitriou, and Kunal Talwar. The complexity of pure
Nash equilibria. In Proceedings of the 36th ACM Symposium on Theory of Computing
(STOC), pages 604–612, 2004. doi:10.1145/1007352.1007445.

[GHJ+22] Mika Göös, Alexandros Hollender, Siddhartha Jain, Gilbert Maystre, William Pires,
Robert Robere, and Ran Tao. Further collapses in TFNP. In Proceedings of the 37th
Computational Complexity Conference (CCC), pages 33:1–33:15, 2022. doi:10.4230/

LIPICS.CCC.2022.33.

[GKRS18] Mika Göös, Pritish Kamath, Robert Robere, and Dmitry Sokolov. Adventures in
monotone complexity and TFNP. In Proceedings of the 10th Innovations in Theoretical
Computer Science Conference (ITCS), volume 124, pages 38:1–38:19, 2018. doi:10.4230/

LIPIcs.ITCS.2019.38.

[GP18] Mika Göös and Toniann Pitassi. Communication lower bounds via critical block sensi-
tivity. SIAM Journal on Computing, 47(5):1778–1806, 2018. doi:10.1137/16M1082007.

46

https://doi.org/10.1287/opre.1120.1116
https://doi.org/10.1145/3532737.3532745
https://doi.org/10.4230/LIPIcs.CCC.2019.18
https://doi.org/10.1137/20m1312678
https://doi.org/10.4230/LIPIcs.ITCS.2022.69
https://doi.org/10.1145/3406325.3451052
https://doi.org/10.1145/3406325.3451052
https://doi.org/10.1016/j.jcss.2020.05.007
https://doi.org/10.1016/j.jcss.2020.05.007
https://doi.org/10.1561/0400000086
https://doi.org/10.1145/3565363
https://doi.org/10.1145/1007352.1007445
https://doi.org/10.4230/LIPICS.CCC.2022.33
https://doi.org/10.4230/LIPICS.CCC.2022.33
https://doi.org/10.4230/LIPIcs.ITCS.2019.38
https://doi.org/10.4230/LIPIcs.ITCS.2019.38
https://doi.org/10.1137/16M1082007

[Hak21] Tuomas Hakoniemi. Monomial size vs. bit-complexity in sums-of-squares and polyno-
mial calculus. In Proceedings of the 36th Symposium on Logic in Computer Science
(LICS). IEEE, 2021. doi:10.1109/lics52264.2021.9470545.

[HKT24] Pavel Hubáček, Erfan Khaniki, and Neil Thapen. TFNP Intersections Through the
Lens of Feasible Disjunction. In Venkatesan Guruswami, editor, 15th Innovations in
Theoretical Computer Science Conference (ITCS 2024), volume 287 of Leibniz Inter-
national Proceedings in Informatics (LIPIcs), pages 63:1–63:24, Dagstuhl, Germany,
2024. Schloss Dagstuhl – Leibniz-Zentrum für Informatik. URL: https://drops.dagstuhl.
de/entities/document/10.4230/LIPIcs.ITCS.2024.63, doi:10.4230/LIPIcs.ITCS.2024.63.

[HN12] Trinh Huynh and Jakob Nordström. On the virtue of succinct proofs: Amplifying
communication complexity hardness to time–space trade-offs in proof complexity. In
Proceedings of the 44th Symposium on Theory of Computing (STOC), pages 233–248.
ACM, 2012. doi:10.1145/2213977.2214000.

[HY20] Pavel Hubáček and Eylon Yogev. Hardness of continuous local search: Query complexity
and cryptographic lower bounds. SIAM Journal on Computing, 49(6):1128–1172, 2020.
doi:10.1137/17m1118014.

[IR21] Dmitry Itsykson and Artur Riazanov. Proof complexity of natural formulas via
communication arguments. In Proceedings of the 36th Computational Complexity
Conference (CCC), volume 200, pages 3:1–3:34. Schloss Dagstuhl, 2021. doi:10.4230/

LIPIcs.CCC.2021.3.

[JLRX24] Siddhartha Jain, Jiawei Li, Robert Robere, and Zhiyang Xun. On Pigeonhole Principles
and Ramsey in TFNP, 2024. arXiv:2401.12604.

[JPY88] David Johnson, Christos Papadimitriou, and Mihalis Yannakakis. How easy is local
search? Journal of Computer and System Sciences, 37(1):79–100, 1988. doi:10.1016/

0022-0000(88)90046-3.

[Juk12] Stasys Jukna. Boolean Function Complexity: Advances and Frontiers, volume 27 of
Algorithms and Combinatorics. Springer, 2012.

[Kam20] Pritish Kamath. Some hardness escalation results in computational complexity theory.
PhD thesis, Massachusetts Institute of Technology, 2020. URL: https://dspace.mit.edu/

handle/1721.1/128290.

[KB79] Ravindran Kannan and Achim Bachem. Polynomial algorithms for computing the
smith and hermite normal forms of an integer matrix. SIAM Journal on Computing,
8(4):499–507, 1979. doi:10.1137/0208040.

[Kra19] Jan Kraj́ıček. Proof Complexity. Cambridge University Press, 2019.

[Kre89] Mark Krentel. Structure in locally optimal solutions. In Proceedings of the 30th
Symposium on Foundations of Computer Science (FOCS), pages 216–221, 1989. doi:

10.1109/SFCS.1989.63481.

[Kre90] Mark Krentel. On finding and verifying locally optimal solutions. SIAM Journal on
Computing, 19(4):742–749, 1990. doi:10.1137/0219052.

47

https://doi.org/10.1109/lics52264.2021.9470545
https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ITCS.2024.63
https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ITCS.2024.63
https://doi.org/10.4230/LIPIcs.ITCS.2024.63
https://doi.org/10.1145/2213977.2214000
https://doi.org/10.1137/17m1118014
https://doi.org/10.4230/LIPIcs.CCC.2021.3
https://doi.org/10.4230/LIPIcs.CCC.2021.3
http://arxiv.org/abs/2401.12604
https://doi.org/10.1016/0022-0000(88)90046-3
https://doi.org/10.1016/0022-0000(88)90046-3
https://dspace.mit.edu/handle/1721.1/128290
https://dspace.mit.edu/handle/1721.1/128290
https://doi.org/10.1137/0208040
https://doi.org/10.1109/SFCS.1989.63481
https://doi.org/10.1109/SFCS.1989.63481
https://doi.org/10.1137/0219052

[LHdG08] Javier Larrosa, Federico Heras, and Simon de Givry. A logical approach to efficient
Max-SAT solving. Artificial Intelligence, 172(2-3):204–233, 2008. doi:10.1016/j.artint.

2007.05.006.

[LNNW95] László Lovász, Moni Naor, Ilan Newman, and Avi Wigderson. Search problems in
the decision tree model. SIAM Journal on Discrete Mathematics, 8(1):119–132, 1995.
doi:10.1137/S0895480192233867.

[LPR24] Yuhao Li, William Pires, and Robert Robere. Intersection Classes in TFNP and
Proof Complexity. In Venkatesan Guruswami, editor, 15th Innovations in Theoretical
Computer Science Conference (ITCS 2024), volume 287 of Leibniz International
Proceedings in Informatics (LIPIcs), pages 74:1–74:22, Dagstuhl, Germany, 2024.
Schloss Dagstuhl – Leibniz-Zentrum für Informatik. URL: https://drops.dagstuhl.de/

entities/document/10.4230/LIPIcs.ITCS.2024.74, doi:10.4230/LIPIcs.ITCS.2024.74.

[Meh18] Ruta Mehta. Constant rank two-player games are PPAD-hard. SIAM Journal on
Computing, 47(5):1858–1887, January 2018. doi:10.1137/15m1032338.

[Mor01] Tsuyoshi Morioka. Classification of search problems and their definability in
bounded arithmetic. Master’s thesis, University of Toronto, 2001. URL: https:

//www.collectionscanada.ca/obj/s4/f2/dsk3/ftp04/MQ58775.pdf.

[MP91] Nimrod Megiddo and Christos Papadimitriou. On total functions, existence theorems
and computational complexity. Theoretical Computer Science, 81(2):317–324, 1991.
doi:10.1016/0304-3975(91)90200-L.

[NS94] Noam Nisan and Mario Szegedy. On the degree of boolean functions as real polynomials.
Computational Complexity, 4(4):301–313, dec 1994. doi:10.1007/bf01263419.

[O’D17] Ryan O’Donnell. SOS is not obviously automatizable, even approximately. In Pro-
ceedings of the 8th Innovations in Theoretical Computer Science Conference (ITCS),
volume 67, pages 59:1–59:10. Schloss Dagstuhl, 2017. doi:10.4230/LIPIcs.ITCS.2017.59.

[Pap94] Christos Papadimitriou. On the complexity of the parity argument and other inefficient
proofs of existence. Journal of Computer and System Sciences, 48(3):498–532, 1994.
doi:10.1016/s0022-0000(05)80063-7.

[Pit96] Toniann Pitassi. Algebraic propositional proof systems. In Descriptive Complexity
and Finite Models, Proceedings of a DIMACS Workshop 1996, volume 31 of DIMACS
Series in Discrete Mathematics and Theoretical Computer Science, pages 215–244.
DIMACS/AMS, 1996. doi:10.1090/dimacs/031/07.

[Pud15] Pavel Pudlák. On the complexity of finding falsifying assignments for Herbrand
disjunctions. Archive for Mathematical Logic, 54(7-8):769–783, 2015. doi:10.1007/

s00153-015-0439-6.

[RW92] Ran Raz and Avi Wigderson. Monotone circuits for matching require linear depth.
Journal of the ACM, 39(3):736–744, jul 1992. doi:10.1145/146637.146684.

[RW17] Prasad Raghavendra and Benjamin Weitz. On the bit complexity of sum-of-squares
proofs. In Proceedings of the 44th International Colloquium on Automata, Languages,
and Programming (ICALP), pages 80:1–80:13, 2017. doi:10.4230/LIPIcs.ICALP.2017.80.

48

https://doi.org/10.1016/j.artint.2007.05.006
https://doi.org/10.1016/j.artint.2007.05.006
https://doi.org/10.1137/S0895480192233867
https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ITCS.2024.74
https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ITCS.2024.74
https://doi.org/10.4230/LIPIcs.ITCS.2024.74
https://doi.org/10.1137/15m1032338
https://www.collectionscanada.ca/obj/s4/f2/dsk3/ftp04/MQ58775.pdf
https://www.collectionscanada.ca/obj/s4/f2/dsk3/ftp04/MQ58775.pdf
https://doi.org/10.1016/0304-3975(91)90200-L
https://doi.org/10.1007/bf01263419
https://doi.org/10.4230/LIPIcs.ITCS.2017.59
https://doi.org/10.1016/s0022-0000(05)80063-7
https://doi.org/10.1090/dimacs/031/07
https://doi.org/10.1007/s00153-015-0439-6
https://doi.org/10.1007/s00153-015-0439-6
https://doi.org/10.1145/146637.146684
https://doi.org/10.4230/LIPIcs.ICALP.2017.80

[SA94] Hanif Sherali and Warren Adams. A hierarchy of relaxations and convex hull char-
acterizations for mixed-integer zero–one programming problems. Discrete Applied
Mathematics, 52(1):83–106, jul 1994. doi:10.1016/0166-218x(92)00190-w.

[Sch91] Alejandro Schäffer. Simple local search problems that are hard to solve. SIAM Journal
on Computing, 20(1):56–87, 1991. doi:10.1137/0220004.

[SZZ18] Katerina Sotiraki, Manolis Zampetakis, and Giorgos Zirdelis. PPP-completeness
with connections to cryptography. In Proceedings of the 59th IEEE Symposium on
Foundations of Computer Science (FOCS), pages 148–158, 2018. doi:10.1109/FOCS.2018.

00023.

[Zha09] Shengyu Zhang. Tight bounds for randomized and quantum local search. SIAM
Journal on Computing, 39(3):948–977, 2009. doi:10.1137/06066775X.

49
ECCC ISSN 1433-8092

https://eccc.weizmann.ac.il

https://doi.org/10.1016/0166-218x(92)00190-w
https://doi.org/10.1137/0220004
https://doi.org/10.1109/FOCS.2018.00023
https://doi.org/10.1109/FOCS.2018.00023
https://doi.org/10.1137/06066775X

