
Diameter versus Certificate Complexity of Boolean
Functions∗

Siddhesh Chaubal† Anna Gál‡

Abstract

In this paper, we introduce a measure of Boolean functions we call diameter, that
captures the relationship between certificate complexity and several other measures of
Boolean functions. Our measure can be viewed as a variation on alternating number,
but while alternating number can be exponentially larger than certificate complexity,
we show that diameter is always upper bounded by certificate complexity. We argue
that estimating diameter may help to get improved bounds on certificate complexity
in terms of sensitivity, and other measures.

Previous results due to Lin and Zhang [21] imply that s(f) ≥ Ω(n1/3) for transitive
functions with constant alternating number. We improve and extend this bound and
prove that s(f) ≥

√
n for transitive functions with constant alternating number, as well

as for transitive functions with constant diameter. We also show that bs(f) ≥ Ω(n3/7)
for transitive functions under the weaker condition that the “minimum” diameter is
constant.

Furthermore, we prove that the log-rank conjecture holds for functions of the form
f(x⊕y) for functions f with diameter bounded above by a polynomial of the logarithm
of the Fourier sparsity of the function f .

1 Introduction

The alternating number of a Boolean function f , denoted alt(f), measures how close the func-
tion is to being monotone. It was first studied by Markov [23], who showed that the minimum
number of negation gates to compute f by any Boolean circuit is exactly dlog2(alt(f) + 1)e.
This led to further studies of alternating number in connection to understanding the effect of
negation gates in various contexts such as circuit complexity [32, 35, 27, 28], learning theory
[9], and cryptography [17].

Our work is motivated by an interesting paper of Lin and Zhang [21], who studied func-
tions with small alternating number in the context of the sensitivity conjecture, and the
log-rank conjecture for XOR functions. The sensitivity conjecture of Nisan and Szegedy
[29] states that several important complexity measures, for example block sensitivity bs(f),

∗A preliminary version of this paper appeared in Proceedings of MFCS 2021.
†University of Texas at Austin, Email: spchaubal@gmail.com
‡University of Texas at Austin, Email: panni@cs.utexas.edu

1

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Report No. 59 (2022)

certificate complexity C(f), and degree deg(f) (over the reals) are all upper bounded by a
polynomial of sensitivity s(f). The sensitivity conjecture has been recently proved by Huang
[18], who showed that for any Boolean function f , deg(f) ≤ s(f)2. Huang’s result was fur-
ther strengthened by Laplante et al. [20] and Aaronson et al. [1]. Both conjectures have
been open for several decades, and - until Huang’s result resolving the sensitivity conjecture
- were verified only for a few special classes of Boolean functions. The log-rank conjecture
is still open even for XOR functions.

Both conjectures can be easily verified to hold for monotone Boolean functions. Lin and
Zhang [21] showed that both conjectures remain true for functions that are close to monotone,
that is for functions with small alternating number. More precisely, they showed that the
conjectures hold for functions with constant alternating number, as well as for functions with
alternating number bounded above by some relevant complexity measures of the functions,
such as sensitivity in the case of the sensitivity conjecture, and Fourier sparsity in the case of
the log-rank conjecture for XOR functions. Thus, their work extended the class of functions
where the conjectures can be verified. On the other hand, Dinesh and Sarma [15] presented
a function f such that alt(f) is exponentially larger than the certificate complexity C(f).
This means that the sensitivity conjecture and the log-rank conjecture for XOR functions
cannot be proved in the general case by providing upper bounds on alternating number.

Diameter of Boolean functions In this paper, we introduce a measure of Boolean
functions we call diameter, that captures the relationship between certificate complexity and
several other measures of Boolean functions. To define the diameter of a Boolean function f ,
we first consider the “distance” between a vertex of the Boolean cube and subcubes where
the function f is constant. However, instead of measuring distance by the number of edges
of the Boolean cube along a path (which would correspond to Hamming distance), we allow
flipping several bits in one step. We consider paths in the Boolean cube, where one step of the
path involves flipping a block of input bits of the function, thus each step specifies a subcube.
We require that each step along a path corresponds to a subcube where the subfunction of
f satisfies certain conditions. We define several variants, by considering different classes of
Boolean functions that can appear as subfunctions on the subcubes associated with the steps
of a path.

For example, in the first variant of our measure, the requirement is that each step along
the path corresponds to flipping bits of a minimal sensitive block of the function f . That
is, for a step x(i), x(i+1) along such a path, the requirement is that f(x(i)) 6= f(x(i+1)), but
f(x(i)) = f(y) for every y 6= x(i+1) from the subcube defined by the bits where x(i) and
x(i+1) differ. Notice that this condition means that the subfunction of f restricted to the
subcube associated with each step is either the AND function (when f(x(i)) = 0) or the
NAND function (when f(x(i)) = 1). Generalizing this idea, we define several variants of our
measure by specifying the class H of functions that can appear as subfunctions along the
steps of a legal path.

Once we specified which steps are legal along a path for a given variant of our measure,
we proceed as follows. For a given input x, we define the diameter of f on x as the length of
the shortest “legal” path from x̄ (the complement of x) to any certificate of f on x, that is
to any constant subcube containing x. Then, similarly to standard complexity measures like
certificate complexity, we take the maximum over all inputs. Depending on the class H of
functions we allow as subfunctions along steps of a path, we obtain variants of our measure.

2

Comparison of diameter with alternating number Our measure is motivated by
alternating number, but it is quite different from it.

First, the similarity is that both measures involve considering paths in the Boolean cube,
where one step of the path involves flipping a block of input bits of the function, thus each
step specifies a subcube. For alternating number, the requirement on the function values on
the subcubes is that the function takes different values on the two opposite (all 0 and all 1)
points of the subcubes. For our measure, we consider different classes of Boolean functions
that can appear as subfunctions on the subcubes associated with a path.

We note that the definition of alternating number also requires that a path is monotone,
(that is the set of 1 bits of an input x on the path must be a subset of the 1 bits of any
input that appears later in the path). We do not impose such requirement. In contrast to
alternating number, diameter does not measure closeness to monotonicity.

Furthermore, alternating number considers the longest “legal” path between just two
specific points, the all 0 input and the all 1 input. For our measure, we consider the shortest
“legal” path between inputs x and subcubes corresponding to certificates of the function on
the complementary input x̄.

We note that in general, diameter and alternating number are incomparable, and we
provide examples that illustrate this. However, an important distinction is that while al-
ternating number can be exponentially larger than certificate complexity [15], each variant
of our measure considered in this paper is upper bounded by certificate complexity, up to
constant factors.

Diameter vs certificate complexity We define the following variants, depending on
the class H of functions we allow to appear as subfunctions along the steps of a path: dia∧
where H consists of the functions AND and NAND (these are the possible subfunctions
associated with minimal sensitive blocks, as discussed above), dias where H includes all
functions with full sensitivity, diadeg where H includes all functions with full real degree,
diadeg2 where H includes all functions with full F2-degree.

Note that each of the classes we consider contains the functions AND and NAND since
both of these functions have full sensitivity, full F2-degree and full real degree. Thus, each
of the measures dias(f), diadeg(f) and diadeg2(f) is upper bounded by dia∧(f), for every
Boolean function f . On the other hand, as we illustrate by examples, dias(f), diadeg(f) and
diadeg2(f) may be significantly smaller than dia∧(f), thus considering these variants may
lead to stronger bounds. Furthermore, since deg2(f) ≤ deg(f), we have that diadeg(f) ≤
diadeg2(f). We also present examples showing that diadeg(f) may be significantly smaller
than diadeg2(f).

We prove that for all the classes H considered in this paper,

diaH(f) ≤ dia∧(f) ≤ 2C(f)

.
Depending on the class H, we can lower bound diaH by certificate complexity divided by

specific complexity measures, such as sensitivity. We show that for any Boolean function f ,
C(f)/s(f) is upper bounded by dias(f) and thus we can upper bound certificate complexity
as follows:

C(f) ≤ dias(f)s(f) ≤ dia∧(f)s(f).

3

Similarly, considering the classes H consisting of Boolean functions with full real degree
and full F2-degree, respectively, we get the following bounds relating diameter and certificate
complexity. For any Boolean function f ,

C(f) ≤ diadeg(f)deg(f) ≤ dia∧(f)deg(f)

and
C(f) ≤ diadeg2(f)deg2(f) ≤ dia∧(f)deg2(f) .

Other variants One could consider more versions of our measure, for various other
classes H. Another class that is natural to consider in connection to the log-rank conjecture
for XOR functions is taking H to be the class of Boolean functions with full Fourier sparsity,
that is functions such that all their Fourier coefficients are nonzero. We do not discuss this
variant in more details, as the results are analogous to our results on diadeg2 with similar
applications.

We would like to mention another version of our definitions, that turns out to be helpful
in proving some of our results for special classes of Boolean functions. Several papers in
the literature consider minimum certificate complexity, defined as Cmin(f) = minxC(f, x).
Similarly, while we define diameter as diaH(f) = maxxdiaH(f, x), we also consider minimum
diameter defined as diamin,H(f) = minxdiaH(f, x).

Results on transitive functions with small diameter There has been a long line
of work trying to estimate the sensitivity and block sensitivity for transitive functions [33]
and also for special classes of transitive functions such as symmetric functions and graph
properties [39, 34], minterm transitive functions and cyclically invariant functions [11, 2, 16],
transitive functions with sparse DNFs [13].

It has been conjectured that all transitive functions must have “large” sensitivity and
block sensitivity. No examples of transitive functions are known on n input bits with o(n1/3)
sensitivity. Chakraborty [11] constructed a transitive function on n variables with sensitivity
Θ(n1/3). It is noted in [13] that an argument in [33] together with Huang’s result gives that
any transitive function f on n variables has s(f) ≥ Ω(n1/6).

Previous results due to Lin and Zhang [21] imply that s(f) ≥ Ω(n1/3) for transitive
functions with constant alternating number. We improve and extend this bound and prove
that s(f) ≥

√
n for transitive functions with constant alternating number, as well as for

transitive functions with constant diameter, considering dias or dia∧.
Regarding block sensitivity, it has been conjectured that Ω(n3/7) is a lower bound on the

block sensitivity of all transitive functions. There is an example of a transitive function f due
to Amano [2] that has bs(f) = θ(n3/7), and no transitive function is known with smaller block
sensitivity. Sun[33] proved a lower bound of n1/3 on the block sensitivity for all transitive
functions. Since block sensitivity is at least sensitivity, our result above also implies that for
transitive functions with constant alternating number or constant diameter (dias or dia∧),
bs(f) ≥ Ω(

√
n). We prove that the conjectured Ω(n3/7) lower bound holds under a weaker

condition, for all transitive functions with constant minimum diameter (diamin,s or diamin,∧).
Log-rank conjecture for XOR functions with small diameter The log-rank con-

jecture for functions of the form f(x⊕ y) has been proved when f belongs to certain special
classes such as monotone or linear threshold functions [26], symmetric functions [40], func-
tions with low F2-degree or small spectral norm [36], AC0 functions [19], read-k functions

4

[12], and functions with constant alternating number by Lin and Zhang [21]. We prove that
the log-rank conjecture holds for functions of the form f(x⊕ y) for functions f with diadeg2
or dia∧ bounded above by a polynomial of the logarithm of the Fourier sparsity of f .

Further motivation for considering diameter As we noted above, diaH(f) ≤ 2C(f)
for any f and any class H that contains the functions AND and NAND. Huang’s result
implies that C(f) = O(s(f)5), which in turn implies that for any f , and any class H that
contains the functions AND and NAND, (which means for every class considered in this
paper), we have

diaH(f) = O(s(f)5).

Obtaining new upper bounds on diaH could lead to the following interesting consequences:

• An independent proof of the upper bound diaH(f) ≤ poly(s(f)) for dias or dia∧ could
lead to an independent, purely combinatorial proof of the sensitivity conjecture.

• Improving the upper bound on dias or dia∧ in terms of sensitivity to diaH(f) ≤
O(s(f)2), would improve the current best upper bounds on block sensitivity and cer-
tificate complexity to bs(f) ≤ C(f) ≤ O(s(f)3).

In connection to this question, we note that there are Boolean functions with dias(f)
(and thus dia∧(f)) at least Ω(s(f)(2−o(1))), since [3, 4] exhibited a function with C(f) =
Ω(s(f)(3−o(1))) improving previous results of [7] and [6].

• Proving that diadeg(f) ≤ deg(f) would imply the bound C(f) ≤ O(s(f)4), using
Huang’s result. This would improve the current implication which gives only C(f) ≤
O(s(f)5). It would also imply that C(f) ≤ O(deg(f)2), improving the current best
bound giving C(f) ≤ deg(f)3 by [25].

We note that there are Boolean functions with diadeg(f) (and thus diadeg2(f) and
dia∧(f)) at least Ω(deg(f)(1−o(1))), since there are Boolean functions with C(f) =
Ω(deg(f)(2−o(1))) which was shown recently in [3] improving the previous Ω(deg(f)1.63)
bound of [30].

• Upper bounds on diaH (considering an appropriate H) for specific classes of Boolean
functions could give stronger upper bounds on block sensitivity or certificate complexity
in terms of sensitivity than currently known for these classes, and could verify the log-
rank conjecture for XOR functions for new classes.

2 Preliminaries

Let f : {0, 1}n → {0, 1} be a Boolean function and x ∈ {0, 1}n be any input. For i ∈ [n] we
denote by xi the input obtained by flipping the i-th bit of x. More generally, for S ⊆ [n] we
denote by xS the input obtained by flipping the bits of x in all coordinates in the subset S.

For any two inputs x, y ∈ {0, 1}n, we say x ≺ y if xi ≤ yi for all i ∈ [n].

Definition 1. Sensitivity
The sensitivity s(f, x) of a Boolean function f on input x is the number of coordinates i ∈ [n]
such that f(x) 6= f(xi). The sensitivity of f is defined as s(f) = max{s(f, x) : x ∈ {0, 1}n}.

5

Definition 2. Block Sensitivity
The block sensitivity bs(f, x) of a Boolean function f on input x is the maximum number of
pairwise disjoint subsets S1, . . . , Sk of [n] such that for each i ∈ [k] f(x) 6= f(xSi). The block
sensitivity of f is defined as bs(f) = max{bs(f, x) : x ∈ {0, 1}n}.

Definition 3. Partial assignment, subcube and subfunction
Given an integer n > 0, a partial assignment α is a function α : [n] → {0, 1, ?}. A partial
assignment α corresponds naturally to a setting of n variables (x1, x2, . . . , xn) to {0, 1, ?}
where xi is set to α(i).

The variables set to ? are called unassigned or free, and we say that the variables set to 0
or 1 are fixed. We say that x ∈ {0, 1}n agrees with α if xi = α(i) for all i such that α(i) 6= ?.
The set of all inputs x ∈ {0, 1}n agreeing with α constitutes a subcube which we denote by
Sα.

The size of a partial assignment α is defined as the number of fixed variables of α and
denoted as |α|.

For a function f : {0, 1}n → {0, 1}, we denote by fα the subfunction obtained by restricting
f to the subcube Sα.

Definition 4. Certificate
For a function f : {0, 1}n → {0, 1} and input x ∈ {0, 1}n a partial assignment α is a certifi-
cate of f on x if x agrees with α, and any input y agreeing with α satisfies f(y) = f(x).

We denote the set of all certificates of f on x by Γf (x).

Definition 5. Certificate Complexity
The certificate complexity C(f, x) of a Boolean function f on input x is the size of the smallest
certificate of f on x. The certificate complexity of f is defined as C(f) = max{C(f, x) : x ∈
{0, 1}n}. The minimum certificate complexity of f is defined as Cmin(f) = min{C(f, x) :
x ∈ {0, 1}n}.

Definition 6. Alternating path
For a Boolean function f : {0, 1}n → {0, 1}, an alternating path is defined as any sequence
of inputs x(0), x(1), x(2), . . . x(t), x(i) ∈ {0, 1}n for i ∈ {0, 1, . . . , t}, that satisfies the following
properties:

• x(0) = 0n

• x(i) ≺ x(i+1) for all i ∈ {0, 1, . . . , t− 1}.

• f(x(i)) 6= f(x(i+1)) for all i ∈ {0, 1, . . . , t− 1}

where a ≺ b denotes the property that the set of bits set to 1 in a forms a subset of the set
of bits set to 1 in b.

Definition 7. Alternating Number of a function
For a Boolean function f : {0, 1}n → {0, 1}, the alternating number of f , alt(f), is defined
as the maximum length of any alternating path of f .

6

Definition 8. Invariance Group
A Boolean function f : {0, 1}n → {0, 1} is invariant under a permutation σ : [n]→ [n], if for
any x ∈ {0, 1}n, f(x1, . . . , xn) = f(xσ(1), . . . , xσ(n)). The set of all permutations under which
f is invariant forms a group, called the invariance group of f.

Definition 9. Transitive Function
A Boolean function is transitive if its invariance group Γ is transitive, that is, for each
i, j ∈ [n], there is a σ ∈ Γ such that σ(i) = j.

For example, the set of all permutations on n bits, denoted by Sn is a transitive group of
permutations. Another example of a transitive group of permutations is the set of all cyclic
shifts on n bits, denoted by Shiftn = {ξ0, ξ1, . . . , ξn−1}, where the permutation ξj cyclically
shifts the string by j positions.

Definition 10. Real degree of a function
A polynomial p over the reals with n variables is said to represent a Boolean function
f : {0, 1}n → {0, 1} if p(x) = f(x) for all x ∈ {0, 1}n. The degree of the unique multilinear
polynomial over the reals representing f is defined to be the degree of f , and is denoted as
deg(f).

Definition 11. F2 degree of a function
For any Boolean function f : {0, 1}n → {0, 1}, the degree of the unique multilinear polynomial
over F2 representing f is called as the F2 degree of f , denoted deg2(f).

Definition 12. Decision tree complexity
A decision tree evaluating a function f : {0, 1}n → {0, 1} is a rooted binary tree with internal
nodes labeled by variables and leaves labeled by {0, 1}. The depth of a decision tree is defined
as the length of a longest root to leaf path in the tree.

For any input x ∈ {0, 1}n, the label at the leaf reached by following the decision tree
queries is the evaluation of the decision tree on x. The decision tree is said to compute the
function f if it evaluates to f(x) on every input x ∈ {0, 1}n. The decision tree complexity of
a boolean function f , denoted DT (f), is defined as the smallest possible depth of any decision
tree computing f .

Definition 13. Fourier sparsity of a function
Any function f : {0, 1}n → {0, 1} can be uniquely represented as

f(x) =
∑
S⊆[n]

f̂(S)(−1)
∑

i∈S xi

This is said to be the Fourier expansion of f and the coefficients f̂(S) are called the Fourier
coefficients of f . The number of non-zero Fourier coefficients of f is defined to be the Fourier
sparsity of f , denoted ||f̂ ||0.

We note that usually the Fourier representation is considered for functions of the form
f : {0, 1}n → {+1,−1}. We use this version of the definition because it exactly captures the
rank of the communication matrix for XOR functions (see Section 2.1).

7

Communication Complexity: We consider a setting with two parties Alice and Bob
and a fixed Boolean function f : {0, 1}2n → {0, 1}. For x, y ∈ {0, 1}n, input x is provided to
Alice and input y to Bob. Their collective objective is to compute f(x, y).

The communication complexity of f , denoted CC(f), is the maximum value of the min-
imum number of bits exchanged by Alice and Bob in order to compute f(x, y), where the
maximum is taken over all input pairs (x, y) ∈ {0, 1}2n.

The communication matrix corresponding to f , denoted Mf , is a 2n × 2n matrix with
rows indexed by all possible values of x ∈ {0, 1}n i.e. Alice’s part of the input and columns
indexed by all possible values of y ∈ {0, 1}n i.e. Bob’s part of the input. It is known that
CC(f) ≥ log rank(Mf) [24], where rank(Mf) is the rank of the matrix Mf over the reals.

The Log-rank conjecture proposed by Lovász and Saks [22] asks whether the communi-
cation complexity of a function can also be upper bounded by a polynomial in logarithm of
the rank of its communication matrix as:

Conjecture 1. For any function f : {0, 1}2n → {0, 1},

CC(f) ≤ poly(log rank(Mf))

where rank(Mf) is the rank of the matrix Mf over the reals.

2.1 Previous results

We now state some previous results that we use in our proofs.
First we state a couple of lemmas from a recent paper by Chaubal and Gál [13].

Lemma 1 (Lemma 8 from [13]). For any non-constant transitive function f : {0, 1}n →
{0, 1}, we have C(f, 0n) · s(f) ≥ n and C(f, 1n) · s(f) ≥ n.

Lemma 2 (Lemma 9 from [13]). For any non-constant transitive function f : {0, 1}n →
{0, 1}, and an integer 5 ≤ r ≤ 15, if Cmin(f) ≤ n3/r, then bs(f) ≥ Ω(n1− 4

r).

We now state a lemma from the paper of Lin and Zhang [21]:

Lemma 3 (Lemma 12 from [21]). For any function f : {0, 1}n → {0, 1}, the following two
statements hold:

max{C(f, 0n), C(f, 1n)} ≤ alt(f) · s(f)

max{C(f, 0n), C(f, 1n)} ≤ alt(f) · deg2(f)

2.1.1 The approach of Lin and Zhang

We review the approach of Lin and Zhang [21] which we build upon in Section 4.2.
We first define the closure of min Certificate Complexity which was implicit in the ap-

proach of [36], and defined in [21]:

Definition 14. [36, 21] Closure of min Certificate Complexity
For a function f : {0, 1}n → {0, 1}, we define the closure of the min certificate complexity of
f as:

Cclo
min(f) = max

α
Cmin(fα)

8

where the maximum is taken over all possible partial assignments α on n variables, or in
other words, over all possible subfunctions fα of f .

Note that Cclo
min(f) ≤ C(f).

They also note that it is possible to define the closure for any complexity measure M(f)
for function f as M clo(f) = maxαM(fα), where the maximum is taken over all subfunctions
fα of f . A measure M is said to be downward non-increasing if for any function f , it holds
that M(fα) ≤ M(f) for any subfunction fα of f . Note that the measures sensitivity, block
sensitivity, certificate complexity, decision tree complexity, F2-degree, Fourier sparsity, alter-
nating number are all downward non-increasing. It follows from the definition of downward
non-increasing measures that whenever measure M is downward non-increasing, it holds that
M clo(f) = M(f).

We first note the following result from [8] stating that the rank (over the reals) of the
communication matrix Mf◦⊕ exactly equals the Fourier sparsity of f :

Lemma 4. [8] For any function f : {0, 1}n → {0, 1}, we have: rank(Mf◦⊕) = ||f̂ ||0.

Next, we note the following lemma about communication complexity of XOR functions:

Lemma 5. [26] For any function f : {0, 1}n → {0, 1}, we have: CC(f ◦ ⊕) ≤ 2DT (f).

The following lemma upper bounds the decision tree complexity in terms of the product of
its certificate complexity and F2-degree. We note that the second inequality follows because
Cclo
min(f) ≤ C(f).

Lemma 6. [37, 38, 21] For any function f : {0, 1}n → {0, 1}, we have:

DT (f) ≤ Cclo
min(f) · deg2(f) ≤ C(f) · deg2(f)

The F2-degree of any function is upper bounded by the logarithm of its Fourier sparsity
as proved in [8]:

Lemma 7. [8] For any function f : {0, 1}n → {0, 1}, we have: deg2(f) ≤ log ||f̂ ||0.

Lemmas 4, 5, 6, 7 imply the following result as also noted in [21]:

Lemma 8. [21] For any function f : {0, 1}n → {0, 1}:

CC(f ◦ ⊕) ≤ 2Cclo
min(f) · log rank(Mf◦⊕) ≤ 2C(f) · log rank(Mf◦⊕)

It follows from Lemma 8 that proving an upper bound on the certificate complexity of a
function f in terms of a polynomial in log rank(Mf◦⊕) would imply the log-rank conjecture
for the corresponding XOR function f ◦ ⊕.

Another approach towards proving the log-rank conjecture for XOR functions would be
to upper bound Cclo

min(f) directly. One way to achieve this for a class of functions would be to
prove an upper bound of the form Cmin(f) ≤M(f) where M(f) is a complexity measure that
is downward non-increasing, since that would imply the bound Cclo

min(f) ≤ M(f), thereby
proving the log-rank conjecture for functions f ◦ ⊕ with bounded value of M(f). Lin and

9

Zhang [21] use this approach to prove that the log-rank conjecture holds for XOR functions
f ◦ ⊕ which are such that alt(f) is at most polynomial in log ||f̂ ||0.

In particular, they achieve this by proving that for every boolean function f , Cmin(f) ≤
alt(f)deg2(f). Since both alt(f) and deg2(f) are downward non-increasing, they get the
following result:

Theorem 1. [Theorem 2 from [21]] For any function f : {0, 1}n → {0, 1}, we have:

CC(f ◦ ⊕) ≤ 2alt(f) · log2 rank(Mf◦⊕)

3 Diameters of Boolean functions

We begin with some notation. For the Boolean cube Bn, a path is any sequence of inputs
x(0), x(1), x(2), . . . , x(t) where x(i) ∈ {0, 1}n for i ∈ {0, 1, . . . , t}. We define the length of such
a path to be the number of steps t. For a path x(0), x(1), x(2), . . . , x(t), we define a sequence
of partial assignments {β(0), β(1), . . . β(t−1)} where β(i) : [n] → {0, 1, ?} is defined as follows:

β
(i)
j = x

(i)
j for all j ∈ [n] such that x

(i)
j = x

(i+1)
j and β

(i)
j = ? otherwise.

Note that we can view each step x(i) → x(i+1) on a path as flipping the bits where x(i) and
x(i+1) differ. The free variables of the partial assignment β(i) are exactly these bits. Thus, for
a Boolean function f , the subfunction fβ(i) depends on the bits where x(i) and x(i+1) differ.

Definition 15. H-distance between an input and a certificate
Let H be a class of Boolean functions. For a Boolean function f : {0, 1}n → {0, 1}, input
x ∈ {0, 1}n and a partial assignment α : [n] → {0, 1, ?} corresponding to a subcube where f
is constant, we define an H-path from x to α as any path x(0), x(1), . . . x(t) that satisfies the
following properties:

• x(0) = x

• x(t) agrees with α

• The subfunction fβ(i) belongs to class H for each i ∈ {0, 1, . . . , t− 1}.

We define the H-distance between x and α with respect to f , denoted distf,H(x, α), to be
the length of a shortest H-path from x to α.

Definition 16. H-diameter of a function
For a Boolean function f : {0, 1}n → {0, 1}, input x ∈ {0, 1}n, and a class of Boolean
functions H, we use the notation

diaH(f, x) = min
α∈Γf (x)

distf,H(x̄, α) .

Recall that x̄ denotes the complement of x and Γf (x) denotes the set of all certificates of f
on x.

We define the H-diameter of f as:

diaH(f) = max
x∈{0,1}n

diaH(f, x) .

10

In this work, we will be concerned with the H-diameter of functions for the following
classes H:

• AND diameter denoted dia∧(f): Corresponds to the class H that includes the function
AND and its negation the NAND function.

• Sensitivity diameter denoted dias(f): Defined by the class H with functions that have
sensitivity equal to the number of input variables.

• Real degree diameter denoted as diadeg(f): Corresponding to the class of functions H
with real degree equal to the number of input variables.

• F2-degree diameter denoted as diadeg2(f): Defined by the classH that include functions
with F2-degree equal to the number of variables.

Note that since the functions AND and NAND belong to each of the classes we consider
in this paper, and since deg2(f) ≤ deg(f) for any Boolean function f , we have

dias(f) ≤ dia∧(f) (3.1)

and
diadeg(f) ≤ diadeg2(f) ≤ dia∧(f) (3.2)

Similarly to minimum certificate complexity, we also define the minimum version of the
diameter:

Definition 17. Min H-diameter of a function
For a Boolean function f : {0, 1}n → {0, 1} and a class of Boolean functions H, we define
the min H-diameter of f as:

diamin,H(f) = min
x∈{0,1}n

diaH(f, x) .

and we define the closure of the min H-diameter of f as:

diaclomin,H(f) = max
α

diamin,H(fα)

where the maximum is taken over all possible partial assignments α on n variables, or in
other words, over all possible subfunctions fα of f .

Note that for any function f and class H, we have diamin,H(f) ≤ diaclomin,H(f) ≤ diaH(f).

3.1 Upper bounds on diameters

Lemma 9. For any function f : {0, 1}n → {0, 1}, we have:

dia∧(f) ≤ 2C(f)

11

Proof. For any input x ∈ {0, 1}n, we shall prove that dia∧(f, x) ≤ 2C(f, x).
Let α be a certificate of f on x achieving |α| = C(f, x). We shall construct an AND-

NAND path x(0), x(1), . . . x(t) from x̄ to α, with length t ≤ 2|α|.
We start with x(0) = x̄ as required. We now give an inductive description of our construc-

tion. Let us assume that we have found the first i+1 vertices of the path i.e. x(0), x(1), . . . x(i).
Then we get the next vertex x(i+1) in the following way based on the value of f(x(i)):

1. Case 1: f(x(i)) = f(x)

If x(i) agrees with α, then we have successfully found the required H-path from x̄ to α
and we can stop.

Otherwise, if x(i) does not agree with α, then we choose x(i+1) = (x(i))S where S is
any minimal sensitive block of f on x(i) such that S does not contain any index where
x(i) and α agree. Note that such a block S must exist because otherwise, the set of
bits where x(i) and α agree would be a certificate of f , which would contradict the
minimality of the certificate α.

We note that in this case, x(i+1) agrees with α on at least as many bits as x(i) agrees
with α.

2. Case 2: f(x(i)) 6= f(x)

In this case, we first observe that the set T of all the bits where x(i) and α disagree
constitutes a sensitive block for f on x(i). Therefore, there exists a subset S ⊂ T which
is a minimal sensitive block of f on x(i). We then choose x(i+1) = (x(i))S.

Note that the number of bits where x(i+1) agrees with α is strictly greater than the
number of bits where x(i) agrees with α.

First we note that since each step consists of flipping a minimal sensitive block, each of
the subfunctions fβ(i) is either AND or NAND: Recall that the subfunction fβ(i) depends on

the bits where x(i) and x(i+1) differ. So for example, if f(x(i)) = 0, then the subfunction fβ(i)

is 0 everywhere except when all its free variables agree with x(i+1).
Further, since an AND-NAND path is also an alternating path, the value of f(x(i))

alternates between 0 and 1. Therefore, the above described procedure to construct the
AND-NAND path alternates between case 1 and case 2.

Also, as noted before, the number of bits where x(i+1) agrees with α is strictly greater than
the number of bits where x(i) agrees with α in case 2, whereas in case 1, we can guarantee
that this number does not decrease. Since the procedure alternates between the two cases,
x(i+2) must agree with α on at least one more bit than x(i), for i ∈ {0, 1, . . . t−2}. Therefore,
the procedure must terminate in at most 2|α| steps, implying that t ≤ 2|α|.

Next, note that since each of our measures is upper bounded by certificate complexity
(as we proved above), known upper bounds on certificate complexity imply that for each
class H considered in this paper, we have diaH(f) ≤ O(s(f)5) (using Huang’s result [18])
and diaH(f) ≤ O(deg(f)3) by [25].

Improving these upper bounds would have interesting consequences, as we described in
the introduction.

12

3.2 Upper bounds on certificate complexity in terms of diameters

Lemma 10. For any function f : {0, 1}n → {0, 1} and input x ∈ {0, 1}n, we have:

C(f, x) ≤ dias(f, x) · s(f) ≤ dia∧(f, x) · s(f) (3.3)

C(f, x) ≤ diadeg(f, x)deg(f) ≤ dia∧(f, x) · deg(f) (3.4)

C(f, x) ≤ diadeg2(f, x)deg2(f) ≤ dia∧(f, x) · deg2(f) (3.5)

Proof. We shall first prove inequality 3.3.
Let α be a certificate of f on x and x(0), x(1), . . . , x(t) be a corresponding full sensitivity

path from x̄ to α that achieves the minimum value of distf,s(x̄, α).
Then note that every fixed bit of the certificate α must be contained in β(i) for some

i ∈ {0, 1, . . . , t− 1} since x(t) agrees with α and x(0) (i.e. x̄) disagrees with all the fixed bits
of α.

Therefore, |β(0)| + |β(1)| + . . . + |β(t−1)| ≥ |α|. So there must exist an i ∈ {0, 1, . . . , t −
1} such that |β(i)| ≥ |α|

t
. Now consider the subfunction fβ(i) . Since we considered a full

sensitivity path, this subfunction has sensitivity |β(i)|. Therefore, s(f) ≥ |β(i)| ≥ |α|
t

.
This implies that s(f) · distf,s(x̄, α) ≥ |α|.
Taking the minimum over all the certificates for f on x gives the first part of inequality

3.3. The second part follows due to inequality 3.1. The other two inequalities follow by an
analogous argument.

Lemma 10 immediately implies the following two theorems.

Theorem 2. For any function f : {0, 1}n → {0, 1}, we have:

1. C(f) ≤ dias(f) · s(f) ≤ dia∧(f) · s(f)

2. C(f) ≤ diadeg(f) · deg(f) ≤ dia∧(f) · deg(f)

3. C(f) ≤ diadeg2(f) · deg2(f) ≤ dia∧(f) · deg2(f).

Proof. Let x be the input achieving C(f, x) = C(f). Then, equation 3.3 gives:

C(f) = C(f, x)

≤ dias(f, x) · s(f)

≤ dias(f) · s(f).

This gives the first part of the first statement of the theorem, the second part follows by
equation 3.1. The other statements follow similarly from Lemma 10 and equation 3.2.

Theorem 3. For any function f : {0, 1}n → {0, 1}, we have:

1. Cmin(f) ≤ diamin,s(f) · s(f) ≤ diamin,∧(f) · s(f)

2. Cmin(f) ≤ diamin,deg(f) · deg(f) ≤ diamin,∧(f) · deg(f)

13

3. Cmin(f) ≤ diamin,deg2(f) · deg2(f) ≤ diamin,∧(f) · deg2(f).

Proof. Let x be the input for which the minimum value of dias(f, x) is achieved. Then,
equation 3.3 gives:

Cmin(f) ≤ C(f, x)

≤ dias(f, x) · s(f)

= diamin,s(f) · s(f).

The first statement of the theorem follows.
Similarly equations 3.4 and 3.5, respectively, imply the second and third statements of

the theorem.

4 Results for families of functions with small diameters

4.1 Transitive functions with small diameters

In this section, we improve the lower bounds on sensitivity of transitive functions with
constant alternating number that follow from the work of Lin and Zhang [21] and then also
prove a similar result for transitive functions with constant AND diameter. We then proceed
to prove lower bounds on block sensitivity of transitive functions with constant minimum
AND diameter.

Lemma 11. For any non-constant transitive function f : {0, 1}n → {0, 1} the following two
statements hold:

s(f)2 · alt(f) ≥ n

s(f) · deg2(f) · alt(f) ≥ n

Proof. Recall that Lemma 1 gives that:

C(f, 0n)s(f) ≥ n

The first part of Lemma 3 gives that:

C(f, 0n) ≤ alt(f) · s(f)

Together they imply the first statement of the lemma.
The second statement follows similarly using the second part of Lemma 3.

Note that this implies s(f) ≥
√
n for transitive functions with constant alternating

number, giving the best possible bound for such functions.
The first statement of Lemma 11 is tight for the TRIBES function on n variables:

TRIBES is monotone and therefore has alt(f) = 1. Also, TRIBES is transitive as noted in
[31]. It is easy to see that TRIBES has s(f) =

√
n.

14

Lemma 12. For any non-constant transitive function f : {0, 1}n → {0, 1} the following two
statements hold:

s(f)2 · dia∧(f) ≥ n,

s(f) · deg2(f) · dia∧(f) ≥ n.

Proof. Recall that Lemma 1 gives that:

C(f, 0n)s(f) ≥ n

Further equation 3.3 gives that:

C(f, 0n) ≤ dia∧(f, 0
n) · s(f)

Therefore, we get:
dia∧(f, 0

n) · s(f)2 ≥ n

which implies the first part of the lemma.
A similar argument gives the second part of the lemma using equation 3.5.

Corollary 1. For any non-constant transitive function f : {0, 1}n → {0, 1} with constant
alternating number or constant AND diameter dia∧(f) = O(1), we have:

s(f) ≥ Ω(
√
n)

We now prove a lower bound on the block sensitivity of transitive functions under the
weaker condition of having constant minimum AND diameter.

Lemma 13. For any non-constant transitive function f : {0, 1}n → {0, 1} with diamin,∧(f) =
O(1), we have:

bs(f) ≥ Ω(n3/7)

Proof. We have two cases:
Case 1: Cmin(f) ≥ n3/7.
The first part of Theorem 3 implies that Cmin(f) ≤ diamin,∧(f) · s(f) ≤ O(s(f)), since

diamin,∧(f) = O(1).
Then n3/7 ≤ Cmin(f) ≤ O(s(f)) ≤ O(bs(f)) and we are done.
Case 2: Cmin(f) ≤ n3/7.
Now we use Lemma 2 with r = 7. This implies that if any transitive function f has

Cmin(f) ≤ n3/7, then bs(f) ≥ n3/7, implying the statement of the Lemma in this case.

4.2 Implications to the log-rank conjecture for XOR functions

For any f : {0, 1}n → {0, 1}, the corresponding XOR function f ◦ ⊕ : {0, 1}2n → {0, 1} is
defined as: f ◦ ⊕(x, y) = f(x⊕ y), where x⊕ y is the bitwise XOR of x, y ∈ {0, 1}n.

Lin and Zhang [21] proved that the log-rank conjecture holds for XOR functions f ◦ ⊕
such that alt(f) is at most polynomial in log ||f̂ ||0 (see Theorem 1).

15

In this section, we prove that the log-rank conjecture holds for functions of the form
f(x ⊕ y) such that the F2-degree diameter of f is upper bounded by a polynomial in the
logarithm of the Fourier sparsity of f .

First we prove an analogous result to Theorem 1 implying the log-rank conjecture for
XOR functions with bounded F2-degree diameter. In contrast to the proof of Theorem 1, we
do not need to upper bound Cclo

min(f), since Theorem 2 proves an upper bound directly on
C(f) in terms of the product of diadeg2(f) and deg2(f) for any function f . This gives us the
following result confirming the log-rank conjecture for functions f ◦⊕ with diadeg2(f) upper
bounded by a polynomial in the logarithm of the Fourier sparsity of f :

Theorem 4. For any function f : {0, 1}n → {0, 1}, we have:

CC(f ◦ ⊕) ≤ 2diadeg2(f) log2 rank(Mf◦⊕)

Proof. Recall the third statement of Theorem 2 which states that:

C(f) ≤ diadeg2(f) · deg2(f)

Along with Lemma 8, we get that:

CC(f ◦ ⊕) ≤ 2C(f) · log rank(Mf◦⊕)

≤ 2diadeg2(f) · deg2(f) · log rank(Mf◦⊕)

≤ 2diadeg2(f) · log2 rank(Mf◦⊕)

Here the last inequality follows from Lemmas 4 and 7.

We note that the statement of Theorem 4 also holds with dia∧(f) replacing diadeg2(f),
since the F2-degree diameter is upper bounded by the AND diameter for any function f as
noted in equation 3.2. We state Theorem 4 with diadeg2(f) instead of dia∧(f) because it
gives a stronger statement since there exist functions with diadeg2 much smaller than dia∧
as illustrated by example 2.

Next we prove a common strengthening of Theorem 1 and Theorem 4. We show that the
communication complexity of a function of the form f(x⊕ y) can also be upper bounded in
terms of the closure of its min F2-degree diameter and the square of the log of rank of its
communication matrix Mf◦⊕.

Theorem 5. For any function f : {0, 1}n → {0, 1}:

CC(f ◦ ⊕) ≤ 2diaclomin,deg2(f) · log2 rank(Mf◦⊕)

Proof. From the third statement of Theorem 3, we have that:

Cclo
min(f) ≤ diaclomin,deg2(f) · deg2(f)

Combining this with Lemmas 4, 7 and 8 gives the result.

16

As we shall note in Lemma 14, diamin,deg2(f) ≤ diamin,∧(f) ≤ alt(f). Since alternating
number is a downward non-increasing measure, this implies that diaclomin,deg2(f) ≤ alt(f).
Furthermore, example 4 gives a family of functions f : {0, 1}n → {0, 1} with alternating
number exponentially larger than all our diameters. This shows that Theorem 5 is a strictly
stronger statement than Theorem 1.

By definition, we have that for any function f , diaclomin,deg2(f) ≤ diadeg2(f). Therefore,
Theorem 5 is a potentially stronger statement than Theorem 4. As of now, we are not aware
of any example function f separating diaclomin,deg2(f) from diadeg2(f). However, we remark

that the TRIBES function separates diaclomin,∧(f) from dia∧(f) as noted in section 5.8.

We illustrate with examples in Section 5 that, in general, the alternating number of a
function and its H-diameter are incomparable for the different classes H that we consider.
However, in the following lemma, we show that the min AND diameter, and consequently,
the min H-diameter for all our different classes H, are upper bounded by the alternating
number.

Lemma 14. For any function f : {0, 1}n → {0, 1}, we have,

diamin,∧(f) ≤ alt(f)

Proof. We prove the following relationship, which immediately implies the statement of the
lemma:

dia∧(f, 1
n) ≤ alt(f) (4.1)

Let alt(f) = t and let Q = x(0), x(1), . . . x(t) be an alternating path of length t.
Now, we construct an AND-NAND path Q′ = z(0), z(1), . . . z(t) from 0n to a certificate α

of 1n in the following way:
Let z(0) = x(0) = 0n. Let z(1) ≤ x(1) be a minimal element such that f(z(1)) = f(x(1)).

Recall that by the definition of alternating path, f(x(i)) 6= f(x(i+1)). Thus, the set of variables
where z(0) and z(1) differ forms a minimal sensitive block for f on z(0): for all y 6= z(1) such
that z(0) ≺ y ≺ z(1), f(y) = f(z(0)) but f(z(1)) 6= f(z(0)).

In general, for i ∈ {0, 1, . . . , t − 1}, let z(i+1) ≺ x(i+1) be a minimal element such that
f(z(i+1)) = f(x(i+1)), and z(i) ≺ z(i+1) Thus, the set of variables where z(i) and z(i+1) differ
forms a minimal sensitive block for f on z(i). As we noted before (see Section 3.1) subfunc-
tions over a set of variables that forms a minimal sensitive block are either the AND or the
NAND function. Thus, for the path Q′, each subfunction fβi is either an AND or a NAND.

We will thus get an AND-NAND path z(0), z(1), . . . , z(t) of length t. Note that z(t)

must agree with some certificate of 1n, since otherwise, we can get an alternating path
for f of length greater than t in the following way: consider the alternating path Q′ =
z(0), z(1), . . . z(t). Since z(t) does not agree with any certificate of 1n, the partial assignment
α defined as αi = 1 whenever z

(t)
i = 1 and αi = ? otherwise, is not a certificate of f . This

implies the existence of an input z(t+1) such that z(t) ≺ z(t+1) and f(z(t)) 6= f(z(t+1)). There-
fore, the path Q′′ = z(0), z(1), . . . z(t), z(t+1) is an alternating path of length t+1 contradicting
the fact that alt(f) = t.

Therefore, the path z(0), z(1), . . . , z(t) is an AND-NAND path from 0n to some certificate
of f on 1n and the statement follows.

17

5 Separating Examples

In this section, we give several examples, separating various types of diameters from alter-
nating number and from each other.

5.1 Separating dias(f) from dia∧(f)

The following example has constant sensitivity diameter, whereas its AND diameter equals
the number of input variables.

Example 1. Let f : {0, 1}n → {0, 1} be the PARITY function on n bits i.e. PARITY (x) =⊕
i∈[n]

xi.

It is easy to see that dia∧(PARITY) = n, since for any partial assignment α, the sub-
function PARITYα belongs to the AND-NAND class only if α fixes all but 1 variable.

On the other hand, for any input x ∈ {0, 1}n, dias(PARITY, x) = 1. This is because
we can consider α to be the certificate fixing all the bits of x and then the path x̄, x is a
valid H-path since s(PARITY) = n (i.e. PARITY induced on the “entire cube” has full
sensitivity).

5.2 Separating diadeg2(f) (and also diadeg(f)) from dia∧(f)

The next example has constant values for both its real degree diameter as well as F2-degree
diameter, but has large AND diameter.

Example 2. Define f : {0, 1}n → {0, 1} as follows:
f(0n) = 1,
f(x) =

⊕
i∈[n]

xi otherwise.

It is easy to show that dia∧(f) = n by a similar argument as in example 1.
Also, we note that deg2(f) = n. This follows from a result of Beigel and Bernasconi [5],

stating that for any Boolean function, deg2(f) = n iff |f−1(1)| is odd.
Therefore, by an analogous argument as in example 1, for any input x ∈ {0, 1}n, diadeg2(f, x) =

1. (We can again consider α to be the certificate fixing all the bits of x and the path x̄, x is
a valid H-path since deg2(f) = n.)

Therefore, we have diadeg2(f) = 1.
We also have that for any Boolean function f , deg2(f) ≤ deg(f) (see for example, propo-

sition 6.23 in [31]).
Therefore, deg(f) = n, and by a similar argument as for the F2-degree, diadeg(f) = 1.

We note that the PARITY function from example 1 also separates diadeg(f) from dia∧(f).
This is because diadeg(PARITY) = 1 as we discuss below, whereas dia∧(PARITY) = n as
noted in example 1.

18

5.3 Separating diadeg(f) from diadeg2(f)

Recall from equation 3.2 that diadeg(f) ≤ diadeg2(f) for any boolean function f . To separate
diadeg(f) from diadeg2(f), we consider again the PARITY function discussed in example 1.
It is easy to see that deg2(PARITY) = 1. Moreover, for any partial assignment α : [n] →
{0, 1, ?}, the subfunction PARITYα is also a PARITY function on the free bits and therefore,
deg2(PARITYα) = 1. So we have diadeg2(PARITY) = n. However, deg(PARITY) = n,
by the characterization due to Shi and Yao (see in the survey [10]) which states that for
any function f : {0, 1}n → {0, 1}, deg(f) = n iff the number of 1-inputs with an even
number of 1’s does not equal the number of 1-inputs with an odd number of 1’s. Therefore,
diadeg(PARITY) = 1.

5.4 Separating dias(f) and diadeg2(f) from each other

The measures dias(f) and diadeg2(f) are incomparable, and we provide examples separating
them in both directions.

We again revisit the PARITY function considered in example 1 to illustrate a function
with small dias(f) and large diadeg2(f). As noted before, diadeg2(PARITY) = n, whereas
dias(PARITY) = 1, achieving the required separation.

To illustrate a separation in the other direction, we consider the TRIBES function
on n2 bits that has dias(TRIBES) = Θ(n) as we shall see in example 3. However,
deg2(TRIBES) = n2 and therefore, diadeg2(TRIBES) = 1.

5.5 Separating dias(f) from diadeg(f)

We now mention a separating example with diadeg(f) much smaller than dias(f). The
TRIBES function (see also example 3) on n2 bits has dias(TRIBES) = Θ(n). However,
deg(TRIBES) = n2 and therefore, diadeg(TRIBES) = 1.

We are not aware of any examples as yet, separating these measures in the other direction.
We do believe these measures to be incomparable, and it would be an interesting exercise to
find functions f with dias(f) asymptotically smaller than diadeg(f).

5.6 Example with alt(f) smaller than dias(f) (and also dia∧(f))

We now present an example where the alternating number is much smaller than dia∧(f) as
well as dias(f).

Example 3. Consider the TRIBES function f : {0, 1}n2 → {0, 1} defined as:

TRIBES(x11, x12, . . . , x1n, x21, . . . , x2n, . . . , xn1, . . . xnn) =
∨
i∈[n]

∧
j∈[n]

xij

We first note that since TRIBES is monotone, alt(TRIBES) = 1.
We shall show that dia∧(TRIBES) ≥ 2n− 1.
Consider the 1-input x = 1n(021n−2)n−1. In other words, the first block of n bits of x are

set to 1, the remaining n− 1 blocks of n bits each have the first 2 bits set to 0 and the rest
set to 1.

19

Note that TRIBES(x̄) = 0.
Now, let x(0), x(1), . . . , x(t) be any valid AND-NAND path from x to α where α is a certifi-

cate of x̄. (Note that we have switched the roles of x and x̄ in this example for convenience.)
Since TRIBES(x(0)) 6= f(x(1)) = 0, the partial assignment β(0) must have free bits

belonging to the first block of n bits, and moreover, it cannot contain any free bits from any
of the other blocks, in order for the function TRIBESβ(0) to belong to the AND-NAND class.

For the next step, since TRIBES(x(2)) = 1, it is necessary that both 0-bits must be
flipped from one of the remaining blocks. In other words, the partial assignment β(1) must
have exactly two free variables corresponding to the first two bits of some block (other than
the first block).

Again, as before, the partial assignment β(2) must contain free variables from the block
which now only contains 1-bits.

In this way, any shortest valid AND-NAND path must alternate between changing some
block to contain only 1-bits (thereby changing the function value to 1), and then flipping
some 1-bit in that block to 0 (changing the function value to 0).

Eventually, every block will contain a bit that was flipped from a 1 to a 0, and the set of
these bits shall constitute a certificate of x̄.

Therefore, we have that dia∧(TRIBES) ≥ 2n−1. We note that this bound is tight up to
constant factors, as can be seen from Theorem 6 which implies that dia∧(TRIBES) ≤ O(n).

A similar argument also works to show that dias(TRIBES) ≥ 2n − 1, and therefore,
dias(TRIBES) = θ(n) due to Theorem 6.

However, since deg(TRIBES) = n2, we have that diadeg(TRIBES) = 1.
Similarly, deg2(TRIBES) = n2 and therefore, diadeg2(TRIBES) = 1.

5.7 Example with alt(f) larger than all our diameters

We refer to an example from [14] that separates alt(f) from C(f) (and consequently, from
all of our diameters).

Example 4. Let f be the function constructed in [14] as an example where alt(f) is exponen-
tially larger than DT (f) and therefore also C(f) (since DT (f) ≥ C(f)). We note that since
dia∧(f) ≤ 2C(f) due to Lemma 9, f also acts as a separating example where alt(f) is expo-
nentially larger than dia∧(f), and therefore, also exponentially larger than dias(f), diadeg2(f)
and diadeg(f) .

5.8 Separating diaclomin,∧(f) from dia∧(f) and diaclomin,s(f) from dias(f)

For separating diaclomin,∧(f) from dia∧(f), we revisit the TRIBES function considered in exam-
ple 3. As noted in that example, dia∧(TRIBES) = Θ(n). On the other hand, we have that
diaclomin,∧(TRIBES) ≤ alt(TRIBES) = 1, thereby achieving the required separation. The
same separation is also achieved for the TRIBES function between diaclomin,s(f) and dias(f)
by an analogous argument.

20

6 Diameter under OR-composition

In this section, we study the behavior of diameters under OR-composition. In particular,
we prove that any diameter of the OR-composition of two functions is upper bounded by a
sum of their corresponding individual diameters (plus a constant factor).

In what follows, for two functions f, g : {0, 1}n → {0, 1}, we define the OR-composed
function f ∨ g : {0, 1}2n → {0, 1} as f ∨ g(x1, x2) = 1 if f(x1) = 1 or g(x2) = 1, and
f ∨ g(x1, x2) = 0 otherwise, for x1, x2 ∈ {0, 1}n.

We now prove a result relating the diameter of OR-composition of two functions with
their individual diameters as mentioned before:

Theorem 6. For any functions f, g : {0, 1}n → {0, 1}, we have:

dia∧(f ∨ g) ≤ dia∧(f) + dia∧(g) + 3

Proof. Consider any input (x1, x2) ∈ {0, 1}2n. We have two cases as follows:
Case 1: f ∨ g(x1, x2) = 0

Consider the AND-NAND path z
(0)
1 , z

(1)
1 , . . . , z

(t1)
1 (where x̄1 = z

(0)
1) achieving dia∧(f, x1)

and the AND-NAND path z
(0)
2 , z

(1)
2 , . . . , z

(t2)
2 (where x̄2 = z

(0)
2) achieving dia∧(g, x2).

We first deal with the case when f(x̄1) = 0 and g(x̄2) = 0. Observe that the following is
a valid AND-NAND path for f ∨ g:

(z
(0)
1 , z

(0)
2), (z

(0)
1 , z

(1)
2), . . . (z

(0)
1 , z

(t2)
2), (z

(1)
1 , z

(t2)
2), (z

(2)
1 , z

(t2)
2), . . . , (z

(t1)
1 , z

(t2)
2).

This follows because of the simple observation, that for any input (a, b) ∈ {0, 1}2n, if g(b) = 0,
then f ∨ g(a, b) = f(a). Due to this observation, in the first t2 steps of the above path, the

input to f is fixed to z
(0)
1 which is such that f(z

(0)
1) = 0. Therefore, throughout these steps,

we have that f ∨ g(z
(0)
1 , z

(i)
2) = g(z

(i)
2) for any i ∈ {0, 1, . . . t2}. Since z

(0)
2 , z

(1)
2 , . . . , z

(t2)
2 is a

valid AND-NAND path of g, the first t2 steps form valid steps of an AND-NAND path of
f ∨ g.

Similarly, since z
(t2)
2 agrees with a certificate for g on x2, it holds that g(z

(t2)
2) = 0.

Therefore, for the next t1 steps of the path, it holds that f ∨ g(z
(i)
1 , z

(t2)
2) = f(z

(i)
1) for any

i ∈ {0, 1, . . . t2}, and a similar argument goes through as for the first t2 steps of the path.

Finally, since z
(t1)
1 agrees with a certificate for f on x1 and z

(t2)
2 agrees with a certificate

for g on x2, the input (z
(t1)
1 , z

(t2)
2) agrees on a certificate for f ∨ g on the input (x1, x2). We

therefore get a valid AND-NAND path for the function f ∨ g of length t1 + t2.

Now, we consider the case when f(x̄1) = 1 and g(x̄2) = 0. In this case, we first perform
an additional step of flipping the bits of any minimal sensitive block B for f on x̄1 to get
to a 0-input of f i.e. x̄1

B. We then follow the argument of the previous case, and without
changing the input to f , take t2 steps corresponding to the AND-NAND path for g i.e.
z

(0)
2 , z

(1)
2 , . . . , z

(t2)
2 . We then “undo” the first step by flipping back the bits of B in the input

corresponding to f to get to the input (x̄1, z
(t2)
2). Finally, we take the t1 steps of the AND-

NAND path for f starting from input x̄1 to get a valid AND-NAND path of total length
t1 + t2 + 2.

Similar argument works for the case when f(x̄1) = 0 and g(x̄2) = 1.

21

Finally, the case with f(x̄1) = 1 and g(x̄2) = 1 goes through a similar argument, with
the difference that the first step involves simultaneously flipping minimal sensitive blocks for
both f and g, on the respective inputs x̄1 and x̄2, to get input (x̄1

B1 , x̄2
B2), say. The next

step flips back these bits only for g to get the input (x̄1
B1 , x̄2). The argument then proceeds

as in the previous case, where we take the AND-NAND path for g starting from input x̄2,
followed by flipping back the bits of block B1 for the input to f , followed by the AND-NAND
path for f starting from input x̄1.

This gives a valid AND-NAND path of length t1 + t2 + 3 for f ∨ g starting from input
(x̄1, x̄2).

Case 2:f ∨ g(x1, x2) = 1
Wlog, assume that g(x2) = 1.
In this case, we follow a similar proof strategy as in Case 1, with the difference that in

this case, we only need to follow the steps corresponding to a valid AND-NAND path for
g starting from x̄2, since in this case, a certificate for g on x2 would also be a certificate
for f ∨ g on (x1, x2). Apart from that, we follow a similar argument, where we first flip
appropriate blocks of bits, if necessary, to ensure that we are at a 0-input of f . We then
follow the AND-NAND path for g to get a certificate for f ∨ g on (x1, x2). This gives an
AND-NAND path for f ∨ g of length at most t2 + 2.

We remark that Theorem 6 also holds for the three other diameters we consider i.e. for
diadeg(f), diadeg2(f) and dias(f) by an analogous argument.

Note that the TRIBES function f : {0, 1}n2 → {0, 1} as discussed in example 3 is an
OR-composition of n copies of the ANDn function (i.e. the AND function on n bits). Since
dia∧(ANDn) = 1, Theorem 6 implies the bound: dia∧(TRIBES) ≤ Θ(n). As seen in
example 3, dia∧(TRIBES) ≥ 2n − 1 and therefore, this bound is asymptotically tight for
the TRIBES function.

However, Theorem 6 does not always give a tight bound for OR-composed functions, as
can be seen from the example of the function ORn : {0, 1}n → {0, 1} i.e. the OR function
on n bits. ORn is also an OR-composition of n copies of the function g : {0, 1} → {0, 1}
with single-bit inputs, where g(x) = x. Since dia∧(g) = 1, Theorem 6 gives the bound
dia∧(ORn) ≤ Θ(n). This bound is not tight since it holds that dia∧(ORn) = 1.

Acknowledgements

We thank the anonymous referees for helpful comments on a previous version of the paper.

References

[1] Scott Aaronson, Shalev Ben-David, Robin Kothari, and Avishay Tal. Quantum Im-
plications of Huang’s Sensitivity Theorem. Electronic Colloquium on Computational
Complexity (ECCC), 27:66, 2020.

22

[2] Kazuyuki Amano. Minterm-transitive functions with asymptotically smallest Block
Sensitivity. Inf. Process. Lett., 111(23-24):1081–1084, 2011.

[3] Kaspars Balodis. Several Separations Based on a Partial Boolean Function. arXiv
e-prints, March 2021.

[4] Kaspars Balodis, Shalev Ben-David, Mika Göös, Siddhartha Jain, and Robin Kothari.
Unambiguous dnfs and alon-saks-seymour. In 62nd IEEE Annual Symposium on Foun-
dations of Computer Science, FOCS 2021, pages 116–124, 2021.

[5] Richard Beigel and Anna Bernasconi. A note on the polynomial representation of
boolean functions over GF(2). International Journal of Foundations of Computer Sci-
ence, 10(04):535–542, 1999.

[6] Shalev Ben-David, Mika Göös, Siddhartha Jain, and Robin Kothari. Unambiguous
DNFs from HEX. arXiv e-prints, February 2021.

[7] Shalev Ben-David, Pooya Hatami, and Avishay Tal. Low-Sensitivity Functions from Un-
ambiguous Certificates. In Proceedings of Innovations in Theoretical Computer Science
Conference (ITCS), pages 28:1–28:23, 2017.

[8] A. Bernasconi and B. Codenotti. Spectral analysis of boolean functions as a graph
eigenvalue problem. IEEE Transactions on Computers, 48(3):345–351, 1999.

[9] Eric Blais, Clément L Canonne, Igor C Oliveira, Rocco A Servedio, and Li-Yang Tan.
Learning circuits with few negations. arXiv preprint arXiv:1410.8420, 2014.

[10] Harry Buhrman and Ronald De Wolf. Complexity Measures and Decision Tree Com-
plexity: A Survey. Theoretical Computer Science, 288(1):21–43, 2002.

[11] Sourav Chakraborty. On the Sensitivity of Cyclically-Invariant Boolean functions. Dis-
crete Mathematics & Theoretical Computer Science, 13(4):51–60, 2011.

[12] J.-C Chang and H.-L Wu. The log-rank conjecture for read-k xor functions. Journal of
Information Science and Engineering, 34:391–399, 03 2018.

[13] Siddhesh Chaubal and Anna Gál. Tight bounds on sensitivity and block sensitivity of
some classes of transitive functions. Electronic Colloquium on Computational Complex-
ity (ECCC), 27:134, 2020.

[14] Krishnamoorthy Dinesh and Jayalal Sarma. Alternation, Sparsity and Sensitivity: Com-
binatorial Bounds and Exponential Gaps. In Proceedings of the 4th International Con-
ference on Algorithms and Discrete Applied Mathematics (CALDAM), pages 260–273,
2018.

[15] Krishnamoorthy Dinesh and Jayalal Sarma. Sensitivity, affine transforms and quan-
tum communication complexity. In Computing and Combinatorics - 25th International
Conference, COCOON 2019, Proceedings, volume 11653 of Lecture Notes in Computer
Science, pages 140–152. Springer, 2019.

23

[16] Andrew Drucker. Block Sensitivity of Minterm-Transitive functions. Theor. Comput.
Sci., 412(41):5796–5801, 2011.

[17] Siyao Guo, Tal Malkin, Igor C. Oliveira, and Alon Rosen. The power of negations in
cryptography. In Theory of Cryptography, pages 36–65, 2015.

[18] Hao Huang. Induced subgraphs of hypercubes and a proof of the sensitivity conjecture.
Annals of Mathematics, 190(3):949–955, 2019.

[19] Raghav Kulkarni and Miklos Santha. Query complexity of matroids. In Paul G. Spirakis
and Maria Serna, editors, Algorithms and Complexity, pages 300–311, Berlin, Heidel-
berg, 2013. Springer Berlin Heidelberg.

[20] Sophie Laplante, Reza Naserasr, and Anupa Sunny. Sensitivity Lower Bounds from
Linear Dependencies. In 45th International Symposium on Mathematical Foundations
of Computer Science (MFCS 2020), volume 170 of Leibniz International Proceedings in
Informatics (LIPIcs), pages 62:1–62:14, 2020.

[21] Chengyu Lin and Shengyu Zhang. Sensitivity Conjecture and Log-Rank Conjecture for
Functions with Small Alternating Numbers. In Proceedings of the 44th International
Colloquium on Automata, Languages, and Programming (ICALP), pages 51:1–51:13,
2017.

[22] László Lovász and Michael Saks. Lattices, mobius functions and communications com-
plexity. In [Proceedings 1988] 29th Annual Symposium on Foundations of Computer
Science, pages 81–90. IEEE Computer Society, 1988.

[23] A. A. Markov. On the inversion complexity of a system of functions. J. ACM,
5(4):331–334, October 1958.

[24] Kurt Mehlhorn and Erik M. Schmidt. Las vegas is better than determinism in vlsi and
distributed computing (extended abstract). In Proceedings of the Fourteenth Annual
ACM Symposium on Theory of Computing, STOC ’82, page 330–337. Association for
Computing Machinery, 1982.

[25] Gatis Midrijanis. Exact quantum query complexity for total boolean functions. arXiv
preprint quant-ph/0403168, 2004.

[26] Ashley Montanaro and Tobias Osborne. On the communication complexity of XOR
functions. CoRR, abs/0909.3392, 2009.

[27] Hiroki Morizumi. Limiting negations in formulas. In Proceedings of the 36th Interna-
tional Colloquium on Automata, Languages and Programming: Part I, ICALP ’09, page
701–712. Springer-Verlag, 2009.

[28] Hiroki Morizumi. Limiting negations in non-deterministic circuits. Theoretical Com-
puter Science, 410(38):3988 – 3994, 2009.

24

[29] Noam Nisan and Mario Szegedy. On the degree of Boolean functions as real polynomials.
Computational Complexity, 4(4):301–313, Dec 1994.

[30] Noam Nisan and Avi Wigderson. On rank vs. communication complexity. Comb.,
15(4):557–565, 1995.

[31] Ryan O’Donnell. Analysis of Boolean functions. Cambridge University Press, 2014.

[32] Miklos Santha and Christopher Wilson. Limiting negations in constant depth circuits.
SIAM Journal on Computing, 22(2):294–302, 1993.

[33] Xiaoming Sun. Block Sensitivity of Weakly Symmetric Functions. In Proceedings of the
Third International Conference on Theory and Applications of Models of Computation
(TAMC), pages 339–344, 2006.

[34] Xiaoming Sun. An improved lower bound on the Sensitivity Complexity of Graph
Properties. Theor. Comput. Sci., 412(29):3524–3529, 2011.

[35] Shao Chin Sung and Keisuke Tanaka. Limiting negations in bounded-depth circuits:
An extension of markov’s theorem. In Algorithms and Computation, pages 108–116.
Springer, 2003.

[36] H. Y. Tsang, C. H. Wong, N. Xie, and S. Zhang. Fourier sparsity, spectral norm, and
the log-rank conjecture. In 2013 IEEE 54th Annual Symposium on Foundations of
Computer Science, pages 658–667, 2013.

[37] Hing Yin Tsang. On boolean functions with low sensitivity. Manuscript, 2014.

[38] Hing Yin Tsang, Chung Hoi Wong, Ning Xie, and Shengyu Zhang. Fourier Sparsity,
Spectral Norm, and the Log-Rank Conjecture. In 54th Annual IEEE Symposium on
Foundations of Computer Science (FOCS), pages 658–667, 2013.

[39] György Turán. The Critical Complexity of Graph Properties. Information Processing
Letters, 18(3):151 – 153, 1984.

[40] Zhiqiang Zhang and Yaoyun Shi. Communication complexities of symmetric xor func-
tions. Quantum Info. Comput., 9(3):255–263, March 2009.

25
ECCC ISSN 1433-8092

https://eccc.weizmann.ac.il

