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Abstract

The Merlin-Arthur class of languages MA is included into Arthur-Merlin class AM, and into
PP. For a standard transformation of a given MA protocol with Arthur’s message (= random
string) of length a and Merlin’s message of length m to a PP machine, the latter needs O(ma)
random bits. The same holds for simulating MA protocols by AM protocols: in the resulting
AM protocol the length of Arthur’s message (= random string) is O(ma). And the same holds
for simulating heuristic MA protocols by heuristic AM protocols as well. In the paper [A.
Knop, Circuit Lower Bounds for Average-Case MA, CSR 2015] it was conjectured that, in the
transformation of heuristic MA protocols to heuristic AM protocols, O(ma) can be replaced by
a polynomial of a only. A similar question can be asked for normal MA and AM protocols,
and for the simulation of MA protocols by PP machines. In the present paper we show that,
relative to an oracle, both latter questions answer in the negative and Knop’s conjecture is false.
Moreover, the same is true for simulation of MA protocols by AM protocols in which the error
probability is not bounded away from 1/2, the so called PP·NP protocols. The latter protocols
generalize both AM protocols and PP machines.

1 Introduction

Let MA[m, a] denote the class of languages that have two-round Merlin-Arthur protocols in which
Merlin starts the communication, the lengths of messages are m, a, respectively, and error proba-
bility is at most 1/3. In a similar way the class AM[m, a] is defined, but now Arthur is the one
starting the communication.

The class AM includes MA [Bab85], more specifically, it holds that MA[m, a] ⊂ AM[m,O(ma)].
This can be proved via amplification: we first decrease the error probability from 1/3 to 2−m−1, at
the expense of increasing a to O(ma), as Arthur has to repeat his algorithm O(m) times and then
make a majority vote. Using derandomization via expanders [AFWZ95], we can replace O(ma)
by a + O(m) and hence prove the inclusion MA[m, a] ⊂ AM[m, a + O(m)]. In this paper we try
to understand whether it is possible get rid of O(m) and replace in this inclusion a + O(m) by a
polynomial of a only.

Question 1. Is there a polynomial p such that MA[m, a] ⊂ AM[∗, p(a)] for all polynomials m, a of
the length of the input?

Here AM[∗, a] denotes the union of AM[m, a] over all polynomials m. This question is motivated
by the following conjecture from Knop’s paper [Kno15] about heuristic analogs of MA and AM.
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Conjecture 1 ([Kno15]). There is a polynomial p such that if there is a heuristic Merlin-Arthur
protocol for a language L that on inputs of length n and confidence δ uses q(n/δ) random bits (q is
a polynomial) then there is a heuristic Arthur-Merlin protocol for L using p(q(n/δ)) random bits.

Roughly speaking, a language L has a heuristic Merlin-Arthur protocol if there is an ordinary
Merlin-Arthur protocol that errs only on a small fraction of inputs (called its confidence). The
heuristic analog of AM is defined in a similar way.

This conjecture is interesting, since it provides a way to transform lower bounds for heuristic
computations to lower bounds for normal computations. More specifically, the following holds: if
Conjecture 1 is true then for all k some NP language has no Boolean circuits of size nk ([Kno15]).
Thus it would be very helpful to prove Conjecture 1.

A similar question arises for the inclusion MA ⊂ PP [Ver92], where PP stands for the class of
languages recognized by probabilistic polynomial time machines with error probability less than
1/2. It is important that the error probability is not bounded away from 1/2. This inclusion is
also proved via amplification and its more detailed version reads MA[m, a] ⊂ PP[O(ma)], where r
in the notation PP[r] denotes the number of random bits available to PP machines.

Question 2. Is there a polynomial p such that MA[m, a] ⊂ PP[p(a)] for all polynomials m, a?

If MA = P or MA = NP, then in both above simulations randomness is not needed at all,
therefore both questions answer in positive. Hence to prove negative answers, we must show
beforehand that MA 6= P. The latter is equivalent to P 6= NP since MA ⊂ Πp

2 [BHZ87]. Thus we
cannot hope to prove negative answers to both Questions 1 and 2 unless we show that P 6= NP.
On the other hand, positive answers seem implausible.

In such a situation, it is natural to ask whether one can answer Questions 1 and 2 using
relativizable techniques. By the result of [BGS75] there is an oracle under which P 6= NP. Under
that oracle MA = P, since the Polynomial Hierarchy collapses. Hence under that oracle both
questions answer in the positive and Knop’s conjecture holds.

On the other hand, in the present paper we show that there are oracles under which both
questions answer in the negative and Knop’s conjecture does not hold. More specifically, we show
that there is an oracle under which for every polynomial p the class MA[m, a] is not included
in both classes AM[∗, p(a)] and PP[p(a)] where a(n) = n, m(n) = p(n), and n stands for the
length of the input. In particular, under that oracle MA 6= NP thus the “full derandomization”
of MA is impossible. Our result implies that we need a non-relativizable proof techniques to fully
derandomize MA and even to show that MA[m, a] ⊂ AM[∗, p(a)] for some fixed polynomial p. It
remains an open question whether we can resolve both questions using algebrizable techniques in
the sense of Aaronson and Wigderson [AW09].

Actually, we prove a stronger separation. Let PP ·NP[m, a] denote the class of languages
recognized by Arthur-Merlin protocols with error probability less than 1/2 but not bounded away
from 1/2. This class obviously includes both classes PP[a] and AM[m, a]. In the present paper we
prove that under an oracle, for all non-constant polynomials m, a there is a language L in MA[m, a]
such that for every PP·NP[m′, a′] protocol for L it holds a′(n) > m(n) + a(n)−O(log n) for all n.

Using the same techniques, we then show that under an oracle Knop’s conjecture is false, too.
We also establish a similar theorem for MA protocols, where Merlin never fails. More specifically,
let MAP[m, a] denote the subclass of MA[m, a] consisting of languages possessing a protocol for
which the error probability is zero for all strings from the language. It is natural to ask whether
MAP[m, a] ⊂ AM[∗, poly(a)]. From the Sipser–Gács–Lautemann theorem [Sip83, Lau83] about the
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inclusion BPP ⊂ Π2 it follows that MAP = MA, more specifically,

MA[m, a] ⊂ MAP[O((m+ a log a)a log a), O((a log a)2)].

Hence our theorem implies that under an oracle for all polynomials p there are polynomials m, a
with MAP[m, a] 6⊂ AM[∗, p(a)]. In the present paper, we establish a more tight bound: relative to
an oracle, for every non-constant polynomials m, a there is a language L in MAP[m, a] such that
for any PP·NP[∗, a′] protocol for L we have a′(n) > max{m(n), a(n)} − O(log n) for almost all n.
Compared with simulating MA protocols, m(n) + a(n) is replaced by max{m(n), a(n)}.

Summarizing, we show that we cannot prove Conjecture 1 or positive answers to Questions 1
and 2 using relativizable techniques.

2 Preliminaries

A language is a subset of the set {0, 1}∗ of all strings over the binary alphabet. The length of the
string x is denoted by |x|. When we speak on probability, we always mean the uniform distribution.

A polynomial is a function p : N → N of the form p(n) = b(n + 1)c where b, c are positive
integers. Thus any polynomial is a non-constant function with positive values. In the following
definitions r,m, n, t denote some polynomials.

Definition 1. A language L is in the class PP[r] if there is a Turing machine V with input strings
x, a, whose running time is bounded by some polynomial of |x|, such that

x ∈ L↔ Proba∈{0,1}r(|x|) [V (x, a) = 1] > 1/2

for all strings x.

Definition 2. A language L is in the class MA[m, a] if there is a Turing machine V with input
strings x, y, z, whose running time is bounded by some polynomial of |x|, such that

x ∈ L→ ∃y ∈ {0, 1}m(|x|)Probz∈{0,1}a(|x|) [V (x, y, z) = 1] > 2/3,

x /∈ L→ ∀y ∈ {0, 1}m(|x|)Probz∈{0,1}a(|x|) [V (x, y, z) = 1] < 1/3.

for all strings x.

Definition 3. A language L is in the class MAP[m, a] if there is a Turing machine V with input
strings x, y, z, whose running time is bounded by some polynomial of |x|, such that

x ∈ L→ ∃y ∈ {0, 1}m(|x|)Probz∈{0,1}a(|x|) [V (x, y, z) = 1] = 1,

x /∈ L→ ∀y ∈ {0, 1}m(|x|)Probz∈{0,1}a(|x|) [V (x, y, z) = 1] < 1/2.

for all strings x. Compared with the definition of MA, the number 2/3 is replaced by 1, and the
number 1/3 by 1/2 (the latter replacement is not important).

Definition 4. A language L is in the class AM[m, a] if there is a Turing machine V with input
strings x, y, z, whose running time is bounded by some polynomial of |x|, such that

x ∈ L→ Probz∈{0,1}a(|x|) [∃y ∈ {0, 1}
m(|x|)V (x, y, z) = 1] > 2/3,

x /∈ L→ Probz∈{0,1}a(|x|) [∃y ∈ {0, 1}
m(|x|)V (x, y, z) = 1] < 1/3.

for all strings x.
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Definition 5. A language L is in the class PP·NP[m, a, t] if there is a Turing machine V with input
strings x, y, z, whose running time is bounded by t(|x|), such that

x ∈ L↔ Probz∈{0,1}a(|x|) [∃y ∈ {0, 1}
m(|x|)V (x, y, z) = 1] > 1/2. (1)

for all strings x. Triples of the form (m, a, V ) will be called PP·NP protocols. We say that a PP·NP
protocol is correct on input x if the equivalence (1) is true. Otherwise we say that the protocol
errs on x.

Definition 6. (Heuristic classes) We say that a language L is in Heur-PP ·NP[m, a] if there is a
Turing machine V with input strings x, y, z, δ, whose running time is bounded by a polynomial of
|x|/δ, such that for all n the equivalence

x ∈ L↔ Probz∈{0,1}a(|x|/δ) [∃y ∈ {0, 1}
m(|x|/δ)V (x, y, z, δ) = 1] > 1/2. (2)

holds for all but δ fraction of strings x of length n.
In a similar way the classes Heur-MA[m, a] and Heur-AM[m, a] are defined.

An oracle is a function A : {0, 1}∗ → {0, 1}. The classes MA,MAP,AM,PP·NP, relativized by
an oracle A are defined as follows: now the machine V has an extra “oracle” tape. On that tape
the machine can “query the oracle”. That means that the machine can write any string u followed
by a question mark on that tape. Immediately after that, the word u is replaced by A(u) by “the
oracle”, which is counted as one step of computation. Complexity classes relativized by an oracle
A are denoted by MAA,MAPA,AMA,PP·NPA.

3 Constructing an Oracle under which Transformation of MA to
PP·NP Protocols Requires Many Random Bits

The first result states that under some oracle some language in MA[m, a] has no PP·NP[m′, a′, t′]
protocols unless a′(n) > m(n) + a(n)− log2 t

′(n)−O(1).

Theorem 1. There is an oracle A : {0, 1}∗ → {0, 1} with the following property. For all polynomials
m(n), a(n) there is a language in MAA[m, a] that is outside any class PP·NPA[m′, a′, t′] such that
a′(n) < m(n) + a(n)− log2(3t

′(n)) for infinitely many n.

Proof. We first prove a weaker version of the theorem, assuming that the polynomials m(n), a(n)
are fixed.

The value of an oracle A on strings of length m(n) + a(n) can be viewed as a Boolean matrix
An with 2m(n) rows and 2a(n) columns. For the constructed oracle A for all n the matrix An will
have one of the following forms:

• either some row in the matrix has more than two thirds of ones,

• or less than one third of entries in every row are ones.

Matrices of the first type are called heavy, and matrices of the second type are called light. We will
call this property of A by Pm,a (see Fig. 1).

The language L = L(A) will consist of all strings 1n such that the matrix An is heavy. The
intuition is the following: the hidden heavy row is easy to guess in one step but hard to amplify
and find.
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0 0 1 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 0 0
1 0 1 1 0 1 1
0 0 0 0 0 0 0





0 1 1 0 0 0 0
1 0 1 0 0 0 0
0 0 0 0 0 0 1
0 0 0 1 0 0 1
0 0 0 0 0 0 0
0 0 0 0 0 1 1


Figure 1: The matrix on the left is heavy, and the matrix on the right is light.

The property Pm,a of A guarantees that L(A) ∈ MAA[m, a], since

1n ∈ L(A)→ ∃y ∈ {0, 1}m(n)Probz∈{0,1}a(n) [A(yz) = 1] > 2/3,

1n /∈ L(A)→ ∀y ∈ {0, 1}m(n)Probz∈{0,1}a(n) [A(yz) = 1] < 1/3

(the respective machine V on input (1n, y, z) outputs A(yz) by querying the oracle once).
Now we will define an oracle A so that L(A) is outside PP ·NPA[m′, a′, t′] provided a′(n) <

m(n) + a(n)− log 3t′(n) for infinitely many n.
We first pick any PP·NP protocol (m′, a′, V ) with a′(n) < m(n)+a(n)− log 3tV (n) for infinitely

many n. Here tV (n) stands for the polynomial that upper bounds the running time of V . W.l.o.g.
we may assume that the running time of PP·NPA protocols does not depend on the oracle.

Then we prove that there is an oracle A such that this protocol does not recognize L(A). To
this end we will need the following

Lemma 1. Assume that a procedure P is given that on input (a Boolean matrix M of size m× a,
strings y, z) outputs a bit by querying at most q < 2a/3 elements of the matrix M . Let a′ be a
natural number with

2a
′−1q < (2a/3− q)2m,

and m′ any natural number. Then there is a heavy Boolean matrix M with

Probz∈{0,1}a′ [∃y ∈ {0, 1}
m′
, P (M,y, z) = 1] 6 1/2, (3)

or a light Boolean matrix M with

Probz∈{0,1}a′ [∃y ∈ {0, 1}
m′
, P (M,y, z) = 1] > 1/2. (4)

Proof. For the sake of a contradiction assume that there is no such matrix. That is, for every heavy
M we have (4), and for every light M we have (3).

Let first M be all-zero matrix. We will derive a contradiction by flipping certain M ’s entries
in such a way that M is still light but there are 2a

′−1 + 1 pairs (y, z) with pairwise different first
components and with P (M,y, z) = 1. We will find such pairs (y, z) one by one. For each new pair
(y, z) we will freeze all elements of M queried in the computation of P (M,y, z). This means that
we will not change those elements on further steps and thus the equality P (M,y, z) = 1 will remain
valid. On each step we will freeze at most q entries and the assumed inequality

2a
′−1q < (2a/3− q)2m
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will guarantee that on each step it is possible to find a row with few frozen entries. Flipping all
non-frozen elements of that row we get a heavy matrix, which will allow to find a new pair (y, z).

More specifically, we make 2a
′−1 + 1 steps and on ith step we find one new pair (yi, zi). On the

first step we flip all the elements of the first row of M . We obtain a heavy matrix. By assumption
the inequality (4) holds. Hence there is z1 such that there is y1 with P (M,y1, z1) = 1. Fix such
y1, z1. Then freeze all elements of M queried in the computation of P (M,y1, z1). Then we again
flip all non-frozen elements of the first row and M becomes light. This follows from the assumed
inequality q < 2a/3, which implies that the number of ones in the first row is less than one third.

After ith step the matrix M is light and at most iq its entries are frozen. Besides that, there are
distinct z1, . . . , zi and (not necessarily distinct) y1, . . . , yi with P (M,y1, z1) = · · · = P (M,yi, zi) =
1. On (i+ 1)st step we choose a row with minimal number of frozen elements. That number is less
than 2a/3 − q, since at most iq 6 2a

′−1q < (2a/3 − q)2m entries of the matrix are frozen, that is,
on average less than 2a/3 − q per row. Then we make all non-frozen elements in that row equal
to 1. The resulting matrix is heavy, as it has more than 2a − (2a/3 − q) > (2/3)2a ones. By the
assumption we have (4). Since i 6 2a

′−1, there is zi+1 that is different from z1, . . . , zi and there
is yi+1 with P (M,yi+1, zi+1) = 1. Pick such yi+1 and zi+1 and freeze all elements queried in the
computation of P (M,yi+1, zi+1). Then we make all non-frozen elements of that row equal to 0.
The total number of frozen elements in that row is less than (2a/3− q) + q = 2a/3, thus we again
get a light matrix.

After 2a
′−1 + 1 steps we derive a contradiction: the matrix M is light and yet for more than

half of z ∈ {0, 1}a′ there is y ∈ {0, 1}m′
with P (M,y, z) = 1.

Let us resume the proof of the theorem. Let us consider the procedure P (M,y, z) that simulates
the run of V A(1n, y, z). If V queries oracle’s value on a string of length m(n)+a(n), then P queries
the corresponding entry of the input matrix M . If V queries oracle’s value on a string of length
different from m(n)+a(n), then P assumes that the oracle answer is 0. Note that for all sufficiently
large n the running time tV (n) of V on 1n, and hence the number of oracle queries, is less than
2a(n)/6. Indeed, 2a(n) grows exponentially and tV (n) is a polynomial. For such n’s, to meet the
assumptions of the lemma, it suffices to satisfy the inequality 2a

′(n)−1t(n) < 2a(n)+m(n)/6, that is,
a′(n) < a(n) + m(n) − log 3t(n). By the assumption there are infinitely many n satisfying this
inequality. Thus there is n for which the conclusion of the lemma holds. We pick any such n and
define the value of the oracle A on strings of length m(n) +a(n) so that the matrix M = An satisfy
the conclusion of the lemma. For all other strings u we let A(u) = 0. By construction the chosen
PP·NP protocol does not recognize L(A).

Now we have to fool all PP ·NP protocols (m′, a′, V ), with a′(n) < m(n) + a(n) − log 3tV (n)
for infinitely many n. This can be done by a standard diagonalization. We enumerate all PP·NP
protocols with oracle which satisfy the inequality a′(n) < m(n) + a(n) − log 3tV (n) for infinitely
many n. We first let A(u) = 0 for all u and then we perform infinitely many steps. On each step
we freeze a finite number of oracle values. On ith step we fool ith PP·NP protocol (m′, a′, V ). To
this end, we choose n such that no value of A on strings of length m(n) + a(n) has been frozen yet,
tV (n) < 2a(n)/6 and a′(n) < m(n) +a(n)− log 3t′(n). Using the lemma, we change oracle values on
strings of length m(n) + a(n) so that the conclusion of the lemma holds. Then we freeze all oracle
values queried by V in the runs on inputs y, z of lengths m(n), a(n), respectively.

Finally, to construct an oracle A such that the statement of the theorem holds for all polynomials
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m(n), a(n), we also enumerate all the pairs (m, a) of polynomials: (m1, a1), (m2, a2), . . . and define

Li(A) = {1n | Ai,n is heavy}.

Here Ai,n is defined exactly as we defined An earlier for the pair (mi, ai) as (m, a).
Then we enumerate all pairs (a natural number i, a PP·NP protocol (m′, a′, V )) and for each

such pair we make one step. On that step we fool the protocol (m′, a′, V ) as a candidate protocol for
Li(A). There is one obstacle however. In order to place the language Li(A) in MAA[mi, ai], we need
the property Pmi,ai hold for all i. When we change Ai,n to fool the protocol (m′, a′, V ) as a candidate
protocol for Li(A), we can violate the property Pmj ,aj for n′ with mi(n) + ai(n) = mj(n

′) + aj(n
′).

To handle this problem, we will split the oracle A into countably many oracles, one oracle for
each pair (mi, ai) of polynomials. For each i we consider the prefix encoding î of the number i.
It is obtained by doubling each bit in the binary representation of i and then appending 01 (for
instance, 5̂ = 11001101). This encoding ensures that for i 6= j strings of the form îu and ĵv cannot
coincide.

Then we change the definition of the matrix Ai,n: now it is built from oracle’s values on strings
of the form îu, where the length of u is mi(n) + ai(n). Changing Ai,n does not affect any of the
matrices Aj,n′ for j 6= i. Therefore, when we change Ai,n we cannot violate the property Pmj ,aj for
any j 6= i.

4 Refuting Knop’s Conjecture under an Oracle

Recall that Knop’s conjecture claims the existence of a polynomial p such for all polynomials m, a,
if L ∈ Heur-MA[m, a] then L ∈ Heur-AM[∗, p(a)].

Notice that if L ∈ Heur-AM[∗, a(n)] then there is a normal AM[∗, a(2n)] protocol that is correct
on at least half of inputs of each length and hence is correct on at least one input of each length
n. We will build an oracle A under which Knop’s conjecture is false in a strong way. Under that
oracle, for all polynomials m, a there is a language in MA[m, a] (and hence in Heur-MA[m, a]) such
that every PP·NP[m′, a′, t′] protocol with a′(n) < m(n) +a(n)−n− log2(6t

′(n)) for infinitely many
n errs on all inputs of length n for some n.

Let, for instance, a(n) = n and m(n) = p(n) + n, where p is an arbitrary polynomial. We can
see that all AMA[∗, a′(n)] protocols for a language in L ∈ MAA[m(n), n] that are correct on at least
one input of each length require

a′(n) > m(n) + a(n)− n−O(log n) = (p(n) + n) + n− n−O(log n)� p(n) = p(a(n))

random bits for almost all n.

Theorem 2. There is an oracle A : {0, 1}∗ → {0, 1} with the following property. For all polynomials
m(n), a(n) there is a language L ∈ MAA[m, a] such that any PP·NPA[m′, a′, t′] protocol for L with
a′(n) < m(n) + a(n)− n− log2(6t

′(n)) for infinitely many n errs on all inputs x of some length n.

Sketch of proof. As before, we enumerate all pairs (a polynomial m, a polynomial a). Then we
define

Li(A) = {x | the matrix Ai,x is heavy},

where Ai,x is a Boolean matrix of size mi(n)× ai(n), n = |x|, defined by

Ai,x(u, v) = A(̂ix̂uv), |u| = mi(n), |v| = ai(n).
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Note that this time the matrix Ai,x depends on the input x and not only on its length n. The
oracle construction will ensure that for all i, x the matrix Ai,x is either heavy, or light. Thus for all
i the language Li(A) is in MAA[mi, ai].

The construction of A will ensure that for all i and for all PP ·NP protocols (m′, a′, V ) with
a′(n) < mi(n) +ai(n)−n− log 6tV (n) for infinitely many n, there is n with the following property:
for all x of length n,

either Ai,x is heavy and

Probz∈{0,1}ai(|x|) [∃y ∈ {0, 1}
mi(|x|)V A(x, y, z) = 1] 6 1/2.

or Ai,x is light and

Probz∈{0,1}ai(|x|) [∃y ∈ {0, 1}
mi(|x|)V A(x, y, z) = 1] > 1/2.

This implies that the protocol (m′, a′, V ), as a candidate protocol for Li(A), errs on all inputs x of
a certain length n.

The construction of A proceeds in steps where on each step we fool some protocol (m′, a′, V )
as a candidate protocol for some language Li(A). To this end we use the following

Lemma 2. Assume that a procedure P is given that on input (a sequence of Boolean matrices
M = (M1, . . . ,M2n) of size m × a, strings y, z and x ∈ {1, . . . , 2n}) outputs a bit by querying at
most q < 2a/3 elements of the given matrices in total. Let a′ be a natural number with

2a
′ · q · 2n < (2a/3− q)2m,

and m′ any natural number. Then there is a sequence of matrices M1, . . . ,M2n such that for all
x = 1, . . . , 2n either Mx is heavy and

Probz∈{0,1}a′ [∃y ∈ {0, 1}
m′
, P (M,y, z, x) = 1] 6 1/2, (5)

or Mx is light and
Probz∈{0,1}a′ [∃y ∈ {0, 1}

m′
, P (M,y, z, x) = 1] > 1/2. (6)

Proof. The proof is similar to that of Lemma 1 and thus we explain only what is the difference.
Now we make 2n stages and on each stage we make 2a

′−1 + 1 steps. On stage x we flip only entries
of Mx to ensure the requirement for that x. However we need to freeze also entries of other matrices
Mx′ in the case P queries their entries in the computation on the input (M,yi, zi, x). Thus the total
number of frozen elements, in all the matrices, can now raise up to (2a

′−1 + 1) · q · 2n 6 2a
′ · q · 2n.

Since we assume that this number is still less than (2a/3 − q)2m, on each step each matrix has a
row with less than 2a/3− q frozen entries. This we can complete each step.

The rest of the proof is similar to that of Theorem 1. To fool a protocol (m′, a′, V ) as a candidate
protocol for the language Li(A), we apply Lemma 2 to the procedure P that simulates the run
of V A(x, y, z). If V queries oracle’s value on a string of the form îx̂uv where |u| = mi(n) and
|v| = ai(n), then P queries Mx(u, v). To fool the protocol (m′, a′, V ), we again choose n such
that no value of A on strings of length 2 log i + 2 + 2n + 2 + mi(n) + ai(n) has been frozen yet,
tV (n) < 2ai(n)/6 and a′(n) < mi(n) + ai(n) − n − log 6t′(n). Using the lemma, we change oracle
values so that the conclusion of the lemma holds. Then we freeze all oracle values queried by V in
the runs on inputs x, y, z of lengths n,mi(n), ai(n), respectively.
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0 0 1 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 0 0
1 1 1 1 1 1 1
0 0 0 1 0 0 0





0 1 1 0 1 0 0
1 0 1 0 0 1 0
0 0 0 0 0 1 1
1 0 0 1 0 0 1
0 1 0 0 0 0 0
0 1 0 0 0 1 1


Figure 2: The matrix on the left is heavy, and the matrix on the right is light.

5 Constructing an Oracle under which Transformation of MAP
to PP·NP Protocols Requires Many Random Bits

Our third result states that under some oracle some language in MAP[m, a] has PP·NP[m′, a′, t′]
protocols only if a′(n) > max{m(n), a(n)} − log t′(n)−O(1).

Theorem 3. There is an oracle A : {0, 1}∗ → {0, 1} with the following property. For all polynomials
m(n), a(n) there is a language in MAPA[m, a] that is outside any class PP·NPA[m′, a′, t′] such that
a′(n) < max{m(n), a(n)} − log t′(n)−O(1) for infinitely many n.

Proof. The proof of this theorem is similar to that of Theorem 1. However this time heavy matrices
are defined as those for which there is an all-one row, and light matrices as those in which there
are less than one half ones (Fig. 2). Instead of Lemma 1 we use the following

Lemma 3. Assume that a procedure P is given that on input (a Boolean matrix M of size m× a,
strings y, z) outputs a bit by querying at most q < 2a−1 elements of the matrix M . Let a′ be a
natural number with 2a

′−1q < 2m or (2a
′−1 + 1)q < 2a−1 and m′ any natural number. Then there

is a heavy matrix M satisfying (3), or a light matrix M satisfying (4).

Proof. Assume first that 2a
′−1q < 2m. For the sake of contradiction assume that for every heavy

matrix M it holds (4) and for every light matrix M it holds (3). Let M be all-zero matrix. Flip all
bits of the first row. We get a heavy matrix. By assumption we have (4). Choose any z1 such that
there is a y1 ∈ {0, 1}m

′
with P (M,y1, z1) = 1. Fix such y1, z1 and freeze all values of M queried

in the run P (M,y1, z1). Thus we guarantee that P (M,y1, z1) = 1. Then flip again all non-frozen
elements of the first row. As q < 2a−1, now the matrix M is light.

Then we make 2a
′−1 similar steps. After ith step we have at most iq frozen elements of M ,

distinct z1, . . . , zi and (not necessarily distinct) y1, . . . , yi with P (M,y1, z1) = 1, . . . , P (M,yi, zi) =
1. On i+ 1st step we choose a row with no frozen entries (such a row does exist, since we assume
that iq 6 2a

′−1q < 2m) and flip all elements of that row. We get a heavy matrix and hence it
satisfies (4). Since i 6 2a

′−1, there is zi+1 that is different from z1, . . . , zi and there is yi+1 with
P (M,yi+1, zi+1) = 1. Freeze all entries of M queried in this computation. Then flip all non-frozen
elements of the first row. As q < 2a−1, now the matrix M is light.

After 2a
′−1 + 1 we get a contradiction as the matrix M is light and for more than half of

z ∈ {0, 1}a′ there is y ∈ {0, 1}m′
with P (M,y, z) = 1.

Assume now that (2a
′−1 + 1)q < 2a−1. In this case the arguments are simpler. Again, for the

sake of contradiction assume that for every heavy matrix M it holds (4) and for every light matrix
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M it holds (3). Let M be all-one matrix and hence it is heavy. By assumption we have (4). Fix
2a

′−1 + 1 pairs (y, z) with P (M,y, z) = 1 and with pair-wise distinct first components. Freeze at
most (2a

′−1 + 1)q entries of M guaranteeing P (M,y, z) = 1 for all those pairs. Flip all non-frozen
elements of M . The inequality (2a

′−1 + 1)q < 2a−1 implies that less than half entries in each row
are frozen. Hence we get a light matrix satisfying (4), a contradiction.

The remaining part of the proof is similar to that of the proof of Theorem 1.

6 Open questions

1. Is it true that for some polynomial p for all polynomials m, a it holds MA[m, a] ⊂ AM[∗, p(a)]?
2. Can we prove the inclusion MA[m, a] ⊂ AM[∗, p(a)] by algebrizing techniques (for some fixed

polynomial p)?
3. Can we prove Conjecture 1 by algebrizing techniques?
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