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Abstract

We consider the P -CSP problem for 3-ary predicates P on satisfiable instances. We show that under
certain conditions on P and a (1, s) integrality gap instance of the P -CSP problem, it can be translated
into a dictatorship vs. quasirandomness test with perfect completeness and soundness s + ε, for every
constant ε > 0. Compared to Ragahvendra’s result [Rag08], we do not lose perfect completeness. This
is particularly interesting as this test implies new hardness results on satisfiable constraint satisfaction
problems, assuming the Rich 2-to-1 Games Conjecture by Braverman, Khot, and Minzer [BKM21]. Our
result can be seen as the first step of a potentially long-term challenging program of characterizing
optimal inapproximability of every satisfiable k-ary CSP.

At the heart of the reduction is our main analytical lemma for a class of 3-ary predicates, which is
a generalization of a lemma by Mossel [Mos10]. The lemma and a further generalization of it that we
propose as a hypothesis may be of independent interest.

1 Introduction

Constraint satisfaction problems (CSPs) are some of the most fundamental problems in computer science.
Given a predicate P : Σk → {0, 1}, for some alphabet Σ, a P -CSP instance consists of a set of vari-
ables x1, x2, . . . , xn and a collection of local constraints C1, C2, . . . , Cm. Each constraint is of the type
P (xi1 , xi2 , . . . , xik). The constraints might involve literals instead of just the variables.1 An algorithmic
task is to decide if there exists an assignment to the variables that satisfies all the constraints. In a related
problem, called the Max-P -CSP problem, the task is to find an assignment to the variables that satisfies the
maximum fraction of the constraints. An α-approximation algorithm is a polynomial-time algorithm which
always returns an assignment that satisfies at least α · Opt fraction of the constraints, where Opt is the
value of the optimum assignment. The focus of the current work is on approximability of fully satisfiable
instances.

A systematic study of the complexity of solving CSPs was started by Schaefer in 1978 [Sch78] who showed
that for every P over a 2-element alphabet, the problem of checking satisfiability of a P -CSP is either in P
or is NP-complete. A famous Dichotomy Conjecture of Feder and Vardi [FV98], which was resolved recently
in huge breakthroughs by Bulatov and Zhuk independently [Bul17, Zhu20], states that for every P , checking
satisfiability of a P -CSP is either in P or is NP-complete.

However, when it comes to designing optimal approximation algorithms for Max-P -CSP on fully satisfiable
instances, the question is wide open. The PCP Theorem [FGL+96, ALM+98, AS98] proved in the early 90s
shows that it is NP-hard to approximate many P -CSPs within a constant factor α < 1. This was vastly
improved in a seminal result by H̊astad [H̊as01] for certain CSPs. H̊astad showed that for many CSPs, it is
NP-hard to do better than the approximation factor achieved by a random assignment. More specifically,
he showed that 3SAT cannot be approximated better than 7

8 + ε for any constant ε > 0 in polynomial time
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unless P = NP. Note that if we select a random assignment, then it satisfies 7
8 -fraction of the clauses in

expectation. The result proved in [H̊as01] is stronger than what is stated – even if we know that a given
instance is fully satisfiable, i.e., there exists an assignment that satisfies all the clauses, it is NP-hard to
come up with an assignment that satisfies more than ( 7

8 + ε)-fraction of the clauses for any constant ε > 0.

H̊astad also showed that it is NP-hard to find an assignment to a given 3LIN instance2 that satisfies more
that ( 1

2 + ε)-fraction of the constraints, even if we are guaranteed that there exists an assignment that
satisfies (1 − ε)-fraction of the constraints. This is interesting because unlike 3SAT, we can in fact find
an assignment that satisfies all the constraints of a given 3LIN instance, if there exists one, in polynomial
time. Thus, knowing that a given instance of P -CSP is fully satisfiable, in principle, can be used to design
better approximation algorithms for Max-P -CSPs. In this paper, we study the inapproximability of fully
satisfiable instances. On the other hand, as we will explain next, if the instance is almost satisfiable, then by
Raghavendra’s work [Rag08], we know the precise approximation threshold for every P -CSP and the optimal
algorithm is given by semi-definite programming.

In order to gain better understanding of complexity of approximation algorithms for various optimization
problems, Khot [Kho02] in 2002 proposed the Unique Games Conjecture (UGC). Since then, for various
optimization problems, we now know the precise approximation factor that one can achieve in polynomial
time assuming the UGC. Max-Cut is one of the simplest CSPs in which the constraints are of the type
x ⊕ y = 1. Goemans and Williamson [GW95] gave a αGW -approximation algorithm for Max-Cut problem
where αGW ≈ 0.878. Surprisingly, [KKMO07] showed that the approximation algorithm by Goemans and
Williamson is tight assuming the UGC. Their hardness result relied on the ‘Majority is Stablest’ theorem
which was proved in [MOO05].

For general CSPs, Austrin and Mossel [AM09] gave a very simple sufficient criterion for a predicate P to
be approximation resistant. A predicate P is called approximation resistant if it is NP-hard (or UG-hard)
to achieve an approximation algorithm better than the random assignment algorithm. 3SAT and 3LIN
predicates described above are examples of approximation resistant predicates. Austrin and Mossel showed
that if there exists a distribution supported only on the satisfying assignments in P , which is balanced and
pairwise independent, then P is approximation resistant assuming the UGC.

The Max-Cut hardness result was beautifully generalized to all constraint satisfaction problems by Raghaven-
dra [Rag08]. More specifically, he showed that for any P -CSP problem, if there exists a (c, s) basic SDP
integrality gap instance3, then it is UG-hard to find an assignment that satisfies (s + ε) fraction of the
constraints, even if the given instance is (c − ε)-satisfiable, for every constant ε > 0. For all c ∈ (0, 1],
let s(c) be the infimum value such that there exists an (c, s(c)) integrality gap instance. By definition, the
SDP relaxation promises s(c) satisfying assignment on every c-satisfiable instance. Raghavendra gives the
rounding algorithm that actually finds the s(c)-satisfying assignment. Thus, Raghavendra’s result gives a
complete answer to the complexity of approximating Max-P -CSP assuming the UGC. However, it does not
imply hardness on instances that are fully satisfiable. This is because in translating the integrality gap pa-
rameters (c, s) to hardness parameter, there is always a loss of some small constant ε > 0 in the completeness
parameter.

The most important building-block in Raghavendra’s result (and also in many prior works) is the dictatorship
test. A function f : Σn → Σ is called a dictator function if it depends only on one variable. A dictatorship
test is a procedure which queries f at a few (correlated) locations randomly and based on the function values
at these locations, it decides if f is a dictator function or far from any dictator function (also referred to as
quasirandom functions). We briefly describe the notion of being far from dictator functions here. Influence
of a coordinate i in a function f is the probability that for a random input (x1, x2, . . . , xn), f changes its
value if we change the ith coordinate. Note that dictator functions have one coordinate whose influence is
1. A function is called far from dictator functions if for every coordinate i, the influence of the coordinate i
in f is small.

There are three important properties of the test which are useful in getting hardness of approximation result
for Max-P -CSP. The first one is the completeness parameter c — this is the probability that the test accepts
any dictator function. The second property is the soundness parameter s — this is the probability with which

2This CSP is over the Boolean domain and constraints are of the type xi1 ⊕ xi2 ⊕ xi3 = 1/0.
3See Definition 2.16 for the formal definition.
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the test accepts far from dictator functions. The third property is the decision predicate that the test uses
in accepting or rejecting the function f . If the decision predicate is P and the test has completeness c and
soundness s, then such a test can be translated into a UG-hardness result for Max-P -CSP with completeness
(c − ε) and soundness (s + ε), for any constant ε > 0. In other words, it is UG-hard to find an assignment
that satisfies (s + ε) fraction of the constraints, even if the given instance is (c − ε)-satisfiable, for every
constant ε > 0.

Raghavendra proved his result by designing a dictatorship test starting with a (c, s) integrality gap instance
for Max-P -CSP such that the test has completeness (c − ε) and soundness (s + ε), for any constant ε > 0.
Therefore, his test loses in the completeness parameter and hence cannot be used in proving hardness result
on satisfiable instances. Note that even if the completeness parameter of the test is c, because of the
conjectured hardness of Unique Games, one still loses small constant ε in the completeness parameter of the
final UG-hardness result.4 In order to save this loss, Braverman, Khot, and Minzer [BKM21] proposed a Rich
2-to-1 Games Conjecture and if we use this instead of Unique Games, then there is no loss in the completeness
parameter. Therefore, it is important that we do not lose anything in the completeness parameter when
designing the dictatorship test.

In this work, we initiate a systematic study of completely characterizing the precise approximability of
every k-ary CSP on satisfiable instances (recognizing, of course, that the prior works have obtained such
a characterization for specific predicates, e.g., 3SAT). In order to answer this challenging question, it was
necessary first to understand the complexity of checking satisfiability of CSP which is the famous Dichotomy
Conjecture. Now that this conjecture is resolved, we can embark on the study of approximability of satisfiable
CSPs.

As with the case with 3SAT and 3LIN, a predicate being linear makes a big difference on the complexity of the
CSP. Addressing this issue of linearity is also a challenging aspect in the proof of the Dichotomy Conjecture.
In this work, we take the first step by considering special class of non-linear predicates. We show how to
convert any (1, s)-integrality gap instance of a 3-ary CSP to a dictatorship test with completeness 1 and
soundness s + ε, for any constant ε > 0. For our conclusion to hold, we need a few additional properties
from the predicate as well as from the integrality gap instance that we describe next.

• Predicates not satisfying any linear embedding: Given a predicate P : Σ3 → {0, 1}, it is said to satisfy
a linear equation if there exists an Abelian group (G,+) and 3 embeddings σ : Σ→ G, φ : Σ→ G and
γ : Σ→ G such that the following hold: At least one of the embeddings is non-constant and for every
tuple (x, y, z) ∈ P−1(1), σ(x) + φ(y) + γ(z) = 0 where 0 is the identity element of G.

• Semi-rich predicates: A predicate P : Σ3 → {0, 1} is called semi-rich if for each (x, y) ∈ Σ × Σ, there
exists a z ∈ Σ such that (x, y, z) ∈ P−1(1). Also, for every (x, z) ∈ Σ × Σ, there exists a y ∈ Σ such
that (x, y, z) ∈ P−1(1).

• SDP solution that is semi-rich and that is not linearly embeddable: An SDP solution for a given P -CSP
instance consists of a local distribution for each constraint. We say the SDP solution is semi-rich and
is not linearly embeddable if the support of every local distribution is semi-rich and is not linearly
embeddable in any Abelian group (See Definitions 2.1, 2.2 and 2.3).

We now state our main theorem.

Theorem 1.1. Let P : Σ3 → {0, 1} be any predicate that satisfies the following conditions. (1) P does not
satisfy any linear embedding, (2) P is a semi-rich predicate, and (3) there exists an instance of P -CSP that
has a (1, s)-integrality gap for the basic SDP relaxation and an optimal SDP solution is semi-rich and is not
linearly embeddable. Then for every ε > 0, there is a dictatorship test for P that has perfect completeness
and soundness s+ ε.

We do not believe that the semi-rich condition is really needed in the theorem, but this is what we could
show currently.

4Unique Games can hard only on almost satisfiable instances. Therefore, any hardness from Unique Games loses perfect
completeness.
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In order to focus on designing new dictatorship tests and a new way to analyze the tests, in this work we
will not discuss in detail the application of this towards getting the conditional NP-hardness results. A
recent work by Braverman, Khot, Lifshitz and Minzer [BKLM22] gives some supporting evidence towards
dictatorship tests implying hardness results for the predicates satisfying conditions from Theorem 1.1. Note
that, the first condition from the hypothesis is necessary towards getting the hardness result for the predicate
with a gap (1, s+ ε). This can be seen from the Max-3LIN problem on an Abelian group G.5 This predicate
has a linear embedding as well as there exists an instance with a SDP integrality gap of (1, 1

|G| + ε), for

every constant ε > 0. However, if the instance is satisfiable, then one can find the satisfying assignment in
polynomial time using Gaussian elimination.

It might be instructive to consider a couple of examples of predicates that satisfy the first two conditions.

1. Linear equations over a quasirandom group: Fix any group (G, ·) such that any non-trivial irreducible
representation of G has dimension greater than 1.6 Consider the predicate PG : G3 → {0, 1} where
P−1
G (1) = {(x, y, z) | x · y · z = 1G}, where 1G is the identity element. The fact that G does not have

any non-trivial representation of dimension 1 implies that P does not satisfy any linear embedding.
Also, it is easily observed that the predicate is semi-rich.

2. Arithmetic progression over a quasirandom group: For a similar group as above, consider a predicate
PAP : G3 → {0, 1} where P−1

AP (1) = {(x, x·g, x·g2) | x, g ∈ G}. It can be shown that this predicate does
not satisfy any linear embedding. To see that PAP is semi-rich, we need to permute the coordinates.
Note that permuting the coordinates of a predicate does not really change the complexity of the
corresponding CSP problem. By the change of variables x · g = h we can write P−1

AP (1) = {(h ·
g−1, h, h · g) | h, g ∈ G}. We can permute the coordinates to get the following predicate P̃−1

AP (1) =
{(h, h · g−1, h · g) | h, g ∈ G}. Now, it is easily observed that the predicate is semi-rich.

Remark 1.2. A dictatorship test with optimal parameters (in fact, the optimal NP-hardness result for
satisfiable instances) for the predicate PG was shown by Bhangale and Khot [BK21]. Our main theorem
gives new results for the predicate PAP (and many more). The predicate PAP is fundamentally different
from PG as it does not support any pairwise-independent distribution, whereas PG does.

1.1 Related Work

Many hardness results on satisfiable CSPs are known for specific CSPs. In this section, we state these results.
Here, ε > 0 is an arbitrary small constant. H̊astad [H̊as01], in his seminal result, showed that for every k > 3,
k-SAT is NP-hard to approximate within a factor of 1− 1/2k + ε, even if the instance is satisfiable. H̊astad
and Khot [HK05] proved that Boolean CSPs on k variables are NP-hard to approximate within a ratio
2O(k1/2)

2k
. For every prime p, they also showed the hardness result for CSPs over an alphabet of size p, where

the hardness factor is pO(k1/2)

pk
. Huang [Hua14] improved the result for Boolean CSPs to the factor 2Õ(k1/3)

2k
.

Brakensiek and Guruswami [BG21] formulated a problem called the ‘V Label Cover’ to improve these results
on satisfiable k-ary CSPs. Towards this, assuming the hardness of the V Label Cover, they showed that
there is an absolute constant c0 such that for k > 3, given a satisfiable instance of Boolean k-CSP, it is hard
to find an assignment satisfying more than c0k

2/2k fraction of the constraints. These results are non-trivial
only for large values of k.

Towards getting an improved hardness result for Boolean satisfiable 3-CSPs, H̊astad [H̊a14] showed that the
predicate NTW7 is NP-hard to approximate within a factor of 5/8 + ε. For larger alphabet, Engebretsen
and Holmerin [EH05] showed that 3-ary CSPs over an alphabet of size q is NP-hard to approximate within
a factor of 1

q + 1
q2 + ε. Tang [Tan09] showed a conditional result with the hardness factor 1

q + 1
q2 − 1

q3 + ε.8

Very recently, the first two authors [BK21] improved these results for 3-ary CSPs where where they showed

5Here, the predicate is {(x, y, z) | x + y + z = 0} where 0 is the identity element in G.
6See Section 3.5 for the definition of irreducible representations.
7The satisfying assignments for the NTW (Not-TWo-ones) predicate are all 3 bit strings such that the number of 1s in them

is not two.
8The theorem in [EH05] holds for every q > 3, and the theorem in [Tan09] holds for every q > 4.
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that it is NP-hard to approximate satisfiable 3-ary CSPs over an alphabet of size q to within a factor of
1
q + ε, for infinitely many q.

1.2 Techniques

For a given predicate P , we are interested in finding the maximum αP such that (1) there exists an approx-
imation algorithm that satisfies at least αP fraction of the constraints on satisfiable instances, and (2) for
all ε > 0, it is hard to find (αP + ε)-satisfying assignments on satisfiable instances.

In order to answer the above question, the starting point is the Dichotomy Theorem which gives a full
characterization of predicates for which the corresponding CSP is NP-complete or is in P (i.e., deciding if
αP = 1 or αP < 1). The characterization is based on whether a certain non-trivial polymorphism exists for
a given predicate. For a given predicate P : Σk → {0, 1}, a function f : Σn → Σ is called a polymorphism
if for every k × n matrix constructed by letting every column to be an arbitrary satisfying assignment to P
and letting x1, x2, . . . , xk ∈ Σn be the rows of the matrix, it is the case that (f(x1), f(x2), . . . , f(xk)) is also
a satisfying assignment to P . It is easy to see that a dictator function, i.e., f(x) = xi for some 1 6 i 6 n is
always a polymorphism, and any other polymorphism is called a non-trivial polymorphism. The Dichotomy
Theorem states that for a predicate P , checking satisfiability of P -CSP is in P if there exists a non-trivial
polymorphism; otherwise, it is NP-complete (ignoring some subtle issues).

Dictatorship test. Similar to polymorphisms, dictatorship tests form the back-bone of proving hardness
of approximating Max-P -CSPs. Here we formally define the dictatorship test for a given predicate.

Definition 1.3. A dictatorship test for a predicate P : Σk → {0, 1} can query a function f : Σn → Σ. The
test picks a random k×n matrix by letting every column to be a random satisfying assignment to P (i.e., in
P−1(1), with some fixed distribution µ on P−1(1)) and letting x1, x2, . . . , xk ∈ Σn be the rows of the matrix.
The test accepts if (f(x1), f(x2), . . . , f(xk)) is also a satisfying assignment to P .

Here again, it is obvious that if f is a dictator function, then the test accepts with probability 1. If solving
P -CSP is NP-complete then it has no non-trivial polymorphisms according to the Dichotomy Theorem.
Therefore, the question here is to determine the maximum probability the test accepts a function f if f is
far from being a dictator function. If such a test exists where the maximum probability of acceptance for
far from dictator functions is at most αP , then using the Rich 2-to-1 Conjecture of Braverman, Khot, and
Minzer [BKM21], one gets an NP-hardness of approximating P -CSP on satisfiable instances to within a
factor of αP .

We now describe the dictatorship test that we design for a large class of predicates. The starting point is
an instance φ of P -CSP and let the value (i.e., maximum fraction of the constraints that can be satisfied
by an assignment) of this instance be s. The distribution µ in the test depends on the SDP solution for
φ and we only consider instances whose SDP value is 1. The SDP solution consists of vectors as well as
local distribution for each constraint. Since the SDP value is 1, all these local distributions are supported
on the satisfying assignments to P . Let µi be the local distribution corresponding to the ith constraint of
the instance. The test is as follows. Here ε > 0 is a small constant independent of n.

Given f : Σn → Σ,

1. Select a constraint from φ according to the weights of the constraints. Let i be the selected
constraint.

2. Construct a k × n matrix by setting each column of the matrix independently according to the
following distribution: sample the column using µi.

3. Check if P (f(x1), f(x2), . . . , f(xk) = 1.

If f is a dictator function, then the test accepts with probability 1. This follows because for every i, the
distribution µi is supported on the satsifying assignments to P and therefore every column of the matrix
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is from P−1(1). A challenging task is to compute the acceptance probability when f is far from dictator
functions.

This test is a slight modification of Raghavendra’s test [Rag08]. In his test, in Step (2) with probability ε, a
random sample is chosen from Σk. This uniform noise has an effect of killing all the high-degree monomials
of f and hence the analysis boils down to only considering the low-degree functions. At this point, one can
apply the invariance principle for low-degree functions from Mossel [Mos10] and can replace the inputs with
correlated Gaussians. Finally, the expression involving the Gaussians is interpreted as a rounding algorithm
that rounds the SDP solution to an integral solution and the value is upper-bounded by the integral value of
the instance which is s. Thus, the soundness of the test essentially matches the value of the integral solution.
However, because of the uniform noise, the dictator functions will no longer pass the test with probability 1
and hence this test will not give hardness results on satisfiable instances.

Coming back to our test, we cannot add uniform noise as we want to maintain the completeness of the test
to be 1. However, this introduces a few challenges in the analysis of the test. The main challenge is to show
that the local distribution is enough to kill the high-degree part of f . This in general is not true. Specifically,
if the predicate satisfies a linear equation, then this distribution is not enough to kill the high-degree part
(see the counterexample in Remark 1.7). This is where we need the predicate (and the local distributions)
to not satisfy any linear equation. In this case, we use our main analytical lemma, that we will discuss later,
to show that the high-degree part of f contributes little to the test acceptance probability. However, we
additionally need the predicate and the SDP solution to be semi-rich.

Finally, similar to Raghavendra’s analysis, we use the low degree-part of f in the rounding algorithm and
relate the performance of the algorithm to the test acceptance probability. This shows that if f is far from
dictator function, then the acceptance probability of the test is upper bounded by the value of the assignment
returned by the rounding procedure, which is always upper-bounded by s.

Main analytical lemma. Analyzing the acceptance probability of the test is a challenging task in general.
One begins by thinking of the function f as a real valued function, e.g. as an indicator of the event that it
takes a specific symbol in Σ as its value. Skipping some details, one needs to analyze expectations of the
form

E
x1,x2,...,xk∼µ⊗n

[
k∏
i=1

f(xi)

]
,

here x1, x2, . . . , xk are distributed as discussed in Definition 1.3. As the low-degree part of f corresponds to
the SDPs from the algorithmic side, in order to prove our main theorem, we need to show that when f is a
high-degree function, then this expectation is small. Our main analytical lemma shows that this is indeed
the case. Following is the informal statement of the lemma (for a formal statement, see Lemma 2.6).

Lemma 1.4 (Informal). Let P be any 3-ary predicate that is semi-rich and does not satisfy any linear
embedding. Let µ be any distribution that is fully supported on P−1(1). Then for any high-degree bounded
function f , we have ∣∣∣∣ E

x1,x2,x3∼µ⊗n
[f(x1)f(x2)f(x3)]

∣∣∣∣ 6 δ,

where δ → 0 as the degree of the function increases.

We note that a high-degree function has E[f ] ≈ 0. This lemma is proved in Section 3 and it is evident
that the proof of this lemma is quite involved. We believe that the semi-rich condition is not needed for
the conclusion to hold. Generalizing the lemma for k-ary predicates and proving it without the semi-rich
condition is a fascinating analytical question for future work.

The lemma is a generalization of Lemma 6.2 by Mossel [Mos10]. That lemma states that if the distribution
µ is connected then the expectation is small. The connectedness condition can be stated as follows: For
every pair of assignments (a, b, c) and (a′, b′, c′) in P−1(1), there is a way to convert the first assignment
to the second by replacing only once coordinate at a time such that every intermediate triple is in P−1(1).
The predicate PG that was mentioned earlier where P−1

G (1) = {(x, y, z) | x · y · z = 1G} for some non-
Abelian group does not satisfy the connectedness condition, as changing one coordinate from any satisfying
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assignment gives a triple which is outside of P−1
G (1). This predicate, however, does not satisfy any linear

embedding if G does not have any non-trivial representation of dimension 1. PG is also semi-rich and hence
we can apply the above analytical lemma for PG.

The proof of the above lemma for the predicate PG is implicit in the work of Bhangale and Khot [BK21].
Given this fact, our high-level strategy to prove the lemma is as follows. We modify the underlying distri-
bution µ and the predicate P so that the modified predicate can be viewed as a set of equations over some
non-Abelian group. We do this by carefully adding more satisfying triplets to the predicate. During the
modifications, we maintain the properties of the original predicate (i.e., semi-richness and not having any
linear embedding) as well as make sure that the expectation does not change by much. Since the original
predicate does not satisfy any linear embedding, the group must be non-Abelian and also lacks any non-
trivial representation of dimension 1. Therefore, the final expectation must be small. This shows that the
earlier expectation is also small.

1.3 Conclusion and Future Work

Our work leaves open many interesting problems. One obvious open problem is to extend our main theorem
for other class of predicates. We could prove our analytical lemma for 3-ary semi-rich predicates. However,
we believe that this semi-richness condition is not necessary for the conclusion to hold. One obvious open
question is to extend our main theorem to other 3-ary predicates that are not semi-rich. More ambitiously,
we put forth the following hypothesis for general k-ary predicates. One can naturally extend the definition
of 3-ary predicates not satisfying any linear equation to k-ary predicates as follows.

Definition 1.5. Let P : Σk → {0, 1} be any k-ary predicate such that the support on each coordinate is full.
We say P satisfies a linear embedding if there exists an Abelian group (G,+) and mappings σi : Σ→ G such
that

•
∑k
i=1 σi(xi) = 0 for every (x1, x2, . . . , xk) ∈ P−1(1), where 0 is the identity element of G.

• one of the mappings {σi}ki=1 is non-constant.

Otherwise, we say P does not satisfy any linear embedding.

With this definition, we propose the following hypothesis.

Hypothesis 1.6 (Informal). Let P be any k-ary predicate that does not satisfy any linear embedding. Let µ
be any distribution that is fully supported on P−1(1). Given k functions f1, f2, . . . , fk : Σn → [−1, 1], such
that one of the fis is a high-degree function, then we have∣∣∣∣ E

x1,x2,...,xk∼µ⊗n
[f1(x1)f2(x2) · · · fk(xk)]

∣∣∣∣ 6 δ,

where δ → 0 as the degree of the function increases.

Remark 1.7. We note that if the predicate satisfies a linear equation, then the conclusion does not hold.
To see this, suppose P satisfies a linear equation over an Abelian group G given by the embeddings {σi}ki=1.
Let χ be any non-trivial character of G and define fi(xi) =

∏n
j=1 χ(σi((xi)j)). Now,

f1(x1)f2(x2) · · · fk(xk) =

k∏
i=1

n∏
j=1

χ(σi((xi)j)) =

n∏
j=1

k∏
i=1

χ(σi((xi)j)) =

n∏
j=1

χ

(
k∑
i=1

σi((xi)j)

)
,

where the last equality is because of the multiplicativity of the character χ. For every j, we have
∑k
i=1 σi((xi)j) =

0 and hence the product becomes 1 as χ(0) = 1. Moreover, for large n, since one of the embeddings is non-
constant, one of the fis is a high-degree function.

With a positive answer to the hypothesis, we may be able to make progress on predicates P that do not
satisfy any linear equation. On the other hand, if P does satisfy a certain linear equation, then a hybrid
algorithm that solves the SDP as well as the system of linear equations might give an optimal algorithm for
satisfiable CSPs. We leave these as open problems for future work.
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1.4 Organization

In Section 2 we state our main dictatorship test for 3-ary CSPs satisfying conditions from Theorem 1.1.
We start with preliminaries in Section 2.1 where we define constraint satisfaction problems, functions on
product spaces and state the invariance principle. We also state our main analytical lemma that we use in
our dictatorship test analysis in this section. In Section 2.2 we define the basic SDP relaxation for a Max-
P -CSP. In Section 2.3, we state our dictatorship test and prove the completeness and soundness analysis of
the test. We prove our main analytical lemma in Section 3. The proof consists of a series of steps which we
prove in the subsequent subsections.

2 From Integrality Gap to Dictatorship Test

In this section, we show that if a P -CSP instance has a (1, s) integrality gap for the basic SDP relaxation,
then there is a dictatorship test with completeness 1 and soundness s+ ε for any ε > 0, if the predicate and
the SDP solution satisfy certain conditions.

2.1 Preliminaries

The focus of this paper is on special type of predicates that do not satisfy any linear equation and that
are semi-rich. We define these two properties next. We define these properties for more general predicates
having different alphabet for each location, although in our dictatorship test we only consider predicates of
the type P : Σ3 → {0, 1}.

Definition 2.1. Let Σ,Φ,Γ be finite alphabets. Let H ⊆ Σ × Φ × Γ and Σ′ ⊆ Σ,Φ′ ⊆ Φ and Γ′ ⊆ Γ be
the subsets on which H is supported. We say H can be linearly embedded in an Abelian group if there is an
Abelian group (G,+) and maps σ : Σ′ → G, φ : Φ′ → G, γ : Γ′ → G such that

1. for all (x, y, z) ∈ H it holds that σ(x) + φ(y) + γ(z) = 0;

2. at least one of σ, φ, γ is non-constant.

Otherwise, we say H cannot be embedded linearly into an Abelian group, or simply H does not satisfy any
linear equation.

Definition 2.2. Let Σ,Φ,Γ be finite alphabets. Let H ⊆ Σ× Φ× Γ and Σ′ ⊆ Σ,Φ′ ⊆ Φ and Γ′ ⊆ Γ be the
subsets on which H is supported. We say H is semi-rich if the following two properties hold.

1. For all (x, y) ∈ Σ′ × Φ′, there exists z ∈ Γ′ such that (x, y, z) ∈ H.

2. For all (x, z) ∈ Σ′ × Γ′, there exists y ∈ Φ′ such that (x, y, z) ∈ H.

Note that in the definition of semi-rich one of the three coordinates is special. However, the location of the
special coordinate does not matter as we can permute the coordinates and study the modified subset instead.

We now define the predicates that have these two properties.

Definition 2.3. A predicate P : Σ×Φ× Γ→ {0, 1} is said to be linearly embedded into an Abelian group if
and only if P−1(1) can be linearly embedded in an Abelian group. P is called semi-rich if P−1(1) is semi-rich.

Let (Ω, µ) be a probability space. Define the inner product on this space by 〈f, g〉µ := Ex∈µ[f(x)g(x)]. We
will use the notation ‖f‖p;µ := Ex∈µ[|f(x)|p]1/p to denote the pth norm of f . In order to state our main
analytical lemma, we need the following definition of the noise operator.

Definition 2.4. Let Φ be a finite alphabet, and ν be a measure on Φ. For a parameter ρ ∈ [0, 1], we define
the ρ-correlated distribution with respect to ν as follows. For any y ∈ Φ, the distribution of inputs that are
ρ-correlated with y is denoted by y′ ∼ Tρy and is defined by taking y′ = y with probability ρ, and otherwise
sampling y′ ∼ ν.
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As is often the case, we also view Tρ as an operator on functions, mapping L2(Φ, ν) to L2(Φ, ν) by

(Tρg)(y) = E
y′∼Tρy

[g(y′)] .

We then tensorize this operator, i.e., consider T⊗nρ which acts on functions on n-variables, i.e. on L2(Φn, ν⊗n).
When clear from context, we drop the ⊗n superscript from notation.

Definition 2.5. Stabνρ(g) = 〈g,Tρg〉ν⊗n . We drop the superscript ν from Stabνρ(g), if it is clear from the
context.

Let m = |Φ| and write the multilinear expansion of g with respect to ν, i.e., g(y) =
∑

σ∈{0,1,...,m−1}n
ĝ(σ)`σ(y),

where `0 ≡ 1 is the trivial character.9 Then Stabνρ(g) =
∑

σ∈{0,1,...,m−1}n
ρ|σ|ĝ(σ)2, where |σ| is the number of

non-zero entries in σ. Thus, if g has small weight on ĝ(σ) where |σ| is small then Stabνρ(g) is small. Thus,
we use the notion of small stability of a function as a proxy for high-degreeness of the function.

We now state the main analytical lemma that we use in the analysis of our dictatorship test. The lemma is
proved in the next section (Section 3).

Lemma 2.6. For all m ∈ N, ε, α > 0 there exist ξ > 0 and δ > 0 such that the following holds. Suppose µ
is a distribution over Σ × Φ × Γ whose support (a) is semi-rich, and (b) cannot be embedded in an Abelian
group. Further suppose that |Σ| , |Φ| , |Γ| 6 m, each atom in µ has probability at least α and marginals of µ
on Σ,Φ and Γ have full support. If f : Σn → [−1, 1], g : Φn → [−1, 1], h : Γn → [−1, 1] are functions such
that

either Stab1−ξ(f) 6 δ, or Stab1−ξ(g) 6 δ, or Stab1−ξ(h) 6 δ,

then
∣∣Ex,y,z∼µ⊗n [f(x)g(y)h(z)]

∣∣ 6 ε.

2.1.1 Constraint Satisfaction Problems

We will use the notation [R] to denote the set {1, 2, . . . , R}. In our dictatorship test analysis, we are going
to need a few lemmas from Raghavendra’s thesis [Rag09] as black-box. Therefore, we try to use the same
notations from his thesis. Our analytical lemma (Lemma 2.6) that we prove in the next section works only
for the 3-ary CSPs. However, in this section, we work with general k-ary P -CSPs. If we have the analogous
analytical lemma for any k-ary CSP, then the test designed in this section can be combined with it to get a
result for k-ary CSPs.

Raghavendra considered CSPs with mixed predicates. In this work, we consider CSPs with one predicate
P : Σk → {0, 1} (or possibly mix of predicates with the same template P , as described below). We formally
define the P -CSP instance in the following definition.

Definition 2.7. For a given predicate P : Σk → {0, 1}, a P -CSP instance is given by I = (V,P) where

- V is the set of variables.

- P is a probability distribution on the payoff functions P ′ : ΣV → {0, 1} of type,

P ′(y) = P (yi1 , yi2 , . . . , yik),

for some i1, i2, . . . , ik ∈ V.

Remark 2.8. A P -CSP instance actually consists of a mix of payoffs on the same template P . In the
Boolean CSP, these mix of payoffs are formed by using literals (or negations). Here are few examples to
illustrate this for Boolean CSPs as well as for general CSPs.

9This is formally defined in the Section 2.1.2 below.
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1. In 3SAT, the template predicate P is P : {0, 1}3 → {0, 1} where P (x, y, z) = 0 iff x = y = z = 0.
However, a 3SAT instance contains 8 different payoffs, one for each literal pattern.

2. In 3LIN, the template predicate P : {0, 1}3 → {0, 1} is such that P (x, y, z) = 1 iff x ⊕ y ⊕ z = 1. In
this case, the instance also contains constraints of type x⊕ y ⊕ z = 0.

3. In 3LIN equations over a non Abelian group (G, ·), the predicate is P : G3 → {0, 1} such that
P (x, y, z) = 1 iff x ·y ·z = 1G, where 1G is the identity element of G. The instance contains constraints
of type x · y · z = g for some g ∈ G.

Without the mix of payoffs, certain P -CSPs are trivial; for instance, the all 1 assignment would satisfy every
3SAT and 3LIN instance. Therefore we allow the use of such mix of payoffs in our instances. Note that
for certain predicates, like 3NAE : {0, 1}3 → {0, 1}, defined as 3NAE(x, y, z) = 1 iff x, y, z are not all the
same, instances without any mix of payoffs are non-trivial to solve.

For a payoff P ′, the set of indices i1, i2, . . . , ik ∈ V on which it depends is denoted by V(P ′). Let supp(P)
be the set of payoffs in I. Given a P -CSP instance I, the objective is to find an assignment y ∈ ΣV that
maximizes the value of the instance which is defined as follows:

val(y) = E
P ′∼P

[P ′(y)].

The optimum value of the instance I = (V,P) is defined as:

Opt(I) = max
y∈ΣV

val(y).

Let N(Σ) be the set of probability distributions on Σ.

2.1.2 Functions on Product Spaces

Let (Ω, µ) be a probability space with |Ω| = q and µ has full support on Ω. Define the inner product between
two functions f, g : Ω→ R on this space as follows: 〈f, g〉 = Ex∼µ[f(x)g(x)].

Definition 2.9. An orthonormal ensemble consists of a basis of real orthonormal random variables L =
{`0 ≡ 1, `1, . . . , `q−1}, where 1 is the constant 1 function.

Henceforth, we will sometimes refer to orthonormal ensembles as just ensembles. For an ensemble L =
{`0 ≡ 1, `1, . . . , `q−1} of random variables, we will use LR to denote the ensemble obtained by taking R

independent copies of L. Further L(i) = {`(i)0 , `
(i)
1 , . . . , `

(i)
q−1} will denote the ith independent copy of L.

Fix an ensemble L = {`0 ≡ 1, `1, . . . , `q−1} that forms a basis for L2(Ω). Given such a basis for L2(Ω), it
induces a basis for the space L2(ΩR), given by the random variables{

`σ :=

R∏
i=1

`(i)σi

∣∣∣∣∣ σ ∈ {0, 1, . . . , q − 1}R
}
.

Therefore, any function F : ΩR → R has a multilinear expansion

F(z) =
∑

σ∈{0,1,...,q−1}R
F̂(σ)`σ(z),

where `σ(z) =
∏R
i=1 `σi(zi).

Definition 2.10. A multi-index σ is a vector (σ1, σ2, . . . .σR) ∈ {0, 1, . . . , q − 1}R and the degree of σ is

denoted by |σ| which is equal to |σ| = |{i ∈ [R] | σi 6= 0}|. Given a set of indeterminates X = {x(i)
j |j ∈

{0, 1, . . . , q − 1}, i ∈ [R]} and a multi-index σ, define the monomial xσ as

xσ =

R∏
i=1

x(i)
σi .
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The degree of the monomial is given by |σ|. A multilinear polynomial over such indeterminates is given by

F (x) =
∑

σ∈{0,1,...,q−1}R
F̂σxσ.

Given any function F : ΩR → R, with the multilinear expansion F(z) =
∑
σ∈{0,1,...,q−1}R F̂(σ)`σ(z) with

respect to the orthonormal ensemble L = {`0 ≡ 1, `1, . . . , `q−1}, we define a corresponding formal polynomial

in the indeterminates X = {x(i)
j |j ∈ {0, 1, . . . , q − 1}, i ∈ [R]}, as follows:

F (x) =
∑
σ

F̂(σ)xσ.

We will always use the symbol F to denote real-valued function on a product probability space ΩR. Further
F (x) will denote the formal multilinear polynomial corresponding to F . Hence F (LR) is a random variable
obtained by substituting the random variables LR in place of x. For instance, the following equation holds
in this notation:

E
z∈ΩR

[F(z)] = E[F (LR)].

We now define the notion of the influence of a variable.

Definition 2.11. For a function F : ΩR → R over the space (ΩR, µ⊗R), the influence of the jth coordinate
is given by:

Inf j [F ;µ⊗R] = E
z(−j)∈ΩR−1

[Varz(j)∈Ω[F(z)]],

where z(−j) is a string missing the jth coordinate.

We have the following proposition that relates the average value and the variance of a function to its Fourier
coefficients.

Proposition 2.12. For a function F : ΩR → R over the space (ΩR, µ⊗R), if F(z) =
∑
σ F̂(σ)`σ(z) with

respect to an orthonormal ensemble L of (Ω, µ), then Ez∈ΩR [F(z)] = F̂0 and Var[F ] =
∑
σ 6=0 F̂2

σ.

We also define the degree > D weight of a function F as follows:

W>D[F ;µ⊗R] =
∑

σ:|σ|>D

F̂2
σ.

Another way of writing a function on a probability space as sum of orthogonal functions is called the Efron-
Stein decomposition.

Definition 2.13. Let (Ω, µ) be a probability space and (ΩR, µ⊗R) be the corresponding product space. For a
function f : ΩR → R, the Efron-Stein decomposition of f with respect to the product space is given by

f(z1, · · · , zR) =
∑
β⊆[R]

fβ(z),

where fβ depends only on zi for i ∈ β and for all β′ 6⊇ β,a ∈ Ωβ
′
, Ez∈µ⊗R [fβ(z) | z|β′ = a] = 0.

We have the following facts about the Efron-Stein decomposition of functions.

Fact 2.14. If f(z) =
∑
β⊆[R] fβ(z) and g(z) =

∑
β⊆[R] gβ(z) are the Efron-Stein decompositions of f and

g respectively w.r.t. the product space (ΩR, µ⊗R), then

1. Tρf(z) =
∑
β⊆[R] ρ

|β|fβ(z) and

2. 〈f, g〉µ⊗R =
∑
β⊆[R]〈fβ , gβ〉µ⊗R .
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2.1.3 Vector valued functions

We will always use the symbol F = (F1,F2, . . . ,Fq) to denote a vector-valued function on a product probabil-
ity space ΩR. Further, F (x) = (F1, F2, . . . , Fq) will denote the formal multilinear polynomial corresponding
to F .

The notions of influence and degree > D weight can be extended to the vector valued functions using the
following definitions.

Inf i[F ;µ⊗R] =

q∑
j=1

Inf i[Fj ;µ⊗R] and W>D[F ;µ⊗R] =

q∑
j=1

W>D[Fj ;µ⊗R].

2.1.4 Invariance Principle

Define functions f[0,1] : R→ R and ξ : Rq → R as follows:

f[0,1](x) =

 0 if x < 0
x if 0 6 x 6 1,
1 if x > 1.

ξ(a) =

q∑
j=1

(f[0,1](aj)− aj)2.

A crucial step in the analysis of the dictatorship test is to replace the discrete inputs with correlated
Gaussians. The following theorem from Mossel [Mos10] states that one can do this provided the functions
do not have influential coordinates and the functions are low-degree.

Theorem 2.15 ([Mos10]). Fix 0 < α 6 1/2 and d ∈ N. Let (Ω, µ), |Ω| = m, be a finite probability space

such that every atom has probability at least α. Let L(r) = {`(r)0 ≡ 1, `
(r)
1 , . . . , `

(r)
m−1} be an orthonormal

ensemble of random variables over Ω and G(r) = {g(r)
0 ≡ 1, g

(r)
1 , . . . , g

(r)
m−1} be an orthonormal ensemble of

Gaussian random variables.

Let F = (F1, F2, . . . , Fd) denote a vector valued multilinear polynomial on ΩR. If Inf i[F ;µ⊗R] 6 τ for all
i ∈ [R], W>D[F ;µ⊗R] 6 δ and Var[Fj ] 6 1 for all j ∈ {1, . . . , d}, then the following holds.

1. For every function ψ : Rd → R that is thrice differentiable with all its partial derivatives up to order 3
bounded uniformly by C0,∣∣E[ψ(F (LR))]−E[ψ(F (GR))]

∣∣ 6 O

(
D
√
τ
(

8α−1/2
)D)

+O(
√
δ).

2. For the function ξ defined above,

∣∣E[ξ(F (LR))]−E[ξ(F (GR))]
∣∣ 6 O

(√
τ
(

10α−1/2
)D)2/3

+O(
√
δ).

In both the cases, the O(.) hides the constant C0.

Proof. The theorem follows from Theorem 4.1 from [Mos10]. Truncate the polynomial F to degree D to get
a polynomial L. Using Theorem 4.1 of Mossel [Mos10], we have∣∣E[ψ(L(LR))]−E[ψ(L(GR))]

∣∣ 6 2DC0d
3(8α−1/2)Dτ1/2 = O

(
D
√
τ
(

8α−1/2
)D)

.

Since ψ is a smooth functional,∣∣E[ψ(L(LR))]−E[ψ(F (LR))]
∣∣ 6 C0‖L(LR)− F (LR)‖ = C0

(
W>D[F ;µ⊗R])

)1/2
6 C0

√
δ.
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Similarly, we get ∣∣E[ψ(L(GR))]−E[ψ(F (GR))]
∣∣ 6 C0

√
δ.

Combining the three inequalities, we get the required bound for (1).

The second item follows from Theorem 3.19 from [MOO05]. Here again, let L be the low-degree part of F
truncated at degree D and let H = F −L. Using Theorem 3.19 of [MOO05],

∣∣E[ξ(L(LR))]−E[ξ(L(GR))]
∣∣ 6 O

(√
τ
(

10α−1/2
)D)2/3

.

Using Lemma 3.24 from [MOO05],∣∣E[ξ(F (LR))]−E[ξ(L(LR))]
∣∣ 6 2 E[L(LR)H(LR)] + E[H(LR)2]

6 2
√

E[L(LR)2]
√

E[H(LR)2] + E[H(LR)2]

6 2
√

E[H(LR)2] + E[H(LR)2] 6 2
√
δ + δ 6 3

√
δ,

where the second step follows from the Cauchy-Schwarz inequality. Similarly, we get,∣∣E[ξ(F (GR))]−E[ξ(L(GR))]
∣∣ 6 3

√
δ,

and the claim follows.

2.2 SDP Relaxation

Given an instance I = (V,P), the basic semi-definite programming relaxation of the instance is given in
Figure 1. It consists of vectors {bi,a}i∈V,a∈Σ, distributions {µP ′}P ′∈supp(P) over the local assignments (i.e.,

on ΣV(P ′)) and a unit vector b0. Let val(V ,µ) be the objective value of the solution (V ,µ).

maximize E
P ′∼P

E
x∈µP ′

[P ′(x)]

subject to 〈bi,a, bj,b〉 = Pr
x∼µP ′

[xi = a, xj = b] P ′ ∈ supp(P), i, j ∈ V(P ′), a, b ∈ Σ (1)

〈bi,a, b0〉 = ‖bi,a‖22 ∀i ∈ V, a ∈ Σ (2)

‖b0‖22 = 1 (3)

µP ′ ∈ N(ΣV(P ′)) P ′ ∈ supp(P) (4)

Figure 1: Basic SDP relaxation of a P -CSP instance I = (V,P).

Following is a definition of (1, s) integrality gap instance.

Definition 2.16. An instance I = (V,P) is a (1, s) SDP integrality gap instance if the optimal value of the
instance is at most s and the optimal value of the basic SDP relaxation for I is 1.

For our dictatorship test to work, we require that the support of every local distribution µP ′ is semi-rich
and it is not linearly embeddable in any Abelian group. Henceforth, we will assume that the SDP solution
satisfies this property.
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2.3 Dictatorship Test

In this section, we study the dictatorship test for P -CSP instances over a k-ary predicate P . Throughout
this section, when k = 3, we restrict ourselves to the predicates P that are semi-rich and that do not satisfy
any linear equation.

Let I = (V,P) be an instance of P -CSP, where P : Σk → {0, 1} and |Σ| = q. We will fix an arbitrary
mapping from Σ to {1, 2, . . . , q}, denoted by ς : Σ→ {1, 2, . . . , q}.
Let (V ,µ) be a solution for the basic SDP relaxation of I which is semi-rich and which does not satisfy
any linear equation. For each s ∈ V, let Ωs = (Σ, µs) be a probability space with atoms in Σ where the
probability of a ∈ Σ is ‖bs,a‖22. We assume that Ωs has full support for every s ∈ V. However, our proof
works even when the support is a subset of Σ.

A function F : ΣR → Σ is called a dictator function if F (z) = z(i) for some i ∈ [R]. In Figure 2, we give the
dictatorship test DictV ,µ for functions F : ΣR → Σ.

1. Sample a payoff P ′ ∼ P. Let V(P ′) = {s1, s2, . . . , sk}.

2. Sample zP ′ = {zs1 , zs2 , . . . ,zsk} from the product distribution µ⊗RP ′ , i.e., independently for each

i ∈ [R], (z
(i)
s1 , z

(i)
s2 , . . . ,z

(i)
sk ) ∼ µP ′ .

3. Query the function values F (zs1), F (zs2), . . . , F (zsk).

4. Accept iff P ′(F (zs1), F (zs2), . . . , F (zsk)) = 1.

Figure 2: SDP integrality gap to a dictatorship test DictV ,µ.

Remark 2.17. There is one main difference between our test and the dictatorship test given in [Rag09].
In [Rag09], in Step 2 (Figure 2), uniformly random noise is added from Σk. This step loses the perfect
completeness of the dictatorship test.

2.3.1 Completeness Analysis

The completeness of the test is defined as follows,

Completeness(DictV ,µ) = min
i∈[R],

F is the ith dictator

Pr[F passes DictV ,µ].

If the function is a dictator function, then the test accepts with probability 1. The simple claim is proven
below.

Lemma 2.18. If val(V ,µ) = 1 then

Completeness(DictV ,µ) = 1.

Proof. Consider a dictator function F (z) = z(j) for some j ∈ [R]. In this case, (F (zs1), F (zs2), . . . , F (zsk)) =

(z
(j)
s1 , z

(j)
s2 , . . . ,z

(j)
sk ). When the payoff P ′ ∼ P is selected, then (z

(j)
s1 , z

(j)
s2 , . . . ,z

(j)
sk ) is distributed according

to µP ′ . As the SDP value is 1, the distribution µP ′ is fully supported on P ′−1(1) and hence the test passes
with probability 1.

2.3.2 Soundness Analysis

We now move to prove the soundness analysis of the test. Here we formally define the functions which are
far from dictator functions (also known as quasirandom functions). Let ∆q := {e1, e2, . . . , eq} where ej is
the jth basis vector of Rq.
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Definition 2.19. For a function F : ΣR → Σ, the corresponding ∆q-representation is a function F : ΣR →
∆q given by

F(z) = eς(F (z)).

Therefore, in this setting F is a dictator function if F(z) = eς(z(i)) for some i ∈ [R]. Any function

F : ΣR → Nq can be interpreted as a distribution on functions F ′ : ΣR → ∆q as follows: For each z ∈ ΣR,
set the value of F ′(z) independently as

F ′(z) = ej with probability F(z)j for all j ∈ {1, 2, . . . , q}.

Thus, for each z ∈ ΣR, we have F(z) = E[F ′(z)].

Fix a function F : ΣR → Nq. For each s ∈ V, let Fs denote the function F interpreted as a function on the
product probability space (ΣR, µ⊗Rs ).

Definition 2.20. A function F : ΣR → Nq is said to be (τ, δ)-quasirandom if for each s ∈ V, it holds that

max
16i6R

Inf i[T1−δFs;µ
⊗R
s ] 6 τ,

where Inf i[Fs;µ
⊗R
s ] =

∑q
j=1 Inf i[Fs,j ;µ⊗Rs ] and Fs,j is Fs restricted to the jth-coordinate of Nq.

The domain of payoff P ′ can be extended from Σk to Nkq . To see this, by the abuse of notation, first define

a ∆q-representation of a payoff P ′ : Σk → {0, 1} as P ′ : ∆k
q → {0, 1} where

P ′(ea1 , ea2 , . . . , eak) = P ′(ς−1(a1), ς−1(a2), . . . , ς−1(ak)), for all (a1, a2, . . . , ak) ∈ {1, 2, . . . , q}k.

The function P ′ can be extended to the domain Nkq by its multi-linear extension. Again, by abusing the
notation, define the extension P ′ as:

P ′(x1,x2, . . . ,xk) =
∑
σ∈Σk

P ′(σ)

k∏
i=1

xi,ς(σi), for all x1,x2, . . . ,xk ∈ Nq. (5)

Define the soundness of the test as:

Soundness(DictV ,µ) = sup
F :ΣR→Nq

F is (τ,δ)−quasirandom w.r.t.(V ,µ)

Pr[F passes DictV ,µ].

Extending P ′ to Rqk: We will extend the payoff function P ′ further to a real valued function on (Rq)k,
by plugging the real values in the expansion of P ′ given in the Equation (5). This extension of P ′ is smooth
in the following sense:

1. All the partial derivatives of P ′ up to order 3 are uniformly bounded by C0(q, k).

2. P ′ is a Lipschitz function with Lipschitz constant C0(q, k), i.e.,∀{x1, . . . ,xk}, {y1, . . . ,yk} ∈ (Rq)k,

|P ′(x1, . . . ,xk)− P ′(y1, . . . ,yk)| 6 C0(q, k)

k∑
i=1

‖xi − yi‖2.

Setting of parameters. Let ξ > 0 be the parameter from Lemma 2.6. Let δ > 0 be a sufficiently small
constant. Set η ∈ (0, 1) to be the smallest constant such that for all ` > 0,

(1− ξ)`(1− (1− δ)`)2 6 η.

Note that as δ → 0, η(δ)→ 0. We will denote the smallest non-zero probability of an atom in the SDP local
distribution by α. As the SDP instance is finite, we can assume that α > 0 independent of R.
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Input: An SDP solution (V ,µ).

Setup: For each s ∈ V, the probability space Ωs = (Σ, µs) consists of atoms in Σ with the distribution
µs(a) = ‖bs,a‖2. Let Fs denote the function obtained by interpreting the function F : ΣR → Nq as
a function over ΩRs . Let Hs = T1−δFs for all s ∈ V. Let F s,Hs denote the multilinear polynomials
corresponding to functions Fs,Hs respectively.

Rounding Scheme:

Step I: Sample R Gaussian vectors ζ(1), ζ(2), . . . , ζ(R) with the same dimension as V .

Step II: For each s ∈ V, do the following:

1. For each j ∈ [R], let g
(j)
s,0 ≡ 1 and for c ∈ {1, . . . , q − 1}, set

g(j)
s,c =

∑
ω∈Σ

`s,c(ω)〈bs,ω, ζ(j)〉.

Let g
(j)
s = (g

(j)
s,0 ≡ 1, g

(j)
s,1, . . . , g

(j)
s,q−1) and gs = (g

(1)
s , g

(2)
s , . . . , g

(R)
s ).

2. Evaluate the multilinear polynomial Hs with gs as inputs to obtain ps ∈ Rq, i.e., ps = Hs(gs).

3. Round ps to p∗s.
p∗s = Scale(f[0,1]((ps)1), f[0,1]((ps)2), . . . , f[0,1]((ps)q)),

where

f[0,1](x) =

 0 if x < 0
x if 0 6 x 6 1,
1 if x > 1,

and

Scale(x1, x2, . . . , xq) =

{ 1∑
i xi

(x1, x2, . . . , xq) if
∑
i xi 6= 0,

(1, 0, 0, . . . , 0) if
∑
i xi = 0.

4. Assign the variable s ∈ V a value a ∈ Σ with probability (p∗s)ς−1(a).

Step III: Output the assignment from Step II.

Figure 3: Rounding Scheme RoundF .

Local and Global Ensembles. Fix a given SDP solution (V ,µ) with value 1. We define the following
local and global orthonormal ensembles of random variables for every s ∈ V as follows.

• Local Integral Ensembles L: The Local Integral Ensemble L = {`s | s ∈ V} for a variable s ∈ V,
`s = {`s,0 ≡ 1, `s,1, . . . , `s,q−1} is a set of random variables that are orthonormal ensembles for the
space Ωs.

We also define the following global ensembles of random variables:

• Global Gaussian Ensembles G: The Global Gaussian Ensembles G = {gs | s ∈ V} are generated
by setting gs = {gs,0 ≡ 1, gs,1, . . . , gs,q−1} where

gs,c =
∑
ω∈Σ

`s,c(ω)〈bs,ω, ζ〉, ∀c ∈ {1, . . . , q − 1},
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and ζ is a normal Gaussian random vector of appropriate dimension.

The following lemma states that the local integral ensemble and the global Gaussian ensemble have matching
first and second moments. We need this to apply the invariance principle in our analysis below.

Lemma 2.21. For every s ∈ V, gs is an orthonormal ensemble w.r.t. the space Ωs. Also, for any payoff
P ′ ∈ P, the global ensembles G match the following moments of the local integral ensembles L:

E
ζ

[gs,c.gs′,c′ ] = E
(ω,ω′)∼µP ′ |(s,s′)

[`s,c(ω).`s′,c′(ω
′)] ∀c, c′ ∈ {1, . . . , q − 1}, s, s′ ∈ V(P ′),

where µP ′ |(s, s′) is the marginal distribution of µP ′ on the coordinates of s, s′.

Proof. For any s, s′ ∈ V and c, c′ ∈ {1, . . . , q − 1}, we have

E[gs,c.gs′,c′ ] = E

[∑
ω∈Σ

`s,c(ω)〈bs,ω, ζ〉
∑
ω′∈Σ

`s′,c′(ω
′)〈bs′,ω′ , ζ〉

]
=

∑
ω,ω′∈Σ

`s,c(ω)`s′,c′(ω
′) E [〈bs,ω, ζ〉〈bs′,ω′ , ζ〉]

=
∑

ω,ω′∈Σ

`s,c(ω)`s′,c′(ω
′)〈bs,ω, bs′,ω′〉. (6)

Now, when s = s′, for ω 6= ω′, 〈bs,ω, bs′,ω′〉 = 0 because of the SDP constraints (1). Therefore, in this case

E[gs,c.gs,c′ ] =
∑
ω∈Σ

`s,c(ω)`s,c′(ω)‖bs,ω‖22 = E
ω∼µs

[`s,c(ω)`s,c′(ω)] = 〈`s,c, `s,c′〉µs ,

which is 1 when c = c′ and 0 otherwise. This shows the orthonormality of gs. Coming back to the Equation
(6), again by the SDP constraints (1), the inner-product 〈bs,ω, bs′,ω′〉 is precisely the probability of (ω, ω′)
according to the distribution µP ′ |(s, s′) for any payoff P ′ containing s and s′. This proves the lemma.

Let RoundF (V ,µ) be the expected value of the assignment returned by the rounding algorithm in Figure 3.
In this section, we prove the following soundness lemma.

Lemma 2.22. Let k = 3 and assume that the SDP solution is semi-rich and does not satisfy any linear
equation. Then, for any (τ, δ)-quasirandom function F ,

Soundness(DictV ,µ) 6 RoundF (V ,µ) + oδ,τ (1).

The notation oδ,τ (1) means that it goes to 0 as δ → 0 and τ → 0. Therefore, in this case the acceptance
probability of the test is upper bounded by the integral value of the given instance. This shows that if there
exists an (1, s) integrality gap instance of Max-P -CSP, then there exists a dictatorship test with completeness
1 and soundness s+ ε for any constant ε > 0.

Remark 2.23. If we can extend our main analytical lemma to other predicates, then we can remove the
condition on the predicate from Lemma 2.22.

The acceptance probability of the test for a given function F is given by:

Pr[F passes DictV ,µ] = E
P ′∼P

E
zP ′

[P ′(Fs1(zs1),Fs2(zs2), . . . ,Fsk(zsk))].

We will prove a series of claims which will help us relate the probability to RoundF (V ,µ). We begin with
the following claim which shows that we can replace F with its noisy version T1−δF . Here, we use the main
analytical lemma (Lemma 2.6).
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Claim 2.24 (Changing F to H). Let k = 3 and assume that the SDP solution is semi-rich and does not
satisfy any linear equation. Then for every P ′ ∈ P,∣∣∣∣ E

zP ′
[P ′(Fs1(zs1),Fs2(zs2), . . . ,Fsk(zsk))]− E

zP ′
[P ′(Hs1(zs1),Hs2(zs2), . . . ,Hsk(zsk))]

∣∣∣∣
6 η(δ).

Proof. Consider the following expression.

P ′(Fs1(zs1),Fs2(zs2), . . . ,Fsk(zsk)) =
∑
σ∈Σk

P ′(σ)

k∏
j=1

Fsj ,σj (zsj ).

We will show that for all P ′ ∈ P and σ ∈ Σk,

Γ :=

∣∣∣∣∣∣ E
zP ′

 k∏
j=1

Fsj ,σj (zsj )

− E
zP ′

 k∏
j=1

Hsj ,σj (zsj )

∣∣∣∣∣∣ 6 η.

Let us define Γj′ for j′ = 1, . . . , k as follows:

Γj′ :=

∣∣∣∣∣∣ E
zP ′

j′−1∏
j=1

Hsj ,σj (zsj )
k∏

j=j′

Fsj ,σj (zsj )

− E
zP ′

 j′∏
j=1

Hsj ,σj (zsj )
k∏

j=j′+1

Fsj ,σj (zsj )

∣∣∣∣∣∣ .
By triangle inequality, Γ 6

∑
j′ Γj′ .

Γj′ =

∣∣∣∣∣∣ E
zP ′

j′−1∏
j=1

Hsj ,σj (zsj )
k∏

j=j′

Fsj ,σj (zsj )

− E
zP ′

 j′∏
j=1

Hsj ,σj (zsj )
k∏

j=j′+1

Fsj ,σj (zsj )

∣∣∣∣∣∣
=

∣∣∣∣∣∣ E
zP ′

(Fsj′ ,σj′ (zsj′ )−Hsj′ ,σj′ (zsj′ )) ·
j′−1∏
j=1

Hsj ,σj (zsj )
k∏

j=j′+1

Fsj ,σj (zsj )

∣∣∣∣∣∣
=

∣∣∣∣∣∣ E
zP ′

(Id− T1−δ)Fsj′ ,σj′ (zsj′ ) ·
j′−1∏
j=1

Hsj ,σj (zsj )
k∏

j=j′+1

Fsj ,σj (zsj )

∣∣∣∣∣∣ .

Here, Id is the identity operator. Now, the function Q := (Id− T1−δ)Fsj′ ,σj′ (zsj′ ) is a function Q : ΣR →
[0, 1] that satisfies the property of being a ‘high-degree’ function: Using the Efron-Stein decomposition of Q
and using Fact 2.14, we have

〈Q,T1−ξQ〉µ⊗Rs
j′

=
∑
S⊆[R]

(1− ξ)|S|(1− (1− δ)|S|)2‖(Fsj′ ,σj′ )S‖
2
2.

Now, (1− ξ)`(1− (1− δ)`)2 6 η for every ` > 0. Therefore,

〈Q,T1−ξQ〉µ
s
⊗R
j′

6 η
∑
S⊆[R]

‖(Fsj′ ,σj′ )S‖
2
2 6 η(δ).

Hence, the product inside the expectation satisfies the hypothesis of Lemma 2.6, with Stab1−ξ(Q) 6 η(δ).
Applying the lemma, we conclude that Γj′ 6 η(δ)/k, where η(δ) → 0 as δ → 0. Therefore, Γ 6

∑
j′ Γj′ 6

η(δ).
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We now switch to the multilinear polynomials. By definition, we have

E
zP ′

[P ′(Hs1(zs1),Hs2(zs2), . . . ,Hsk(zsk))] = E
LR
P ′

[P ′(Hs1(`s1),Hs2(`s2), . . . ,Hsk(`sk))].

Here, LP ′ is the joint distribution of the local ensembles based on the distribution µP ′ . We now apply the
Invariance Principle to replace the Integral Ensembles with the Gaussian Ensembles.

Claim 2.25. (Moving to the global Gaussian ensembles) Using the invariance principle, for every P ′ ∈ P,
we have∣∣∣∣∣ E

LR
P ′

[P ′(Hs1(`s1),Hs2(`s2), . . . ,Hsk(`sk))]− E
GR
P ′

[P ′(Hs1(gs1),Hs2(gs2), . . . ,Hsk(gsk))]

∣∣∣∣∣ 6 τOδ,α(1).

Proof. This claim follows directly from the Invariance Principle, i.e., from Theorem 2.15, and using Lemma 2.21.
Here, the maximum influence of the functions is at most τ and any non-zero probability of an atom is at
least α. Also, for D = O(log1−δ τ), the degree > D weight of the functions Hs is at most O(τ). This is as
follows.

W>D[Hs,i;µ⊗R] =
∑

σ:|σ|>D

ˆ(Hs,i)
2

σ =
∑

σ:|σ|>D

(1− δ)|σ| ˆ(Fs,i)
2

σ 6 (1− δ)D 6 τ.

Therefore, W>D[Hs;µ⊗R] =
∑q
j=1W

>D[Hs,j ;µ⊗R] 6 q · τ = O(τ).

The final claim shows that, as far as the multilinear polynomial evaluations are concerned, the rounding step
(Step II (3)) does not change the expectation by much if the function F is a quasirandom function.

Claim 2.26. (Analyzing the loss due to truncation and scaling) For every payoff P ′ ∈ P,∣∣∣∣EGR[P ′(Hs1(gs1)?,Hs2(gs2)?, . . . ,Hsk(gsk)?)]− E
GR

[P ′(Hs1(gs1),Hs2(gs2), . . . ,Hsk(gsk))]

∣∣∣∣
6 τOδ,α(1).

Proof. Hsj = T1−δFsj is over the domain ΣR and has the range Nq. The difference between the first
and the second expression (rounding error because of scaling and truncation) is bounded by O(C0, q) ·∑
s∈V(P ′) E[ξ(Hs(gs))] [Rag09, Claim 7.4.2], where ξ(a) =

∑
j(f[0,1](aj) − aj)

2 and C0 is an absolute

constant from the smoothness property of the payoff P ′. We know that E[ξ(Hs(`s))] = 0, as Hs(`s) ∈ Nq.
Now, we can apply the invariance principle to conclude∣∣∣∣∣EGR[ξ(Hs(gs))]− E

LR
P ′

[ξ(Hs(`s))]

∣∣∣∣∣ 6 τOδ,α(1).

As E[ξ(Hs(`s))] = 0, the claim follows.

Proof of Lemma 2.22. We are now ready to prove the soundness of the test: The value returned by the
rounding scheme is

RoundF (V ,µ) = E
P ′∈P

E
GR

[
P ′(Hs1(gs1)?,Hs2(gs2)?, . . . ,Hsk(gsk)?)

]
and the soundness of the test is given by the following expression:

Pr[F passes DictV ,µ] = E
P ′∼P

E
zP ′

[P ′(Fs1(zs1),Fs1(zs2), . . . ,Fsk(zsk))].

For k = 3, using the Claims 2.24, 2.25, 2.26 that we proved earlier, we can relate the two quantities as
follows:

Pr[F passes DictV ,µ] 6 RoundF (V ,µ) + η(δ) + τOδ,α(1).
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Now, η(δ)→ 0 as δ → 0. Therefore, we get

Pr[F passes DictV ,µ] 6 RoundF (V ,µ) + oδ,τ (1),

as required.

3 The main analytical lemma

In this section, we prove our main analytical lemma (Lemma 2.6). We begin by addressing a more specialized
case, in which the requirement of semi-rich support of the distribution is replaced with the stronger condition
that the support of the distribution is a union of matchings:

Definition 3.1. We say a set S ⊆ Σ×Φ×Γ is a union of matchings if there exists Σ′ ⊆ Σ and a collection
of matchings Mx ⊆ Φ× Γ, one for each x ∈ Σ′, such that

S =
⋃
x∈Σ′

{x} ×Mx.

The version of Lemma 2.6 for union of matchings is Lemma 3.2 stated below; another difference is that below
we introduce some asymmetry in the roles of f , g and h, and we need the stability of either g or h to be
small. In Section 3.7 we explain the slight adaptations that allow our argument to go through in the case of
semi-rich support, and then explain how to generalize the statement to the case the stability of f is small
(thereby establishing Lemma 2.6).

Lemma 3.2. For all m ∈ N, ε, α > 0 there exist ξ > 0 and δ > 0 such that the following holds. Suppose
µ is a distribution over Σ × Φ × Γ whose support (a) is a union of matchings, and (b) cannot be embedded
in an Abelian group. Further suppose that |Σ| , |Φ| , |Γ| 6 m and each atom in µ has probability at least α.
Then, if f : Σn → [−1, 1] g : Φn → [−1, 1], h : Γn → [−1, 1] are functions such that

• Stab1−ξ(g) 6 δ or Stab1−ξ(h) 6 δ.

Then
∣∣Ex,y,z∼µ⊗n [f(x)g(y)h(z)]

∣∣ 6 ε.

As the roles of g and h will be interchangeable in our arguments, without loss of generality we shall focus on
the case that Stab1−ξ(g) 6 δ throughout this section. Before proceeding to the formal argument, we begin
with a quick overview of the proof that outlines the main components involved.

Proof overview. The proof of Lemma 3.2 consists of several steps. We think of supp(µ) as a graph
between Φ and Γ, wherein edges are labeled by elements of Σ in the natural way. Our initial premise is that
for each x ∈ Σ, the collection of edges labeled by x forms a matching, and we perform several steps in order
to improve the structure we have on that graph (by possibly increasing the size of the alphabet Σ).

1. Let Tx ∈ {0, 1}Φ×Γ be the permutation matrix corresponding to the matching labeled by x. First, we
show that by moving to a different distribution µ′ satisfying similar properties to µ′, we may assume
that not only the edges of Tx lie in the graph of µ′, but rather also the edges of Tx1

T tx2
Tx3

for any
x1, x2, x3 ∈ Σ. In other words, we may compose various matchings and “insert” them into the support
of our distribution. Performing this step ` = Om(1) times, we get that as the graph of µ is connected,
we would end up with the complete bipartite graph between Φ and Γ. We now move on to a similar
looking expectation to the one in the main lemma but for µ′, which is a distribution over Σ` ×Φ× Γ.

2. We next reduce the size of the alphabet Σ` to be smaller. Note that for each ~x ∈ Σ`, the edges in
the graph of µ′ labeled by ~x form a matching. We show that if for ~x, ~x′ these matchings are not edge
disjoint, then we may glue together the symbols ~x, ~x′ and modify the distribution µ′ and the functions
f, g, h (in a way that preserves their various properties) so that the expectation does not drop too
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much. The edges of the new symbols will consist of the union of the edges of the old symbols, and the
new alphabet for x is Σ′ ⊆ Σ`

We note that in such operation, if the matchings corresponding to ~x, ~x′ were not identical, then the
edges corresponding to the new symbol will not form a matching. We show that in that case, one may
further do identification of symbols in Φ and Γ that preserve the properties of the distributions and
the functions, and keeps the expectation high. Performing such identification steps sufficiently many
times, one returns to the case wherein for each x ∈ Σ′ the edges corresponding to x form a matching.
We note that each time we perform such step, the alphabet of y or z drops by at least 1, so in total
we will have at most 2m such steps.

3. We thus reach new alphabets Σ′,Φ′,Γ′. We consider further operations of composing three x-matchings,
i.e. moving from Σ′ to Σ′3. We say that this move is worthwhile if doing it, and then the subsequent
identifications, the alphabets Φ′,Γ′ will shrink further. As long as performing this move is worthwhile,
we do so and otherwise we proceed to the next step.

4. After performing Om(1) steps as in the previous item, we reach to the state wherein the alphabets
are Σ′′, Φ′′ and Γ′′, and it is no longer worthwhile to execute the previous step. This means that for
every (x1, x2, x3) ∈ Σ′′3 and (x4, x5, x6) ∈ Σ′′3, the permutations Tx1T

t
x2
Tx3 and Tx4T

t
x5
Tx6 are either

identical, or are edge disjoint (otherwise we would be able to execute the previous step once more).
We use this structure in order to identify a non-Abelian group structure.

More specifically, we construct a group (G, ·) that has no representations of dimension 1 (besides
the trivial representation), such that our expectation is E(g1,g2,g3):g3=g1g2

[f ′(g1)g′(g2)h′(g3)]. Here,
f ′, g′, h′ are really the same as the functions f, g, h we have, except that they interpret their input as
elements from G. We argue that the fact that g′ is highly noise sensitive implies that almost all of the
mass of g′ (with respect to the representation theoretic Fourier decomposition over G) lies on the high
degrees. We use this fact along with basic Fourier analysis in order to give an upper bound on the
expectation above that vanishes as ξ, δ → 0 (uniformly in n), and hence finish the proof.

3.1 Step 1: turning the graph into a bipartite clique

Throughout the proof, we suppose the support of µ on each one of the components is full, otherwise we may
shrink Σ, Φ or Γ.

3.1.1 Reduction 1: assuming a formula for h

Given f, g, h, let h̃(z) = E(x,y,z)∼µ⊗n [f(x)g(y) | z = z].

Claim 3.3.
∣∣E(x,y,z) [f(x)g(y)h(z)]

∣∣2 6
∣∣∣E(x,y,z)

[
f(x)g(y)h̃(z)

]∣∣∣.
Proof. Note that the left hand side is Ez∼µz

[
h(z)h̃(z)

]2
, hence by Cauchy-Schwarz it is upper bounded by

‖h‖22;µz‖h̃‖
2
2;µz . Using the fact that ‖h‖2;µz 6 1 and that the right hand side is equal to ‖h̃‖22;µz , the proof

is concluded.

Thus, it suffices to prove Lemma 2.6 under the additional assumption that h = h̃, and we assume that
henceforth.

3.1.2 Reduction 2: composing matchings

Consider the support of the distribution µ. The purpose of the current section is to show that one may
assume without loss of generality that µ has full support on Φ×Γ, at the expense of enlarging the alphabet
Σ. Towards this end, we begin with the following observation.

Consider the bipartite graph Gµ = (Φ ∪ Γ, E), where E = { (y, z) | ∃x ∈ Σ such that (x, y, z) ∈ supp(µ)}.
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Lemma 3.4. If supp(µ) cannot be embedded in an Abelian group, then Gµ is connected.

Proof. Suppose Gµ is disconnected. Then it contains at least two connected components, and without loss
of generality we may partition Φ = Φ1 ∪ Φ2, Γ = Γ1 ∪ Γ2 such that Φ1,Γ1,Γ2 are non-empty and Gµ does
not contain an edge from Γ1 to any vertex in Φ1.

We define σ : Σ → F3, φ : Φ → F3 and γ : Γ → F3 by σ(x) = 0, φ(y) = i if y ∈ Φi, and γ(z) = i if
z ∈ Γi. As (x, y, z) ∈ supp(µ) implies that either (y ∈ Φ1 and z ∈ Γ2) or (y ∈ Φ2 and z ∈ Γ1), we get that
σ(x) + φ(y) + γ(z) = 0 (mod 3), hence this is an embedding of supp(µ) into (F3,+).

We use Van-der Corput type argument to argue we may compose matchings as described in the proof
overview.

Lemma 3.5. For all α > 0, there exists α′ > 0 such that the following holds. Given a distribution µ
over Σ × Φ × Γ, consider the distribution ν over Σ2 × Φ2 × Γ defined as: sample z ∼ µz, then sample
(x1,y1, z1), (x2,y2, z2) ∼ µ conditioned on z1 = z2 = z, and output (x1,x2,y1,y2, z). The distribution ν
satisfies

1. The marginal distributions of (x1,y1, z) and (x2,y2, z) are µ.

2. If the probability of each atom in µ is at least α, then the probability of each atom in ν is at least α′.

3. If f : Σn → R, g : Φn → R, h : Γn → R are such that ‖h‖2;µz 6 1, then∣∣∣∣Eµ [f(x)g(y)h(z)]

∣∣∣∣2 6 E
ν

[
f(x1)f(x2)g(y1)g(y2)

]
.

Proof. The expectation on the left hand side is∣∣∣∣ E
(x,y,z)∼µ

[f(x)g(y)h(z)]

∣∣∣∣2 = E
z∼µz

[
h(z) E

(x,y)∼µx,y|z
[f(x)g(y)]

]2

6 E
z∼µz

[
h(z)2

]
E

z∼µz

∣∣∣∣∣ E
(x,y)∼µx,y|z

[f(x)g(y)]

∣∣∣∣∣
2


= ‖h‖22;µz E
(x1,x2,y1,y2,z)∼ν

[
f(x1)f(x2)g(y1)g(y2)

]
, (7)

where we used Cauchy-Schwarz. The first term is bounded as ‖h‖2;µz 6 1, completing the proof.

3.1.3 Composing an even number of matchings

Intuitively, Lemma 3.5 allows us to replace g(y)h(z) that have an edge between them in Gµ by g(y)g(y′)
that have a path of length 2 between them in Gµ. The next lemma, which we will use iteratively, allows us
to replace such paths with longer ones.

Lemma 3.6. For all α > 0, there is α′ > 0 such that the following holds. Suppose we have finite alphabets
Σ′,Φ and a distribution ν over (x,y1,y2) ∼ Σ′ × Φ × Φ. Consider the distribution ν′ over (Σ′)2 × Φ × Φ

defined as: sample y ∼ ν′y2
, then (x,y1,y2) ∼ ν, and (x′,y1′,y2′) ∼ ν conditioned on y2 = y2′ = y then

output (x,x′,y1′,y1).

1. If the probability of each atom in ν is at least α, then the probability of each atom in ν′ is at least α′.

2. for all F : Σ′n → R, g : Φn → R such that ‖g‖2;νy 6 1 it holds that∣∣∣∣Eν [F (x)g(y1)g(y2)
]∣∣∣∣2 6 E

ν′

[
F (x)F (x′)g(y1)g(y1′)

]
.
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Proof. The left hand side is∣∣∣∣E
y2

[
g(y2)Ex,y1∼ν

[
F (x)g(y1)

∣∣y2
]]∣∣∣∣2 6 ‖g‖2;νy2 E

y2

[∣∣Ex,y1∼ν
[
F (x)g(y1)

∣∣y2
]∣∣2],

where the last inequality is by Cauchy-Schwarz. Using ‖g‖2;νy2 6 1 and expanding the last quantity finishes
the proof.

3.1.4 Composing an odd number of steps

Summarizing Lemma 3.5 and Lemma 3.6, we get the following conclusion. Let ` ∈ N be a parameter, and
consider the sequence of distributions ν0, . . . , ν` defined as follows. We have ν0 = µ; ν1 is the distribution
ν from Lemma 3.5 for ν0; ν2 is the distribution ν′ from Lemma 3.6 for ν1 (also including the z’s that were
generated). Iteratively, once νr has been defined for r < `, νr+1 is the distribution ν′ from Lemma 3.6 for
νr.

We now state an alternative way to view the distributions νr. For each 0 6 r 6 `, consider the distribution

Dr over (x1, x1′, x2, x2′, . . . , x2r−1

, x2r−1 ′
, y1, . . . , y2r−1+1, z1, . . . , z2r−1

) defined as:

1. sample y1 ∼ µy;

2. sample (x1, z1) from µ conditioned on y1;

3. sample (x1′, y2) from µ conditioned on z1.

4. Iteratively, for j 6 2r−1, after sampling yj sample (xj , zj) from µ conditioned on yj .

5. Iteratively, for j 6 2r−1, after sampling zj sample (xj
′
, yj+1) from µ conditioned on zj .

A bit less precisely, Dr describes a random walk of length 2r in the graph Gµ, starting at a point distributed
according to µy (which is the stationary distribution of a random walk according to Gµ when weighted
appropriately), and at each point we take a random step from our current location. The distribution Dr
also records the label x of the edges that we use: the vectors xi records the label of the edge taken in the
random step from yi, and the label xi

′
records the label of the edge taken in the random step from zi.

We observe that for r > 1, the distribution νr, and the joint distribution of the x-part and y1, y2r−1+1 parts
of Dr, are identical. For that, we first note that the distribution νr also described a random path of length
2r (which a-priori may have a different distribution), and for convenience we add to the distribution νr the
entire path as well as the labels it encountered during the walk. The essence of the reason the distributions νr
and Dr are identical is the observation that given a bi-regular bipartite graph G = (L∪R,E), the following
two ways of sampling paths are equivalent:

1. Sample u ∈ L uniformly, sample a neighbour v of u uniformly, and sample a neighbour w of v uniformly;
this is similar to the way the distributions Dr are defined.

2. Sample v ∈ R uniformly, and sample two neighbours of it u and w independently uniformly; this is
similar to the way the distributions νr are defined.

Claim 3.7. The distributions νr (after modifying it to include all of the information of the walk), and Dr
are identical.

Proof. The proof is by induction on r, but first introduce a convenient notion. We say a distribution ν
over paths is flip-able if sampling a path P according to ν and reversing it, say to a path reverse(P), the
distribution of the reversed path reverse(P) is ν. We note that clearly, the each one of the distributions Dr
is flip-able.

Base case. For r = 1, we have

ν1(x1, x1′, x2, x2′, y1, y2, z) = µz(z)µ|z(x1, y1)µ|z(x2, y2) =
µ(x1, y1, z)µ(x2, y2, z)

µz(z)
,
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and

D1(x1, x1′, x2, x2′, y1, y2, z) = µy(y1)µ|y1(x1, z)µ|z(x2, y2) =
µ(x1, y1, z)µ(x2, y2, z)

µz(z)
,

so they are the same.

The inductive step. Writing any path P = (P1, P2) where P1, P2 have equal length and the endpoint of
P1 is the starting point of P2, and y is the middle point of P , we note that

Dr+1(P ) = Dr(P1)
Dr(P2)

µy(y)
.

Here, we used the fact that the marginal distribution of each yi (and in particular its middle point) in Dr+1

is µy. Thus by the flip-ability of Dr and inductive hypothesis we have

Dr+1(P ) = Dr(P1)
Dr(reverse(P2))

µy(y)
= νr(P1)

νr(reverse(P2))

µy(y)
.

We now argue that the last expression is exactly νr+1(P ). To make a sample according to νr+1, by definition
we pick y ∼ µy, and then pick P1 ∼ νr, P2 ∼ νr independently conditioned on their endpoints being y,
and then output the path concatenated path, denote it by P1 ◦ reverse(P2). Thus, the probability of a path

P = (P1, P2) with middle point y is µy(y)νr(P1)
µy(y)

νr(reverse(P2))
µy(y) , which is the same as the expression we have

above. Here, we used the fact that the distribution of each yi in the path described by νr is µy, which is
true by the induction hypothesis and the fact that this holds for Dr.

Lemma 3.8. ∣∣∣∣Eµ [f(x)g(y)h(z)]

∣∣∣∣2` 6 E
D`

2`−1−1∏
i=1

f(xi)f(xi
′
)

 f(x2`−1

)g(y1)h(z2`−1

)


Proof. By Lemma 3.5 and iterating Lemma 3.6, we may bound:∣∣∣∣Eµ [f(x)g(y)h(z)]

∣∣∣∣2` 6 E
ν`

g(y1)g(y2`−1+1)

2`−1∏
i=1

f(xi)f(xi
′
)

 = E
D`

g(y1)g(y2`−1+1)

2`−1∏
i=1

f(xi)f(xi
′
)

,
where the last transition is by Claim 3.7. We pull the expectation over everything, except for the random

variables x2`−1 ′
, y2`−1+1, outside. We get that the last expectation is equal to

E
x1,...,x2`−1

x1′,...,x2`−1−1
′

y1,...,y2`−1

z1,...,z2`−1

f(x2`−1

)g(y1)

2`−1−1∏
i=1

f(xi)f(xi
′
)E

x2`−1 ′,y2`−1+1

[
f(x2`−1 ′

)g(y2`−1+1)
∣∣∣ z2`−1

].

Here, we used the fact that conditioned on z2`−1

, the distribution of x2`−1 ′
,y2`−1+1 is independent of the rest

of the random variables (this is clear from the description of the distribution D`). We now observe that by

Section 3.1.1, the value of the inner most expectation is precisely h(z2`−1

), and the proof is concluded.

Taking large enough ` so that the graph between y1 and z2`−1

becomes full, we get from Lemma 3.8 that
our original expectation is bounded by a similar-looking expectation, wherein the function f becomes F =(

2`−1−1∏
i=1

f(xi)f(xi
′
)

)
f(x2`−1

) and so the alphabet of F becomes Σ′ = Σ2`−1. We note that this move from

f to F preserves the range of the function being [−1, 1], and as ` = Om(1) the shift from Σ to Σ′ will be
essentially irrelevant for us. We may thus assume that in our initial expectation, the graph between y and
z was already full.
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3.2 Step 2: identifying symbols

In this section, we show that we may assume that in the distribution µ, for any (x, y, z) in the support, the
value of any two coordinates implies the value of the third coordinate. Namely, for example, we show that
one may assume that if (y, z) is in the support of µy,z, then there is a unique x such that (x, y, z) ∈ supp(µ).

Definition 3.9. Suppose Σ,Φ,Γ are finite alphabets, and P ⊆ { (x, y, z) |x ∈ Σ, y ∈ Φ, z ∈ Γ}. We say that
(x, y) determine z in P if for all x ∈ Σ, y ∈ Φ there is at most one z ∈ Γ such that (x, y, z) ∈ P . Similarly,
we define the notions of (x, z) determining y and (y, z) determining x.

Lemma 3.10. For all α, ε, δ, ξ > 0, there exists γ, α′, ξ′, ε′, δ′ > 0 and N ∈ N such that the following
holds. Let µ be a distribution over Σ × Φ × Γ in which each atom has probability at least α, n > N , and
f : Σn → [−1, 1], g : Φn → [−1, 1], h : Γn → [−1, 1] be such that

1.
∣∣Ex,y,z∼µ⊗n [f(x)g(y)h(z)]

∣∣ > δ′;

2. Stab1−ε′(g) 6 ξ′.

Then, there is n′ > γn, Σ′ ⊆ Σ, a probability distribution µ′ over Σ′ × Φ × Γ and f ′ : Σ′n
′ → [−1, 1],

g′ : Φn
′ → [−1, 1], h′ : Γn

′ → [−1, 1] such that

1.
∣∣∣Ex,y,z∼µ′⊗n′ [f ′(x)g′(y)h′(z)]

∣∣∣ > δ;

2. Stab1−ε(g
′) 6 ξ;

3. each atom in µ′ has probability at least α′;

4. (y, z) determine x;

5. if in µ, (y, z) does not determine x, then Σ′ ( Σ.

Moreover, if the support of µ is not linearly embedded, then the support of µ′ is not linearly embedded.

Remark 3.11. A few remarks are in order.

1. The probability distribution µ′ is not arbitrary, and is very much related to µ. Roughly speaking, it is
the result of partitioning Σ into disjoint groups Σ1, . . . ,Σ`, then treating all of the symbols in each one
as being the same (thinking of the new symbol as the “or” of the old symbols, and in this way forming
the support of µ′). In the case that (y, z) dos not determine x, at least one of these groups will be
non-trivial, i.e. have size at least 2, in which case the size of Σ′ is strictly smaller.

2. We intend to iterate this lemma, and variants of which will be discussed later on, several times. Our
progress measure which makes sure this process terminates is the size of the alphabets Σ,Φ,Γ that we
shift to, hence it is important for us to keep track of it.

3. The roles of x and z (and therefore of f and h) are completely symmetric in the above statement, hence
we have a variant of the lemma which allows us to make sure that (x, y) determines z, and we will state
it formally only later. The role of y (respectively of g) is somewhat distinctive as we wish to preserve
the stability of g′ to be small, however as we argue later on a slight adaptation of the argument will
show that this is also possible, hence we will also be able to assume that (x, z) determines y.

Before we prove the lemma, we need the following fact.

Fact 3.12. Let d ∈ N, ε > 0 be such that dε < 1. Suppose we have g : (Φn, ν⊗n) → R, and choose J ⊆ [n]
randomly by including each coordinate with probability 1/d. Then

E
J,z∼νJ̄

[Stab1−dε(gJ̄→z)] = Stab1−ε(g).
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Proof. Let m = |Φ| and write the Fourier expansion of g with respect to ν, i.e. g(y) =
∑

u∈[m]n
ĝ(u)χu(y),

where χ0 ≡ 1 is the trivial character. Then the right hand side is equal to
∑

u∈[m]n
(1− ε)|u|ĝ(u)2, where |u|

is the number of non-zero entries in u. Similarly, the left hand side is

E
J,z∼νJ̄

 ∑
v∈[m]J

(1− dε)|v|ĝJ̄→z(v)2

 = E
J

 ∑
v∈[m]J

(1− dε)|v|
∑

w∈[m]n:supp(w)∩J=supp(v)

ĝ(w)2


=

∑
w∈[m]n

ĝ(w)2
E
J

[
(1− dε)|supp(w)∩J|

]
.

Note that for each i ∈ [n], EJ

[
(1− dε)1i∈J

]
= d−1

d + 1
d (1− dε) = 1− ε, so the above expectation is exactly

(1− ε)|w|, and the proof is concluded.

Corollary 3.13. Let d ∈ N, ε > 0 be such that dε < 1, and let ξ > 0. Suppose we have g : (Φn, ν⊗n) → R
such that Stab1−ε(g) 6 ξ, and choose J ⊆ [n] randomly by including each coordinate with probability 1/d.
Then

Pr
J,z∼νJ̄

[
Stab1−dε(gJ̄→z) >

√
ξ
]
6
√
ξ.

Proof. Note that Stab1−dε(gJ̄→z) is always positive, and by Fact 3.12 its expectation is at most ξ. Thus, the
result follows by Markov’s inequality.

We are now ready to prove Lemma 3.10.

Proof of Lemma 3.10. Consider the averaging operator T : L2(Σ;µx)→ L2(Φ× Γ;µy,z) defined by

(Tf)(y, z) = E(x,y,z)∼µ [f(x) |y = y, z = z],

and consider S = T ∗T : L2(Σ;µx)→ L2(Σ;µx). We note that S is also an averaging operator, and for each
a ∈ Σ denote by Sa the distribution over Σ that defines Sf(a). We associate with S a graph G = (Σ, E),
wherein a, a′ ∈ Σ are adjacent if a′ ∈ supp(Sa), noting that G contains a self loop on each a ∈ Σ. We also
note that the number of connected components in G is |Σ| if and only if (y, z) determine x in µ. Thus, if
the number of connected components in G is |Σ| there is nothing to prove, so assume that it is ` < |Σ|, and
denote them by Σ = C1 ∪ . . . ∪ C`.
Note that S is a symmetric operator; also, note that if a function w : Σ → R is only supported on Ci, then
Sw is also only supported on Ci. Thus, we may diagonalize S on each connected component separately.
Namely, letting si = |Ci|, we can come up with a collection of |Σ| functions, χi,j : Σ → R, for i = 1, . . . , `,
j = 0, . . . , si − 1 such that

1. χi,j is only supported on Ci, and χi,0 is constant on Ci;

2. the set {χi,j} is orthonormal with respect to the inner product defined by S;

3. each χi,j is an eigenvector of S.

Let λi,j be the eigenvalue of S corresponding to χi,j . We clearly have λi,0 = 1 for all i = 1, . . . , `, and as the
induced graph on each Ci is connected and has self loops we have that |λi,j | < 1 for all i = 1, . . . , `, j > 1.
Thus, we may pick an absolute constant 0 6 λ < 1 depending only on |Σ| , α such that |λi,j | 6 λ.

We shall use the functions χi,j in order to expand our function f . Namely, we can write

f(x) =
∑
~i∈[`]n

~j∈[si1 ]×...×[sin ]

f̂(~i,~j)χ~i,~j(x),
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where χ~i,~j(x) =
n∏
k=1

χik,jk(xk). We define the effective degree of χ~i,~j , denoted by effdeg(χ~i,~j), to be

|{k | jk > 1}|, i.e. the number of terms in it that are not constant on their respective connected compo-
nent, and then partition f into f = fL + fH by

fL(x) =
∑
~i∈[`]n

~j∈[si1 ]×...×[sin ]

effdeg(χ~i,~j)<D

f̂(~i,~j)χ~i,~j(x), fH(x) =
∑
~i∈[`]n

~j∈[si1 ]×...×[sin ]

effdeg(χ~i,~j)>D

f̂(~i,~j)χ~i,~j(x),

where D = 2 log(2/δ)
log(1/λ) . Thus, we write

E
x,y,z∼µ⊗n

[f(x)g(y)h(z)] = E
x,y,z∼µ⊗n

[fL(x)g(y)h(z)]︸ ︷︷ ︸
(I)

+ E
x,y,z∼µ⊗n

[fH(x)g(y)h(z)]︸ ︷︷ ︸
(II)

.

We begin by bounding the absolute value of (II). Letting R(y, z) = g(y)h(z), we write

|(II)| =

∣∣∣∣∣ E
y,z∼µ⊗ny,z

[TfH(y, z)R(y, z)]

∣∣∣∣∣ =
∣∣∣〈TfH , R〉µ⊗ny,z ∣∣∣ 6 ‖TfH‖2;µ⊗ny,z

‖R‖2;µ⊗ny,z
,

where we used Cauchy-Schwarz. We have ‖R‖2;µ⊗ny,z
6 1. As for the first norm, we note

‖TfH‖22;µ⊗ny,z
= 〈TfH , T fH〉µ⊗ny,z = 〈T ∗TfH , fH〉µ⊗nx = 〈SfH , f〉µ⊗nx 6 ‖SfH‖2;µ⊗nx

‖f‖2;µ⊗nx
.

Clearly ‖f‖2;µ⊗nx
6 1, and by Parseval

‖SfH‖22;µ⊗nx
=

∑
~i∈[`]n

~j∈[si1 ]×...×[sin ]

effdeg(χ~i,~j)>D

f̂(~i,~j)2
n∏
k=1

λ2
ik,jk

6 λ2D,

so ‖SfH‖2;µ⊗nx
6 λD. Plugging that back in, we get that |(II)| 6 δ

2 , and it follows by the premise of the

lemma that |(I)| > δ
2 . For the rest of the proof, we assume without loss of generality that I is positive.

Next, we use random restrictions in order to reduce most of the Fourier mass of f to be on characters with

effective degree 0. Let d = 642

δ4 D, choose J ⊆ [n] randomly by including each element with probability 1/d.

Sample a restriction outside J by (x̃, ỹ, z̃) ∼ µJ̄ , and let f̃ = (fL)J̄→x̃, g̃ = gJ̄→ỹ, h̃ = hJ̄→z̃. Denote

φ(f̃ , g̃, h̃) = E
x,y,z∼µJ

[
f̃(x)g̃(y)h̃(z)

]
.

We wish to show that with positive probability over the choice of the restriction, the following five events
hold:

1. E1: The Fourier mass of f̃ on monomials of effective degree more than 0 is at most δ2

64 ;

2. E2: g̃ remains a high-degree function, i.e. Stab1−ε(g̃) 6 ξ;

3. E3: |J | > γn for γ = 1
2d ;

4. E4: φ(f̃ , g̃, h̃) > δ
4 ;

5. E5: ‖f̃‖2 6 10
δ .

We will show that the first three events, as well as the fifth one, hold with probability close to 1, whereas
the fourth one holds with probability bounded away from 0.
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Bounding Pr [E1]. Computing the expectation of the Fourier mass on characters of effective degree at
least 1, we see that

E

 ∑
~i∈[`]J ,~j

̂̃
f(~i,~j)21effdeg(χ~i,~j)>1

 =
∑

~i∈[`]n,~j

f̂L(~i,~j)2
E
[
1|{k |ik∈J,jk>1}|>1

]
6

∑
~i∈[`]n,~j

f̂L(~i,~j)2
effdeg(χ~i,~j)

d
,

which is at most D
d . Thus, by Markov’s inequality the probability of E1 is at least 1− 64D

δ2d > 1− δ2

64 .

Bounding Pr [E2]. We choose ε′ = ε
d , ξ′ = min(ξ2, δ8/642). From Corollary 3.13 we have that

Pr
J,(x̃,ỹ,z̃)∼µJ̄

[
Stab1−ε(g̃) >

√
ξ′
]
6
√
ξ′ 6

δ2

64
,

so Pr [E2] > 1− δ2

64 .

Bounding Pr [E3]. Choosing γ = 1
2d , it follows by Chernoff’s inequality that Pr [E3] > 1− e−

γ
100n.

Bounding Pr [E4]. Note that EJ,(x̃,ỹ,z̃)∼µJ̄
[
φ(f̃ , g̃, h̃)

]
> δ

2 . Also, since g̃, h̃ are bounded,

E
J,(x̃,ỹ,z̃)∼µJ̄

[
φ(f̃ , g̃, h̃)2

]
6 E
J,(x̃,ỹ,z̃)∼µJ̄

[
E

x∼µJx

[∣∣∣f̃(x)
∣∣∣]] = ‖fL‖1;µx 6 ‖fL‖2;µx 6 ‖f‖2;µx 6 1.

Hence, it follows that

Pr [E4] = Pr
J,(x̃,ỹ,z̃)∼µJ̄

[
φ(f̃ , g̃, h̃) >

δ

4

]
>
δ2

16
.

Bounding Pr [E5]. By Markov’s inequality,

Pr

[
‖f̃‖2 >

10

δ

]
= Pr

[
‖f̃‖22 >

100

δ2

]
6

E
[
‖f̃‖22

]
100/δ2

=
‖fL‖22
100/δ2

6
‖f‖22

100/δ2
6

δ2

100
.

Summarizing, we get that Pr [E1 ∩ E2 ∩ E3 ∩ E4 ∩ E5] > δ2

16 − 2 δ
2

64 − e
− γ

100n − δ2

100 > 0, so we may find a
restriction as desired. We fix such restriction henceforth.

Write f̃ = f̃0 + f̃ 6=0 where

f̃0(x) =
∑
~i∈[`]J

~j∈[si1 ]×...×[sin ]

effdeg(χ~i,~j)=0

̂̃
f(~i,~j)χ~i,~j(x), f̃ 6=0(x) =

∑
~i∈[`]J

~j∈[si1 ]×...×[sin ]

effdeg(χ~i,~j)>0

̂̃
f(~i,~j)χ~i,~j(x).

Then we have that δ
4 6 φ(f̃ , g̃, h̃) = φ(f̃0, g̃, h̃) + φ(f̃ 6=0, g̃, h̃). Note that by Hölder’s inequality∣∣∣φ(f̃ 6=0, g̃, h̃)

∣∣∣ 6 ‖f̃ 6=0‖2‖g̃‖4‖h̃‖4 6

√
δ2

64
6 δ/8.

Here, we used the fact that E1 holds so that ‖f̃ 6=0‖2 6
√

δ2

64 .

We conclude that φ(f̃0, g̃, h̃) > δ/8. We have therefore found functions f̃0, g̃, h̃ that satisfy almost all of the
conditions of the lemma, and it remains to explicitly state the distribution µ′ and make f̃0 bounded.

To define the distribution µ′, for each connected component Ci in G pick a representative element, call it ai.
We define Σ′ = {ai | i ∈ [`]}, and define the distribution µ′ as:
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1. sample (a, b, c) ∼ µ;

2. let Ci be the connected component of a. Output (ai, b, c).

It is clear that

E
(x,y,z)∼µ′J

[
f̃0(x)g̃(y)h̃(z)

]
= φ(f̃0, g̃, h̃).

We define the function f̃ ′0 : Σ′J → [−1, 1] by

f̃ ′0(x) = E(x,y,z)∼µ′J
[
g̃(y)h̃(z)

∣∣∣x = x
]
.

As in Claim 3.3 we have that

δ2

64
6 φ(f̃0, g̃, h̃)2 = E

(x,y,z)∼µ′J

[
f̃0(x)g̃(y)h̃(z)

]2
6 E

(x,y,z)∼µ′J

[
f̃0(x)2

]
E

(x,y,z)∼µ′J

[
f̃ ′0(x)g̃(y)h̃(z)

]
,

and as E5 holds we have

E
(x,y,z)∼µ′J

[
f̃0(x)2

]
= ‖f̃0‖22 6 ‖f̃‖22 6

100

δ2
,

so we get that

E
(x,y,z)∼µ′J

[
f̃ ′0(x)g̃(y)h̃(z)

]
>

δ4

6400
.

Concluding, we have established the first item of the lemma for δ′ = δ4

6400 . The second item of the lemma
follows since the marginal on y in both µ′ and µ is the same, and the fact that the event E2 holds. The third
item is clear from the definition of µ′ for α′ = α, and the fourth item is clear since we have contracted each
connected component of G into a single element. Finally, for the moreover statement, we note that any non-
trivial embedding of µ′ into an Abelian group naturally induces a non-trivial embedding of µ into an Abelian
group (by assigning all elements in Ci the value of the embedding of ai), and the proof is concluded.

In Lemma 3.10 allows us to identify symbols in Σ so that in the new distribution µ′, (y, z) determines x.
As explained in Remark 3.11, as the roles of z and x are symmetric, the lemma also allows us to identify
symbols in Γ. The situation is somewhat different if we tried to identify symbols in Φ; the reason is that in
very last step of the last argument, we have moved from the function f̃0 to f̃ ′0 (in order to make the function
bounded), and if we were to do that for g (in place of f), it may lead to a violation of the stability of g
being small. In the next lemma, we show that nevertheless, it is possible to do a small tweak in the end of
the argument in order to overcome this issue.

Lemma 3.14. For all α, ε, δ, ξ > 0, there exists γ, α′, ξ′, ε′, δ′ > 0 and N ∈ N such that the following
holds. Let µ be a distribution over Σ × Φ × Γ in which each atom has probability at least α, n > N , and
f : Σn → [−1, 1], g : Φn → [−1, 1], h : Γn → [−1, 1] be such that

1.
∣∣Ex,y,z∼µ⊗n [f(x)g(y)h(z)]

∣∣ > δ′;

2. Stab1−ε′(g) 6 ξ′.

Then, there is n′ > γn, Φ′ ⊆ Φ, a probability distribution µ′ and f ′ : Σn
′ → [−1, 1], g′ : Φ′n

′ → [−1, 1],
h′ : Γn

′ → [−1, 1] such that

1.
∣∣∣Ex,y,z∼µ′⊗n′ [f ′(x)g′(y)h′(z)]

∣∣∣ > δ;

2. Stab1−ε(g
′) 6 ξ;

3. each atom in µ′ has probability at least α′;

4. (x, z) determine y;
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5. if in µ, (x, z) does not determine y, then Φ′ ( Φ.

Moreover, if the support of µ is not linearly embedded, then the support of µ′ is not linearly embedded.

Proof. We go through the proof of Lemma 3.10, replacing the roles of f and g. In the end, we have

δ2

64
6 φ(f̃ , g̃0, h̃)2 = E

(x,y,z)∼µ′J

[
f̃(x)g̃0(y)h̃(z)

]2
= 〈g̃0, g̃

′
0〉

2
,

and we inspect this quantity. Note that

〈g̃0, g̃
′
0〉 = 〈g̃0, (I − T1−ε)g̃

′
0〉+ 〈g̃0, T1−εg̃

′
0〉 .

We argue that the second inner product is negligible. Indeed,

〈g̃0, T1−εg̃
′
0〉 = 〈T1−εg̃0, g̃

′
0〉 6 ‖T1−εg̃0‖2‖g̃′0‖2 6 ‖T1−εg̃0‖2 6

√
Stab1−ε(g̃0) 6

√
ξ 6

δ

16
.

We thus conclude that
δ

16
6 |〈g̃0, (I − T1−ε)g̃

′
0〉| ,

and so
δ2

256
6 〈g̃0, (I − T1−ε)g̃

′
0〉

2
6 ‖g̃0‖22‖(I − T1−ε)g̃

′
0‖22,

and as ‖g̃0‖22 6 100
δ2 we get that

‖(I − T1−ε)g̃
′
0‖22 >

δ4

25, 600
.

On the other hand,

‖(I − T1−ε)g̃
′
0‖22 = 〈(I − T1−ε)g̃

′
0, (I − T1−ε)g̃

′
0〉 =

〈
(I − T1−ε)

2g̃′0, g̃
′
0

〉
= φ(f̃ , (I − T1−ε)

2g̃′0, h̃).

We have thus proved the statement for δ′ = δ4

4·25,600 and the functions f ′ = f̃ , g′ = 1
4 (I−T1−ε)

2g̃′0 and h′ = h̃

(we have divided by 4 to make sure the range of all functions is [−1, 1]), except that we need to verify that
the stability of g′ is small. Indeed, we observe that

Stab1−
√
ε(g
′) 6

〈
g′, T1−

√
εg
′〉 6 ‖T1−

√
εg
′‖2 6

1

4
‖T1−

√
ε(I − T1−ε)

2g̃′0‖2 6
1

4
‖T1−

√
ε(I − T1−ε)g̃

′
0‖2.

The eigenvalues of the operator T1−
√
ε(I − T1−ε) are (1−

√
ε)j(1− (1− ε)j) for j = 0, 1 . . . , n, and it is easy

to see they are all O(
√
ε), hence we get that Stab1−

√
ε(g
′) 6 O(

√
ε) 6 ξ. In the last move we have used the

fact that we may take ε to be smaller and only prove a stronger statement.

3.3 Step 3: Moving to the uniform distribution

In this section, we show that one can assume without loss of generality that the underlying distribution on
Σ× Φ× Γ is a uniform distribution, as far as bounding the expectation is concerned.

Lemma 3.15. For all α, ε, δ, ξ > 0, there exist γ, ξ′, ε′ > 0 and N ∈ N such that the following holds. Let
µ be a distribution over Σ × Φ × Γ fully supported on each one of its coordinates, in which each atom has
probability at least α, n > N , and f : Σn → [−1, 1], g : Φn → [−1, 1], h : Γn → [−1, 1] be such that

1.
∣∣Ex,y,z∼µ⊗n [f(x)g(y)h(z)]

∣∣ > δ, and

2. Stabν1−ε′(g) 6 ξ′, where ν be the marginal distribution of µ on Φ.

Then, there is n′ > γn, and f ′ : Σn
′ → [−1, 1], g′ : Φn

′ → [−1, 1] and h′ : Γn
′ → [−1, 1] such that
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1.
∣∣∣Ex,y,z∼U⊗n′ [f ′(x)g′(y)h′(z)]

∣∣∣ > δ/2, where U is a uniform distribution on the support of µ, and

2. Stabu
1−ε(g

′) 6 ξ, where u is the marginal distribution of U on Φ.

Proof. Write µ = 1
2αU + (1 − 1

2α)τ , where U is the uniform distribution on the support of µ. The idea is
to choose a set of coordinates J that includes each i ∈ [n] with probability (1− 1

2α), fix them according to
τ , and take the rest of the coordinates to be according to U.

More formally, select J ⊆ [n] by including i ∈ J with probability (1− 1
2α) for each i ∈ [n]. Write x = (x′,x′′)

where x′ is the J-part of x and x′′ is the J̄-part of x, and similarly y = (y′,y′′) and z = (z, z′′). We sample
(x′,y′, z′) according to τJ , and think of (x′′,y′′, z′′) ∼ U. We note that this way, the distribution of (x,y, z)
is precisely µ⊗n.

Define
f ′ = fJ→x′ g′ = gJ→y′ h′ = hJ→z′ ,

and thus we have that

δ 6

∣∣∣∣ E
x,y,z∼µ⊗n

[f(x)g(y)h(z)]

∣∣∣∣ =

∣∣∣∣∣∣∣ E
J

(x′,y′,z′)∼τJ

[
E

(x′′,y′′,z′′)∼UJ̄

[f(x)g(y)h(z)]

]∣∣∣∣∣∣∣
6 E

J
(x′,y′,z′)∼τJ

[∣∣∣∣∣ E
(x′′,y′′,z′′)∼UJ̄

[f ′(x′′)g′(y′′)h′(z′′)]

∣∣∣∣∣
]
.

As f, g and h are bounded,
∣∣∣E(x′′,y′′,z′′)∼UJ̄ [f ′(x′′)g′(y′′)h′(z′′)]

∣∣∣ for any choice of J and x′,y′ and z′, hence

we get that with probability at least δ/2 we have that∣∣∣∣∣ E
(x′′,y′′,z′′)∼UJ̄

[f ′(x′′)g′(y′′)h′(z′′)]

∣∣∣∣∣ > δ

2
.

In the rest of the argument, we show that with probability at least 1 − δ/4 we have that n′
def
=
∣∣J̄∣∣ > γn,

and Stabu
1−ε(g

′) 6 ξ, which by the union bound finish the proof.

The probability that n < γn may be bounded by e−Ωα(n) using Chernoff’s bound, hence is smaller than δ/8
provided that N is large enough as n > N .

The rest of the proof is devoted for showing that Stabu
1−ε(g

′) > ξ with probability at most δ/8. The proof is
similar in spirit to the proof of Corollary 3.13, but is a bit more delicate as we are changing the distribution.

E
J,y′′

[
Stabu

1−ε(g
′)
]

= E
J,y′′

[
E

y′,ỹ′ (1− ε) correlated
[g′(y′)g′(ỹ′)]

]
= E
J,y′′

[
E

y′,ỹ′ (1− ε) correlated
[g(y′,y′′)g(ỹ′,y′′)]

]
.

Consider the Markov chain on Φn, that transitions from y′,y′′ to ỹ′,y′′ above. Note that it is a tensor T⊗n
of a basic Markov chain T defined as the transition on a single coordinate. Explicitly, sampling a ∼ µy and
b ∼ Ta can be done as: with probability (1− α/2) sample a ∼ τy and set b = a; otherwise with probability
(1− ε) take a = b according to Uy, and with probability ε take a,b independently from Uy. Thus we have

E
J,y′′

[
Stabu

1−ε(g
′)
]

=
〈
g, T⊗ng

〉
=
∑
S⊆[n]

〈
g=S , (T⊗ng)=S

〉
6
∑
S⊆[n]

‖g=S‖2‖(T⊗ng)=S‖2

6
∑
S⊆[n]

λ2(T )|S|‖g=S‖22.

Next, note that T (a, b) > αε
2 α

1
m6 for any a, b ∈ Φ. Indeed, with probability αε/2 we are making independent

samples from supp(µ) and taking their y-part, and as |supp(µ)| 6 m3 the result follows. It follows that
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looking at the transitions of T as a graph on Φ, the edge expansion of each set is at least αε
2m6 , hence by

Cheeger’s inequality

λ2(T ) 6 1− α2ε2

8m6
,

so we get that

E
J,y′′

[
Stabu

1−ε(g
′)
]
6
∑
S⊆[n]

(
1− α2ε2

8m6

)|S|
‖g=S‖22 6

∑
S⊆[n]

(1− ε′)|S| ‖g=S‖22 = Stab1−ε′(g) 6 ξ′,

where we chose ε′ = 1−α2ε2

8m6 and used the hypothesis of the lemma. As Stabu
1−ε(g

′) > 0 always, it follows from
Markov’s inequality that Stabu

1−ε(g
′) >

√
ξ′ with probability at most

√
ξ′, and taking ξ′ = min(ξ2, δ2/64)

finishes the proob.

3.4 Step 4: Embedding into a group predicate

We now view the set of accepting assignments from Σ× Φ× Γ as a set of triples from a non Abelian group
that satisfy a group equation. This is captured in the following lemma.

Lemma 3.16. Let µ be any distribution on Σ × Φ × Γ whose support on each coordinate is full, such that
|Σ| = |Φ| = |Γ| = n. For every x ∈ Σ, let Tx denote the adjacency matrix of the edges labeled by x. Suppose
µ satisfies the following properties.

1. For every x ∈ Σ, the collection of edges labeled by x forms a complete matching, i.e., Tx is a permutation
matrix for every x ∈ Σ.

2. For every (x1, x2, x3) ∈ Σ3 the permutation Tx1T
t
x2
Tx3 belongs to {Tx}x∈Σ.

Then there exists a group (G, • ) and permutation maps σ : Σ→ G, φ : Φ→ G and γ : Γ→ G such that the
following holds:

{(σ(x), φ(y), γ(z)) | (x, y, z) ∈ supp(µ)} = {(a, b, c) | c = a • b}.

Moreover, if the support of µ is not linearly embedded, the G does not have any non-trivial representation of
dimension 1.10

Proof. Suppose without loss of generality that Σ = Φ = Γ = [n]. We choose a distinctive x? ∈ Σ arbitrarily,
and re-label Φ and Γ so that for any y, z such that (x?, y, z) ∈ supp(µ) it holds that y = z, i.e. that Tx? is
the identity map.
Defining σ. We define σ(x) = Tx.
Defining γ. Choose some distinctive y? ∈ Φ arbitrarily, and for each z pick the unique x such that
(x, y?, z) ∈ supp(µ) and set γ(z) = Tx.
Defining φ. We set φ(y) = γ(y).

Group structure. Firstly, the set of matrices {Tx}x∈Σ is closed under multiplication and this follows from the
second property, by taking x2 = x? as Tx? = I. Secondly, for every x′ ∈ Σ, there exists an x̃′ ∈ Σ such that
Tx̃′ = T tx′ . This is because for (x?, x′, x?) the corresponding Tx?T

t
x′Tx? ∈ {Tx}x∈Σ by the second property.

But Tx?T
t
x′Tx? = T tx′ as Tx? = I. Thus for every x, there exists x′ such that TxTx′ = I. The associativity of

{Tx}x∈Σ is obvious under matrix multiplication. Therefore, the collection of permutation matrices {Tx}x∈Σ

form a group.

Triples in the support of µ satisfy the group equation. Let (x, y, z) ∈ supp(µ). Then we have that the
matching Tx has an edge between y and z. Let x′ ∈ Σ be the unique element such that Tx′ has an edge
between y? and z, so that γ(z) = Tx′ , and x′′ ∈ Σ be the unique element such that Tx′′ has an edge between
y? and y ∈ Γ, so that γ(y) = Tx′′ . We claim that Tx′′T

t
x′Tx = I. To see this, Tx maps y to z, T tx′ maps z

10See Section 3.5 for the definition of a representation of a group.
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to y? and Tx′′ maps y? back to y. But there is only one map that maps y to y and that map must be the
identity map Tx? . Thus, for every (x, y, z) ∈ supp(µ), we have

Tx′′T
t
x′Tx = φ(y)γ(z)−1σ(x) = I,

which implies
(x, y, z) ∈ supp(µ) =⇒ γ(z) = σ(x)φ(y),

as required.

We now prove the moreover part. Let G = {Tx}x∈Σ be the group and towards the contradiction, suppose
G has a non-trivial representation ρ : G → C of dimension 1. Note that for every g ∈ G, |ρ(g)| = 1. This
follows as 1 = ρ(g) · ρ(g−1) = ρ(g)ρ(g). Let p > 1 be the smallest number such that for every g ∈ G,

ρ(g) = ω
i(g)
p , where ωp is the primitive pth root of unity and i(g) ∈ {0, 1, . . . , p− 1}. Consider the following

maps σ′ : Σ→ Zp, φ′ : Φ→ Zp and γ′ : Γ→ Zp where

σ′(x) = i(σ(x)), φ′(y) = i(φ(y)), and γ′(z) = −i(γ(x)).

As ρ is non-trivial, each map is non-constant. Now,

(x, y, z) ∈ supp(µ) =⇒ γ(z) = σ(x)φ(y) =⇒ σ′(x) + φ′(y) + γ′(z) = 0 (mod p).

This contradicts the fact the the support of µ has no linear embedding.

3.5 Step 5: Bounding the expectation using non-Abelian Fourier analysis

In this section, we finally bound the expectation using Fourier analysis over non-Abelian groups.

We begin by recalling some basic representation theory and non-Abelian Fourier analysis. See the monograph
by Diaconis [Dia98, Chapter 2] for a more detailed treatment (with proofs).

We will be working with a finite group G and complex-valued functions f : G → C on G. The convolution
between two function f, h : G→ C, denoted by f ∗ h, is defined as follows:

(f ∗ h)(x) := E
y

[f(xy−1)h(y)].

For any p > 1, the p-norm of any function f : G→ C is defined as

‖f‖pp := E
x

[|f(x)|p].

Given a complex vector space V , we denote the vector space of linear operators on V by End(V ). This space
is endowed with the following inner product and norm (usually referred to as the Hilbert-Schmidt norm):

For A,B ∈ End(V ), 〈A,B〉End(V ) := tr(A∗B) and ‖A‖2HS := 〈A,A〉End(V ) = tr(A∗A).

This norm is known to be submultiplicative (i.e., ‖AB‖HS 6 ‖A‖HS · ‖B‖HS).

Representations and Characters: A representation ρ : G → End(V ) is a homomorphism from G to
the set of linear operators on ρV for some finite-dimensional vector space ρV over C, i.e., for all x, y ∈ G,
we have ρ(xy) = ρ(x)ρ(y). The dimension of the representation ρ, denoted by dρ, is the dimension of the
underlying C-vector space ρV . The character of a representation ρ, denoted by χρ : G → C, is defined as
χρ(x) := tr(ρ(x)), where tr(.) is the trace of a matrix.

The representation 1: G→ C satisfying 1(x) = 1 for all x ∈ G is the trivial representation. A representation
ρ : G → End(V ) is said to reducible if there exists a non-trivial subpsace W ⊂ V such that for all x ∈ G,
we have ρ(x)W ⊂ W . A representation is said to be irreducible otherwise. The set of all irreducible
representations of G (up to equivalences) is denoted by irrep(G). For Gn, we define

irrep(Gn) =

{
n⊗
i=1

ρi

∣∣∣∣∣ ρi ∈ irrep(G) ∀i = 1, . . . , n

}
.
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For every representation ρ : G→ End(V ), there exists an inner product 〈, 〉V over V such that every ρ(x) is
unitary (i.e, 〈ρ(x)u, ρ(x)v〉V = 〈u, v〉V for all u, v ∈ V and x ∈ G). Hence, we may assume, without loss of
generality, that all the representations we are considering are unitary.

The following are some well-known facts about representations and characters.

Proposition 3.17. 1. The group G is Abelian iff dρ = 1 for every irreducible representation ρ in irrep(G).

2. For any finite group G,
∑
ρ∈irrep(G) d

2
ρ = |G|.

3. [Orthogonality of characters] For any ρ, ρ′ ∈ irrep(G) we have: Ex

[
χρ(x)χρ′(x)

]
= 1[ρ = ρ′].

Non-Abelian Fourier analysis: Given a function f : G → C and an irreducible representation ρ ∈
irrep(G), the Fourier transform is defined as follows:

f̂(ρ) := E
x

[f(x)ρ(x)].

The following proposition summarizes the basic properties of Fourier transform that we will need.

Proposition 3.18. For any f, h : G→ C, we have the following

1. [Fourier transform of trivial representation] f̂(1) = Ex[f(x)].

2. [Convolution] f̂ ∗ h(ρ) = f̂(ρ) · ĥ(ρ).

3. [Fourier inversion formula] f(x) =
∑
ρ∈irrep(G) dρ · 〈f̂(ρ), ρ(x)〉End(ρV ).

4. [Parseval’s identity] ‖f‖22 =
∑
ρ∈irrep(G) dρ · ‖f̂(ρ)‖2HS.

We now prove the following lemma.

Lemma 3.19. Let (G, • ) be any non-Abelian group with no non-trivial representation of dimension 1.
Let µ be the uniform distribution on the triples {(a, b, c) | a, b ∈ G, c−1 = a • b}. For any ε, δ > 0, if
f : Gn → [−1, 1], g : Gn → [−1, 1] and h : Gn → [−1, 1] are functions such that Stabµ1−ε(g) 6 δ then∣∣∣∣ E

x,y,z∼µ⊗n
[f(x)g(y)h(z)]

∣∣∣∣ 6 γ,

where γ → 0 as δ → 0.

Proof. For a given y ∈ Gn, let ỹ be the (1− ε)-correlated copy of y.

Stabµ1−ε(g) = E
y,ỹ

[
g(y)g(ỹ)

]
= E

y,ỹ

 ∑
ρ,τ∈Irrep(Gn)

dρdτ 〈ĝ(ρ), ρ(y)〉 · 〈ĝ(τ), τ(ỹ)〉


= E

y,ỹ

 ∑
ρ,τ∈Irrep(Gn)

dρdτ
∑

i,j∈[dρ]

ĝ(ρ)ijρ(y)ij
∑

k,`∈[dτ ]

ĝ(τ)k`τ(ỹ)k`

.
For a fixed ρ = ⊗ρt, τ = ⊗τt, i = (i1, i2, . . . , in), j = (j1, j2, . . . , jn), k = (k1, k2, . . . , kn) and ` = (`1, `2, . . . , `n),
we have

E
y,ỹ

[
ρ(y)i,jτ(ỹ)k`

]
=

n∏
t=1

E
yt,ỹt

[
ρt(yt)it,jtτ(ỹt)kt,`t

]
.
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For any fixed t ∈ [n],

E
yt,ỹt

[
ρt(yt)it,jtτ(ỹt)kt,`t

]
= (1− ε)E

yt

[
ρt(yt)it,jtτ(yt)kt,`t

]
+ ε E

yt,zt∼G

[
ρt(yt)it,jtτ(zt)kt,`t

]
= (1− ε)1ρt=τt&it=kt&jt=`t + ε1ρt≡τt≡triv.

Therefore,

Stabµ1−ε(g) = E
y,ỹ

 ∑
ρ,τ∈Irrep(Gn)

dρdτ
∑

i,j∈[dρ]

ĝ(ρ)ijρ(y)ij
∑

k,`∈[dτ ]

ĝ(τ)k`τ(ỹ)k`


=

∑
ρ∈Irrep(Gn)

d2
ρ

∑
i,j∈[dρ]

ĝ(ρ)ij ĝ(ρ)ij(1− ε)|ρ|

=
∑

ρ∈Irrep(Gn)

d2
ρ · ‖ĝ(ρ)‖2HS(1− ε)|ρ|,

where |ρ| is the number of non-trivial representation on the representation ρ = ⊗ρi. Thus, if Stabµ1−ε(g) 6 δ,

then for every ρ with |ρ| 6 D, we have ‖ĝ(ρ)‖2HS(1− ε)D 6 δ. For D = 1
2

log δ
log(1−ε) , this implies that,

max
ρ,|ρ|6D

{‖ĝ(ρ)‖HS} 6

√
δ

(1− ε)D
6 δ1/4.

We now bound the expectation of the product of f, g, h. We can upper bound the expectation as follows:∣∣∣∣ E
x,y,z∼µ⊗n

[f(x)g(y)h(z)]

∣∣∣∣ = |(f ∗ g ∗ h)(1n)|

=

∣∣∣∣∣∣
∑

ρ∈Irrep(Gn)

dρ · tr( ̂f ∗ g ∗ h(ρ))

∣∣∣∣∣∣
6

∑
ρ∈Irrep(Gn)

dρ · |tr( ̂f ∗ g ∗ h(ρ))|

=
∑

ρ∈Irrep(Gn)

dρ · |tr(f̂(ρ)ĝ(ρ)ĥ(ρ))|

=
∑

ρ∈Irrep(Gn)

dρ · |〈f̂(ρ)ĝ(ρ), ĥ(ρ)∗〉End(ρV )|

=
∑

ρ∈Irrep(Gn)

dρ · ‖f̂(ρ)ĝ(ρ)‖HS‖ĥ(ρ)‖HS

6
∑

ρ∈Irrep(Gn)

dρ‖f̂(ρ)‖HS‖ĝ(ρ)‖HS‖ĥ(ρ)‖HS.

We now split the summation based on the dimension of the representation ρ. Let γ = 2 ·max{δ1/4, 1√
2D
}.

ΘL =
∑

ρ,|ρ|6D

dρ‖f̂(ρ)‖HS‖ĝ(ρ)‖HS‖ĥ(ρ)‖HS, ΘH =
∑

ρ,|ρ|>D

dρ‖f̂(ρ)‖HS‖ĝ(ρ)‖HS‖ĥ(ρ)‖HS.

We now bound ΘL and ΘH separately as follows.

ΘL 6 max
ρ,|ρ|6D

{‖ĝ(ρ)‖HS}
∑

ρ,|ρ|6D

dρ‖f̂(ρ)‖HS‖ĥ(ρ)‖HS

6
γ

2
·
∑

ρ,|ρ|6D

dρ‖f̂(ρ)‖HS‖ĥ(ρ)‖HS
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6
γ

2
·

 ∑
ρ,|ρ|6D

dρ‖f̂(ρ)‖2HS

1/2 ∑
ρ,|ρ|6D

dρ‖ĥ(ρ)‖2HS

1/2

6
γ

2
· ‖f‖2 · ‖h‖2 6

γ

2
,

where, the third inequality is by Cauchy-Schwarz. If |ρ| = t, then dρ > 2t as every non-trivial representation
of G has dimension at least 2. Using this fact,

ΘH =
∑

ρ,|ρ|>D

dρ‖f̂(ρ)‖HS‖ĝ(ρ)‖HS‖ĥ(ρ)‖HS

6
1√
2D

∑
ρ,|ρ|>D

d3/2
ρ ‖f̂(ρ)‖HS‖ĝ(ρ)‖HS‖ĥ(ρ)‖HS

6
1√
2D

 ∑
ρ,|ρ|>D

d2
ρ‖f̂(ρ)‖2HS

1/2

·

 ∑
ρ,|ρ|>D

d2
ρ‖ĝ(ρ)‖2HS‖ĥ(ρ)‖2HS

1/2

(Cauchy-Schwarz)

6
1√
2D
‖f‖2 ·

 ∑
ρ,|ρ|>D

d2
ρ‖ĝ(ρ)‖2HS

 ·
 ∑
ρ,|ρ|>D

d2
ρ‖ĥ(ρ)‖2HS

1/2

6
1√
2D
‖f‖2 · ‖g‖2 · ‖h‖2

6
1√
2D

=
γ

2
.

Thus, we have ∣∣∣∣ E
x,y,z∼µ⊗n

[f(x)g(y)h(z)]

∣∣∣∣ 6 γ,

as required, where γ → 0, as δ → 0.

The following corollary follows from the above lemma by considering the function h′ instead of h where
h′(z) = h(z−1).

Corollary 3.20. Let (G, • ) be any non-Abelian group with no non-trivial representation of dimension 1. Let
µ be the uniform distribution of the triples {(a, b, c) | a, b ∈ G, c = a • b}. For any ε, δ > 0, if f : Gn → [−1, 1],
g : Gn → [−1, 1] and h : Gn → [−1, 1] are functions such that Stabµ1−ε(g) 6 δ then∣∣∣∣ E

x,y,z∼µ⊗n
[f(x)g(y)h(z)]

∣∣∣∣ 6 γ,

where γ → 0 as δ → 0.

3.6 Proof of Lemma 3.2

In this section, we explain how the tools we have established so far can be used to prove Lemma 3.2. We
start with ξ and δ that are small to be determined. We assume that Stab1−ξ(g) 6 δ, otherwise the argument
is analogous. We invoke Lemma 3.8 in order to get that the graph between y and z is full, followed by
applications of Lemmas 3.10 and 3.14 to identify symbols. If the alphabet of y or z has shrunk we repeat
this process, and note that our parameters ξ and δ degrade each time, but we can ensure they are small
enough as long as we make at most Om(1) iterations by taking ξ and δ small enough to begin with.
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We stop this process whenever doing it again does not shrink the alphabet of y or z further. This means
that composing the matchings Tx, any two matchings we get would either be edge disjoint, or identical. In
particular, the matching Tx1T tx2Tx3 would already exist as a matching Tx′ for some x′.

At this point, using Lemma 3.16 we are able to view our expectation as an expectation over the predicate
P ′ =

{
(a, b, c) ∈ G3

∣∣ c = a • b
}

for some non-Abelian group (G, • ) with no non-trivial representations of
dimension 1. Finally, using Lemma 3.15 we are able to move to the case where the distribution over support
of the predicate P ′ is uniform (as opposed to just full). We remark again that the invocations of these
lemmas lead to degradation of our parameters ξ and δ, but we can make sure they are still small in the end
by taking them sufficiently small in the beginning.

Eventually, the expectation we get is bounded by Lemma 3.19, completing the proof.

3.7 Going from union of matchings to semi-rich supports

We now explain how to modify the proof of Lemma 3.2 to prove:

Lemma 3.21. For all m ∈ N, ε, α > 0 there exist ξ > 0 and δ > 0 such that the following holds. Suppose µ
is a distribution over Σ × Φ × Γ whose support (a) is semi rich, and (b) cannot be embedded in an Abelian
group. Further suppose that |Σ| , |Φ| , |Γ| 6 m and each atom in µ has probability at least α. Then, if
f : Σn → [−1, 1] g : Φn → [−1, 1], h : Γn → [−1, 1] are functions such that

• Stab1−ξ(g) 6 δ (or Stab1−ξ(h) 6 δ).

Then
∣∣Ex,y,z∼µ⊗n [f(x)g(y)h(z)]

∣∣ 6 ε.

Proof. Let S = supp(µ), and assume that µ is semi-rich. If S is not a union of matchings, then it means
that there is an x such that

Sx = { (y, z) | (x, y, z) ∈ S}
is not a matching. However, by the semi-rich property, we know that the support of Sx on y, as well as on
z is full, so this means that at least one of the following must occur:

1. There exist y ∈ Φ and distinct z, z′ ∈ Γ such that (y, z) and (y, z′) are both in Sx;

2. there exist distinct y, y′ ∈ Φ and z ∈ Γ such that (y, z) and (y′, z) are both in Sx.

Let us assume without loss of generality the first case occurs. We may then apply Lemmas 3.10 to merge
the symbols z and z′; we note that merging preserves the semi rich property. Thus, we apply mergers as
in Lemma 3.10 or Lemma 3.14 so long as we can (this process changes the functions f, g and h, but for
convenience of notation we ignore this), eventually moving to a distribution µ′ wherein no further merges
are possible.

Furthermore, we note that the various conditions of Lemma 3.2 are preserved (no Abelian embedding,
probability of atoms, stability of g or h etc.), so we have reduced the problem to the case where supp(µ) is
semi-rich and any two variables determine the last one. In this case, it is easily seen that supp(µ) is a union
of matchings and hence we may apply Lemma 3.2 on f, g, h we get that∣∣∣∣ E

x,y,z∼µ⊗n
[f(x)g(y)h(z)]

∣∣∣∣ 6 ε.

3.8 Deducing Lemma 2.6

Finally, we explain how to deduce Lemma 2.6, restated below.

Lemma 3.22 (Restatement of Lemma 2.6). For all m ∈ N, ε, α > 0 there exist ξ > 0, and δ > 0 such that
the following holds. Suppose µ is a distribution over Σ×Φ× Γ whose support (a) semi-rich, and (b) cannot
be embedded in an Abelian group. Further suppose that |Σ| , |Φ| , |Γ| 6 m and each atom in µ has probability
at least α. Then, if f : Σn → [−1, 1] g : Φn → [−1, 1], h : Γn → [−1, 1] are functions such that
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• Stab1−ξ(f) 6 δ, Stab1−ξ(g) 6 δ or Stab1−ξ(h) 6 δ.

Then
∣∣Ex,y,z∼µ⊗n [f(x)g(y)h(z)]

∣∣ 6 ε.

Proof. The case that the stability of either g or h is small was already covered in Lemma 3.21, so assume
that Stab1−ξ(f) 6 δ. Consider the Efron-Stein decomposition according to each one of µx, µy and µz and
define the corresponding noise operator on each one of these spaces, which we will denote (abusing notation)
by T1−ξ and T1−ξ′ , where ξ′ is a parameter to be determined (which should be thought of as much larger
than ξ, say

√
ξ). Thus

E
x,y,z∼µ⊗n

[f(x)g(y)h(z)] = E
x,y,z∼µ⊗n

[f(x)(T1−ξ′g)(y)(T1−ξ′h)(z)]

+ E
x,y,z∼µ⊗n

[f(x)((I − T1−ξ′)g)(y)(T1−ξ′h)(z)]

+ E
x,y,z∼µ⊗n

[f(x)g(y)((I − T1−ξ′)h)(z)].

Consider the second expectation; we wish to invoke Lemma 3.21. Let g′ = 1
2 ((I−T1−ξ′)g) and h′ = 1

2T1−ξ′h.

We take ξ̃, p and δ from Lemma 3.21 for ε/16. We shall assume that ξ′, ξ̃ 6 δ4, since lowering ξ̃ only increases
the stability of g′. We will also assume that ξ′ 6 ξ̃4, again by the same reasoning.

Note that

Stab1−ξ̃(g
′) =

∑
S⊆[n]

(1− ξ̃)|S|‖g′=S‖22 =
∑
S⊆[n]

(1− ξ̃)|S|(1−(1−ξ′)|S|)‖g′=S‖22 6 ‖g′‖22 max
j

(1− ξ̃)j(1−(1−ξ′)j).

We have ‖g′‖22 6 1; for j > 1√
ξ′

we have

max
j

(1− ξ̃)j(1− (1− ξ′)j) 6 e−jξ̃ 6 e
− ξ̃√

ξ′ 6 e−ξ
′−1/4

6 δ.

For j < 1√
ξ′

we have

max
j

(1− ξ̃)j(1− (1− ξ′)j) 6 jξ′ 6 δ.

Thus, Stab1−ξ̃(g
′) 6 δ, and from Lemma 3.21∣∣∣∣ E

x,y,z∼µ⊗n
[f(x)((I − T1−ξ′)g)(y)(T1−ξ′h)(z)]

∣∣∣∣ = 4

∣∣∣∣ E
x,y,z∼µ⊗n

[f(x)g′(y)h′(z)]

∣∣∣∣ 6 ε

4
.

The same argument works for the third expectation.

Finally, we argue that the first expectation is small, and for that we exploit the relationship between ξ and
ξ′ (which for now is arbitrary). Write

E
x,y,z∼µ⊗n

[f(x)(T1−ξ′g)(y)(T1−ξ′h)(z)] = E
x,y,z∼µ⊗n

y′∼1−ξ′y,z
′∼1−ξ′z

[f(x)g(y′)h(z′)] = E
(x,y′,z′)∼µ′⊗n

[f(x)g(y′)h(z′)].

Consider the operator T⊗n : L2(Σn;µ′
⊗n
x )→ L2((Φ× Γ)n;µ′

⊗n
y,z ) defined as

T⊗nf(y, z) = E(x′,y′,z′)∼µ′⊗n [f(x) |y′ = y, z′ = z].

Then the above expectation may be written as∣∣∣∣∣ E
(y,z)∼µ′⊗nx

[
g(y)h(z)T⊗nf(y, z)

]∣∣∣∣∣ 6√ E
(y,z)∼µ′⊗nx

[g(y)2h(z)2]
√

E
(y,z)∼µ′⊗nx

[T⊗nf(y, z)2].

The first expectation is bounded by Cauchy-Schwarz by

‖g‖4;µ′y‖h‖4;µ′z = ‖g‖4;µy‖h‖4;µz 6 1.

38



The second expectation is√
〈T⊗nf, T⊗nf〉 =

√
〈f, T⊗n∗T⊗nf〉 6

√
‖f‖2;µ′x‖S⊗nf‖2,

where S = T ∗T : L2(Σ;µ′x)→ L2(Σ;µ′x). Thus, overall we get that∣∣∣∣ E
x,y,z∼µ⊗n

[f(x)(T1−ξ′g)(y)(T1−ξ′h)(z)]

∣∣∣∣ 6√‖S⊗nf‖2.
Consider the operator S; we think about it also as a natural Markov process that samples (a, b) with
probability S(a, b) by sampling (a, y, z) ∼ µ′, and then sampling (b, y′, z′) ∼ µ′ conditioned on y′ = y,
z′ = z. Note that µ′x is the stationary distribution of S, and also note that for any a, b we have that

S(a, b) > α2ξ′4.

Indeed, this follows as for each y, z, the support of µ′x conditioned on y, z is full, and each atom there has

probability at least αξ′
2
. Thus, thinking of S as the adjacency operator of a graph over Σ, we get that the

edge expansion of each set is at least α2ξ′
4
, so by Cheeger’s inequality

λ2(S) 6 1− 1

2
α4ξ′

8
.

We thus have that

‖S⊗nf‖22 =
∑
T⊆[n]

‖S⊗nf=T ‖22 6
∑
T⊆[n]

(
1− 1

2
α4ξ′

8
)2|T |

‖f=T ‖22 6
∑
T⊆[n]

(1− ξ)2|T | ‖f=T ‖22 = Stab1−ξ(f),

where the third transition determines the value of ξ′, i.e. 1
2α

4ξ′
8

= ξ. Thus by the premise we get that
‖S⊗nf‖22 6 δ.

Overall we got that ∣∣∣∣ E
x,y,z∼µ⊗n

[f(x)g(y)h(z)]

∣∣∣∣ 6 δ1/4 + 2
ε

4
6 ε,

where we used the fact that we may take δ sufficiently small compared to ε.

References

[ALM+98] Sanjeev Arora, Carsten Lund, Rajeev Motwani, Madhu Sudan, and Mario Szegedy. Proof verifi-
cation and the hardness of approximation problems. Journal of the ACM, 45(3):501–555, 1998.
(Preliminary version in 33rd FOCS, 1992).

[AM09] Per Austrin and Elchanan Mossel. Approximation resistant predicates from pairwise indepen-
dence. Computational Complexity, 18(2):249–271, 2009.

[AS98] Sanjeev Arora and Shmuel Safra. Probabilistic checking of proofs: A new characterization of NP.
Journal of the ACM, 45(1):70–122, January 1998. (Preliminary version in 33rd FOCS, 1992).

[BG21] Joshua Brakensiek and Venkatesan Guruswami. The quest for strong inapproximability results
with perfect completeness. ACM Trans. Algorithms, 17(3), 2021.

[BK21] Amey Bhangale and Subhash Khot. Optimal Inapproximability of Satisfiable k-LIN over Non-
Abelian Groups. In Proceedings of the 53rd Annual ACM SIGACT Symposium on Theory of
Computing (STOC), page 1615–1628, 2021.

[BKLM22] Mark Braverman, Subhash Khot, Noam Lifshitz, and Dor Minzer. An invariance principle for the
multi-slice, with applications. In IEEE 62nd Annual Symposium on Foundations of Computer
Science (FOCS), pages 228–236, 2022.

39



[BKM21] Mark Braverman, Subhash Khot, and Dor Minzer. On Rich 2-to-1 Games. In 12th Innovations
in Theoretical Computer Science Conference (ITCS), volume 185, pages 27:1–27:20, 2021.

[Bul17] Andrei A. Bulatov. A Dichotomy Theorem for Nonuniform CSPs. In IEEE 58th Annual Sym-
posium on Foundations of Computer Science (FOCS), pages 319–330, 2017.

[Dia98] Persi Diaconis. Group representations in probability and statistics, volume 11 of IMS Lecture
Notes Monogr. Ser. Institute of Mathematical Statistics, 1998.

[EH05] Lars Engebretsen and Jonas Holmerin. Three-query PCPs with perfect completeness over non-
Boolean domains. Random Structures & Algorithms, 27(1):46–75, 2005.

[FGL+96] Uriel Feige, Shafi Goldwasser, Laszlo Lovász, Shmuel Safra, and Mario Szegedy. Interactive
proofs and the hardness of approximating cliques. Journal of the ACM, 43(2):268–292, 1996.

[FV98] Tomás Feder and Moshe Y. Vardi. The Computational Structure of Monotone Monadic SNP
and Constraint Satisfaction: A Study through Datalog and Group Theory. SIAM Journal on
Computing, 28(1):57–104, 1998.

[GW95] Michel X. Goemans and David P. Williamson. Improved Approximation Algorithms for Max-
imum Cut and Satisfiability Problems Using Semidefinite Programming. Journal of the ACM,
42(6):1115–1145, 1995.

[H̊as01] Johan H̊astad. Some optimal inapproximability results. Journal of the ACM, 48(4):798–859,
July 2001. (Preliminary version in 29th STOC, 1997).

[HK05] Johan H̊astad and Subhash Khot. Query Efficient PCPs with Perfect Completeness. Theory of
Computing, 1(7):119–148, 2005.

[Hua14] Sangxia Huang. Approximation Resistance on Satisfiable Instances for Sparse Predicates. Theory
of Computing, 10(14):359–388, 2014.

[H̊a14] Johan H̊astad. On the NP-Hardness of Max-Not-2. SIAM Journal on Computing, 43(1):179–193,
2014.

[Kho02] Subhash Khot. On the power of unique 2-prover 1-round games. In Proceedings of the 34th
Annual ACM symposium on Theory of computing (STOC), pages 767–775. ACM, 2002.

[KKMO07] Subhash Khot, Guy Kindler, Elchanan Mossel, and Ryan O’Donnell. Optimal Inapproximability
Results for MAX-CUT and Other 2-Variable CSPs? SIAM Journal on Computing, 37(1):319–
357, 2007.

[MOO05] Elchanan Mossel, Ryan O’Donnell, and Krzysztof Oleszkiewicz. Noise stability of functions with
low influences: invariance and optimality. In Proceedings 46th Annual IEEE Symposium on
Foundations of Computer Science (FOCS), pages 21–30, 2005.

[Mos10] Elchanan Mossel. Gaussian bounds for noise correlation of functions. Geometric and Functional
Analysis, 19(6):1713–1756, 2010.

[Rag08] Prasad Raghavendra. Optimal algorithms and inapproximability results for every CSP? In
Proceedings of the 14th Annual ACM symposium on Theory of computing (STOC), pages 245–
254, 2008.

[Rag09] Prasad Raghavendra. Approximating NP-hard problems efficient algorithms and their limits.
University of Washington, 2009.

[Sch78] Thomas J. Schaefer. The complexity of satisfiability problems. In Proceedings of the 10th Annual
ACM Symposium on Theory of Computing (STOC), page 216–226, 1978.

[Tan09] Linqing Tang. Conditional hardness of approximating satisfiable Max 3CSP-q. In International
Symposium on Algorithms and Computation, pages 923–932. Springer, 2009.

40



[Zhu20] Dmitriy Zhuk. A Proof of the CSP Dichotomy Conjecture. Journal of the ACM, 67(5), August
2020.

41 ECCC   ISSN 1433-8092 

https://eccc.weizmann.ac.il


