
Superredundancy: A tool for Boolean formula
minimization complexity analysis

Paolo Liberatore∗

Abstract

A superredundant clause is a clause that is redundant in the resolution closure of a
formula. The converse concept of superirredundancy ensures membership of the clause
in all minimal CNF formulae that are equivalent to the given one. This allows for
building formulae where some clauses are fixed when minimizing size. An example are
proofs of complexity hardness of the problems of minimal formula size. Others are
proofs of size when forgetting variables or revising a formula. Most clauses can be
made superirredundant by splitting them over a new variable.

1 Introduction

Given a Boolean formula, the minimization problem is to find a formula of minimal size that
is equivalent to it [24, 27, 5, 30, 6, 31]. The decision problem variant that is analyzed in
computational complexity is to check whether a Boolean formula is equivalent to one that
is bounded in size by a given number. This problem led to the creation of the polynomial
hierarchy [29]. Yet, it eluded a precise complexity characterization for over twenty years [11,
4, 2, 14]. Framing it within a complexity class is easy, as it can be solved by a simple guess-
and-check algorithm: guess a formula of the given size, check its equivalence with the given
formula. The difficult part is proving hardness [11, 4, 2, 14].

An example is the proof of NP-hardness of checking whether a Horn formula can be
reduced size within a certain bound [11, 4]. An hardness proof may start from an arbitrary
CNF formula and produce a natural number and a Horn formula that is equivalent to a
formula of size bounded by that number if and only if the CNF formula is satisfiable.

The Horn formula has to be related to the CNF formula by this condition, but can oth-
erwise be chosen. A choice is to include in the Horn formula some essential prime implicates
and some other clauses [11]. The first part is guaranteed to be in every minimal formula
equivalent to the Horn one. The size of such minimal formulae are then given by how much
the second part can be shrunk while maintaining equivalence. The equivalence between the
non-essential clauses is helped by the essential ones: equivalence is on the whole formula,
including the essential prime implicates.

In spite of its apparent simplicity, finding such a hardness proof turned out difficult [11,
4, 2, 14]. Ensuring essentiality is not easy when clauses are mixed. Making an example of an
essential prime implicate is trivial: a non-tautological clause is always essential in a formula

∗DIAG, Sapienza University of Rome. liberato@diag.uniroma1.it

1

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Report No. 62 (2022)

comprising it only. It may not be with other clauses. Other clauses are necessary, if not
for making the formula reducible in size or not depending on the satisfiability of the CNF
formula. Essentiality is complicated to establish because is not a local property. It does not
depend on the clause only, but on the whole formula. A clause may be essential in a formula,
but the addition of a single other clause makes it no longer so.

This article shows an alternative mechanism for existence proofs, which involve the con-
struction of a formula, like hardness proofs. A clause of a formula is superirredundant if it is
irredundant in the resolution closure of a formula. Such a clause is in all equivalent formulae
of minimal size. Conceptually, superirredundancy can be established by iteratively resolving
all clauses of the formula and then removing the given clause. If it follows from the others,
it is superredundant. Otherwise, it is superirredundant.

The superirredundant clauses of a formula are in all equivalent formulae of minimal size,
but not the other way around. Superirredundancy is sufficient, but is not necessary. When
minimizing a formula, it is not as useful as essentiality as it may miss several clauses that are
guaranteed in all minimal formulae. Yet, it compensates this drawback by simple conditions
to prove it and simple ways to ensure it. A clause can often be proved superirredundant
by replacing some variables with truth values in the formula. A clause can often be made
superirredundant by splitting it on a new variable.

A hardness proof for a minimization problem can be built by assuming some clauses
superirredundant. Assuming, not ensuring. They are assumed to be present in all minimal
formulae, not proved so. The remaining clauses can be removed or otherwise replaced by
others while maintaining equivalence. The clauses assumed superirredundant help in ensur-
ing equivalence. They are targeted to this aim. To this aim only, they are not built to be
superirredundant at the same time.

The Horn formula is built in such a way the other clauses can be reduced size if and only if
the CNF formula is satisfiable. Only now the clauses that were assumed superirredundant are
verified to be so. If they are not, they are split to make them superirredundant. Granted,
this is not always possible. Yet, it often can. If it does, superirredundancy provides a
simplification in finding such a proof. Instead of ensuring the essentiality of some clauses
and the reducibility of the others at the same time, it allows concentrating on each aim at
time. First, the other clauses are proved to be reducible in size when appropriate; second,
the clauses that are supposed to be superirredundant are made so.

A following example illustrates the details of how to build a reduction for the problem
of Horn minimization in a simple way—a way that did not take twenty years to be devel-
oped. It is just an example. This problem is already known to be NP-hard. Many other
minimization problems have been framed exactly in the polynomial hierarchy. Yet, some
related problems are still open. For example, given a formula, can forgetting a set of vari-
ables [22], or literals [17] or subformulae [8] be represented within a certain bound? With
fixed symbols [25]? Can revising [26] or updating [16] a formula be represented within a
certain bound? These are still minimization problems. They are still open. Another article
employs superirredundancy in the complexity analysis of forgetting [21].

Superirredundancy differs from irredundancy, essentiality and membership in all minimal
formulae. This is shown by the clause a in the formula F = {a,¬a ∨ b,¬b ∨ a}: it is not
superirredundant, but is redundant, is an essential prime implicate and is in all minimal
formulae that are equivalent to F .

2

• the resolution closure of F is {a, b,¬a ∨ b,¬b ∨ a}, where a is redundant; therefore, a
is not superirredundant in F ;

• the clause a is irredundant in F since F\{a} is {¬a∨ b,¬b∨ a}, which does not entail
a;

• the prime implicates of F are a and b; the only CNF formula equivalent to F made
only of prime implicates is {a, b}, which contains a; therefore, a is an essential prime
implicate of F ;

• the only minimal-size formula equivalent to F is {a, b}; as a result, a belongs to all
minimal-size formulae equivalent to F .

Besides some preliminaries in Section 2, the technical content of the article is split in
three parts: Section 3 defines superredundancy and gives a number of its necessary and
sufficient conditions; Section 4 shows how to make a clause superirredundant in most cases;
Section 5 shows the details of an example usage of superirredundancy in a hardness proof.
Concluding remarks are in Section 6.

2 Preliminaries

2.1 Formulae

The formulae in this article are all propositional in conjunctive normal form (CNF): they are
sets of clauses, a clause being the disjunction of some literals and a literal a propositional
variable or its negation. This is not truly a restriction, as every formula can be turned into
CNF without changing its semantics. A clause is sometimes identified with the set of literals
it contains. For example, a subclause is a subset of a clause.

If l is a negative literal ¬x, its negation ¬l is defined as x.
The variables a formula A contains are denoted Var(A).

Definition 1 The size ||A|| of a formula A is the number of variable occurrences it contains.

This is not the same as the cardinality of Var(A) because a variable may occur multiple
times in a formula. For example, A = {a,¬a ∨ b, a ∨ ¬b} has size five because it contains
five literal occurrences even if its variables are only two. The size is obtained by removing
from the formula all propositional connectives, commas and parentheses and counting the
number of symbols left.

Other definitions are possible but are not considered in this article. An alternative
measure of size is the total number of symbols a formula contains (including conjunctions,
disjunctions, negations and parenthesis). Another is the number of clauses (regardless of
their length).

The definition of size implies the definition of minimality: a formula is minimal if it is
equivalent to no formula smaller than it. Given a formula, a minimal equivalent formula is a
possibly different but equivalent formula that is minimal. As an example, A = {a,¬a∨ b, a∨
¬b} has size five since it contains five literal occurrences; yet, it is equivalent to B = {a, b},
which only contains two literal occurrences. No formula equivalent to A or B is smaller than

3

that: B is minimal. Minimizing a formula means obtaining a minimal equivalent formula.
This problem has long been studied [14, 4].

Definition 2 The clauses of a formula A that contain a literal l are denoted by A∩ l = {c ∈
A | l ∈ c}.

This notation cannot cause confusion: when is between two sets, the symbol ∩ denotes
their intersection; when is between a set and a literal, it denotes the clauses of the set that
contain the literal. This is like seeing A∩l as the shortening of A∩clauses(l), where clauses(l)
is the set of all possible clauses that contain the literal l.

When a formula entails a clause but none of its strict subclauses, the clause is a prime
implicate of the formula. Formally, F |= c holds but F |= c′ does not for any clause c′ ⊂ c.
Prime implicates are a common tool in formula minimization [14, 4].

2.2 Resolution

Resolution is a syntactic derivation mechanism that produces a new clause that is a conse-
quence of two clauses: c1 ∨ l, c2 ∨ ¬l ⊢ c1 ∨ c2. The result is implicitly removed repetitions.

Unless noted otherwise, tautologic clauses are excluded. Writing c1 ∨ a, c2 ∨¬a ⊢ c1 ∨ c2
implicitly assumes that none of the three clauses is a tautology unless explicitly stated.
Two clauses that would resolve in a tautology are considered not to resolve, which is not a
limitation [23]. Tautologic clauses are forbidden in formulae, which is not a limitation either
since tautologies are always satisfied. This assumption has normally little importance, but
is crucial to superredundancy, defined in the next section.

Lemma 1 A clause that is the result of resolving two clauses does not contain the resolving
variable and is different from both of them if none of them is a tautology.

Proof. A clause c is the result of resolving two clauses only if they have the form c1 ∨ a and
c2 ∨ ¬a for some variable a, and c is c1 ∨ c2. If c1 ∨ c2 is equal to c1 ∨ a, it contains a. Since
clauses are sets of literals, they do not contain repeated elements. As a result, a ̸∈ c1 as
otherwise c1 ∨ a would contain a twice. Together with a ∈ c1 ∨ c2 this implies a ∈ c2, which
makes c2 ∨ ¬a a tautology. The case c = c2 ∨ ¬a is similar.

A resolution proof F ⊢ G is a binary forest where the roots are the clauses of G, the
leaves the clauses of F and every parent is the result of resolving its two children.

Definition 3 The resolution closure of a formula F is the set ResCn(F) = {c | F ⊢ c} of
all clauses that result from applying resolution zero or more times from F .

The clauses of F are derivable by zero-step resolutions from F . Therefore, F ⊢ c and
c ∈ ResCn(F) hold for every c ∈ F .

The resolution closure is similar to the deductive closure but not identical. For example,
a ∨ b ∨ c is in the deductive closure of F = {a ∨ b} but not in the resolution closure. It is a
consequence of F but is not obtained by resolving clauses of F .

All clauses in the resolution closure ResCn(F) are in the deductive closure but not the
other way around. The closures differ because resolution does not expand clauses: a ∨ b ∨ c
is not a resolution consequence of a ∨ b. Adding expansion kills the difference [18, 28].

4

F |= c if and only if c′ ∈ ResCn(F) for some c′ ⊆ c

That resolution does not include expansion may suggest that it cannot generate any non-
minimal clause. That would be too good to be true, since a clause would be minimal just
because it is obtained by resolution. In fact, it is not the case. Expansion is only one of the
reasons clauses may not be minimal, as seen in the formula {a∨b∨c, a∨b∨e,¬e∨c∨d}: the
second and third clauses resolve to a ∨ c ∨ b ∨ d, which is however not minimal: it contains
the first clause of the formula, a ∨ b ∨ c.

What is the case is that resolution generates all prime implicates [18, 28], the minimal
entailed clauses. The relation between ResCn(F) and the deductive closure of F tells that if
a clause is entailed, a subset of it is generated by resolution; since the only entailed subclause
of a prime implicate is itself, it is the only one resolution may generate. Removing all clauses
that contain others from ResCn(F) results in the set of the prime implicates of F .

Minimal equivalent formulae are all made of minimal entailed clauses, as otherwise literals
could be removed from them. Since resolution allows deriving all prime implicates of a
formula [18, 28], it derives all clauses of all minimal equivalent formulae.

Property 1 If B is a minimal CNF formula equivalent to A, then B ⊆ ResCn(A).

While ResCn(F) contains all clauses generated by an arbitrary number of resolutions,
some properties used in the following require the clauses obtained by a single resolution step.

Definition 4 The resolution of two formulae is the set of clauses obtained by resolving each
clause of the first formula with each clause of the second:

resolve(A,B) = {c | c′, c′′ ⊢ c where c′ ∈ A and c′′ ∈ B}

If either of the two formulae comprises a single clause, the abbreviations resolve(A, c) =
resolve(A, {c}), resolve(c, B) = resolve({c}, B) and resolve(c, c′) = resolve({c}, {c′}) are
used.

This set contains only the clauses that results from resolving a single clause of A with
a single clause of B. Exactly one resolution of one clause with one clause. Not zero, not
multiple ones. A clause of A is not by itself in resolve(A,B) unless it is also the resolvent of
another clause of A with a clause of B.

3 Superredundancy

The running example presented in the introduction is a prototypical minimization problem:
given a Horn formula A and a number k, decide whether A is equivalent to a Horn formula
of size k or less. Its NP membership is easy to prove: guess a Horn formula B of size at most
k and verify its equivalence with A. Equivalence between Horn formulae can be checked in
polynomial time. Therefore, the whole problem is in NP.

The difficult part of classing it in the polynomial hierarchy is to establish its hardness.
This can be done by reducing the NP-hard problem of Boolean satisfiability into it. Given

5

a CNF formula F , the task is to produce a Horn formula A and a number k such that A
is equivalent to a Horn formula B of size bounded by k if and only if F is satisfiable. A
similar reduction would prove the hardness of other minimization problems. For example,
releasing the Horn constraint increases the complexity from NP to Σp

2. The translation is
then required to produce a formula A that can be expressed in size k if and only the QBF
∀X∃Y.F is valid. For the sake of this exposition, A is assumed Horn and the condition is
the satisfiability of F .

A reduction could translate a satisfiable F into {a∨¬b, a∨ c} and an unsatifiable F into
{a ∨ ¬b, a ∨ c, l}. The first formula has size 4, the second 4 + 1. The presence of l provides
the required increase in size.

While the addition of a literal like l works, it is not enough. A counterexample is a
reduction that translates a satisfiable F into {a ∨ ¬b, a ∨ c} and an unsatifiable F into
{¬a∨ c, l}. While l is necessary in all formulae equivalent to the second, it does not produce
an increase in size: the first formula has size 4, the second 2 + 1. The +1 is the second
formula is overcome by the decrease of size of the other clauses from 4 to 2.

The mechanism of having or not having l in the formula only works if the rest of the
formula is fixed. Otherwise, the presence of l may invalidate the construction like the last
addition to a house of cards crushes its lower layers: the unsatisfiability of F may force l
into the formula, but if it also allows removing a clause of two literals the total size change
is −1, not the required +1.

The lower layers, the other clauses, are fixed in place by superirredundancy. Its formal
definition is below, but what counts is that a superirredundant clause of a formula belongs
to every minimal equivalent formula. The number of its literals is never subtracted from the
overall size of the formula. The literals of the superirredundant clauses are fixed; the other
clauses may provide the required +1 addition in size.

This is a plan of this section: Section 3.1 presents the formal definition of superredun-
dancy and its converse, superirredundancy; Section 3.2 shows how superirredundancy relates
to minimal formulae; Section 3.3 presents some equivalent conditions to superredundancy,
Section 3.4 some necessary ones.

3.1 Definition of superredundancy

Superirredundancy is based on resolution. Summarizing the notation introduced in Section 2:
resolve(F,G) are the clauses obtained by resolving each clause of the first formula with each of
the second; F ⊢ G means that the clauses of the second formula are obtained by repeatedly
resolving the clauses of the first. This condition is formalized by G ⊂ ResCn(F) since
ResCn(F) is the set of all clauses obtained by repeatedly resolving the clauses of a formula
F .

Resolution does not just tell whether a clause is implied from a set. It also tells why:
the implied clause is consequence of other two, in turns consequence of others and so on.
This structure is necessary in many proofs below, and is the very reason why they employ
resolution ⊢ instead of entailment |=.

A clause c of F may or may not be redundant in ResCn(F). It is redundant if it is a
consequence of ResCn(F)\{c}, like in Figure 1.

An example is a in {a,¬a ∨ b,¬b ∨ a}. The resolution closure of this formula is
ResCn({a,¬a ∨ b,¬b ∨ a}) = {a, b,¬a ∨ b,¬b ∨ a}, where a is redundant since it is entailed

6

--

c

ResCn(F) |=F

c

⊢ c

Figure 1: A superredundant clause

by b and ¬b ∨ a.
Such a redundancy is not always the case. For example, the resolution closure of {a, b} is

itself, since its two clauses do not resolve. As a result, a is not redundant in ResCn({a, b}) =
{a, b}.

If a clause is redundant [10, 20], it is also superredundant, but not the other way around.
For example, a is superredundant in {a,¬a ∨ b,¬b ∨ a} because it is entailed by the other
clauses of the resolution closure of this formula but is not redundant because it is not entailed
by the other clauses of the formula itself, which are ¬a ∨ b and ¬b ∨ a.

When c is redundant in the resolution closure, ResCn(F)\{c} is equivalent to ResCn(F).
Even if c is not redundant in F , it is not truly necessary as a formula ResCn(F)\{c} not
containing it is equivalent to F . In the first example, a is not redundant in {a,¬a∨b,¬b∨a},
but this formula is equivalent to ResCn({a,¬a∨ b,¬b∨ a})\{a} = {b,¬a∨ b,¬b∨ a}, which
does not contain the clause a.

This is a weak version of redundancy: while c may not be removed from F , it can be re-
placed by other consequences of F . The converse is therefore a strong version of minimality:
c cannot be removed even adding all other resolution consequences of F . This is why it is
called superirredundant. A superirredundant clause cannot be removed even adding resolu-
tion consequences in its place. It is irredundant even expanding F this way, even switching
to such supersets of F .

The opposite to superirredundancy is unsurprisingly called superredundancy: a clause
is superredundant if it is redundant in the superset ResCn(F) of F . Such a clause can be
replaced by other resolution consequences of F .

Definition 5 A clause c of a formula F is superredundant if it is redundant in the resolution
closure of the formula: ResCn(F)\{c} |= c. It is superirredundant if it is not superredundant.

A superirredundant clause of a formula will be proved to be in all minimal formulae
equivalent to that formula. It is necessary in them. This is how fixing a part of the formula

7

- -F

c

c

c

ResCn(F)

A

B

C

D

|=⊢

Figure 2: A superredundant clause and some minimal equivalent formulae

is achieved: by ensuring that its clauses are superirredundant. The opposite concept of
superredundancy is introduced because it simplifies a number of technical results.

Contrary to what it may look, creating superirredundant clauses is not difficult.
A typical situation with a superredundant clause c is that F has some minimal equivalent

formulae like D which contains c, but also has other minimal equivalent formulae A, B and
C which do not contain c, like in Figure 2. This is possible because of ResCn(F)\{c} |= c,
which allows some subsets of ResCn(F)\{c} like D to entail c. Some other subsets like A,
B and C may still be minimal even if they contain c.

Superredundancy is the same as redundancy in the resolution closure. It is not the same
as redundancy in the deductive closure: such a redundancy is always the case unless the
clause contains all variables in the alphabet. Otherwise, if a is a variable not in c, then
c |= c ∨ a and c |= c ∨ ¬a; as a result, if c ∈ F then Cn(F)\{c} contains c ∨ a and c ∨ ¬a,
which imply c. The same argument does not apply to resolution because neither c ∨ a nor
c ∨ ¬a follow from c by resolution. This is why superredundancy is defined in terms of
resolution and not entailment.

Redundancy implies superredundancy: if c follows from F\{c} it also follows from
ResCn(F)\{c} by monotonicity of entailment. Not the other way around. For example,
a is irredundant in F = {a,¬a∨ b,¬b∨ a} but is superredundant: a and ¬a∨ b resolve to b,
which resolves with ¬b ∨ a back to a.

The formula in this example is not minimal, as it is equivalent to {a, b}. It shows that a
non-minimal formula may contain a superredundant clause. This will be proved to be always
the case. In reverse: a formula entirely made of superirredundant clauses is minimal.

3.2 Superirredundancy and minimality

The aim of superirredundancy is to prove that a clause belongs to all formulae that are
equivalent to the given one. The following lemma proves this.

8

Lemma 2 If c is a superirredundant clause of F , it is contained in every minimal CNF
formula equivalent to F .

Proof. Let B be a minimal formula that is equivalent to F . By Property 1, B ⊆ ResCn(F).
If B does not contain c, this containment strengthens to B ⊆ ResCn(F)\{c}. A consequence
of the equivalence between B and F is that B implies every clause of F , including c. Since
B |= c and B ⊆ ResCn(F)\{c}, by monotonicity ResCn(F)\{c} |= c follows. This is the
opposite of the assumed superirredundancy of c.

This lemma provides a sufficient condition for a clause being in all minimal formulae
equivalent to the given one. Not a necessary one, though. A clause that is not superirredun-
dant may still be in all minimal formulae. A counterexample only requires three clauses.

Counterexample 1 The first clause of F = {a,¬a∨ b, a∨¬b} is superredundant but is in
all minimal formulae equivalent to F .

Proof. Its first clause is a. It resolves with ¬a∨b into b. The resolution closure of F contains
a, b and a ∨ ¬b. The first is redundant as it is entailed by the second and the third. This
proves it superredundant.

Yet, the only minimal formula equivalent to F is F ′ = {a, b}, which contains a in spite
of its superredundancy. That {a, b} is minimal is proved by the superirredundancy of its
clauses: its resolution closure is {a, b} itself since its clauses do not resolve; none of the two
clauses is redundant in it.

The proof of this counterexample relies on the syntactic dependency of superredundancy:
a is superredundant in {a,¬a ∨ b, a ∨ ¬b} but superirredundant in its minimal equivalent
formula {a, b}.

Lemma 3 There exist two equivalent formulae such that: a. both formulae contain the same
clause, and b. that clause is superredundant in one formula but not in the other.

Proof. The formulae are F = {a,¬a ∨ b, a ∨ ¬b} and F ′ = {a, b}.
The resolution closure of the first is ResCn(F) = {a, b,¬a ∨ b, a ∨ ¬b} since the only

possible resolutions in F are a,¬a ∨ b ⊢ b and b, a ∨ ¬b ⊢ a. While ¬a ∨ b and a ∨ ¬b
have opposite literals, they would only resolve into a tautology. Since the clauses of F ′ do
not resolve, its resolution closure is F ′ itself: ResCn(F ′) = {a, b}.

The clause a is redundant in ResCn(F) = {a, b,¬a ∨ b, a ∨ ¬b} since it is entailed by b
and a ∨ ¬b. It is not redundant in ResCn(F ′) = {a, b} since it is not entailed by b.

Being dependent on the syntax of the formula, superredundancy and superirredundancy
differ from every condition that is independent of the syntax, such as:

• redundancy in the set of prime implicates, which is also employed in formula minimiza-
tion [11];

• essentiality of prime implicates, defined as containment of a prime implicate in all
prime CNFs equivalent to the formula [11]

• presence in all minimal CNF formulae equivalent to F .

9

These conditions are independent on the syntax since the prime implicates, the prime
equivalent CNFs and the minimal equivalent formulae are the same for two equivalent for-
mulae. Being independent on the syntax, they are not the same as superredundancy or
superirredundancy, which are proved dependent on the syntax by Lemma 3.

Lemma 2 does not contradict the inequality of superirredundancy and presence in all
minimal equivalent formulae. It only proves that a superirredundant clause of a formula is
in all minimal formulae equivalent to it. Not the other way around. A clause may be in all
minimal formulae while not being superirredundant.

Lemma 4 There exists a formula that contains a superredundant clause that is in all its
minimal CNF equivalent formulae.

Proof. Let c be a clause that is superredundant in F and superirredundant in F ′ with
F ≡ F ′. Such a condition is possible according to Lemma 3.

Since c is superirredundant in F ′, it is contained in all minimal formulae equivalent to
F ′. Since this formula is equivalent to F , their minimal equivalent formulae are the same.

Superirredundancy in a formula is a strictly stronger condition than membership in all
its minimal equivalent formulae. It implies that, but is not implied.

This is to be kept in mind when superirredundancy is used as a precondition. Some lem-
mas below prove that if a clause is superirredundant in a formula then it is superirredundant
in a similar formula. The precondition of such a result is the superirredundancy of the clause;
its membership in all minimal equivalent formulae may not be enough. Superirredundancy
is required. Membership to all minimal equivalent formulae is a consequence of both the
premise and the conclusion, not a substitute of the premise.

An application of superirredundancy is to guarantee a formula to be minimal.

Lemma 5 If a formula contains only superirredundant clauses, it is minimal.

Proof. Let B be a minimal formula equivalent to A. By Lemma 2, the superirredundant
clauses of A are in all minimal formulae that are equivalent to A. Therefore, B contains all
of them. If A only comprises superirredundant clauses, B contains all of them: A ⊆ B. The
only case where B could not be the same as A is when this containment is strict, but that
would imply that B is not minimal since A is equivalent but smaller.

If a formula is built so that all its clauses are superirredundant, it is guaranteed to be
minimal. Not the other way around. Rather the opposite: a minimal formula may be made
only of superredundant clauses. An example is {¬a ∨ b,¬b ∨ c,¬c ∨ a}. Resolving the first
two clauses ¬a ∨ b and ¬b ∨ c generates ¬a ∨ c. Resolving the other pairs produces the
opposite cycle of clauses {¬a ∨ c,¬c ∨ b,¬b ∨ a}, which is equivalent to the original. The
clauses of the original are therefore entailed by some of their resolution consequences. Yet,
the original is minimal.

3.3 Equivalent conditions to superredundancy

Superirredundancy differs from membership in all minimal equivalent formula, but is easier
than that to ensure. Simplicity is its motivation. Therefore, it makes sense to simplify it
further. The following lemma gives a number of equivalent conditions, all based on F deriving

10

- -F G c

c

c ̸∈ G

|=⊢

Figure 3: An example of a superredundant clause

another formula G that in turn derives c. The first equivalent condition is exemplified by
Figure 3. Instead of proving that c is a consequence of ResCn(F)\{c}, these equivalent
conditions allow proving the existence of a possibly smaller formula G that entails c.

Lemma 6 A clause c of a formula F is superredundant if and only if a formula G satisfying
either one of the following conditions exists:

1. F ⊢ G and G |= c where c ̸∈ G

2. F ⊢ G and G ⊢ c′ where c ̸∈ G and c′ ⊆ c

3. F ⊢ G and G ⊢ c with c ̸∈ G or F ⊢ c′ with c′ ⊂ c

4. F ⊢ G and G ⊢ c with c ̸∈ G or F |= c′ with c′ ⊂ c

Proof. Equivalence with the first condition is proved in the two directions. A clause c of F
is superredundant if and only if ResCn(F)\{c} |= c. If this condition is true, the claim holds
with G = ResCn(F)\{c}, since c is not in ResCn(F)\{c} by construction and the definition
of resolution closure implies F ⊢ c′ for every c′ ∈ ResCn(F). In the other direction, if F ⊢ G
then G ⊆ ResCn(F). Since c ̸∈ G, this containment strengthens to G ⊆ ResCn(F)\{c}.
Since G |= c, it follows ResCn(F)\{c} |= c by monotonicity.

The first condition is equivalent to the second because G |= c is the same as G ⊢ c′ with
c′ ⊆ c.

The second condition is proved equivalent to the third considering the two directions
separately. The second condition includes c′ ⊆ c, which comprises two cases: c′ = c and
c′ ⊂ c. If c′ = c, the second condition becomes F ⊢ G ⊢ c with c ̸∈ G, the same as the
first alternative of the third condition. If c′ ⊂ c, the second condition is F ⊢ G ⊢ c′, which
implies F ⊢ c′ with c′ ⊂ c; this is the second alternative of the third condition. In the other
direction, the first alternative of the third condition is F ⊢ G ⊢ c with c ̸∈ G, which is the
same as the second condition with c′ = c. The second alternative is F ⊢ c′ with c′ ⊂ c; the
second condition holds with G = {c′}.

Equivalence with the fourth condition holds because F ⊢ c′ implies F |= c′, and in the
other direction F |= c′ implies F ⊢ c′′ with c′′ ⊂ c, and the third equivalent condition holds
with c′′ in place of c′.

11

- - -F

c

F

c

c
c1 ∨ a
c2 ∨ ¬a c⊢ ⊢ ⊢

c1 ⊂

Figure 4: Superredundancy proved by the last step of resolution

A clause c is superredundant if it follows from F by a resolution proof that contains a
set of clauses G sufficient to prove c. As such, G is a sort of “cut” in a resolution tree F ⊢ c,
separating c from F . This cut can be next to the root, next to the leaves, or somewhere in
between. In practice, it is useful at the first resolution steps (next to the leaves) or at the
last (next to the root).

The next equivalent condition to superredundancy cuts the resolution tree at its very last
point, one step short of regenerating c. It comprises two alternatives, depicted in Figure 4.
They are due to the two possibilities contemplated by the third condition of Lemma 6: either
F implies a proper subset of c or c itself with a resolution proof cut by a set G.

Lemma 7 A clause c of a formula F is superredundant if and only if either F ⊢ c1 where
c1 ⊂ c or F ⊢ c1 ∨ a, c2 ∨ ¬a for some variable a not occurring in c and clauses c1 and c2
such that c = c1 ∨ c2.

Proof. By Lemma 6, superredundancy is equivalent to F ⊢ G ⊢ c with c ̸∈ G or F ⊢ c′ with
c′ ⊂ c.

The second part of this condition is the same as F ⊢ c1 and c1 ⊂ c with c1 = c′, the first
alternative in the statement of the lemma.

The first part F ⊢ G ⊢ c with c ̸∈ G is now proved to be the same as the second
alternative in the statement of the lemma: F ⊢ c1 ∨ a, c2 ∨ ¬a where a ̸∈ c and c = c1 ∨ c2.

If F ⊢ G ⊢ c with c ̸∈ G, since c is not in G, the derivation G ⊢ c contains at least a
resolution step. Let c′ and c′′ be the two clauses that resolve to c in this derivation. Since
they resolve to c, they have the form c′ = c1 ∨ a and c′′ = c2 ∨¬a for some variable a. Their
resolution c = c1 ∨ c2 does not contain a by Lemma 1. These two clauses are obtained by
resolution from G. Since F ⊢ G, they also derive by resolution from F .

In the other direction, F ⊢ c1 ∨ a, c2 ∨ ¬a implies superredundancy. This is proved with
G = {c1 ∨ a, c2 ∨ ¬a}. The first condition G ⊢ c holds because c1 ∨ a and c2 ∨ ¬a resolve
into c. The second condition c ̸∈ G holds because c does not contain a by assumption while
both clauses of G both do.

This lemma says that looking at all possible sets of clauses G when checking superredun-
dancy is a waste of time. The sets comprising pairs of clauses containing an opposite literal
suffice. Their form provides an even further simplification: they are obtained by splitting
the clause in two and adding an opposite literal to each. Superredundancy is the same as
resolution deriving either such a pair or a proper subset of the clause.

12

-

-

F

c resolve(F, c)⊢

|= c

Figure 5: Superredundancy proved by immediate resolution consequences

A clause is proved superredundant by such a splitting. Yet, proving superredundancy is
not the final goal. Proving the presence in all minimal equivalent formula is. It follows from
superirredundancy, not superredundancy. The lemma helps in this. Instead of checking all
possible sets of clauses G, it allows concentrating only on the pairs obtained by splitting the
clause.

When the clauses of F do not resolve, the second alternative offered by Lemma 7 never
materializes: a clause is superredundant if and only if it is a proper superset of a clause of
F . This quite trivial specialization looks pointless, but turns essential when paired with the
subsequent Lemma 12.

Lemma 8 If no two clauses of F resolve, then a clause of F is superredundant if and only
if F contains a clause that is a strict subset of it.

Proof. By Lemma 7, c ∈ F is superredundant if and only if F ⊢ c1 with c1 ⊂ c or
F ⊢ c1∨a, c2∨¬a with c = c1∨c2. The second condition implies c1∨a, c2∨¬a ∈ F since the
clauses of F do not resolve; this contradicts the assumption since these two clauses resolve.
As a result, the only actual possibility is the first: F ⊢ c1 with c1 ⊂ c. Since the clauses of
F do not resolve, c1 cannot be the result of resolving clauses. Therefore, it is in F .

Formula G of Lemma 6 can be seen as a cut in a resolution tree from F to c. It separates
all occurrences of c ∈ F in the leaves from c in the root. Lemma 7 places the cut next to
the root. The following places it next to the leaves. It proves that resolving c with clauses
of F only is enough. The clauses obtained by these resolutions are resolve(c, F), according
to Definition 4. This situation is shown by Figure 5.

Lemma 9 A clause c of F is superredundant if and only if F\{c} ∪ resolve(c, F) |= c.

Proof. The first equivalent condition to superredundancy offered by Lemma 6 is the existence
of a set G such that F ⊢ G, G |= c and c ̸∈ G. The proof is composed of two parts: the first
is that F\{c} ∪ resolve(c, F) is such a set G if it entails c; the second is that if such a set G
exists, the derivation of F ⊢ G can be rearranged so that c resolves only with other clauses of
F . The first is almost trivial, the second is not because c may resolve with clauses obtained

13

PPPPP

�����

PPPPP

�����

�����

PPPPP

c

c

GF

9

5

Figure 6: An example of the rise of a clause

by resolution in F ⊢ G. The rearranged derivation begins with a batch of resolutions of c
with other clauses of F , and c is then no longer used. The resolvents of these first resolutions
and the rest of F makes the required set G.

If F\{c} ∪ resolve(c, F) |= c, then G = F\{c} ∪ resolve(c, F) proves c superredundant:
F ⊢ G, G |= c and c ̸∈ G. The first condition F ⊢ G holds because the only clauses of G that
are not in F are the result of resolving c ∈ F with a clause of F ; the second condition G |= c
holds by assumption; the third condition is that G does not contain c, and it holds because
G is the union of F\{c} and resolve(c, F), where F\{c} does not contain c by construction
and resolve(c, F) because resolving a clause does not generate the clause itself by Lemma 1.

The rest of the proof is devoted to proving the converse: F ⊢ G, G |= c and c ̸∈ G imply
F\{c} ∪ resolve(c, F) |= c.

The claim is proved by repeatedly modifying G until it becomes a subset of F\{c} ∪
resolve(c, F) while still maintaining its properties F ⊢ G, G |= c and c ̸∈ G.

This process ends because a measure defined on the derivation F ⊢ G decreases until
reaching zero. This measure is the almost-size of the derivation F ⊢ G plus the rise of c in
it. Both are based on the size of the subtrees of F ⊢ G: each clause in the derivation is
generated independently of the others, and is therefore the root of its own tree.

The size of the derivation F ⊢ G is the number of clauses it contains. Its almost-size is
the number of clauses except the roots.

The derivation F ⊢ G may contain some resolutions of c with other clauses. The rise of
an individual resolution of c with a clause c′′ in F ⊢ G is the number of nodes in the tree
rooted at c′′ minus one. The total rise of c in F ⊢ G is the sum of all resolutions of c in it.
It measures the overall distance of c from the other leaves of the tree, its elevation from the
ground. Figure 6 shows an example.

Both the almost-size and the rise of c are not negative. They are sums, each addend
being the size of a nonempty tree minus one; since each tree is not empty, its size is at least
one; the addend is at least zero. Their sums are at least zero.

If G is a subset of F ∪ resolve(c, F), then c ̸∈ G implies it is also a subset of F\{c} ∪
resolve(c, F). Since G implies c, also does its superset F\{c} ∪ resolve(c, F). This is the
claim.

14

Otherwise, G is not a subset of F ∪ resolve(c, F). This means that G contains a clause
c′ ∈ G that is not in F and is not the result of resolving c with a clause of F . Since c′ is not
in F , it is the result of resolving two clauses c′′ and c′′′. One of them may be c or not; if it
is, the other one is not in F and is therefore the result of resolving two other clauses.

If neither c′′ nor c′′′ is equal to c, the modified set G′ = G\{c′} ∪ {c′′, c′′′} has the same
properties of G that prove c superredundant: F ⊢ G′, G′ |= c and c ̸∈ G′. Let a and b be the
size of the trees rooted in c′′ and c′′′ in F ⊢ G. Since F ⊢ G has c′ as a root, its almost-size
includes a+ b+1− 1 = a+ b. Instead, F ⊢ G′ has c′′ and c′′ as roots in place of c′; therefore,
its almost-size includes (a − 1) + (b − 1) = a + b − 2. The almost-size of F ⊢ G′ is smaller
than F ⊢ G. The rise of c is the same, since the resolutions of c are the same in the two
derivations. Summarizing, almost-size decreases while rise maintains its value.

If either c′′ or c′′′ is equal to c, the same set G′ = G\{c′}∪{c′′, c′′′} does not work because
it does not maintain c ̸∈ G′. Since the two cases c′′ = c and c′′′ = c are symmetric, only
the second is analyzed: c′ ∈ G is generated by c, c′′ ⊢ c′ in F ⊢ G. If c′′ is in F , then c′ is
in resolve(c, F) because it is the result of resolving c with a clause of F . Otherwise, c′′ is a
clause obtained by resolving two other clauses.

These two clauses resolve in c′′, which resolves with c. Two resolutions, two pairs of
opposite literals. Let l be the literal of c that is negated in c′′ and l′ the literal that is
resolved upon in the resolution that generates c′′. At least one of the two clauses that
generate c′′ contains ¬l since c′′ does. At least means either one or both.

The first case is that both clauses that resolve in c′′ contain ¬l. Since they also contain
l′ and ¬l′, they can be written ¬l′ ∨¬l∨ c2 and l′ ∨¬l∨ c3. They resolve in c′′ = ¬l∨ c2 ∨ c3.
Since c contains l, it can be written l∨c1. It resolves with c′′ = ¬l∨c2∨c3 to c′ = c1∨c2∨c3.

l ∨ c1

¬l′ ∨ ¬l ∨ c2

l′ ∨ ¬l ∨ c3

XXX
���

hhhhhhhhhhhh
��� c1 ∨ c2 ∨ c3

¬l ∨ c2 ∨ c3

A different derivation from the same clauses resolves l ∨ c1 with ¬l′ ∨ ¬l ∨ c2, producing
c1 ∨ ¬l′ ∨ c2, and with l′ ∨ ¬l ∨ c3, producing c1 ∨ l′ ∨ c3. The produced clauses c1 ∨ ¬l′ ∨ c2
and c1 ∨ l′ ∨ c3 resolve to c1 ∨ c2 ∨ c3, the same conclusion of the original derivation. This is
a valid derivation, with an exception discussed below.

l ∨ c1

¬l′ ∨ ¬l ∨ c2

l′ ∨ ¬l ∨ c3

Z
ZZ

,
,,

PPP
���

HHH
(((

c1 ∨ c2 ∨ c3

l ∨ c1

¬l′ ∨ c1 ∨ c2

l′ ∨ c1 ∨ c3

This derivation proves F ⊢ G′ where G′ = G\{c1 ∨ c2 ∨ c3} ∪ {c1 ∨ ¬l′ ∨ c2, c1 ∨ l′ ∨ c3}.
The only clause of G that G′ does not contain is c1 ∨ c2 ∨ c3, which is implied by resolution
from its clauses c1 ∨ ¬l′ ∨ c2 and c1 ∨ l′ ∨ c3. Therefore, G

′ |= G. This implies G′ |= c since
G |= c. Since c1∨¬l′∨ c2 is obtained by resolving two clauses over l, it does not contain l by

15

Lemma 1. The same applies to c1∨ l′∨c3. Since c contains l, it is not equal to either of these
two clauses. It is not equal to any other clause of G′ either, since these are also clauses of G
and c is not in G. This proves that G′ has the same properties that prove c superredundant:
F ⊢ G′, G′ |= c and c ̸∈ G′.

Since ¬l′ ∨¬l ∨ c2 and l′ ∨¬l ∨ c3 are generated by resolution from F , each is the root of
a resolution tree. Let a and b be their size. The almost-size of the original derivation F ⊢ G
includes a+ b+ 2, that of F ⊢ G′ has a+ b+ 2 in its place. Almost-size does not change.

The rise of resolving c = l ∨ c1 with c′′ = ¬l ∨ c2 ∨ c3 in the original derivation is one less
the size of the tree rooted in c′′. This tree comprises c′′ and the trees rooted in ¬l′ ∨ ¬l ∨ c2
and l′ ∨ ¬l ∨ c3. Its size is therefore a + b + 1. The rise of c is therefore a + b. The two
resolutions of c = l∨ c1 in the modified derivation are with ¬l′ ∨¬l∨ c2 and l′ ∨¬l∨ c3. The
rise of c in the first is the size of tree rooted in ¬l′ ∨ ¬l ∨ c2 minus one: a− 1; the rise of c
in the second is b− 1. Their sum is a+ b− 2, which is strictly less than a+ b.

In summary, switching from F ⊢ G to F ⊢ G′ maintains the almost-size and decreases
the rise of c.

The exception mentioned above is that the new resolutions may generate tautologies,
which are not allowed. Since ¬l′ ∨ ¬l ∨ c2, l

′ ∨ ¬l ∨ c3 and c1 ∨ c2 ∨ c3 are in the original
derivation, they are not tautologies. As a result, c1, c2 and c3 do not contain opposite literals,
c2 does not contain l′ and c3 does not contain ¬l′. The new clause c1∨¬l′∨ c2 is tautological
only if l′ is in c1, and c1 ∨ l′ ∨ c3 only if ¬l′ is in c1. By symmetry, only the second case is
considered: c1 = ¬l′ ∨ c′1.

l′ ∨ ¬l ∨ c3

l ∨ ¬l′ ∨ c′1

¬l′ ∨ ¬l ∨ c2 XXX
���

hhhhhhhhhhhh
���¬l ∨ c2 ∨ c3

¬l′ ∨ c′1 ∨ c2 ∨ c3

An alternative derivation resolves l ∨¬l′ ∨ c1 with ¬l′ ∨¬l ∨ c2, resulting in ¬l′ ∨ c1 ∨ c2,
a subset of the original result ¬l′ ∨ c1 ∨ c2 ∨ c2.

l′ ∨ ¬l ∨ c3

l ∨ ¬l′ ∨ c′1

¬l′ ∨ ¬l ∨ c2

PPP
��� ¬l′ ∨ c′1 ∨ c2

Since ¬l′ ∨ c′1 ∨ c2 ⊆ ¬l′ ∨ c′1 ∨ c2 ∨ c3, it holds ¬l′ ∨ c′1 ∨ c2 |= ¬l′ ∨ c′1 ∨ c2 ∨ c3, which
implies G′ |= G where G′ = G\{¬l′ ∨ c′1 ∨ c2 ∨ c3} ∪ {¬l′ ∨ c′1 ∨ c2}, which in turns implies
G′ |= c since G |= c. This set G′ is still obtained by F by resolution. It does not contain
c because c ̸∈ G and the added clause ¬l′ ∨ c′1 ∨ c2 is not c. It is not c because it does
not contain l while c does, and it does not contain l by Lemma 1 because it is the result of
resolving two clauses over l. This proves that G′ inherit from G all properties that prove c
superredundant: F ⊢ G′, G′ |= c and c ̸∈ G′.

If the tree rooted in ¬l′ ∨ ¬l ∨ c2 has size a and the tree rooted in l′ ∨ ¬l ∨ c3 has size b,
the derivation F ⊢ G includes a+ b+ 2 in its almost-size. The derivation F ⊢ G′ has a+ 1
in its place, a decrease in almost-size. The rise of this resolution of c in F ⊢ G is a + b. In
F ⊢ G′, it is a− 1. Both almost-size and rise of c decrease.

16

The second case is that only one of the clauses that resolve into c′′ contains ¬l. Their
resolution literal is still denoted l′; therefore, they can be written ¬l′ ∨ ¬l ∨ c2 and l′ ∨ c3.
The result of resolving them is c′′ = ¬l ∨ c2 ∨ c3, which resolves with c = l ∨ c1 to generate
c′ = c1 ∨ c2 ∨ c3.

c1 ∨ c2 ∨ c3

l ∨ c1

¬l′ ∨ ¬l ∨ c2

l′ ∨ c3

XXX
���

hhhhhhhhhhhh
���¬l ∨ c2 ∨ c3

Since l ∨ c1 and ¬l′ ∨ ¬l ∨ c2 oppose on l, they resolve. The result is c1 ∨ ¬l′ ∨ c2, which
resolves with l′ ∨ c3 into c1 ∨ c2 ∨ c3. The same three clauses produce the same clause. This
is a valid derivation with an exception discussed below.

c1 ∨ c2 ∨ c3

l ∨ c1

¬l′ ∨ ¬l ∨ c2

l′ ∨ c3

aa
!!

XXX

((((((((((((
¬l′ ∨ c1 ∨ c2

This derivation proves F ⊢ G′ where G′ = G\{c1 ∨ c2 ∨ c3} ∪ {c1 ∨¬l′ ∨ c2, l
′ ∨ c3}. The

only clause of G that G′ does not contain is c1 ∨ c2 ∨ c3, but this is the result of resolving
c1 ∨ ¬l′ ∨ c2 and l′ ∨ c3, two clauses of G′. As a result, G′ |= G. This proves G′ |= c since
G |= c. Finally, c is not in G′. Since c ̸∈ G, suffices to prove that c is not any of the two
clauses that G′ contains while G does not. This is the case because c = l ∨ c1 contains l
while the two clauses does not. The original derivation contains c1 ∨ c2 ∨ c3 as the result of
resolving two clauses over l; Lemma 1 tells that l is not in c1 ∨ c2 ∨ c3. As a result, l is in
c1 ∨¬l′ ∨ c2 or l

′ ∨ c3 only if either l = ¬l′ or l = l′. That implies that ¬l∨ c2 ∨ c3 contains l
′

while it is obtained in the original derivation by resolving two clauses over l′, contradicting
Lemma 1. This proves that G′ inherits all properties that prove c superredundant: F ⊢ G′,
G′ |= c and c ̸∈ G′.

Since ¬l′ ∨ ¬l ∨ c2 and l′ ∨ c3 are obtained by resolution from F , each is the root of a
resolution tree. Let a and b be their size.

The almost-size of F ⊢ G includes a part for the tree rooted in c1 ∨ c2 ∨ c3; that part is
a + b + 2. The derivation F ⊢ G′ is the same except that it has the parts for c1 ∨ ¬l′ ∨ c2
and l′ ∨ c3 instead: a+ 1 and b− 1. The almost-size decreases from a+ b+ 2 to a+ b.

The rise of the resolution of c with ¬l ∨ c2 ∨ c3 in F ⊢ G is the size of the tree rooted
in ¬l ∨ c2 ∨ c3; this tree contains a + b + 1 nodes; the rise in F ⊢ G is therefore a + b. The
rise of the resolution of c with ¬l′ ∨ ¬l ∨ c2 in F ⊢ G′ is instead the size of tree rooted in
¬l′ ∨ ¬l ∨ c2 minus one: a− 1. This is smaller than a+ b since b is nonnegative.

Summarizing, the change in the derivation strictly decreases both its overall size and its
rise of c.

The exception that makes the new derivation invalid is when the new clause c1 ∨¬l′ ∨ c2
is a tautology. Valid resolution derivations do not contain tautologies. This also applies to
the original one. Since c1 ∨ c2 ∨ c3 is not a tautology, c1 ∨ c2 is neither. Since ¬l′ ∨¬l ∨ c2 is
not a tautology, c2 does not contain l′. The new clause c1 ∨ ¬l′ ∨ c2 is a tautology only if l′

is in c1. Equivalently, c1 = l′ ∨ c′1 for some c′1.

17

l′ ∨ c3

l ∨ l′ ∨ c′1

¬l′ ∨ ¬l ∨ c2 l′ ∨ c′1 ∨ c2 ∨ c3XXX
���

hhhhhhhhhhhh
���¬l ∨ c2 ∨ c3

The root of the derivation is l′∨c1∨c2∨c3 in this case. This is a superset of its grandchild
l′ ∨ c3. Since subclauses imply superclauses, G′ = G\{c1 ∨ c2 ∨ c3} ∪ {l′ ∨ c3} implies G. By
transitivity, it implies c.

The clause l′ ∨ c′1 ∨ c2 ∨ c3 does not contain l by Lemma 1 because it is the result of
resolving two clauses upon l in the original derivation. As a result, its subset l′ ∨ c3 does not
contain l either. It therefore differs from c, which contains l. This implies c ̸∈ G′ since c ̸∈ G
and c ̸= l′ ∨ c3.

Since F ⊢ G includes the derivation of l′ ∨ c3, also F ⊢ G′ holds.
All three properties of G are inherited by G′: F ⊢ G′, G′ |= c and c ̸∈ G′.
Let a and b be the size of the trees rooted at ¬l′ ∨ ¬l ∨ c2 and l′ ∨ c3. The almost-size of

F ⊢ G has a component for its root l′ ∨ c1 ∨ c2 ∨ c3 of value a+ b+2. The derivation F ⊢ G′

has the root l′ ∨ c3 in its place, contributing only a− 1 to the almost-size. The almost-size
decreases. The rise of c also decreases. In the original derivation c resolves with ¬l∨ c2 ∨ c3,
contributing a + b to the overall rise. In F ⊢ G′ this resolution is absent, contributing 0 to
the overall rise. Since a is the size of a non-empty tree, it is greater than zero. The same
holds for b. The rise of c decreases by a+ b, which is at least 2.

All of this proves that if G is not a subset of F ∪ resolve(c, F) it can be changed to
decrease its overall measure while still proving c superredundant. This change preserves
F ⊢ G, G |= c and c ̸∈ G and strictly decreases the measure of F ⊢ G, defined as the sum of
its almost-size and rise of c.

This change can be iterated as long as G is not a subset of F ∪resolve(c, F). It terminates
because the measure strictly decreases at each step but is never negative as proved above.
When it terminates, G is a subset of F ∪ resolve(c, F) because otherwise it could be iterated.
Since c ̸∈ G is one of the preserved properties, G is also a subset of F\{c} ∪ resolve(c, F).
Since G implies c, its superset F\{c} ∪ resolve(c, F) implies c too. This is the claim.

Lemma 9 allows for a simple algorithm for checking superredundancy: resolve c with all
other clauses of F and then remove it. If c is still entailed, it is superredundant. This proves
that checking superredundancy is polynomial-time for example in the Horn and Krom cases
(the latter is that all clauses contain two literals at most). More generally, it is polynomial
in all restrictions that are closed under resolution and where inference can be checked in
polynomial time.

Theorem 1 Checking superredundancy is polynomial-time in the Horn and Krom cases.

Proof. The clauses in resolve(F, c) can be generated in polynomial time by resolving each
clause of F with c. The result is still Horn or Krom because resolving two Horn clauses
or two Krom clauses respectively generates a Horn and Krom clause. Checking F\{c} ∪
resolve(F, c) |= c therefore only takes polynomial time.

If c is a single literal l, it only resolves with clauses containing ¬l. The condition is very
simple in this case.

18

Theorem 2 A single-literal clause l of F is superredundant if and only if

{c ∈ F | ¬l ̸∈ c, c ̸= l} ∪ {c | c ∨ ¬l ∈ F} |= l

Proof. When a clause c comprises a single literal l, Lemma 9 equates its superredundancy to
F\{l} ∪ resolve(F, l) |= l. The first part F\{l} of the formula comprises clauses that resolve
with l and clauses that do not:

F\{l} = {c ∈ F | ¬l ̸∈ c, c ̸= l} ∪ {c ∈ F | ¬l ∈ c}

If c is in the second set, then resolve(F, l) contains resolve(c, l) = c\{¬l}, which implies
c. Therefore, F\{l} ∪ resolve(F, l) is equivalent to {c ∈ F | ¬l ̸∈ c, c ̸= l} ∪ resolve(F, l).
The clauses that resolve with l are all of the form c ∨ ¬l, and the result of the resolution is
c. Therefore, resolve(F, l) can be rewritten as {c | c ∨ ¬l ∈ F}. This proves the claim.

This theorem shows how to check the superredundancy of a single-literal clause of a
formula. All it takes is a simple transformation of the formula: the unit clause l is removed,
and the literal ¬l is deleted from all clauses containing it. If what remains imply l, then l is
superredundant.

This condition can be further simplified when not only the clause to be checked is a
literal, but its converse does not even occur in the formula. Such literals are usually called
pure in the automated reasoning field [15].

Theorem 3 If ¬l does not occur in F , the single-literal clause l of F ∪{l} is superredundant
if and only if F |= l.

Proof. A clause l of F ∪ {l} is superredundant if and only if F ′ |= l where F ′ = {c ∈
F ∪ {l} | ¬l ̸∈ c, c ̸= l} ∪ {c | c∨¬l ∈ F ∪ {l}} |= l thanks to Theorem 2 applied to F ∪ {l}.
If ¬l does not occur in F , then F ′ simplifies as follows.

F ′ = {c ∈ F ∪ {l} | ¬l ̸∈ c, c ̸= l} ∪ {c | c ∨ ¬l ∈ F ∪ {l}}
= {c ∈ F ∪ {l} | c ̸= l}
= F

This proves that l is superredundant in F ∪ {l} if and only if F |= l in this case.

The formula where l is superredundant is F ∪ {l}. Alternatively, l is superredundant in
F if and only if F\{l} |= l, provided that ¬l does not occur in F .

Talking about pure literals, another equivalent condition exists. A variable may always
occur with the same sign in a formula; if so, the clauses containing it are irrelevant to the
superredundancy of the others.

Lemma 10 If ¬l does not occur in F , l ̸∈ c and l ∈ c′ for some clause c′, the clause c of F
is superredundant if and only if it is superredundant in F\{c′}.

19

Proof. No derivation F ⊢ c involves c′. This is proved by contradiction. Clause c′ may
resolve with other clauses of F , but the resolving variable cannot be l since no clause of F
contains ¬l. Therefore, the resulting clauses all contain l. The same applies to them: they
may resolve, but the result contains l. Inductively, this proves that l is also in the root of the
derivation tree. The root is c, which does not contain l by assumption. This contradiction
proves that c′ is not involved in F ⊢ c.

A derivation F ⊢ G ⊢ c is a resolution tree with leaves F and root c. It is a particular case
of F ⊢ c. Therefore, it does not contain c′. As a result, it can be rewritten F\{c′} ⊢ G ⊢ c.

A derivation F ⊢ c′′ with c′′ ⊂ c does not contain c′ because c′′ does not contain l.
Therefore, F ⊢ c′′ is the same as F\{c} ⊢ c′′ for every subset c′′ of c.

The third equivalent condition to superredundancy in Lemma 6 is: F ⊢ G ⊢ c with c ̸∈ G
or F ⊢ c′′ with c′′ ⊂ c. These conditions are respectively equivalent to F\{c′} ⊢ G ⊢ c
and F\{c′} ⊢ c′′, the third equivalent condition to the superredundancy of c in F\{c′} of
Lemma 6.

A particular case meeting the assumption of the lemma is when a variable only occurs
in one clause. The lemma specializes as follows.

Corollary 1 If a variable occurs in F only in the clause c, then c′ ̸= c is superredundant in
F if and only if it is superredundant in F\{c}.

3.4 Sufficient conditions to superredundancy

A number of equivalent conditions have been provided. Time to turn to sufficient conditions.
The next corollary shows a sufficient condition to superredundancy. The following results
are about superirredundancy.

Corollary 2 If F |= c′ and c′ ⊂ c ∈ F , then c is superredundant in F .

Proof. Immediate consequence of the fourth equivalent condition of Lemma 6.

While proving superredundancy is sometimes useful, its main aim is to prove a clause
in all minimal equivalent formulae, which is the case if it is superirredundant. This is why
much effort is devoted to proving superirredundancy.

A way to prove superirredundancy is by first simplifying the formula and then proving
superirredundancy on the result. Of course, not all simplifications work. Proving the su-
perirredundancy of a ∨ b ∨ c in F = {a ∨ b, a ∨ b ∨ c} is a counterexample. Removing the
first clause from F makes a∨ b∨ c superirredundant in what remains, F ′ = {a∨ b∨ c}. Yet,
a ∨ b ∨ c is not superirredundant in F .

A simplification works only if the superirredundancy of the clause in the simplified formula
implies its superirredundancy in the original formula. In the other way around, superredun-
dancy in the original implies superredundancy in the simplification.

What is required is that “c superredundant in F” implies “c superredundant in the
simplified F”. One direction is enough. “Implies”, not “if and only if”.

The following lemmas are formulated in the direction where superredundancy implies
superredundancy. This simplifies their formulation and their proofs, but they are mostly
used in reverse: superirredundancy implies superirredundancy.

20

Lemma 11 If a clause c of F is superredundant, it is also superredundant in F ∪ {c′}.

Proof. The assumed superredundancy of a clause c of F is by definition ResCn(F)\{c} |= c.
The derivations by resolution from F are also valid from F ∪ {c′}, where c′ is just
not used. Therefore, ResCn(F) ⊆ ResCn(F ∪ {c′}). This implies ResCn(F)\{c} ⊆
ResCn(F ∪ {c′})\{c}, which implies ResCn(F ∪ {c′})\{c} |= ResCn(F)\{c}. By transi-
tivity of entailment, the claim follows: ResCn(F ∪ {c′})\{c} |= c.

How this lemma is used: a formula F may simplify when a clause is added to it, mak-
ing superirredundancy easy to prove. For example, adding the single-literal clause x allows
removing from F all clauses that contain x. If all clauses but c contain x, the superirredun-
dancy of c in F follows from the superirredundancy of c in {c, x}.

This example of adding a single-literal clause extends to a full-fledged sufficient condi-
tion to superredundancy. Adding x to F has the same effect of replacing x with true and
simplifying the formula. This transformation is defined as follows.

F [true/x] = {c[true/x] | c ∈ F, c[true/x] ̸= ⊤}

c[true/x] =

{
c\{¬x} if x ̸∈ c
⊤ otherwise

The symbol ⊤ used in the definition does not occur in the final formula since clauses that
are turned into ⊤ are removed from F . In other words, F [true/x] is a formula built over
variables and propositional connectives; it does not contain any special symbol for true or
false.

Swapping x and ¬x turns the definition of F [true/x] into F [false/x].
The next lemma shows that such substitutions often preserve superredundancy. This

would be obvious if superirredundancy were the same as clause primality or a similar seman-
tical notion, but it has been proved not to be by Lemma 3.

Lemma 12 A clause c of F [true/x] is superredundant if it is superredundant in F , it
contains neither x nor ¬x and F does not contain c∨¬x. The same holds for F [false/x] if
F does not contain c ∨ x.

Proof. The claim is proved for x = true. It holds for x = false by symmetry.
The assumption that c is superredundant in F is equivalent to F\{c}∪ resolve(F, c) |= c

thanks to Lemma 9. The claim is the superredundancy of c in F [true/x], which is equivalent
to F [true/x]\{c} ∪ resolve(F [true/x], c)) |= c still thanks to Lemma 9.

The claim is the last of a chain of properties that follow from the assumption F\{c} ∪
resolve(F, c) |= c.

1. (F\{c} ∪ resolve(F, c))[true/x] |= c

Let H = F\{c} ∪ resolve(F, c). The assumption is H |= c, the claim H[true/x] |= c.
By Boole’s expansion theorem [1], H is equivalent to x∧H[true/x]∨¬x∧H[false/x].
The assumption H |= c is therefore the same as x ∧H[true/x] ∨ ¬x ∧H[false/x] |= c.
Since a disjunction is implied by any of its disjuncts, x∧H[true/x] |= c follows. Since
neither c nor H[true/x] contain x, this is the same as H[true/x] |= c.

21

2. (F\{c} ∪ resolve(F, c))[true/x] = (F\{c})[true/x] ∪ resolve(F, c)[true/x]

Formula F\{c}∪ resolve(F, c) is a union. The substitution therefore applies to each of
its sets.

The two parts of the formula are considered separately.

3. (F\{c})[true/x] = F [true/x]\{c} if c ∨ ¬x ̸∈ F

Both formulae are made of some clauses of F with the substitution [true/x] applied to
them. They differ on whether c is subtracted before or after the substitution. The claim
is proved by showing that for every c′ ∈ F , the clause c′[true/x] is in (F\{c})[true/x]
if and only if it is in F [true/x]\{c}. The two cases x ∈ c′ and x ̸∈ c′ are considered
separately.

If c′ contains x, then c′[true/x] = ⊤. As a result, F [true/x] does not contain c′[true/x];
its subset F [true/x]\{c} does not either. Neither does (F\{c})[true/x]; indeed, c′ ∈
F\{c} since c′ contains x while c does not, but still c′[true/x] is equal to ⊤ because it
contains x, and is not therefore in (F\{c})[true/x].
If c′ does not contain x, then c′[true/x] = c′\{¬x}. This clause is equal to c if and only
if c′ is either c or c∨¬x; the second cannot be the case since F by assumption contains
c′ but not c ∨ ¬x. As a result, c′[true/x] = c if and only if c′ = c. If c′ = c, then
c′[true/x] = c is removed from F [true/x] when subtracting c and c′ is removed from F
when subtracting c. If c′ ̸= c, then c′[true/x] = c is not removed from F [true/x] and
is therefore in F [true/x]\{c}; also c′ is not removed from F and is therefore in F\{c},
which means that c′[true/x] is in (F\{c})[true/x]. In both cases, either c′[true/x] is in
both sets or in none.

4. resolve(F, c)[true/x] = resolve(F [true/x], c)

Expanding the definitions of resolve(F, c) and resolve(F [true/x], c) shows that the claim
is:

(
∪
c′∈F

resolve(c′, c))[true/x] =
∪

c′′∈F [true/x]

resolve(c′′, c)

The first substitution is applied to a union, and can therefore equivalently be applied
to each of its members:

∪
c′∈F

(resolve(c′, c)[true/x]) =
∪

c′′∈F [true/x]

resolve(c′′, c)

If x is in c′, it is also in the result of resolving c′ with c since c does not contain ¬x
by assumption. As a result, resolve(c′, c)[true/x] = ⊤: the clauses c′ that contain x do
not contribute to the first union. The claim therefore becomes:

∪
c′∈F, x ̸∈x

(resolve(c′, c)[true/x]) =
∪

c′′∈F [true/x]

resolve(c′′, c)

22

The formula F [true/x] comprises by definition the clauses c′′ = c′[true/x] such that
c′ ∈ F and c′[true/x] ̸= ⊤. The second condition c′[true/x] ̸= ⊤ is false if x ∈ c′. The
clauses containing x do not contribute to the second union either.

∪
c′∈F, x ̸∈x

(resolve(c′, c)[true/x]) =
∪

c′∈F, x ̸∈x
resolve(c′[true], c)

This equality is proved as a consequence of the pairwise equality of the elements of the
unions.

resolve(c′, c)[true/x] = resolve(c′[true/x], c) for every c′ ∈ F such that x ̸∈ c′

Neither c nor c′ contain x: the first by the assumption of the lemma, the second because
of the restriction in the above equality. Since resolve(c′, c) only contains literals of c
and c′, it does not contain x either. Replacing x with true in a clause that does not
contain x is the same as removing ¬x.

resolve(c′, c)\{¬x} = resolve(c′\{¬x}, c) for every c′ ∈ F such that x ̸∈ c′

If l is a literal of c′ such that ¬l ∈ c, then l ̸= ¬x because c does not contain x. As a
result, l ∈ c′ implies l ∈ c′\{¬x}. The converse also holds because of set containment.
This proves that c resolves with c′ on a literal if and only it resolves with c′\{¬x} on
the same literal.

If these clauses do not resolve, both sides of the equality are empty and therefore
equal. Otherwise, both c′ and c′\{¬x} resolve with c on the same literal l. The result
of resolving c′ with c is resolve(c′, c) = c ∪ c′\{l,¬l}; as a result, the left-hand side
of the equality is resolve(c′, c)\{¬x} = c ∪ c′\{l,¬l}\{¬x}. This is the same as the
right hand side resolve(c′\{x}, c) = c ∪ (c′\{¬x})\{l,¬l} since c does not contain ¬x
by assumption.

Summing up, the superredundancy of c in F expressed as F\{c} ∪ resolve(F, c) |= c
thanks to Lemma 9 implies (F\{c} ∪ resolve(F, c))[true/x] |= c, and the formula in
this entailment is the same as F [true/x]\{c} ∪ resolve(F [true/x], c). The conclusion
F [true/x]\{c} ∪ resolve(F [true/x], c) |= c is equivalent to the superredundancy of c in
F [true/x] thanks to Lemma 9.

Is the assumption c∨¬x ̸∈ F necessary? A counterexample disproves the claim of lemma
without this assumption: the clause a is superredundant in F = {a ∨ ¬x, a, x} because it is
redundant, but is superirredundant in F [true/x] = {a}.

A way to prove superirredundancy is by applying Lemma 12 coupled with Lemma 8. A
suitable evaluation of the variables not in c removes or simplifies the other clauses of F to
the point they do not resolve, where Lemma 8 shows that c is superirredundant. Lemma 12
proves that c is also superirredundant in F .

An example is F = {a∨b, b∨c,¬b∨¬d,¬c∨d∨e}. Replacing c with true and d with false
deletes the second and third clause and simplifies the fourth, leaving F [true/c][false/d] =

23

{a ∨ b, e}, where a ∨ b is superirredundant because no clause resolve in this formula. This
proves that a ∨ b is also superirredundant in F .

A substitution may not prevent all resolutions, but still breaks the formula in small
unlinked parts. Such parts can be worked on separately.

Lemma 13 If F ′ does not share variables with F and F ′ is satisfiable, a clause c of F is
superredundant if and only if it is superredundant in F ∪ F ′.

Proof. Since c is in F , it is also in F ∪F ′. By Lemma 9, the superredundancy of c in F ∪F ′

is equivalent to (F ∪ F ′ ∪ resolve(F ∪ F ′, c))\{c} |= c. Since c is in F and F does not
share variables with F ′, the clause c does not share variables with F ′ and therefore does not
resolve with any clause in F ′. This proves resolve(F ∪F ′, c) = resolve(F, c). The entailment
becomes (F ∪ F ′ ∪ resolve(F, c))\{c} |= c, and also (F ∪ resolve(F, c))\{c} ∪ F ′ |= c since
c ̸∈ F ′. This is the same as (F ∪ resolve(F, c))\{c} |= c because F ′ is satisfiable and because
of the separation of the variables. This is equivalent to the superredundancy of c in F by
Lemma 9.

Short guide on using Lemma 12 and Lemma 13: to prove c superirredundant in F , all
clauses c′ that resolve with it are found and all their variables not in c collected; these
variables are set to values that satisfy as many clauses c′ as possible. All these clauses link
c with the rest of F , and removing them makes c isolated and therefore superirredundant.

For example, the clause c = a ∨ b is proved superirredundant in F = {a ∨ b,¬a ∨ c ∨
d,¬b∨¬c∨¬f,¬d∨ f ∨ g, d∨ h} by a substitution that removes the clauses of F that share
variables with c.

The clauses of F that share variables with c = a ∨ b are ¬a ∨ c ∨ d and ¬b ∨ ¬c ∨ ¬f .
They are to be removed by substituting variables other than a and b. For example, c = true
removes the first and simplifies the second into ¬b∨¬f , which is removed by f = false. This
substitution turns F into F [c/true][f/false] = {a∨ b,¬d∨g, d∨h}. Since its clause c = a∨ b
does not share variables with the other two clauses, it is superirredundant. As a result, it is
also superredundant in F .

A final sufficient condition to superirredundancy is given by the following lemma. It is
specular to Theorem 3: that result applies when ¬l is not in F , this one when l is not in F .

Lemma 14 If l does not occur in F , then l is superirredundant in F ∪ {l} if this formula
is satisfiable.

Proof. By Theorem 2, the superredundancy of l in F ∪ {l} is the same as F ′ |= l, where F ′

is:

F ′ = {c ∈ F ∪ {l} | ¬l ̸∈ c, c ̸= l} ∪ {c | c ∨ ¬l ∈ F ∪ {l}}
= {c ∈ F | ¬l ̸∈ c} ∪ {c | c ∨ ¬l ∈ F}

The first part of the union is a subset of F ; the second comprises only subclauses of F .
Since F does not contain l, this union F ′ does not contain l either. Therefore, F ′ entails l
only if it is unsatisfiable.

24

The unsatisfiability of F ′ is proved to contradict the assumption of the lemma. The first
part of F ′ is a subset of F ; each clause c of its second part is a consequence of c ∨ ¬l ∈ F
and l, and is therefore entailed by F ∪ {l}. Therefore, this union is entailed by F ∪ {l}. It
unsatisfiability implies the unsatisfiability of F ∪ {l}, which is contrary to an assumption of
the lemma.

4 Ensuring superirredundancy

The intended application of superirredundancy is in existence proofs: produce a formula
satisfying certain conditions, some involving its minimal equivalent formulae. Superirredun-
dancy fixes a part of these minimal equivalent formulae. The other conditions are ensured
separately. The key is “separately”. The formula can be built to meet these other conditions
and then some of its clauses turned superirredundant.

The example in the next section shows how to create a reduction from Boolean satis-
fiability to the problem of Horn minimality. It does not attempt to build a Horn formula
that can be shrunk over a certain limit if and only if a given CNF formula is satisfiable.
Rather, it builds the Horn formula so that some of its clauses can be removed under the
same condition. The other clauses are then fixed by turning them superirredundant. This
simplifies the process of creating the reduction, as the target formula needs not to satisfy all
required conditions right from the beginning.

If a ∨ b is not superirredundant but is required in all minimal equivalent formulae, it
is split into a ∨ x and b ∨ ¬x, where x is a new variable. The two resulting clauses are
superirredundant in most cases.

The replacing clauses a∨x and b∨¬x imply the original clause a∨ b by resolution. They
are however not exactly equivalent to it because of the new variable. They are only when
restricting to all variables but x. This restriction defines the concept of forgetting [22, 17].

Definition 6 A formula B expresses forgetting all variables from A except Y if and only if
Var(B) ⊆ Y and B |= C is the same as A |= C for all formulae C such that Var(C) ⊆ Y .

The formula B = A\{a∨b}∪{a∨x, b∨¬x} expresses forgetting x from A. It is equivalent
to it when disregarding the new variable x. An alternative definition is that the models of
A and B are the same when neglecting the evaluation of x. The following theorem proves
it, where A ∩ l are the clauses of A that contain the literal l.

Theorem 4 ([32, Theorem 6],[7, Theorem 6]) The formula A\(A ∩ x)\(A ∩ ¬x) ∪
resolve(A ∩ x,A ∩ ¬x) expresses forgetting x from A.

In the example, A is the formula after splitting a∨b into a∨x and b∨¬x. Therefore, A∩x
is {a∨ x} and A∩¬x is {b∨¬x}. As a result, A\(A∩ x)\(A∩¬x)∪ resolve(A∩ x,A∩¬x)
is exactly the formula before splitting.

This is the first requisite on turning a clause superirredundant: the change does not alter
the semantics of the formula. Introducing a new variable makes exact equivalence impossible,
but forgetting is the close enough.

Another requirement is that turning a∨ b superirredundant does not make other clauses
superredundant. That would make the change work only for a single clause, not for all
clauses that are required to be superirredundant.

25

In summary, splitting a clause works if:

• the resulting formula is similar enough to the original;

• the split clause is superirredundant;

• the other clauses remain superirredundant.

The first point is formalized as: the original formula expresses forgetting the new variable
from the generated formula. The second and the third points have additional requirements,
they are not always the case. They are proved in reverse, by showing the consequences of
superredundancy.

The following section shows an example of the mechanism, the subsequent ones illustrate
each of the points above.

4.1 An example of making a clause superirredundant

An example illustrates the method. The first clause is superredundant in the following
formula, as can be proved by computing the resolution closure.

{a ∨ b ∨ c,¬a ∨ d,¬c ∨ d,¬d ∨ a ∨ c}

The last three clauses are the same as a ∨ c ≡ d. They make a ∨ c equivalent to d.
Consequently, the first clause a∨ b∨ c is replaceable by d∨ b and therefore superredundant.

If it is required to be superirredundant, it can be made so by splitting it into a ∨ x and
¬x ∨ b ∨ c.

{a ∨ x,¬x ∨ b ∨ c,¬a ∨ d,¬c ∨ d,¬d ∨ a ∨ c}

The last three clauses still make a ∨ c equivalent to d, but this is no longer a problem
because a and c are now separated: a is in a ∨ x and c is in ¬x ∨ b ∨ c. The only way to
join them back to apply their equivalence to d is to resolve the two parts into a∨ b∨ c. This
removes x and ¬x, which are necessary to derive the two clauses a ∨ x and ¬x ∨ b ∨ c back.
All clauses in this formula are superirredundant, which can be checked by computing the
resolution closure.

4.2 Preserving the semantics of the formula

The first point to prove is that splitting a clause does not change the meaning of the formula.
The semantics changes slightly since the original formula does not mention x at all while
the modified one does. In the example, a = false, b = true and x = false satisfy the original
clause a ∨ b ∨ c but not its part a ∨ x. The modified formula cannot be equivalent to the
original since it contains the new variable. Yet, it is equivalent apart from it. This is what
forgetting does: it removes a variable while semantically preserving everything else.

Lemma 15 Every CNF formula F that contains a clause c1 ∨ c2, where c1 and c2 are two
clauses, and does not mention x expresses forgetting x from F\{c1 ∨ c2}∪ {c1 ∨ x, c2 ∨¬x}.

26

Proof. The formula F\{c1∨ c2}∪{c1∨x, c2∨¬x} in the statement of the lemma is denoted
F ′′. Theorem 4 proves that a formula expresses forgetting x from it is F ′′\(F ′′ ∩ x)\(F ′′ ∩
¬x) ∪ resolve(F ′′ ∩ x, F ′′ ∩ ¬x). The claim is proved by showing that this formula is F .

The only clause of F ′′ containing x is c1∨x and the only clause containing ¬x is c2∨¬x.
Therefore, F ′′ ∩ x is {c1 ∨ x} and F ′′ ∩ ¬x is {c2 ∨ ¬x}. The formula that expresses
forgetting is therefore F ′′\{c1 ∨ x}\{c2 ∨ ¬x} ∪ resolve(c1 ∨ x, c2 ∨ ¬x), which is equal to
F ′′\{c1∨x}\{c2∨¬x}∪{c1∨c2} since resolve(c1∨x, c2∨¬x) = {c1∨c2}. Replacing F ′′ with its
definition turns this formula into F\{c1∨c2}∪{c1∨x, c2∨¬x}\{c1∨x}\{c2∨¬x}∪{c1∨c2}.
Computing unions and set subtractions shows that this formula is F .

This lemma tells that F\{c1 ∨ c2} ∪ {c1 ∨ x, c2 ∨¬x} is like F apart from x. This is the
basic requirement for the split: it preserves the semantics as much as possible. The modified
formula has the same consequences of the original that do not involve x.

4.3 Making a clause superirredundant

The aim of the split is not just to preserve the semantics but also to make the two pieces of
the split clause superirredundant.

The addition of x and ¬x, more than the split itself, is what creates superirredundancy.
The two parts contain x and ¬x, and are the only clauses containing them. They are
necessary to derive every other clause containing them, including themselves.

An exception is when the part containing x derives another containing x which derives it
back. The presence of x in the whole derivation sequence ensures that removing x everywhere
does not invalidate the derivation. The result is a derivation from a part of the original clause
(without x added) to other clauses and back. It proves the superredundancy of that part.
This explains the exception: superirredundancy is only obtained if none of the two parts of
the clause is superredundant by itself.

Lemma 16 If c1 ∨ x is superredundant in F\{c1 ∨ c2} ∪ {c1 ∨ x, c2 ∨ ¬x}, then c1 is
superredundant in F ∪ {c1}, provided that:

• c1 ∨ c2 is in F ;

• c1 is not in F ; and

• x does not occur in F .

Proof. Lemma 9 reformulates the superredundancy in the assumption and in the claim as
entailments.

F\{c1 ∨ c2} ∪ {c1 ∨ x, c2 ∨ ¬x}\{c1 ∨ x} ∪ resolve(c1 ∨ x, F\{c1 ∨ c2} ∪ {c1 ∨ x, c2 ∨ ¬x})
|= c1 ∨ x

F ∪ {c1}\{c1} ∪ resolve(c1, F ∪ {c1})
|= c1

The claim is proved if the first entailment implies the second. Since F contains c1 ∨ c2,
it is the same as F\{c1 ∨ c2} ∪ {c1 ∨ c2}. This allows reformulating the second entailment
in terms of F ′ = F\{c1 ∨ c2}; the first can be as well.

27

F ′ ∪ {c1 ∨ x, c2 ∨ ¬x}\{c1 ∨ x} ∪ resolve(c1 ∨ x, F ′ ∪ {c1 ∨ x, c2 ∨ ¬x}) |= c1 ∨ x

F ′ ∪ {c1 ∨ c2} ∪ {c1}\{c1} ∪ resolve(c1, F
′ ∪ {c1 ∨ c2} ∪ {c1}) |= c1

The set subtractions can be computed immediately.
In the first formula, F ′ ∪ {c1 ∨ x, c2 ∨ ¬x}\{c1 ∨ x} is equal to F ′ ∪ {c2 ∨ ¬x} since

neither c2 ∨¬x nor any clause in F ′ is equal to c1 ∨ x. The former is not because it contains
¬x, the latter are not because F ′ is a subset of F , which does not mention x.

In the second formula, F ′ ∪ {c1 ∨ c2} ∪ {c1}\{c1} is equal to F ′ ∪ {c1 ∨ c2} since neither
c1 ∨ c2 nor any clause in F ′ is equal to c1. The first is not because it is in F while c1 is not,
the second are not because F ′ is a subset of F , which does not contain c1.

F ′ ∪ {c2 ∨ ¬x} ∪ resolve(c1 ∨ x, F ′ ∪ {c1 ∨ x, c2 ∨ ¬x}) |= c1 ∨ x

F ′ ∪ {c1 ∨ c2} ∪ resolve(c1, F
′ ∪ {c1 ∨ c2} ∪ {c1}) |= c1

Both entailments contain the resolution of a clause with a union. This is the same as the
resolution of the clause with each component of the union.

F ′ ∪ {c2 ∨ ¬x} ∪ resolve(c1 ∨ x, F ′) ∪ resolve(c1 ∨ x, {c1 ∨ x}) ∪ resolve(c1 ∨ x, {c2 ∨ ¬x}) |= c1 ∨ x

F ′ ∪ {c1 ∨ c2} ∪ resolve(c1, F
′) ∪ resolve(c1, {c1 ∨ c2}) ∪ resolve(c1, {c1}) |= c1

Some parts of these formulae are empty because clauses do not resolve with themselves
or with their superclauses.

F ′ ∪ {c2 ∨ ¬x} ∪ resolve(c1 ∨ x, F ′) ∪ resolve(c1 ∨ x, {c2 ∨ ¬x}) |= c1 ∨ x

F ′ ∪ {c1 ∨ c2} ∪ resolve(c1, F
′) |= c1

Since c1 ∨ c2 is in F and formulae are assumed not to contain tautologies, the two
subclauses c1 and c2 do not contain opposite literals. Therefore, resolving c1 ∨ x and c2 ∨¬x
only generates c1 ∨ c2, which is not a tautology. This simplifies resolve(c1 ∨ x, {c2 ∨ ¬x})
into {c1 ∨ c2}.

F ′ ∪ {c2 ∨ ¬x} ∪ resolve(c1 ∨ x, F ′) ∪ {c1 ∨ c2} |= c1 ∨ x

F ′ ∪ {c1 ∨ c2} ∪ resolve(c1, F
′) |= c1

The set resolve(c1 ∨ x, F ′) contains the result of resolving c1 ∨ x with the clauses of
F ′. Since F ′ is a subset of F , it does not contain x. Therefore, the resolving literal of
c1 ∨ x with a clause of c′′ ∈ F ′ is not x if any. If c1 ∨ x resolves with c′′ ∈ F , then c1
does as well. Adding x to the resolvent generates the resolvent of c1 ∨ x and c′′. Formally,
resolve(c1 ∨ x, F ′) = {c′ ∨ x | c′ ∈ resolve(c1, F

′)}.

F ′ ∪ {c2 ∨ ¬x} ∪ {c′ ∨ x | c′ ∈ resolve(c1, F
′)} ∪ {c1 ∨ c2} |= c1 ∨ x

F ′ ∪ {c1 ∨ c2} ∪ resolve(c1, F
′) |= c1

28

Replacing x with false in the first entailment results in F ′∪{c2∨¬false}∪{c′∨ false | c′ ∈
resolve(c1, F

′)} ∪ {c1 ∨ c2} |= c1 ∨ false. Simplifying according to the rules of propositional
logic true ∨ G = true and false ∨ G = G turns this entailment into F ′ ∪ {true} ∪ {c′ | c′ ∈
resolve(c1, F

′)} ∪ {c1 ∨ c2} |= c1, which is the same as F ′ ∪ resolve(c1, F
′) ∪ {c1 ∨ c2} |= c1,

the second entailment.
This proves that the first entailment implies the second: the assumption implies the

claim.

The intended usage of the lemma is to split a clause c1 ∨ c2 of F into c1 ∨ x and c2 ∨¬x,
where x is a new variable. Being new, x does not occur in the rest of the formula. If the
lemma is used this way, its first and last assumptions are met. The second may not, and
the claim may not hold if F contains c1. Actually, the claim may not hold if any of its three
assumptions does not hold.

If c1 ∨ c2 is not in F , the claim may not hold. A counterexample is c1 = a ∨ b, c2 = a
and F = ∅. The other preconditions of the lemma are satisfied: c1 is not in F , where x
does not occur; c1∨x is superredundant in F\{c1∨ c2}∪{c1∨x, c2∨¬x} since this formula
is {a ∨ b ∨ x, a ∨ ¬x}, whose two clauses resolve in a ∨ b, which entails c1 ∨ x = a ∨ b ∨ x.
The conclusion that c1 = a∨ b is superredundant in F ∪{c1} = ∅∪{a∨ b} = {a∨ b} is false
since this formula allows no resolution.

If c1 is in F , the claim may not hold. A counterexample is c1 = a ∨ b, c2 = a and
F = {a ∨ b}. The other preconditions of the lemma are satisfied: c1 ∨ c2 is in F , where x
does not occur; c1∨x is superredundant in F\{c1∨ c2}∪{c1∨x, c2∨¬x} since this formula
is {a ∨ b ∨ x, a ∨ ¬x}, whose two clauses resolve in a ∨ b, which entails c1 ∨ x = a ∨ b ∨ x.
The conclusion that c1 = a ∨ b is superredundant in F ∪ {c1} = {a ∨ b} ∪ {a ∨ b} = {a ∨ b}
is false since this formula allows no resolution.

If F mentions x, the claim may not hold. A counterexample is c1 = a, c2 = b and
F = {a ∨ b, x}. The other preconditions of the lemma are satisfied: c1 ∨ c2 = a ∨ b is in
F , while c1 is not; c1 ∨ x is superredundant in F\{c1 ∨ c2} ∪ {c1 ∨ x, c2 ∨ ¬x}, which is
{a ∨ b, x}\{a ∨ b} ∪ {a ∨ x, b ∨ ¬x}, which is the same as {x} ∪ {a ∨ x, b ∨ ¬x}, where
c1 ∨ x = a ∨ x is superredundant because it is entailed by x. The conclusion that c1 = a
is superredundant in F ∪ {c1} is false since this formula is {a ∨ b, x} ∪ {a} = {a ∨ b, x, a},
where no clauses resolve.

The three assumptions do not hinder the intended usage of the lemma: make a clause
c1 ∨ c2 of F superirredundant by splitting it into c1 ∨ x and c2 ∨ ¬x on a new variable x.
The first assumption is met because c1 ∨ c2 is a clause of F to be made superirredundant.
The third is met because x is new. The second is met in the sense that c1 ∨ c2 can just be
removed if c1 is also in the formula.

When the three assumptions are met, the lemma tells that c1 is superredundant in F∪{c1}
if c1∨x is superredundant in F\{c1∨c2}∪{c1∨x, c2∨¬x}. This implication is useful in reverse:
c1 ∨ x is superirredundant in F\{c1 ∨ c2} ∪ {c1 ∨ x, c2 ∨ ¬x} unless c1 is superredundant in
F ∪{c1}. The goal of making c1∨x superirredundant is hit, but only if c1 is superirredundant
in F ∪ {c1}.

This condition is necessary. The following example shows it cannot be lifted.

F = {a ∨ b,¬a ∨ c, a ∨ ¬c}
The last two clauses are equivalent to a ≡ c. They make the first clause superredundant

because a ∨ b derives c ∨ b which derives a ∨ b back. Splitting does not make the clause

29

superirredundant: a ∨ x still derives c ∨ x, which derives a ∨ x back. Removing x from
this derivation results in a that derives c that derives a back. Splitting a ∨ b does not work
because a alone is already superredundant. Adding a new variable x does not change the
situation.

4.4 Maintaining the superirredundancy of the other clauses

Preserving the semantics of the formula and making a clause superirredundant is not enough.
The other clauses must remain superirredundant. Otherwise, the process may go on forever.
Even attempting to have two clauses superirredundant would fail if making one so makes
the other not. The final requirement of clause splitting is that the other clauses remain
superirredundant. This is mostly the case, with an exception that is discussed after the
proof of the lemma.

The lemma is formulated in reverse. Instead of “superirredundancy is maintained except
in this condition”, it states “superredundancy is generated only in this condition”.

Lemma 17 If c and c1∨c2 are two different clauses of F and c is superredundant in F\{c1∨
c2} ∪ {c1 ∨ x, c2 ∨ ¬x} and x does not occur in F then either:

• c resolves with both c1 and c2; or

• c is superredundant in F .

Proof. Lemma 9 reformulates the superredundancy in the assumption and in the claim.

F\{c1 ∨ c2} ∪ {c1 ∨ x, c2 ∨ ¬x}\{c} ∪ resolve(c, F\{c1 ∨ c2} ∪ {c1 ∨ x, c2 ∨ ¬x}) |= c

F\{c} ∪ resolve(c, F) |= c

Since F contains c1 ∨ c2, it is the same as F\{c1 ∨ c2} ∪ {c1 ∨ c2}. Both this expression
and F\{c1 ∨ c2} ∪ {c1 ∨ x, c2 ∨ ¬x} contain F ′ = F\{c1 ∨ c2}.

F ′ ∪ {c1 ∨ x, c2 ∨ ¬x}\{c} ∪ resolve(c, F ′ ∪ {c1 ∨ x, c2 ∨ ¬x}) |= c

F ′ ∪ {c1 ∨ c2}\{c} ∪ resolve(c, F ′ ∪ {c1 ∨ c2}) |= c

Resolving a clause with a set is the resolution of the clause with each clause in the set.

F ′ ∪ {c1 ∨ x, c2 ∨ ¬x}\{c} ∪ resolve(c, F ′) ∪ resolve(c, {c1 ∨ x}) ∪ resolve(c, {c2 ∨ ¬x}) |= c

F ′ ∪ {c1 ∨ c2}\{c} ∪ resolve(c, F ′) ∪ resolve(c, {c1 ∨ c2}) |= c

The clauses in these entailments are the same except for:

• the first formula contains c1 ∨ x, c2 ∨ ¬x, resolve(c, c1 ∨ x) and resolve(c, c2 ∨ ¬x)

• the second formula contains c1 ∨ c2 and resolve(c, c1 ∨ c2)

30

The difference depends on whether c resolves with c1 ∨ x, c2 ∨ ¬x and c1 ∨ c2. Since c
does not contain x, it resolves with c1 ∨ x if and only if it resolves with c1, and the same
for c2. It resolves with c1 ∨ c2 if it resolves with either c1 or c2. All depends on whether c
resolves with c1 or with c2.

Four cases are possible. Apart from the last case, the claim is proved by removing all
clauses containing x from the first formula and adding their resolution, which produces the
second formula. Theorem 4 proves that this procedure generates a formula that expresses
forgetting x and therefore entails the same consequences that do not contain x, such as c.

1. c resolves with neither c1 nor c2

The three sets resolve(c, c1 ∨ c2), resolve(c, c1 ∨ x) and resolve(c, c2 ∨ ¬x) are empty.
The only other differing clauses are c1 ∨ x and c2 ∨¬x in the first formula and c1 ∨ c2
in the second. The first two are the only clauses containing x. Resolving them results
in the third. This proves the claim by Theorem 4.

2. c resolves with c1 but not with c2

The two sets resolve(c, c1∨ c2) and resolve(c, c1∨x) contain a clause, but resolve(c, c2∨
¬x) does not since c does not contain x. The only differing clauses between the
two formulae are c1 ∨ x, c2 ∨ ¬x and resolve(c, c1 ∨ x) in the first and c1 ∨ c2 and
resolve(c, c1 ∨ c2) in the second.

Only two pairs of clauses contain x with opposite sign: the first is c1 ∨ x and c2 ∨¬x,
the second is resolve(c, c1 ∨ x) and c2 ∨ ¬x.
The first pair resolves into c1 ∨ c2, the first differing clause in the second formula.

The second pair is shown to resolve in the second differing clause, resolve(c, c1∨c2). If l
is the resolving literal l between c and c1∨x, then resolve(c, c1∨x) is c∨c1∨x\{l,¬l}.
Since c does not contain x, the resolving literal l cannot be x. As a result, this clause
contains x. It therefore resolves with c2∨¬x into c∨c1∨x\{l,¬l}∨c2∨¬x\{x,¬x} =
c∨ c1\{l,¬l} ∨ c2. Since c2 does not resolve with c, it does not contain ¬l. It does not
contain l either since otherwise c1 ∨ c2 would be tautological. The clause is therefore
the same as c∨ c1 ∨ c2\{l,¬l}. This is resolve(c, c1 ∨ c2), the second differing clause in
the second formula.

This proves that replacing all clauses containing x in the first formula with their reso-
lution produces the second. This proves the claim by Theorem 4.

3. c resolves with c2 but not with c1

Same as the previous case by symmetry.

4. c resolves with both c1 and c2

The claim is proved because its first alternative is exactly that c resolves with both c1
and c2.

All of this proves the claim in all four cases. In the first three, replacing all clauses
containing x with their resolution in the first formula produces the second; this implies that
the two formulae have the same consequences that do not contain x, such as c. This is the

31

first alternative of the claim. The fourth case coincides with the second alternative of the
claim.

Ideally, all clauses would maintain their superirredundancy. This is the case for most but
not all. The exception is the clauses that resolve with both parts of the clause that is split.
Such clauses invalidate the proof. That raises the question: could the proof be improved
to include them? Or do they falsify the statement of the lemma instead? The following
example proves the latter.

F = {d, c1 ∨ c2, a ∨ e,¬e ∨ ¬a ∨ ¬d}
F ′′ = {d, c1 ∨ x,¬x ∨ c2, a ∨ e,¬e ∨ ¬a ∨ ¬d}
c = a ∨ b ∨ d ∨ e

c1 = ¬a ∨ b

c2 = ¬d ∨ e

The formula obtained by splitting c1∨c2 is denoted F ′′. The clause c1∨c2 = ¬a∨b∨¬d∨e
is superredundant in F because it resolves with a∨ e into e∨ b∨¬d∨ e, which resolves with
¬e ∨ ¬a ∨ ¬d back into ¬a ∨ b ∨ ¬d ∨ e. To make this clause superirredundant, it is split.
However, that makes the first clause c = a ∨ b ∨ d ∨ e superredundant.

That c is superirredundant in F is proved replacing e with true and simplifying the
formula. That removes a ∨ e and turns ¬e ∨ ¬a ∨ ¬d into ¬a ∨ ¬d. What remains is
F [true/e] = {a ∨ b ∨ d ∨ e,¬a ∨ b ∨ ¬d ∨ e,¬a ∨ ¬d}. The first clause resolves both with the
second and the third, but the result is a tautology in both cases: F [true/e]\{c}∪resolve(c, F)
is equivalent to F [true/e]\{c}, which does not entail c. Lemma 9 proves that c is not
superredundant in F [true/e]. Since c contains neither x nor ¬x and F does not contain
c ∨ ¬e, Lemma 12 ensures that c would be superredundant in F [true/e] if it were in F . But
c is not superredundant in F [true/e]. As a result, it is not superredundant in F .

Yet, c is superredundant in F ′′, the formula after the split: c = a ∨ b ∨ d ∨ e resolves
with c1 ∨ x = ¬a∨ b∨ x into x∨ b∨ d∨ e; it also resolves with ¬x∨ c2 = ¬x∨¬d∨ e into
¬x ∨ a ∨ b ∨ e; the resulting two clauses resolve into c, and therefore imply it. They are the
set G that proves c superredundant according to Lemma 6, since they are obtained from F ′′

by resolution, none of them is c, and they imply c.
If the target was to make both c and c1∨c2 superirredundant, Lemma 17 misses it. Yet, a

second shot gets it: c1∨x and ¬x∨ c2 are now superirredundant, but c no longer is; splitting
it makes it so:

F ′′′ = {a ∨ b ∨ y,¬y ∨ d ∨ e,¬a ∨ b ∨ x,¬x ∨ ¬d ∨ e, a ∨ e,¬e ∨ ¬a ∨ ¬d}

The split separates c into a ∨ b ∨ y and ¬y ∨ d ∨ e. Both parts resolve with c1 ∨ c2, but
this is not a problem because c1 ∨ c2 is no longer in the formula. It has already been split
into c1 ∨ x and ¬x ∨ c2. The first resolves with a ∨ b but not with d ∨ e, the second with
d ∨ e but not with a ∨ b. The original clause c1 ∨ c2 would be made superredundant by this
splitting, but its two parts c1 ∨ x and ¬x ∨ c2 are not. By first splitting a clause and then
the other, both are made superirredundant.

32

Mission accomplished: if a clause is not superirredundant but should be, splitting it on
a new variable makes it so. Subclauses and clauses that resolve with both parts are to be
watched out, but the mechanism mostly works.

Making clauses superirredundant nails them to the formula. It forces them in all minimal
equivalent CNF formulae. Every CNF formula F is F ′∪F ′′, where F ′ are its superirredundant
clauses; every minimal formula equivalent to F is F ′ ∪ F ′′′. The superirredundant clauses
F ′ are always there. They provide the basement over which the other clauses build upon.
They are the skeleton, with its hard bones but also its flexible joins. The muscles, the
other clauses, may move it not by bending the bones but by rotating them at the joins.
The superirredundant clauses are fixed but may still leave space for other clauses to change.
Minimizing F ′ ∪ F ′′ is altering F ′′ while keeping F ′. Is finding a minimal version of F ′′ that
is equivalent to the original formula when F ′ is always present.

A way to ensure superirredundancy is to make clauses superirredundant. The three
lemmas in this section do this:

Lemma 15 proves that splitting a clause c1 ∨ c2 into c1 ∨ x and c2 ∨¬x does not change the
meaning of the formula except for the new variable x;

Lemma 16 proves that the two parts c1 ∨ x and c2 ∨ ¬x are superirredundant unless c1 or
c2 are superredundant when added to the formula;

Lemma 17 proves that the other clauses remain superirredundant after the split; the ex-
ception are the clauses that resolve with both parts of the split clause; these are made
superredundant, but can themselves be split.

5 Example

Superirredundancy is applied to finding a proof of NP-hardness of deciding whether a Horn
formula can be compressed in a given size. This problem is known to be NP-complete [11,
4, 12]. The new proof shows that a reduction can be found progressively, by first building a
simplified version where some clauses are fixed and then making them superirredundant.

Technically, an instance of the problem comprises a Horn formula A and an integer k;
the question is whether a formula B equivalent to A exists with ||B|| ≤ k.

It is proved NP-hard by a reduction from propositional satisfiability: given a CNF formula
F , the reduction builds an instance comprising A and k such that A is equivalent to another
formula B of size bounded by k if and only if F is satisfiable.

The proof based on superirredundancy simplifies the task of finding such a reduction by
assuming that a part A′ of A is fixed, that is, is also in every equivalent B. This way, the
question turns from the compressibility of A into the compressibility of A′′ = A\A′.

• A′′ comprises a clause xi ∨ ¬q and a clause ei ∨ ¬q for every variable in F ; this way,
every propositional interpretation over the alphabet of F corresponds to a subset of
A′′, the one containing xi ∨ ¬q if xi is true and ei ∨ ¬q if false;

• A′ ensures that such a subset of A′′ entails the rest of A′′ if and only if the propositional
interpretation satisfies F .

33

From this roadmap, finding the reduction itself is almost trivial: a clause ti∨¬q is entailed
if and only if the subset of A′′ includes either xi ∨ ¬q or ei ∨ q; another cj ∨ ¬q is entailed if
and only if the j-th clause of F is satisfied, which means that the subset of A′′ includes the
clause that corresponds to a literal of the clause; if all these clauses are entailed, all clauses
xi ∨ ¬q and ei ∨ ¬q are entailed.

The clauses allowing these entailments are assumed superirredundant. An example clause
of F may be x1 ∨ x2. It is satisfied by setting either x1 or x2 to true. The subsets of A′′

corresponding to these evaluations respectively include x1 ∨ ¬q and x2 ∨ ¬q. The superirre-
dundant clauses ¬x1 ∨ c1 and ¬x2 ∨ c1 allow the derivation of c1 ∨ ¬q by resolution from
them.

The following figure shows how the missing clause e1 ∨ ¬q is derived when the formula
also contains a second clause ¬x1∨¬x2. The clauses translate into {¬x1∨ c1,¬x2∨ c1,¬e1∨
c2,¬e2 ∨ c2}. The clauses not included in the subset of A′′ are crossed.

@
@@�
��

@
@@�
��

?

-
HHHHHHHj

�������*

-

¬x1 ∨ t1

¬e2 ∨ t2

x1 ∨ ¬q

e1 ∨ ¬q

x2 ∨ ¬q

e2 ∨ ¬q

¬q ∨ t1

¬q ∨ t2

¬x1 ∨ c1

¬e1 ∨ c2

¬x2 ∨ c1

¬q ∨ c1

¬e2 ∨ c2
¬q ∨ c2

¬t1 ∨ ¬t2 ∨ ¬c1 ∨ ¬c2 ∨ e1

e1 ∨ ¬q

The clauses ¬x1 ∨ t1 and ¬e2 ∨ t1 ensure that either x1 ∨ ¬q or e1 ∨ ¬q is included for
each index i. Otherwise, a subset of the same size could contain neither while including both
x2 ∨ ¬q and e2 ∨ ¬q, which is invalid because it corresponds to evaluating x2 to both true
and false.

The clause ¬t1 ∨ ¬t2 ∨ ¬c1 ∨ ¬c2 ∨ e1 completes the derivation. If the subset of A′′

corresponds to a propositional interpretation that satisfies both clauses of F , then all clauses
ti ∨¬q and cj ∨¬q are derived. All these clauses resolve into e2 ∨¬q, which was missing in
the subset of A′′.

The complete reduction from F to A and k is as follows, where the formula is F =
{f1, . . . , fm} and X = {x1, . . . , xn} are its variables. The formula A is built over an extended
alphabet comprising X and the additional variables E = {e1, . . . , en}, T = {t1, . . . , tn},
C = {c1, . . . , cm} and q.

34

A = AF ∪ AT ∪ AC ∪ AB

AF = {xi ∨ ¬q | xi ∈ X} ∪ {ei ∨ ¬q | xi ∈ X}
AT = {¬xi ∨ ti,¬ei ∨ ti | xi ∈ X}
AC = {¬xi ∨ cj | xi ∈ fj, fj ∈ F} ∪ {¬ei ∨ cj | ¬xi ∈ fj, fj ∈ F}
AB = {¬t1 ∨ · · · ∨ ¬tn ∨ ¬c1 ∨ · · · ∨ ¬cm ∨ xi ∨ ¬q | xi ∈ X} ∪

{¬t1 ∨ · · · ∨ ¬tn ∨ ¬c1 ∨ · · · ∨ ¬cm ∨ ei ∨ ¬q | xi ∈ X}
k = 2× n+ ||AT ||+ ||AC ||+ ||AB||

The fixed clauses are all of them but AF . This way, they are in all formulae equivalent
to A. For equivalence, these need to entail all clauses of AF they do not contain. They can
do in size k only by including a clause of xi ∨ ¬q and a clause ei ∨ ¬q for every index i, and
they do only if this choice corresponds to a model of F .

This argument assumes that the clauses of AF are fixed. Superirredundancy ensures that.
Lemma 12 ensures superirredundancy. For example, replacing q with false and simplifying
the result removes all clauses but AT ∪AC . These clauses contain only the literals ¬xi, ¬ei,
ti and cj. They do not contain their negation. Therefore, they do not resolve. Since they
are not contained in each other, Lemma 8 proves them superirredundant.

The clauses of AB are not superirredundant, but can be turned so using the technique of
Section 4: each clause ¬t1 ∨ · · · ∨ ¬tn ∨ ¬c1 ∨ · · · ∨ ¬cm ∨ xi ∨ ¬q is split by a new variable
ri. The result is the pair of clauses ¬t1 ∨ · · · ∨ ¬tn ∨¬c1 ∨ · · · ∨ ¬cm ∨ xi ∨¬ri and ri ∨¬q.

This completes the proof. Its construction was incremental. Superirredundancy is ini-
tially assumed so that some clauses are considered fixed. They allow deriving the clauses
that are not included in the minimal Horn formula if and only if F is satisfiable. Only when
the reduction is completed, superirredundancy is actually ensured by splitting the clauses
that are not so.

6 Conclusions

Superirredundancy helps to build formulae including clauses that resist minimization in size:
a superirredundant clause is in all minimal-size versions of the formula. An application is
hardness proofs of minimization problems, like checking whether a formula can be compressed
within a certain size. Superirredundancy is not aimed at the minimization itself, but at
building formulae that have certain properties, like the targets of hardness reductions. An
example shown in this article is an alternative proof of the NP-hardness of the problem
of checking whether a Horn formula can be squeezed within a certain bound. Another
application is proving the hardness of checking minimal size after forgetting some variables
from a Horn or CNF formula [21].

Superredundancy is defined in terms of resolution, not in terms of minimization. The
presence of a superirredundant clause in all formulae that are minimal among the equiva-
lent ones is a consequence, not its definition. Superirredundancy is sufficient to that, not
necessary. Yet, it is easier to achieve than that. Some conditions that are equivalent to
superirredundancy and others that are necessary and still others that are sufficient are pre-
sented. A mechanism that often make a clause superirredundant while preserving the su-

35

perirredundancy of the others is also shown. It allows building a formula incrementally: first
its semantics is established, then the clauses that have to be superirredundant and made so.

The example application is an alternative proof of hardness. The claim is already known
via prime implicate essentiality instead of superirredundancy [11]. Yet, while this proof
surfaced some twenty years after the problem was open, the one based on superirredundancy
was very simple to come up with. Its proof of correctness is not much shorter that the
previous one, but neither was this its aim. Building the reduction was, not proving it
correct.

Why bothering introducing a new notion just for proving again something that was al-
ready known? Boolean minimization has been computationally framed in many variants
depending on the restriction on the formula and the definition of minimality. Yet, it is not
closed. An example open problem is the complexity of checking whether forgetting some
variables from a formula is expressed by a formula of a certain size; four hardness proofs are
obtained by applying superirredundancy in a separate article [21]. Another example where
superirredundancy could be applied is formula revision or update [26, 16]: these transfor-
mations are known to potentially increase the size of the changed formula [3]; minimizing
it [19] is a problem where superirredundancy could be applied. In general, every mechanism
that transforms a formula in whichever way (update, summarize, expand, etc.) is subject to
minimizing, and superirredundancy applies. Finally, given that some sufficient conditions to
superirredundancy are computationally easy (like replacing variables with values and check-
ing the resulting formula for separation of variables), they may also be used as a simple
preliminary test when performing formula minimization.

Superredundancy is a derivation property. As such, it depends on the syntax of the
formula. Therefore, it is not the same as any semantical property like implication, prime
implication, redundancy in the set of prime implicates or essentiality. It depends on the
syntax because it is based on resolution, and resolution is a restricted form of entailment: it
does not allow adding arbitrary literals to clauses. In the other way around, entailment is
resolution plus expansion. The large corpus of research on automated reasoning [9, 13] offers
numerous alternative forms of derivation that work even when formulae are not in clausal
form, like natural deduction and Frege systems. Some variant of superredundancy may be
defined for them.

Complete proof

The following is the complete proof of correctness of the reduction presented in Section 5.

Theorem 5 The problem of establishing the existence of a formula B such that ||B|| ≤ k
and B ≡ A is NP-hard.

Proof. Proof is by reduction from propositional satisfiability. An arbitrary CNF formula F
is shown satisfiable if and only if a Horn formula A is equivalent to one of size bounded by
k.

Let the CNF formula be F = {f1, . . . , fm} and X = {x1, . . . , xn} its variables. The
formula A is built over an extended alphabet comprising the variables X and the additional
variables E = {e1, . . . , en}, T = {t1, . . . , tn}, C = {c1, . . . , cm}, R = {r1, . . . , rn} and
S = {s1, . . . , sn}, q. The formula A and the integer k are as follows.

36

A = AF ∪ AT ∪ AC ∪ AB

AF = {xi ∨ ¬q | xi ∈ X} ∪ {ei ∨ ¬q | xi ∈ X}
AT = {¬xi ∨ ti,¬ei ∨ ti | xi ∈ X}
AC = {¬xi ∨ cj | xi ∈ fj, fj ∈ F} ∪ {¬ei ∨ cj | ¬xi ∈ fj, fj ∈ F}
A′

B = {¬t1 ∨ · · · ∨ ¬tn ∨ ¬c1 ∨ · · · ∨ ¬cm ∨ xi ∨ ¬ri, ri ∨ ¬q | xi ∈ X} ∪
{¬t1 ∨ · · · ∨ ¬tn ∨ ¬c1 ∨ · · · ∨ ¬cm ∨ ei ∨ ¬si, si ∨ ¬q | xi ∈ X}

Before formally proving that the reduction works, a short summary of why it works is
given. All clauses of A but AF are superirredundant: all minimal equivalent formulae contain
them. The bound k allows only one clause of AF for each i. Combined with the clauses of
AT they entail ti ∨ ¬q. If F is satisfiable, they also combine with the clauses AC to imply
all clauses cj ∨¬q. Resolving these clauses with AB produces all clauses xi ∨¬q and ei ∨¬q,
including the ones not in the selection. This way, a formula that contains one clause of AF

for each index i implies all of AF , but only if F is satisfiable.
The following figure shows how e1 ∨ q is derived from x1 ∨ q and e2 ∨ q, when the formula

is F = {f1, f2} where f1 = x1 ∨ x2 and f2 = ¬x1 ∨ ¬x2. These clauses translate into
AC = {¬x1 ∨ c1,¬x2 ∨ c1,¬e1 ∨ c2,¬e2 ∨ c2}.

@
@@�
��

@
@@�
��

?

-
HHHHHHHj

�������*

-

¬x1 ∨ t1

¬e2 ∨ t2

x1 ∨ ¬q

e1 ∨ ¬q

x2 ∨ ¬q

e2 ∨ ¬q

¬q ∨ t1

¬q ∨ t2

¬x1 ∨ c1

¬e1 ∨ c2

¬x2 ∨ c1

¬q ∨ c1

¬e2 ∨ c2
¬q ∨ c2

¬t1 ∨ ¬t2 ∨ ¬c1 ∨ ¬c2 ∨ e1

e1 ∨ ¬q

For each index i, at least one among xi ∨ ¬q and ei ∨ ¬q is necessary for deriving ¬q ∨
ti, which is entailed by A. Alternatively, ¬q ∨ ti itself is necessary for the formula to be
equivalent. Either way, for each index i at least a two-literal clause is necessary.

The claim is formally proved in four steps: first, the superirredundant clauses are iden-
tified; second, an equivalent formula of size k is built if F is satisfiable; third, the necessary

37

clauses in every equivalent formula are identified; fourth, if F is unsatisfiable every equivalent
formula is proved to have size greater than k.

Superirredundancy.
The claim requires A to be minimal, which follows from all its clauses being superirre-

dundant by Lemma 5. Most of them survive forgetting; the reduction is based on these
being superirredundant. Instead of proving superirredundancy in two different but similar
formulae, it is proved in their union.

In particular, the clauses AT∪AC∪A′
B are shown superirredundant in AF∪AT∪AC∪A′

B.
Superirredundancy is proved via Lemma 12: a substitution simplify AF ∪AT ∪AC ∪A′

B

enough to prove superirredundancy easily, for example because its clauses do not resolve and
Lemma 8 applies.

• Replacing all variables xi, ei, ti and cj with true removes from AF ∪AT ∪AC ∪A′
B all

clauses of AF , AT , AC and all clauses of A′
B but ri ∨ ¬q and si ∨ ¬q. The remaining

clauses contain only the literals ri, si and ¬q. Therefore, they do not resolve. Since
none is contained in another, they are all superirredundant by Lemma 8. This proves
the superirredundancy of all clauses ri ∨ ¬q and si ∨ ¬q.

• Replacing all variables q, ri and si with false removes from AF∪AT∪AC∪A′
B all clauses

but AT ∪ AC . These clauses contain only the literals ¬xi, ¬ei, ti and cj. Therefore,
they do not resolve. Since they are not contained in each other, Lemma 8 proves them
superirredundant.

• Replacing all variables with false except for all variables ti and cj and the single variable
xh removes all clauses from AF ∪AT ∪AC∪A′

B but ¬xh∨th, ¬t1∨· · ·∨¬tn∨¬c1∨· · ·∨
¬cm∨xh∨¬rh and all clauses ¬xh∨ cj with xh ∈ fj. They only resolve in tautologies.
Therefore, their resolution closure only contains them. Removing ¬t1 ∨ · · · ∨ ¬tn ∨
¬c1 ∨ · · · ∨ ¬cm ∨ xh ∨ ¬rh from the resolution closure leaves only ¬xh ∨ th and all
clauses ¬xh ∨ cj with xh ∈ fj. They do not resolve since they do not contain opposite
literals. Since ¬t1∨· · ·∨¬tn∨¬c1∨· · ·∨¬cm∨xh∨¬rh is not contained in them, it is
not entailed by them. This proves it superirredundant. A similar replacement proves
the superirredundancy of each ¬t1 ∨ · · · ∨ ¬tn ∨ ¬c1 ∨ · · · ∨ ¬cm ∨ eh ∨ ¬sh.

These points prove that the clauses in AT ∪ AC ∪ A′
B are superirredundant in A. The

only clauses that may be superredundant are AF .

Formula F is satisfiable.
Let M be a model satisfying F . The set A′

R is defined as comprising the clauses xi ∨ ¬q
such that M |= xi and the clauses ei∨¬q such that M |= ¬xi. The Horn formula A′

R ∪AC ∪
AT ∪A′

B has size k. It is equivalent to AR ∪AT ∪AC ∪AB. This is proved by showing that
it entails every clause in AR, including the only clauses of A it does not contain.

Since M satisfies every clause fj ∈ F , it satisfies at least a literal of fj: for some xi,
either xi ∈ fj and M |= xi or ¬xi ∈ fj and M |= ¬xi. By construction, xi ∈ fj implies
¬xi ∨ cj ∈ AC and ¬xi ∈ fj implies ¬ei ∨ cj ∈ AC . Again by construction, M |= xi implies
xi ∨ ¬q ∈ A′

R and M |= ¬xi implies ei ∨ ¬q ∈ A′
R. As a result, either xi ∨ ¬q ∈ A′

R and

38

¬xi ∨ cj ∈ AC or ei ∨ ¬q ∈ A′
R and ¬ei ∨ cj ∈ AC . In both cases, the two clause resolve in

cj ∨ q.
Since M satisfies either xi or ¬xi, either xi ∨ ¬q ∈ A′

R or ei ∨ ¬q ∈ A′
R. The first clause

resolve with ¬xi ∨ ti and the second with ¬ei ∨ ti. The result is ti ∨ ¬q in both cases.
Resolving all these clauses ti∨¬q and cj∨q with ¬t1∨· · ·∨¬tn∨¬c1∨· · ·∨¬cm∨xi∨¬ri

and then with ri ∨ ¬q, the result is xi ∨ ¬q. In the same way, resolving these clauses with
¬t1 ∨ · · · ∨ ¬tn ∨ ¬c1 ∨ · · · ∨ ¬cm ∨ ei ∨ ¬si and si ∨ ¬q produces ei ∨ ¬q. This proves that
all clauses of AR are entailed.

Necessary clauses
All CNF formulae that are equivalent to AF ∪AT ∪AC∪A′

B and have minimal size contain
AT ∪ AC ∪ A′

B because these clauses are superirredundant. Therefore, these formulae are
AN ∪AT ∪AC ∪A′

B for some set of clauses AN . This set AN is now proved to contain either
xh ∨ ¬q, xh ∨ ¬ri, eh ∨ ¬q, eh ∨ ¬si or th ∨ ¬q for each index h. Let M and M ′ be the
following models.

M = {xi = ei = ti = true | i ̸= h} ∪ {xh = eh = th = false} ∪
{cj = true} ∪ {q = true} ∪ {ri = true, si = true}

M ′ = {xi = ei = ti = true | i ̸= h} ∪ {xh = eh = th = true} ∪
{cj = true} ∪ {q = true} ∪ {ri = true, si = true}

The three clauses are falsified by M . Since the two of them xh ∨ ¬q and eh ∨ ¬q are in
AF , this set is also falsified by M . As a result, M is not a model of AF ∪ AT ∪ AC ∪ A′

B.
This formula is equivalent to AN ∪ AT ∪ AC ∪ A′

B, which is therefore falsified by M . In
formulae, M ̸|= AN ∪ AT ∪ AC ∪ A′

B.
The formula AN∪AT∪AC∪A′

B contains a clause falsified by M . SinceM |= AT∪AC∪A′
B,

this clause is in AN but not in AT ∪ AC ∪ A′
B. In formulae, M ̸|= c for some c ∈ AN and

c ̸∈ AT ∪ AC ∪ A′
B. This clause is entailed by AF ∪ AT ∪ AC ∪ A′

B because this formula
entails all of AN ∪ AT ∪ AC ∪ A′

B, and c is in AN . In formulae, AF ∪ AT ∪ AC ∪ A′
B |= c.

This clause c contains either xh, eh or th. This is proved by deriving a contradiction
from the assumption that c does not contain any of these three literals. Since M ̸|= c, the
clause c contains only literals that are falsified by M . Not all of them: it does not contain
xh, eh and th by assumption. It does not contain ¬xh, ¬eh and ¬th either because it would
otherwise be satisfied by M . As a result, c is also falsified by M ′, which is the same as M
but for the values of xh, eh and th. At the same time, M ′ satisfies AF ∪ AT ∪ AC ∪ A′

B,
contradicting AF ∪AT ∪AC ∪A′

B |= c. This contradiction proves that c contains either xh,
eh or th.

From the fact that c contains either xh, eh or th, that is a consequence of AF∪AT∪AC∪A′
B,

and that is in a minimal-size formula, it is now possible to prove that c contains either xh∨¬q,
xh ∨ ¬ri, eh ∨ ¬q, eh ∨ ¬si or th ∨ ¬q.

Since c is entailed by AF ∪AT ∪AC ∪A′
B, a subset of c follows from resolution from it:

AF ∪AT ∪AC ∪A′
B ⊢ c′ with c′ ⊆ c. This implies AN ∪AT ∪AC ∪A′

B |= c′ by equivalence. If
c′ ⊂ c, then AN ∪AT ∪AC ∪A′

B would not be minimal because it contained a non-minimal
clause c ∈ AN . Therefore, AF ∪ AT ∪ AC ∪ A′

B ⊢ c.

39

The only two clauses of AF ∪AT ∪AC ∪A′
B that contain xh are xh ∨¬q and ¬t1 ∨ · · · ∨

¬tn ∨ ¬c1 ∨ · · · ∨ ¬cm ∨ xh ∨ ¬rh. They contain either ¬q or ¬rh. These literals are only
resolved out by clauses containing their negations q and rh. No clause contains q and the
only clause that contains rh is rh ∨ ¬q, which contains ¬q. If a result of resolution contains
xh, it also contains either ¬q or ¬rh. This applies to c because it is a result of resolution.

The same applies if c contains eh: it also contains either ¬q or ¬si.
The case of th ∈ c is a bit different. The only two clauses of AF ∪ AT ∪ AC ∪ A′

B that
contain th are ¬xh ∨ th and ¬eh ∨ th. Since both are in AT and c ̸∈ AT , they are not c. The
first clause ¬xh∨ th only resolves with xi∨¬q or ¬t1∨ · · ·∨¬tn∨¬c1∨ · · ·∨¬cm∨xh∨¬rh,
but resolving with the latter generates a tautology. The result of resolving ¬xh ∨ th with
xi ∨¬q is th ∨¬q; no clause contains q. Therefore, c can only be th ∨¬q. The second clause
¬eh ∨ th leads to the same conclusion.

In summary, c contains either xh ∨ ¬q, xh ∨ ¬ri, eh ∨ ¬q, eh ∨ ¬si or th ∨ ¬q. In
all these cases it contains at least two literals. This is the case for every index h; therefore,
AN contains at least n clauses of two literals. Every minimal CNF formula equivalent to
AR∪AT ∪AC ∪AB has size at least 2×n plus the size of AT ∪AC ∪AB. This sum is exactly
k. This proves that every minimal CNF formula expressing forgetting contains at least k
literal occurrences. Worded differently, every CNF formula expressing forgetting has size at
least k.

Formula F is unsatisfiable
The claim is that no CNF formula of size k expresses forgetting if F is unsatisfiable. This

is proved by deriving a contradiction from the assumption that such a formula exists.
It has been proved that the minimal CNF formulae equivalent to AF ∪ AT ∪ AC ∪ A′

B

are AN ∪AT ∪AC ∪A′
B for some set AN that contains clauses that include either xh ∨¬q,

xh ∨ ¬ri, eh ∨ ¬q, eh ∨ ¬si or th ∨ ¬q for each index h.
If AN contains other clauses, or more than one clause for each h, or these clauses contain

other literals, the size of AN ∪AT ∪AC∪A′
B is larger than k = 2×n+ ||AT ||+ ||AC ||+ ||A′

B||,
contradicting the assumption. This proves that every formula of size k that is equivalent to
AF ∪ AT ∪ AC ∪ A′

B is equal to AN ∪ AT ∪ AC ∪ A′
B where AN contains exactly one clause

among xh ∨ ¬q, xh ∨ ¬ri, eh ∨ ¬q, eh ∨ ¬si or th ∨ ¬q for each index h.
The case xh ∨ ¬rh ∈ AN is excluded. It would imply AF ∪ AT ∪ AC ∪ A′

B |= xh ∨ ¬rh,
which implies the redundancy of ¬t1 ∨ · · · ∨ ¬tn ∨¬c1 ∨ · · · ∨ ¬cm ∨ xh ∨¬rh ∈ AB contrary
to its previously proved superirredundancy. A similar argument proves eh ∨ ¬sh ̸∈ AN .

The conclusion is that every formula of size k that is equivalent to AF ∪AT ∪AC ∪A′
B is

equal to AN ∪AT ∪AC ∪A′
B where AN contains exactly one clause among xh∨¬q, eh∨¬q,

th ∨ ¬q for each index h.
If F is unsatisfiable, all such formulae are proved to be satisfied by a model that falsifies

AF ∪ AT ∪ AC ∪ A′
B, contrary to the assumed equivalence.

Let M be the model that assigns q = true and ti = true, and assigns xi = true and
ei = false if xi ∨ ¬q ∈ AN and xi = false and ei = true if ei ∨ ¬q ∈ AN or ti ∨ ¬q ∈ AN . All
clauses of AN and AT are satisfied by M .

This model M can be extended to satisfy all clauses of AC ∪A′
B. Since F is unsatisfiable,

M falsifies at least a clause fj ∈ F . Let M ′ be the model obtained by extending M with the
assignments of cj to false, all other variables in C to true and all variables ri and si to true.
This extension satisfies all clauses of AB either because it sets cj to false or because it sets

40

ri and si to true. It also satisfies all clauses of AC that do not contain cj because it sets all
variables of C but cj to true.

The only clauses that remain to be proved satisfied are the clauses of AC that contain cj.
They are ¬xi∨cj for all xi ∈ fj and ¬ei∨cj for all ¬xi ∈ fj. Since M

′ falsifies fj, it falsifies
every xi ∈ fj; therefore, it satisfies ¬xi ∨ cj. Since M ′ falsifies fj, it falsifies every ¬xi ∈ fj;
since by construction it assigns ei opposite to xi, it falsifies ei and therefore satisfies ¬ei∨ cj.

This proves that M ′ satisfies AN ∪AT ∪AC ∪A′
B. It does not satisfy AF ∪AT ∪AC ∪A′

B.
If x1 ∨ ¬q ∈ AN , then M ′ sets x1 to true and e1 to false; therefore, it does not satisfy
e1 ∨ ¬q ∈ AR. Otherwise, M ′ sets x1 to false and e1 to true; therefore, it does not satisfy
x1 ∨ ¬q.

This contradicts the assumption that AN ∪ AT ∪ AC ∪ A′
B is equivalent to AF ∪ AT ∪

AC ∪ A′
B. The assumption that it has size k is therefore false.

References

[1] G. Boole. Investigation of The Laws of Thought, On Which Are Founded the Mathe-
matical Theories of Logic and Probabilities. Walton and Maberly, 1854.

[2] D. Buchfuhrer and C. Umans. The complexity of Boolean formula minimization. Journal
of Computer and System Sciences, 77(1):142–153, 2011.

[3] M. Cadoli, F. M. Donini, P. Liberatore, and M. Schaerf. The size of a revised knowledge
base. Artificial Intelligence, 115(1):25–64, 1999.

[4] O. Čepek and P. Kučera. On the complexity of minimizing the number of literals in
Horn formulae. RUTCOR Research Report RRR 11-208, Rutgers University, 2008.

[5] O. Coudert. Two-level logic minimization: an overview. Integration, 17(2):97–140, 1994.

[6] O. Coudert and T. Sasao. Two-level logic minimization. In Logic Synthesis and Verifi-
cation, pages 1–27. Springer, 2002.

[7] J.P. Delgrande. A knowledge level account of forgetting. Journal of Artificial Intelligence
Research, 60:1165–1213, 2017.

[8] L. Fang, H. Wan, X. Liu, B. Fang, and Z.-R. Lai. Dependence in propositional logic:
Formula-formula dependence and formula forgetting - Application to belief update and
conservative extension. In Proceedings of the Thirdy-Second AAAI Conference on Arti-
ficial Intelligence (AAAI 2018), pages 1835–1844, 2018.

[9] M. Fitting. First-order logic and automated theorem proving. Springer, 2012.

[10] G. Gottlob and C. G. Fermüller. Removing redundancy from a clause. Artificial Intel-
ligence, 61:263–289, 1993.

[11] P.L. Hammer and A. Kogan. Optimal compression of propositional Horn knowledge
bases: Complexity and approximation. Artificial Intelligence, 64(1):131–145, 1993.

41

[12] P.L. Hammer and A. Kogan. Quasi-acyclic propositional Horn knowledge bases: Opti-
mal compression. IEEE Transactions on Knowledge and Data Engineering, 7(5):751–
762, 1995.

[13] J. Harrison. Handbook of practical logic and automated reasoning. Cambridge University
Press, 2009.

[14] E. Hemaspaandra and H. Schnoor. Minimization for generalized Boolean formulas. In
Proceedings of the Twenty-Second International Joint Conference on Artificial Intelli-
gence (IJCAI 2011), pages 566–571, 2011.

[15] J. Johannsen. The complexity of pure literal elimination. Journal of Automated Rea-
soning, 35(1-3):89–95, 2005.

[16] H. Katsuno and A. O. Mendelzon. On the difference between updating a knowledge base
and revising it. In Proceedings of the Second International Conference on the Principles
of Knowledge Representation and Reasoning (KR’91), pages 387–394, 1991.

[17] J. Lang, P. Liberatore, and P. Marquis. Propositional independence — formula-variable
independence and forgetting. Journal of Artificial Intelligence Research, 18:391–443,
2003.

[18] C.T. Lee. A completeness theorem and computer program for finding theorems derivable
from given axioms. PhD thesis, Department of Electrical Engineering and Computer
Science, University of California, 1967.

[19] P. Liberatore. Complexity issues in finding succinct solutions of PSPACE-complete
problems. Technical Report abs/cs/0503043, CoRR, 2005.

[20] P. Liberatore. Redundancy in logic I: CNF propositional formulae. Artificial Intelligence,
163(2):203–232, 2005.

[21] P. Liberatore. The ghosts of forgotten things: A study on size after forgetting. Com-
puting Research Repository (CoRR), abs/2005.04123, 2020.

[22] F. Lin and R. Reiter. Forget it! In Proceedings of the AAAI Fall Symposium on
Relevance, pages 154–159, 1994.

[23] D.W. Loveland. Part 1. Proof Theory, pages 1–92. Princeton University Press, 2014.

[24] E.J. McCluskey. Minimization of Boolean functions. The Bell System Technical Journal,
35(6):1417–1444, 1956.

[25] Y. Moinard. Forgetting literals with varying propositional symbols. Journal of Logic
and Computation, 17(5):955–982, 2007.

[26] P. Peppas. Belief revision, pages 317–359. Elsevier, 2008.

[27] R.L. Rudell and A. Sangiovanni-Vincentelli. Multiple-valued minimization for PLA
optimization. IEEE Transactions on Computer-Aided Design of Integrated Circuits and
Systems, 6(5):727–750, 1987.

42

[28] J.R. Slagle, C.L. Chang, and R. Lee. Completeness theorems for semantic resolution
in consequence-finding. In Proceedings of the First International Joint Conference on
Artificial Intelligence (IJCAI’69), pages 281–286, 1969.

[29] L. J. Stockmeyer. The polynomial-time hierarchy. Theoretical Computer Science, 3:1–
22, 1976.

[30] M. Theobald, S.M. Nowick, and T. Wu. Espresso-HF: a heuristic hazard-free minimizer
for two-level logic. In Proceedings of the Thirty-third Design Automation Conference,
pages 71–76, 1996.

[31] C. Umans, T. Villa, and A.L. Sangiovanni-Vincentelli. Complexity of two-level logic
minimization. IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems, 25(7):1230–1246, 2006.

[32] Y. Wang. On forgetting in tractable propositional fragments. Technical Report
1502.02799, Computing Research Repository (CoRR), 2015.

43

ECCC ISSN 1433-8092

https://eccc.weizmann.ac.il

