
Fast Multivariate Multipoint Evaluation Over All Finite Fields

Vishwas Bhargava∗ Sumanta Ghosh† Zeyu Guo‡ Mrinal Kumar§

Chris Umans¶

Abstract

Multivariate multipoint evaluation is the problem of evaluating a multivariate polynomial,
given as a coefficient vector, simultaneously at multiple evaluation points. In this work, we show
that there exists a deterministic algorithm for multivariate multipoint evaluation over any finite
field F that outputs the evaluations of an m-variate polynomial of degree less than d in each
variable at N points in time

(dm +N)1+o(1) · poly(m, d, log |F|)

for all m ∈ N and all sufficiently large d ∈ N.
A previous work of Kedlaya and Umans (FOCS 2008, SICOMP 2011)
achieved the same time complexity when the number of variables m is at most do(1) and had

left the problem of removing this condition as an open problem. A recent work of Bhargava,
Ghosh, Kumar and Mohapatra (STOC 2022) answered this question when the underlying field
is not too large and has characteristic less than do(1). In this work, we remove this constraint
on the number of variables over all finite fields, thereby answering the question of Kedlaya and
Umans over all finite fields.

Our algorithm relies on a non-trivial combination of ideas from three seemingly different
previously known algorithms for multivariate multipoint evaluation, namely the algorithms of
Kedlaya and Umans, that of Björklund, Kaski and Williams (IPEC 2017, Algorithmica 2019),
and that of Bhargava, Ghosh, Kumar and Mohapatra, together with a result of Bombieri and
Vinogradov from analytic number theory about the distribution of primes in an arithmetic
progression.

We also present a second algorithm for multivariate multipoint evaluation that is completely
elementary and in particular, avoids the use of the Bombieri–Vinogradov Theorem. However,
it requires a mild assumption that the field size is bounded by an exponential-tower in d of
bounded height. More specifically, our second algorithm solves the multivariate multipoint
evaluation problem over a finite field F in time

(dm +N)1+o(1) · poly(m, d, log |F|)

for all m ∈ N and all sufficiently large d ∈ N, provided that the size of the finite field F is at
most (exp(exp(exp(· · · (exp(d))))), where the height of this tower of exponentials is fixed.

∗Department of Computer Science, Rutgers University, Piscataway, NJ 08854. Research supported in part by the
Simons Collaboration on Algorithms and Geometry and NSF grant CCF-1909683. Email: vishwas1384@gmail.com

†Department of Computing and Mathematical Sciences, Caltech. Email: besusumanta@gmail.com
‡Department of Computer Science, UT Austin. Email: zguotcs@gmail.com
§Department of Computer Science & Engineering, IIT Bombay. Email: mrinal@cse.iitb.ac.in
¶Department of Computing and Mathematical Sciences, Caltech. Email: umans@cs.caltech.edu

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Report No. 63 (2022)

Contents
1 Introduction 1

1.1 Our Results . 2

2 An Overview of the Proofs 3
2.1 The Algorithm of Kedlaya and Umans . 3
2.2 The Algorithm of Björklund, Kaski and Williams 5
2.3 The First Algorithm . 6
2.4 The Second Algorithm . 8

3 Preliminaries 10
3.1 Chinese Remainder Theorem . 10
3.2 Hasse Derivatives . 11
3.3 Hermite Interpolation . 12
3.4 Fast Multivariate Multipoint Evaluation for Product Sets 13

4 The Necessary Building Blocks 13
4.1 Primes in an Arithmetic Progression . 13
4.2 Explicit Kakeya Sets of Higher Degree . 15
4.3 Fast Multipoint Evaluation over Nice Finite Fields 17

5 The First Algorithm over Rings of the Form Z/rZ 18
5.1 The Description of the Algorithm . 18
5.2 The Correctness of Algorithm 1 . 19
5.3 The Time Complexity of Algorithm 1 . 19

6 The First Algorithm over Extension Rings 20
6.1 The Description of the Algorithm . 20
6.2 The Correctness of Algorithm 2 . 21
6.3 The Time Complexity of Algorithm 2 . 21
6.4 Proof of Theorem 1.1 . 21

7 The Second Algorithm over Rings of the Form Z/rZ 22
7.1 A Basic Algorithm . 22
7.2 The Description of the Algorithm . 23
7.3 The Correctness of Algorithm 4 . 24
7.4 The Time Complexity of Algorithm 4 . 25

8 The Second Algorithm over Extension Rings 27
8.1 The Description of the Algorithm . 28
8.2 The Correctness of Algorithm 5 . 29
8.3 The Time Complexity of Algorithm 5 . 30

1 Introduction
We study the problem of multivariate multipoint evaluation: given an m-variate polynomial
f(x) ∈ F[x] of degree less than d in each variable, and N points a1,a2, . . . ,aN ∈ Fm, output
f(a1), f(a2), . . . , f(aN). Here F is the underlying field. The input polynomial f(x) is given by
its coefficient vector. Therefore, the overall input can be represented by a list of (dm + mN)
elements in F. A trivial algorithm for this problem is to evaluate f(x) at each ai separately.
Since evaluating f(x) at each ai takes dm · poly(d,m) operations over F, this algorithm needs
Ndm · poly(d,m) F-operations in total. For N = Θ(dm), the time complexity of this algorithm
is quadratic with respect to the input size. Therefore, a natural algorithmic question here is to
seek faster algorithms for this problem. Of particular interest would be to have an algorithm for
this problem whose time complexity is nearly linear, more specifically (dm+N)1+o(1) (multiplied
by lower-order poly(d, n, log |F|) terms), with respect to the input size.

In addition to its innate appeal as a fundamental and natural question in computational
algebra, fast algorithms for multivariate multipoint evaluation are closely related to fast algo-
rithms for other important algebraic problems such as polynomial factorization and modular
composition. For a detailed discussion on these connections, we refer to the work of Kedlaya and
Umans [KU11]. In a recent work, Bhargava, Ghosh, Kumar and Mohapatra [BGKM21] used
the special structure of their algorithm for multivariate multipoint evaluation to show an upper
bound on the rigidity of Vandermonde matrices and very efficient algebraic data structures for
the polynomial evaluation problem over finite fields.

For the setting of univariate polynomials, Borodin and Moenck [BM74] showed that the
multipoint evaluation can be solved in nearly linear time. Their algorithm is short, simple and
elementary, and proceeds via an application of the Fast Fourier Transform (FFT). However,
this approach does not seem to extend when the number of variables exceeds one; in fact, even
when the number of variables is two. However, for the multivariate case, when the input points
form a product set, one can naturally extend the ideas in Borodin and Moenck [BM74] to get a
nearly linear time algorithm for this problem. But, when the input points are arbitrary, getting
a sub-quadratic algorithm for multipoint evaluation seems to be significantly more difficult. In
fact, about three decades after Borodin and Moenck’s work, Nüsken and Ziegler [NZ04] proved
that multipoint evaluation can be solved in most O(dω2/2+1) operations for m = 2 and N = d2,
where ω2 is the exponent for multiplying a d× d and a d× d2 matrix. The work [NZ04] extends
to general m and gives an algorithm for multipoint evaluation that performs O(dω2/2·(m−1)+1)
field operations.

Two significant milestones in this line of work are the results of Umans [Uma08] and Ked-
laya and Umans [KU11]. Umans [Uma08] gave a nearly linear time (that is, (dm + N)1+o(1) ·
poly(m, d, log |F |)-time) algebraic algorithm1 for this problem over finite fields, provided that
the characteristic of the field and the number of variables are at most do(1). Later, Kedlaya and
Umans [KU11] gave a nearly linear time non-algebraic algorithm for all finite fields, but they
also need m = do(1). In a recent work, Bhargava, Ghosh, Kumar and Mohapatra [BGKM21]
improve the result of Umans [Uma08] by removing the restriction on m over finite fields whose
characteristics are small and sizes are not too large. More specifically, they gave a nearly linear
time algebraic algorithm for multivariate multipoint evaluation, provided that the characteristic
of the field is do(1) and the size of the field is at most (exp(exp(exp(· · · (exp(d))))), where the
height of this tower of exponentials is fixed. Another closely related result is a recent work
of Björklund, Kaski and Williams [BKW19] who (among other results) gave an algorithm for
multivariate multipoint evaluation, but their time complexity depends polynomially on the field
size (and not polynomially on the logarithm of the field size), and instead of dm, their time
complexity is nearly linear in Dm where D is the total degree of the polynomial. Nevertheless,

1Algorithms for multivariate multipoint evaluation can be divided into two categories: (1) algebraic algorithms,
where we are only allowed to perform arithmetic operations over the underlying field F, and (2) non-algebraic algo-
rithms, where we are allowed to do bit operations. The algorithms of Kedlaya and Umans [KU11] and those in this
paper are not algebraic, whereas the algorithm of Borodin and Moenck [BM74], that of Umans [Uma08], and that of
Bhargava, Ghosh, Kumar and Mohapatra [BGKM21] are all algebraic.

1

their results play a crucial role in proving the results of this paper and we will discuss them in
more detail in Section 2.2.

Thus, from the context of previous work, a very natural and interesting open question is to
design an algorithm, for the problem of multivariate multipoint evaluation that runs in nearly
linear time and works for all finite fields and all ranges of the number of variables. Indeed,
Kedlaya and Umans [KU11] mention this as an open problem.

In this work, we answer this question by giving two different algorithms for multivariate
multipoint evaluation over finite fields. While our first algorithm works over all finite fields, the
second algorithm still requires that the field size is not too large in terms of d. We now state
our results and discuss the pros and the cons of the two algorithms and compare them to the
algorithms known in prior work. Both our algorithms happen to be non-algebraic, i.e. we need
more than just arithmetic operations over the underlying field.

We now state our results and discuss how they compare with prior work.

1.1 Our Results
We state our main result as follows.

Theorem 1.1. There is a deterministic algorithm that given the coefficient vector of an m-
variate polynomial f(x) of degree less than d in each variable over a finite field F and N points
a1,a2, . . . ,aN ∈ Fm, outputs f(a1), f(a2), . . . , f(aN) in time

(dm +N)1+o(1) · poly(m, d, log |F|),

for all m ∈ N and all sufficiently large d ∈ N.

Remark. Throughout this paper, when we say d is sufficiently large, it means d = ω(1). ♢

The proof of the above theorem crucially relies on a deep result from analytic number theory,
known as the Bombieri–Vinogradov Theorem [Bom65, Vin65], related to the distribution of
primes in arithmetic progressions.

We also give a different algorithm for multivariate multipoint evaluation that avoids the
Bombieri–Vinogradov Theorem and is completely elementary, but it requires the size of the
finite field to be not too large: at most (exp(exp(exp(· · · (exp(d))))), where the height of this
tower of exponentials is fixed. In other words, it removes the restriction on the characteristic of
the field in the work of Bhargava et.al. [BGKM21], but via a non-algebraic algorithm.

We remark that neither of our algorithms is algebraic, and in particular, we crucially rely
on working with the bit representation of the inputs. To obtain an algebraic algorithm for mul-
tivariate multipoint evaluation, for large m, and over all finite fields is a fundamental algebraic
problem that continues to remain open.

Below, in Table 1, we compare the results in this paper with the previously known results.

2

Table 1: Comparison with Prior Results

Multivariate Multipoint Evaluation over a Finite Field Fq of Characteristic p

Results Time Algorithm Type Field Constraint Variable

[Uma08] (dm +N)1+o(1)·
poly(m, d, log q)

algebraic p ≤ do(1) m ≤ do(1)

[KU11] (dm +N)1+o(1)·
poly(m, d, log q)

non-algebraic all finite fields m ≤ do(1)

[BGKM21] (dm +N)1+o(1)·
poly(m, d, log q)

algebraic

p ≤ do(1),
q ≤ (exp(exp(· · · (exp(d)))),

where the height of this tower
of exponentials is fixed

any m

This work
(Algorithm 2)

(dm +N)1+o(1)·
poly(m, d, log q)

non-algebraic all finite fields any m

This work
(Algorithm 5)

(dm +N)1+o(1)·
poly(m, d, log q)

non-algebraic
q ≤ (exp(exp(· · · (exp(d)))),

where the height of this tower
of exponentials is fixed

any m

2 An Overview of the Proofs
In this section, we give an overview of the main ideas in our algorithms. At a high level,
our algorithms rely on ideas from three of the recent prior works on multivariate multipoint
evaluation, namely that of Kedlaya and Umans [KU11], that of Björklund, Kaski and Williams
[BKW19], and a recent work of Bhargava, Ghosh, Kumar and Mohapatra [BGKM21]. We start
by giving a brief outline of these.

We start with some necessary notation. Let F be a finite field and let f ∈ F[x] be an m-
variate polynomial of degree less than d in each variable, and let {ai : i ∈ [N]} be a set of N
inputs in Fm. Our goal is to evaluate f on each ai. For simplicity, we focus on the case when
the underlying field F is a prime field, i.e. F = Fp for some prime p. The case of extension fields
is handled in a very similar manner, with a few technicalities.

A starting observation is that multivariate multipoint evaluation has a nearly linear time
algorithm (over all fields) when the set of evaluation points forms a product set (see Lemma 3.10),
and more generally when the set of evaluation points is close to a product set. At a high level,
each of the algorithms in [KU11, BKW19, BGKM21] proceeds via a very efficient reduction from
multivariate multipoint evaluation over an arbitrary set of points to multivariate multipoint
evaluation over product sets. However, despite this common high level structure, the details of
the reductions involved are fairly different in each of the three algorithms, thereby giving these
algorithms their features, both desirable and undesirable. We now elaborate a bit more on these
reductions.

2.1 The Algorithm of Kedlaya and Umans
To solve the problem efficiently over a finite field F, Kedlaya and Umans [KU11] first reduce an
instance of the multivariate multipoint evaluation problem over F to an instance of the same
problem over a ring of the form Z/rZ. Then they use their efficient algorithm for multivariate
multipoint evaluation problem over Z/rZ to solve it. Finally, from the evaluations over Z/rZ,
they recover the original evaluations over F. So, we first describe their algorithm over ring Z/rZ.

The algorithm over Z/rZ: In their algorithm, Kedlaya and Umans [KU11, §4.2] start
by lifting their problem instance over Z/rZ to an instance over integers. They do this by just
viewing Z/rZ as the set of integers {0, 1, . . . , r − 1} and this naturally maps a polynomial f(x)

3

over Z/rZ to a polynomial F (x) with coefficients in Z. Similarly, this also gives a natural map
from an input point a ∈ (Z/rZ)m to a point ã ∈ Zm. Clearly, for every a ∈ (Z/rZ)m and
polynomial f , f(a) = F (ã) mod r. Thus, it suffices to solve this lifted instance over integers.
Yet another property of this lifted instance is that the integer F (ã) is a non-negative integer of
magnitude less than M = dm(r − 1)dm since each coefficient of F and each coordinate of ã are
in {0, 1, . . . , r−1}, and the total degree of F is less than or equal to (d−1)m. Thus, to compute
F (ã), it suffices to compute F (ã) mod M . Kedlaya and Umans now proceed by finding distinct
small primes p1, p2, . . . , pk such that

∏
i∈[k] pi > M , evaluating the polynomial fj(x) = F

mod pj at the point bj = ã mod pj and 2 then combining the values f1(b1), f2(b2), . . . , fk(bk)
using the Chinese Remainder Theorem. The correctness follows from the observation that for
every j ∈ [k], fj(bj) = F (ã) mod pj . The advantage of this multimodular reduction is that
if the primes pj are very small (for instance, if all these primes are close to d), then the set
of evaluation points of interest, that were initially scattered sparsely in Fn

p are now mapped
to points that are packed densely in the space Fm

pj
, which is a product set. Thus, we can use

the simple multidimensional FFT to evaluate fj on all of Fm
pj

for every j, and then combine
the outcome using the Chinese Remainder Theorem. For m < do(1), this indeed gives a nearly
linear time algorithm for multivariate multipoint evaluation. This constraint on the number of
variables m is due to a term of the form (dm)m in the final running time of the algorithm which
is nearly linear in the input size only if m is small. This (dm)m essentially appears because the
product of primes p1, p2, . . . , pk chosen in this reduction must exceed M , and hence, the largest
of these primes pk must be Ω(logM) = Ω(dm log r), and thus evaluating a polynomial fk on
all of Fm

pk
requires at least pmk = Ω(dmmm) time. Recursive application of this process leads

to smaller primes but the improved dependence is on the log r factor and this (dm)m factor
continues to persist in the eventual bound on the running time. Thus, one approach towards a
faster algorithm for multipoint evaluation over Z/rZ would be to replace this step of evaluating
fj on all of Fm

pj
in [KU11] with a faster subroutine, in particular, something that runs in nearly

linear time in the input size even for large m.
Our first algorithm in this paper does precisely this. In order to obtain this gain, it crucially

relies on ideas in an algorithm of Björklund, Kaski and Williams [BKW19] which we discuss
in Section 2.2 and a very careful choice of primes to do Chinese Remaindering with, in the
multimodular reduction discussed above. Together, these steps lead to an improvement in
running time and give us an algorithm that runs in nearly linear time even when the number of
variables is large.

For our second algorithm, we introduce a slightly different modification in the framework of
Kedlaya and Umans. Instead of working modulo small primes as in [KU11], which as discussed
above, forces us to pick primes as large as dm, we work modulo powers of distinct primes in
the multimodular reduction step. Thus, it seems conceivable that we can now work with much
smaller primes than in the original algorithm, since instead of having the condition that the
product of these primes is larger than M as in [KU11], we now need that the product of powers
of these primes is larger than M . However, we still need efficient algorithms for multivariate
multipoint evaluation over rings of the form Z/pkZ for small primes p and large k ∈ N. To
handle this subproblem, we extend the derivative-based techniques used in the algorithm of
Bhargava et al. [BGKM21] for fields of small characteristic so that they work over rings of the
form Z/pkZ for small primes p and large k ∈ N.

The advantage of this strategy over our first algorithm is that this gives us a completely
elementary algorithm, and the disadvantage is that for this algorithm to run in nearly linear
time, as desirable, the underlying ring Z/rZ needs to be somewhat small. This issue also affects
the original algorithm of Bhargava et al. [BGKM21] and seems somewhat inherent to this style
of an argument.

2In other words, fj is obtained from F by reducing each of its coefficients modulo pj and bj is obtained by reducing
each of the coordinates of ã modulo pj .

4

The algorithm over all finite fields: We now give an outline of the algorithm of Kedlaya
and Umans for extensions of prime fields.

Let F be the underlying finite field such that |F| = pe for some prime p and positive integer
e. Then, we can assume that F is represented by Fp[z]/(E(z)) for some degree e irreducible
monic polynomial E(z) over Fp. Let f(x) be the input polynomial over F with m variables and
degree less than d in each variable and a1,a2, . . . ,aN be the input points. Observe that each
coefficient of f(x) and each coordinate of ai’s are polynomial in Fp[z] of degree at most e − 1.
Like the previous case, Kedlaya and Umans [KU11] lift f(x) to a polynomial F (x) ∈ Z[z][x] and
ai to ãi ∈ Z[z]m by naturally identifying each element of F to a polynomial in Z[z] of degree at
most e− 1 and coefficients are in the set of integers {0, 1, . . . , p− 1}. This reduces the problem
of computing f(ai) for all i ∈ [N] to the problem of computing F (ãi) for all i ∈ [N] since from
f(ai) is F (ãi) modulo p and E(z).

Let M = dm(e(p − 1))(d−1)m+1 + 1. One can observe that the coefficients of F (ãi), viewed
as a polynomial in z are all less than M . It follows from the fact that the evaluation of F (ãi) at
z = 1 is at most M−1. Therefore, we can recover F (ãi) by finding the M -base representation of
the evaluation of F (ãi) at z = M . Also, note that the degree of F (ãi) in z is at most (e−1)dm,
hence the evaluation of F (ãi) at z = M is less than r = M (e−1)dm+1. Thus, computing F (ãi)
modulo z−M and r is sufficient for computing F (ãi). This implies that they need to solve the
following instance of the multivariate multipoint evaluation problem over the ring Z/rZ: the
input polynomial is F (x) modulo r and z−M , the evaluation points are ãi modulo r and z−M .
Now they invoke their multivariate multipoint evaluation over the ring Z/rZ and get F (ãi) at
z = M for all i ∈ [N].

2.2 The Algorithm of Björklund, Kaski and Williams
In a nutshell, the algorithm of Björklund et al. [BKW19] proceeds via constructing a set K ⊆ Fm

p

such that

• The size of K is not too large and K is (close to) a product set.

• For every a ∈ Fm
p , there is a curve Ca of low degree (in fact, a low degree univariate

polynomial map) that passes through the point a and intersects the set K on at least p
points 3.

These sets K can be thought of as a natural higher degree analog of Kakeya sets over finite
fields from discrete geometry. Indeed, Björklund et al. refer to the set K as high degree Kakeya
sets, where the degree of the set is defined to be the maximum over the degrees of the curves
Ca over all a ∈ Fm

p .
Given such a Kakeya set K, Björklund et al.proceed by evaluating f on all points in K fast,

using the multidimensional FFT algorithm. This is the preprocessing phase of the algorithm.
Then, for an arbitrary point a ∈ Fm

p , they compute f(a) by considering the univariate polynomial
R(y) obtained by taking the restriction f on the curve Ca. From the properties of the set
K, we know the curve Ca intersects the set K on at least p points. Thus, if the degree of
R ≤ deg(f) · deg(Ca) is less than p, then we can recover the polynomial R from the evaluations
of f on K computed in the preprocessing step and using univariate polynomial interpolation.
The quantitative bounds for this approach are therefore crucially determined by the size of the
set K and the degree of the curve Ca.

Björklund et al. showed that for every u ∈ N such that u+1 divides p−1, there is a Kakeya
set K of degree u of size at most ((p − 1)/(u + 1) + 1)m+1. This divisibility condition ensures
the existence of a multiplicative subgroup of F∗

p of size (p−1)/(u+1) and set K is based on this
subgroup. Thus, if d̃ denotes (p−1)/(u+1), then we can evaluate the polynomial f on the K in
time d̃m, which is nearly linear in the input size if d̃ ≤ d1+o(1). However, note that in this case,
u is around p/d̃, and hence, the degree of the restriction R of f on a curve of degree u has total

3This notion of a curve passing through a point here is slightly different to that in other related works like
[BGKM21]. However, for the sake of simplicity, we gloss over this technical detail right now.

5

degree udm = pm · d
d̃
. Thus, if pm · d

d̃
> p, we cannot hope to recover R from its evaluations on

just p points. To address this issue, we combine the above strategy in [BKW19] with an idea
in [BGKM21] where instead of evaluating just f on K, we evaluate all its (Hasse) derivatives
of order at most m · d

d̃
on K in the preprocessing phase. There are at most

(
m+m· d

d̃
m

)
such

derivatives and this leads to an additional multiplicative factor of
(
m+m· d

d̃
m

)
in the final running

time, but if d̃ is not too small compared to d, for instance, d̃ = Θ(d), this binomial coefficient is
at most exp(O(m)) which is do(m) for all growing d. Thus, with this stronger guarantee in the
preprocessing step, we are guaranteed to have higher multiplicity information available to us in
the local computation step. So, we can now hope to uniquely recover a univariate polynomial
of degree higher than p from this information (via Hermite interpolation). However, since the
degree of the univariates we have here is larger than p, this Hermite interpolation step runs in
time polynomially bounded in the underlying field size p and not just polynomially bounded in
log p as would have been desirable.

To summarise, if there exists an u ∈ N such that (p− 1)/(u+ 1) = d̃, where d̃ is close to d,
e.g. d̃ = Θ(d), then we have an algorithm for evaluating m-variate polynomials of degree less
than d in each variable on any N points in Fm

p in time poly(p, d,m) · (dm +N)1+o(1). Thus, this
is nearly linear time, when the field size p is not too large.

Having discussed these prior results, we are now ready to give an outline of our algorithms.
We start with the first algorithm.

2.3 The First Algorithm
As discussed earlier in this section, the plan for our algorithm is to somehow replace the multi-
dimensional FFT step in the algorithm of Kedlaya and Umans [KU11] (over rings of the form
Z/rZ) with the Kakeya-set-based algorithm above over a field Fpj

. However, in order to ef-
fectively use the Kakeya-set-based algorithm outlined in the previous section to obtain nearly
linear time algorithms for multipoint evaluation, we need to ensure two properties.

• The underlying field size pj is small. For instance, we would need pj = (dm +N)o(1) for a
nearly linear time algorithm.

• There is a natural number u such that u+1 divides pj−1 and (pj−1)/(u+1) is an integer
close to d.

In fact, instead of the second condition here, it suffices if there is a small t ∈ N such that there
exists a u ∈ N such that u+1 divides ptj − 1 and (ptj − 1)/(r+1) = d1+o(1), since we can always
view the problem over Fp as a problem over an extension of Fp. However, we need the degree
of the extension to be small in order to get useful final quantitative bounds.

The first condition about the primes pj being small does not appear too difficult to ensure
in isolation and in particular, is also true for the algorithm of Kedlaya and Umans. However,
the second divisibility condition seems trickier to guarantee even with the flexibility of working
over low degree extensions of Fpj

as outlined earlier in this section. In particular, it is not clear
to us if for every pair d, pj , there always exists small t such that puj − 1 has a divisor in the
vicinity of d.

Getting around these technical difficulties is the main technical content of our algorithm. In
a nutshell, we proceed by following the multimodular reduction step of Kedlaya and Umans, but
via a careful choice of primes p1, p2, . . . , pk (as opposed to picking a sufficiently large number of
small primes as in [KU11]). This careful choice preserves the fact that these primes are all small
(at most poly(d,m, log p)) and additionally guarantees that the divisibility condition needed to
invoke the Kakeya-set-based framework of [BKW19]. More formally, we choose p1, p2, . . . , pk
so that they are all at most poly(d,m, log p), their product exceeds M = dm(p − 1)dm and
there exists a d̃ ∈ [0.8d, d] such that for every j ∈ [k], d̃ divides pj − 1. Thus, we can use the
Kakeya-set-based framework outlined in Section 2.2, with the parameter uj to be set equal to
(pj − 1)/d̃− 1. This satisfies both the conditions highlighted earlier, and the final running time
of this algorithm does indeed turn out to be nearly linear in the input size. The details can be

6

found in Section 5. Once we have this algorithm for multipoint evaluation over the rings of the
form Z/rZ, we use exactly the same strategy as Kedlaya and Umans did to solve this problem
over all finite fields. For details see Section 6.

Thus, if we can find distinct primes p1, p2, . . . , pk with the properties outlined above, we
would be done. However, it is not immediately clear how to do find such a set of numbers
efficiently, or whether such a collection of primes and the parameter d̃ should even exist. The
appearance of the parameter d̃ = Θ(d) is also slightly mysterious. For instance, it would be
aesthetically nice if d̃ would have been equal to d. Perhaps surprisingly, we do not know how
to even show the existence of primes p1, p2, . . . , pk satisfying the desired properties with d̃ = d!
We now outline our approach to finding such primes and the parameter d̃. However, for a start,
let us attempt to do this with d̃ = d and try to understand the issues that arise.

The intuition on showing the existence of such primes follows from the observation that if
d divides pj − 1 for each j ∈ [k] then, each of the primes p1, p2, . . . , pk lies in the arithmetic
progression (AP) Ad = (1, 1 + d, 1 + 2d, . . .). It follows from a classical theorem of Dirichlet
(see Chapter 5 in [Ked15] for more details) that this arithmetic progression Ad indeed contains
an infinite number of primes for every d ∈ N. Thus, if we take k to be sufficiently large, then
there exist primes p1, p2, . . . , pk each congruent to 1 modulo d such that their product is greater
than M = dm(p − 1)dm. However, it is not enough for our application. We also need to show
that these primes are not too large, e.g. each pi ≤ poly(d,m, log p), and that they can be found
efficiently. For this, it would be sufficient to show that not only does the arithmetic progression
Ad contains an infinite number of primes, but the set of primes in Ad is also a sufficiently dense
subset of Ad. The prime number theorem gives such a statement for the progression A1, i.e. for
the set of natural numbers and here, a similar statement for arbitrary arithmetic progressions
is needed. An unconditional bound on the density of primes in an arithmetic progression Ad is
given by the well-known Siegel-Walfisz theorem [Sie35, Wal36] which implies a lower bound on
the number of primes less than x in the AP Ad for all x ≥ 0 with x > 2d

ϵ

for any constant ϵ.
However, this estimate does not appear to be sufficient for us, since for the algorithm, we need
the magnitude of these primes to be at most poly(d,m, log p) and not exponentially growing in d,
and it is not clear if such a guarantee can be obtained directly from this theorem. An improved
lower bound on the density of primes in arithmetic progressions is known under the Generalized
Riemann Hypothesis, and this would have been sufficient for our applications, except for the
fact that the result would be conditional. For the unconditional result in this paper, we rely on
the following theorem of Bombieri and Vinogradov, which gives an improved lower bound on the
density of primes in an AP on average. For x > 0, t ∈ N, let π(x, t) be the number of primes less
than x in the AP starting at 1 and with common difference t, π(x) denote the number of primes
less than x, and ϕ : N → N be the Euler Totient function. Various versions of this theorem can
be found in literature, for instance, [Bom65, Vin65], Theorem 18.1 in [Ked15]. Here we rely on
the bound in equation 1.1. in [May20].

Theorem 2.1 (Bombieri–Vinogradov). For any fixed a > 0, there exist constants c = c(a) and
b = b(a) such that for all sufficiently large x > 0,∑

t≤d

∣∣∣∣π(x, t)− π(x)

ϕ(t)

∣∣∣∣ ≤ cx(log x)−a ,

where d ≤ x1/2(log x)−b.

Thus, if x is sufficiently large compared to d, e.g. x = d3, this theorem can be viewed as
saying that on average (over t ∈ N, t ≤ d), an AP with common difference t contains at least
π(x)
ϕ(t) − cxd−1(log x)−a primes less than x. Clearly, ϕ(t) ≤ t ≤ d and π(x) = Θ(x/ log x) by the
prime number theorem. Thus, if we take a > 1, the number of primes less than x is at least
Ω(π(x)/d). For our final argument, we combine this average-case statement about the density
of primes in an AP with a standard application of Markov’s inequality to deduce that there
exists a d̃ ∈ [0.8d, d] such that the AP with common difference d̃ has at least Ω(π(x)/d̃) many
primes less than x. By choosing x to be a sufficiently large polynomial in d,m, log p, we get

7

precisely what we want: sufficiently many primes p1, p2, . . . , pk, each at most poly(d,m, log p) in
absolute value such that their product exceeds M and they are all congruent to 1 modulo d̃, for
d̃ = Θ(d). This application of Markov’s inequality is precisely why we have to settle for working
with the quantity d̃ and not d itself.

2.4 The Second Algorithm
In this section, we give a brief overview of our second algorithm. It implies that Theorem 1.1
holds as long as the size of the finite field is bounded by (exp(exp(exp(· · · (exp(d))))), where
the height of this tower of exponentials is fixed via an elementary algorithm. In particular, this
algorithm does not rely on the Bombieri-Vinogradov theorem necessary for the first algorithm.

For simplicity, we first explain our algorithm over rings of the form Z/rZ, or Z/rsZ for some
s ≤ m. This covers the case of prime finite fields Fp by choosing r = p and s = 1. After that,
we briefly explain how to extend the algorithm to make it work over non-prime finite fields and
certain extension rings of Z/rZ.

The algorithm over Z/rZ: Recall that Kedlaya and Umans [KU11, §4.2] use multimodular
reduction together with the Chinese Remainder Theorem to reduce the multivariate multipoint
evaluation problem over Z/rZ to that over Fpj

for a collection of small primes pj . As discussed
in Section 2.1, for the Chinese Remainder Theorem, the primes pj need to be chosen such that∏

i∈[k] pi > M := dm(r − 1)dm. The problem here is that, as the primes pj are distinct, the
largest prime would have order O(logM) = O(dm log r). The log r factor can be further reduced
by repeating the multimodular reduction. However, the dm factor persists. As a consequence,
the time complexity of the Kedlaya–Umans algorithm has a factor (dm)m, which is nearly linear
in dm only when m = do(1).

In our algorithm, we introduce the new idea of using the prime powers pmj as the moduli for
Chinese remaindering instead of the primes pj . That is, we compute the evaluations over the
rings Z/pmj Z and then combine them via Chinese Remainder Theorem to obtain the evaluations
over the integers. Assuming this can be done, then we only need to choose the primes pj such
that

∏
i∈[k] p

m
i > M . So the largest prime may have order O(1

m logM) = O(d log r), which is
independent of m.

Now, to make this idea work, we need a fast algorithm for multivariate multipoint evaluation
over Z/pmj Z, for small primes pj . In particular, if we have an algorithm over Z/pmj Z that runs in
time (pmj +N)1+o(1), then, overall, we have an algorithm that runs in time (dm(log r)m+N)1+o(1).
Note that this has already enabled us to get rid of the mm factor in the running time as in [KU11].
So, up to the factor of (log r)m in the running time, we seem to have made some progress and
we soon elaborate further on how to reduce this (log r)m factor further. But first, we note that
naively evaluating the polynomial at all points in (Z/pmj Z)m would be extremely inefficient, as
the size of (Z/pmj Z)m is exponential in m2. So, we need a significantly faster algorithm for
multivariate multipoint evaluation over Z/pmj Z to have any hope of making this strategy work.

In their algorithm, Kedlaya and Umans [KU11] deal with the (log r)m factor by recursively
applying the multimodular reduction a few times. So, to reduce the (log r)m in the discussion
above, we could also try to do something similar. We already see that one application of the
reduction reduces the modulus r to pmj for a collection of primes pj , where

∏
i∈[k] pi > d(r−1)d.

Fix a prime pj and suppose we want to apply the multimodular reduction again. We may lift
the instance over Z/pmj Z to an instance over the integers, and then reduce it modulo p′mi for a
collection of primes p′i. The problem here is that, if we simply lift the evaluation points from
(Z/pmj Z)m to {0, 1, . . . , pmj − 1}m, we would have an upper bound M ′ = dm(pmj − 1)dm for the
evaluations over the integers, which is too large for us. The primes p′i would have to satisfy∏

i p
′
i > M ′1/m = d(pmj − 1)d, and then the order of the largest prime must depend (at least

polynomially) on m.
We address the above two challenges, namely that of obtaining a fast multipoint evaluation

algorithm over Z/pmj Z that does not require evaluating on all of Z/pmj Zm and that of reducing

8

the factor (log r)m using the following observation: over Z/rsZ, the evaluation of an m-variate
polynomial f(x) at a point a ∈ (Z/rsZ)m can be derived from the evaluations of the Hasse
derivatives of f(x) of sufficiently high order at another point b ∈ (Z/rsZ)m, provided that
the coordinates of a − b are all multiples of r. Intuitively, this means if a and b are “close
enough”, then we can learn the evaluation of f(x) at a from the evaluations at b of all the Hasse
derivatives of f of sufficiently high order.

Formally, for all e ∈ Nm, let ∂e(f) ∈ (Z/rsZ)[x] be the Hasse derivative of f(x) with respect
to the monomial xe. For a,b ∈ (Z/rsZ)m, we get from Taylor’s expansion of f(x) at b that

f(a) =
∑
e∈Nm

∂e(f)(b)(a− b)e.

Suppose the coordinates of a− b are all multiples of r. In this case, observe that (a− b)e = 0
in Z/rsZ for all e ∈ Nm with |e|1 ≥ s. Hence,

f(a) =
∑

e∈Nm:|e|1<s

∂e(f)(b)(a− b)e. (2.2)

So we may compute f(a) from the evaluations of Hasse derivatives (∂e(f)(b))e∈Nm:|e|1<s.
We apply this idea to resolve the above two issues. First, in a base case of the recursive algo-

rithm, instead of evaluating f(x) at all points in (Z/pmj Z)m, we evaluate the Hasse derivatives
∂e(f) at the points in Sm using a fast evaluation algorithm for product sets, where S is the
subset of Z/pmj Z represented by {0, 1, . . . , pj − 1}. Note that for any a ∈ (Z/pmj Z)m, we may
find b ∈ Sm such that the coordinates of a−b are multiples of pj . Then f(a) can be computed
from ∂e(f)(b) using (2.2). The advantage of this is that the size of Sm is only pmj , which is
much smaller than the size pm

2

j of the whole set (Z/pmj Z)m.
Similarly, when applying the multimodular reduction over a ring Z/pmj Z, the idea above

allows us to use a small yet non-exact lift of each evaluation point ai. Namely, suppose ãi ∈ Zm

is the unique lift of ai ∈ (Z/pmj Z)m with coordinates in {0, 1, . . . , pmj − 1}. We compute ã′i ∈
{0, 1, . . . , pj −1}m whose coordinates are obtained by reducing the corresponding coordinates of
ãi modulo pj . Then ã′i is a lift of some a′i ∈ (Z/pmj Z)m such that the coordinates of ai − a′i are
all multiples of pj . We compute the evaluation ∂e(f)(a

′
i) at the point a′i (instead of a), and then

f(ai) can be computed from ∂e(f)(a
′
i) using (2.2). The advantage of evaluating at a′i instead of

ai is that the coordinates of its lift ã′i are bounded by pj − 1 instead of pmj − 1. This translates
into a better bound for the primes that we choose in multimodular reduction, thereby resolving
the second issue.

Finally, at each level of the recursive algorithm, we need to evaluate not only f(x), but also
the Hasse derivatives ∂e(f) of order less than m. In addition, we need to solve the subproblem for
each prime pj . This means the number of subproblems blows up by a factor of 2O(m) ·O(d log r)
each time. However, as we assume the original r (= the field size when r is prime) is reasonably
bounded in terms of d, it takes only a constant number of rounds to reduce r to d1+o(1). So the
total blow-up is reasonably controlled, and we obtain a nearly linear time algorithm when d is
sufficiently large. For details, see Section 7.

Comparison with the first algorithm: Compared to our first algorithm, which uses
the ideas of generalized Kakeya sets and the Bombieri–Vinogradov theorem, our second algo-
rithm uses a different idea, namely the Chinese Remainder Theorem with prime powers as the
moduli. At a high level, this may be seen as an analogue of the “method of multiplicities” applied
to the ring Z and polynomial rings over Z. To see this, note that for a univariate polynomial
f(x) over a field, knowing the evaluations of all (Hasse) derivatives f (i)(x) of order < s at a
point a is equivalent to knowing the remainder of f modulo the power (x − a)s. So from an
ideal-theoretic point of view, the idea of applying the Chinese Remainder Theorem to learn an
integer from its remainders modulo prime powers is analogous to applying Hermite interpolation
to learn a univariate polynomial from the evaluations of its Hasse derivatives, the latter playing
a crucial role in [BGKM21].

9

The algorithm over finite fields (and extension rings of Z/rZ): With further
ideas, we extend our algorithm so that it works over arbitrary finite fields. In fact, our algorithm
works more generally over a ring (Z/rZ)[z]/(E(z)), where r ≥ 2 is an integer and E(z) ∈
(Z/rZ)[z] is a monic irreducible polynomial of degree e ≥ 1.

Kedlaya and Umans [KU11, §4.3] described a reduction that reduces the problem of mul-
tivariate multipoint evaluation over (Z/rZ)[z]/(E(z)) to that over Z/r′Z for some integer r′.
Unfortunately, the integer r′ there is too large for us, being exponential in m2. This is not a bot-
tleneck in [KU11], as their algorithm over Z/rZ already has a factor mm in its time complexity.
However, it is a problem for us, so we cannot directly use the reduction in [KU11].

To achieve our claimed time complexity, we design a more efficient reduction, which reduces
the evaluation problem to that over Z/r′mZ, where r′ is independent of m. The basic idea
is lifting the problem instance to an instance over Z[z], and then reducing it modulo r′m and
(z − j)m for a small number of integers j. Here the idea of raising z − j and r′ to their m-th
powers helps us keep r′ small, and in particular, independent of m. See Section 8 for the details
of the algorithm and a more thorough overview.

3 Preliminaries
Define N = {0, 1, . . . }, N+ = {1, 2, . . . }, [n] = {1, 2, . . . , n}, and JnK = {0, 1, . . . , n − 1}. The
cardinality of a set S is denoted by |S|.

All rings in this paper are commutative rings with unity. For univariate polynomials f(x), g(x)
over a ring R such that g(x) is monic of positive degree, there exist unique h(x), r(x) ∈ R[x]
such that f(x) = g(x)h(x) + r(x) and deg(r) < deg(g) [Lan02, §IV.1, Theorem 1.1]. Define
f(x) mod g(x) := r(x), which can be computed using polynomially many R-operations via long
division.

By x and z, we denote the variable tuples (x1, . . . , xm) and (z1, . . . , zm), respectively. For
any e = (e1, . . . , em) ∈ Nm, xe denotes the monomial

∏m
i=1 x

ei
i . By |e|1, we denote the sum

e1 + · · ·+ em.
For every positive integer k, k! denotes

∏k
i=1 i. For k = 0, k! is defined as 1. For two

non-negative integers i and k with k ≥ i,
(
k
i

)
denotes k!

i!(k−i)! . For k < i,
(
k
i

)
= 0. For

a = (a1, . . . , am),b = (b1, . . . , bm) ∈ Nm,
(
a
b

)
=

∏m
i=1

(
ai

bi

)
.

Proposition 3.1. For any two positive integers i and k with k ≥ i,(
k

i

)
≤

(
ke

i

)i

.

For a proof, see [Juk11, Chapter 1]. All logarithms in this paper are with respect to base 2.
For a non-negative integer c, log◦c(n) denotes the c-times composition of the logarithm function
with itself. For example, log◦2(n) = log log(n). We denote by log⋆(n) the smallest non-negative
integer c such that log◦c(n) ≤ 1.

We need the following number-theoretic result.

Lemma 3.2 ([KU11, Lemma 2.4]). For all integers N ≥ 2, the product of the primes p ≤
16 logN is greater than N .

3.1 Chinese Remainder Theorem
For our algorithms, we crucially use the Chinese Remainder Theorem. For completeness, we
formally state the version we use and refer to Chapter 10 of [vzGG13] for a proof.

Theorem 3.3 (Chinese Remainder Theorem). Let n1, n2, . . . , nt be pairwise relatively prime
natural numbers greater than or equal to 2 and let u1, u2, . . . , ut be arbitrary natural numbers
such that for every i ∈ [t], ui ≤ ni − 1. Then, there is a unique v ∈ N with v <

∏t
i=1 ni such

that for every i ∈ [t], v ≡ ui (mod ni).

10

Moreover, there is a deterministic algorithm, that when given n1, n2, . . . , nt and u1, u2, . . . , ut

as input, outputs v in time at most poly(
∑

i∈[t] log ni), i.e., in time polynomial in the input size.

3.2 Hasse Derivatives
In this section, we briefly discuss the notion of Hasse derivatives that plays a crucial role in our
results.
Definition 3.4 (Hasse derivative). Let f(x) be an m-variate polynomial over a commutative
ring R. Let e = (e1, . . . , em) ∈ Nm. Then, the Hasse derivative of f with respect to the monomial
xe is the coefficient of ze in the polynomial f(x+ z) ∈ (R[x])[z]. ♢

Notations. Suppose that f(x) is an m-variate polynomial over a commutative ring R. For
a ∈ Nm, denote by ∂a(f) the Hasse derivative of f(x) with respect to the monomial xa. For
any non-negative integer k, define

∂
≤k

(f) :=
{
∂a(f) | a ∈ Nm s.t. |a|1 ≤ k

}
and

∂
<k

(f) := {∂a(f) | a ∈ Nm s.t. |a|1 < k}.

For a univariate polynomial h(t) over F and a non-negative integer k, denote by h(k)(t) the
Hasse derivative of h(t) with respect to the monomial tk, that is, Coeffzk(h(t+ z)).

Next, we mention a useful property of Hasse derivatives.

Proposition 3.5. Let f(x) be an m-variate polynomial over a commutative ring R. Let a, e ∈
Nm. Then,

∂e(f) =
∑

a∈Nm

(
a

e

)
Coeffxa(f)xa−e.

For a proof, see, e.g., [For14, Appendix C].
The following lemma states that Hasse derivatives of polynomials can be computed efficiently.

Lemma 3.6. Let R be either a finite field or a ring of the form Z/rZ. There exists an algorithm
that given an m-variate polynomial f(x) of individual degree less than d over R and e ∈ Nm

with |e|1 ≤ dm, computes ∂e(f) in time O(dm) · poly(m, d, log |R|).

Proof. Let S = JdKm. For all a ∈ S, let ca denote the coefficient of monomial xa in f . Then,
from Proposition 3.5, we know that

∂e(f) =
∑
a∈S

(
a

e

)
cax

a−e.

Without loss of generality, we can assume that each coordinate of e is less than d. Otherwise,
∂e(f) is a zero polynomial. For any a ∈ S,

(
a
e

)
can be computed in time poly(m, d, log |R|).

Thus, the time needed to compute ∂e(f) is O(dm) · poly(m, d, log |R|).

Remark. For simplicity, we assume in Lemma 3.6 that R is either a finite field or a finite ring
of the form Z/rZ, as this will be sufficient for us. The same assumption is made in Lemma 3.9
and Lemma 3.10, even though the lemmas and their proofs extend to general rings. ♢

A useful additional ingredient in the proof of Theorem 1.1 is the following lemma. Seman-
tically, this is an explicit form of the chain rule of Hasse derivatives for the restriction of a
multivariate polynomial to a curve of low degree.

11

Lemma 3.7. Let f(x) be an m-variate degree d polynomial over a field F, g(t) = (g1, . . . , gm)
where gi ∈ F[t], and h(t) = f(g(t)). For all i ∈ [m], let gi(t + Z) = gi(t) + Zg̃i(t, Z) for some
g̃i ∈ F[t, Z]. Let g̃(t, Z) = (g̃1, . . . , g̃m), and for all e = (e1, . . . , em) ∈ Nm, g̃e =

∏m
i=1 g̃

ei
i . For

any ℓ ∈ N, let

hℓ(t, Z) =

ℓ∑
i=0

Zi
∑

e∈Nm:|e|1=i

∂e(f)(g(t)) · g̃e(t, Z).

Then, for every k ∈ N with k ≤ ℓ, h(k)(t) = CoeffZk(hℓ).

We now state a lemma that uses the above lemma for fast evaluation of all the Hasse
derivatives of h(t) = f(g(t)) over a finite field Fq.

Lemma 3.8. Let f(x) be an m-variate, individual degree less than d polynomial over a finite
field Fq and g(t) = (g1, g2, . . . , gm) where gi ∈ Fq[t] with degree bounded by r. Then, given
access to evaluations of ∂

≤2m
(f) on Fq, there exists an algorithm that computes the evaluations

of all ≤ 2m order Hasse derivatives of the polynomial h(t) = f(g(t)) at all points in Fq in time
Θ(1)

m · poly(q, r, d,m).

The proof of the above lemma (and its promised algorithm) follows directly from Algorithm 4
in [BGKM21] and its correctness, thus is skipped here. The only change is that Algorithm 4
looked at ≤ m-th order Hasse derivatives, and here we are looking at ≤ 2m-th order Hasse
derivatives. It is an easy exercise to see that the analysis of the algorithm in [BGKM21] extends
as it is to this case.

3.3 Hermite Interpolation
The following lemma gives a stronger version of univariate polynomial interpolation, known as
Hermite interpolation. To interpolate a univariate polynomial of degree d, we need its evalu-
ations at d + 1 distinct points. However, for Hermite interpolation, the number of evaluation
points can be less than d, provided that evaluations of Hasse derivatives of the polynomial are
available up to a certain order.

Lemma 3.9 (Hermite interpolation). Let R be either a finite field or a ring of the form Z/rZ.
Let f(x) be a univariate polynomial over R and e1, . . . , eℓ be positive integers such that d :=
e1+ · · ·+ eℓ is greater than deg(f). Let a1, a2, . . . , aℓ ∈ R such that for distinct i, j ∈ [ℓ], ai−aj
has multiplicative inverse in R. For all i ∈ [ℓ] and j ∈ JejK, let βij = f (j)(ai). Then given
(ai, βij) for all i ∈ [ℓ] and j ∈ JejK, f(x) can be computed in time poly(d, log |R|). Equivalently,
given (ai, f(x) mod (x− ai)

ei) for all i ∈ [ℓ], f(x) can be computed in time poly(d, log |R|).

Proof. Note f(x) mod (x− ai)
ei =

∑ej−1
j=0 βij(x− ai)

j for i ∈ [ℓ]. So (ai, βij) and (ai, f(x) mod
(x − ai)

ei) can be computed from each other in time poly(d, log |R|), and using either of them
as the input is equivalent to using the other.

Next, we show that f(x) can be computed in poly(d) R-operations given fi(x) := f(x) mod
(x − ai)

ei for i ∈ [ℓ]. When R is a field, see [vzGG13, §5.6] for a proof. We give a proof that
works for general R. For i ∈ [ℓ], compute the following data. First, compute

ri :=
∏

j∈[ℓ]\{i}

(x− aj)
ej mod (x− ai) =

∏
j∈[ℓ]\{i}

(ai − aj)
ej ,

which is a unit in R as each ai − aj is a unit. Then compute hi(x) ∈ R[x] such that∏
j∈[ℓ]\{i}

(x− aj)
ej = ri − hi(x)(x− ai).

Let λi(x) := r−1
i hi(x)(x−ai). Compute δi(x) := 1−λi(x)

ei . As λi(x) is a multiple of x−ai, we
have δi(x) ≡ 1 (mod (x− ai)

ei). As δi(x) is a multiple of 1− λi(x) = r−1
i

∏
j∈[ℓ]\{i}(x− aj)

ej ,

12

we also have δi(x) ≡ 0 (mod (x− aj)
ej) for j ∈ [ℓ] \ {i}. Finally, compute

g(x) :=

ℓ∑
i=1

δi(x)fi(x) mod

ℓ∏
i=1

(x− ai)
ei .

Then g(x) ≡ fi(x) ≡ f(x) (mod (x−ai)
ei) for i ∈ [ℓ]. It remains to prove g(x) = f(x). We know

g(x)−f(x) is a multiple of (x−ai)
ei for i ∈ [ℓ]. For distinct i, j ∈ [ℓ], the proof above constructs

a multiple of (x − ai)
ei whose remainder modulo (x − aj)

ej is one. In particular, (x − ai)
ei is

multiplicatively invertible modulo (x − aj)
ej . So (g(x) − f(x))/(x − ai)

ei is still a multiple of
(x− aj)

ej for all j ∈ [ℓ] \ {i}. Repeating this argument shows that g(x)− f(x) is a multiple of
the degree-d polynomial

∏ℓ
i=1(x− ai)

ei . As deg(g),deg(f) < d, we have g(x) = f(x).

3.4 Fast Multivariate Multipoint Evaluation for Product Sets
The following lemma states that multivariate multipoint evaluation can be solved very efficiently
if the set of evaluation points is a product set.

Lemma 3.10. Let R be either a finite field or a ring of the form Z/rZ. There exists an algorithm
that given an m-variate polynomial f(x) of individual degree less than d over R and a finite subset
S of R, outputs the evaluations f(a) for all a ∈ Sm in time O(dm + |S|m) · poly(m, d, log |R|).

Proof. If m = 0, f ∈ R is just a scalar, and its evaluation at the only point in S0 is f itself. So
just output f .

Now assume m > 0. Compute fa := f(x1, . . . , xm−1, a) for a ∈ S, which can be done in time
O(|S|dm) · poly(m, d, log |R|).4 For each a ∈ S, recursively compute the evaluations fa(a) for all
a ∈ Sm−1. Then output (fa(a))a∈Sm−1,a∈S = (f(a))a∈Sm .

Now we give an upper bound T (m) for the time complexity of the above algorithm. We have
T (0) = O(1) and T (m) = |S| · T (m− 1) + T ′ where T ′ := O(|S|dm) · poly(m, d, log |R|).

When |S| ≤ d, we have T ′ = O(dm) · poly(m, d, log |R|). In this case, solving the recurrence
relation using the fact |S| ≤ d yields T (m) = O(dm) · poly(m, d, log |R|). When |S| > d,
we have T ′ = O(|S|m) · poly(m, d, log |R|), and solving the recurrence relation yields T (m) =
O(|S|m) · poly(m, d, log |R|).

It follows that T (m) = O(dm + |S|m) · poly(m, d, log |R|).

4 The Necessary Building Blocks
In this section, we set up some of the necessary building blocks for our algorithm.

4.1 Primes in an Arithmetic Progression
The first ingredient we need is the existence of sufficiently many primes in the arithmetic
progression Ad = {1, 1 + d, 1 + 2d, . . .} that are not too large. When d is small, and x tends
to infinity, a well-known result of Dirichlet (Theorem 5.5 in [Ked15]) shows that the density of
primes less than x in the arithmetic progression Ad tends to Θ(x

ϕ(d) log x), where ϕ is the Euler
totient function. However, for our application, we will need x and d to be close to each other and
hence it becomes important to carefully look at the error term in the prime counting function
for the progression Ad.

While we do not know how to show such a statement, we end up working with a weaker
statement that turns out to be sufficient for our application. This weaker statement that we
use follows (immediately) from a deep result of Bombieri and Vinogradov that we state now.

4One can use FFT-based fast univariate multipoint evaluation [vzGG13] over R[x1, . . . , xm−1] to compute all fa
in time dm−1 · Õ(d+ |S|) · poly(m, log |R|), and the eventual time complexity would be (dm−1 + |S|m−1) · Õ(d+ |S|) ·
poly(m, log |R|). For us, the time complexity bound in Lemma 3.10 is good enough.

13

A more general statement can be found in Theorem 18.1 in [Ked15]. But first, we need some
notation. For any x ≥ 0, we denote by π(x) the number of primes less than or equal to x. For
x ≥ 0 and t ∈ N, we also use π(x, t) to denote the number of primes less than or equal to x in
the arithmetic progression At = {1, 1 + t, 1 + 2t, . . . , }

We are now ready to state the theorem of Bombieri and Vinogradov that we use. Various
versions of the theorem can be found in literature, for instance, [Bom65, Vin65], Theorem 18.1
in [Ked15]. Here we rely on the bound in Equation 1.1 in [May20].

Theorem 4.1 (Bombieri-Vinogradov). For any fixed a > 0, there exist constants c = c(a) and
b = b(a) such that for all sufficiently large x > 0,∑

t≤Q

∣∣∣∣π(x, t)− π(x)

ϕ(t)

∣∣∣∣ ≤ cx(log x)−a ,

where Q ≤ x1/2(log x)−b.

Semantically, Theorem 2.1 says that on average (over t ≤ Q), the quantity
∣∣∣π(x, t)− π(x)

ϕ(t)

∣∣∣
is bounded by (cx(log x)−a). For our application, we would require a similar statement in the
worst-case choice of t. This, however, is not known unconditionally when t is large compared
to x5 (which will turn out to be the case here), unless we assume the Generalized Riemann
Hypothesis. Thankfully, it turns out that we have some wriggle room, and we can in fact work
with the average-case statement above (up to some small loss in the parameters). More formally,
we need the following immediate consequence of Theorem 2.1.

Lemma 4.2. For any fixed a > 1, there exist constants c = c(a) and b = b(a) such that for all
sufficiently large x > 0, Q ≤ x1/2(log x)−b and δ > 1, there is a t0 ∈ N with Q(1−2/δ) ≤ t0 ≤ Q
and

π(x, t0) ≥
x

4Q log x
.

Proof. From Theorem 2.1, by dividing both sides by Q, we can view the summation as an
expectation as t varies uniformly in [Q] = {1, 2, . . . , ⌊Q⌋}. So, we get

E
t∈[Q]

[∣∣∣∣π(x, t)− π(x)

ϕ(t)

∣∣∣∣] ≤ cx(log x)−a

Q
.

Now, by Markov’s tail bound for the non-negative random variable
∣∣∣π(x, t)− π(x)

ϕ(t)

∣∣∣, we get that
for any δ > 1,

Pr
t∈[Q]

[∣∣∣∣π(x, t)− π(x)

ϕ(t)

∣∣∣∣ > δ · cx(log x)
−a

Q

]
≤ 1/δ .

In particular, there exists an integer t0 ∈ [Q− 2Q/δ,Q] such that∣∣∣∣π(x, t0)− π(x)

ϕ(t0)

∣∣∣∣ ≤ δ · cx(log x)
−a

Q
.

Or, in other words,

π(x, t0) ≥
π(x)

ϕ(t0)
− δ · cx(log x)

−a

Q
.

Now, since x is sufficiently large, we have that π(x) ≥ (1− o(1))x/ log x ≥ x/2 log x. So,

π(x, t0) ≥
x

log x

(
1

2ϕ(t0)
− δ · c(log x)

1−a

Q

)
.

5More specifically, we would like x and t to be polynomially related to each other.

14

Now, since t0 ≤ Q, ϕ(t0) ≤ t0 ≤ Q. So, we have

π(x, t0) ≥
x

Q log x

(
1

2
− δ · c(log x)1−a

)
.

Finally, using the fact that x is sufficiently large, and c, δ, a are constants with a > 1, we get

π(x, t0) ≥
x

4Q log x
.

We now state the following consequence of this lemma that will be directly useful for us in
the Chinese Remaindering step of our algorithm.

Lemma 4.3. Let D,M be natural numbers and let D be sufficiently large. Then, there exists a
natural number D̃ ∈ [0.8D,D] such that there are distinct primes p1, p2, . . . , pk in the arithmetic
progression AD̃ = (1, 1 + D̃, 1 + D̃, . . . ,) with the following properties.

1. k ≤ D2(logM)3

2. For every i ∈ [k], pi ≤ (D logM)3

3.
∏k

i=1 pi > M

Moreover, there is a deterministic algorithm that on input D,M outputs p1, . . . , pk, D̃ in time
poly(D, logM).

Proof. We invoke Lemma 4.2 with the parameters a set to an arbitrary positive constant greater
than 1, e.g. a = 10, Q set to D, x = (D logM)3. Note that D ≤

√
x(log x)−b for b = b(a) as

given by Lemma 4.2 for this choice of parameters. Let the constant δ set to be 10 (any arbitrary
constant greater than 2 works). Now, by Lemma 4.2, we get that there is a D̃ ∈ [0.8D,D] such
that

π(x, D̃) ≥ x

4D log x
.

Let us consider the product of k of these primes in the arithmetic progression {1, 1 + D̃, 1 +
2D̃, . . . , } for any k ≤ x

4D log x . Clearly, each of these primes is at least D̃ (and hence 0.8D), so
their product is at least (0.8D)k. Thus, if x is such that

x

4D log x
≥ logM

log 0.8D
,

then, we can always find sufficiently many distinct primes in the AP AD̃ such that their product
is at least M . This is true, for instance, for our choice of x above.

For the moreover part, we try all possible values of D̃ in the range [0.8D,D] and for each
of these choices and x = (D logM)3, we check if the arithmetic progression AD̃ has sufficiently
many primes using the deterministic primality test of Agrawal, Kayal, and Saxena[AKS04]. All
these operations can be done deterministically in time poly(D, logM).

4.2 Explicit Kakeya Sets of Higher Degree
We start with the definition of Kakeya sets of high degree.
Definition 4.4 ([BKW19]). Let F be a finite field and let u,m ∈ N. A set K ⊆ Fm is said to
be a Kakeya set of degree u in Fm if there exist functions g0, g1, . . . , gu−1 : Fm → Fm such that
for every a ∈ Fm, the set of points

{g0(a) + g1(a) · τ + · · ·+ gu−1(a) · τu−1 + a · τu : τ ∈ F}

is a subset of K. ♢

15

For ease of notation, we denote the curve

{g0(a) + g1(a) · y + · · ·+ gu−1(a) · yu−1 + a · yu : y ∈ F}

of degree u by Ga(y).
In their work [BKW19], Björklund, Kaski and Williams gave an explicit construction of

Kakeya sets of degree u of non-trivially small size, provided that the degree u and the field
size F satisfy an appropriate divisibility condition. This construction will be crucial for our
algorithm.

Theorem 4.5 (Explicit Kakeya sets of degree u [BKW19]). Let F be a finite field of size q, and
let u ∈ N be such that u+ 1 divides q − 1. Then, for every m ∈ N, there is a Kakeya set K of
degree u in Fm of size at most

(
q−1
u+1 + 1

)m

.
Moreover, this set K is a union of at most q product sets in Fm and there is a deterministic

algorithm that on input u,m,F, outputs K and the associated functions g0, g1, . . . , gu−1 in time
O(q|K|).

Proof. We start by restating the Kakeya set of degree u as described in [BKW19, Lemma 1].

K :=

{((α1

u+ 1
+ τ

)u+1

− τu+1, . . . ,
(αm

u+ 1
+ τ

)u+1

− τu+1

) ∣∣∣∀α1, α2, . . . , αm, τ ∈ Fq

}
.

Observe that, |K| ≤
(

q−1
u+1 + 1

)m+1

, as |{βu+1 : β ∈ Fq}| = q−1
u+1 + 1. Also, the associated

functions g0, g1, . . . , gu−1 can be computed in time O(q|K|) by [BKW19, Lemma 1].

We now show that K is a union of at most q product sets. For τ ∈ Fq, define Sτ :=

{
(

α
u+1 + τ

)u+1 − τu+1 | ∀α ∈ Fq} ⊆ Fq. The proof concludes by observing that

K =
⋃

τ∈Fq

Sτ × Sτ × · · · × Sτ︸ ︷︷ ︸
m times

.

Using the property that the set K in Theorem 4.5 is a union of product sets and that for
product sets we have nearly linear algorithms for multipoint evaluation using Lemma 3.10, we
get the following.

Lemma 4.6. Let F be a finite field of size q, u ∈ N be such that u+1 divides q− 1, and m ∈ N
be a natural number. Let K be the Kakeya set of degree u given by Theorem 4.5 over Fm and
let f(x) be a polynomial of degree less than d in each variable with coefficients in F.

Then, there is a deterministic algorithm that takes as input the set K and the coefficient
vector of f and outputs the evaluation of f at every point in K in time

O(|K|+ dm) · poly(m, d, q) .

Proof. Recall K is a union of at most q product sets, K =
⋃

τ∈Fq

Sτ × Sτ × · · · × Sτ︸ ︷︷ ︸
m times

, here Sτ is

as defined in proof of Theorem 4.5. For each τ ∈ Fq, by using Lemma 3.10, we can evaluate f
on Sτ in time (dm + |Sτ |m) · poly(m, d, log |F|). Thus, we can evaluate f on every point in K in
time O(|K|+ dm) · poly(m, d, q).

16

4.3 Fast Multipoint Evaluation over Nice Finite Fields
Theorem 4.7. Let F be a finite field of size q and let d, d̃,m ∈ N be such that d̃ ∈ [0.8d, d] and
d̃− 1 divides q − 1.

Then, there is an algorithm that given a homogeneous m-variate polynomial in F[x] of degree
less than d in every variable and a set of N input points in Fm, outputs the evaluation of this
polynomial on these inputs in time

(dm +N) ·Θ(1)m · poly(q,m, d) .

Proof. Let f be the input polynomial and let a1,a2, . . . ,aN ∈ Fm be the input points of interest.
At a high level, the algorithm here is similar in structure to that in [BGKM21]. We first

evaluate the polynomial on an appropriate product set P in nearly linear time using Lemma 3.10
in the preprocessing phase. Next, in the local computation step, we look at the restriction of
f on a curve Ca through any point a ∈ Fm of interest. Based on the construction of the
aforementioned product set P, we will guarantee that there is a curve Ca through a such that
the intersection of Ca with the set P is sufficiently large, so that the univariate polynomial
obtained by restricting f to Ca can be uniquely decoded using the evaluation of f on P. We
then use this decoded polynomial to obtain f(a).

Despite this high-level similarity, there are some technical differences between the algorithm
here and that in [BGKM21]. Primarily, these differences arise due to the fact that unlike the
setting in [BGKM21], we are no longer working over fields of small characteristic. So, the
construction of the set P is different here and is based on the ideas in [BKW19]. We now
specify the details, starting with the description of the algorithm.

The algorithm.
1. From the coefficient vector of f , compute each of Hasse derivatives of f of order at most

2m.

2. Using Theorem 4.5, we construct a Kakeya set K of order u = (q − 1)/(d̃− 1)− 1. As is
necessary, u+ 1 divides q − 1. Note that, |K| ≤ d̃(m+1).

3. For every Hasse derivative f̃ of f order at most 2m, evaluate f̃ on K using Lemma 4.6.

4. For every i ∈ [N]:

(a) We consider the univariate polynomial Ri(y) obtained by the restriction of f on the
curve Gai

(y). This is a univariate polynomial of degree at most (d−1)m · (q−1)/(d̃−
1) < 2m(q − 1). Using Lemma 3.8, compute the evaluation of Ri(y) and all its ≤ 2m
order Hasse derivatives on F.

(b) Since degree of Ri is less than 2m(q − 1), and we have the evaluation of Ri and all
its derivatives of order at most 2m on q points, we can recover Ri uniquely from this
information. In particular, we use Lemma 3.9 to recover Ri(y).

(c) We output f(ai) to be equal to the leading coefficient of Ri(y).

Running time. There are a total of
(
m+2m

m

)
Hasse derivatives of order at most 2m of f .

By Lemma 3.6, each Hasse derivative takes time dm · poly(m, d, log q). Thus, the total time is
bounded by Θ(d)m · poly(m, d, log q). By Theorem 4.5, we can compute the explicit Kakeya set
of degree u := q−1

d̃−1
− 1 in time O(|K|q) = Θ(d)m · q. For the time complexity of Step 3, by

Lemma 4.6, we can evaluate f and all its Hasse derivatives of f of order at most 2m in time(
m+ 2m

m

)
·
(
d̃m+1 + dm

)
· poly(m, d, q) = Θ(d)

m · poly(m, d, q).

For the loop in Step 4, the time complexity is bounded by Θ(1)
m ·N · poly(d, q) by Lemma 3.8.

By Hermite interpolation (Lemma 3.9), we can recover Ri(y) for each i in time poly(m, q). Thus,
the total time complexity is bounded by (dm +N) ·Θ(1)m · poly(m, d, q).

17

Correctness. Note that, for any homogenous polynomial f(x), the leading coefficient of
Ri(y) = f(g0(ai)+ g1(ai) · y+ · · ·+ gr−1(ai) · yr−1 +a · yr) is f(ai). Thus, given the polynomial
Ri(y), then we get f(ai) by directly reading off its leading coefficient. Since the degree of Ri(y)
is ≤ 2m(q − 1), via Hermite interpolation (Lemma 3.9) it suffices to know the evaluations of
≤ 2m order Hasse derivatives of Ri(y) on Fq. Finally, note that, we have access to evaluations
of ≤ 2m order partial derivatives of Ri(y) for all i ∈ [N] because of Lemma 3.8 and Lemma 4.6.
This concludes the proof.

5 The First Algorithm over Rings of the Form Z/rZ
With the necessary background in place, we are now ready to describe our first algorithm for
fast multivariate multipoint evaluation over rings of the form Z/rZ. This already handles the
case of prime fields, and contains most of our main ideas. Later, in Section 6, we discuss the
case of extension rings which will complete the proof of Theorem 1.1. Also, the algorithm in
Section 6 crucially relies on the algorithm for the Z/rZ case and an idea of Kedlaya and Umans
[KU11].

5.1 The Description of the Algorithm

Algorithm 1 The First Algorithm over Rings of the Form Z/rZ
Algorithm MME-A(f(x),a1,a2, . . . ,aN , r)

where f is an m-variate homogeneous polynomial over Z/rZ of individual degree less
than d and a1,a2, . . . ,aN ∈ (Z/rZ)m are evaluation points.

1. Let F ∈ Z[x] be the m-variate homogeneous polynomial of individual degree less
than d obtained from f by replacing each of its coefficients with its natural lift in
the set JrK of integers.

2. For every i ∈ [N], let ãi ∈ JrKm be the lift of ai ∈ (Z/rZ)m to the integers.

3. Let M = dmrdm. We invoke Lemma 4.3 with parameters d and M and obtain a
natural number d̃ ∈ [0.8d, d] and primes p1, p2, . . . , pk where k ≤ d2(logM)3, each
pi ≤ d3(logM)3 and is congruent to 1 modulo d̃, and

∏
i∈[k] pi > M .

4. For j ∈ [k], let fj(x) ∈ Fpi [x] be the m-variate homogeneous polynomial of indi-
vidual degree less than d obtained by reducing each of the coefficients of F modulo
the prime pj . Similarly, for every i ∈ [N], let ai,j ∈ Fm

pj be obtained by reducing
each of the coordinates of ãi modulo pj .

5. For every j ∈ [k], invoke the algorithm in Theorem 4.7 for the polynomial fj ,
input points {ai,j : i ∈ [N]} and parameters d, d̃ as above, and get fj(ai,j) for all
j ∈ [k] and i ∈ [N]. Note that each fj is a homogeneous polynomial, and from
the guarantees of Lemma 4.3, d̃ is in the range [0.8d, d] and d̃− 1 divides pi − 1 as
needed by Theorem 4.7.

6. For every i ∈ [N], use the Chinese Remainder Theorem (Theorem 3.3) to compute
F (ãi) from {fj(ai,j) : j ∈ [k]}.

7. For every i ∈ [N], output f(ai) = F (ãi) mod r.

18

5.2 The Correctness of Algorithm 1
The correctness of the algorithm essentially follows from the correctness of the building blocks
in Section 4 and preliminary notions like Theorem 3.3. We now elaborate on some of the details.

In its first two steps, Algorithm 1 lifts the problem of multipoint evaluation given over the
ring Z/rZ to an instance over Z by naturally identifying the elements of Z/rZ with the set JrK of
integers. This lifted instance is given by the polynomial F ∈ Z[x] and the points {ãi : i ∈ [N]}.
Thus, to correctly solve the original problem over Z/rZ, it suffices to correctly solve this lift
over Z and then reduce the outputs modulo r, since for every i ∈ [N], f(ai) = F (ãi) mod r.
Hence, it suffices to argue that the computation of F (ãi) is correct for every i ∈ [N].

Since F is an m-variate polynomial of degree less than d in each variable with every coefficient
being in the set JrK, and for every i ∈ [N], each coordinate of ãi is also in the set JrK, we get
that F (ãi) is a natural number of absolute value at most dm(r−1)dm. Thus, for M = dmrdm >
dm(r − 1)dm, it suffices to compute F (ãi) modulo M .

This computation modulo M is done by working modulo distinct primes p1, p2, . . . , pk, each
not too large, such that their product exceeds M . Moreover, these primes are carefully chosen
using Lemma 4.3 which additionally ensures that there is a d̃ ∈ [0.8d, d] such that each of these
primes is in the arithmetic progression (1, 1 + d̃, 1 + 2d̃, . . .).

Given this additional structure on the primes, we next use Theorem 4.7 to solve the problem
of evaluating the polynomial fj = F mod pj on inputs {ai,j : i ∈ [N]}, where ai,j = ãi
mod pj over the field Fpj . Since fj is homogeneous and the divisibility condition needed in the
hypothesis of Theorem 4.7 holds, we have that this step works correctly and within the desired
time guarantees. In other words, for every i ∈ [N], the inputs to the Chinese Remainder Step
(Step 6) of the algorithm are all correct. Thus, each of the evaluations of F and hence, those of
f output by the algorithm are correct.

5.3 The Time Complexity of Algorithm 1
To bound the time complexity, we bound the time complexity of each of the steps of the algo-
rithm.

The first two steps of the algorithm essentially require no additional computation beyond a
reading of the input. We just semantically re-interpret the coefficients of f and the coordinates
of ai to be over the integers. Thus, these can be done in time (dm +N) · poly(log r,m, d). From
the choice of M in Step 3 and the guarantees in Lemma 4.3, it follows that the time complexity
of Step 3 is at most poly(logM,d) = poly(d,m, log r). Step 4 again takes at most (dm + N) ·
poly(d,m, log r) time since each of the primes pi has absolute value at most poly(d,m, log r) from
Lemma 4.3. For every j ∈ [k], it follows from Theorem 4.7 that multipoint evaluation of the
polynomial fj on inputs {ai,j : i ∈ [N]} ⊆ Fm

pj
takes at most (dm +N) ·Θ(1)m · poly(d,m, pj) =

(dm+N)·Θ(1)m ·poly(d,m, log r) from the bound on the magnitude of pj . However, we note that
to use Theorem 4.7, we need the inputs in this function call to satisfy the divisibility condition
in the hypothesis of the theorem, namely that d̃− 1 divides pj − 1. But we have already argued
this while arguing the correctness of the algorithm.

Step 6 is a straightforward application of the Chinese Remainder Theorem and using Theo-
rem 3.3, we can do this in time at most N · poly(k,maxj(log pj)) ≤ N · poly(d,m, log r). Finally,
the last step is just a sequence of N integer divisions involving numbers of bit complexity at
most logM , and hence can be implemented in time N · poly(logM) = N · poly(d,m, log r).

Thus, the overall time complexity of the algorithm is at most (dm +N)·Θ(1)m·poly(d,m, log r).
We summarize the above discussion in the following theorem.

Theorem 5.1. Let f(x) be a homogeneous m-variate polynomial over Z/rZ of individual degree
less than d. Let a1,a2, . . . ,aN be N points from (Z/rZ)m. Then, given (f,a1,a2, . . . ,aN , r) as
the input to Algorithm 1, it computes f(ai) for all i ∈ [N] in time

(dm +N) ·Θ(1)m · poly(m, d, log r).

19

6 The First Algorithm over Extension Rings
In this section, we extend the fast multivariate multipoint evaluation algorithm discussed in
the previous section to over extension rings of the form (Z/rZ)[z]/(E(z)) for a polynomial
E(z) ∈ Z/rZ[z], and in particular over all finite fields. This will prove our Theorem 1.1. Here,
the underlying ring is of the form (Z/rZ)[z]/(E(z)) where E(z) is a monic polynomial of degree
at most e − 1. The idea for this extension is essentially the same as that used by Kedlaya
and Umans in [KU11, §4.3] to extend their algorithm over rings of the form Z/rZ to other
extension rings. They essentially reduce an instance of multivariate multipoint evaluation over
extension rings to an instance over rings of the form Z/r′Z. Then, they invoke their multivariate
multipoint evaluation algorithm over Z/r′Z. For our proof, we use our Algorithm 1 for solving
the problem over Z/r′Z. The improved dependence on the number of variables for our algorithm
thus just follows from the improved dependence on the number of variables in the complexity
of Algorithm 1. The rest of the steps are the same as [KU11]. We now describe the steps of the
algorithm.

6.1 The Description of the Algorithm

Algorithm 2 The First Algorithm over Extension Rings
Algorithm MME-for-extension-rings-A(f(x),a1, . . . ,aN)

where R is the underlying ring represented as (Z/rZ)[z]/(E(z)) such that E(z) is a
degree e monic polynomial over Z/rZ, f(x) is an m-variate homogeneous polynomial
over R of individual degree less than d, and a1,a2, . . . ,aN are points in Rm.

Let M := dm(e(r − 1))(d−1)m+1 + 1 and r′ := M (e−1)dm+1.

1. Let F (x) ∈ Z[z][x] be the m-variate homogeneous polynomial of individual degree
less than d obtained by replacing each coefficient of f(x) (which is a polynomial in
Z/rZ[z]) with its natural lift to a polynomial in z over the integers by identifying
Z/rZ with the set of integers JrK. Similarly, for every i ∈ [N], let ãi ∈ Z[z]m be
the lift of the point ai ∈ Rm.

2. Let f(x) be the polynomial computed from F (x) by reducing its coefficients (which
are elements of Z[z]) modulo z −M and r′, i.e., for each of these polynomials in
Z[z], we first set z = M and then reduce the result modulo r′. Similarly, for all
i ∈ [N], ai is the point obtained from ãi by reducing each of its coordinates modulo
z −M and r′.

Note that from the choice of r′, going modulo r′ does not change anything com-
putationally, but formally reduces the problem to an instance of multivariate mul-
tipoint evaluation over Z/r′Z.

3. Call the function MME-A(f,a1,a2, . . . ,aN , r′)) in Algorithm 1 and get bi = f(ai)
for all i ∈ [N].

4. For all i ∈ [N], from bi compute the unique polynomial Qi(z) in Z[z] of degree
at most (e − 1)dm and coefficients are in JMK such that Qi(M) is congruent to
bi modulo r′. In other words, we compute base M representation of the natural
number bi. Finally, we compute Qi(z) modulo r and E(z) and get f(ai) for all
i ∈ [N].

20

6.2 The Correctness of Algorithm 2
We show that Algorithm 2 successfully computes f(ai) for all i ∈ [N]. From the first step of
the above algorithm, we observe that for all i ∈ [N], f(ai) equals F (ãi) modulo r and E(z).
Therefore, at the end of step 1, Algorithm 2 reduces the problem of computing f(ai) for all
i ∈ [N] over the extension ring to the problem of computing F (ãi) for all i ∈ [N] over integers.
The next natural step is to solve this problem of computing F (ãi) for all i ∈ [N] using Algorithm
1. To this end, we further reduce this problem of computing F (ãi) for i ∈ [N] to an instance of
multivariate multipoint evaluation over rings of the form Z/r′Z.

From the construction of F , we know that the coefficients of F (x) and the coordinates of ãi
are all polynomials in z of degree at most e − 1, and the coefficients of these polynomials are
integers in the set JrK. Thus, F (ãi) is a polynomial in z of degree at most (e−1)dm and each of
its coefficients is a non-negative integer of absolute value at most dm · (e(r−1))(d−1)m · (r−1) ≤
dm · (e(r − 1))(d−1)m+1, which by our choice of M is at most M − 1. Recall that an arbitrary
polynomial P ∈ Z[z] with non-negative integer coefficients of absolute value less than M can
be uniquely (and efficiently) recovered given its evaluation at M : just construct the base M
representation of P (M) (or equivalently P (z) mod (z −M)), and read off the digits of such a
representation. Based on this, we set ourselves the goal of computing F (ãi) by computing F (ãi)
mod (z−M). From the choice of r′, r′ is strictly larger than the integer F (ãi) mod (z−M) and
hence it suffices to compute F (ãi) mod (z−M) while working modulo r′. Note that this is equal
to f(ai) in our notation. This reduction is done in step 2 of the above algorithm and reduces the
original problem to an instance of multipoint evaluation over Z/r′Z. This computation, in turn
is done in step 3 of the algorithm using Algorithm 1. The output of this step is bi = f(ai) for all
i ∈ [N]. From bi, we get F (ãi) (which is the same as Qi(z) in the algorithm) by computing the
representation of the number bi with respect to the base M . From this, we get f(ai) easily by
reducing Qi(z) modulo r and E(z). This completes the proof of correctness of the algorithm.

6.3 The Time Complexity of Algorithm 2
In step 1 of Algorithm 2, the cost of lifting the polynomial f(x) and the points a1,a2, . . . ,aN
to over integers is O((dm +mN)e log r). Step 2 of the algorithm computes the polynomial f(x)
which is F (x) modulo z−M and r′. Computing F (x) modulo z−M is the same as evaluating
each of its coefficients at z = M . Since each coefficient of F (x) is a polynomial in z of degree at
most e − 1 and coefficients are in the set of integers JrK, evaluating each coefficient of F (x) at
z = M can be done in time e · poly(log r, logM) which is at most poly(d,m, e, log r). Also, note
that computationally reduction modulo r′ does not involve any actual computation since r′ is
very large and hence the cost of computing f(x) is dm · poly(d,m, e, log r). Similarly, computing
ai for all i ∈ [N] can be done in time N · poly(d,m, e, log r). Thus, the cost of the step 2 of
Algorithm 2 is (dm+N) ·poly(d,m, e, log r). Step 3 of the algorithm invokes the function MME-
A(f,a1,a2, . . . ,aN , r′) in Algorithm 1 and it runs in time (dm +N) ·Θ(1)m · poly(d,m, e, log r)
(see Theorem 5.1). In step 4, for each i ∈ [N], computing the polynomial Qi[z] from bi is the
same as computing a base M representation of the integer bi of absolute value at most r′ ≤
exp(poly(e, d,m, log r)). This can be done in time poly(d,m, e, log r). From Qi[z], computing
f(ai) involves reduction modulo r and E(z) and this takes time poly(d,m, e, log r). Hence, the
total cost of the step 4 is N · poly(d,m, e, log r).

Thus, the overall time complexity of Algorithm 2 is at most (dm+N)·Θ(1)m·poly(d,m, e, log r).

6.4 Proof of Theorem 1.1
Now, we describe the proof of Theorem 1.1.

Proof of Theorem 1.1. Let p be the characteristic of the underlying finite field F and |F| = pe.
Then, we can assume that F is represented by (Z/pZ)[z]/(E(z)) for some irreducible monic
polynomial over Z/pZ. Let f(x) be the input polynomial with m variables and degree less than
d in each variable, and a1,a2, . . . ,aN ∈ Fm be the input points. An m-variate polynomial of

21

individual degree less than d can have at most (d − 1)m + 1 many homogeneous components.
For all j ∈ J(d− 1)m+1K, let fj be the degree j homogeneous component of f . Each fj can be
computed in time dm · poly(d,m) by counting the degree of each monomial in f(x). Therefore,
the total cost of computing all fj ’s is dm · poly(d,m). Now for each j ∈ J(d − 1)m + 1K, we
invoke Algorithm 2 with input (fj(x),a1,a2, . . . ,aN) and compute fj(ai) for all i ∈ [N] in
time (dm + N) · Θ(1)m · poly(m, d, log |F|). Hence, the total cost of this step is bounded by
(dm +N) ·Θ(1)m · poly(m, d, log |F|). Note that f(ai) =

∑(d−1)m
j=0 fj(ai). This implies that for

each i ∈ [N], the cost of computing f(ai) from fj(ai)’s is poly(m, d, log |F|). Therefore, the total
cost incurred by this step is N ·poly(m, d, log |F|). Thus, the total time taken to compute f(ai) for
all i ∈ [N] is (dm+N) ·Θ(1)m ·poly(m, d, log |F|) which is (dm+N)1+o(1) ·poly(m, d, log |F|).

7 The Second Algorithm over Rings of the Form Z/rZ
The main result of this section is the following theorem.

Theorem 7.1. Over Z/rZ, for all m ∈ N and sufficiently large d ∈ N, there exists a determin-
istic algorithm that outputs the evaluation of an m-variate polynomial of degree less than d in
each variable on N points in time

(dm +N)1+o(1) · poly(m, d, log r),

provided that log◦c r ≤ do(1) for some fixed constant c ∈ N.

We need the following lemma. It gives a way of computing the evaluation of f(x) over a ring
R at a point a from the evaluations of Hasse derivatives of f(x) at another point b, provided
that the coordinates of a− b are in a nilpotent ideal of R.

Lemma 7.2. Let f(x) be an m-variate polynomial over a commutative ring R. Let I be an ideal
of R and s be a positive integer such that Is = 0. Let a = (a1, . . . , am),b = (b1, . . . , bm) ∈ Rm

such that ai ≡ bi (mod I) for i ∈ [m]. Then

f(a) =
∑

e∈Nm:|e|1<s

∂e(f)(b) · (a− b)e.

Proof. By the definition of Hasse derivatives,

f(a) = f(b+ (a− b)) =
∑
e∈Nm

∂e(f)(b) · (a− b)e.

The above sum is well-defined since ∂e(f) = 0 when |e|1 is sufficiently large. The lemma follows
by noting that (a− b)e is in the ideal I |e|1 , which is zero when |e|1 ≥ s.

7.1 A Basic Algorithm
We first describe a basic algorithm, MME-Product-Set, that evaluates a polynomial f(x) ∈
(Z/rsZ)[x] at N points in (Z/rsZ)m simultaneously. Its time complexity is not good enough,
but this will be improved in later subsections.

22

Algorithm 3 Basic Algorithm
Algorithm MME-Product-Set(f(x),a1,a2, . . . ,aN , r, s)

where f(x) is an m-variate polynomial over Z/rsZ of individual degree at most d − 1,
a1,a2 . . . ,aN are evaluation points in (Z/rsZ)m, and s ∈ [m].

1. For all e ∈ Nm with |e|1 < s, use Lemma 3.6 to compute fe(x) := ∂e(f)(x) ∈
(Z/rsZ)[x].

2. For all e ∈ Nm with |e|1 < s, use Lemma 3.10 to compute fe(a) ∈ Z/rsZ for
a ∈ JrKm, where JrK is identified with a subset of Z/rsZ via i 7→ i+ rsZ.

3. For all i ∈ [N], compute āi ∈ JrKm ⊆ (Z/rsZ)m such that the coordinates of āi
are the remainders of the corresponding coordinates of ai modulo r.

4. For all i ∈ [N], compute f(ai) by

f(ai) =
∑

e∈Nm:|e|1<s

fe(āi) · (ai − āi)
e ∈ Z/rsZ (7.3)

and output it.

Lemma 7.4. Given the input (f(x),a1,a2, . . . ,aN , r, s), the algorithm MME-Product-Set
computes f(ai) for all i ∈ [N] in time O(

(
m+s−1
s−1

)
(dm + rm +N)) · poly(m, d, log r).

Proof. Let I = rZ/rsZ. Then Is = 0 and the coordinates of ai − āi are all in I. So (7.3) holds
by Lemma 7.2. This shows that the algorithm correctly computes f(ai) for i ∈ [N].

Step 1 takes time O(
(
m+s−1
s−1

)
dm) · poly(m, d, log r) by Lemma 3.6. And Step 2 takes time

O(
(
m+s−1
s−1

)
(dm+ rm)) ·poly(m, d, log r) by Lemma 3.10. Step 3 takes time O(N) ·poly(m, log r).

Finally, Step 4 takes time O(
(
m+s−1
s−1

)
N) · poly(m, log r). So the total time complexity is

O(
(
m+s−1
s−1

)
(dm + rm +N)) · poly(m, d, log r).

7.2 The Description of the Algorithm
We describe the second algorithm MME-B now.

23

Algorithm 4 The Second Algorithm over Z/rsZ
Algorithm MME-B(f(x),a1,a2, . . . ,aN , r, s, t)

where f(x) is an m-variate polynomial over Z/rsZ of individual degree at most d − 1,
a1,a2 . . . ,aN are evaluation points in (Z/rsZ)m, s ∈ [m], and t ≥ 0 is the depth of the
reduction tree.

1. If t = 0, invoke MME-Product-Set with input (f(x),a1,a2, . . . ,aN , r, s) to
compute f(ai) for i ∈ [N], and return.

2. For all e ∈ Nm with |e|1 < s, use Lemma 3.6 to compute fe(x) := ∂e(f)(x) ∈
(Z/rsZ)[x], and then compute a lift f̃e(x) ∈ Z[x] of fe(x) with coefficients in JrsK.

3. For all i ∈ [N], compute ãi ∈ JrKm such that the coordinates of ãi are the re-
mainders of the corresponding coordinates of ai modulo r, and compute āi :=
ãi mod rs ∈ (Z/rsZ)m.

4. Let M := d(r−1)d. Find primes p1 < p2 < · · · < pk less than or equal to 16 logM
such that

∏k
j=1 pj > M .

5. For all e ∈ Nm with |e|1 < s and j ∈ [k], compute fe,j(x) := f̃e(x) mod pmj ∈
(Z/pmj Z)[x].

6. For all i ∈ [N] and j ∈ [k], compute ai,j := ãi mod pmj ∈ (Z/pmj Z)m.

7. For all e ∈ Nm with |e|1 < s and j ∈ [k], invoke MME-B with input
(fe,j ,a1,j ,a2,j , . . . ,aN,j , pj ,m, t− 1) to compute fe,j(ai,j) ∈ Z/pmj Z for i ∈ [N].

8. For all e ∈ Nm with |e|1 < s and i ∈ [N], use the Chinese Remainder Theorem
(Theorem 3.3) to compute f̃e(ãi) as the unique Qi ∈

r∏k
j=1 p

m
j

z
such that Qi mod

pmj = fe,j(ai,j) for j ∈ [k], and then compute fe(āi) = f̃e(ãi) mod rs ∈ Z/rsZ.

9. For all i ∈ [N], compute and output

f(ai) =
∑

e∈Nm:|e|1<s

fe(āi) · (ai − āi)
e ∈ Z/rsZ. (7.5)

7.3 The Correctness of Algorithm 4
We prove the correctness of the algorithm MME-B (Algorithm 4), as stated by the following
claim.

Claim 7.6. Given the input (f(x),a1,a2, . . . ,aN , r, s, t), the algorithm MME-B computes f(ai)
for all i ∈ [N].

Proof. We prove the claim via induction on t. When t = 0, the algorithm invokes MME-
Product-Set in Step 1 to compute f(ai) for i ∈ [N] and the claim holds by Lemma 7.4.

Now consider t ≥ 1 and assume the claim holds for t′ = t− 1.
In Step 2, we compute the Hasse derivatives fe(x) = ∂e(f)(x) of f(x) and then lift them to

f̃e(x) ∈ Z[x]. In Step 3, we compute ãi ∈ JrKm from ai and then compute āi := ãi mod rs ∈

24

(Z/rsZ)m. In Step 4, we compute the primes pj , whose existence follows from Lemma 3.2. In
Step 5 and Step 6, we compute fe,j(x) := f̃e(x) mod pmj and ai,j := ãi mod pmj respectively.

In Step 7, we invoke MME-B with input (fe,j ,a1,j ,a2,j , . . . ,aN,j , pj ,m, t′) where t′ = t− 1.
By the induction hypothesis, this correctly returns fe,j(ai,j) ∈ Z/pmj Z for i ∈ [N].

In Step 8, we use the Chinese Remainder Theorem (Theorem 3.3) to compute the unique
Qi ∈

r∏k
j=1 p

m
j

z
for i ∈ [N] such that

Qi mod pmj = fe,j(ai,j) for j ∈ [k].

We claim f̃e(ãi) = Qi. As fe,j(x) = f̃e(x) mod pmj and ai,j := ãi mod pmj , we do have

f̃e(ãi) mod pmj = fe,j(ai,j) for j ∈ [k].

To prove the claim, it remains to show that f̃e(ãi) ∈
r∏k

j=1 p
m
j

z
. As ãi ∈ JrKm, f̃e(x) is a

polynomial of total degree at most (d− 1)m with at most dm monomials, and the coefficients of
these monomials are in JrsK, we see that f̃e(ãi) is a non-negative integer bounded by dm ·(rs−1)·
(r− 1)(d−1)m < dmrdm <

∏k
j=1 p

m
j . Here we use the facts s ≤ m and

∏k
j=1 pj > M = d(r− 1)d.

So f̃e(ãi) = Qi.
We also compute fe(āi) = f̃e(ãi) mod rs ∈ Z/rsZ in Step 8. This equality holds since

f̃e(x) mod rs = fe(x) and ãi mod rs = āi.
Finally, in Step 9, we compute f(ai) from the evaluations fe(āi) for i ∈ [N] using (7.5). Let

I = rZ/rsZ. Then Is = 0 and the coordinates of ai − āi are all in I by the choice of āi. So
(7.3) holds by Lemma 7.2. This proves the correctness of the algorithm.

7.4 The Time Complexity of Algorithm 4
We now analyze the time complexity of Algorithm 4. When t = 0, the algorithm only executes
Step 1, and its time complexity is O(

(
m+s−1
s−1

)
(dm + rm +N)) · poly(m, d, log r) by Lemma 7.4.

Now assume t ≥ 1. Step 2 takes time O(
(
m+s−1
s−1

)
dm) · poly(m, d, log r) by Lemma 3.6.

Step 3 takes time O(N) · poly(m, log r). In Step 4, we compute the primes pj using the Sieve of
Eratosthenes [Sho08, §5.4], which takes time Õ(logM) ≤ poly(d, log r).

Using k ≤ pk = O(logM) = O(d log r), we see that Step 5 takes time O(
(
m+s−1
s−1

)
dm) ·

poly(m, d, log r), and Step 6 takes time O(N) ·poly(m, d, log r). Step 8 takes time O(
(
m+s−1
s−1

)
N) ·

poly(m, d, log r) by Theorem 3.3. Step 9 takes time O(
(
m+s−1
s−1

)
N) · poly(m, d, log r).

So the total time complexity of Steps 2–6 and 8–9 is

O

((
m+ s− 1

s− 1

)
(dm +N)

)
· poly(m, d, log r).

Let T (r, s, t) be the time complexity of the algorithm. We have

T (r, s, 0) = O

((
m+ s− 1

s− 1

)
(dm + rm +N)

)
· poly(m, d, log r). (7.7)

And for t ≥ 1,

T (r, s, t) ≤ O

((
m+ s− 1

s− 1

)
logM

)
T (r′,m, t−1)+O

((
m+ s− 1

s− 1

)
(dm +N)

)
poly(m, d, log r).

(7.8)
where r′ = O(logM) = O(d log r).

For convenience, we define the function

λk(x) :=

min{k,log⋆ x−1}∏
i=0

log◦i x.

Observe that λk(x) = x1+o(1) and that λi(x) ≤ λj(x) for i ≤ j and x ≥ 1.

25

Claim 7.9. Let r0 = r ≥ 2 and ri = cd log ri−1 for i ≥ 1, where c ≥ 1 is a constant. Then
rk ≤ c′λk(d) log

◦k r for all 0 ≤ k < log⋆ r and a sufficiently large constant c′ ≥ 1.

Proof. Induct on k. The claim holds obviously holds for k = 0. Now let k ≥ 1. Assume the
claim holds for k′ = k − 1. Then

rk = cd log rk−1 ≤ cd log(c′λk−1(d) log
◦(k−1) r) = cd log c′ + cd log(λk−1(d)) + cd log◦k r.

As c′ is sufficiently large, we may assume cd log c′ + (c′/2)λk(d) + cd log◦k r ≤ c′λk(d) log
◦k r. It

remains to prove cd log(λk−1(d)) ≤ (c′/2)λk(d). Here

log(λk−1(d)) =

min{k,log⋆ d}∑
i=1

log◦i d and λk(d)/d =

min{k,log⋆ d−1}∏
i=1

log◦i d

Repeatedly applying the fact that ab ≥ a + b when a, b ≥ 2 shows that c log(λk−1(d)) ≤
(c′/2)λk(d)/d for a sufficiently large constant c′, and hence cd log(λk−1(d)) ≤ (c′/2)λk(d).

By Claim 7.9, at the k-th level of the recursion tree (where the top level is regarded as the first
level), we have logM = O(λk(d) log

◦k r) ≤ O(λt(d) log
◦k r). Using this to solve the recurrence

relations (7.7) and (7.8), and noting that
(
m+s−1
s−1

)
≤ 2O(m) for s ≤ m (see Proposition 3.1), we

obtain

T (r, s, t) = O

((
m+ s− 1

s− 1

)
2Ctmλt(d)

tλt−1(log r)
(
(λt(d) log

◦t r)m +N
))

· poly(m, d, log r)

for 0 ≤ t < log⋆(r), where C is a large enough absolute constant.
Combining the above time complexity analysis with Claim 7.6 yields the following theorem.

Theorem 7.10. Let f(x) be an m-variate polynomial over Z/rsZ of individual degree less than
d, where s ≤ m. Let a1,a2, . . . ,aN be N points in (Z/rZ)m. Let t be a non-negative integer
less than log⋆ r. Then, given (f,a1,a2, . . . ,aN , r, s, t), the algorithm MME-B computes f(ai)
for all i ∈ [N] in time

O

((
m+ s− 1

s− 1

)
2Ctmλt(d)

tλt−1(log r)
(
(λt(d) log

◦t r)m +N
))

· poly(m, d, log r).

where C > 0 is a large enough absolute constant.

Now we are ready to prove Theorem 7.1. For convenience, we restate the theorem.

Theorem 7.1. Over Z/rZ, for all m ∈ N and sufficiently large d ∈ N, there exists a determin-
istic algorithm that outputs the evaluation of an m-variate polynomial of degree less than d in
each variable on N points in time

(dm +N)1+o(1) · poly(m, d, log r),

provided that log◦c r ≤ do(1) for some fixed constant c ∈ N.

Proof. We invoke the algorithm MME-B for t = min{c, log⋆ r − 1} and s = 1. Then, from
Theorem 7.10, we get the evaluations in time

O
(
2Ctmλt(d)

tλt−1(log r)((λt(d) log
◦t r)m +N)

)
· poly(m, d, log r).

where C > 0 is a large enough absolute constant. From the definition, λt(d) = d1+o(1). Also,
log◦t r = do(1). Therefore, λt(d) log

◦t r = d1+o(1). Since t is bounded by some constant,
2Ctmλt(d)

t = 2O(m) · poly(d). Also, λt−1(log r) = (log r)1+o(1). Thus, the overall time com-
plexity is bounded by

(dm +N)1+o(1) · poly(m, d, log r).

26

8 The Second Algorithm over Extension Rings
The main result of this section is the following theorem.

Theorem 8.1. Over a ring R = (Z/rZ)[z]/(E(z)), where E(z) ∈ (Z/rZ)[z] is a monic poly-
nomial of degree e ≥ 1, for all m ∈ N and sufficiently large d ∈ N, there exists a deterministic
algorithm that outputs the evaluation of an m-variate polynomial of degree less than d in each
variable on N points in time

(dm +N)1+o(1) · poly(m, d, log |R|),

provided that log◦c |R| ≤ do(1) for some fixed constant c ∈ N.

Remark. By choosing r to be a prime number p and E(z) to be a monic irreducible polynomial
over Fp, we see that Theorem 1.1 follows from Theorem 8.1 assuming that the size of the finite
field is at most (exp(exp(exp(· · · (exp(d))))), where the height of the tower of exponentials is
some constant. ♢

We present an algorithm MME-For-Extension-Rings-B, built on the algorithm MME-
B in the previous section, that allows us to prove Theorem 8.1. Let R := (Z/rZ)[z]/(E(z)).
Given an m-variate polynomial f(x) over R and N evaluation points a1,a2 . . . ,aN ∈ Rm, the
algorithm outputs the evaluations of f(x) at a1,a2 . . . ,aN .

Following the algorithm in [KU11, §4.3], also presented in Section 6, our first step is lifting
f(x) to a polynomial F (x) ∈ (Z[z])(x), and similarly lifting the evaluation points a1,a2, . . . ,aN
to ã1, ã2, . . . , ãN ∈ Z[z]m, such that the coefficients or coordinates of the lifts are reasonably
bounded. More specifically, the coefficients of F (x) and the coordiantes of ai’s are polynomials in
Z[z] with degree at most e−1 and the coefficients are in JrK. Let M := dm(e(r−1))(d−1)m+1+1.
Then, Kedlaya and Umans observed that for all i ∈ [N], F (ãi) is a polynomial in z with degree
at most (e− 1)dm and the coefficients are less than M . Therefore, if we know F (ãi) at z = M ,
we can compute F (ãi). Since the evaluation of F (ãi) at z = M is less than r′ = M (e−1)dm+1,
[KU11] reduces the computing of F (ãi) to the computing of F (x) mod (r′, z−M). In this way,
[KU11] showed that we can reduce the multivariate multipoint evaluation problem over R to
that over Z[z]/(r′, z − M) = Z/r′Z, and the latter can be solved by the algorithm MME-B
(Algorithm 4).

The problem with applying this reduction to prove Theorem 8.1 is that r′ is too large for us,
being exponential in m2. If we simply use this reduction, the resulting algorithm would have
the claimed time complexity only when m is at most (exp(exp(exp(· · · (exp(d))))), where the
height of the tower of exponentials is some constant.

To resolve this issue, we give a more efficient reduction, which leads to the algorithm MME-
For-Extension-Rings-B in this section. The following is a brief overview of the algorithm.

Overview. Our goal is to compute F (ãi) for each i ∈ [N], whose remainder modulo (r, E(z))
would give the desired evaluation f(ai). As mentioned above, for each i ∈ [N], F (ãi) is a
polynomial in Z[z] with degree less than (e − 1)md + 1 and the coefficients are less than M .
In [KU11], they interpolated F (ãi) from its evaluation at a single point z = M . Contrary to
them, we interpolate F (ãi) from its evaluation at multiple points. Since the degree of F (ai)
is less than (e − 1)dm + 1, one way can be to compute the evaluations of F (ai) at all the
points in J(e − 1)dm + 1K , and then interpolate F (ai). This would reduce the computation
of F (ai) for all i ∈ [N] to (e − 1)dm + 1 instances of multivariate multipoint evaluation over
Z. Next, to solve those instances using the algorithm MME-B (Algorithm 4), we need to
reduce them as instances of multivariate multipoint evaluation over rings of form Z/r′sZ where
s ∈ [m]. For proving Theorem 8.1, we want the value of r′ is independent of m. Since the
coefficients of F (ai) are less than M , it would be sufficient for us to compute F (ai) mod M .
Since M1/m = O(d(er)d), which is independent of m, one can pick r′ as an integer greater than
M1/m and try to work over the ring Z/r′mZ. However, there is a problem with this approach.
To interpolate F (ãi) mod r′m from its evaluations at the points in J(e− 1)dm+ 1K, we need to

27

ensure that (j− j′) is a unit in the ring Z/r′mZ for distinct j, j′ ∈ J(e−1)dm+1K. One possible
way to satisfy both the constraints is by picking r′ as a prime power greater than M1/m for
some prime larger than (e − 1)dm. This imposes that r′ has to be at least (e − 1)dm, which
makes it dependent on m. To overcome this issue, we do the following.

1. Let ℓ = ed and P be a prime in [ℓ, 2ℓ]. Then, we pick r′ as a P -power greater than M1/m.

2. For every j ∈ JℓK, we compute F (ãi) mod (r′m, (z − j)m).

The first condition ensures that r′ is independent of m and for distinct j, j′ ∈ JℓK, (j − j′) is a
unit in Z/r′mZ. Therefore, from F (ai) mod (r′m, (z− j)m) for all j ∈ JℓK, we get F (ãi) modulo
r′m using Hermite interpolation (Lemma 3.9) over Z/r′mZ. This is sufficient to compute F (ãi),
since the coefficients of F (ãi) are less than r′m.

How do we compute F (ãi) mod (r′m, (z − j)m)? Consider the Taylor expansion ãi ≡∑e−1
u=0 ai,j,u(z−j)u mod r′m where the coefficients ai,u ∈ Z/r′mZ. Let F (x) ≡

∑e−1
u=0 fu(x)z

u mod
r′m where fu(x) ∈ (Z/r′mZ)[x] is the coefficient of zu in F (x) mod r′m. This implies that
F (ãi) mod (r′m, (z− j)m) is same as the

∑e−1
i=1 (fu(ãi)z

u mod (z− j)m) since the choice of r′ en-
sures that ãi mod r′m is same as ãi. From Lemma 7.2, fu(ãi)zu mod (z− j)m can be computed
from the evaluations of fe,u(x) at ai,j,0 for all e ∈ Nn with |e|1 < m. This shows that the evalu-
ation of F (ãi) mod (r′m, (z− j)m) can be computed from the evaluations of fe,u(x) at ai,j,0 for
all e ∈ Nn with |e|1 < m. Thus, for every e ∈ Nm with |e|1 < m, j ∈ JℓK and u ∈ JeK, we need to
solve the following instance of multivariate multipoint evaluation (fe,u,a1,j,0,a2,j,0, . . . ,aN,j,0)
over the ring Z/r′mZ. The latter problem can be solved using the algorithm MME-B (Algorithm
4).

8.1 The Description of the Algorithm
Now, we formally describe the algorithm MME-For-Extension-Rings-B.

28

Algorithm 5 The Second Algorithm over Extension Rings
Algorithm MME-For-Extension-Rings-B(f(x),a1,a2, . . . ,aN , r, t, E(z))

where f(x) is an m-variate polynomial over R := (Z/rZ)[z]/(E(z)) of individual degree
at most d − 1, E(z) ∈ (Z/rZ)[z] is a monic polynomial of degree e ≥ 1, a1,a2 . . . ,aN
are evaluation points in Rm, and t ≥ 0 is the depth of the reduction tree.

1. Compute F (x) ∈ (Z[z])[x] as a lift of f(x) such that every coefficient of F (x) is a
polynomial in z of degree at most e− 1 with coefficients in JrK.

2. For all i ∈ [N], compute ãi ∈ Z[z]m as a lift of ai such that every coordinate of ãi
is a polynomial in z of degree at most e− 1 with coefficients in JrK.

3. Let ℓ = ed. Choose a prime P ∈ [ℓ, 2ℓ]. Choose the smallest P -power r′ such that
r′ ≥ d(er)d. Compute F̄ (x) := F (x) mod r′m ∈ Z/r′mZ. For i ∈ [N], compute
āi := ãi mod r′m ∈ (Z/r′mZ)[z]m.

4. Compute f0(x), f1(x) . . . , fe−1(x) ∈ (Z/r′mZ)[x] such that F̄ (x) =
∑e−1

u=0 fu(x)z
u.

For all i ∈ [N] and j ∈ JℓK, compute ai,j,0,ai,j,1, . . . ,ai,j,e−1 ∈ (Z/r′mZ)m such
that āi =

∑e−1
u=0 ai,j,u(z − j)u.

5. For all e ∈ Nm with |e|1 < m and u ∈ JeK, use Lemma 3.6 to compute fe,u(x) :=
∂e(fu)(x) ∈ (Z/r′mZ)[x].

6. For all e ∈ Nm with |e|1 < m, j ∈ JℓK, and u ∈ JeK, invoke MME-B with
input (fe,u,a1,j,0,a2,j,0, . . . ,aN,j,0, r

′,m, t) to compute fe,u(ai,j,0) ∈ Z/r′mZ for all
i ∈ [N].

7. For all i ∈ [N] and j ∈ JℓK, compute

bi,j(z) =

e−1∑
u=0

∑
e∈Nm:|e|1<m

fe,u(ai,j,0)(āi − ai,j,0)
ezu

 mod (z − j)m

which is a polynomial of degree at most m− 1 in z over Z/r′mZ.

8. For all i ∈ [N], use Hermite interpolation (Lemma 3.9) to compute the unique
polynomial bi(z) ∈ (Z/r′mZ)[z] of degree less than ℓm such that bi(z) ≡ bi,j(z)
(mod (z − j)m) for j ∈ JℓK.

9. For all i ∈ [N], lift bi(z) to Bi(z) ∈ Z[z] with coefficients in Jr′mK, and output the
remainder of Bi(z) modulo (r, E(z)) as f(ai).

8.2 The Correctness of Algorithm 5
We prove the correctness of the algorithm MME-For-Extension-Rings-B (Algorithm 5), as
stated by the following claim.

Claim 8.2. Given the input (f(x),a1,a2, . . . ,aN , r, t, E(z)), the algorithm MME-For-Extension-
Rings-B computes f(ai) for all i ∈ [N].

Proof. The first two steps of the algorithm compute the lifts F (x) and ãi for i ∈ [N]. As shown

29

in Section 6.2, for each i ∈ [N], the degree of F (ãi) ∈ Z[z] is bounded by (e − 1)md, and the
coefficients of F (ãi) are non-negative integers less than M := dm(e(r − 1))(d−1)m+1 + 1.

Next, we let ℓ = ed and compute a prime P ∈ [ℓ, 2ℓ], which can be done by Bertrand’s
postulate. Then we find the smallest P -power r′ such that r′ ≥ d(er)d, which guarantees
r′m ≥ dm(er)dm ≥ M . Next, we compute F̄ (x) := F (x) mod r′m and for i ∈ [N], compute
āi := ãi mod r′m ∈ (Z/r′mZ)[z]m, so that F̄ (āi) = F (ãi) mod r′m. As the coefficients of F (ãi)
are non-negative integers less than M ≤ r′m, to compute F (ãi), we just need to first compute
F̄ (āi) and then lift its coefficients to integers in Jr′mK. This is precisely what the remaining
steps (Steps 4–9) do.

In Step 4, we compute the data fu(x) ∈ (Z/r′mZ)[x] and ai,j,u ∈ (Z/r′mZ)m such that
F̄ (x) =

∑e−1
u=0 fu(x)z

u and āi =
∑e−1

u=0 ai,j,u(z − j)u. This is possible as the coefficients of F̄ (x)
and the coordinates of each āi are polynomials of degree at most e−1 in z over Z/r′mZ. Then in
Step 5, we compute the data fe,u(x) := ∂e(fu)(x) ∈ (Z/r′mZ)[x] for all e ∈ Nm with |e|1 < m.
And in Step 6, we compute the evaluations fe,u(ai,j,0) ∈ Z/r′mZ using the algorithm MME-B.

Consider i ∈ [N] and j ∈ JℓK. For u ∈ JeK, as āi − ai,j,0 =
∑e−1

u=1 ai,j,u(z − j)u is a multiple
of z − j, Lemma 7.2 gives

fu(āi) ≡
∑

e∈Nm:|e|1<m

fe,u(ai,j,0)(āi − ai,j,0)
e (mod (z − j)m).

Therefore,

F̄ (āi) =

e−1∑
u=0

fu(āi)z
u ≡

e−1∑
u=0

∑
e∈Nm:|e|1<m

fe,u(ai,j,0)(āi − ai,j,0)
ezu (mod (z − j)m).

We compute bi,j(z) := F̄ (āi) mod (z − j)m in Step 7 using the above equation.
In Step 8, we compute bi(z) = F̄ (āi) from its remainders bi,j modulo (z − j)m for i ∈ [N]

and j ∈ JℓK using Hermite interpolation (Lemma 3.9). As ℓ = ed, we have degz(F̄ (āi)) ≤
(e − 1)md < ℓm. And as r′ is a power of a prime P and P ≥ ℓ, the difference j − j′ has a
multiplicative inverse in Z/r′mZ for distinct j, j′ ∈ JℓK. So bi(z) can indeed be found using
Hermite interpolation.

Finally, in Step 9, we compute the lift F (ãi) from F̄ (āi), and then output f(ai) = F (ãi) mod
(r, E(z)), as desired.

8.3 The Time Complexity of Algorithm 5
We now analyze the time complexity of Algorithm 5. Step 1 takes time O(dm)·poly(m, d, log |R|).
And Step 2 takes time O(N) · poly(m, log |R|). Note ℓ, log r′ ≤ poly(d, log |R|). Then Step 3
and Step 4 both take time O(dm + N) · poly(m, d, log |R|). By Lemma 3.6, Step 5 takes
time O(

(
2m−1
m−1

)
dm) · poly(m, d, log |R|). Step 7 takes time O(

(
2m−1
m−1

)
N) · poly(m, d, log |R|).

By Lemma 3.9, Step 8 takes time O(N) · poly(m, d, log |R|). And Step 9 takes time O(N) ·
poly(m, log |R|).

Finally, by Theorem 7.10, the time complexity of Step 6 is bounded by

O
(
2C(t+1)mλt(d)

tλt−1(log r
′)
(
(λt(d) log

◦t r′)m +N
))

· poly(m, d, log |R|).

for 0 ≤ t < log⋆(r′), where r′ ∈ [d(er)d, 2ed2(er)d] is as in the algorithm and C > 0 is a large
enough absolute constant. This step dominates the time complexity of the whole algorithm.

Combining the above time complexity analysis with Claim 8.2 yields the following theorem.

Theorem 8.3. Let f(x) be an m-variate polynomial over R = (Z/rZ)[z]/(E(z)) of individual
degree less than d, where E(z) is a monic polynomial of degree e ≥ 1. Let a1,a2, . . . ,aN
be N points in Rm. Let t be a non-negative integer less than log⋆(d(er)d). Then, given

30

(f,a1,a2, . . . ,aN , r, t, E(z)), the algorithm MME-For-Extension-Rings-B computes f(ai)
for all i ∈ [N] in time

O
(
2C(t+1)mλt(d)

tλt−1(log r
′)
(
(λt(d) log

◦t r′)m +N
))

· poly(m, d, log |R|).

where r′ = 2ed2(er)d and C > 0 is a large enough absolute constant.

Now we are ready to prove Theorem 8.1. For convenience, we restate it here.

Theorem 8.1. Over a ring R = (Z/rZ)[z]/(E(z)), where E(z) ∈ (Z/rZ)[z] is a monic poly-
nomial of degree e ≥ 1, for all m ∈ N and sufficiently large d ∈ N, there exists a deterministic
algorithm that outputs the evaluation of an m-variate polynomial of degree less than d in each
variable on N points in time

(dm +N)1+o(1) · poly(m, d, log |R|),

provided that log◦c |R| ≤ do(1) for some fixed constant c ∈ N.

Proof. We invoke the algorithm MME-For-Extension-Rings-B for t = max{c, 2}, which is
less than log⋆(d(er)d) as d is sufficiently large. Then, from Theorem 8.3, we get the evaluations
in time

O
(
2C(t+1)mλt(d)

tλt−1(log r
′)
(
(λt(d) log

◦t r′)m +N
))

· poly(m, d, log |R|).

where r′ = 2ed2(er)d and C > 0 is a large enough absolute constant. From the definition,
λt(d) = d1+o(1). Noting that log log r′ = O(log d + log log |R|), log◦c |R| ≤ do(1), and t =
max{c, 2}, we have log◦t r′ = do(1). Therefore, λt(d) log

◦t r′ = d1+o(1). Since t is bounded by
some constant, 2C(t+1)mλt(d)

t = 2O(m) · poly(d). Also, λt−1(log r
′) ≤ poly(d, log |R|). Thus, the

overall time complexity is bounded by

(dm +N)1+o(1) · poly(m, d, log |R|).

Acknowledgement
Mrinal is thankful to Swastik Kopparty for introducing him to the question of multipoint evalua-
tion and the work of Kedlaya–Umans [KU11] and to Prahladh Harsha and Ramprasad Sapthar-
ishi for many helpful discussions.

References
[AKS04] Manindra Agrawal, Neeraj Kayal, and Nitin Saxena. PRIMES is in P. Annals of

Mathematics, 160(2):781–793, 2004.

[BGKM21] Vishwas Bhargava, Sumanta Ghosh, Mrinal Kumar, and Chandra Kanta Mohapa-
tra. Fast, Algebraic Multivariate Multipoint Evaluation in Small Characteristic and
Applications. arXiv preprint arXiv:2111.07572, 2021. To appear in STOC 2022.

[BKW19] Andreas Björklund, Petteri Kaski, and Ryan Williams. Generalized Kakeya Sets
for Polynomial Evaluation and Faster Computation of Fermionants. Algorithmica,
81(10):4010–4028, 2019.

[BM74] Allan Borodin and Robert Moenck. Fast Modular Transforms. Journal of Computer
and System Sciences, 8(3):366–386, 1974.

[Bom65] Enrico Bombieri. On the Large Sieve. Mathematika, 12:201–225, 1965.

31

http://dx.doi.org/10.4007/annals.2004.160.781
https://arxiv.org/abs/2111.07572
https://arxiv.org/abs/2111.07572
http://dx.doi.org/10.1007/s00453-018-0513-7
http://dx.doi.org/10.1007/s00453-018-0513-7
http://dx.doi.org/https://doi.org/10.1016/S0022-0000(74)80029-2
http://dx.doi.org/10.1112/S0025579300005313

[For14] Michael Forbes. Polynomial Identity Testing of Read-Once Oblivious Algebraic
Branching Programs. PhD thesis, Massachusetts Institute of Technology, 2014.

[Juk11] Stasys Jukna. Extremal Combinatorics: With Applications in Computer Science.
Springer, second edition, 2011.

[Ked15] Kiran Kedlaya. Lecture notes for the course ‘Analytic Number Theory’, 2015.

[KU11] Kiran Kedlaya and Christopher Umans. Fast Polynomial Factorization and Modular
Composition. SIAM Journal on Computing, 40(6):1767–1802, 2011.

[Lan02] Serge Lang. Algebra. Springer-Verlag, New York Inc., third edition, 2002.

[May20] James Maynard. Primes in Arithmetic Progressions to Large Moduli I: Fixed
Residue Classes. arXiv preprint arXiv:2006.06572, 2020.

[NZ04] Michael Nüsken and Martin Ziegler. Fast Multipoint Evaluation of Bivariate Polyno-
mials. In Algorithms – ESA 2004, pages 544–555, Berlin, Heidelberg, 2004. Springer
Berlin Heidelberg.

[Sho08] Victor Shoup. A Computational Introduction to Number Theory and Algebra.
Cambridge University Press, New York, second edition, 2008. Available from
https://shoup.net/ntb/.

[Sie35] Carl Siegel. Über die Classenzahl quadratischer Zahlkörper. Acta Arithmetica,
1(1):83–86, 1935.

[Uma08] Christopher Umans. Fast Polynomial Factorization and Modular Composition in
Small Characteristic. In Proceedings of the 40th Annual ACM Symposium on Theory
of Computing, Victoria, British Columbia, Canada, May 17-20, 2008, pages 481–
490. ACM, 2008.

[Vin65] A. I. Vinogradov. The Density Hypothesis for the Dirichlet L-series. Izvestiya
Rossiiskoi Akademii Nauk. Seriya Matematicheskaya, 29:903–934, 1965.

[vzGG13] Joachim von zur Gathen and Jürgen Gerhard. Modern Computer Algebra. Cam-
bridge University Press, third edition, 2013.

[Wal36] Arnold Walfisz. Zur additiven Zahlentheorie. II. Mathematische Zeitschrift,
40(1):592–607, 1936.

32
ECCC ISSN 1433-8092

https://eccc.weizmann.ac.il

http://hdl.handle.net/1721.1/89843
http://hdl.handle.net/1721.1/89843
http://dx.doi.org/10.1007/978-3-642-17364-6
https://kskedlaya.org/papers/ant-overall.pdf
http://dx.doi.org/10.1137/08073408X
http://dx.doi.org/10.1137/08073408X
http://dx.doi.org/10.1007/978-1-4613-0041-0
https://arxiv.org/abs/2006.06572
https://arxiv.org/abs/2006.06572
http://dx.doi.org/10.1007/978-3-540-30140-0_49
http://dx.doi.org/10.1007/978-3-540-30140-0_49
http://dx.doi.org/10.1017/CBO9780511814549
https://shoup.net/ntb/
https://eudml.org/doc/205054
http://dx.doi.org/10.1145/1374376.1374445
http://dx.doi.org/10.1145/1374376.1374445
http://dx.doi.org/10.1017/CBO9781139856065
http://dx.doi.org/10.1007/BF01218882

