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Abstract

In this paper, we prove strengthened lower bounds for constant-depth set-multilinear formulas. More
precisely, we show that over any field, there is an explicit polynomial f in VNP defined over n2 vari-
ables, and of degree n, such that any product-depth ∆ set-multilinear formula computing f has size at

least nΩ(n1/∆/∆). The hard polynomial f comes from the class of Nisan-Wigderson (NW) design-based
polynomials.

Our lower bounds improve upon the recent work of Limaye, Srinivasan and Tavenas (STOC 2022),

where a lower bound of the form (logn)Ω(∆n1/∆) was shown for the size of product-depth ∆ set-multilinear
formulas computing the iterated matrix multiplication (IMM) polynomial of the same degree and over
the same number of variables as f . Moreover, our lower bounds are novel for any ∆ ≥ 2.

The precise quantitative expression in our lower bound is interesting also because the lower bounds
we obtain are “sharp” in the sense that any asymptotic improvement would imply general set-multilinear
circuit lower bounds via depth reduction results.

In the setting of general set-multilinear formulas, a lower bound of the form nΩ(logn) was already
obtained by Raz (J. ACM 2009) for the more general model of multilinear formulas. The techniques
of LST (which extend the techniques of the same authors in (FOCS 2021)) give a different route to
set-multilinear formula lower bounds, and allow them to obtain a lower bound of the form (logn)Ω(logn)

for the size of general set-multilinear formulas computing the IMM polynomial. Our proof techniques are
another variation on those of LST, and enable us to show an improved lower bound (matching that of
Raz) of the form nΩ(logn), albeit for the same polynomial f in VNP (the NW polynomial). As observed
by LST, if the same nΩ(logn) size lower bounds for unbounded-depth set-multilinear formulas could be
obtained for the IMM polynomial, then using the self-reducibility of IMM and using hardness escalation
results, this would imply super-polynomial lower bounds for general algebraic formulas.
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1 Introduction

Background. An algebraic circuit over a field F for a multivariate polynomial P (x1, . . . , xN ) is a directed
acyclic graph (DAG) whose internal vertices (called gates) are labeled as either + (sum) or × (product), and
leaves (vertices of in-degree zero) are labeled by the variables xi or constants from F. A special output gate
(the root of the DAG) represents the polynomial P . If the DAG happens to be a tree, such a resulting circuit
is called an algebraic formula. The size of a circuit is the number of nodes in the DAG. We also consider the
product-depth of the circuit, which is the maximum number of product gates on a root-to-leaf path.

An algebraic circuit is therefore a computational model, which solves the computational task of evaluating
P on a given input (x1, . . . , xN ). The complexity of this model is measured by the size of the circuit, which
serves as an indicator of the time complexity of computing the polynomial. The product-depth measures the
degree to which this computation can be made parallel. As an algebraic circuit is supposed to construct a
formal polynomial P , it is a syntactic model of computation. This is unlike a Boolean circuit, which is only
required to model specific truth-table constraints. The problem of proving algebraic circuit lower bounds is
therefore widely considered to be easier than its Boolean counterpart. Indeed, we know that proving VP ̸=
VNP, the algebraic analog of the P vs. NP problem, is implied by the latter separation, in the non-uniform
setting ([Bür00]). We refer the reader to [Sap15] for a much more elaborate survey of this topic.

The LST breakthrough. Much like in the Boolean setting, the problem of showing lower bounds for
general algebraic circuits (or even formulas) has remained elusive. However, some remarkable progress has
been made very recently by Limaye, Srinivasan, and Tavenas ([LST21]) who in a spectacular breakthrough,
showed the first super-polynomial lower bounds for algebraic circuits of all constant depths. Prior to their
work, the best known lower bound ([KST16]) even for product-depth 1 (or ΣΠΣ circuits) was only almost-
cubic. This is in stark contrast with the Boolean setting, in which we have known strong constant-depth
lower bounds for many decades [Ajt83, FSS84, Yao85, H̊as86, Raz87, Smo87]. Constant-depth circuits are
critical to the study of algebraic complexity theory, as unlike the Boolean setting, strong enough bounds
against them are known to yield VP ̸= VNP ([AV08]). This helps put into perspective the importance of
the work [LST21].

The crucial step in the proof of their result is to first establish super-polynomial lower bounds for a
certain restricted class of (low-depth) algebraic circuits, namely set-multilinear circuits which we now define
along with other important circuit models. A polynomial is said to be homogeneous if each monomial has
the same total degree and multilinear if every variable occurs at most once in any monomial. Now, suppose
that the underlying variable set is partitioned into d sets X1, . . . , Xd. Then the polynomial is said to be
set-multilinear with respect to this variable partition if each monomial in P has exactly one variable from
each set. We also define different models of computation corresponding to these variants of polynomials
classes. An algebraic formula (circuit) is set-multilinear with respect to a variable partition (X1, . . . , Xd) if
each internal node in the formula (circuit) computes a set-multilinear polynomial. Multilinear/homogeneous
circuits and formulas are defined analogously.

Several well-studied and interesting polynomials happen to be set-multilinear. For example, the De-
terminant and the Permanent polynomials, the study of which is profoundly consequential to the field of
algebraic complexity theory, are set-multilinear (with respect to the column variables). Another well-studied
polynomial, namely the Iterated Matrix Multiplication polynomial, is also set-multilinear. The polynomial
IMMn,d is defined on N = dn2 variables, where the variables are partitioned into d sets X1, . . . , Xd of size
n2, each of which is represented as an n×n matrix with distinct variable entries. The polynomial IMMn,d is
defined to be the polynomial that is the (1, 1)-th entry of the product matrix X1X2 · · ·Xd. This polynomial
has a simple divide-and-conquer-based set-multilinear formula of size nO(log d), and more generally for every

∆ ≤ log d, a set-multilinear formula of product-depth ∆ and size nO(∆d1/∆), and circuit1 of size nO(d1/∆).
Even without the set-multilinearity constraint, no significantly better upper bound is known. It is reasonable
to conjecture that this simple upper bound is tight up to the constant in the exponent.

The lower bounds in [LST21] for general constant-depth algebraic circuits are shown in the following
sequence of steps:

1In this paper, when speaking of constant-depth models of computation at a high level, we shall often use the terms circuit
and formula interchangeably as a product-depth ∆ circuit of size s can be simulated by a product-depth ∆ formula of size s2∆.
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1. It is shown that general low-depth algebraic circuits can be transformed to set-multilinear algebraic
circuits of low depth, and without much of a blow-up in size (as long as the degree is small). More
precisely, any product-depth ∆ circuit of size s computing a polynomial that is set-multilinear with
respect to the partition (X1, . . . , Xd) where each |Xi| ≤ n, can be converted to a set-multilinear circuit2

of product-depth 2∆ and size poly(s) ·dO(d). Such a ‘set-multilinearization’ of general formulas of small
degree was already shown before in [Raz13] (which we describe soon in more detail); however, the main
contribution of [LST21] here is to prove this depth-preserving version of it.

2. Strong lower bounds are then established for low-depth set-multilinear circuits (of small enough degree).
More precisely, any set-multilinear circuit C computing IMMn,d (where d = O(log n)) of product-depth

∆ must have size at least ndexp(−O(∆))

. This combined with the first step yields the desired lower bound
for general constant-depth circuits.

Given Raz’s set-multilinearization of formulas of small degree that we alluded to, and this description of
the set-multilinear formula lower bounds from [LST21] when d = O(log n), it is evident the ‘small degree’
regime is inherently interesting to study - as it provides an avenue, via ‘hardness escalation’, for tackling
one of the grand challenges of algebraic complexity theory, namely proving super-polynomial lower bounds
for general algebraic formulas. However, we shall now see that even the large degree regime can be equally
consequential in this regard.

The large degree regime. Consider a polynomial P that is set-multilinear with respect to the variable
partition (X1, . . . , Xd) where each |Xi| ≤ n. The main focus of this paper is to study set-multilinear
circuit complexity in the regime where d and n are polynomially related (as opposed to say, the assumption
d = O(log n) described above). We now provide some background and motivation for studying this regime.

In follow-up work [LST22], the same authors showed the first super-polynomial lower bound against
unbounded-depth set-multilinear formulas computing IMMn,n

3. As is astutely described in [LST22], studying
the set-multilinear formula complexity of IMM is extremely interesting and consequential even in the setting
d = n because of the following reasons:

• IMMn,n is a self-reducible polynomial i.e., it is possible to construct formulas for IMMn,n by recursively
using formulas for IMMn,d (for any d < n). In particular, if we had formulas of size no(log d) for IMMn,d

(for some d < n), this would imply formulas of size no(logn) for IMMn,n. In other words, an optimal
nΩ(logn) lower bound for IMMn,n implies nωd(1) lower bounds for IMMn,d for any d < n.

• Raz in [Raz13] showed that if an N -variate set-multilinear polynomial of degree d has an algebraic
formula of size s, then it also has a set-multilinear formula of size poly(s) · (log s)d. In particular,
for a set-multilinear polynomial P of degree d = O(logN/ log logN), it follows that P has a formula
of size poly(N) if and only if P has a set-multilinear formula of size poly(N). Thus, having Nωd(1)

set-multilinear formula size lower bounds for such a low degree would imply super-polynomial lower
bounds for general formulas.

In particular, proving the optimal nΩ(logn) set-multilinear formula size lower bound for IMMn,n would
have dramatic consequences. To this end, the authors in [LST22] are able to show a weaker bound of the
form (log n)Ω(logn) instead. Even though it is the case that ‘simply’ improving the base of this exponent
from log n to n yields general formula lower bounds, it seems that we are still far from achieving it. Indeed,
as is observed in [LST22], we do not even have the optimal nΩ(

√
n) lower bound4 when product-depth ∆ = 2.

Moreover, we do not know how to obtain a lower bound of the form nΩ(
√
n) for product-depth 2 set-multilinear

circuits for any explicit polynomial of degree n and in poly(n) variables. For product-depths ∆ ≤ log n,

[LST22] shows a set-multilinear formula size lower bound of (log n)Ω(∆n1/∆) for IMMn,n, which is in fact the
best set-multilinear lower bound we know for any polynomial of degree n and in poly(n) variables, and for
any ∆ ≥ 2. As far as we know, the previous best lower bound of exp(Ω(n1/∆)), also for IMMn,n, followed

2There is also an intermediate ‘homogenization’ step which we skip describing here for the sake of brevity.
3Note that for IMMn,n, each Xi has size n2, not n. But the important thing for us here is that the degree, n, is polynomially

related to this parameter.
4This is known for set-multilinear (and even multilinear) ΣΠΣΠ circuits (see [FLMS15, KST18]), but those are only special

cases of general product-depth 2 circuits, which are ΣΠΣΠΣ.
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from the work of Nisan and Wigderson ([NW97]). It is therefore an interesting challenge to improve the base

of this exponent from log n to n i.e., establish a near-optimal nΩ(n1/∆) lower bound in the constant (or low)
depth setting.

Our Results. In this paper, we obtain these “optimal” lower bounds, albeit not for IMMn,n, but rather
for another explicit polynomial in VNP. We show the following:

Theorem 1. Let N be a growing parameter and ∆ be an integer such that 1 ≤ ∆ ≤ logN/ log logN . There
is an explicit polynomial PN defined over N = n2 variables with degree d = n that is set-multilinear with
respect to the variable partition X = (X1, . . . , Xd) where each |Xi| = n and such that any set-multilinear

formula of product-depth ∆ computing PN (X) must have size at least NΩ(d1/∆/∆).

Notice that obtaining this precise bound is interesting also when viewed through the lens of depth reduc-
tion. Tavenas ([Tav15]), building on several prior works ([AV08, Koi12]), showed that any algebraic circuit of
poly(N) size computing a homogeneous N -variate polynomial of degree d can be converted to a homogeneous

circuit of product-depth5 ∆ of size (Nd)O(d1/∆). It easily follows from the proof that this depth reduction
preserves syntactic restrictions. That is, if we start with a syntactically set-multilinear circuit, the resulting
product-depth ∆ circuit is also syntactically set-multilinear. Therefore, the precise bound in Theorem 1
is sharp in the sense that any asymptotic improvement in its exponent would imply super-polynomial set-
multilinear circuit lower bounds, which would be quite a strong and interesting consequence. Another very
intriguing direction is to consider the problem of improved depth reduction for set-multilinear circuits. If
an asymptotic improvement in the exponent on the bound for general circuits from [Tav15] could be shown
to hold for set-multilinear circuits in the setting of Theorem 1 (i.e., when N = d2), this would again im-
ply super-polynomial set-multilinear circuit lower bounds. There is some evidence towards this possibility,
as [KOS19] shows such an improvement in a certain regime of parameters for multilinear circuits (see the
discussion in Section 4 for more details).

Remark 1. The lower bound in Theorem 1 is actually dΩ(d1/∆/∆), where d is the degree of the underlying
polynomial, and it holds as long as degree d ≤ n (the details are deferred to the proof of Theorem 5 in

Section 3). Observe that for constant ∆ this bound already nearly matches the bound (log n)Ω(∆d1/∆) in
[LST22] (which was shown for IMMn,d) when d = (log n)Ω(1) and exceeds it as soon as d becomes super-
polylogarithmic in n. Moreover for d < log n/ log log n, both the bounds are trivial even for ∆ = 1.

We also remark that in several lower bounds for algebraic circuit classes in the past, the lower bound
was initially shown for a polynomial in VNP and then with additional effort, was shown to also hold for a
polynomial in VP (in particular, the IMM polynomial). A strong candidate for the choice of this polynomial
family in VNP has been the Nisan-Wigderson (NW) design-based ([NW94]) family of polynomials. For
instance, [KSS14] showed a lower bound of nΩ(

√
n) for the top fan-in of a ΣΠ[O(

√
n)]ΣΠ[

√
n] circuit computing

the NW polynomial, which was subsequently shown for IMM by [FLMS15]. Similarly, [KLSS17] showed an

nΩ(
√
d) size lower bound for homogeneous depth-4 algebraic formulas for the NW polynomial, which was

then shown for IMM later in [KS17]. Much like these examples, our hard polynomial family in Theorem 1
is also indeed the NW polynomial family, as we shall see in Section 3. Our motivation to study constant-
depth set-multilinear formula complexity was to prove the optimal lower bounds for the IMM polynomial.
Although we are presently able to show it only for the NW polynomial instead of IMM, we are hopeful that
this is an important step in its direction.

In addition to our lower bound for bounded-depth set-multilinear formulas, we observe that the same
proof technique also implies a lower bound of the form nΩ(logn) for unbounded-depth set-multilinear formulas.
[LST22] showed a weaker bound of the form (log n)Ω(logn) but for IMMn,n.

Theorem 2. For a given integer N , there is an explicit polynomial PN defined over N = n2 variables
with degree d = n that is set-multilinear with respect to the variable partition X = (X1, . . . , Xd) where each
|Xi| = n such that any set-multilinear formula computing PN (X) must have size at least NΩ(logN).

5The result is stated in [Tav15] for ΣΠΣΠ circuits but the proof can be appropriately modified for larger product-depths.
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The hard polynomial in Theorem 2 is also the NW polynomial, which if ‘improved’ to IMMn,n, then as
discussed, would yield super-polynomial general formula lower bounds. However, we note that in this case,
our result is in some sense subsumed by the result of Raz ([Raz09]) who showed an nΩ(logn) lower bound for
the n× n permanent (or determinant) polynomial for unbounded-depth multilinear formulas.

Other Related Work. In the bounded-depth setting, other than the works [LST21, LST22, NW97]
already mentioned, there have been several lower bounds for the class of low-depth multilinear circuits
([RY09, CLS19, CELS18, KNS20]). In the unbounded-depth setting, apart from the works [LST22, Raz09]
already mentioned for set-multilinear formulas, there have also been several strong lower bounds of the form
nΩ(logn) againstmultilinear formulas ([DMPY12, HY11, KST18]). However, in both settings of depth, several
of these works are not even applicable to the set-multilinear setting as the corresponding hard polynomial
does not happen to be set-multilinear.

Proof overview. Our overall proof techniques are similar to that of many known lower bounds. We work
with a measure that we show to be small for all polynomials computed by small enough set-multilinear
formulas (appropriately so in the bounded and unbounded-depth settings) and large for the NW polynomial.
These partial derivative measures were introduced by Nisan and Wigderson in [NW97], who used them to
prove the constant-depth set-multilinear formula lower bounds we discussed earlier. [LST21, LST22] use a
particular variant of this measure and our measure is in turn inspired from these works.

Given a variable partition (X1, . . . , Xd), we label each set of variables Xi as ‘positive’ or ‘negative’
uniformly at random. Let P and N denote the set of positive and negative indices respectively, and let MP

and MN denote the sets of all set-multilinear monomials over P and N respectively. For a polynomial that
is set-multilinear over the given variable partition (X1, . . . , Xd), our measure then is simply the rank of the
‘partial derivative matrix’ whose rows are indexed by the elements of MP and columns indexed by NP ,
and the entry of this matrix corresponding to a row m1 and a column m2 is the coefficient of the monomial
m1 ·m2 in the given polynomial.

In contrast, the measure used in [LST21] is deterministic and moreover, it is asymmetric with respect to
the positive and negative variable sets, in the sense that while keeping the positive variable sets as is, it first
reduces the size of the negative variable sets by arbitrarily setting a few of these variables to field constants,
and then works with the resulting polynomial. On the other hand, [LST22] does use a randomized measure,
but one that is still asymmetric, relying on randomly setting a few of the variables inside each set to constants.
The way they control the discrepancy between the sizes of the positive and negative variable sets (which is
indeed crucial for obtaining the claimed lower bounds) is by imposing a Martingale-like distribution. The
lower bound of [NW97] also uses random restrictions to enable them to effectively “simplify” the circuit and
upper bound its complexity. Our symmetric, randomized measure avoids random restrictions altogether, and
though it is inspired by the measure and the techniques from [LST21], it is also reminiscent of the measures
used in [Raz09, RY09] to prove multilinear formula lower bounds.

2 Preliminaries

We begin by defining the hard polynomial of our main result (Theorem 1). As is done in previous lower
bounds using the NW polynomials (for example, see [KSS14]), we will identify the set of the first n integers
as elements of Fn via an arbitrary correspondence ϕ : [n] → Fn. If f(z) ∈ Fn[z] is a univariate polynomial,
then we abuse notation to let f(i) denote the evaluation of f at the i-th field element via the above corre-
spondence i.e., f(i) := ϕ−1(f(ϕ(i))). To simplify the exposition, in the following definition, we will omit the
correspondence ϕ and identify a variable xi,j by the point (ϕ(i), ϕ(j)) ∈ Fn × Fn.

Definition 1 (Nisan-Wigderson Polynomials). For a prime power n, let Fn be a field of size n. For an
integer d ≤ n and the set X of nd variables {xi,j : i ∈ [n], j ∈ [d]}, we define the degree d homogeneous
polynomial NWn,d over any field as

NWn,d(X) =
∑

f(z)∈Fn[z]
deg(f)<d/2

∏
j∈[d]

xf(j),j .
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Next, we turn to the measure that we shall use to prove Theorems 1 and 2. For the purpose of setting
it up, we follow the notation of [LST21] in the following definition. However, we do remark that we do not
need it in its full generality as we will eventually work with a simpler, symmetric notion that was alluded to
in Section 1. Nevertheless, employing the same notation has the advantage that the reader is quite possibly
already familiar with it in the context of proving set-multilinear circuit lower bounds.

Definition 2 (Relative Rank Measure of [LST21, LST22]). Let f be a polynomial that is set-multilinear
with respect to the variable partition (X1, X2, . . . , Xd) where each set is of size n. Let w = (w1, w2, . . . , wd)
be a tuple (or word) of non-zero real numbers such that 2|wi| ∈ [n] for all i ∈ [d]. For each i ∈ [d], let
Xi(w) be the variable set obtained by removing arbitrary variables from the set Xi such that |Xi(w)| = 2|wi|,
and let X(w) denote the tuple of sets of variables (X1(w), . . . , Xd(w)). Corresponding to a word w, define
Pw := {i | wi > 0} and Nw := {i | wi < 0}. Let MP

w be the set of all set-multilinear monomials over a
subset of the variable sets X1(w), X2(w), . . . , Xd(w) indexed by Pw, and similarly let MN

w be the set of all
set-multilinear monomials over these variable sets indexed by Nw.

Define the ‘partial derivative matrix’ matrix Mw(f) whose rows are indexed by the elements of MP
w and

columns indexed by the elements of NP
w as follows: the entry of this matrix corresponding to a row m1 and

a column m2 is the coefficient of the monomial m1 ·m2 in f . We define

relrkw(f) :=
rank(Mw(f))√
|MP

w | · |MN
w |

=
rank(Mw(f))

2
1
2

∑
i∈[d] |wi|

.

Definition 3. For any tuple w = (w1, . . . , wt) and a subset S ⊆ [t], we shall refer to the sum
∑

i∈S wi by
wS. And by w|S, we will refer to the tuple obtained by considering only the elements of w that are indexed
by S. We denote by Fsm[T ] the set of set-multilinear polynomials over the tuple of sets of variables T .

The following is a simple result that establishes various useful properties of the relative rank measure.

Claim 3 ([LST21]). 1. (Imbalance) Say f ∈ Fsm[X(w)]. Then, relrkw(f) ≤ 2−|w[d]|/2.

2. (Sub-additivity) If f, g ∈ Fsm[X(w)], then relrkw(f + g) ≤ relrkw(f) + relrkw(g).

3. (Multiplicativity) Say f = f1f2 · · · ft and assume that for each i ∈ [t], fi ∈ Fsm[X(w|Si)], where
(S1, . . . , St) is a partition of [d]. Then

relrkw(f) =
∏
i∈[t]

relrkw|Si
(fi).

3 Main Result

We are now ready to prove our main result. We start by showing that the symmetric relative rank is large
for the NW polynomial.

Claim 4. For an integer n = 2k and d ≤ n, let w ∈ {k,−k}d with w[d] = 0. Then relrkw(NWn,d) = 1 i.e.,
Mw(NWn,d) has full rank.

Proof. Fix n = 2k and d, so that we can also write NW for NWn,d, and let n′ = d/2. The condition on w

implies that |Pw| = |Nw| = n′. Observe thatMw(NW ) is a square matrix of dimension |MP
w | = |MN

w | = nn′
.

Consider a row of Mw(NW ) indexed by a monomial m1 = xi1,j1 · · ·xin′ ,jn′ ∈ MP
w . m1 can be thought of

as a map from S = {j1, . . . , jn′} to Fn which sends jℓ to iℓ for each ℓ ∈ [n′]. Next, by interpolating the pairs
(j1, i1), . . . , (jn′ , in′), we know that there exists a unique polynomial f(z) ∈ Fn(z) of degree < n′ for which
f(jℓ) = iℓ for each ℓ ∈ [n′]. As a consequence, there is a unique ‘extension’ of the monomial xi1,j1 · · ·xin′ ,jn′

that appears as a term in NW , which is precisely m1 ·
∏

j∈Nw
xf(j),j . Therefore, all but one of the entries in

the row corresponding to m1 must be zero, and the remaining entry must be 1. Applying the same argument
to the columns of Mw(NW ), we deduce that Mw(NW ) is a permutation matrix, and so has full rank.

The following is a more precise and general version of Theorem 1 that is stated in Section 1. We also
incorporate Remark 1 here and show our lower bound for any degree d ≤ n. Theorem 1 follows from the
special case d = n.

6



Theorem 5. For an integer n = 2k, let Fn be a field of size n. Let d,∆ be integers such that d ≤ n is large
enough6 and ∆ ≤ log d/ log log d. Let Xi denote the set of n variables {xi,j : j ∈ [d]} and X be the tuple
(X1, . . . , Xd). Then, any set-multilinear formula family of product-depth ∆ computing NWn,d(X) must have

size at least dΩ(d1/∆/∆).

Proof. We show that the symmetric relative rank of low-depth set-multilinear formulas is small with high
probability in the lemma below, and then combine it with Claim 4 above to prove the desired bound.

Lemma 6. Let C be a set-multilinear formula of product-depth 1 ≤ ∆ ≤ log d/ log log d of size at most s
which computes a polynomial that is set-multilinear with respect to the partition (X1, . . . , Xd) where each
|Xi| = n. Let w ∈ {k,−k}d be chosen uniformly at random. Then, we have

relrkw(C) ≤ s · 2− kd1/∆

20

with probability at least 1− s · d− d1/∆

12∆ .

Proof. We prove the statement by induction on ∆.
If ∆ = 1, then C = C1 + · · ·+Ct where each Ci is a product of linear forms. So, for all i ∈ [t], by Claim

3,

relrkw(Ci) =

d∏
i=1

2−
1
2 |wj | = 2−

kd
2

where in the last step, we used the observation that regardless of the choice of w, |wj | = k for all j ∈ [n].
Hence, by the sub-additivity of relrkw, with probability 1, we have

relrkw(C) ≤ s · 2− kd
2 ≤ s · 2− kd

20 .

Next, we assume the statement is true for all formulas of product-depth ≤ ∆. Let C be a formula of
product-depth ∆ + 1. So, C is of the form C = C1 + · · · + Ct. Following an overall proof strategy similar
to the one in [LST21], we say that a sub-formula Ci of size si is of type 1 if one of its factors has degree at

least T∆ = d
∆

∆+1 , otherwise we say it is of type 2.
Suppose Ci = Ci,1 · · · · · Ci,ti is of type 1 with, say, Ci,1 having degree at least T∆. Let wi,1 be the

corresponding word i.e., wi,1 = w|S1
if Ci,1 is set-multilinear with respect to S1 ⊊ [d]. If it has size si,1, then

since it has product-depth at most ∆, it follows by induction that

relrkw(Ci) ≤ relrkwi,1(Ci,1) ≤ si,1 · 2−
kT

1/∆
∆
20 ≤ si · 2−

kd1/(∆+1)

20

with probability at least

1− si,1 · T
−

T
1/∆
∆
12∆

∆ ≥ 1− si · d−
d1/(∆+1)

12∆ · ∆
∆+1 = 1− si · d−

d1/(∆+1)

12(∆+1) .

Now suppose that Ci = Ci,1 · · · · · Ci,ti is of type 2 i.e., each factor Ci,j has degree < T∆. Note

that this forces ti > d/T∆ = d
1

∆+1 . As the formula is set-multilinear, (S1, . . . , Sti) form a partition of
[d] where each Ci,j is set-multilinear with respect to (Xℓ)ℓ∈Sj

and Ci is set-multilinear with respect to
(Xℓ)ℓ∈S . Let w

i,1, . . . , wi,ti be the corresponding decomposition, whose respective sums are denoted simply
by wS1 , . . . , wSti

.
From the properties of relrkw (Claim 3), we have

relrkw(Ci) =

ti∏
j=1

relrkwi,j (Ci,j) ≤
ti∏

j=1

2−
1
2 |wSj

| = 2−
1
2

∑ti
j=1 |wSj

|,

from which we observe that the task of upper bounding relrkw(C) can be reduced to the task of lower
bounding the sum

∑ti
j=1 |wSj |, which is established in the following claim. For the sake of convenience, the

choice of the alphabet for w below is scaled down to {−1, 1}.
6We only need d to be larger than some absolute constant.
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Claim 7. For large enough d, suppose (S1, . . . , Sℓ) is a partition of [d] such that each |Sj | < T∆ = d
∆

∆+1 .
Then, we have

P
w∼{−1,1}d

 ℓ∑
j=1

|wSj | <
d1/(∆+1)

10

 ≤ d−
d1/(∆+1)

12 .

Proof. We first show that without loss of generality, we may assume that each Sj has size ‘roughly’ T∆. To
see this, we apply the following clubbing procedure to the sets in the partition (S1, . . . , Sℓ):

• Start with the given partition (S1, . . . , Sℓ). At each step in the procedure, we shall ‘club’ two of the
sets in the partition according to the following rule.

• If there are two distinct sets S′ and S′′ in the current partition each of size < T∆/2, we remove both
of them and add their union S′ ∪ S′′ to the partition.

• If the rule above is no longer applicable, then we have at most one set in the current partition of size
< T∆/2. If there is none, then we halt the procedure here. Otherwise, we union this set with any one
of the other sets and then halt.

After the clubbing procedure, we are left with a partition (S′
1, . . . , S

′
ℓ′) of [d] such that T∆

2 ≤ |S′
j | ≤ 3T∆

2

for each j ∈ [ℓ′], also implying that 2d1/(∆+1)

3 ≤ ℓ′ ≤ 2d1/(∆+1). Through a repeated use of the triangle

inequality, we see that
∑ℓ′

j=1 |wS′
j
| ≤

∑ℓ
j=1 |wSj

|. Therefore, upper bounding the latter sum is a ‘smaller’
event than upper bounding the former sum. Hence, it suffices to prove the statement of the claim with the
assumption that T∆

2 ≤ |Sj | ≤ 3T∆

2 for each j ∈ [ℓ] (we henceforth drop the primed notation).

Now, in the event that the sum
∑ℓ

j=1 |wSj
| is at most d1/(∆+1)

10 , since ℓ ≥ 2d1/(∆+1)

3 , it follows that for at

least half of the sets Sj , wSj
= 0 (as 2

3 − 1
10 = 17

30 > 1
2 ). By Stirling’s approximation, it follows that for a

fixed j, the probability

P
w∼{−1,1}d

[
wSj

= 0
]
≤

√
2

π|Sj |
≤
√

4

πT∆
=

√
4

π
· 1

d
∆

2(∆+1)

<
2

d1/3
,

where in the final step, we used ∆ ≥ 2. Therefore, the probability that this happens for ℓ/2 distinct j is
bounded by (

ℓ

ℓ/2

)
·
(

2

d1/3

) ℓ
2

< 2ℓ ·
(

2

d1/3

) ℓ
2

=

(
2
√
2

d1/6

)ℓ

≤
(

2

d1/9

)d1/(∆+1)

< d−
d1/(∆+1)

12 ,

where we used the bound ℓ ≥ 2d1/(∆+1)

3 .

The claim above and the preceding calculation immediately implies that for a sub-formula Ci of type 2,

relrkw(Ci) ≤ si · 2−
kd1/(∆+1)

20

with probability at least 1− d−
d1/(∆+1)

12 ≥ 1− si · d−
d1/(∆+1)

12(∆+1) .
Next, by a union bound over i ∈ [t] and the sub-additivity property of relrkw, it follows that

relrkw(C) ≤ relrkw(C1) + · · ·+ relrkw(Ct) ≤ s1 · 2−
kd1/(∆+1)

20 + · · ·+ st · 2−
kd1/(∆+1)

20 = s · 2− kd1/(∆+1)

20

with probability at least 1− s · d−
d1/(∆+1)

12(∆+1) , which concludes the proof of the lemma.

Returning to the proof of the theorem, let C be a set-multilinear formula of product depth ∆ of size s

computing NWn,d(X). Suppose s < d
d1/∆

24∆ . Then, by Lemma 6, with probability at least 1− d−
d1/∆

24∆ ,

relrkw(C) ≤ s · 2− kd1/∆

20 .
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But now, we can condition on the event that w[d] = 0 (which occurs with probability Θ( 1√
d
)) to establish

the existence of a word w ∈ {−k, k}d with w[d] = 0 such that w satisfies relrkw(C) ≤ s · 2− kd1/∆

20 . This is

because of the asymptotic bound 1√
d
≫ d−

d1/∆

24∆ , which follows from the given constraints on the parameters

d,∆. Therefore, by Claim 4,

s ≥ 2
kd1/∆

20 · relrkw(C) = n
d1/∆

20

which contradicts the assumption that s < d
d1/∆

24∆ . Thus, we conclude that s ≥ d
d1/∆

24∆ = dΩ(d1/∆/∆).

Next, we show the supplementary result (Theorem 2) mentioned in Section 1, stated more precisely
below.

Theorem 8. For an integer n = 2k, let Fn be a field of size n and suppose d ≤ n is large enough. Let Xi

denote the set of n variables {xi,j : j ∈ [n]} and X be the tuple (X1, . . . , Xd). Then, any set-multilinear
formula family computing NWn,d(X) must have size at least dΩ(log d).

Proof. We first need the following structural result, whose proof can be immediately extrapolated from
[Sap15] (see Lemma 13.3), where it is shown for multilinear and homogeneous formulas.

Lemma 9 (Product Lemma). Assume that F is a formula with at most s leaves, and is set-multilinear with
respect to the set partition (X1, . . . , Xd). Then, we can write

F =

s∑
i=1

ℓ∏
j=1

Fi,j

where ℓ ≥ log3 d and for each i ∈ [s], the product Fi =
∏ℓ

j=1 Fi,j is also set-multilinear. Furthermore, the
degrees of Fi,j satisfy the following geometric decay property:(

1

3

)j

d ≤ deg(Fi,j) ≤
(
2

3

)j

d, and deg(Fi,ℓ) = 1.

Lemma 10. Let F be a set-multilinear formula of size at most s which computes a polynomial that is set-
multilinear with respect to the partition (X1, . . . , Xd) where each |Xi| = n. Let w ∈ {k,−k}d be chosen
uniformly at random. Then, we have

relrkw(C) ≤ s · 2−
k log d

20

with probability at least 1− s · d−
log d
60 .

Proof. We begin by writing F in the form that is given by Lemma 9. Now, because of the geometric decay of
the degrees of Fi,j , we observe that for each i ∈ [s], at least for the first 3ℓ

4 many values of j, deg(Fi,j) ≥ d1/4.
In other words, at least a constant fraction of the Fi,js have their degrees at least polynomially large in d.
This observation will be instrumental in establishing the following claim, which is akin to Claim 7 used in
the proof of Lemma 6.

Claim 11. For large enough d, suppose (S1, . . . , Sℓ) is a partition of [d] such that
(
1
3

)j
d ≤ |Sj | ≤

(
2
3

)j
d for

all j ∈ [ℓ], and |Sℓ| = 1. Then, we have

P
w∼{−1,1}d

 ℓ∑
j=1

|wSj | <
log d

10

 ≤ d−
log d
60 .

Proof. Consider the given event that log d
10 exceeds the sum

∑ℓ
j=1 |wSj |. As ℓ ≥ log d

log 3 > 5 log d
8 , it follows that

for at least half of the sets Sj , wSj
= 0 (since 5

8 − 1
10 = 21

40 > 1
2 ). By the observation above, it also follows

9



that at least for ℓ
4 many of the first 3ℓ

4 values of j, wSj = 0. But for a fixed such j, since |Sj | ≥ d1/4, the
probability

P
w∼{−1,1}d

[
wSj

= 0
]
≤

√
2

π|Sj |
<

1√
|Sj |

≤ 1

d1/8
,

Therefore, the probability that this happens for ℓ/4 distinct j amongst the first 3ℓ
4 values of j is bounded by(

3ℓ/4

ℓ/4

)
·
(

1

d1/8

) ℓ
4

< 23ℓ/4 ·
(

1

d1/8

) ℓ
4

<

(
2

d1/32

)ℓ

< d−
log d
60 .

By sub-additivity of relrkw (Claim 3), we have

relrkw(F ) ≤ relrkw(F1) + · · ·+ relrkw(Fs). (1)

So, fix an i ∈ [s]. As the formula is set-multilinear, let (S1, . . . , Sℓ) be the partition of [d] such that each
Fi,j is set-multilinear with respect to (Xt)t∈Sj . Let w

i,1, . . . , wi,ℓ be the corresponding decomposition, whose
respective sums are denoted by wS1

, . . . , wSℓ
. Then, by Claim 11,

relrkw(Fi) =

ℓ∏
j=1

relrkwi,j (Fi,j) ≤
ℓ∏

j=1

2−
1
2 |wSj

| = 2−
1
2

∑ℓ
j=1 |wSj

| ≤ 2−
k log d

20

with probability at least 1− d−
log d
60 . Therefore, by a union bound over i ∈ [s] and (1), we conclude that

relrkw(F ) ≤ s · 2−
k log d

20

with probability at least 1− s · d−
log d
60 .

Returning to the proof of the theorem, let F be a set-multilinear formula of size s computing NWn,d.

Suppose s < d
log d
120 . Then, by Lemma 10, with probability at least 1− d−

log d
120 ,

relrkw(F ) ≤ s · 2−
klog d

20 .

But now, we can condition on the event that w[d] = 0 (which occurs with probability Θ( 1√
d
)) to establish

the existence of a word w ∈ {−k, k}d with w[d] = 0 such that w satisfies relrkw(F ) ≤ s · 2−
klog d

20 . This is

because of the trivial asymptotic bound 1√
d
≫ d−

log d
120 . Therefore, again by Claim 4,

s ≥ 2
klog d

20 · relrkw(F ) = n
log d
20

which contradicts the assumption that s < d
log d
120 . Thus, we conclude that s ≥ d

log d
120 = dΩ(log d).

4 Discussion and Open Problems

We conclude by mentioning some interesting directions for future work.

• The most interesting and natural question is to make the hard polynomial in our main result IMMn,n.
This would imply super-polynomial algebraic formula lower bounds. As far as we know, it is conceivable
that our complexity measure could be used to prove the lower bound for the IMMn,n polynomial.
While the relative rank of IMMn,n itself is low, there might be a suitable “restriction” of it such that
for a randomly chosen w ∈ {−k, k}n, with reasonably high probability the restriction has large rank.
This could then be used to prove the lower bound for IMMn,n (using Lemma 6 or Lemma 10). The
result from [LST21] also showed its lower bound for the IMM polynomial by first analyzing a suitable
restriction of IMM (although unfortunately that very same restriction idea does not work for us; please
see the discussion in the appendix). Perhaps an intermediate question is to make the hard polynomial
computationally simpler, for instance to find any hard polynomial that lies in VP.
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• Another interesting question is to prove an improved depth hierarchy theorem for constant-depth set-
multilinear formulas. [LST21] shows a depth hierarchy theorem for low-depth set-multilinear formulas.
However, since their lower bounds only hold for small degrees, the depth hierarchy theorem in [LST21]
only gives a quasi-polynomial separation of successive product-depths. It would be very interesting to
obtain exponential separations (which for instance have been shown for low-depth multilinear circuits
in [CELS18]) using our measure.

• Another interesting direction could be to obtain lower bounds for general set-multilinear circuits via
improved depth reduction results. The work of Kumar, Oliveira, and Saptharishi ([KOS19]) provides
some insight in this context, which shows an improved depth reduction to product-depth ∆ with a size

blow-up of NO(∆·(N/ logN)1/∆) for multilinear circuits (regardless of degree). If a similar improvement
(or any asymptotic improvement in the exponent) on the bound for general circuits from [Tav15] could
be shown to hold for set-multilinear circuits in the setting of Theorem 1 or Theorem 5 (i.e., when
N ≥ d2), then combined with our lower bounds, this would imply super-polynomial set-multilinear
circuit lower bounds. We should note that [FLMS15] rules out the possibility of obtaining a stronger
reduction to depth-4, or ΣΠΣΠ circuits, as it shows an nΩ(

√
n) size lower bound for set-multilinear

depth-4 circuits computing IMMn,n, which of course has small polynomial-sized set-multilinear circuits.
Nevertheless, there is still the possibility of obtaining improved depth reduction statements for product-
depths 2 (which as noted earlier, is ΣΠΣΠΣ and hence more general than depth-4) or higher, and
combining it with our Theorem 1 to obtain unbounded-depth set-multilinear circuit lower bounds.
[KS16] shows a quasi-polynomial separation between the strength of homogeneous ΣΠΣΠ and ΣΠΣΠΣ
circuits, which could be considered as some evidence towards the validity of this possibility.
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A Word Polynomials from [LST21, LST22] and Our Measure

Both [LST21, LST22] show their set-multilinear formula lower bounds for IMMn,d by showing that small
enough set-multilinear formulas have low relative rank and that a certain “restriction” of IMMn,d has large rel-
ative rank. This restriction possesses the desirable property that if there is a small low-depth set-multilinear
circuit computing IMMn,d, then there is one for this restriction as well. It is then natural to wonder if we can
use these same restrictions for our symmetric measure and deduce strong lower bounds for IMM (in order
to show super-polynomial general formula lower bounds as discussed), in addition to obtaining them for the
NW polynomial. Unfortunately, it is straightforward to show that this is not possible, as we shall now see.

Definition 4 (Word Polynomials of [LST21, LST22]). Let w ∈ Rd be any word with non-zero entries. Say
X(w) = (X1, . . . , Xd) where each Xi has size 2|wi|; we assume that the variables of Xi are labelled by strings
in {0, 1}|wi|.

Given any monomial m ∈ Fsm[X(w)], let m+ denote the corresponding “positive” monomial from MP
w

and m− the corresponding “negative” monomial from MN
w . As each variable of X(w) is labelled by a Boolean

string and each set-multilinear monomial over any subset of X(w) is associated with a string of variables,
we can associate any such monomial m′ with a Boolean string σ(m′). More precisely, if j1 < · · · < jt and

m′ = x
(j1)
σ1 x

(j1)
σ1 . . . x

(jt)
σt with x

(ji)
σi ∈ Xji and σi ∈ {0, 1}|wji

| for each i ∈ [t], then σ(m′) is defined to be
σ1 · · ·σt. We will write σ(m+) ∼ σ(m−) when the shorter one is a prefix of the other one. The polynomial
Pw is defined as follows

Pw =
∑

m∈F[X(w)],
σ(m+)∼σ(m−)

m.

Clearly, the matrices Mw(Pw) are full-rank (i.e., have rank equal to either the number of rows or the
number of columns, whichever is smaller). So, relrkw(Pw) = 2−|w[d]|/2.

In our measure, w ∈ {k,−k}d with w[d] = 0 i.e., there is an equal number of positive and negative variable

sets and an equal number of variables n = 2k in each set. Thus, in the sum above, σ(m+) ∼ σ(m−) gets
replaced with σ(m+) = σ(m−). The sum is indexed over all Boolean strings of length kd/2, and so there are
nd/2 terms in all. Moreover, there is a canonical bijection between the positive and negative variables: since
|Pw| = |Nw| = d/2, if an element j ∈ Pw is the k-th largest element in Pw, it corresponds to the k-th largest
element j′ in Nw such that xi,j appears in a monomial of Pw if and only if so does xi,j′ . Let ϕ : Pw → Nw

denote this correspondence. Then, we see that

Pw =
∏

j∈Pw

n∑
i=1

xi,j · xi,ϕ(j),

implying that Pw actually has small depth-3 set-multilinear formulas.
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