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Abstract

In this survey we describe progress over the last decade or so in understanding the complexity
of solving constraint satisfaction problems (CSPs) approximately in the streaming and sketching
models of computation. After surveying some of the results we give some sketches of the proofs
and in particular try to explain why there is a tight dichotomy result for sketching algorithms
working in subpolynomial space regime.

Contents

1 Introduction 2

2 CSPs: What and Why 2
2.1 Why study CSPs? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

3 Preliminaries: Approximation and Streaming 4
3.1 Approximating CSPs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
3.2 Streaming and Sketching algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

4 Results on Streaming CSPs 6
4.1 Aside: Ordering CSPs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

5 Some ideas behind the proofs 10
5.1 The Ω(

√
n) space lower bound for Max-CUT . . . . . . . . . . . . . . . . . . . . . . . 10

5.2 Bias-based algorithms for Max-DICUT . . . . . . . . . . . . . . . . . . . . . . . . . . 12
5.3 The framework of [CGSV21b] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

6 Future directions 17

∗This paper accompanies an invited talk by the author at ICALP 2022. A version of this paper will appear in the
proceedings of the same.

†School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts, USA. Sup-
ported in part by a Simons Investigator Award and NSF Awards CCF 1715187 and CCF 2152413. Email:
madhu@cs.harvard.edu.

1

 

ISSN 1433-8092 

Electronic Colloquium on Computational Complexity, Report No. 65 (2022)



1 Introduction

In this article we survey the current state of knowledge on the approximability of constraint satisfac-
tion problems (CSPs) using small space streaming and sketching algorithms. We start by reviewing
the definitions below before turning to the survey of results.

2 CSPs: What and Why

CSPs form an infinite class of optimization problems where the goal is assign n variables values
from a finite set while maximizing the number of constraints that can be satisfied, where each
constraint looks locally at the assignment of a few variables to determine if it is satisfied on not.
Different problems in the class differ based on which type of constraints are allowed. Different
instances of the problem arise by applying the constraints to different subsets (or subsequences) of
variables. Algorithms aim to compute, or approximate, the maximum, over all assignments, of the
fraction of constraints that can be simultaneously satisfied. Resource restrictions on the algorithm
(time, space, number of passes in the streaming setting) as well as the type of constraints allowed
determine the level of approximability that is feasible. In this survey we describe our knowledge of
the approximability of CSPs when restricted to streaming and sketching algorithms with limited
space.

We start by describing CSPs more formally. For positive integer n we use [n] to denote the set
{1, . . . , n} and Zn to denote the set {0, . . . , n−1}. A CSP problem is described by positive integers
k, q and a family of functions F ⊆ {f : Zk

q → {0, 1}}. Since k, q are implicit in F , we refer to this
problem as Max-CSP(F). Given variables X1, . . . , Xn an assignment to the variables is a sequence
a = (a1, . . . , an) ∈ Zn

q . A constraint C on these variables is given by a pair (f, (j1, . . . , jk)) where
the first element of the pair f ∈ F is the choice of the type of constraint and the second element is a
sequence of k distinct elements with ji, . . . , jk ∈ [n]. An assignment a satisfies C = (f, (j1, . . . , jk))
if and only if f(Xj1 , . . . , Xjk) = 1. We use C(a) to denote the quantity f(Xj1 , . . . , Xjk). An
instance of Max-CSP(F) on n variables and m constraints is given by Ψ = (C1, . . . , Cm) with Ci

being a constraint on X1, . . . , Xn for every i ∈ [m]. Given a assignment a to the variables, the
value on the instance Ψ at a, denoted valΨ(a), is the quantity 1

m

∑
i∈[m]Ci(a), i.e., the value is

the fraction of constraints of Ψ that are satisfied by a. The value of the instance valΨ is defined
to be the maximum value over all assignments, i.e., valΨ = maxa∈[q]n{valΨ(a)}. The goal of CSP
optimization algorithms is to compute, or approximate, valΨ given Ψ.1

Example: We illustrate the definition with the example of the Max-CUT problem, where given
an undirected graph on vertex set [n], the goal is to find a “cut” S ⊔ S = [n] that maximizes
the number of edges crossing the cut (i.e, with one endpoint each in S and S). This problem is
captured by q = k = 2 and the family F = {⊕} where ⊕(u, v) = u+ v (mod 2). For instance if the
input graph for Max-CUT is the five cycle, then the input instance Ψ5 to Max-CSP(F) will have 5
variables (corresponding to the vertices) and 5 constraints C1, . . . , C5 (corresponding to the edges)
with Ci = (⊕, (i, i+1)) for i ∈ [4] and C5 = (⊕, (5, 1)). An assignment a ∈ Z5

2 can be equated with
the cut Sa = {i|ai = 1} and it can be verified that valΨ5(a) equals the fraction of edges cut by S.

Note that in the example above, we could get positive integer weighted graphs also since there
is no requirement that the the constraints themselves be distinct. But the graphs will not have

1Throughout this paper we assume that F does not include the all 0 function. Such a function corresponds
to placing constraints that are never satisfiable. Inclusion of such constraints in the family does not change the
complexity of any of the tasks we consider since these constraints are easy to ignore.
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any self-loops due to the “restricion” that the variables in a constraint have to be distinct. If one
wished to consider the Max-CUT problem where self-loops are also allowed (though in the case of
Max-CUT this would make no sense - since a self-loop can never be cut), then one could consider
instances Max-CSP(F ′) where F ′ = {⊕, F} and F (u, v) = ⊕(u, u) for all u, v. (So v is just a dummy
variable and u is a variable which supplies both arguments to the cut function ⊕.) Thus while the
requirement that the variables are distinct may appear as a restriction, it is not: For every family F
there exists a family F ′ such that Max-CSP(F ′) captures the Max-CSP(F) problem where variables
are allowed to repeat.

We also remark that in some prior works in the Boolean setting, i.e., when q = 2, constraints
may be applied to “literals”, rather than “variables”. We refer to these results as applying to
Boolean CSPs over literals. In our setting we apply constraints only to variables. Again, our
setting is more general than the setting of Boolean CSPs over literals in that for every family
F ⊆ {f : Zk

2 → {0, 1}} there is a family F ′ such that CSP with constraints from F applied to
literals is the same problem as Max-CSP(F ′). For example consider the Max-2-LIN problem, i.e., the
CSP whose constraints are given by linear equations modulo 2 on two distinct variables. Max-2-LIN
is the Boolean CSP over literals over the family F = {⊕}. But if we let F ′ = {⊕,⊕} where
⊕(u, v) = u+ v + 1 (mod 2), then Max-2-LIN = Max-CSP(F ′). On the other hand Max-CSP(F) is
the Max-CUT problem which can not be expressed as a Boolean CSP over literals. Thus our setting
is strictly richer in expressibility.

2.1 Why study CSPs?

Before going on to giving more precise descriptions of the approximation versions of CSPs and
models of streaming algorithms, we digress to comment on why study CSPs at all.

CSPs do capture a host of natural optimization problems: Some familiar names of problems
include the Maximum Cut problem in (undirected) graphs, the Maximum Dicut problem in directed
graphs, the Maximum q-colorability problem in graphs, the Unique Games problem etc. Each one
of these problems has probably been studied in multiple papers on their own right, and the study
of CSPs unifies their study. That being said this reason on its own is not as compelling as some
of the other reasons we describe next — after all the study of CSPs does exclude many other
natural optimization problems including problems based on connectivity in graphs such as flow
maximization or congestion minimization. It also excludes global considerations such as balanced
cuts or sparse cuts; and of course there are a host of non-graph-theoretic problems.

To this author, the real reason to study CSPs is that they tend to allow for finite classification.
The first such result dates back to Schaefer [Sch78] who studied the satisfiability of Boolean CSPS
and showed that they exhibit a dichotomy. Feder and Vardi [FV98] explored the expressibility of
different logics and arrived at a morally “broadest” set of problems (“Monotone Monadic SNP”)
that could potentially exhibit a dichotomy, and showed that this set of problems was essentially
equivalent to CSPs over arbitrary finite alphabet. They posed the dichotomy of this class as an open
question which was eventually resolved by Bulatov [Bul17] and Zhuk [Zhu20] after many years of
sustained attack. Subsequent works extended such classifications quests to other classes of problems
including optimization and counting. (See Creignou, Khanna and Sudan [CKS01] for some of the
early lines of work.) Many of these bodies are extensive, see for e.g., the recent monograph by Cai
and Chen [CC17] and references therein for vast explorations of counting problems. In optimization
and approximation the work of Raghavendra [Rag08] gives a fine dichotomy, under the “Unique
Games Conjecture”, that inspires some of the streaming work we describe in this survey.

Finite classifications are interesting in that they highlight the generality of some algorithms.
Even the weak classification of the approximability of CSPs pointed to the general utility of the
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randomized rounding and Max Flow algorithms [KSTW01]. The sharp characterizations in [Rag08]
point to the power of semidefinite programming and specifically to the sum-of-squares framework
of algorithms. One could also ask similar questions in the context of streaming: and the dichotomy
work presented in this survey does highlight the role of norm estimation algorithms in streaming
optimization. Other algorithms might emerge with further exploration.

Finite classifications also point to interesting phenomena. For instance in the context of poly-
nomial time approximability most natural problems have approximability in well separated bands
of functions: constant factor approximations, polylogarithmic approximations, and polynomial ap-
proximations are common whereas very few have intermediate approximability, say to within a
factor of 2

√
logn. A finite classification implies this phenomenon - the entire infinite class of func-

tions only shows finitely many distinct behaviors. A similar phenomenon again seems to occur with
streaming algorithms—many problems have polylogarithmic space approximation algorithms while
others require polynomially growing space. Intermediate complexity is rare. CSPs again seems to
validate this separation, at least in the context of sketching algorithms, as we will see in the rest
of this survey.

3 Preliminaries: Approximation and Streaming

We formalize some basic notions related to approximation problems and streaming algorithms.
While a reader familiar with the notion might skip ahead we recommend they make sure they under-
stand the notions (and notations) of: (i) trivial approximation algorithms, (ii) gapped optimization
problems and the notation: (γ, β)-Max-CSP(F) (iii) approximability and approximation-resistance
and (iv) sketching algorithms.

3.1 Approximating CSPs

Since solving Max-CSP(F) exactly can be quite hard for most F we turn often to algorithms that
produce approximate solutions. We discuss some basic definitions regarding these in this section.
All definitions restrict algorithms to come from some resource-bounded class C. While we defer
the discussion of the specific classes considered to later sections, here we consider definitions for a
generic such class C.

The most common notion of approximation is an α-approximation algorithm for some α ∈ [0, 1].
An α-approximation algorithm ALG for Max-CSP(F) is one that for every instance Ψ outputs a
value ALG(Ψ) satisfying α · valΨ ≤ ALG(Ψ) ≤ valΨ.

2 We say Max-CSP(F) is α-approximable in
C if there exists ALG ∈ C that is an α-approximation algorithm for Max-CSP(F).

A more refined notion of approximation that is more common in the literature proving non-
existence of algorithms is associated with gapped problems. Given 0 ≤ β < γ ≤ 1, we say
that an algorithm ALG solves the “(γ, β)-approximation version of Max-CSP(F)”, abbreviated
(γ, β)-Max-CSP(F), if the following two conditions hold: (1) For every Ψ such that valΨ ≥ γ, we
have ALG(Ψ) = 1 and (2) For every Ψ such that valΨ ≤ β, we have ALG(Ψ) = 0. We say that
(γ, β)-Max-CSP(F) is solvable in C if there exists an ALG ∈ C solving (γ, β)-Max-CSP(F).

Assuming C satisfies mild closure properties the latter notion roughly captures α-approximability
precisely, while giving more detailed information. To see some flavor of the translation between
the two notions, suppose Max-CSP(F) is α-approximated by ALG. Now consider a pair γ, β with

2Note that a small space streaming algorithm has very little hope of outputting a near-optimal solution which
might take Ω(n) to represent. So we require our algorithms only to output the value achieve by the optimal, or
approximately-optimal, solution.
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β < αγ. Then the algorithm ALG′ that outputs ALG′(Ψ) = 1 if ALG(Ψ) > β and 0 other-
wise solves (γ, β)-Max-CSP(F). And if C satisfies the closure property that ALG′ ∈ C whenever
ALG ∈ C then it follows that α-approximability in C implies (γ, β)-Max-CSP(F) is solvable in C
for every β < αγ. A rough converse is also true, again assuming some (this time more stronger)
closure properties of C that we leave unspecified: If for some α we have that for every γ ∈ [0, 1],
the (γ, β)-Max-CSP(F) is solvable in C for β = αγ, then for every ϵ > 0 we have that Max-CSP(F)
is α− ϵ approximable in C. (See [CGSV21b, Proposition 2.21] for a detailed statement and proof.)

The discussion above explains why the study of (γ, β)-Max-CSP(F) (for every γ, β and F) is at
least as rich as the study of α-approximability of Max-CSP(F). But it can provide more detailed
information. For instance researchers are often interested in approximating the value on satisfiable,
or nearly satisfiable, instances. (See for instance, [DK13, BK12, KOT+12] for such works in the
setting of C being all polynomial time algorithms.) We can understand these corner cases by
focussing on γ = 1 or γ → 1 and exploring the maximal β such that (γ, β)-Max-CSP(F) is solvable
in C. For instance recent results show that for every β < 1, (1, β)-Max-DICUT is solvable in C when
C is the class of polylog space bounded sketching algorithms — a result that is not captured by the
single parameter approximability of the problem.

Before concluding we also highlight what is a “non-trivial” approximation. For families F where
every constraint has at least one satisfying assignment this notion is quite simple. We say that
an algorithm that outputs a constant (independent of the input Ψ) is a trivial algorithm. Note
that trivial algorithms are still legitimate approximation algorithms. For instance the algorithm
that always outputs 1/2 is a 1/2-approximation for Max-CUT — this is so since no instance Ψ of
Max-CUT has valΨ < 1/2. We say that an approximation ratio is non-trivial if it is not achieved by
a trivial algorithm. Similarly we say that a (γ, β)-approximation is non-trivial if γ < 1 and there
exists an instance Ψ with valΨ ≤ β. To quantify this notion of non-triviality we define ρmin(F) to
be infΨ instance of Max-CSP(F){valΨ}. We say that a Max-CSP(F) is approximation resistant to C if
for every α > ρmin(F) no algorithm ALG ∈ C is an α-approximation to Max-CSP(F). Equivalently
for every ρmin(F) < β < γ < 1 it is the case that (γ, β)-Max-CSP(F) is not solvable in C. We say
Max-CSP(F) is approximable in C if it is not approximation resistant to C.

In what follows we will describe works exploring the various approximation factors achievable
for Max-CSP(F) for different F with streaming algorithms that have bounded space. We shall also
explore some restrictions of streaming algorithms known as sketching algorithms. We introduce
these terms below.

3.2 Streaming and Sketching algorithms

We consider the approximability of Max-CSP(F) when the input instance Ψ = (C1, . . . , Cm) is
presented as sequence of constraints to the approximating algorithm. The algorithm is restricted
in the amount of space it is provided. We allow the algorithm to be randomized: in all upper
bounds the algorithm will be expected to generate and store any randomness in the restricted
space it is given, while in the lower bounds we will rule out algorithms that are a distribution over
deterministic algorithms (and so strictly more general).

Formally a space s(n)-streaming algorithm for (γ, β)-Max-CSP(F) on n variables is given by
a pair of functions (τ, ν) where Γ : {0, 1}s(n) × Λn → {0, 1}s(n) is the state transition function
and ν : {0, 1}s(n) → {0, 1}s(n), where Λn = Λn(F) denotes the set of all possible constraints
of Max-CSP(F) on n variables. On input a stream σ = (C1, . . . , Cm) ∈ Λm

n the algorithm first
computes the state S(σ) = Sm where Si = Γ(Si−1, Ci) for i ∈ [m] and S0 = 0 in the deterministic
case. It then outputs ν(S(σ)). A randomized streaming algorithm is the same except that now the
initial state S0 is distributed uniformly randomly over {0, 1}s(n).
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In this paper we will also focus on a restriction of streaming algorithms known as sketching
algorithms. To define this notion consider the concatenation of two streams σ ◦ τ . By definition of
a streaming algorithm the final state S(σ ◦ τ ) can be determined from S(σ) and τ . A sketching
algorithm is one that is restricted even further in that S(σ ◦ τ ) can be determined from S(σ) and
S(τ ), i.e., there exists a composer function C : {0, 1}s(n) × {0, 1}s(n) → {0, 1}s(n) such that for
every σ, τ ∈ Λ∗

n, we have S(σ ◦ τ ) = C(S(σ), S(τ )).
Most common sketching algorithms are obtained from so called “linear-sketching algorithms”

where C ∈ Γn is viewed as a vector in v ∈ RN for some large N , and a stream (C1, . . . , Cm)
represents the sum of the m corresponding vectors v1 + · · ·+ vm. The sketch of a vector v is given
by Av where A ∈ RN×s projects v down to some low-dimensional subspace. Ignoring bit precision
issues this compresses large N dimensional inputs into small s dimensional sketches that end up
giving significant information about the original input, surprisingly often. It is easy to see that
such linear sketching algorithms indeed satisfy the definition of sketching.

In the rest of this article we describe the surprising effectiveness of sketching algorithms in
approximating Max-CSP(F). We also describe matching lower bounds for sketching algorithms
that often generalize also to give streaming lower bounds.

4 Results on Streaming CSPs

Prior to 2010, despite extensive work on streaming algorithms and lower bounds for other prob-
lems, there were no works covering CSPs. This was even noted at a workshop at Bertinoro in
2011 [IMNO11].

Lower bounds for Max-CUT The first works focussed on lower bounds for the Max-CUT prob-
lem in independent works by Kogan and Krauthgamer [KK15] and Khanna, Kapralov and Su-
dan [KKS15]. The former showed that there existed α < 1 such that α-approximating Max-CUT
requires Ω(

√
n)-space. The latter showed the tighter result showing that for every α > 1/2, α-

approximating Max-CUT requires Ω(
√
n)-space in the streaming setting. In other words Max-CUT

is approximation resistant to o(
√
n) space streaming algorithms. Subsequent works focussed on

the space complexity and pushed it higher. Khanna, Kapralov, Sudan and Velingker [KKSV17]
pushed the space requirement up to linear at the cost of a weaker approximation; specifically they
showed that there exists α < 1 such that α-approximating Max-CUT requires Ω(n)-space. Finally,
in a tour-de-force work, Kapralov and Krachun [KK19] settled the approximability of Max-CUT
essentially completely by showing it is approximation resistant to o(n) space streaming algorithms.

An aside is in order here: The input to aMax-CSP(F) has lengthO(m log n) and even if we forbid
repeated constraints m can be as large as nk. So, a priori one could imagine space complexities
of streaming algorithms being much higher than O(n). But a folklore observation shows that it
suffices for the streaming algorithm to maintain a random sample of O(n/ϵ2) constraints and the
optimum value on the sampled constraints is a (1 − ϵ) approximation to the optimum value on
the input instance.3 Since these sample of constraints takes only O(n log n) space to store and the
optimal value for this sample can be computed in O(n) space (though using exponential time), it
follows that O(n log n) space suffices to get α-approximation for every Max-CSP(F) problem for
every α < 1. In particular, returning to the Max-CUT problem, the space lower bound from [KK19]
is optimal to within a logarithmic factor.

3This observation also relies on the fact that the value of every instance is bounded away from 0, which in turn
relies on the fact that 0 is not a constraint function in F .
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Upper bounds for Max-DICUT While the lower bounds for Max-CUT are technically hard (es-
pecially [KK19]) arguably these results are not very surprising: A streaming algorithm with limited
(say polylogarithmic) space seems hardly capable of understanding the global structure imposed by
the many different constraints and understanding how well they can be satisfied simultaneously. In-
deed the lower bounds of [KKS15] show that o(

√
n) space streaming algorithms can not distinguish

random graphs from random bipartite graphs with a planted bipartition. In view of such limited
power to understand the global structure it would not have surprised some researchers (notably
the author) if every Max-CSP(F) problem turned out to be approximation resistant to o(n)-space
streaming algorithms. In other words — it was conceivable in 2015 that there were no non-trivial
streaming algorithms for CSPs.

A striking paper of Guruswami, Velingker and Velusamy [GVV17] changed the picture by
giving an elegant and simple algorithm for approximating Max-DICUT, the problem whose input is
a directed graph on vertex set [n] and the goal is to find a cut S ⊔ S that maximized the number
of edges going from S to S. (This problem is expressible as Max-CSP(F) for F = {u ∧ v}.) The
”trivial” approximability of this problem is 1/4, but [GVV17] gave a non-trivial 0.4-approximation
algorithm for this problem using polylogarithmic space.4 The key insight to their algorithm is
that one can estimate some non-trivial global information about the input by appealing to norm
estimation algorithms that have been well explored in the sketching community. In particular their
work relies on algorithms for estimating the ℓ1 norm of a vector in the “turnstile” model which
go back to the work of Indyk [Ind06]. As we will discuss later, this algorithm can be generalized
arguably quite surprisingly to many other CSPs.

Tight bounds and classification of Boolean binary CSPs While the lower bound for
Max-CUT is obviously tight, the Max-DICUT approximability of .4 from [GVV17] was not known to
be tight. From the 1/2 + ϵ-inapproximability of Max-CUT one can deduce a 1/2-inapproximability
for Max-DICUT as well (by a reduction which maps every edge from an instance of Max-CUT to a
pair of directed edges between the same vertices). Neither the algorithm nor the analysis appear
tight. Indeed in a subsequent work, Chou, Golovnev and Velusamy [CGV20] managed to improve
both the algorithm and the lower bound to get a tight approximability of 4/9 for Max-DICUT.
Specifically they give a polylog space algorithm achieving this approximation ratio and also prove
that no streaming algorithm with o(

√
n) space can do better! This tight result for Max-DICUT may

appear accidental, but [CGV20] go further and classify the approximability of every Boolean (i.e.,
with q = 2) CSP on literals on binary constraints (i.e., k = 2). In doing so their work points to some
remarkable phenomena: For every α ∈ [0, 1], every CSP in the finite, but nevertheless diverse, class
they consider either is α-approximable in polylogarithmic space, or is not α− ϵ approximable (for
every ϵ > 0) with o(

√
n) space. And in all cases the approximation algorithm uses the ℓ1-norm ap-

proximator in a manner similar to [GVV17]. Together these results suggest a broader phenomenon
explored and somewhat confirmed in the further work reported next.

Sketching complexity of CSPs In joint work with Chou, Golovnev and Velusamy [CGSV21b]
we give a dichotomy result for all (γ, β)-Max-CSP(F) (i.e., for every k, q,F and every γ, β ∈ [0, 1])
for o(

√
n)-space sketching algorithms, as described below.

Theorem 4.1 ([CGSV21b, Theorem 1.1]). For every q, k ∈ N, 0 ≤ β < γ ≤ 1, and every
F ⊆ {Zk

q → {0, 1}}, one of the following two conditions holds: Either (γ, β)-Max-CSP(F) can be
solved by a polylogarithmic space sketching algorithm, or for every ϵ > 0, every sketching algorithm

4Throughout this article we will not spell out the exponent in polylogarithmic terms though of course the original
papers give more detailed answers.
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for (γ − ϵ, β + ϵ)-Max-CSP(F) requires Ω(
√
n)-space. Furthermore there is a polynomial space

algorithm that decides, given γ, β and F , which of the two conditions holds.

A corollary to approximation resistance is the following: For every F , either Max-CSP(F) is
approximable by a polylogarithmic space sketching algorithm, or it is approximation resistant to
o(
√
n)-space sketching algorithms.5 In the special case of k = q = 2 the lower bound above extends

beyond sketching algorithms to all streaming algorithms ([CGSV21b, Theorem 1.3]). Put together
these results subsume all previous works with the exception of the linear space lower bound for
Max-CUT from [KK19]. Even in the case of k = q = 2 the dichotomy is more detailed than the one in
[CGV20] in that it covers all CSPs, not just CSPs on literals, and it also talks about the solvability
of all (γ, β)-Max-CSP(F) and not only the best approximation ratio. For example the results show
that for every sufficiently small ϵ, (1− ϵ, 1− 2ϵ)-Max-DICUT is solvable by a polylogarithmic space
sketching algorithm while (1− ϵ, 1− 2ϵ+ δ)-Max-DICUT requires Ω(

√
n) space for every streaming

algorithm for every δ > 0. In particular it asserts that nearly satisfiable instances are detectable
by small space sketching algorithms.

The sketching algorithms used for the positive result in Theorem 4.1 builds on the algorithm
of [CGV20], which we refer to as a “bias-based algorithm” here. We will discuss that algorithm
further later, but highlight one major difference. Rather than appealing to ℓ1-norm estimation
algorithms, the new algorithm appeals to a matrix norm estimation algorithm, this time from the
work of Andoni, Krauthgamer and Onak [AKO11]. (Roughly the ℓ1 norm given by ℓ1(x1, . . . , xn) =
maxb1,...,bn∈{−1,+1}

∑
i=1 bixi optimizes over a Boolean domain. The matrix norm estimators allow

us to optimize some problems over q-ary domains.)
While the theorem holds out the possibility that there are non-trivial approximation algorithms

for (infinitely) many CSPs, this is not immediate from the theorem statement due to the lack of
“explicitness” of the classification. Specifically there is no simple relationship that says given F
what range of γ and β are “easy” (i.e., solvable in polylog space) and which ones are not. This is
unfortunately inevitable. As F gets more complex the relationships do seem to get more complex.
The results of [CGSV21b] show that γ and β are determined by optimizing some O(qk) real variable
linear function over the reals subject to some degree k polynomial constraints. Even in the case
of Max-DICUT this leads to some degree 2 polynomials in γ and β that determine the complexity.
(See [CGSV21b, Example 1, Pages 21-23] for more details.) Nevertheless the conditions can be
analyzed computationally, and in particular using the quantified theory of reals (using only the
existential theory does not seem to suffice) to understand the complexity of (γ, β)-Max-CSP(F) for
any given γ, β,F .

Remarkably some subsequent work has managed to extract explicit results, even for infinite
families of functions, by exploring the decision conditions arising from the proof of Theorem 4.1. For
instance, Boyland, Hwang, Prasad, Singer and Velusamy [BHP+21], analyze the approximability
of Max-kAND for every k ∈ N — the problem where constraints are the conjunctions of k-literals
— and give an exact expression for the approximation ratio of Max-kAND. (They show Max-kAND
is approximable to within a factor that roughly looks like 2−(k−1)(1− O(1/k)) - see [BHP+21] for
an exact expression.) In particular this gives an infinite subfamily of CSPs that is non-trivially
approximable by the algorithm from [CGSV21b]. [BHP+21] also pin down the approximability
of some other symmetric functions. Another work, by Chou, Golovnev, Shahrasbi, Sudan and
Velusamy [CGS+22], also analyze the sketching approximability of some linear threshold functions
giving some infinite families that are approximation-resistant to o(

√
n)-space sketching algorithm

and other infinite families that are approximable by polylog space sketching algorithms.

5This corollary is not immediate from the theorem statement, but uses some additional aspects of the proof.
See [CGSV21b, Theorem 2.14] for details.
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Streaming Lower Bounds While the classification essentially only rules out sketching algo-
rithms using o(

√
n)-space for the hard problems, for a broad class of problems it even rules out

non-trivial streaming algorithms. In fact for all problems it pins down the polylogarithmic space
approximability to within a factor of q — we expand on this later below, but first speak about
broad classes of approximation resistant problems. We start with some definitions.

We say that a distribution D on Zk
q is one-wise independent if for every i ∈ [k] we have that when

X = (X1, . . . , Xk) is sampled according to D, then Xi is distributed uniformly over Zq. We say
that f : Zk

q → {0, 1} supports one-wise independence there is a one-wise independent distribution

D supported on a subset of the satisfying assignments of f , i.e., if a ∈ Zk
q has positive probability

under D then f(a) = 1. We say that F supports one-wise independence if every function f ∈ F
supports one-wise independence. We say that F weakly supports one-wise independence if there
exists F ′ ⊆ F such that ρmin(F ′) = ρmin(F) and F ′ supports one-wise independence.

Theorem 4.2 ([CGSV21b, Theorem 2.17]). If F weakly supports one-wise independence, then F
is approximation-resistant to o(

√
n)-space streaming algorithms.

Many natural families support one-wise independence. For readers familiar with some of
these problems, we name some here without definitions: Max-kSAT, Max-CUT, Max-qColoring,
Max-Unique-Gamesq to name a few. All of these problems turns out to be approximation-resistant
by the above theorem.

Linear space lower bounds Another direction of work has tried to extend the results of [KK19],
i.e., Ω(n)-space lower bounds, to problems beyond Max-CUT. Here, we are far from a full under-
standing, but we do get approximation resistance for a (strict) subclass of families supporting
one-wise independence. We define the families next.

For a function f : Zk
q → {0, 1} and a ∈ Zk

q we define the width of f at a to be ωa(f) =
1
q |{θ ∈

Zq|f(a+ (θ, θ, · · · , θ)) = 1}|. We define the width of f to be the quantity ω(f) = maxa∈Zk
q
{ωa(f)},

i.e. the maximum over a of the width of f at a. (Roughly the set La = {a+(θ, θ, · · · , θ)|θ ∈ Zq} is
a line through Zk

q and ωa(f) measures the density of the intersection of this line with f−1(1), and
the width of f is the widest such intersection.) We define the width of F , denoted ω(F), to be the
minimum over f ∈ F of the width of f . Note that 1/q ≤ ω(F) ≤ 1 for every F . Finally we say
that F is wide if ω(F) = 1, i.e., the width is maximal.

A simple example of a wide family is the k-equality function fkEQ where fkEQ(u1, . . . , uk) = 1
if and only u1 = · · · = uk. Note that every wide family supports one-wise independence. But there
exists functions supporting one-wise independence that are not wide: For example ⊕3 : Z3

2 → {0, 1}
given by ⊕3(a, b, c) = a+ b+ c (mod 2) supports one-wise independence but has width one.

The following theorem is shown in joint work with Chou, Golovnev, Velingker and Velusamy [CGS+21].

Theorem 4.3 ([CGS+21, Theorem 1.1]). For every wide family F , Max-CSP(F) is approximation-
resistant to o(n)-space streaming algorithms.

We will not cover any aspects of the proof of this theorem in this article, except to say that it
builds on the proof of [KK19] following exactly the same sequence of steps, while replacing every step
in their proof with ingredients neede to handle k-ary functions over non-Boolean alphabets. While
the class of functions covered by this theorem is even smaller than the set covered by Theorem 4.2, it
suffices to imply the following theorem which pins down the approximability of every Max-CSP(F)
to within a factor of q.

Theorem 4.4 ([CGS+21, Theorem 4.3]). For every family F and every ϵ > 0, (ω(F)−ϵ, ρ(F)+ϵ)-
Max-CSP(F) requires Ω(n) space for every streaming algorithm. Consequently, for every F the
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largest α for which Max-CSP(F) is α-approximable by a o(n)-space streaming algorithm satisfies

α ∈
[
ρmin(F), ρmin(F)

ω(F)

]
.

We remark that while Theorem 4.4 immediately implies Theorem 4.3, the proof in [CGS+21]
essentially derives the former from the latter using simple arguments.

4.1 Aside: Ordering CSPs

Before turning to some of the technical ingredients in the proofs we take a brief detour to cover
some an application of the results described above to a somewhat different class of optimization
problems called ordering CSPs. We describe this class informally first: Recall that the solution
space of the standard CSPs (the ones we work with in the rest of this paper) come from a product
set, namely n-tuple of variables (X1, . . . , Xn) take values from Zq × Zq × · · · × Zq. A variation
of this theme considers the setting where the variables need to be ordered, i.e., the (X1, . . . , Xn)
take on values from Symn = {π : [n] → [n] | π is one-to-one}. (I.e., Xi = π(i) where π is a
permutation.) The natural notion of local constraints on ordering problems pick sequences of k
distinct variables out of the n variables (as in standard CSPs) and look at the ordering from Symk

induced by these k variables and constrain them. Thus a constraint function in ordering CSPs is
given by Π : Symk → {0, 1} and constraint families are a set of constraint functions. Thus for every
k and every family F ⊆ {Π : Symk → {0, 1}} we get an ordering CSP, denoted Max-OCSP(F).
(Note that unlike in standard CSPs, there is no notion of an alphabet or q in the case of ordering
CSPs.)

Two examples of ordering CSPs include the Maximum Acyclic Subgraph (MAS) problem and
the Betweenness problem. The former asks, given a directed graph G to find the largest acyclic
subgraph in it. This problem is captured as Max-OCSP({<}) where <: Sym2 → {0, 1} satisfies
< (π) = 1 if and only if π(1) < π(2). By placing the constraint < (i, j) for every directed
edge (i, j) in a graph G, we get an Max-OCSP(<) instance that exactly captures the MAS instance.
Betweenness is the ordering problem where constraints are given by a triple of variables and require
that the ordering place the middle variable between the first and third (though allowing either of
the first or the third to be the higher ranked variable). Once again it can be naturally formulated
as an ordering CSP.

With ordering CSPs again, one can ask what is the trivial approximability of an ordering
CSP and when can a ordering CSP be solved non-trivially. Both questions turn out to have
simple answers though somewhat disappointing ones from the algorithmic point of view. Note

that a random ordering satisfies a constraint Π with probability ρ(Π)
def
= 1

k! · |Π
−1(1)|. Letting

ρ(F) = minΠ∈F{ρ(Π)} we get that every instance of Max-OCSP(F) has value at least ρ = ρ(F),
and thus ρ-approximation is trivial. It turns out that there are no algorithms (for any F running
in o(n)-space that can do better), as shown in the following theorem from joint work with Singer
and Velusamy [SSV21].

Theorem 4.5. For every k, every family F ⊆ {Π : Symk → {0, 1}} and every ϵ > 0, every
streaming (ρ(F) + ϵ)-approximation algorithm for Max-OCSP(F) requires Ω(n) space.

5 Some ideas behind the proofs

5.1 The Ω(
√
n) space lower bound for Max-CUT

We start with the lower bound from [KKS15] on the Max-CUT problem. We start with some
basic ideas about lower bounds. Lower bounds in streaming are typically “distributional”. To

10



prove a lower bound on (γ, β)-Max-CSP(F) for some γ, β,F , for every sufficiently large n we
construct two distributions of instances on n variables – the YES and NO distributions. The YES
distributions are supported with probability 1− o(1) on instances from the set Γ = {Ψ|valΨ ≥ γ}.
Similarly, the NO distributions are supported with probability 1− o(1) on instances from the set
B = {Ψ|valΨ ≤ β}. In the case of Max-CUT we will thus consider a YES distribution supported
(with probability one) on bipartite graphs, and NO instances will have cut value at most 1/2+o(1).
The goal is to prove that for any space s algorithm ALG with s = o(

√
n) the distribution of the

final state of ALG in the YES and NO cases are very close in total variation distance. (For
distributions D,D′ supported on some set Ω the total variation distance, denoted ∥D−D′∥tv is the
quantity 1

2

∑
ω∈Ω |D(ω)−D′(ω)|.) Since the inputs are random, it suffices to consider deterministic

s(n)-space bounded algorithms.
Both distributions are parameterized by two constants: a small α ∈ (0, 1) and large, but

constant, integer T . The graphs will have roughly (α/2) · T · n edges. These edges come as the
union of T matchings M ′

1, . . . ,M
′
T each of size roughly α/2. In the NO distribution these matchings

will just be uniform matchings of the right size (we will get to the exact distribution of size shortly).
In the YES distribution a random cut of [n] is chosen by picking a vector x ∈ {0, 1}n uniformly
at random and letting the cut be {i|xi = 1}. The matchings M1, . . . ,Mt are uniform subject to
the condition that every matched edge crosses the cut. The lower bound is proved by a “hybrid
argument” involving T steps. For t ∈ {0, . . . , T} let SY

t denote the state of ALG after seeing the
first t matchings from the YES distribution, and similarly let SN

t denote the state of ALG after
the first t matchings from the NO distribution. By definition we have SY

0 = SN
0 . The key step is

to prove that for every t,

∥SY
t − SN

t ∥tv is small assuming ∥SY
t−1 − SN

t−1∥tv is small, (5.1)

and to use this result inductively to conclude ∥SY
T − SN

T ∥tv is small which shows that that the
two distributions are not distinguishable by small space algorithms. By construction the YES
distribution is supported on bipartite graphs. If αT is sufficiently large then it can be argued
by a standard Chernoff plus union bound that with probability 1 − o(1), a graph from the NO
distribution also has value at most 1/2 + o(1) and together these suffice for the lower bound on
Max-CUT. We thus turn to the proof of Eq. (5.1).

The upper bound works by designing two-party one way communication problem that captures
the added distinguishability of YES from NO conditioned on knowing SY

t−1 ≈d SN
t−1 (where ≈d

indicates that the two random variables are close in distribution). A rough abstraction of this
problem is as follows: Alice, who knows x must send some information about it to Bob. This
information may capture information such as SY

t−1 and/or SN
t−1, both of which may in principle

depend on x, but should be limited to o(
√
n) bits. Now Bob, who gets to see Mt which is either

(in the YES case) a random matching crossing the cut given by x or (in the NO case) a random
matching, must distinguish the two.

It turns out a problem very similar to this was already defined and studied in the literature.
Specifically, Gavinksy, Kempe, Kerenedis, Raz and de Wolf [GKK+08] define the Boolean Hidden
Matching (BHP) problem where Alice is given a uniform vector x ∈ Zn

2 and Bob is given a matching

M̃ with m = αn edges on vertex set [n] drawn uniformly among all such matchings, and a 0/1
labelling w ∈ Zm

2 on the edges where in the YES case, the weight we of an edge e = (i, j) satisfies
we = xi + xj (mod 2), while in the NO case we’s are uniformly random and independent. The
goal of the communication is for Bob to distinguish the YES case from the NO case. [GKK+08]
show that this problem requires Ω(

√
n) bits of communication to achieve constant advantage in

distinguishing. (The advantage of a protocol is the probability that the protocol outputs 1 in
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the YES distribution minus the probability it does so in the NO distribution. Specifically the
[GKK+08] result shows that for every δ > 0 there exists τ > 0 such that for every α < 1/2 and
every sufficiently large n, every protocol that achieves advantage δ must communicate at least τ

√
n

bits. These quantifiers are somewhat important as we will see below.)
To use the BHM lower bound from [GKK+08] we need to address two issues. First the input to

Bob in the BHM problem is not the same as coming from the streaming problem. This problem is
easy to deal with — Bob is getting more information in the BHM problem than in the motivating
Max-CUT based problem, and this only makes the lower bound even stronger. Formally Bob can
reduce an instance of BHM to the streaming inspired-problem by dropping all the edges e that
have label we = 0. This gives Bob roughly αn/2 edges (since each edge crosses the cut with
probability roughly 1/2 and these are roughly independent events) reducing exactly to the setting
in the streaming-inspired problem.

The second and more important issue is that the BHM problem was only “roughly” motivated
by the streaming problem above — we need a more careful and formal argument connecting the two.
Formally we consider the random variables, SY

t , SN
t and a hybrid variable S̃, where S̃ is the state

of ALG on receiving M1, . . . ,Mt−1 from the YES distribution and Mt from the NO distribution.
The BHM lower bound immediately implies that S̃ ≈d SY

t : The only difference between the two
states is the t input which comes from the YES distribution for SY

t and from the NO distribution
for S̃; and the setup of BHM allows Alice to generate and communicate SY

t−1 to Bob allowing
Bob to compute the final state and use ALG to distinguish them. To complement we also have
∥S̃ − SN

t ∥tv ≤ ∥SY
t−1 − SN

t−1∥tv by the data processing inequality: S̃ is determined by SY
t−1 and

Mt ∼ NO while SN
t is determined from SN

t−1 and Mt. We stress a subtle point here: It is crucial
that Mt is independent of SY

t−1 and SN
t−1 for this inequality to be applicable, and this does hold

in our case since the NO distribution is independent of x which is the only variable connecting
the different matchings in the YES case. (This subtlety is the reason why extensions of this proof
apply only to families supporting one-wise independence, or only give sketching lower bounds.)

We also comment briefly on the choice of various parameters such as α, T , ϵ (where our goal is
to prove hardness of (1, 1/2 + ϵ)-Max-CUT), δ (the advantage allowed in BHM) and τ (where the
space lower bound is τ

√
n). We want our bound to hold for every ϵ > 0 so given ϵ, we first pick

α small enough for the BHM lower bound to hold. In our case it holds for every α < 1/2. Given
this choice of α we pick T large enough so that a graph from the NO distribution with αTn edges
is very likely not to have a Max-CUT of fractional size more that 1/2 + ϵ. Given this choice we
pick δ small enough so that T applications of the hybrid argument still lead to negligible advantage
in distinguishing YES from NO. Finally the τ we obtain is whatever is guaranteed by the BHM
lower bound for this choice of δ.

Our eventual streaming and sketching lower bounds will extend the ideas from above, but we
will return to those after describing the algorithms for Max-DICUT from [GVV17, CGV20].

5.2 Bias-based algorithms for Max-DICUT

The key ingredient in the algorithm of [GVV17] for Max-DICUT is the notion of the “bias” of
a graph on vertex set [n]. For a vertex v in a directed graph, let in-deg(v) denote the number
of incoming edges into v and let out-deg(v) denote the number of outgoing edges. Now define
bias(v) = in-deg(v) − out-deg(v), and define bias(G) = 1

2m

∑
v∈[n] |bias(v)|. Thus if we term the

vector (bias(v))v∈[n] ∈ Rn to be the bias-vector of the graph, then the bias of the graph is essentially
the ℓ1 norm of this vector up to normalization. As mentioned already, the ℓ1-norm and hence the
bias of a graph can be estimated arbirarily well by a streaming algorithm presented with a stream
of edges using an algorithm from [Ind06]. The key to the algorithms of [GVV17] and [CGV20] are
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inequalities relating the bias of a graph to the dicut value, that allow them to output lower bounds
of the value of the dicut. (For uniformity we will only talk about the fractional value here and later
and use valG to denote this quantity.)

Note that by definition 0 ≤ bias(G) ≤ 1 for every graph G on m vertices. [GVV17] show that

valG ≤ 1+bias(G)
2 . This inequality follows easily from the observation that every cut must leave at

least |in-deg(v) − out-deg(v)| of the edges incident to v uncut. Since every uncut edge may be
counted twice by this process, we get a lower bound of 1

2

∑
v |in-deg(v)−out-deg(v)| on the number

of uncut edges.
[GVV17] complement upper bound above with a lower bound: For every G we must have

valG ≥ bias(G). This is “constructive” (though not in streaming sublinear space) — the greedy cut
which puts all vertices with positive bias on the sink side of the cut and the rest on the source side
achieves this. (A simple argument to see is iterative: Remove directed cycles from the graph one
at a time till we get a DAG. This does not alter the bias. Now remove maximal length directed
paths - each such path contributes one to the non-normalized bias, and also contributes at least
one edge to the dicut since by maximality the source of the path must have zero indegree and the
sink must have zero out degree.)

Combining the two bounds above with the lower bound valG ≥ 1/4 for every G gives a .4
approximation algorithm: The algorithm computes bias(G) and outputs max{bias(G), 1/4}. To
improve on this [CGV20] give an improved lower bound on valG when bias(G) ≤ 1/3. Their bound
is also “constructive” - the consider a random dicut where each vertex of positive bias is placed on
the sink side with probability 1/2 + δ independently (for some parameter δ that we will optimize
later). Remaining vertices are placed on the sink side with probability 1/2−δ independently. They
analyze the cut produced by this rounding after optimizing over δ and use the expected size as an
additional lower bound. We won’t reproduce their bound or analysis here, but only comment that
the optimization involves optimizing degree two rational functions in δ. This already gives them a
4/9 approximation algorithm.

The choice of a single rounding probability for all vertices in the graph is somewhat surprising.
(This probability may depend on the graph and bias, but once the graph is fixed all vertices get
rounded with the same probability.) It seems like a choice made for ease of analysis - optimizing a
single variable δ is easier than optimizing n variables! One could nevertheless ask — could we have
done better with more careful choices? The surprising result from [CGV20] is that this won’t help
and indeed no o(

√
n)-space algorithm can improve on the bound above! So somehow bias(G) is the

right quantity to compute, and rounding independently with the same probability for all vertices
(upto the choice of the preferred side) is the right algorithm!

5.3 The framework of [CGSV21b]

To extend the algorithm of the previous section to problems beyond Max-DICUT, we need to
understand what are notions of bias of a variable and of the whole instance for Max-CSP(F) for
general F . (In this discussion we will assume F has a single function f though extensions to more
functions is straightforward.) Recall that in the Max-DICUT problem constraints arrive as pairs
(i, j) where the edge goes from vertex i to vertex j. Thus the in-degree of a vertex could be abstract
as the number of constraints in which it is the second variable, and out-degree as the number of
constraints where it is the first variable. We use this to motivate a new notion of bias of a variable
Xi, denoted d-bias(i) (for detailed bias): This will be a k dimensional vector whose jth coordinate
d-bias(i)j records the number of constraints in which Xi appears as the jth variable in a constraint.
Considering all the biases of all vertices gives us an n×k matrix B = B(Ψ) with B(i, j) = d-bias(i)j
that “represents” an instance Ψ.
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The main idea in [CGSV21b] can roughly be captured as follows: If there exists instances Ψ1 and
Ψ2 on n variables with B(Ψ1) = B(Ψ2) such that valΨ1 ≥ γ and valΨ2 ≤ β then Max-CSP(F) can
not be solved in o(

√
n) space by a sketching algorithm. Else it can be solved by a polylogarithmic

space linear sketching algorithm.” A priori neither statement should be obvious and we will give
some idea below as to why they are true. Furthermore even if the statements are true it is not clear
how to decide which of the two conditions hold (since a priori one may have to enumerate over all
n and all pairs of instances to determine if the condition is true). It turns out all the issues get
answered rather nicely jointly. It turns out that it suffices to consider (weighted) instances on kq
variables to answer the final question, and studying the space of these instances also leads to the
algorithms and the lower bounds.

To explain the reduction, we first consider the simpler setting of Boolean CSPs (so q = 2) on
literals. In this case we actually reduce to a setting involving k variables — and we explain how this
happens. Suppose there are two instances on n variables: Ψg with valΨg ≥ γ and Ψb with valΨb

≤ β
satisfying valΨg = valΨb

. We show how to simplify the two CSPs. From now onwards it will be
convenient to think of a weighted CSP instance as being a distribution on constraints - where a
constraint is chosen with probability proportional to its weight. Now, since we are considering
Boolean CSPs on literals we can flip variables as necessary (by flipping literals in all constraints)
till we get that 1n is the assignment achieving valΨg(1

n) ≥ γ. To preserve B(Ψg) = B(Ψb) we flip
variables in Ψg and Ψb together. Note that this flipping preserves valΨb

≤ β. Next we observe that
we can assume Ψg and Ψb are symmetric under permutations: I.e. if some constraint C(X1, . . . , Cn)
appears in Ψg with some probability p then for every permutation π : [n] → [n] the constraint
C(Xπ(1), . . . , Xπ(n)) also appears in Ψg with the same probability. This is so since 1n, the assignment
achieving the maximum value is closed under permutations. We also have that Ψb is closed under
permutations since the empty (!) set of assignments that achieves value greater than β is also closed
under permutations. Closure permutations makes Ψg and Ψb very simple: All that determines these
instances is the distribution supported on Zk

2 indicating of which of the k variables in a randomly
chosen constraint are negated and which are unnegated - the names of the variables are no longer
relevant! Suppose DY represents the distribution on Zk

2 given by Ψg and DN the distribution given
by Ψb. We now study these distributions further and they will lead us to the answers to the three
issues raised earlier.

The space of DY and DN : We can go back from distributions D over Zk
2 to instances ΨD

of Max-CSP(F) of k variables X1, . . . , Xk as follows: A random constraint of ΨD is of the form
f(X1⊕b1, . . . , Xk⊕bk) where b = (b1, . . . , bk) ∼ D. Now the fact that DY came from an instance Ψg

of value at least γ implies that the all 1’s assignment satisfies ΨDY
. The fact that B(Ψg) = B(Ψb)

implies that DY and DN have the same marginals. It remains to interpret the implication that
Ψb ≤ β: We stress that it does not mean ΨDN

has value less than β - indeed ΨDN
can have value

much larger than that or even γ! The implication turns out to be exactly the following: ‘’For every
p ∈ [0, 1] if X1, . . . , Xk are assigned values identically and independently according to Bern(p) (i.e.,
they take values in Z2 with Pr[Xi = 1] = p), then the expected value valΨDN

(X1, . . . , Xk) ≤ β.” I.e.,
no identical and independent probabilistic assignment to the variables satisfies many constraints.

It turn out we can now capture these considerations on DY and DN in a nice mathematical
framework and that will lead to matching algorithms and lower bounds. Note that a distribution
on Zk

2 can be viewed as a vector in R2k in a natural way, and the space of all distributions is a

convex set in R2k . Now let SY
γ (f) denote the subset of this set representing distributions D such

that valΨD(1
k) ≥ γ. Similarly let SN

β (f) denote the subset of distributions D such that for every
p ∈ [0, 1], Eb∈Bern(p)k [valΨD(b)] ≤ β. Both these sets are convex sets! (In particular for every p, the
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constraint Eb∈Bern(p)k [valΨD(b)] ≤ β is a linear constraint on D, though we have infinitely many
such constraints.) By construction the two sets are disjoint for β < γ, but they may still contain
distributions with matching marginals! To see this we may project these two sets to their marginals:
So let KY

γ (f) ⊆ Rk be the set of marginals of all distributions in SY
γ (f) and similarly let KN

β (f) be

the marginals of SN
β (f). The discussion thus far has reduced the question: “Do there exist n and

instances Ψ1 and Ψ2 on n variables with B(Ψ1) = B(Ψ2) such that valΨ1 ≥ γ and valΨ2 ≤ β” to the
much simpler and finite dimensional question “Do KY

γ (f) and KN
β (f) intersect?”. (An affirmative

answer to one question implies an affirmative answer to the other.)
Before turning to show why this leads to algorithms or lower bounds we first point out that

the question of the intersection of these two sets is decidable. Specifically the intersection question
can be posed as polynomial inequalities in 2k + 1 variables (2k from D and one from p) of degree
at most k + 1 with one variable (p) being universally quantified and the rest being existentially
quantified. Results in the quantified theory of reals [BPR06] easily show how to decide this question
in space polynomial in the input size, which in our case is roughly 2k to represent the function f
(and whatever else is needed to specify γ and β).

Sketching lower bound when KY
γ (f) ∩ KN

β (f) ̸= ∅. It turns out that the existence of two
distributions with matching marginals is the crux of the Max-CUT lower bound of [KKS15] and
so extending to other settings is a reasonable hope. Specifically the Max-CUT lower bound relies
on DY = Unif({00, 11}) and DN = Unif(Z2

2). To extend to other problems and distributions, we
use the same approach of dividing a long stream of constraints into T substreams of length αn. A
communication problem captures the additional information gained by a substream while a hybrid
argument combines the information gained from the substreams. Both steps turn out to be different
though and we elaborate on them below.

The BHM problem could be interpreted as arising from the associated distributions above in
two different ways. In both Alice gets x ∈ Zn

2 and Bob’s first input is a matching on [n], which
specifies potential constraints: Bob’s second input can be interpreted in two ways: (1) For each
constraint, he gets information on whether x satisfies the constraint or not, (2) Using the fact that
DY is uniform on a subgroup of Z2

2, Bob gets input on which coset the variables in the constraint
come from. The first interpretation doesn’t seem naturally amenable to the lower bound techniques
which seem more tailored to understanding inputs that are uniform in the NO case. The second
interpretation seems restricted to groups and cosets and in particular does not seem to support DY

not being uniform on a set, leave alone a subgroup. However it is possible to extend this approach
beyond such algebraic settings and this is what is done in [CGSV21b]. To do so they introduce
the (DY ,DN )-Randomized Mask Detection Problem which is again a distribution distinguishability
problem in the one-way communication setting: Here Alice gets a vector x ∈ Zn

2 and Bob gets a
k hypermatching with m = αn edges. Additionally Bob gets a vector w ∈ Zkm

2 or one vector in
Zk
2 associated with each hyperedge of the matching. In the YES case this vector associated with

a hyperedge is the labels of x restricted to the vertices incident to the hyperedge masked (i.e.,
xor-ed, or summed in Z2) by a vector b ∈ Zk

2 drawn according to DY . Each mask vector b is drawn
independently for every hyperedge. The NO distribution is similar with the difference that now
b ∼ DN independently for each edge.

[CGSV21b] give a Ω(
√
n) communication lower bound for this problem to achieve any constant

advantage (this time for α < 1/k). The lower bound works in two parts. First the extend the
proof from [GKK+08] to general k in the setting where DN is uniform on Zk

2. (As noted above
this setting seems amenable to their proof technique). The second part of the proof shows how to
use the first part to show hardness of RMD on distributions D1 and D2 that differ in a “simple”

15



way (in particular they differ in probabilities of at most four structured points in their support).
They then complement this by showing that one can move from every DY to every DN (with
matching marginals) using a finite number of steps (as a function of q and k) where each step
creates a “simple” difference in the sense above. A series of triangle inequalities now shows that
(DY ,DN )-RMD is also indistinguishable to o(

√
n)-communication protocols.

To convert the RMD lower bound into a lower bound on Max-CSP(F) we first need to interpret
the RMD inputs as constraints of a Max-CSP(F) problem, and then to prove that combining T
substreams preserves indistinguishability by streaming algorithms. The first step is natural: We
apply constraints so that the hidden vector x is expected to satisfy γ fraction of the constraints in
the YES case: Specifically if a hyperedge gives Bob the information x|S + b corresponding to the
restriction of x to some sequence S of k variables masked by b, then the resulting constraint negates
literals according to x|S + b, so that after the negations are applied, the input to the constraint is
b which, by the condition that DY ∈ SY

γ (f) is expected to satisfy the constraint with probability
γ. Similarly in the NO case every assignment is expected to satsify the constraint with probability
at most β. Taking sufficiently many constraints (i.e., αT → ∞) allows us to apply Chernoff bounds
and the union bound to conclude tight bounds on the value of the resulting CSPs in the YES and
NO case.

The tricky part turns out to be the combination. When DN is uniform, the same hybrid
argument as in the Max-CUT case works and using this twice we conclude that if DY and DN have
uniform marginals then the resulting CSP instances are indistinguishable by o(

√
n) space streaming

algorithms. [CGSV21b] also cover some slight extensions that allow them to cover hardness of
Max-DICUT where the underlying distributions do not have uniform marginals. But for general
DY and DN with non-uniform marginals the method truly breaks down and produces instances
of Max-CSP(f) that are distinguishable by polylogspace algorithms as pointed out by [CKP+21].
However in such cases it is possible to show that no sketching algorithm can work. This relies
on an easy reduction from RMD to a T -player simultaneous communication problem where T
players each get inputs independently according to the distribution of Bob’s input and then need
to communicate short messages to a referee whose goal is to distinguish the inputs being all from
the YES distribution or from the NO distribution. This yields the lower bound of Theorem 4.1.

A sketching algorithm when KY
γ (f)∩KN

β (f) = ∅. We now turn to the complementary result,

giving a sketching algorithm when KY
γ (f) ∩ KN

β (f) = ∅. If the sets do not intersect then there

must be a hyperplane in Rk separating them. Let this plane be given by λ1, . . . , λk and τ so that
{a ∈ Rk|

∑
i∈[k] λiai ≥ τ containsKY

γ (f). SinceKY
γ (f) andKN

β (f) are closed sets if they are disjoint

there must be a gap separating them and so we also have θ > 0 so that {a ∈ Rk|
∑

i∈[k] λiai ≤ τ −θ

contains KN
β (f).

It is natural to think of λi as representing a preference that the ith variable in this constraint
has for taking the value 1 with higher λi’s representing higher preferences. When the ith variable
in a constraint is negated we let −λi capture its preference. a constraint applies to ¬Xj we These
preferences allow aggregation across constraints and yield the definition: For j ∈ [n], let bias(Ψ, j)
be the sum of the appropriate λ values over all constraints that the variable participates in. Define
bias(Ψ) = 1

m

∑n
j=1 |bias(Ψ, j)|. (We note that these definitions extend the Max-DICUT notions

exactly). bias(Ψ) can be estimated as previously by appealing to ℓ1 norm estimation algorithms.
The algorithm for (γ, β)-Max-CSP(F) now reports YES if and only if bias(Ψ) ≥ τ − θ/2. This
algorithm turns out to be correct, using analysis ideas that follow in a straightforward way from
the construction of the convex sets. In case the reader wonders where the ℓ1 estimator is suggested
in the construction of the convex sets, this happens in the step where we passed from a general

16



Ψ1 and Ψ2 with matching detailed bias matrix B, to assuming 1n achieves the maximum value
of Ψ1. The computational challenge behind this vertex is to compute the maximal satisfying
assignment, flipping literals of Ψ1 according to this, and then computing its bias. This step is
achieved computationally by the ℓ1 norm estimation algorithm!

The general case Up to now we focussed on the simpler case of F = {f}, q = 2 and constraints
being applied to literals. It turns out that this is the exact setting considered in the early version
[CGSV21a]. The extension to the general case, where F is not a singleton, constraints are applied
only to variables, and q is general, appears in [CGSV21b]. The extensions do manage to work out
with no surprises (at least no unpleasant ones).

The elimination of the need to work with literals is the conceptually hard step but works
out by working with qk variables which is different from k even in the Boolean case. Roughly our
simplified picture of the extremal examples Ψ1 and Ψ2, uses two variables for each of the k positions
in constraint that a variable can appear in: one corresponding to the unnegated variable X and
one to the negated variable. To extend to general q we now use q variables per coordinate i ∈ [k] —
with variable Xi,σ roughly capturing the “literal” Xi + σ (mod q). The extension to larger sets F
is simple, we augment the detailed-bias information as well as the marginals to include information
about which function f ∈ F the constraint is working with. This leads to sets SY

γ (f), SN
β (f) that

are extended to capture distributions over F×Zk
q and the marginals KY

γ (f), KN
β (f) now project to

F × [k]× Zq dimensions. Somewhat surprisingly both the algorithm and the lower bounds extend
to this setting with the ℓ1 norm estimator replaced by an ∥ · ∥∞,1-norm estimator6 of [AKO11].
Deciding intersection of the two sets reduces to quantified systems with 2 alternations, and roughly
|F|qk variables and degree k. Perhaps the most complex part of the extension is the extension of
the streaming lower bounds which work with two variants of the RMD problem. Also the reduction
of the communication problems to the streaming problems is a bit delicate due to the absence of
literals but works out in the end. We omit the many details, referring the reader to the original
paper [CGSV21b] for those.

6 Future directions

One can hope for many possible extensions to the dichotomy reported in Theorem 4.1. Perhaps the
dichotomy extends as is to streaming algorithms (i.e., beyond sketching), perhaps even for linear
space, perhaps even for randomly ordered streams, and maybe even for multipass algorithms.
Unfortunately, while several extensions are still possible, the clean dichotomy does seem to fray
quite a bit for each possible extension.

At the moment it is still plausible that the dichotomy extends as is to all o(
√
n) space streaming

algorithms though there is no strong evidence in either direction. For space beyond
√
n there do

seem to be a number of new candidate algorithms so our expectation would be that the current
dichotomy won’t hold and there may exist more than two classes of problems. We note that we don’t
have concrete theorems proving this though. For randomly ordered streams as well as multipass
algorithms there seem to be new algorithms in polylogarithmic space. This is the subject of an
upcoming work by the author with Saxena, Singer and Velusamy. Finally the multipass setting
seems to be the most challenging for the lower bounds. Here some remarkable works [AKSY20,
AN21], have shown strong space lower bounds but for progressively weak approximations. Here an

6For matrix M with rows indexed by [n] and columns by Zq the (1,∞)-norm is given by ∥M∥∞,1 =∑n
i=1 maxj∈Zq |Mij |.
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interesting challenge is to establish a tight lower bound for any non-trivial CSP for arbitrarily large
(but constant) number of passes.
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