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Abstract

We analyze the sketching approximability of constraint satisfaction problems on Boolean do-
mains, where the constraints are balanced linear threshold functions applied to literals. In partic-
ular, we explore the approximability of monarchy-like functions where the value of the function
is determined by a weighted combination of the vote of the first variable (the president) and
the sum of the votes of all remaining variables. The pure version of this function is when the
president can only be overruled by when all remaining variables agree. For every k ≥ 5, we
show that CSPs where the underlying predicate is a pure monarchy function on k variables
have no non-trivial sketching approximation algorithm in o(

√
n) space. We also show infinitely

many weaker monarchy functions for which CSPs using such constraints are non-trivially ap-
proximable by O(log(n)) space sketching algorithms. Moreover, we give the first example of
sketching approximable asymmetric Boolean CSPs. Our results work within the framework of
Chou, Golovnev, Sudan, and Velusamy (FOCS 2021) that characterizes the sketching approx-
imability of all CSPs. Their framework can be applied naturally to get a computer-aided analysis
of the approximability of any specific constraint satisfaction problem. The novelty of our work
is in using their work to get an analysis that applies to infinitely many problems simultaneously.
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1 Introduction

In this paper we consider the sketching complexity of solving constraint satisfaction problems
(CSPs) approximately where the constraints are given by linear threshold functions over a collection
of Boolean literals. We introduce these terms below.

CSPs: Given a Boolean function f : {−1, 1}k → {0, 1}, the Boolean CSP associated with f ,
denoted Max-CSP(f) is the following optimization problem. Given m constraints C1, . . . , Cm on n
Boolean variables X1, . . . , Xn, where each constraint applies f to a sequence of k distinct literals
from the set {X1, . . . , Xn,−X1, . . . ,−Xn}, find the maximum fraction of constraints that can be
satisfied by an assignment to the n variables. For an instance Ψ of Max-CSP(f) we use valΨ to
denote this maximum value. We are interested in approximating valΨ and this task is known to
be equivalent to solving a gapped decision version of Max-CSP(f). For 0 ≤ β < γ ≤ 1 we define
the (γ, β)-gapped version of Max-CSP(f), abbreviated to (γ, β)-Max-CSP(f), to be the following
promise decision problem: Given an instance Ψ satisfying valΨ ≥ γ or valΨ < β decide which one
of the two conditions holds.

Sketching algorithms: The class of algorithms we consider (and rule out) are randomized
sketching algorithms. Inputs to these algorithms arrive as a stream of elements, in our case a
stream of constraints. We consider algorithms that use some bounded amount of space, denoted
s(n), to process the stream and maintain a sketch of their output. When the stream ends the
algorithm outputs it verdict based on the current sketch. A key restriction of a sketching algorithm
is that its sketch should satisfy the following composability property. Given two streams σ and τ
and a fixing of the randomness, the sketch of their concatenation S(σ ◦ τ) should be determined by
their sketches S(σ) and S(τ) alone.1 Most existing algorithms for streaming CSPs are sketching
algorithms. We say a sketching algorithm solves a (gapped) decision problem if on every input its
answer is correct with probability at least 2/3.

Approximability and approximation resistance: For α ∈ [0, 1], we say an algorithm is an
α-approximation algorithm for Max-CSP(f) if the following holds: on every input instance Ψ, the
algorithm outputs v such that α · valΨ ≤ v ≤ valΨ with probability at least 2/3. Note that the
existence of an α-approximation algorithm is equivalent to the existence of an algorithm for solving
(γ, β)-Max-CSP(f) for every γ, β ∈ [0, 1] with β ≤ α · γ.

For a function f : {−1, 1}k → {0, 1}, define ρ(f) = 2−k · |{x ∈ {−1, 1}k|f(x) = 1}|. For every f
and every instance Ψ of Max-CSP(f), a random assignment satisfies ρ(f) fraction of the constraints
in expectation and so every Ψ satisfies valΨ ≥ ρ(f). Thus the (1, ρ(f))-Max-CSP(f) problem is
trivially solvable by the algorithm that always outputs valΨ ≥ 1 (since the set {Ψ|valΨ < ρ(f)} is
empty). We say Max-CSP(f) is sketching approximable within space s(n) if there is an ε > 0 and a
sketching algorithm using at most s(n) space that solves (1−ε, ρ(f)+ε)-Max-CSP(f). We say that
Max-CSP(f) is approximation resistant to space s(n) if for every ε > 0, every sketching algorithm
for (1, ρ(f) + ε)-Max-CSP(f) requires Ω(

√
n) space.

1In contrast, a general streaming algorithm maintains a state S(σ ◦ τ) that may depend of S(σ) and all of τ .
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1.1 Motivation and related work

There has been an increasing interest in studying the approximability of CSPs in the stream-
ing setting [KK15, KKS15, KKSV17, GVV17, GT19, KK19, CGV20, CGSV21, CGSV22, SSV21,
BHP+22, CGS+22]. In particular, recently Chou, Golovnev, Sudan, and Velusamy [CGSV21,
CGSV22] gave a dichotomy result for sketching approximability of all finite CSPs. Specifically,
they proved the following theorem.

Theorem 1.1 ([CGSV22]). For every k, every predicate f : {−1, 1}k → {0, 1} and every 0 ≤ β <
γ ≤ 1 one of the following holds: (1) (γ, β)-Max-CSP(f) is solvable by an O(log(n))-space sketching
algorithm, or (2) for every ε > 0, (γ − ε, β + ε)-Max-CSP(f) is not solvable by any o(

√
n)-space

sketching algorithm. Furthermore there is a decidable procedure that determines, given F , γ and
β, which of the two conditions hold.

We note that a followup paper by the same authors [CGSV21] extends the result to a more
general setting: Specifically they allow non-Boolean variables, allow a set of predicates rather than
a single function; and allow the predicates to be applied to variables rather than literals. While
their result is more general all results in this paper work in the more restricted setting of [CGSV22]
and so we will describe our results in their language (which can be somewhat simpler for problems
that are expressible in their setting).

While the results of [CGSV22] imply a dichotomy, to explicitly get the optimal sketching approx-
imation ratio for a given predicate f , they need to solve an optimization problem which in general
needs computer-aided analysis. In order to get more explicit results one needs to restrict the fami-
lies of functions considered, and even then it is unclear if there can be a closed-form expression. In
the only example we are aware of, Boyland, Hwang, Prasad, Singer, and Velusamy [BHP+22] gave
closed-form expressions for the optimal sketching approximation ratio of some symmetric Boolean
CSPs. This still leaves the question of exploring the sketching approximability of other subfami-
lies of CSPs and extracting some qualitative results yielding necessary or sufficient conditions for
non-trivial approximability.

1.2 Main results

In this paper we study sketching approximability of CSPs on linear threshold functions. Below we
define the classes of linear threshold functions and balanced linear threshold functions.

Definition 1.2 (Linear threshold function). A linear threshold function, or LTF, is a Boolean
function f : {−1, 1}k → {0, 1} of the form

f(x) = sign

(
n∑
i=1

wixi + θ

)
,

where w1, . . . , wk, θ ∈ R. The function sign(z) has value 1 if z > 0 and 0 if z ≤ 0; w1, . . . , wk are
called the weights of f and θ is the threshold.

Definition 1.3 (Balanced linear threshold function). A balanced linear threshold function, or bal-
anced LTF, is an LTF with threshold 0 and the additional restriction that for every x ∈ {−1, 1}k,
we have

∑k
i=1wixi 6= 0. Specifically, a balanced LTF f satisfied f(−x) = 1− f(x) for every x.
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Note that for a balanced LTF f , ρ(f) = 1/2, and the goal of approximability is to beat this
factor. Balanced LTFs form a technically important class of functions to study visavis CSP ap-
proximability. For instance Potechin [Pot19] studies them in the polynomial time regime giving a
(somewhat complex) approximation-resistant function in this class. In the sketching setting, inter-
est in this class of functions comes from [CGSV22, Theorem 1.3] which shows that if a function f
supports one-wise independence (i.e., f−1 supports a distribution on {−1, 1}k that is uniform on
each of the k marginals) then Max-CSP(f) is approximation resistant to o(

√
n) space streaming

algorithms. Balanced LTFs are the most basic class of functions that do not support one-wise
independence and hence are not covered by this theorem. Studying this class thus offers the pos-
sibility of finding new classes of CSPs that are approximation resistant to o(

√
n)-space streaming

algorithms.
Our first result shows that every balanced LTF on up to 4 variables is sketching approximable.

(So to search for new approximation resistant functions we need to look at functions on more
variables!) We note that there are only finitely many such LTFs, but already this theorem gives
the first example of an asymmetric Boolean CSP which is approximable by sketching algorithms.2

Theorem 1.4. For every balanced LTF f on k ≤ 4 variables, Max-CSP(f) is sketching approx-
imable in O(log(n)) space.

Our next result shows that there do exist balanced LTFs functions on 5 or more variables that
are sketching approximation resistant. The specific family of functions we show this for are the
“Monarchy” functions. For k ∈ N, MONk : {−1, 1}k → {0, 1} is given by MONk(x1, . . . , xk) =
sign ((k − 2)x1 + x2 + · · ·+ xk). It may be easily verified that MONk is a balanced LTF. We have
the following theorem.

Theorem 1.5. For every k ≥ 5, Max-CSP(MONk) is sketching approximation resistant to space
o(
√
n).

Thus we get the first examples of functions that do not support one-wise independence that are
approximation resistant to space o(

√
n) sketching algorithms. In fact, the theorem gives infinitely

many such examples. We suspect that the Balanced LTF constructed in [Pot19] should also be
approximation-resistant but so far we don’t have a proof. The monarchy functions, by virtue of
the simplicity allow a simpler analytic proof, though admittedly even in this case we do not have
great intuition for the proof and do not know how to extend it to other classes of functions.

Finally we also give an infinite subclass of balanced LTFs that are approximable using O(log(n))
space. The functions we consider here are what we call “weak monarchy” functions. For
j ≤ k ∈ N, let WMONk,j : {−1, 1}k → {0, 1} be the function given by WMONk,j(x1, . . . , xk) =
sign (j · x1 + x2 + · · ·+ xk). It may be easily verified that when j + k is even, then WMONk,j is a
balanced LTF. We have

Theorem 1.6. For all integers j ≥ 2 and k ≥ 7j3 such that k+ j is even, Max-CSP(WMONk,j) is
sketching approximable in O(log(n)) space. In particular, for every j, there exist infinitely many k
such that Max-CSP(WMONk,j) is sketching approximable.

The results above give the first examples of asymmetric Boolean CSPs for which Max-CSP(f)
is sketching approximable. Again we get an infinite family of such functions.

2Note that Max-DICUT (shown to be sketching approximable in [CGV20, CGSV21]) is not considered a Boolean
CSP in [CGSV22] since the Max-DICUT constraints are applied on variables and not on literals.
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Organization of the paper. We start with giving formal definitions and stating relevant previ-
ous results in Section 2. The three main theorems are proved in Section 3, Section 4, and Section 5,
respectively.

2 Preliminaries

We use N,R, and R≥0 to denote the sets of all natural, real, and non-negative real numbers,
respectively. We use [n] to denote the set {1, . . . , n}. We write vector variables in boldface, e.g., x,
and we use xi to denote their ith entry. For two vectors of the same length x,y ∈ Rk, x� y ∈ Rk
denotes the entry-wise product of x and y. For p ∈ [0, 1], Bern(p) denotes the Bernoulli distribution
taking value 1 with probability p, and value −1 with probability 1 − p. We adopt the convention
that

(
n
k

)
= 0 for k < 0 or k > n. By

(
n
≤k
)

we denote the sum
∑k

i=0

(
n
i

)
.

2.1 Sketching approximability and approximation resistance

For a function f : {−1, 1}k → {0, 1}, let ρ(f) = 2−k · |{a ∈ {−1, 1}k | f(a) = 1}| denote the
probability that a uniformly random assignment of the variables satisfies f .

Definition 2.1 (Sketching approximation resistance). For a function f : {−1, 1}k → {0, 1}, we
say that f is sketching approximation resistant to space s(n) if for every ε > 0, every sketching
algorithm for (1, ρ(f) + ε)-Max-CSP(f) requires Ω(

√
n) space.

Definition 2.2 (Sketching approximability). For a function f : {−1, 1}k → {0, 1}, we say that f
is sketching approximable in space s(n) if there exist ε > 0 and a sketching algorithm that solves
(1− ε, ρ(f) + ε)-Max-CSP(f) using space s(n).

At first glance, it seems that if f is not sketching approximation resistant then it’s not necessarily
sketching approximable. Nonetheless, [CGSV22] proved that every f is either approximable or
approximation resistant.3

2.2 Characterization of approximability from [CGSV22]

In this work, we focus on CSPs that use a single function f applied to literals. Thus, we will
use the machinery from [CGSV22] instead of the more general (and more notationally-heavy)
version in [CGSV21]. For a distribution D ∈ ∆({−1, 1}k), by µ(D) we denote its marginals, i.e.,
µ(D) = (µ1, . . . , µk) where µi = Eb∼D[bi] for all i ∈ [k].

Definition 2.3 ([CGSV22, Definitions 2.1 and 2.2]). For γ, β ∈ R, we define the sets of distributions
SYγ and SNβ as

SYγ = SYγ (f) = {DY ∈ ∆({−1, 1}k) | E
b∼DY

[f(b)] ≥ γ}

and

SNβ = SNβ (f) = {DN ∈ ∆({−1, 1}k) | E
b∼DN

E
a∼Bern(p)k

[f(b� a)] ≤ β,∀p ∈ [0, 1]} ,

3Concretely, as the sets KY ,KN are closed (see Lemma 2.4), an algorithm for (1, ρ(f)+ε)-Max-CSP(f) implies an
algorithm for (1− ε′, ρ(f) + ε)-Max-CSP(f) for some ε′ > 0, which in turn implies that Max-CSP(f) is approximable.
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and the sets of marginals of these distributions

KY
γ = KY

γ (f) = { µ(DY ) | DY ∈ SYγ }

and

KN
β = KN

β (f) = { µ(DN ) | DN ∈ SNβ } .

We will use the following properties of the sets KY
γ and KN

β .

Lemma 2.4 ([CGSV22, Lemma 2.4]). For every γ, β ∈ [0, 1] the sets KN
γ and KY

β are bounded,
closed and convex.

With these definitions, we are ready to present the approximability criteria from [CGSV22].4

Theorem 2.5 ([CGSV22, Corollary 1.2]). For every k ∈ N and every function f : {−1, 1}k →
{0, 1}, if KY

1 (f)∩KN
ρ(f)(f) = ∅, then f is sketching approximable within space O(log(n)), if KY

1 (f)∩
KN
ρ(f)(f) 6= ∅, then f is sketching approximation resistant to space o(

√
n).

2.3 (Weak) Monarchy functions

Definition 2.6. A monarchy predicate on k ≥ 2 variables MONk : {−1, 1}k → {0, 1} is defined as

MONk(x1, . . . , xk) = sign

(
(k − 2)x1 +

k∑
i=2

xi

)
.

Here x1 is commonly referred to as the president and the rest of xis are called citizens.

Definition 2.7 (Weak monarchy functions). A weak monarchy predicate of order j on k ≥ 2
variables WMONk,j : {−1, 1}k → {0, 1} is defined as

WMONk,j(x1, . . . , xk) = sign

(
j · x1 +

k∑
i=2

xi

)
.

Similar to ordinary monarchy functions, x1 is commonly referred to as the president and the rest
of xis are called citizens.

It is straightforward to see that MONk is a balanced LTF for every k ≥ 2 and WMONk,j is a
balanced LTF whenever k + j is even.

2.4 Fourier analysis of Boolean functions

We will need the following basic notions from Fourier analysis over the Boolean hypercube (see, for
instance, [O’D14]).

Definition 2.8 (Characteristic functions). For every S ⊆ [k] such that |S| ≥ 1, the characteristic
function χS : {−1, 1}k → {−1, 1} is defined as χS(x) =

∏
i∈S xi. The characteristic function

corresponding to the empty set is defined as the constant function χ∅(x) = 1 for all x ∈ {−1, 1}k.

4Strictly speaking the statement in Corollary 1.2 in [CGSV22] is somewhat different, but their proof of Corollary 1.2
asserts this explicitly.
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Definition 2.9 (Fourier expansions). The Fourier expansion of a Boolean function f : {−1, 1}k →
{0, 1} is given by

f =
∑
S⊆[k]

f̂(S) · χS ,

where f̂(S) = Ex∼Unif{−1,1}k [f(x) · χS(x)] and Unif({−1, 1}k) denotes the uniform distribution on

{−1, 1}k.

Definition 2.10 (Chow parameters). The Chow parameters of a Boolean function f : {−1, 1}k →
{0, 1} are the degree-0 Fourier coefficient and the k degree-1 Fourier coefficients of f , i.e.,
f̂(∅), f̂({1}), . . . , f̂({k}).

Proposition 2.11. For every Boolean function f : {−1, 1}k → {0, 1},

1. ρ(f) = f̂(∅),

2. for every S ⊆ [k], |f̂(S)| ≤ f̂(∅), and

3. for every x ∈ {−1, 1}k, −f̂(∅) · k ≤
∑k

i=1 f̂({i}) · xi ≤ f̂(∅) · k.

Proof. The first statement of the proposition follows directly from the definition of ρ(f): ρ(f) =
Ex∼Unif({−1,1}k)[f(x)] = f̂(∅). For the second statement, observe that for all S ⊆ [k],

|f̂(S)| = |Ex∼Unif({−1,1}k)[f(x) · χS(x)]|
≤ Ex∼Unif({−1,1}k)[|f(x) · χS(x)|]
= Ex∼Unif({−1,1}k)[f(x)]

= f̂(∅) .

It immediately follows that for all x ∈ {−1, 1}k,∣∣∣∣∣
k∑
i=1

f̂({i}) · xi

∣∣∣∣∣ ≤
k∑
i=1

|f̂({i}) · xi| ≤ f̂(∅) · k .

3 Approximability of Balanced LTFs on 4 variables

In this section, we show that all balanced LTFs on at most 4 variables are sketching approximable
in O(log(n)) space. We start by proving that Max-CSP(MON4) is approximable.

3.1 Approximability of MON4

Recall that by Theorem 2.5, it suffices to show that KY
1 (MON4)∩KN

1/2(MON4) = ∅. For k ≥ 2, the

inputs x2, . . . , xk are symmetric, and we will only consider distributions D ∈ ∆({−1, 1}k) where
all vectors having the same sum of coordinates and the same value in the first coordinate have
the same probability masses. Concretely, for x,y ∈ {−1, 1}k, if x1 = y1 and

∑
i xi =

∑
i yi, then

D(x) = D(y). Such a distributionD is uniquely specified by a pair of vectors u = (u0, . . . , uk−1),v =
(v0, . . . , vk−1) ∈ Rk≥0 with

∑
i ui + vi = 1, where for 0 ≤ i ≤ k − 1,
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ui = Pr{x1 = 1 and exactly i of the rest of xis are 1} ,
vi = Pr{x1 = −1 and exactly i of the rest of xis are 1} .

Note that when
∑

i ui + vi = 1, u,v define a distribution D with marginals µ(D) = (µ1, µ
′, . . . , µ′)

where

µ1 =
k−1∑
i=0

(ui − vi) and µ′ =
k−1∑
i=0

(
2i

k − 1
− 1)(ui + vi) . (3.1)

Next we show that for MONk functions, restricting our attention to this class of distributions
is without loss of generality.

Definition 3.2. For γ, β ∈ R and k ≥ 2,

K̃Y
γ (MONk) = { (µ1, µ

′) | (µ1, µ
′, . . . , µ′) ∈ KY

γ (MONk)}

and K̃N
β (MONk) = { (µ1, µ

′) | (µ1, µ
′, . . . , µ′) ∈ KN

β (MONk)} .

Lemma 3.3. For γ, β ∈ R and k ≥ 2,

KY
γ (MONk) ∩KN

β (MONk) = ∅ if and only if K̃Y
γ (MONk) ∩ K̃N

β (MONk) = ∅ .

Proof. First, if (µ1, µ
′, . . . , µ′) ∈ K̃Y

γ (MONk)∩K̃N
β (MONk), then by Definition 3.2, (µ1, µ

′, . . . , µ′) ∈
KY
γ (MONk) ∩KN

β (MONk).

For the other direction. Assume that there is a vector µ = (µ1, µ2, . . . , µk) ∈ KY
γ (MONk) ∩

KN
β (MONk). Consider two distribution DY ∈ SYγ and DN ∈ SNβ yielding the vector µ = µ(DY ) =

µ(DN ). Given that the variables x2, · · · , xk are symmetric, any distribution that is yielded by
permuting x2, · · · , xk in DY (or DN ) is also in SYγ (or SNβ ). Note that the marginals of these

distributions are also permutations of µ. By Lemma 2.4, KY
γ and KN

β are convex, so they also

contain the averages of these vectors: (µ1, µ
′, . . . , µ′) ∈ KY

γ (MONk) ∩KN
β (MONk) for µ′ = (µ2 +

. . .+ µk)/(k − 1). Finally, by Definition 3.2, (µ1, µ
′) ∈ K̃Y

γ (MONk) ∩ K̃N
β (MONk).

Next, we characterize the set K̃Y
1 (MONk).

Lemma 3.4. For every k ≥ 2, K̃Y
1 (MONk) = {(µ1, µ

′) ∈ [−1, 1]2 : µ1(k − 2) + µ′(k − 1) ≥ 1}.

Proof. For µ1, µ
′ ∈ [−1, 1] satisfying µ1(k − 2) + µ′(k − 1) ≥ 1, consider the distribution DY given

by u1 = (k−1)(1−µ′)
2(k−2) , uk−1 = (k−1)µ′+(k−2)µ1−1

2(k−2) , vk−1 = (1 − µ1)/2, and ui = 0 for i 6∈ {1, k − 1}
and vj = 0 for j 6= k − 1. Note that u1, vk−1 ≥ 0 from µ1, µ

′ ∈ [−1, 1], and uk−1 ≥ 0 from
µ1(k − 2) + µ′(k − 1) ≥ 1. It is also easy to check that u1 + uk−1 + vk−1 = 1 which implies
that DY is a distribution, and that it is supported on the preimages of 1 under MONk. Therefore
(µ1, µ

′) ∈ K̃Y
1 (MONk).

For the other direction, a distribution DY supported on the preimages of 1 under MONk satisfies
u1 + . . .+ uk−1 + vk−1 = 1. Then, from (3.1),

µ1(k − 2) + µ′(k − 1) = (k − 2)
k−1∑
i=0

(ui − vi) +
k−1∑
i=0

(2i− k + 1)(ui + vi)
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=
k−1∑
i=1

(2i− 1)ui + vk−1

≥
k−1∑
i=1

ui + vk−1 = 1 ,

where the second equality uses that u0 = 0 and vj = 0 for j < k − 1. This concludes the proof of
the lemma.

Now we show that for the MON4 function, K̃Y
1 and K̃N

1/2 are disjoint, and, thus, MON4 is

approximable in O(log(n)) space.

Lemma 3.5. Max-CSP(MON4) is sketching approximable in O(log(n)) space.

Proof. Note that Lemma 3.4 gives that K̃Y
1 (MON4) = {(µ1, µ

′) ∈ [−1, 1]2 : 2µ1+3µ′ ≥ 1}. We show

that K̃Y
1 and K̃N

1/2 are disjoint, and then Lemma 3.3 and Theorem 2.5 imply that Max-CSP(MON4)

is sketching approximable in space O(log(n)). Next, we prove that no distribution D ∈ SN1/2 has

marginals that lie in K̃Y
1 .

We start by characterizing KN
1/2 (for general MONk). Take a distribution D ∈ ∆({−1, 1}k). In

order for D to lie within SN1/2, the following needs to be satisfied:

E
b∼DN

E
a∼Bern(p)k

[f(b� a)] ≤ β,∀p . (3.6)

Let the function hD(p) denote the probability of an assignment from D that has undergone bit
flips with respect to Bern(p)k to satisfy the monarchy predicate with the probability of β = 1/2 or
less. With this definition, D ∈ SN1/2 if and only if hD(p) ≤ 1

2 for all 0 ≤ p ≤ 1. Note that negating
all variables xi flips the output of the monarchy predicate. Therefore, the negation of a “true”
assignment is “false” and vice versa. This gives that hD(p) = 1− hD(1− p) for all 0 ≤ p ≤ 1 which
implies that D ∈ SN1/2 if and only if for all 0 ≤ p ≤ 1

hD(p) =
1

2
.

We now write down the coefficients of the polynomial hD(p) in terms of ui and vi describing
the distribution (as used earlier in this section).

If one draws an assignment from D where x1 = 1 and exactly i of the rest of the variables are 1,
the probability of the resulting assignment satisfying the monarchy predicate after the Bernoulli
flipping is

(1− p)(1− pi(1− p)k−1−i) + pk−i(1− p)i .

Similarly, if x1 = −1 and exactly i of the rest of the variables are 1, the probability of the resulting
assignment satisfying the monarchy predicate after the Bernoulli flipping is

p(1− pi(1− p)k−1−i) + pk−1−i(1− p)i+1.

This gives that

hD(p) =

k−1∑
i=0

ui

[
(1− p)(1− pi(1− p)k−1−i) + pk−i(1− p)i

]
8



+
k−1∑
i=0

vi

[
p(1− pi(1− p)k−1−i) + pk−1−i(1− p)i+1

]
(3.7)

To prove this lemma, we form the polynomial hD(p) for k = 4 and show that no set of uis
and vis satisfy both hD(p) = 1

2 and 2µ1 + 3µ′ ≥ 1 (where, by (3.1), µ1 =
∑3

i=0(ui − vi) and

µ′ =
∑3

i=0(2i
3 − 1)(ui + vi).)

hD(p) = u0

[
(1− p)(1− (1− p)3) + p4

]
+u1

[
(1− p)(1− p1(1− p)2) + p3(1− p)1

]
+u2

[
(1− p)(1− pl(1− p)1) + p2(1− p)2

]
+u3

[
(1− p)(1− p3) + p1(1− p)3

]
+v0

[
p(1− (1− p)3) + p3(1− p)

]
+v1

[
p(1− p(1− p)2) + p2(1− p)2

]
+v2

[
p(1− p2(1− p)1) + p1(1− p)3

]
+v3

[
p(1− p3) + (1− p)4

]
= u1 + u2 + u3 + v3

+p · (3u0 − 2u1 − u2 + v1 + 2v2 − 3v3)

+p2 · (−6u0 + 3u1 − 3u3 + 3v0 − 3v2 + 6v3)

+p3 · (4u0 − 2u1 + 2u3 − 2v0 + 2v2 − 4v3)

Every distribution (whose marginals are) in K̃N
1/2(MON4) must satisfy the following system

of equations and inequalities, where (3.8)–(3.11) are equivalent to hD(p) = 1
2 , and (3.12)–(3.14)

guarantee that uis and vis describe a distribution.

u1 + u2 + u3 + v3 =
1

2
(3.8)

3u0 − 2u1 − u2 + v1 + 2v2 − 3v3 = 0 (3.9)

− 6u0 + 3u1 − 3u3 + 3v0 − 3v2 + 6v3 = 0 (3.10)

4u0 − 2u1 + 2u3 − 2v0 + 2v2 − 4v3 = 0 (3.11)

3∑
i=0

(ui + vi) = 1 (3.12)

ui ≥ 0, ∀0 ≤ i ≤ 3 (3.13)

vi ≥ 0, ∀0 ≤ i ≤ 3 (3.14)

Summing up (3.9) multiplied by −3, (3.11) multiplied by 13/6, and (3.12) multiplied by 2/3,
we have that

2/3 = u0/3 + 7u1/3 + 11u2/3 + 5u3 − 11v0/3− 7v1/3− v2 + v3

≥ −u0 + u1 + 3u2 + 5u3 − 5v0 − 3v1 − v2 + v3

= 2µ1 + 3µ′ ,

9



where the last equality uses (3.1). By Lemma 3.4, K̃Y
1 (MON4) = {(µ1, µ

′) ∈ [−1, 1]2 : 2µ1+3µ′ ≥ 1},
and from the above inequality every vector (µ1, µ

′) ∈ K̃N
1/2(MON4) satisfies 2µ1 + 3µ′ ≤ 2/3. This

implies that K̃Y
1 (MON4) ∩ K̃N

1/2(MON4) = ∅, and finishes the proof.

3.2 Balanced LTF on 4 variables

In this section, we prove Theorem 1.4.

Theorem 1.4. For every balanced LTF f on k ≤ 4 variables, Max-CSP(f) is sketching approx-
imable in O(log(n)) space.

We remark that there are non-balanced LTFs on fewer than four variables that are approxima-
tion resistant. For example, if f(x1, x2) = x1 OR x2, then Max-CSP(f) is approximation resistant
to space o(n) even in the larger class of streaming algorithms (see, e.g., Corollary 4.2 in [CGV20]).

Proof of Theorem 1.4. After relabeling and negating some of the variables of f , we can assume that
f(x1, x2, x3, x4) = sign(w1x1+w2x2+w3x3+w4x4), where w1 ≥ w2 ≥ w3 ≥ w4 ≥ 0 (if f depends on
i < 4 variables, then we set wi+1 = . . . = w4 = 0). Since f is balanced, ξ1w1+ξ2w2+ξ3w3+ξ4w4 6= 0
for all ξi ∈ {−1, 1}. Now consider the following three cases.

• If w1 > w2 + w3 + w4, then f = x1 is a dictator function, so Max-CSP(f) can be trivially
(1− ε)-approximated in O(log(n)/ε2) space by an `1-sketch algorithm [Ind00, KNW10].

• If w2 + w3 − w4 < w1 < w2 + w3 + w4, then f = MON4 is a monarchy function on k = 4
variables. Indeed, in this case only the sum of the votes of the three last variables overrules the
vote of the first variable. By Lemma 3.5, Max-CSP(f) is sketching approximable in O(log(n))
space.

• If w1 < w2 + w3 − w4, then f = MAJ(x1, x2, x3) is the majority function on 3 variables.
Indeed, the sum of any two weights of the first three variables outweighs the sum of the
remaining weights. In this case, Max-CSP(f) is known to be sketching approximable in
space O(log(n)) (this follows from the characterization of sketching approximable symmetric
functions in [CGSV22, Lemma 2.14] and the fact that a balanced LTF doesn’t support one-
wise independent distributions).

Another way to see that the majority function is sketching approximable is via Theorem 5.3.
Indeed, since majority is a symmetric function, the (non-empty) Chow parameters of the
majority function are all equal and non-zero (see, e.g., [O’D14, Theorem 5.19] for the exact
values of the Fourier coefficients of the majority function). Then the Chow parameters define
the majority function itself, and, by Theorem 5.3, Max-CSP(f) is sketching approximable in
space O(log(n)).

4 Approximation resistance of Monarchy Functions

In this section, we prove Theorem 1.5: we show that for k ≥ 5, the MONk function is approximation
resistant. Recall that by Lemma 3.3 it suffices to show that K̃Y

1 (MONk) ∩ K̃N
1/2(MONk) 6= ∅ for

k ≥ 5.
In the following we show that for k ≥ 5, there exist vectors (u,v) with certain properties that

will be useful in showing that K̃Y
1 (MONk) ∩ K̃N

1/2(MONk) 6= ∅.
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Lemma 4.1. For every k ≥ 5, there exists u,v ∈ Rk≥0 satisfying the following conditions.

(i)
∑

i(ui + vi) = 1, i.e., u,v define a distribution D. In particular, the marginals of D is
(µ1, µ

′, . . . , µ′) where µ1 =
∑

i(ui − vi), and µ′ =
∑

i(
2i
k−1 − 1)(ui + vi).

(ii) u and v satisfy

(1/2− δ)
k−1∑
i=0

ui + (1/2 + δ)

k−1∑
i=0

vi

+
k−1∑
i=0

ui

(
−(1/2 + δ)i(1/2− δ)k−i + (1/2− δ)i(1/2 + δ)k−i

)
+
k−1∑
i=0

vi

(
−(1/2 + δ)i+1(1/2− δ)k−1−i + (1/2− δ)i+1(1/2 + δ)k−1−i

)
=1/2

for every δ ∈ [−1/2, 1/2]. In particular, this implies that D ∈ SN1/2.

(iii) p′ ≥ 1− k−2
k−1p1 where p′ = Prx∼D[x2 = 1] = 1

k−1 (
∑

i iui +
∑

i ivi) and p1 = Prx∼D[x1 = 1] =∑
i ui. In particular, this implies the existence of DY ∈ SY1 and µ(DY ) = (µ1, µ

′, . . . , µ′).

Now, we are ready to prove Theorem 1.5 using Lemma 4.1 and Theorem 2.5.

Theorem 1.5. For every k ≥ 5, Max-CSP(MONk) is sketching approximation resistant to space
o(
√
n).

Proof. For every k ≥ 5, let u,v ∈ Rk≥0, and µ1, µ
′ ∈ [−1, 1] be the vectors given by Lemma 4.1.

Note that condition (i) guarantees that u,v define a distribution D with marginal (µ1, µ
′, . . . , µ′).

First, we show that condition (ii) is a sufficient condition for (µ1, µ
′) ∈ K̃N

1/2. Recall that

DN ∈ SN1/2(MONk) if for every δ ∈ [−1/2, 1/2], Eb∈DNEa∼Bern(1/2+δ)[MONk(b � a)] = 1/2. Since

Prx[MONk(x) = 1] = Prx[x1 = 1]− Prx[x = 10k−1] + Prx[x = 01k−1], we have that

Eb∈DNEa∼Bern(1/2+δ)[MONk(b� a)] = Pr
b,a

[b1 � a1 = 1]− Pr
b,a

[b� a = 10k−1] + Pr
b,a

[b� a = 01k−1] .

We compute these three probabilities in terms of u,v, δ.

Pr
b,a

[b1 � a1 = 1] = (1/2− δ)
k−1∑
i=0

ui + (1/2 + δ)
k−1∑
i=0

vi ,

Pr
b,a

[b� a = 10k−1] =
k−1∑
i=0

ui(1/2 + δ)i(1/2− δ)k−i +

k−1∑
i=0

vi(1/2 + δ)i+1(1/2− δ)k−1−i ,

Pr
b,a

[b� a = 01k−1] =
k−1∑
i=0

ui(1/2− δ)i(1/2 + δ)k−i +
k−1∑
i=0

vi(1/2− δ)i+1(1/2 + δ)k−1−i .
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Note that condition (ii) implies that

Pr
b,a

[b1 � a1 = 1] + Pr
b,a

[b� a = 10k−1] + Pr
b,a

[b� a = 01k−1] =
1

2

for every δ ∈ [−1/2, 1/2] as desired. This implies that D ∈ SN1/2(MONk). As condition (i) gives

µ(DN ) = (µ1, µ
′, . . . , µ′), we have (µ1, µ

′) ∈ K̃N
1/2 as desired.

Next, as p′ = µ′+1
2 and 1− k−2

k−1p1 = 1− (k−2)(µ1+1)
2(k−1) , condition (iii) implies µ1(k−2)+µ′(k−1) ≥ 1.

By Lemma 3.4, this implies that (µ1, µ
′) ∈ K̃Y

1 (MONk) as desired.

To sum up, Lemma 4.1 gives us (µ1, µ
′) ∈ K̃Y

1 ∩ K̃N
1/2 for every k ≥ 5 and Lemma 3.3 implies

(µ1, µ
′, . . . , µ′) ∈ KY

1 ∩KN
1/2. By Theorem 2.5, we conclude that MONk is sketching approximation

resistant to space o(
√
n) and, hence, complete the proof of Theorem 1.5.

4.1 Proof of Lemma 4.1

In the proof of Lemma 4.1 we will use the following combinatorial identity.

Lemma 4.2. For every δ ∈ [−1/2, 1/2] and m ∈ N,

m∑
i=dm/2e

(1/2 + δ)i+1(1/2− δ)m−i
((

m

i

)
−
(

m

i+ 1

))

−
m∑

i=dm/2e

(1/2− δ)i+1(1/2 + δ)m−i
((

m

i

)
−
(

m

i+ 1

))
= 2δ .

Proof. Let X1, . . . , Xm+1 be independent identically distributed random variables, each having the
distribution Bern(1/2 + δ). For j ∈ {0, . . . ,m+ 1}, let 1j be the indicator of the event that exactly
j variables from X1, . . . , Xm+1 are ones. First observe that for i ∈ {0, . . . ,m+ 1},

E[x1 · 1i] = (1/2 + δ)i(1/2− δ)m+1−i
((

m

i− 1

)
−
(
m

i

))
.

Using the above, we are going to show that the left hand side of the equation in Lemma 4.1 equals
to
∑m+1

i=0 E[x1 · 1i] = E[x1] = 2δ. By changing summations’ limits and updating the binomial
coefficients accordingly, we have

m∑
i=dm/2e

(1/2 + δ)i+1(1/2− δ)m−i
((

m

i

)
−
(

m

i+ 1

))

−
m∑

i=dm/2e

(1/2− δ)i+1(1/2 + δ)m−i
((

m

i

)
−
(

m

i+ 1

))
.

=

bm/2c∑
i=0

(1/2 + δ)m−i+1(1/2− δ)i
((

m

i

)
−
(

m

i− 1

))
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−
m+1∑

i=dm/2e+1

(1/2− δ)i(1/2 + δ)m−i+1

((
m

i− 1

)
−
(
m

i

))
.

Using
(

m
bm/2c

)
=
(

m
dm/2e

)
, we update the first summation’s limits:

=

dm/2e∑
i=0

(1/2 + δ)m−i+1(1/2− δ)i
((

m

i

)
−
(

m

i− 1

))

−
m+1∑

i=dm/2e+1

(1/2− δ)i(1/2 + δ)m−i+1

((
m

i− 1

)
−
(
m

i

))

=
m∑
i=0

(1/2− δ)i(1/2 + δ)m−i+1

((
m

i

)
−
(

m

i− 1

))

=

m+1∑
i=0

E[x1 · 1i] = E[x1] = 2δ ,

which concludes the proof.

We are now ready to prove Lemma 4.1.

Proof of Lemma 4.1. We prove this lemma by considering three cases: k = 5, k > 5 is even, and
k > 5 is odd.

Case I: k = 5. In this case, we consider the following pair of vectors

u = (u0, u1, u2, u3, u4) =

(
0, 0, 0, 0,

1

3

)
,

v = (v0, v1, v2, v3, v4) =

(
0, 0,

1

3
,
1

6
,
1

6

)
.

(i) It’s straightforward to verify that
∑

i(ui + vi) = 1.

(ii) For δ ∈ [−1/2, 1/2), using the substitution y = (1/2 + δ)/(1/2− δ), we have

(1/2− δ)
k−1∑
i=0

ui + (1/2 + δ)

k−1∑
i=0

vi

+

k−1∑
i=0

ui

(
−(1/2 + δ)i(1/2− δ)k−i + (1/2− δ)i(1/2 + δ)k−i

)
+

k−1∑
i=0

vi

(
−(1/2 + δ)i+1(1/2− δ)k−1−i + (1/2− δ)i+1(1/2 + δ)k−1−i

)
=1/2 + δ/3

+1/3(−(1/2 + δ)4(1/2− δ) + (1/2− δ)4(1/2 + δ))

+1/3(−(1/2 + δ)3(1/2− δ)2 + (1/2− δ)3(1/2 + δ)2)
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+1/6(−(1/2 + δ)4(1/2− δ) + (1/2− δ)4(1/2 + δ))

+1/6(−(1/2 + δ)5 + (1/2− δ)5)

=1/2 + δ/3 + (1/2− δ)5(−y4/3 + y/3− y3/3 + y2/3− y4/6 + y/6− y5/6 + 1/6)

=1/2 + δ/3− (1/2− δ)5(y − 1)(y + 1)4/6

=1/2 + δ/3− (1/2− δ)5

(
2δ

1/2− δ

)(
1

1/2− δ

)4

/6

=1/2 + δ/3− 2δ/6 = 1/2 .

For δ = 1/2, it’s easy to see that the sum above equals 1/2, too.

(iii) Since p1 =
∑

i ui = 1/3 and p′ = 1
k−1 (

∑
i iui +

∑
i ivi) = 19/24, the inequality p′ ≥ 1− k−2

k−1p1

holds.

Case II: k > 5 is even. Let T =
(
k
k/2

)
− 2. Consider the vectors u,v ∈ Rk≥0 as follows.

ui =

{
T−2
2T , if i = k/2

0 , otherwise.
and vi =

{
(k−1
i )−(k−1

i+1)
T , if i ≥ k/2

0 , otherwise.

(i) Note that

k−1∑
i=0

vi =
1

T

k∑
i=k/2

((
k − 1

i

)
−
(
k − 1

i+ 1

))
=

1

T

(
k − 1

k/2

)
=

1

2T

(
k

k/2

)
=
T + 2

2T
.

Thus,
k−1∑
i=0

ui +
k−1∑
i=0

vi =
T − 2

2T
+
T + 2

2T
= 1 .

(ii) From the definition of u and v, using
∑k−1

i=0 vi = T+2
2T and applying Lemma 4.2 with m = k−1,

we have that for every δ ∈ [−1/2, 1/2],

(1/2− δ)
k−1∑
i=0

ui + (1/2 + δ)
k−1∑
i=0

vi

+

k−1∑
i=0

ui

(
−(1/2 + δ)i(1/2− δ)k−i + (1/2− δ)i(1/2 + δ)k−i

)
+

k−1∑
i=0

vi

(
−(1/2 + δ)i+1(1/2− δ)k−1−i + (1/2− δ)i+1(1/2 + δ)k−1−i

)
=

(
T − 2

2T
(1/2− δ) +

T + 2

2T
(1/2 + δ)

)
+ 0

+
1

T

k−1∑
i=k/2

((
k − 1

i

)
−
(
k − 1

i+ 1

))(
−(1/2 + δ)i+1(1/2− δ)k−1−i + (1/2− δ)i+1(1/2 + δ)k−1−i

)
= (1/2 + 2δ/T )− 2δ/T = 1/2 .
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(iii) From the definition of u and v, we have that p1 =
∑k−1

0 ui = T−2
2T .

p′ =
1

k − 1

(
k−1∑

0

iui +
k−1∑

0

ivi

)

=
1

T (k − 1)

(T − 2)k/4 +

k−1∑
k/2

i

((
k − 1

i

)
−
(
k − 1

i+ 1

))
=

1

T (k − 1)

(T − 2)k/4 + (k/2− 1)

(
k − 1

k/2

)
+

k−1∑
i=k/2

i

(
k − 1

i

)
−

k−1∑
i=k/2−1

i

(
k − 1

i+ 1

)
=

1

T (k − 1)

(T − 2)k/4 + (k/2− 1)

(
k − 1

k/2

)
+

k−1∑
i=k/2

i

(
k − 1

i

)
−

k∑
i=k/2

(i− 1)

(
k − 1

i

)
=

1

T (k − 1)

(T − 2)k/4 + (k/2− 1)

(
k − 1

k/2

)
+

k−1∑
i=k/2

(
k − 1

i

)
=

1

T (k − 1)

(
(T − 2)k/4 + (k/2− 1)

(
k − 1

k/2

)
+ 2k−2

)
.

Using
(
k−1
k/2

)
= 1

2

(
k
k/2

)
= (T + 2)/2

=
1

T (k − 1)

(
(T − 2)k/4 + (k/2− 1)(T + 2)/2 + 2k−2

)
.

Using 2k−2 ≥ k + (
(
k
k/2

)
− 2)/2 = k + T/2 for k ≥ 6

≥ Tk/2 + k − 1

T (k − 1)

= 1− Tk − 2T − 2k + 2

2T (k − 1)

> 1− k − 2

k − 1
· T − 2

2T

= 1− k − 2

k − 1
p1 .

Case III: k > 5 is odd. Let T = 2
(k−1
k−1
2

)
− 2. Consider the vectors u,v ∈ Rk≥0 as follows.

ui =

{
T−2
4T , if i = k−1

2 or i = k+1
2

0 , otherwise.
and vi =

{
(k−1
i )−(k−1

i+1)
T , if i ≥ k−1

2
0 , otherwise.

(i) Similarly to Case II,
∑k−1

i=0 vi = T+2
2T and

∑k−1
i=0 ui +

∑k−1
i=0 vi = 1.

(ii) Using
∑k−1

i=0 vi = T+2
2T and Lemma 4.2 with m = k − 1, we conclude that for every δ ∈

[−1/2, 1/2],

(1/2− δ)
k−1∑
i=0

ui + (1/2 + δ)

k−1∑
i=0

vi
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+
k−1∑
i=0

ui

(
−(1/2 + δ)i(1/2− δ)k−i + (1/2− δ)i(1/2 + δ)k−i

)
+
k−1∑
i=0

vi

(
−(1/2 + δ)i+1(1/2− δ)k−1−i + (1/2− δ)i+1(1/2 + δ)k−1−i

)
=

(
2(T − 2)

4T
(1/2− δ) +

T + 2

2T
(1/2 + δ)

)
+
T − 2

4T

(
−(1/2 + δ)

k−1
2 (1/2− δ)

k+1
2 + (1/2− δ)

k−1
2 (1/2 + δ)

k+1
2

)
+
T − 2

4T

(
−(1/2 + δ)

k+1
2 (1/2− δ)

k−1
2 + (1/2− δ)

k+1
2 (1/2 + δ)

k−1
2

)
+

1

T

k−1∑
i=(k−1)/2

((
k − 1

i

)
−
(
k − 1

i+ 1

))(
−(1/2 + δ)i+1(1/2− δ)k−1−i + (1/2− δ)i+1(1/2 + δ)k−1−i

)
= (1/2 + 2δ/T )− 2δ/T = 1/2 .

(iii) Similarly to the previous case, p1 =
∑k−1

0 ui = 2T−2
4T = T−2

2T , and

p′ =
1

k − 1

(
k−1∑
i=0

iui +
k−1∑
i=0

ivi

)

=
1

T (k − 1)

(T − 2)

4
×
(
k − 1

2
+
k + 1

2

)
+

k−1∑
i=(k−1)/2

i

((
k − 1

i

)
−
(
k − 1

i+ 1

))
=

1

T (k − 1)

(
(T − 2)k/4 +

(
k − 1

2
− 1

)(
k − 1

(k − 1)/2

)

+
k−1∑

i=(k−1)/2

i

(
k − 1

i

)
−

k−1∑
i=(k−1)/2−1

i

(
k − 1

i+ 1

)
=

1

T (k − 1)

(
(T − 2)k/4 +

(
k − 1

2
− 1

)(
k − 1

(k − 1)/2

)

+

k−1∑
i=(k−1)/2

i

(
k − 1

i

)
−

k∑
i=(k−1)/2

(i− 1)

(
k − 1

i

)
=

1

T (k − 1)

(T − 2)k/4 +

(
k − 1

2
− 1

)(
k − 1

(k − 1)/2

)
+

k−1∑
i=(k−1)/2

(
k − 1

i

)
=

1

T (k − 1)

(
(T − 2)k/4 +

(
k − 1

2
− 1

)(
k − 1

(k − 1)/2

)
+

(
k − 1

≤ (k − 1)/2

))
.

Using
(

k−1
(k−1)/2

)
= (T + 2)/2

=
1

T (k − 1)

(
(T − 2)k/4 +

(
k − 1

2
− 1

)
(T + 2)/2 +

(
k − 1

≤ (k − 1)/2

))
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=
1

T (k − 1)

(
Tk/2− 3T/4− 3/2 +

(
k − 1

≤ (k − 1)/2

))
Using

(
k−1

≤(k−1)/2

)
≥ 3

2

(k−1
k−1
2

)
+ k − 2 = 3T/4 + k − 1/2 which holds for every k ≥ 7

≥ Tk/2 + k − 2

T (k − 1)

= 1− Tk − 2T − 2k + 4

2T (k − 1)

= 1− k − 2

k − 1
· T − 2

2T

= 1− k − 2

k − 1
p1 .

This concludes the proof of Lemma 4.1.

5 Chow parameters and the approximability of weak monarchies

In this section, we prove that infinitely many weak monarchy functions are sketching approximable
within O(log(n)) space. We first prove in Sections 5.1 and 5.2 that every LTF defined by its Chow
parameters (i.e., degree-1 Fourier coefficients as weights and threshold 0) is sketching approximable
within O(log(n)) space. And later in Section 5.3, we prove that infinitely many weak monarchy
functions are balanced LTFs defined by their Chow parameters.

5.1 Approximability of LTFs defined by their Chow parameters

Theorem 5.1. Every Boolean function f : {−1, 1}k → {0, 1} of the form

f(x) = sign

(
k∑
i=1

f̂({i})xi

)

is sketching approximable within O(log(n)) space.

Definition 5.2. Define ε0(f) = min{
∑k

i=1 f̂({i}) · xi : f(x) = 1}. Define ε∗(f) =

min{ ε0(f)
3k , 2ε0(f)2

9ρ(f)k2
}.

The following theorem is a refinement of Theorem 5.1 stated above.

Theorem 5.3. Let f : {−1, 1}k → {0, 1} be a Boolean function of the form f(x) =

sign
(∑k

i=1 f̂({i}) · xi
)

with k ≥ 2. For every ε > 0, there exists an O(log(n)) space (ρ(f) +

ε∗(f) − ε)-approximation algorithm for Max-CSP(f). In particular, ε∗(f) > 0 when f is of such
form (and f is not the constant zero function).5

5To see this, when f(x) = sign
(∑k

i=1 f̂({i}) · xi
)

, we have ε0(f) = min{
∑k
i=1 f̂({i}) · xi : f(x) = 1} > 0 and

hence ε∗(f) > 0 by their definitions.
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Before we prove Theorem 5.3, we will describe some useful definitions and lemmas from
[CGSV22].

Let f : {−1, 1}k → {0, 1} be a Boolean constraint function of arity k and X1, . . . , Xn be
variables. A constraint C consists of j = (j1, . . . , jk) ∈ [n]k and b = (b1, . . . , bk) ∈ {−1, 1}k where
the ji’s are distinct. The constraint C reads as requiring f(b�X|j) = f(b1Xj1 , . . . , bkXjk) = 1. A
Max-CSP(f) instance Ψ contains m constraints C1, . . . , Cm with non-negative weights w1, . . . , wm
where Ci = (j(i),b(i)) and wi ∈ R for each i ∈ [m]. For an assignment σ ∈ {−1, 1}n, the
value valΨ(σ) of σ on Ψ is the fraction of weight of constraints satisfied by σ, i.e., valΨ(σ) =
1
W

∑
i∈[m]wi · f(b(i) � σ|j(i)), where W =

∑m
i=1wi. The optimal value of Ψ is defined as valΨ =

maxσ∈{−1,1}n valΨ(σ).

Definition 5.4 (Bias (vector)). For λ = (λ1, . . . , λk) ∈ Rk, and instance Ψ =
(C1, . . . , Cm;w1, . . . , wm) of Max-CSP(f) where Ci = (j(i),b(i)) and wi ≥ 0, we let the λ-bias
vector of Ψ, denoted biasλ(Ψ), be the vector in Rn given by

biasλ(Ψ)` =
1

W
·

∑
i∈[m],t∈[k]:j(i)t=`

λtwi · b(i)t ,

for ` ∈ [n], where W =
∑

i∈[m]wi. The λ-bias of Ψ, denoted Bλ(Ψ), is the `1 norm of biasλ(Ψ),

i.e., Bλ(Ψ) =
∑n

`=1 |biasλ(Ψ)`|.

Lemma 5.5 ([CGSV22, Lemma 4.7]). For every λ ∈ Rk, we have Bλ(Ψ) =
maxa∈{−1,1}n〈a, biasλ(Ψ)〉.

Lemma 5.6 ([CGSV22, Lemma 4.4]). For every vector λ ∈ Rk and ε > 0, there exists a
O(log(n)) space sketching algorithm A that on input a stream σ1, . . . , σ`, representing an in-
stance Ψ = (C1, . . . , Cm;w1, . . . , wm), outputs a (1 ± ε)-approximation to Bλ(Ψ), i.e., for every
Ψ, (1− ε)Bλ(Ψ) ≤ A(Ψ) ≤ (1 + ε)Bλ(Ψ), with probability at least 2/3.

Below, we describe Algorithm 1 and show that it is an O(log(n)) space (ρ(f) + ε∗(f) − ε)-
approximation algorithm for Max-CSP(f).

Algorithm 1 A sketching (ρ(f) + ε∗(f)− ε)-approximation algorithm for Max-CSP(f)

Input: a stream σ1, . . . , σ` representing an instance Ψ of Max-CSP(f) where σi = ((j(i),b(i)), wi).
1: Let λ = (f̂({1}), . . . , f̂({k})) ∈ Rk and ε′ = ε/8.
2: Use the algorithm A from Lemma 5.6 to compute B̃ to be a (1± ε′) approximation to Bλ(Ψ),

i.e., (1− ε′)Bλ(Ψ) ≤ B̃ ≤ (1 + ε′)Bλ(Ψ) with probability at least 2/3.

3: Let δ̃ = min{ 1
3k ,

2B̃
9ρ(f)k2

}.

4: Output: v = ρ(f) + B̃δ̃
(1+ε′)2 .

It is clear that the algorithm above runs in O(log(n)) space (in particular by Lemma 5.6 for
Step 2). We now turn to analyzing the correctness of the algorithm.

5.1.1 Analysis of the correctness of Algorithm 1

Before we analyse Algorithm 1, we establish some upper and lower bounds on valΨ in terms of
Bλ(Ψ) where λ = (f̂({1}), . . . , f̂({k})).
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Lemma 5.7 (Lower bound on valΨ). Let f : {−1, 1}k → {0, 1} be a Boolean function of the form

f(x) = sign
(∑k

i=1 f̂({i})xi
)

with k ≥ 2. Let Ψ be an instance of Max-CSP(f). Then

valΨ ≥ ρ(f) +Bλ(Ψ)δ(Ψ) ,

where λ = (f̂({1}), . . . , f̂({k})) and δ(Ψ) = min{ 1
3k ,

2Bλ(Ψ)
9ρ(f)k2

}.

Lemma 5.8 (Upper bound on valΨ). Let f : {−1, 1}k → {0, 1} be a Boolean function of the form

f(x) = sign
(∑k

i=1 f̂({i})xi
)

with k ≥ 2. Let ε0(f) be as defined in Definition 5.2. Let Ψ be an

instance of Max-CSP(f). Then

valΨ ≤
Bλ(Ψ) + ρ(f) · k
ε0(f) + ρ(f) · k

,

where λ = (f̂({1}), . . . , f̂({k})).

We defer the proofs of Lemma 5.7 and Lemma 5.8 to Section 5.2. We now show the correctness
of Algorithm 1 using these lemmas.

5.1.2 Proof of Theorem 5.3

Proof of Theorem 5.3. First, by Lemma 5.6, with probability at least 2/3, B̃ is a (1± ε′) approxi-
mation to Bλ(Ψ), i.e., (1 − ε′)Bλ(Ψ) ≤ B̃ ≤ (1 + ε′)Bλ(Ψ). Next, we show that with probability
at least 2/3, (i) v ≤ valΨ and (ii) v ≥ (ρ(f) + ε∗(f)− ε) · valΨ.

(i) v ≤ valΨ. We have

v = ρ(f) +
B̃δ̃

(1 + ε′)2
≤ ρ(f) +Bλ(Ψ)δ(Ψ) ≤ valΨ ,

where the last inequality follows from Lemma 5.7.

(ii) v ≥ (ρ(f) + ε∗(f) − ε) · valΨ. We have

v = ρ(f) +
B̃δ̃

(1 + ε′)2
≥ ρ(f) +Bλ(Ψ)δ(Ψ)

(
1− ε′

1 + ε′

)2

≥ ρ(f) +Bλ(Ψ)δ(Ψ)(1− ε) , (5.9)

where the last inequality follows from the choice of ε′. Let us first consider the case when Bλ(Ψ) ≥
ε0(f). We have

Bλ(Ψ)δ(Ψ) ≥ ε0(f) ·min

{
1

3k
,

2ε0(f)

9ρ(f)k2

}
≥ ε∗ , (5.10)

where the last equality follows from the definition of ε∗(f) in Definition 5.2.
Combining Eq. (5.9) and Eq. (5.10), we get

v ≥ ρ(f) + ε∗(f)(1− ε) ≥ (ρ(f) + ε∗(f)− ε)valΨ ,

where the last inequality follows from valΨ ≤ 1.
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Now, let us consider the case when Bλ(Ψ) < ε0(f). It follows from Proposition 2.11 that
ε0(f) ≤ ρ(f)k. Therefore,

2Bλ(Ψ)

9ρ(f)k2
≤ 2ε0(f)

9ρ(f)k2
≤ 2

9k
<

1

3k
,

and so δ(Ψ) = 2Bλ(Ψ)
9ρ(f)k2

. Combining Eq. (5.9) and Lemma 5.8, we have

v

valΨ
≥ (1− ε)

ρ(f) + 2Bλ(Ψ)2

9ρ(f)k2

ρ(f) + Bλ(Ψ)
k

(ρ(f) +
ε0(f)

k

)
.

We show that for 0 ≤ Bλ(Ψ) ≤ ε0(f),

ρ(f) + 2Bλ(Ψ)2

9ρ(f)k2

ρ(f) + Bλ(Ψ)
k

≥
ρ(f) + 2ε0(f)2

9ρ(f)k2

ρ(f) + ε0(f)
k

. (5.11)

This immediately implies that

v

valΨ
≥ (1− ε)

(
ρ(f) +

2ε0(f)2

9ρ(f)k2

)
≥ (1− ε)(ρ(f) + ε∗(f)) > ρ(f) + ε∗(f)− ε .

Consider the function g(p) =
ρ(f)+ 2p2

9ρ(f)

ρ(f)+p . In order to show Eq. (5.11), it suffices to show that in the

range p ∈ [0, ε0(f)
k ], g(p) attains the minimum value at p = ε0(f)

k , i.e, g′(p) < 0 in this range. We

have g′(p) =

(
2(p+ρ(f))2

9ρ(f)
− 11ρ(f)

9

)
(ρ(f)+p)2

and for p ∈ [0, ε0(f)
k ], we have(

2(p+ ρ(f))2

9ρ(f)
− 11ρ(f)

9

)
≤
(

2(ε0(f)/k + ρ(f))2

9ρ(f)
− 11ρ(f)

9

)
≤ 8ρ(f)

9
− 11ρ(f)

9
= −ρ(f)

3
< 0 .

This completes the proof of Theorem 5.3.

5.2 Proofs of Lemma 5.7 and Lemma 5.8

In this section, we prove Lemma 5.7 and Lemma 5.8.

Proof of Lemma 5.7. Let Bern(p) ∈ ∆({−1, 1}) denote the Bernoulli distribution where 1 is
sampled with probability p. Given an instance Ψ = (C1, . . . , Cm;w1, . . . , wm) of Max-CSP(f)

where Ci = (j(i),b(i)) and wi ≥ 0, let γ = 3 · δ(Ψ) = min{ 1
k ,

2Bλ(ψ)
3ρ(f)k2

}. Let σ =

arg maxa∈{−1,1}n〈a, biasλ(Ψ)〉. It follows from Lemma 5.5 that Bλ(Ψ) = 〈σ, biasλ(Ψ)〉. In order to
prove the lemma, we will show that

Ea∼(Bern( 1+γ
2

))
n [valΨ(a� σ)] ≥ ρ(f) +Bλ(Ψ)δ(Ψ) .

The lemma then directly follows from the fact that valΨ ≥ Ea∼(Bern( 1+γ
2

))
n [valΨ(a� σ)].

We have

Ea∼(Bern( 1+γ
2

))
n [valΨ(a� σ)] = Ea∼(Bern( 1+γ

2
))
n

[
1

W

m∑
i=1

wi · f(a|j(i) � σ|j(i) � b(i))

]
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= Ea∼(Bern( 1+γ
2

))
n

 1

W

m∑
i=1

wi ·
∑
S⊆[k]

f̂(S) · χS(a|j(i) � σ|j(i) � b(i))


(Fourier expansion of f)

=
1

W

m∑
i=1

wi ·
∑
S⊆[k]

f̂(S) · Ea∼(Bern( 1+γ
2

))
n

[
χS(a|j(i) � σ|j(i) � b(i))

]
(Linearity of expectation)

=
1

W

m∑
i=1

wi ·
∑
S⊆[k]

f̂(S) · χS(b(i)� σ|j(i)) · Ea∼(Bern( 1+γ
2

))
n

[
χS(a|j(i))

]
(Since χS(a� b) = χS(a) · χS(b))

=
1

W

m∑
i=1

wi ·
∑
S⊆[k]

f̂(S) · χS(b(i)� σ|j(i)) · γ|S|

(Since Ea∼(Bern( 1+γ
2

))
n [a`] = γ for all ` ∈ [n])

= f̂(∅) +
1

W

∑
i∈[m]

wi
∑
t∈[k]

f̂({t}) · b(i)t · σj(i)t · γ

+
1

W

m∑
i=1

wi ·
∑

S⊆[k]:|S|≥2

f̂(S) · χS(b(i)� σ|j(i)) · γ|S|

= f̂(∅) +
∑
`∈[n]

 1

W

∑
i∈[m],t∈[k]:j(i)t=`

f̂({t}) · wi · b(i)t

σ` · γ

+
1

W

m∑
i=1

wi ·
∑

S⊆[k]:|S|≥2

f̂(S) · χS(b(i)� σ|j(i)) · γ|S|

(Rearranging the summations)

≥ f̂(∅) + γ〈biasλ(Ψ),σ〉 −
∑

S⊆[k]:|S|≥2

|f̂(S)| · γ|S|

(By the definition of λ, biasλ(Ψ)), and |χS(·)| ≤ 1)

≥ ρ(f) + γ ·Bλ(Ψ)− ρ(f)
∑

S⊆[k]:|S|≥2

γ|S|

(By the definition of σ and Proposition 2.11)

= ρ(f) + γ ·Bλ(Ψ)− ρ(f)
k∑
r=2

(
k

r

)
· γr .

We now prove that ρ(f)
∑k

r=2

(
k
r

)
· γr ≤ 2γ

3 · Bλ(Ψ). Consider the combinatorial identity
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(
k
r

)
=

k·(k−1
r−1)
r . Since γ ≤ 1

k and r ≥ 2, we have(
k

r

)
γr =

k ·
(
k−1
r−1

)
r

· γr ≤ 1

2
·
(
k − 1

r − 1

)
· γr−1 <

1

2
·
(

k

r − 1

)
· γr−1 .

Hence
∑k

r=2

(
k
r

)
· γr ≤ 2 ·

(
k
2

)
· γ2. Since γ ≤ 2Bλ(Ψ)

3ρ(f)k2
, we have

ρ(f) ·
k∑
r=2

(
k

r

)
· γr ≤ ρ(f) · 2 ·

(
k

2

)
· γ2 ≤ 2Bλ(Ψ) · γ

3
.

Recall that γ = 3δ(Ψ). Finally, we conclude that

valΨ ≥ Ea∼(Bern( 1+γ
2

))
n [valΨ(a� σ)] ≥ ρ(f) +

γ

3
·Bλ(Ψ) = ρ(f) +Bλ(Ψ)δ(Ψ) .

Proof of Lemma 5.8. Let Ψ = (C1, . . . , Cm;w1, . . . , wm) be an instance of Max-CSP(f) where Ci =
(j(i),b(i)) and wi ≥ 0. Let a∗ ∈ {−1, 1}n denote the assignment that satisfies the maximum
weight of constraints in Ψ, i.e., a∗ = arg maxa∈{−1,1}n valΨ(a). It follows from Lemma 5.5 that
Bλ(Ψ) ≥ 〈a∗, biasλ(Ψ)〉. Let S be the set of indices corresponding to constraints of Ψ satisfied by
a∗, i.e., S = {i ∈ [m] : f(a∗|j(i) � b(i)) = 1}. We have

〈a∗, biasλ(Ψ)〉 =
∑
`∈[n]

a∗` ·
1

W
·

∑
i∈[m],t∈[k]:j(i)t=`

λtwib(i)t

=
1

W

∑
i∈[m]

wi
∑
t∈[k]

λt · b(i)t · a∗j(i)t

(Exchanging the summations)

=
1

W

∑
i∈[m]

wi
∑
t∈[k]

f̂({t}) · b(i)t · a∗j(i)t

( λ = (f̂({1}), . . . , f̂({k})) )

=
1

W

∑
i∈S

wi
∑
t∈[k]

f̂({t}) · b(i)t · a∗j(i)t +
1

W

∑
i/∈S

wi
∑
t∈[k]

f̂({t}) · b(i)t · a∗j(i)t

≥ 1

W

∑
i∈S

wi · ε0(f)− 1

W

∑
i/∈S

wi · ρ(f) · k

(By the definition of S and ε0(f), and Proposition 2.11)

= valΨ · ε0(f)− (1− valΨ)ρ(f) · k
(By the definition of a∗) .

Therefore, we get
Bλ(Ψ) ≥ valΨ · ε0(f)− (1− valΨ)ρ(f) · k .
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Rearranging the terms, we get

valΨ ≤
Bλ(Ψ) + ρ(f) · k
ε0(f) + ρ(f) · k

.

5.3 Approximability of weak monarchy functions

In this section, we analyze the streaming approximability of Max-CSP(f) where f is a weak monar-
chy function. Note that in order for WMONk,j to be a balanced LTF, the total number of votes,
i.e., j + k − 1, needs to be odd. Therefore, we make such assumption throughout the rest of this
section.

Lemma 5.12. For all integers j ≥ 2 and k ≥ 7j3 such that k + j is even,

WMONk,j(x) = sign

(
k∑
i=1

̂WMONk,j({i})xi

)
.

Note that Lemma 5.12 along with Theorem 5.1 directly conclude Theorem 1.6 restated as
follows.

Theorem 1.6. For all integers j ≥ 2 and k ≥ 7j3 such that k+ j is even, Max-CSP(WMONk,j) is
sketching approximable in O(log(n)) space. In particular, for every j, there exist infinitely many k
such that Max-CSP(WMONk,j) is sketching approximable.

Proof of Lemma 5.12. We start by finding the Chow parameters of WMONk,j . As mentioned ear-
lier, we only consider the case where k + j is even. For the president,

̂WMONk,j({1}) = Pr{x1 = 1,WMONk,j(x) = 1} × 1

Pr{x1 = −1,WMONk,j(x) = 1} × (−1)

Pr{x1 = 1,WMONk,j(x) = 0} × 0

Pr{x1 = −1,WMONk,j(x) = 0} × 0

=
1

2k

((
k − 1

≥ k+j
2 − j

)
−
(
k − 1

≥ k+j
2

))
=

1

2k

((
k − 1

≥ k−j
2

)
−
(
k − 1

≥ k+j
2

))
=

1

2k

(
2k−1 − 2

(
k − 1

< k−j
2

))
.

For citizen xi (i > 1),

̂WMONk,j({i}) = Pr{x1 = 1, xi = 1,WMONk,j(x) = 1} × 1

Pr{x1 = 1, xi = −1,WMONk,j(x) = 1} × (−1)

Pr{x1 = −1, xi = 1,WMONk,j(x) = 1} × 1

Pr{x1 = −1, xi = −1,WMONk,j(x) = 1} × (−1)

Pr{x1 = 1, xi = 1,WMONk,j(x) = 0} × 0
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Pr{x1 = 1, xi = −1,WMONk,j(x) = 0} × 0

Pr{x1 = −1, xi = 1,WMONk,j(x) = 0} × 0

Pr{x1 = −1, xi = −1,WMONk,j(x) = 0} × 0

=
1

2k

((
k − 2

≥ k+j
2 − j − 1

)
−
(

k − 2

≥ k+j
2 − j

)
+

(
k − 2

≥ k+j
2 − 1

)
−
(
k − 2

≥ k+j
2

))
=

1

2k

((
k − 2

k+j
2 − j − 1

)
+

(
k − 2
k+j

2 − 1

))

=

( k−2
k−j
2
−1

)
2k−1

.

Note that in order for functions WMONk,j(x) and
∑k

i=1
̂WMONk,j({i})xi to be the same, it

suffices to have

j − 1 <
̂WMONk,j({1})
̂WMONk,j({i})

< j + 1 .

Thus, in the rest of the proof, we find values for k that guarantee the bounds above. We start with
the upper-bound:

̂WMONk,j({1})
̂WMONk,j({i})

=
2k−2 −

( k−1

< k−j
2

)
( k−2
k−j
2
−1

) ≤
j
2 ·
( k−1
b k−1

2
c
)

( k−2
k−j
2
−1

) . (5.13)

The last inequality holds as below:

• If k − 1 is odd: 2k−2 =
∑ k−2

2
i=0

(
k−1
i

)
⇒ 2k−2 −

( k−1

< k−j
2

)
=
∑ k−2

2

i= k−j
2

(
k−1
i

)
≤ j

2 ·
(k−1
k−2
2

)
• If k − 1 is even: 2k−2 = 1

2

(k−1
k−1
2

)
+
∑ k−3

2
i=0

(
k−1
i

)
⇒ 2k−2 −

( k−1

< k−j
2

)
≤ j

2 ·
(k−1
k−1
2

)
Therefore,

̂WMONk,j({1})
̂WMONk,j({i})

≤ j

2
·

(k−1)!

(b k−1
2
c)!(d k−1

2
e)!

(k−2)!

( k−j
2
−1)!( k+j

2
−1)!

=
j

2
· k − 1

bk−1
2 c
·

(k+j
2 − 1) · · · (dk−1

2 e+ 1)

(bk−1
2 − 1c) · · · (k−j2 )

≤ j

2
· 2
(

1 +
1

k − 2

)
·

(
dk−1

2 e+ 1
k−j

2

)b j−1
2
c

≤ j ·
(

1 +
1

k − 2

)
·
(
k + 2

k − j

) j−1
2

= j ·
(

1 +
1

k − 2

)
·
(

1 +
j + 2

k − j

) j−1
2

≤ j ·
(

1 +
j + 2

k − j

)j
.

For any given j,
(

1 + j+2
k−j

)j
tends to 1 as k goes to∞. Therefore, there exits some K0 such that for

all k ≥ K0,
̂WMONk,j({1})
̂WMONk,j({i})

< j+ 1. More precisely, we take k to be at least K0 = 2j3 + 4j2 + j ≤ 7j3.

This way,
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̂WMONk,j({1})
̂WMONk,j({i})

≤ j ·
(

1 +
1

2j2

)j
≤ j ·

(
1 + j · 1

2j2
+ j2 · 1

(2j2)2
+ j3 · 1

(2j2)3
+ · · ·

)
= j ·

(
1 +

1

2j
+

1

(2j)2
+

1

(2j)3
+ · · ·

)
< j ·

(
1 +

1

j

)
.

We now proceed to the lower bound.

̂WMONk,j({1})
̂WMONk,j({i})

=
2k−2 −

( k−1

< k−j
2

)
( k−2
k−j
2
−1

) ≥
j
2 ·
(k−1
k−j
2

)
( k−2
k−j
2
−1

) . (5.14)

Similar to the upper-bound case, the last inequality can be observed as follows:

• If k − 1 is odd: 2k−2 =
∑ k−2

2
i=0

(
k−1
i

)
⇒ 2k−2 −

( k−1

< k−j
2

)
=
∑ k−2

2

i= k−j
2

(
k−1
i

)
≥ j

2 ·
(k−1
k−j
2

)
• If k − 1 is even: 2k−2 = 1

2

(k−1
k−1
2

)
+
∑ k−3

2
i=0

(
k−1
i

)
⇒ 2k−2 −

( k−1

< k−j
2

)
≥ j

2 ·
(k−1
k−j
2

)
Therefore,

̂WMONk,j({1})
̂WMONk,j({i})

≥ j

2
·

(k−1
k−j
2

)
( k−2
k−j
2
−1

) =
j

2
·

(k−2
k−j
2

)
+
( k−2
k−j
2
−1

)
( k−2
k−j
2
−1

) =
j

2
·

1 +

(k−2
k−j
2

)
( k−2
k−j
2
−1

)


=
j

2
·

(
1 +

k+j
2 − 1
k−j

2

)
=
j

2
·
(

1 +
k + j − 2

k − j

)
= j ·

(
1 +

j − 1

k − j

)
.

This lower bound is larger than j for every k > j. Thus, for every k ≥ 2j3 + 4j2 + j,

j ≤
̂WMONk,j({1})
̂WMONk,j({i})

< j + 1 which implies that WMONk,j(x) = sign
(∑k

i=1
̂WMONk,j({i})xi

)
, and

concludes the proof.
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