
List-Decoding XOR Codes Near the Johnson Bound

Silas Richelson∗ Sourya Roy†

Abstract

In a breakthrough result, Ta-Shma described an explicit construction of an almost optimal bi-
nary code (STOC 2017). Ta-Shma’s code has distance 1−ε

2 and rate Ω
(
ε2+o(1)

)
and thus it almost

achieves the Gilbert-Varshamov bound, except for the o(1) term in the exponent. The prior best list-
decoding algorithm for (a variant of) Ta-Shma’s code achieves is due to Alev et al (STOC 2021).
This algorithm makes use of SDP hierarchies, and is able to recover from a 1−ρ

2 −fraction of errors
as long as ρ ≥ 2log(1/ε)1/6 . In this work we give an improved analysis of a similar list-decoding
algorithm. Our algorithm works for Ta-Shma’s original code, and it is able to list-decode almost all
the way to the Johnson bound: it can recover from a 1−ρ

2 −fraction of errors as long as ρ ≥ 2
√
ε.

1 Introduction
Error correcting codes (ECCs) allow a sender to encode a message so that the receiver can recover the
full message even if some codeword bits are lost or flipped during transmission. A binary (linear) code
is a (linear) map C : {0, 1}k → {0, 1}n which sendsm ∈ {0, 1}k to the codeword C(m) ∈ {0, 1}n. Two
important parameters of a code are the distance and rate, which are respectively measures of the code’s
quality and efficiency. Rate is the ratio k/n, the number of message bits per codeword bit; distance is
the minimum fraction of coordinates on which two distinct codewords disagree. Explicit constructions
of asymptotically good codes (codes with constant distance and constant rate) have been known since
the 70s [Jus72]. One of the holy grails of modern coding theory is to construct a code with the optimal
tradeoff between distance and rate. It is known that codes with optimal distance ε = 1/2 must have
exponentially small rate [Plo60]. The Gilbert-Varshamov (GV) bound [Gil52, Var57] states for any
ε ∈

(
0, 1/2

)
, there exists a code with distance ε and rate 1 − H(ε) − on(1) where H(·) is Shannon’s

binary entropy function. This is proved non-constructively, we do not know of an explicit construction
which achieves the GV bound. For distances ε close to 1/2, the GV bound says that there exists a code
with distance 1−ε

2
and rate Ω(ε2). On the other hand, it is known that any code with distance 1−ε

2
must

have rate O
(
ε2 · log(1/ε)

)
[ABN+92].

Most applications of ECCs require an efficient decoding algorithm which recovers the message
m ∈ {0, 1}k from y ∈ {0, 1}n, provided the Hamming distance, ∆

(
y, C(m)

)
:= Pri∼[n]

[
yi 6= C(m)i

]
is at most 1−ρ

2
for some parameter ρ > 0. In the worst-case error model, unique decoding becomes

impossible as soon as the decoding radius is at least half of the distance of the code. In order to handle
smaller values of ρ where there might be more than one valid codeword within the Hamming ball of
∗University of California, Riverside. Email: silas@cs.ucr.edu. This work was partly done while visiting Bocconi

University, supported by the European Research Council (ERC) under the European Union’s Horizon 2020 research and
innovation programme (Grant agreement No. 101019547).
†University of California, Riverside. Email: sroy004@ucr.edu

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Revision 1 of Report No. 69 (2022)

radius 1−ρ
2

, we require the decoding algorithm to output the list of all valid codewords which are close
to y. Formally, the list decoding problem for an ECC is the following: given y ∈ {0, 1}n and ρ > 0,
efficiently recover

LIST(y, ρ) :=

{
m ∈ {0, 1}k : ∆

(
y, C(m)

)
≤ 1− ρ

2

}
.

The list decoding problem makes sense as long as the set LIST(y, ρ) is guaranteed not to be too big;
certainly if

∣∣LIST(y, ρ)
∣∣ is super-polynomial (in n) then it cannot be efficiently recovered. If an ECC

has distance 1−ε
2

then
∣∣LIST(y, ρ)

∣∣ is exponentially large whenever ρ < ε, so the best one can hope for is
a list-decoding algorithm which works for ρ ≥ ε. It is possible to show, non-constructively, that binary
linear codes exist which achieve the GV bound, and for which LIST(y, ρ) has polynomial size for all
y ∈ {0, 1}n whenever ρ ≥ ε. Such codes are said to achieve list decoding capacity; giving an explicit
construction of such a code along with an efficient decoding algorithm is a fantastic open problem.1 It
is not true for general codes of distance 1−ε

2
that

∣∣LIST(y, ρ)
∣∣ will always be at most polynomial size

whenever ρ ≥ ε. The best bound we have that holds in general is the Johnson bound which ensures
that

∣∣LIST(y, ρ)
∣∣ = poly(k) whenever ρ ≥

√
ε.

Recent Progress. As mentioned above, currently we do not know of an explicit binary linear code
which matches the GV bound; constructing such a code has been a major open problem for nearly
70 years. A few years ago, in a major breakthrough, Ta-Shma [Ta-17] gave a construction which got
very close: his code achieved rate Ω(ε2+oε(1)) and distance 1−ε

2
. Ta-Shma’s original paper described

only the encoding algorithm, it did not give an efficient decoding algorithm. A decoding algorithm
based on semidefinite programming hierarchies has been developed in subsequent work [AJQ+20,
JQST20, JST21]. These algorithms can efficiently recover LIST(y, ρ) as long as ρ ≥ 2−Θ(log(1/ε)1/6).
As 2−Θ(log(1/ε)1/6) �

√
ε > ε, there is significant room for improvement.

1.1 Our Main Result
In this work we prove the following theorem.

Theorem 1 (Main). For any ε > 0, there is an explicit construction of a binary linear code with
distance 1−ε

2
, rate Ω

(
ε2+o(1)

)
, and which is efficiently list-decodable from a 1−ρ

2
−fraction of errors

whenever ρ ≥ 2
√
ε.

Our theorem is proved by improving a key step in the analysis of a decoding algorithm which has been
developed in an extensive (perhaps daunting) tower of prior work. In the next section, we present an
overview of the decoding algorithms from prior work in a simplified setting.

1.2 Background − SDP Decoding of Random Walk XOR Codes
Basic Setup. Let A be (the vertex set of) a regular graph, and let RWt

A denote the set of t−length
walks in A. So RWt

A =
{

(a1, . . . , at) ∈ At : ai ∼ ai+1 ∀ i = 1, . . . , t− 1
}

, where ai ∼ ai+1 indicates
that ai and ai+1 are neighbors in A. The random walk XOR code sends a message x ∈ {0, 1}A to the
codeword y ∈ {0, 1}RWt

A where for ~a = (a1, . . . , at) ∈ RWt
A, y~a = xa1 ⊕ · · · ⊕ xat , where ⊕ denotes

1Explicit constructions of codes with large alphabets are known which achieve list-decoding capacity (see [GR08] and
the references therein).

1

XOR. The list decoding problem for this code is: given ỹ ∈ {0, 1}RWt
A and ρ > 0, algorithmically

recover

LIST(ỹ, ρ) :=

{
x ∈ {0, 1}A : Pr~a∼RWt

A

[
ỹ~a = xa1 ⊕ · · · ⊕ xat

]
>

1 + ρ

2

}
.

Currently the best decoding algorithms we have are based on semidefinite programming hierarchies.
The basic idea is to, given ỹ ∈ {0, 1}RWt

A , set up and solve a semidefinite program to obtain what
has become called a pseudodistribution on {0, 1}A. Our algorithm will use the same SDP as was used
in [JST21], details can be found in Section 5. For now, let us jump ahead in the decoding algorithm to
the point after the SDP has been solved.

Pseudodistributions. A pseudodistribution can be thought of as an oracle O which is interacted
with through the following interface: we send O any subset S ⊂ A of size at most |S| ≤ r and O
probabilistically generates and returns a string σ ∈ {0, 1}|S|, which we think of as being an assignment
to the elements of S. The properties of the SDP will ensure certain consistency requirements. For
example, for any S ⊂ A of size |S| ≤ r and any a ∈ S, the marginal distribution on σa is identical to
the distribution O(a) obtained by sending {a} to O. The ideal situation would be that O is returning
the size ≤ r marginals of some actual distribution on {0, 1}A. This will be the case when r = |A| but
will not be the case in general for smaller r. The runtime of the SDP solver is roughly |A|r, so efficient
decoding necessitates choosing r � |A|, and so O might not correspond to an actual distribution
on {0, 1}A. For this reason, the next step of the decoding algorithm involves converting O into an
actual distribution on {0, 1}A in such a way so that some key properties of the pseudodistribution are
maintained. This is called rounding, and we discuss it next.

Rounding. Probably the most straightforward way to recover a distribution on {0, 1}A from a pseu-
dodistribution is to draw σa ∼ O(a) for each a ∈ A, and then output σ = (σa)a∈A ∈ {0, 1}A. The
size-one marginals of this distribution will be identical to the size-one marginals given byO, but larger
marginals could vary significantly since the distribution is ignoring all correlations among the bits. This
turns out to be a problem in the analysis, since certain arithmetic properties of the pseudodistribution
might fail to hold for the distribution. Rounding refers to a different method to produce a distribution
which much more accurately imitates O. For simplicity, at this point we describe the rounding method
used in [BRS11, AJQ+20, JQST20, JST21] (ours will be slightly different due to some technicalities
which arise in the analysis). The rounding distribution in these prior works works as follows.

• First, a subset S ⊂ A of size |S| < r and a string σ ∼ O(S) are drawn; the S part of the output
string is set to σ (the pair (S, σ) is called a slice).

• Then for each a /∈ S, τ ∼ O(S ∪{a}) is drawn such that τ |S = σ, and the a−th bit of the output
string is set to τa.

So each bit of the distribution is drawn independently fromO, subject to all of the bits being correlated
with (S, σ).

Notation. Let O(S,σ) denote the pseudodistribution where for a set T ⊂ A such that |T ∪ S| ≤ r,
the distribution O(S,σ)(T) draws τ ∼ O(S ∪ T) conditioned on τ |S = σ, and outputs τ |T ∈ {0, 1}T .
The consistency conditions mentioned above will imply that for all S, T ⊂ A such that |S ∪ T | ≤ r
the T marginal of the distribution O(S ∪ T) is identical to the distribution which draws σ ∼ O(S) and
outputs τ ∼ O(S,σ)(T). As has become the custom when working with pseudodistributions, we call

2

expectations of random variables which are defined over the “local” distributions
{
O(S)

}
S

pseudoex-
pectations, and we denote them Ẽ. So, for example, if

{
XS
}
S

is a collection of random variables where
each XS draws σ ∼ O(S) and outputs XS(σ), then we write Ẽ[XS] instead of Eσ∼O(S)

[
XS(σ)

]
. For

a slice (S, σ), we denote by Ẽ(S,σ) the conditional pseudoexpectation corresponding to the conditional
pseudodistribution O(S,σ).

The Decoding Algorithm and Analysis Overview. The decoding algorithm works as follows given
ỹ ∈ {0, 1}RWt

A:

1. it sets up and solves an SDP obtaining a pseudodistribution O;

2. it chooses a slice (S, σ) and for each a ∈ A, draws α ∼ O(S,σ)(a) and sets x̃a = α;

3. it outputs x̃ ∈ {0, 1}A.

The analysis involves showing that for all x ∈ LIST(ỹ, ρ), the decoding algorithm outputs x̃ which has
good agreement with x with non-negligible probability. Our final construction makes use of an inner
“base code” to recover x from x̃, and also repeats this procedure to recover x with high probability,
rather than with non-negligible probability. So what we need to show is that for any x ∈ LIST(ỹ, ρ), a
non-negligible fraction of the slices (S, σ) are such that

Ea∼A
[
Ẽ(S,σ)

[
(−1)xa⊕α

]]
≥ ρbase, (4)

where α ∼ O(S,σ)(a) is implied by the notation Ẽ(S,σ), and where ρbase is the list-decoding radius of the
base code, of which x ∈ {0, 1}A is a codeword.2 This enables recovering x using the base code’s list
decoding algorithm. The properties of the SDP will ensure that

E~a∼RWt
A

[
Ẽ
[
(−1)α1⊕···⊕αt⊕ỹ~a

]]
≥ ρ (1)

holds, where ~α = (α1, . . . , αt) ∼ O(~a) is implied by the Ẽ notation. This will follow easily from the
optimality of the pseudodistribution recovered by the SDP solver and the assumption that some valid
codeword exists within distance 1−ρ

2
of ỹ. In words, (1) says that the random variable which draws

~a ∼ RWt
A and ~α ∼ O(~a) and outputs α1 ⊕ · · · ⊕ αt ∈ {0, 1} will have good agreement with the

corrupted codeword ỹ ∈ {0, 1}RWt
A . The derivation of (4) from (1) from [AJQ+20] (and subsequent

works) proceeds in three steps. First, it is shown that (1) implies

E~a∼RWt
A

[
Ẽ
[
(−1)(α1⊕xa1)⊕···⊕(αt⊕xat)

]]
≥ ρ′. (2)

Namely, the pseudodistribution has good agreement with the valid codewords which are close to ỹ.
This is arranged by having the SDP minimize a certain “convex entropy proxy” which decreases as
the pseudodistribution is made to agree with more valid codewords. The next step is to show that (2)
implies that with non-negligible probability over the slice (S, σ),

E~a∼RWt

[
Ẽ(S,σ)

[
(−1)(α1⊕xa1)⊕···⊕(αt⊕xat)

]]
≥ ρ′′. (3)

2The random walk XOR construction amplifies distance so it is critical to assume that x is already a codeword of some
good, but not optimal code.

3

This step uses a theorem of [BRS11] as a blackbox. In this work we improve this part of the analysis
by tailoring the techniques of [AKK+08, BRS11] to the specific setting of decoding random walk XOR
codes. We will discuss this in more detail momentarily. The final step involves deriving (4) from (3).
This requires proving that random walks on expander graphs are good parity samplers. This is proved
in [Bog12], and more recently Ta-Shma [Ta-17] proved the same for wide replacement product walks
which was a key component of his breakthrough construction of nearly optimal binary codes.

Parameters. The above discussion has introduced parameters ρbase, ρ, ρ′, ρ′′. The way to think about
these parameters is as follows: ρbase is non-negotiable since it is the list-decoding radius of our base
code building block; ρ should be set as small as possible so that (4) can be derived from (1). The
proof that (3)⇒(4) requires ρ′′ ≥ ρ

t
2

+o(1)

base (the exponent is improved to t + o(1) by working with wide
replacement product walks [Ta-17]). In other words, the relationship between ρbase and ρ′′ is the same
as the relationship between the distance of the base code and the distance of the random walk XOR
code. This means that if we use a base code which is efficiently list-decodable for all ρbase ≥ εbase
(such as the code from [GR08]), and if we could derive (3) from (1) with ρ ≈ ρ′′, then we would have
given an explicit construction of a binary code with efficient decoder almost achieving list-decoding
capacity.3 Unfortunately, both of the steps (1)⇒(2) and (2)⇒(3) from [AJQ+20] and subsequent work
incur loss. The loss in the (1)⇒(2) step is quadratic, ρ′ ≥ √ρ is required. The loss in the (2)⇒(3)
step is much larger, requiring ρ′′ = (ρ′)o(1). Our main technical contribution is a new analysis for the
(2)⇒(3) step which incurs essentially no loss.

A Closer Look at the (2)⇒(3) Step From Prior Works. The key to proving (2)⇒(3) is to show that
with non-negligible probability, the slice (S, σ) will be such that

∆(S,σ) := E~a∼RWt
A

[
Ẽ(S,σ)

[
(−1)~α⊕x~a

]
−

t∏
i=1

Ẽ(S,σ)
[
(−1)αi⊕xai

]]
is small, where the first pseudoexpectation is over ~α ∼ O(S,σ)(~a), and where the i−th pseudoexpecta-
tion in the product is over ~αi ∼ O(S,σ)(ai). In words, we must show that with very high probability over
~a ∼ RWt

A, the distributions O(S,σ)(~a) and
∏

iO(S,σ)(ai) are close with respect to the “RW XOR test”
which, given ~α, outputs (−1)~α⊕x~a . If ∆(S,σ) is not small, then it must be that significant correlations
exist, on average, between the bits output byO(S,σ)(~a). Following the ideas of [AKK+08], it is possible
to show that if the output bits of O(S,σ)(~a) are correlated with good probability over ~a ∼ RWt

A and if
A is a good expander, then the output bits of O(S,σ)(~a) will also be correlated with good probability
over ~a ∼ At. Essentially this means that (S, σ) is a bad slice, since it is precisely the slice’s job to
remove such global correlations. Specifically, it is shown in [BRS11] that if (S, σ) is a bad slice, then
(S ′, σ′) will be a much better slice with good probability over S ′ ⊃ S such that |S ′| = |S| + 1, and
σ′ ∼ O(S,σ)(S ′). It can be shown that such significant improvement cannot be the norm, from which it
follows that most slices are good.

The Idea Behind our Improved (2)⇒(3) Step. The setting considered in [AKK+08, BRS11] is not
quite the same as our setting. These works consider expander edges rather than longer walks and it is
shown that ifO(S,σ)

(
{a, a′}

)
is far fromO(S,σ)(a)×O(S,σ)(a′) in statistical distance for a random edge

a ∼ a′, then these distributions are also far for independent a, a′ ∼ A. This step incurs an additive

3“Almost” because of slight suboptimality of Ta-Shma’s code which carries over also to our (3)⇒(4) step.

4

loss of λ, the expansion of A, which means the conclusion that the distributions are far for independent
a, a′ ∼ A (which is needed in order to show that (S ′, σ′) will be a drastically improved slice) can only
be obtained if the distributions are at least λ−far for a random edge a ∼ a′. The decoding algorithm
in [AJQ+20] (and subsequent work) extends the main theorem from [BRS11] to longer random walks
using a hybrid argument, and inherits the requirement that the initial statistical distance must be at least
tλ. Thus, they are only able to show that ∆(S,σ) ≤ tλ holds for most (S, σ) (we are oversimplifying;
their algorithm uses several additional ideas and does slightly better).

Our starting point is that if ∆(S,σ) is not small, then it means that the RW XOR test distinguishes
O(S,σ)(~a) and

∏
iO(S,σ)(ai) for an average ~a ∼ RWt

A. Since random walks on expanders are good
parity samplers, perhaps we could expect the distinguishing probability of the RW XOR test to decay
like λt/2+o(1) rather than like tλ. We prove this by showing that the “random walks on expanders are
good parity samplers” theorem extends to pseudodistributions. The result is that we are able to show
that ∆(S,σ) ≤ λt/2+o(1) with non-negligible probability over (S, σ); a substantial improvement over the
bound obtained in prior work.

2 Technical Overview
In order to demonstrate our techniques, in this section we prove the key lemmas needed to give an
improved list decoding algorithm for the random walk XOR code. Our main theorem will follow
from the analogous result for the wide replacement walk XOR code. We begin this section with a
short preliminaries section where we introduce just the concepts needed for the proofs in this section.
Another, more substantial preliminaries section will follow this one where we will introduce the rest of
the background material needed for this paper.

2.1 Preliminaries
Notation. For a distribution D, we write x ∼ D to mean that x ∈ Supp(D) is drawn according to
D. For a set S, we write x ∼ S instead of x ∼ Unif(S). Vector norms in this work refer always to the
`2−norm. For an integer r ∈ N, we write [r] as shorthand for {1, . . . , r}.

Basic Statistics. For a real-valued random variable X, we write Var(X) for the variance of X, namely
Var(X) = E[X2] − E[X]2. We will use that variance is non-increasing under conditioning. So if X and
Y are jointly distributed real-valued random variables, then Var(X) ≥ Ey∼Y

[
Var(X|y)

]
. This follows

from Jensen’s inequality:

Var(X)− Ey∼Y
[
Var(X|y)

]
= E[X2]− E[X]2 − Ey∼Y

[
E[X2|y]− E[X|y]2

]
= Ey∼Y

[
E[X|y]2

]
− Ey∼Y

[
E[X|y]

]2 ≥ 0

For jointly distributed real-valued random variables X and Y, we write Cov(X,Y) for the covariance of
X and Y: Cov(X,Y) = E[XY]− E[X]E[Y]. The following claim was proved in [BRS11] (Lemma C.2);
we include a proof in Appendix A.

Claim 1. Suppose X and Y are jointly distributed real-valued random variables, and moreover that X
is supported on a set of size 2. Then

Cov(X,Y)2/Var(X) = Var(Y)− Ex∼X
[
Var(Y|x)

]
.

5

Random Walks on Graphs. Let A be the vertex set of a graph. Given a, a′ ∈ A, we write a ∼ a′

if a and a′ are connected by an edge. For a ∈ A, let N(a) ⊂ A denote the neighborhood of A, i.e.,
N(a) := {a′ ∈ A : a ∼ a′}. For an integer d ≥ 1, we say that A is d−regular if |N(a)| = d for all
a ∈ A. For an integer k ≥ 1, let

RWk
A := {(a1, . . . , ak) ∈ Ak : ai ∼ ai+1 ∀ i = 1, . . . , k − 1}

denote the set of k−length random walks in A. Similarly, for a ∈ A, RWk
A(a) is the set of k−length

random walks in A which begin at a, so RWk
A(a) := {(a1, . . . , ak) ∈ RWk

A : a1 = a}. We will often
view RWk

A as a distribution, where (a1, . . . , ak) ∼ RWk
A means that a1 ∼ A is drawn uniformly and

then ai+1 ∼ N(ai) is drawn for i = 1, . . . , k − 1. In this section, we write RWk instead of RWk
A, since

the graph A will not change.

Expander Graphs. The expansion of a graph is the second largest eigenvalue of the graph’s adja-
cency matrix,4 i.e.,

λ := max
x,y⊥11

|〈x,My〉|
|x||y|

,

where the max is over all nonzero x, y ∈ R|A|−{0} which are perpendicular to the all 1s vector 11. The
expander mixing lemma is recovered from this definition for any f, g : A → R by setting x, y ∈ R|A|
to be xa = f(a)− µf and ya = g(a)− µg.

Claim 2 (Expander Mixing Lemma). If A is a λ−expander then for all f, g : A→ R,∣∣∣Ea∼a′[f(a) · g(a′)
]
− µfµg

∣∣∣ ≤ λτfτg,

where µf and τf are the expectation and standard deviation of the random variable f(a) (namely,
µf = Ea

[
f(a)

]
and τ 2

f + µ2
f = Ea

[
f(a)2

]
, and similarly for µg and τg).

We also will need the following “high-dimensional” version of the EML.

Claim 3 (EML for Vector-Valued Functions). Suppose A is a λ−expander, and let f, g : A → RN

be vector-valued functions defined on A. We have∣∣∣Ea∼a′[〈f(a), g(a′)〉
]
− 〈~µf , ~µg〉

∣∣∣ ≤ λτfτg,

where ~µf := Ea
[
f(a)

]
, and τf ∈ R is such that τ 2

f + |~µf |2 = Ea
[
|f(a)|2

]
(and similarly for ~µg, τg).

Proof. For i = 1, . . . , N , let fi, gi : A → R be the coordinate functions of f and g, respectively. Note
that τ 2

f =
∑

i τ
2
fi

. We have

∣∣∣Ea∼a′[〈f(a), g(a′)〉
]
− 〈~µf , ~µg〉

∣∣∣ ≤ N∑
i=1

∣∣∣Ea∼a′[fi(a) · gi(a′)
]
− µfiµgi

∣∣∣ ≤ λ
N∑
i=1

τfiτgi

≤ λ ·
√∑

i

τ 2
fi
·
√∑

i

τ 2
gi

= λτfτg,

by the triangle inequality, Claim 2 (applied to the coordinate functions), and Cauchy-Schwarz.
4The adjacency matrix of the graph A is M ∈ {0, 1}|A|×|A|, where M(a, a′) = 1 iff a ∼ a′.

6

2.2 Bias Amplification via Expander Random Walks
In order to get a sense of our techniques, we begin with a short proof that random walks on expanders
are good parity samplers.

Claim 4. Let A be a regular λ−expander, let x : A → {0, 1} be such that
∣∣Ea[(−1)xa

]∣∣ ≤ √λ. Then
for all k ∈ N,

E~a∼RWk

[
(−1)xa1⊕···⊕xak

]
≤ 1

2
(4λ)

k
2 .

Proof. For k ∈ N, define the function gk : A→ R via

gk(a) := E~a∼RWk(a)

[
(−1)xa1⊕···⊕xak

]
.

Define the statistics εk :=
∣∣Ea[gk(a)]

∣∣ and τk such that ε2
k + τ 2

k = Ea
[
gk(a)2

]
. We prove by induction

that for all k ∈ N,

εk ≤
1

2
(4λ)

k
2 ; and τk ≤ (4λ)

k−1
2 .

This proves the claim because it gives the desired bound on εk. For the base case, note ε1 ≤
√
λ holds

by hypothesis and τ1 ≤ 1 is trivial. The key point for the induction step is that for k ≥ 2,

gk(a) = (−1)xa · Ea′∼N(a)

[
gk−1(a′)

]
.

This lets us bound εk and τk in terms of lower order statistics using the EML (Claim 2):

· εk =
∣∣Ea[gk(a)]

∣∣ =
∣∣∣Ea∼a′[(−1)xa · gk−1(a′)

]∣∣∣ ≤ √λεk−1 + λτk−1;

· τ 2
k ≤ ε2

k + τ 2
k = Ea

[
gk(a)2

]
= Ea

[
Eα∼D(a)

[
(−1)α

]2 · Ea′∼N(a)

[
gk−1(a′)

]2]
≤ Ea

[
Ea′∼N(a)[gk−1(a′)]2

]
= Ea′∼A2a′′

[
gk−1(a′) · gk−1(a′′)

]
≤ ε2

k−1 + λ2τ 2
k−1,

where a′ ∼A2 a′′ indicates that (a′, a′′) is a uniform edge in A2 (a λ2−expander). We have used that
the distribution which draws a ∼ A, a′, a′′ ∼ N(a) and outputs (a′, a′′) is identical to the uniform edge
distribution on A2. Plugging in the inductive hypothesis into the right hand sides of the above bounds
and simplifying proves the induction step.

2.3 Bias Amplification for Good Pseudodistributions via Expander RWs
We now demonstrate our new technique by proving that random walks on expander graphs are good
parity samplers for “good” pseudodistributions. For a pseudodistribution to be “good”, it must satisfy
the technical requirements specified below. We will show later on that if O is the pseudodistribution
obtained by solving the SDP of the decoding algorithm, then the pseudodistribution O(S,σ) will be
good with non-negligible probability over the slice (S, σ). This will require adopting the argument
of [BRS11] to our modified rounding technique. We handle this, and other issues in Section 2.4. For
the remainder of this section, we fix a good pseudodistributionO on {0, 1}A, whereA is a λ−expander.
We will specify what it means for O to be good below, after we set some notation.

• The Random Variables {Y~a}: For ~a ∈ RWk, with k ≤ t, let Y~a be the distribution on {±1} which
draws ~α ∼ O(~a) and outputs (−1)~α⊕x~a . Note that the {Y~a} are pairwise jointly distributed as
long as O supports queries of size 2t: given ~a,~a′ ∈ RW≤t, (Y~a,Y~a′) is the distribution which
draws (~α, ~α′) ∼ O(~a ∪ ~a′) and outputs

(
(−1)~α⊕x~a , (−1)~α

′⊕x~a′
)
.

7

• The Covariance Vectors {v̂~a} and {v~a} : Since the {Y~a} are pairwise jointly distributed, we define
their covariances Cov(Y~a,Y~a′) = Ẽ

[
Y~aY~a′

]
− Ẽ[Y~a]Ẽ[Y~a′]. As covariance matrices are positive

semidefinite, there exist real vectors {v̂~a} such that 〈v̂~a, v̂~a′〉 = Cov(Y~a,Y~a′) for all~a,~a′ ∈ RW≤t.
For ~a ∈ RW≤t, let v~a be the vector v̂~a with one extra coordinate which is equal to Ẽ[Y~a]. Note
for all ~a,~a′ ∈ RW≤t,

Ẽ
[
Y~aY~a′

]
= Cov(Y~a,Y~a′) + Ẽ[Y~a]Ẽ[Y~a′] = 〈v̂~a, v̂~a′〉+ Ẽ[Y~a]Ẽ[Y~a′] = 〈v~a,v~a′〉.

• The Statistics {εk, µk, τk}: For k ≤ t, define gk : A → R by gk(a) = E~a∼RWk(a)

[
Ẽ[Y~a]

]
, and

let εk :=
∣∣Ea[gk(a)]

∣∣. Similarly, for a ∈ A, define the vector wk(a) := E~a∼RWk(a)[v~a]. Let
µk :=

∣∣Ea[wk(a)]
∣∣ and let τk be such that µ2

k + τ 2
k = Ea

[
|wk(a)|2

]
.

• Good Pseudodistribution: Fix δ > 0 such that δ ≤ 1
9
(9λ)t−1. We say that a O is a good pseudodis-

tribution if it supports queries of size 2t, and if for all k, k′ ≤ t:

E ~a∼RWk

~a′∼RWk′

[
|〈v̂~a, v̂~a′〉|

]
≤ δ.

Lemma 1. Let A be a λ−expander, and suppose O is a good pseudodistribution on {0, 1}A which
supports queries of size 2t and for which

∣∣Ea[Ẽ[Ya]
]∣∣ ≤ √λ. Then∣∣∣∣E~a∼RWt

[
Ẽ
[
Y~a
]]∣∣∣∣ ≤ 1

3
· (9λ)

t
2 .

Proof. We will use induction to show that for all k = 1, . . . , t:

εk ≤
1

3
· (9λ)

k
2 ; and τk ≤ (9λ)

k−1
2 .

This proves the lemma since it gives the desired bound on εt. For the base case, ε1 ≤
√
λ holds by

assumption, and τ1 ≤ 1 is trivial. For the induction step, we will show that for all k ≥ 2:

(i) εk ≤ δ +
√
λεk−1 + λτk−1;

(ii) τk ≤
√
δ + εk−1 + λτk−1.

Invoking the induction hypothesis on the right hand side of (i) gives

εk ≤ (9λ)
k
2 ·
[

δ

(9λ)
k
2

+
1

9
+

1

9

]
≤ 1

3
· (9λ)

k
2 ,

since δ ≤ 1
9
· (9λ)

k
2 . Similarly, invoking the induction hypothesis on the right hand side of (ii) gives

τk ≤ (9λ)
k−1
2 ·
[√

δ

(9λ)
k−1
2

+
1

3
+

√
λ

3

]
≤ (9λ)

k−1
2 ,

since δ ≤ 1
9
· (9λ)k−1. Thus, it remains to establish the bounds in (i) and (ii).

8

(i) − Bounding εk: We have

εk =
∣∣E~a∼RWk

[
Ẽ[Y~a]

]∣∣ =
∣∣E a∼a′

~a′∼RWk−1(a′)

[
Ẽ[YaY~a′]

]∣∣ ≤ ∣∣E a∼A
~a′∼RWk−1

[
Ẽ[YaY~a′]

]∣∣+ λτk−1

≤ E a∼A
~a′∼RWk−1

[
|〈v̂a, v̂~a′〉|

]
+
∣∣Ea[Ẽ[Ya]

]∣∣ · ∣∣E~a′∼RWk−1

[
Ẽ[Y~a′]

]∣∣+ λτk−1

≤ δ +
√
λεk−1 + λτk−1

The inequality on the first line is the EML, using the identity

E a∼a
~a′∼RWk−1(a′)

[
Ẽ[YaY~a′]

]
= Ea∼a′

[
〈va,wk−1(a′)〉

]
.

The inequality on the second line follows from the triangle inequality and Jensen’s inequality;
the final inequality has used that O is a good pseudodistribution.

(ii) − Bounding τk: We have

τ 2
k ≤ E a∼A

~a,~a′∼RWk(a)

[
Ẽ[Y~aY~a′]

]
= E a∼A

~a,~a′∼RWk(a)

[
Ẽ[Y~a2:kY~a′2:k]

]
= E a∼A2a′

~a∼RWk−1(a)

~a′∼RWk−1(a′)

[
Ẽ[Y~aY~a′]

]
≤ E~a,~a′∼RWk−1

[
|〈v̂~a, v̂~a′〉|

]
+ Ea,a′∼A

[
Ẽ[Y~a]Ẽ[Y~a′]

]
+ λ2τ 2

k−1 ≤ δ + ε2
k−1 + λ2τ 2

k−1,

from which τk ≤
√
δ + εk−1 + λτk−1 follows. The first bound is trivial since τ 2

k ≤ µ2
k + τ 2

k ; the
last equality on the first line holds because ~a and ~a′ share the same first vertex and so α1 = α′1
holds with probability 1 over (~α, ~α′) ∼ O(~a ∪ ~a′); the inequality on the second line is the EML
on A2 (a λ2−expander); the inequalities on the final line hold by the triangle inequality, Jensen’s
inequality and since O is a good pseudodistribution.

The Key Takeaway. So to summarize, the proof of Lemma 1 is very similar to the proof of Claim 4.
For example, the identity

E~a∼RWk

[
Ẽ[(−1)~α⊕x~a]

]
= E a∼a′

~a∼RWk−1(a)

[
Ẽ[YaY~a]

]
= E a∼a′

~a∼RWk−1(a)

[
〈va,v~a〉

]
= Ea∼a′

[
〈va,wk−1(a′)〉

]
,

means that the quantity E~a∼RWk

[
Ẽ[(−1)~α⊕x~a]

]
is subject to bounds via the (high-dimensional) EML,

just as the quantity E~a∼RWk

[
(−1)x~a

]
was bounded using the (one-dimensional) EML in the proof of

Claim 4. However, this method when applied to pseudoexpectations leaves behind some extra “casualty
terms” of the form Ea∼A,~a∼RWk−1

[
|〈v̂a, v̂~a〉|

]
which did not appear in the proof of Claim 4. These

casualties are (absolute values of the) covariances between Y~a and Y~a′ for independent ~a,~a′ ∈ RW≤t.
These can be bounded using a version of the “correlation potential” argument from [BRS11], as we
will now demonstrate.

2.4 Decoding the Random Walk XOR Code
Armed with Lemma 1, let us now step back and describe in more detail the rounding step of our
decoding algorithm and its analysis. For this discussion, let us pick up the decoding algorithm after it

9

has already solved the SDP (on input ỹ ∈ {0, 1}RWt
) and obtained a pseudodistribution O on {0, 1}A

such that (2) holds; namely so that

E~a∼RWt

[
Ẽ
[
(−1)~α⊕x~a

]]
≥ ρ′,

where ρ′ = 2
3
· (9λ)

t
2 is twice the bound obtained in Lemma 1, and x ∈ LIST(ỹ, ρ). Our rounding

method, described next, will probabilistically generate a list L of data which determines a conditional
pseudodistribution OL. The consistency conditions of O will ensure that for all ~a ∈ RWt, the distribu-
tion which draws L and then draws and outputs ~α ∼ OL(~a) is identical to O(~a). Thus, with probability
at least ρ′/2 over L, we will have

E~a∼RWt

[
ẼL
[
(−1)~α⊕x~a

]]
≥ ρ′/2.

We will prove that with probability at least 1− ρ′/4 over L, OL will satisfy:

E ~a∼RWk

~a′∼RWk′

[
|〈v̂~a, v̂~a′〉|

]
≤ δ,

for all k, k′ ≤ t. It then follows from Lemma 1 that with probability at least ρ′/4 over L,

Ea∼A
[
ẼL
[
(−1)α⊕xa

]]
≥
√
λ.

Since
√
λ ≥ 2ρbase, this implies that with probability at least ρ′/4 over L, the decoding algorithm will

output, with high probability, a string ~α ∈ {0, 1}A such that Pra∼A
[
α = xa

]
≥ 1+

√
λ

2
, which will allow

recovering x using the list decoding algorithm of the base code.

Our Rounding Method. The rounding step of our decoding algorithm works as follows.

1. Draw s = (s1, . . . , st) ∼ {1, . . . , r}t uniformly.

2. Draw a random subset S ⊂ RW≤t such that
∣∣S ∩ RWk

∣∣ = sk for all k = 1, . . . , t.

3. Draw σ ∼ O(S).

4. Output L =
{

(~a,⊕σ~a) : ~a ∈ S
}

, where ⊕σ~a denotes the bit σa1 ⊕ · · · ⊕ σak ∈ {0, 1}, where
(σa1 , . . . , σak) are the bits of σ which correspond to ~a = (a1, . . . , ak).

So the rounding step outputs a “slice” L ⊂ RW≤t×{0, 1} of size at most tr. Let S ⊂ RW≤t denote the
projection of L onto the first coordinate; for ~a ∈ S, we denote the element of L whose first coordinate is
~a as (~a, β~a). Given L, the pseudodistributionOL, on receiving a set T ⊂ A such that |S∪T | ≤ t(r+2),
draws σ ∼ O(S ∪T) such that⊕σ~a = β~a holds for all ~a ∈ S, then outputs σT ∈ {0, 1}T . Note for all L
drawn according to the rounding procedure, the pseudodistributionOL can be queried on any set of size
at most 2t. As discussed above, the following key lemma implies the the correctness of the decoding
algorithm.

Lemma 2. Assume r ≥ 4t2/(δ2ρ′). Then with probability at least 1−ρ′/4 over L, both of the following
hold for all k, k′ ∈ [t]:

E ~a∼RWk

~a′∼RWk′

[
|〈v̂~a, v̂~a′〉|

]
≤ δ,

where v̂~a is the notation from Section 2.3 instantiated with the pseudodistribution OL.

10

Proof. Let L denote the slice distribution. We must show that with probability 1 − ρ′/4 over L ∼ L,
we have

E ~a∼RWk

~a′∼RWk′

[
|〈v̂L

~a, v̂
L
~a′〉|
]
≤ δ,

for all k, k′ ∈ [t] where v̂L
~a refers to v̂~a from Section 2.3 instantiated with the pseudodistributionOL. In

this proof we are explicit about L because we will have to consider these random variables for different
slices. Recall 〈v̂L

a, v̂
L
~a〉 = Cov(YL

a,Y
L
~a), where YL

~a is the random variable which draws ~α ∼ OL(~a) and
outputs (−1)~α⊕x~a . By Claim 1 we have

E ~a∼RWk

~a′∼RWk′

[
|〈v̂L

~a, v̂
L
~a′〉|
]2 ≤ E ~a∼RWk

~a′∼RWk′

[
Cov(YL

~a,Y
L
~a′)

2
]
≤ E~a∼RWk

[
Var(YL

~a)− E
~a′∼RWk′

β∼YL
~a′

[
Var(YL′

~a)
]]
,

where L′ = L∪{(~a′, β)}. We say that L′ is a k′−th increment of L since it is obtained from L by adding a
single element (~a′, β) ∈ RWk′×{0, 1}. Let Lk′(L) denote the distribution which outputs a random slice
which is a k′−th increment of L. So Lk′(L) draws ~a′ ∼ RWk′ , β ∼ YL

~a′ and outputs L′ = L ∪ {(~a′, β)}.
For k ∈ [t], define the potential Φk(L) := E~a∼RWk

[
Var(YL

~a)
]
. These notations simplify the above, we

now have
E ~a∼RWk

~a′∼RWk′

[
|〈v̂L

~a, v̂
L
~a′〉|
]2 ≤ Φk(L)− EL′∼Lk′ (L)

[
Φk(L

′)
]
.

Thus, by the union bound and Markov’s inequality, in order to prove Lemma 2, it suffices to show that
for all k, k′ = 1, . . . , t,

EL∼L

[
Φk(L)− EL′∼Lk′ (L)

[
Φk(L

′)
]]
≤ δ2ρ′

4t2
. (†)

Now recall that L first draws s = (s1, . . . , st) ∼ [r]t and then outputs a random slice L subject to∣∣L ∩ (RWk × {0, 1})
∣∣ = sk for all k = 1, . . . , t. Let Ls be the distribution which outputs a random

slice subject to satisfying this size condition. So L draws s ∼ [r]t and outputs a sample from Ls,
while the distribution which draws L ∼ L and outputs a sample from Lk′(L) is identical to the dis-
tribution which draws s ∼ [r]t and outputs a sample from Ls′ where s′ is the k′-th increment of s,
namely, s′k′ = sk′ + 1 while s′j = sj for all j 6= k′. Let Φk(s) := EL∼Ls

[
Φk(L)

]
. Then the left hand

side of (†) becomes Es∼[r]t
[
Φk(s) − Φk(s

′)
]
, where s′ denotes the k′−th increment of s. But for all

s1, . . . , sk−1, sk+1, . . . , st ∈ [r], we have

1 ≥ Φk(s1) ≥ Φk(s2) ≥ · · · ≥ Φk(sr) ≥ 0,

where sv denotes (s1, . . . , sk−1, v, sk+1, . . . , sr) ∈ [r]t. This is because variance is non-increasing under
conditioning. It follows that the LHS of (†) is at most 1/r ≤ δ2ρ′/(4t2).

3 Preliminaries
In this section we give the rest of preliminaries which we have not already given in Section 2.1.

Basic Notations. For subsets S, T ⊂ U of some universe U , we write S ⊕ T for the “exclusive OR”
of S and T : S ⊕ T = (S ∪ T) \ (S ∩ T). For a string ~α = (α1, . . . , αk) ∈ {0, 1}k, we will frequently
write (−1)~α as shorthand for (−1)α1⊕···⊕αk .

11

3.1 List-Decodable Codes
Definition 1. Let {Ck} be a family of binary linear codes with Ck : {0, 1}k → {0, 1}n, and let ρ > 0.
We say that {Ck} is ρ−list-decodeable if there exists an efficient5 family of algorithms {Dk}k which
takes ỹ ∈ {0, 1}n as input and outputs LIST(ỹ, ρ) ⊂ {0, 1}k, where recall

LIST(ỹ, ρ) :=
{
m ∈ {0, 1}k : ∆

(
ỹ, Ck(m)

)
≤ 1− ρ

2

}
.

The following is proved in [GR08].

Proposition 1 (The Base Code.). For any εbase > 0, there exists an explicit family {Cbasek }k of binary
linear codes with Cbasek : {0, 1}k → {0, 1}n which has distance 1−εbase

2
, rate Ω

(
ε3
base

)
and which is

ρbase−list-decodable for all ρbase ≥ εbase.

3.2 The Lasserre Semidefinite Programming Hierarchy
The Lasserre hierarchy is a convenient framework for wielding the SDP algorithmic machinery to
optimize constraint satisfaction problems (CSPs). Practically speaking, the Lasserre setup it is part
of an SDP program, and instantiating the hierarchy involves completing the setup to a full SDP by
incorporating some “problem specific” components. Our decoding algorithm will be looking for an
assignment x : A → {0, 1} and so we will set up a SDP which has variables {zS,σ}S,σ, and which
includes the following constraints:

• Variables: There is one variable zS,σ for each S ⊂ A of size |S| ≤ r and σ ∈ {0, 1}S .

• Lasserre Constraints: There are four types of Lasserre constraints.

(i) |z∅,∅|2 = 1;

(ii) |za,0|2 + |za,1|2 = 1 ∀ a ∈ A;

(iii) 〈zS,σ, zT,τ 〉 = 0 ∀ S, T ⊂ A such that S ∩ T 6= ∅ and σ|S∩T 6= τ |S∩T ;

(iv) 〈zS,σ, zT,τ 〉 = 〈zS′,σ′ , zT ′,τ ′〉 ∀ S, T, S ′, T ′ ⊂ A s.t. S ∪ T = S ′ ∪ T ′ and σ ∪ τ = σ′ ∪ τ ′.

Our decoding algorithm will “complete” this setup to a full SDP by specifying a convex objective to
minimize and by adding some additional constraints. When all is said an done, the final SDP will
be solvable to within additive accuracy η > 0 in time poly

(
2r|A|r, log(1/η)

)
since there are (fewer

than) 2r|A|r variables. Upon solving the SDP, one obtains vectors {zS,σ}S,σ which (nearly) optimize
the objective. Working with the SDP solution directly, while possible, carries significant notational
overhead which can obstruct the intuition of the rest of the algorithm. For this reason, convenient
language has been developed for reasoning about Lasserre-type SDP solutions. We will also use this
language and here we briefly discuss how to convert the above into a nicer form.

The starting point is that the Lasserre constraints imply that for all S ⊂ A of size |S| ≤ r,∑
σ |zS,σ|2 = 1, and so for all S, the SDP solution describes a distribution O(S) on {0, 1}S which

outputs σ ∈ {0, 1}S with probability |zS,σ|2 (this was the notation used in Sections 1.2 and 2). It
follows from the Lasserre constraints that for S ⊂ T , the S marginal of O(T) is identical to O(S).

5In this work, we consider an algorithm efficient if it runs in expected polynomial time in n; we allow the exponent to
depend on ρ.

12

Definition 2 (Pseudodistributions). A level r Lasserre pseudodistribution on {0, 1}A (or just a pseu-
dodistribution) is an oracle O with the following syntax and and which satisfies the following consis-
tency requirement.

• Syntax: On receiving a set S ⊂ A of size |S| ≤ r, O probabilistically generates and returns
the string σ ∈ {0, 1}S; we let O(S) denote the distribution that O uses to respond to the query
S.

• Consistency: for all S ⊂ T , the S−marginal of O(T) is identical to O(S).

For any S ⊂ A such that |S| < r and any σ ∈ {0, 1}S , we define the conditional pseudodistribution
O(S,σ) by letting O(S,σ)(T) be the distribution which draws τ ∼ O(S ∪ T) such that τ |S = σ and
outputs τ |T ∈ {0, 1}T . Note O(S,σ)(T) is defined for all T ⊂ A such that |S ∪ T | ≤ r, and so O(S,σ) is
a level r − |S| pseudodistribution.

In order to maximally simplify the notation of the SDP, it is common to define the remainder of the
SDP in terms of the pseudodistribution O rather than the variables {z(S,σ)}S,σ. Thus, when using the
Lasserre hierarchy, we will wind up with an SDP that looks like this:

•Minimize: Φ(O);

• Problem-Specific Constraints: Γi(O) ≤ ai for i = 1, 2, . . . ;

• Lasserre Constraints: O is a level r Lasserre pseudodistribution;

where Φ and the Γi are convex functions. Convexity in this context means that for any two pseudodis-
tributions O and O′, and any γ ∈ (0, 1), Φ

(
γO + (1 − γ)O′

)
≤ γΦ(O) + (1 − γ)Φ(O′), where

γO + (1 − γ)O′ is the pseudodistribution which, for S ⊂ A of size |S| ≤ r outputs σ ∈ {0, 1}S with
probability γPr

[
O(S) = σ

]
+ (1− γ)Pr

[
O′(S) = σ

]
.

3.3 The Wide Replacement Product
Ta-Shma’s code used a special graph product called the wide replacement product to combine two
expanders. This method was introduced in [BT11] where it was used to get almost Ramanujan expander
graphs via the zig-zag product. We describe this method as it applies to combining the two specific
graphs used in the construction.

Cayley Graphs Given a finite group G and a subset U ⊆ G, the Cayley graph Cayley(G,U) has
vertex set G with g ∼ g′ iff g−1g′ ∈ U . Note that Cayley(G,U) is |U |−regular; additionally, if
U is closed under inversion, then Cayley(G,U) is undirected. Cayley graphs play a key role in many
explicit constructions of expander graphs. Both the outer and inner graphs used in this work are explicit
expander constructions based on Cayley graphs.

3.3.1 The Outer Graph

Rotation Maps and Local Invertibility. In any d−regular, undirected graph G = (V,E), we can
define the rotation map φ : V × [d] → V defined via φ : (v, i) 7→ v′, where v′ ∈ N(v) is the i−th
neighbor of v. Note that if v′ = φ(v, i) then there must exist some i′ ∈ [d] such that v = φ(v′, i′),
since G is undirected. In this case we say that i′ is the inverse of i with respect to the vertex v, since

13

v = φ
(
φ(v, i), i′

)
. We say thatG is locally invertible if for all i there exists i′ such that v = φ

(
φ(v, i), i′

)
holds for all v ∈ V . In Cayley graphs, the rotation map is simply multiplication: φ(g, u) = gu.
This means that undirected Cayley graphs are locally invertible, since for all g ∈ G and u ∈ U ,
g = φ

(
φ(g, u)u−1

)
.

For our outer graph A we use the explicit construction of [Alo21] which, though not a Cayley graph, is
locally invertible as it is a combination of Cayley graphs.

Proposition 2 (The Outer Graph). For all integers n, d ∈ N there is an explicit construction of an
undirected, d−regular, locally invertible graph A with n · (1 + on(1)) vertices and expansion λA ≤ 8√

d
.

3.3.2 The Inner Graph

For our inner graph B we use the explicit construction of [AGHP92].

Proposition 3 (The Inner Graph). For all integers r, ` ∈ N such that ` ≤ r/2, there exists an explicit
construction of an undirected 22`−regular Cayley graph B over Fr2 with expansion λB ≤ (r − 1)2−`.

The Shifted Neighborhood Distribution. We will introduce parameters s,m ∈ N such that r = ms
so that our inner graph B is a Cayley graph on Fms2 . We will view elements b ∈ B as s−tuples
b =

(
b[1], . . . , b[s]

)
∈ (Fm2)s and we write b̂ ∈ Fm2 for the first coordinate of b, namely b̂ = b[1]. We

define the “shift operator” via shift :
(
b[1], . . . , b[s]

)
7→
(
b[2], . . . , b[s], b[1]

)
. For b ∈ B, we define

the shifted neighborhood distribution of b, denoted Ñ(b) as the distribution which draws b′ ∼ N(b)
and outputs shift(b′). The shifted neighborhood distribution was introduced in [RR22] to simplify the
notations of Ta-Shma’s construction, which draws a random walk (b1, . . . , bt) ∼ RWt

B and then used
the indices

(
b1[1], b2[2], . . . , bt[t mod s]

)
∈ (Fm2)t. This is equivalent to drawing a shifted random walk

(b1, . . . , bt) ∼ RW
:t

B (i.e., drawing b1 ∼ B and bi+1 ∼ Ñ(bi) for i = 1, . . . , t− 1), and then outputting
(b̂1, . . . , b̂t) ∈ (Fm2)t. It is easy to see that the expansion of B is not affected by using the shifted
neighborhood distribution instead of the original neighborhood distribution:∣∣∣E b∼B

b′∼Ñ(b)

[
f(b) · g(b′)

]
− µfµg

∣∣∣ =
∣∣∣E b∼B

b′∼N(b)

[
f(b) · g̃(b′)

]
− µfµg̃

∣∣∣ ≤ λσfσg̃ = λσfσg,

where g̃ = g ◦ shift; clearly (µg̃, σg̃) = (µg, σg). Note that by replacing the normal neighborhood
distribution with the shifted neighborhood distribution, we turn B into an undirected graph. To fix
this, we can define the reverse shifted neighborhood distribution Ñ−1(b) which draws b′ ∼ N(b) and
outputs shift−1(b′), where shift−1 shifts the coordinates of b in the opposite direction to shift. The key
point we will use is that the following distributions are identical: 1) draw b ∼ B, b′ ∼ Ñ(b) and output
(b, b′) ∈ B2; 2) draw b′ ∼ B, b ∼ Ñ−1(b′) and output (b, b′) ∈ B2. The following easy claim will be
useful.

Claim 5. For k ≤ s, the distribution which draws (b1, . . . , bk) ∼ RW
:k

B and outputs (b̂1, . . . , b̂k) ∈ Fmk2

is identical to Unif(Fmk2).

Proof. Let Dk be the distribution which draws (b1, . . . , bk) ∼ RW
:k

B and outputs (b̂1, . . . , b̂k) ∈ Fmk2 .
We must show that Dk ≡ Unif(Fmk2) for all k ≤ s. It suffices to prove this for k = s, since when
k < s, Dk is identical to the distribution which draws (b̂1, . . . , b̂s) ∼ Ds and outputs (b̂1, . . . , b̂k). As
B is a Cayley graph on Fms2 , there exists a subset U ⊂ Fms2 such that, for all b ∈ B, the neighborhood

14

distribution N(b) draws u ∼ U and outputs b + u. Thus, Ds draws b =
(
b[1], . . . , b[s]

)
∼ Fms and

u1, . . . , us−1 ∼ U , and outputs

(b̂1, . . . , b̂s) =
(
b[i] +

∑
j<i

uj[i− j + 1]
)
i=1,...,s

∈ Fms2 .

Uniformity of (b̂1, . . . , b̂s) follows from the uniformity of the b[i] ∼ Fm2 .

3.3.3 The s-wide Replacement Product

LetA andB be the outer and inner graphs described above, respectively. The wide replacement product
is a distribution parametrized by integers s, t ∈ N which uses a t−step walk on B to derive and output
a walk (a0, . . . , at) ∈ RWt+1

A . We denote the s−wide replacement product distribution as s-WRWt
A,B.

Since A and B will not change, we omit them from the syntax and we relocate the s, writing WRWt
s

instead of s-WRWt
A,B.6 In order to ensure compatibility between A and B, we set d = 2m, where d is

the degree of A and B is a Cayley graph on Fms2 . This allows viewing b =
(
b[1], . . . , b[s]

)
∈ B as an

element of [d]s. For a ∈ A and b ∈ B, we interpret φ(a, b̂) as the j−th neighbor of a where j ∈ [d] is
the value which corresponds to b̂ = b[1] ∈ Fm2 ' [d].

The Distribution WRWt
s. With the above setup in mind, the distribution WRWt

s draws a ∼ A,
(b1, . . . , bt) ∼ RW

:t
B and outputs (a0, . . . , at) ∈ At+1, where a0 = a and ai+1 = φ(ai, b̂i) for i =

0, . . . , t−1. For a ∈ A, WRWt
s(a) is the distribution WRWt

s conditioned on a0 = a; for (a, b) ∈ A×B,
WRWt

s(a, b) is WRWt
s conditioned on (a0, b1) = (a, b).

4 The Code
We now describe the binary code {Ck}k of Ta-Shma [Ta-17], which almost achieves the Gilbert-
Varshimov bound. Fix k ∈ N and ε > 0. The construction of Ck uses the following building blocks.

• The Base Code: Let Cbasek : {0, 1}k → {0, 1}n be an explicit code of distance 1−εbase
2

, which is
ρbase−list decodable for all ρbase ≥ εbase. We use the construction of Proposition 1, which has
rate Ω

(
ε3
base

)
.

• The Outer Graph: Let A be the undirected dA−regular graph with expansion λA. We use the con-
struction of Proposition 2, so that λA ≤ 8/

√
dA and |A| = n ·

(
1 + on(1)

)
.

• The Inner Graph: Let B be a dB−regular Cayley graph over Fr2 with expansion λB. We use the
construction of Proposition 3 so that λB = (r − 1) · 2−` and dB = 22` for integers `, r ∈ N such
that ` ≤ r/2.

The building blocks carry several parameters which we now connect. In order to set up the s−wide
replacement product, define additional parameters s,m ∈ N such that r = ms, and let dA = 2m, so
B ' [dA]s. It will be important for our analysis to have λA ≤ λ2

B; in order to arrange this, set m = s
and ` = s/5. This gives

λA ≤
8√
dA

= 8 · 2−m/2 =
8

2`/2
· 2−2` ≤ (ms− 1)2 · 2−2` = λ2

B,

6We intend WRW to stand for “wide replacement walk”.

15

where the final inequality holds whenever s ≥ 2. We will also require εbase ≤ λB/2 which we ensure
by setting εbase = s2−1

2
· 2−s/5. At this point, all parameters so far have been defined in terms of s. Note

that our setup allows us to use B to take s−wide replacement walks in A. We now describe the code.

The Encoding Algorithm Ck. On input msg ∈ {0, 1}k, and given ε, η > 0, Ck works as follows.

1. Set s, t ∈ N so that ηs ≥ 60 log s and t ≥ s2 so that (2λB)t(1−4/s) ≤ ε.

2. Compute Cbasek (msg) ∈ {0, 1}n, and define x ∈ {0, 1}A by setting

xa =

{
Cbasek (msg)i, a = ι(i)

0, otherwise

where ι : [n] ↪→ A is some fixed embedding.

3. Compute y ∈ {0, 1}WRWt
s by setting y~a = xa0 ⊕ · · · ⊕ xat for ~a = (a0, . . . , at) ∈ WRWt

s.

4. Output y.

Proposition 4. The code {Ck}k has distance at least 1−ε
2

, and rate Ω(ε2+η).

Proof. The rate of Ck is

Ratek =
k

|WRWt
s|
≥ k

|A|
· 1

|B|
· 1

dt−1
B

= Ω(ε3
base) · 2−s

2 · d−(t−1)
B = Ω

(
s−6 · 2−s2

)
· d−(t−1)

B .

To bound the bias of Ck, we use the following lemma which was proved in [Ta-17]. This result is also
implied by Claim 7, since the constant pseudodistribution is technically good. The reader can also see
also [RR22] for a proof of precisely this result which uses language similar to the rest of this paper.

Lemma 3 (Bias Reduction of Wide Replacement Product Walks). Let integers s, t ∈ N and graphs
A and B be as above; so in particular A and B are λA and λB expanders with λA ≤ λ2

B. Let
x : A→ {0, 1} be any function such that

∣∣Ea[(−1)xa
]∣∣ ≤ λB. Then∣∣∣E~a∼WRWt

s

[
(−1)x~a

]∣∣∣ ≤ (2λB)t(1−4/s).

Note that the function x : A→ {0, 1} defined in the second step of Ck satisfies∣∣∣Ea[(−1)xa
]∣∣∣ ≤ 2 ·

∣∣∣Ei∼[n]

[
(−1)C

base
k (msg)i

]∣∣∣ ≤ 2εbase ≤ λB,

and so Lemma 3 ensures that Biask ≤ (2λB)t(1−4/s). Putting the calculations of Rankk and Biask
together and using λB = (s2 − 1)/

√
dB gives

Ratek = Ω
(
s−6 · (s2 − 1)−2t · 2−2t−s2+2s/5 · (2λB)8t/s

)
· Bias2

k = Ω
(
s−5t · (2λB)8t/s

)
· Bias2

k,

where the right most equality holds whenever 6 log s ≤ 2s/5 (implied by s ≥ 100) and t ≥ s2. Note,
therefore, that for η ∈

(
0, 1/2

)
, Ratek = Ω

(
Bias2+η

k

)
holds whenever (2λB)t(η−4η/s−8/s) ≤ s−5t which,

if η ≥ 24/s is implied by (2λB)η/2 ≤ s−5. Finally, by plugging in λB = (s2 − 1) · 2−s/5, we see that
this holds whenever ηs ≥ 60 log s.

So finally, let us prove the theorem. Suppose that we are given ε > 0 and η ∈
(
0, 1/2

)
, and we

want to construct Ck such that Biask ≤ ε and Ratek = Ω
(
Bias2+η

)
. We let Ck be the construction

defined above with s chosen large enough so that ηs ≥ 60 log s; this ensures Ratek = Ω
(
Bias2+η

k

)
as

noticed above. Finally, let us choose t large enough so that t ≥ s2 and (2λB)t(1−4/s) ≤ ε; this ensures
Biask ≤ ε, as desired.

16

5 The List Decoding Algorithm
In this section, we describe the list-decoding algorithm. As already mentioned, this algorithm is es-
sentially the same as the algorithms from [AJQ+20, JQST20, JST21] except for a modified rounding
step.

The Decoding Algorithm Dk. Let ρ > 0. On input ỹ ∈ {0, 1}WRWt
s , Dk does the following.

0. Set parameters δ = 2−14ρ8, r ≥ 16s2t2

δ2ρ4
, and ζ = 1

16
ρ8.

1. Set up and solve the SDP to within accuracy ζ:

· minimize E~a,~a′∼WRWt
s

[
Ẽ[(−1)~α⊕~α

′
]2
]
;

· subject to E~a∼WRWt
s

[
Ẽ[(−1)ỹ~a⊕~α]

]
≥ ρ;

· subject to O being a level (rst+ 2)(s+ t+ 1) Lasserre pseudodistribution.

2. Round:

· Draw S = (S(`,k)) ∼ [r]st uniformly.

· Draw a subset S ⊂
{

(~a,~a′) ∈ RW`
A ×WRWk

s : a` = a′0
}

randomly, subject to the require-
ment that

∣∣S ∩ (RW`
A ×WRWk

s)
∣∣ = S(`,k) for all ` ∈ [s] and k ∈ [t].

· Draw σ ∼ O(S), where O is the optimal pseudodistribution recovered in Step 1.

· Output L =
{(
~a⊕~a′, (⊕σ~a)⊕(⊕σ~a′)

)
: (~a,~a′) ∈ S

}
, where⊕σ~a = σa1⊕· · ·⊕σa` ∈ {0, 1},

where (σa1 , . . . , σa`) are the bits of σ which correspond to ~a = (a1, . . . , a`), and similarly
for ⊕σ~a′ .

3. Compute x̃ ∈ {0, 1}A as follows:

· For any a which appears in any of the paths in S, set x̃a = σa;

· For all other a, draw x̃a ∼ OL(a), whereOL is the conditional pseudodistribution on {0, 1}A
created from the pseudodistribution O obtaines in Step 1 and the set L produced in Step 2.
So specifically, for T ⊂ A such that |S∪T | ≤ (rst+2)(s+ t+1),OL draws σ ∼ O(S∪T)
such that (⊕σ~a)⊕ (⊕σ~a′) = β~a,~a′ for all (~a,~a′) ∈ S, then outputs σT ∈ {0, 1}T .

4. Run the inner decoder:

· Compute Lbase = Dbase
k (x̃) and L′base = Dbase

k (x̃′), where Dbase
k is the ρbase−list-decoding

algorithm for the inner code Dbase
k , and where x̃′ is the opposite of x̃ (i.e., every bit is

flipped);7

· If Lbase ∪ L′base 6= ∅, output a random element from either set, otherwise give no output.

Theorem 2 (Main). The above algorithm Dk runs in time kpoly(1/ρ), and provides the following output
guarantee: if ỹ ∈ {0, 1}WRWt

s and msg ∈ {0, 1}k are such that ∆
(
ỹ, Ck(msg)

)
≤ 1−ρ

2
, for ρ ≥ 2

√
ε,

then Dk(msg) outputs msg with non-negligible probability.8

7If Dbase
k is given a string x ∈ {0, 1}A as input, then it first recovers ι−1(x) ∈ {0, 1}n and ignores the bits of x

corresponding to a /∈ Image(ι).
8Recall from Proposition 4 that the distance of Ck is at least 1−ε

2 .

17

Note that Dk(ỹ) can be called repeatedly to recover the full list{
msg ∈ {0, 1}k : ∆

(
ỹ, Ck(msg)

)
≤ 1− ρ

2

}
with high probability.

5.1 Analysis Overview
Here we give the high level proof of Theorem 2 by reducing it to the proof of two key lemmas, Lem-
mas 4 and 5, below. These lemmas in turn will be proved in the following sections. First note that the
running time of Dk is dominated by Step 1, which runs in time poly

(
n(rst+2)(s+t+1), 1/ζ

)
= kpoly(1/ρ).

So now, assume ỹ ∈ {0, 1}WRWt
s and msg ∈ {0, 1}k are such that ∆

(
ỹ, Ck(msg)

)
≤ 1−ρ

2
. We must

show that Dk(ỹ) outputs msg with non-negligible probability. Define the set

LIST(ỹ, ρ) :=
{
x ∈ {0, 1}A : E~a∼WRWt

s

[
(−1)ỹ~a⊕x~a

]
≥ ρ
}
.

This is an abuse of notation because technically this list should be a subset of {0, 1}k, but this list will
be our main focus during this proof. Let x = ι ◦ Ck(msg) ∈ {0, 1}A and note that x ∈ LIST(ỹ, ρ).
Thus, it suffices to show that for all x ∈ LIST(ỹ, ρ), the string x̃ ∈ {0, 1}A computed during Step 3
of D(ỹ) will, with non-negligible probability, be such that

∣∣Ea[(−1)xa⊕x̃a]
∣∣ ≥ 3ρbase/2. Indeed, this in

turn implies that
∣∣Ei∼[n][(−1)xι(i)⊕x̃ι(i)]

∣∣ ≥ ρbase, and so msg will appear either in Lbase or L′base since the
inner code is ρbase−list decodeable.

Now, recall that Dk(ỹ) produces x̃ by drawing each bit independently from the size 1 marginals
of the conditional pseudodistribution OL, where L is produced in Step 2 via the rounding procedure.
Therefore, by the Chernoff-Hoeffding inequality, x⊕ x̃ will be 3ρbase/2−biased with high probability
whenever ∣∣Ea[ẼL[(−1)xa⊕α]

]∣∣ ≥ 2ρbase, (+)

where ẼL is the conditional pseudoexpectation corresponding to OL. So in summary, we need to show
that (+) holds for all x ∈ LIST(ỹ, ρ). The following lemma was proved in [AJQ+20] (combination
of Lemmas 6.3 and 6.4). We include a shortened version of their proof, converted to our language, in
Appendix A.

Claim 6. Let O be the pseudodistribution obtained during Step 1 of Dk(ỹ). For all x ∈ LIST(ỹ, ρ),

E~a,~a′∼WRWt
s

[
Ẽ[(−1)x~a⊕~α⊕x~a′⊕~α

′
]
]
≥ 1

4
ρ4. (++)

So the core of our analysis involves deducing (+) from (++). This is accomplished using the following
two lemmas which will be proved over the next two sections. Both lemmas involve the notion of a good
conditional pseudodistribution which is a technical condition defined in Definition 3 in Section 5.2.

Lemma 4. Assume r ≥ 16s2t2

δ2ρ4
. Then with probability at least 1− 1

16
ρ4, the slice L drawn during Step 2

of decoding is good.

Lemma 5. If O is a pseudodistribution on {0, 1}A and L is a good slice such that

E~a,~a′∼WRWt
s

[
ẼL[(−1)x~a⊕~α⊕x~a′⊕~α

′
]
]
≥ 1

8
ρ4

holds, then (+) also holds.

18

These lemmas combine to complete the proof of Theorem 2 since it follows that if (++) holds for the
pseudodistributionO recovered in Step 1, then with probability at least 1

16
ρ4 over the slice drawn during

Step 2, (+) holds as well. In Section 5.2 we define good and prove Lemma 4; Lemma 5 is proved in
Section 5.3.

5.2 Good Pseudodistributions and Proof of Lemma 4
In this section we define what it means for a pseudodistribution on {0, 1}A to be good, and we prove
Lemma 4. We first set some notation.

• The Graph Expansion Parameters: The code uses two expander graphs B and A with expansions
λB = λ and λA ≤ λ2, respectively, where λ > 0 is chosen so that λ ≤ 2ρbase, the list-decoding
radius of the inner code. Additionally, the width s and length t of the replacement walks are such
that (2λ)t(1−4/s) ≤ 1

4
ρ2 (since ρ ≥ 2

√
ε).

• The Random Variables {YS}: For S = {a1, . . . , ak} ⊂ A, with |S| ≤ s+ t+1, let YS be the distri-
bution on {±1} which draws σ = (σ1, . . . , σk) ∼ OL(S) and outputs (−1)(σ1⊕xa1)⊕···⊕(σk⊕xak).
Note that the {YS} are pairwise jointly distributed since O supports queries of size 2(s+ t+ 1):
given S, S ′ ⊂ A, (YS,Y

′
S) is the distribution which draws (σ, σ′) ∼ OL(S ∪ S ′) and outputs(

(−1)(σ1⊕xa1)⊕···⊕(σk⊕xak), (−1)
(σ′1⊕xa′1

)⊕···⊕(σ′
k′⊕xa′

k′
))
.

We will be particularly interested in YS for S = ~a for a wide random walk ~a ∈ WRW≤ts ; this
will be our main case of interest. However, we will also need to consider YS for S = ~a ⊕ ~a′ for
~a ∈ RW`

A and ~a′ ∈ WRWk
s for ` ≤ s and k ≤ t such that a` = a′k.

• The Covariance Vectors {v̂S} and {vS}: Since the {YS} are pairwise jointly distributed, we can
define their covariances Cov(YS,YS′) = Ẽ

[
YSYS′

]
− Ẽ[YS]Ẽ[YS′]. As covariance matrices are

positive semi-definite, there exist real vectors {v̂S} such that 〈v̂S, v̂S′〉 = Cov(YS,YS′) for all
S, S ′ ⊂ A such that |S|, |S ′| ≤ s+ t+1. Let vS be the vector v̂S with one extra coordinate which
is equal to Ẽ[YS]. Thus, Ẽ

[
YSYS′

]
= 〈vS,vS′〉 for all S, S ′ ⊂ A such that |S|, |S ′| ≤ s+ t+ 1.

Definition 3 (Good Pseudodistributions). Let δ > 0 such that δ ≤ 1
64

(2λ)4t. We say that a level
2(s + t + 1) Lasserre pseudodistribution on {0, 1}A is good if for all `, `′ ∈ [s] and k, k′ ∈ [t], the
following holds:

E
~a∼RW`

A,~a
′∼RW`′

A

~a′′∼WRWk
s (a`)

~a′′′∼WRWk′
s (a′

`′)

[
|〈v̂~a⊕~a′′ , v̂~a′⊕~a′′′〉|

]
≤ δ,

where a` and a′`′ denote, respectively, the final vertices in the random walks ~a and ~a′.

Lemma 4 (Restated). Assume r ≥ 16s2t2

δ2ρ4
. Then with probability at least 1− 1

16
ρ4, the slice L drawn

during Step 2 of decoding is good.

Proof. Let L denote the slice distribution. We must show that with probability 1 − 1
16
ρ4 over L ∼ L,

we have
E(L) := E~a,~a′,~a′′,~a′′′

[
|〈v̂L

~a⊕~a′′ , v̂
L
~a′⊕~a′′′〉|

]
≤ δ,

19

for all `, `′ ≤ s and k, k′ ≤ t, where the expectation is over~a ∼ RW`
A, ~a′ ∼ RW`′

A, ~a′′ ∼ WRWk
s(a`) and

~a′′′ ∼ WRWk′

s (a′`′). Here v̂L
~a⊕~a′′ refers to v̂~a⊕~a′′ from Section 2.3 instantiated with the pseudodistribu-

tion OL. In this proof we are explicit about L because we will have to consider these random variables
for different slices. Recall 〈v̂L

~a⊕~a′′ , v̂
L
~a′⊕~a′′′〉 = Cov(YL

~a⊕~a′′ ,Y
L
~a′⊕~a′′′), where YL

~a⊕~a′′ is the random variable
which draws (~α, ~α′′) ∼ OL(~a⊕ ~a′′) and outputs (−1)~α⊕x~a⊕~α

′′⊕x~a′′ . By Claim 1 we have

E(L)2 ≤ E~a,~a′,~a′′,~a′′′
[
Cov(YL

~a⊕~a′′ ,Y
L
~a′⊕~a′′′)

2
]
≤ E~a,~a′′

[
Var(YL

~a⊕~a′′)− E ~a′,~a′′′

β∼YL
~a⊕~a′′

[
Var(YL′

~a⊕~a′′)
]]
,

where L′ = L∪{(~a′⊕~a′′′, β)}. We say that L′ is an (`′, k′)−th increment of L since it is obtained from L
by adding a single element (~a′⊕~a′′′, β) ∈ RW`′

A×WRWk′

s ×{0, 1} with a′`′ = a′′′0 . Let L(`′,k′)(L) denote
the distribution which outputs a random slice which is an (`′, k′)−th increment of L. SoL(`′,k′)(L) draws
~a′ ∼ RW`′

A, ~a′′′ ∼ WRWk′

s (a`′) and β ∼ YL
~a′⊕~a′′′ and outputs L′ = L ∪ {(~a′ ⊕ ~a′′′, β)}. For ` ∈ [s] and

k ∈ [t], define the potential

Φ(`,k)(L) := E ~a∼RW`
A

~a′′∼WRWk
s (a`)

[
Var(YL

~a⊕~a′′)
]
.

These notations simplify the above, we now have E(L)2 ≤ Φ(`,k)(L) − EL′∼L(`′,k′)(L)

[
Φ(`,k)(L

′)
]
. Thus,

by the union bound and Markov’s inequality, in order to prove Lemma 4, it suffices to show that for all
`, `′ ∈ [s] and k, k′ ∈ [t],

EL∼L

[
Φ(`,k)(L)− EL′∼L(`′,k′)(L)

[
Φ(`,k)(L

′)
]]
≤ δ2ρ4

16s2t2
. (†)

Now recall that L draws the tuple S = (S(`,k))`,k ∼ [r]st and then outputs a random slice L subject
to
∣∣L ∩ (RW`

A × WRWk
s × {0, 1})

∣∣ = S(`,k) for all ` ∈ [s] and k ∈ [t]. Let LS be the distribution
which outputs a random slice subject to satisfying this size condition. So L draws S ∼ [r]st and outputs
a sample from LS, while the distribution which draws L ∼ L and outputs a sample from L(`′,k′)(L)
is identical to the distribution which draws S ∼ [r]st and outputs a sample from LS′ where S′ is the
(`′, k′)-th increment of S, namely, S′(`′,k′) = S(`′,k′) +1 while all other indices of S and S′ are equal. Let
Φ(`,k)(S) := EL∼LS

[
Φ(`,k)(L)

]
. Then the LHS of (†) becomes ES∼[r]st

[
Φ(`,k)(S)−Φ(`,k)(S

′)
]
, where S′

denotes the (`′, k′)−th increment of S. But for all Ŝ ∈ [r]st−1, we have

1 ≥ Φ(`,k)(S1) ≥ Φ(`,k)(S2) ≥ · · · ≥ Φ(`,k)(Sr) ≥ 0,

where Sv ∈ [r]st has the (`′, k′)−th coordinate equal v and all other coordinates equal Ŝ. This is
because variance is non-increasing under conditioning. It follows then that the LHS of (†) is at most
1/r ≤ δ2ρ4

16s2t2
, as desired.

5.3 Bias Amplification
In this section we prove Lemma 5 and show that wide replacement product walks are parity samplers
for good pseudodistributions. Let us keep using the notations from the previous section, i.e., the random
variables {YS} and the vectors {v̂S} and {vS}, all instantiated using some good pseudodistributionOL.
Additionally, define the statistics {µk, τk, εk}k as follows. For k ≤ t, let the vector-valued function wk

on A×B be defined via
wk(a, b) := E~a∼WRWk

s (a,b)[v~a],

20

and let µk :=
∣∣Ea,b[wk(a, b)]

∣∣, and τk be such that µ2
k + τ 2

k = Ea,b
[
|wk(a, b)|2

]
. Additionally, let

εk :=
∣∣E~a∼WRWk

s

[
Ẽ[Y~a]

]∣∣. In this section, all pseudoexpectations are for the pseudodistribution OL;
since there is no chance for confusion, we write Ẽ instead of ẼL to keep the notations simpler.

Lemma 5 (Restated). If OL is a good level 2(s + t + 1) pseudodistribution on {0, 1}A such that∣∣Ea∼A[Ẽ[Ya]
]∣∣ ≤ λ, then

E~a,~a′∼WRWt
s

[
Ẽ[Y~aY~a′]

]
≤ 2(2λ)2t(1−4/s).

Proof. Note Ẽ[Y~aY~a′] = 〈v~a,v~a′〉 = 〈v̂~a, v̂~a′〉+ Ẽ[Y~a]Ẽ[Y~a′]. Thus,∣∣∣E~a,~a′∼WRWt
s

[
Ẽ[Y~aY~a′]

]∣∣∣ ≤ E~a,~a′∼WRWt
s

[
|〈v̂~a, v̂~a′〉|

]
+
∣∣E~a∼WRWt

s

[
Ẽ[Y~a]

]∣∣2 ≤ δ + ε2
t ,

where the last inequality holds by definition of εt and because OL is good (using ` = `′ = 1 and
k = k′ = t). So it suffices to show that for all k ≤ t:

εk ≤ (2λ)k(1−4/s); and τk ≤ (2λ)(k−2)(1−4/s). (∗)

We prove this by induction. The following claim captures the core of the proof; we prove it in Section 6.

Claim 7. SupposeOL is a good level 2(s+ t+ 1) pseudodistribution on {0, 1}A and
∣∣Ea[Ẽ[Ya]

]∣∣ ≤ λ.
Let εk and τk be as above. Then we have the following bounds.

• Part 1: When k ≤ s, we have εk ≤
√
δ + 1

2
(2λ)k+1.

• Part 2: When k ≤ s, we have τk ≤ 3
√
δ + 2(2λ)k−1.

• Part 3: When k ≥ s+ 1, we have εk ≤
√
δ + 1

2
(2λ)s

[
εk−s + 3τk−s

]
.

• Part 4: When k ≥ s+ 1, we have

τ 2
k ≤ 2

√
δ + (2λ)s−1

[
εk−s + 3τk−s

]
εk−2 + 2λ4(2λ)2(s−2)

[
εk−s + 3τk−s

]2
+ λ2τ 2

k−1.

Establishing (∗) from Claim 7 is a straightforward induction. The base cases follow immediately from
the bounds given in Parts 1 and 2. To prove the induction step, first note that the induction hypothesis
implies that (2λ)s−4

[
εk−s + 3τk−s

]
≤ (2λ)k(1−4/s) + 3(2λ)(k−2)(1−4/s). Plugging this into the right side

of Part 3 and simplifying proves the induction step for εk. Finally, plugging in the induction hypothesis
into the right side of Part 4 bounds τ 2

k by

(2λ)2(k−2)(1−4/s)

[
2
√
δ

(2λ)2(k−2)(1−4/s)
+ (2λ)3

[
(2λ)2−8/s + 3

]
+ 32λ8

[
(2λ)2−8/s + 3

]2
+

1

4
(2λ)8/s

]
,

which is at most (2λ)2(k−2)(1−4/s) since each term in the brackets on the right can be upper bounded by
1/4 (using δ ≤ 1

64
(2λ)4t and λ ≤ 1/6).

6 Bounding the Statistics
Our use of the wide replacement walk introduces several complications on top of those encountered
in Section 2 for the “vanilla” random walk. For this reason, we begin with a section where we collect
the key ideas used in the proof of Claim 7. This will avoid repetitions and generally will facilitate a
smoother reading of the proof, which is central to our main result.

21

6.1 The Tool Kit
Setup and Notations. We continue using the notation of Section 5.3. So specifically,A is a λ2−expander
and B is a λ−expander for a small parameter λ > 0. We have a fixed level 2(s + t + 1) good pseu-
dodistribution on {0, 1}A, and we defined vectors {v̂S} and {vS} such that 〈v̂S, v̂S′〉 = Cov(YS,YS′),
and 〈vS,vS′〉 = Ẽ[YSYS′], for S, S ′ ⊂ A such that |S|, |S ′| ≤ s+ t+ 1. We will use the idenity

Ẽ[YSYS′] = 〈v̂S, v̂S′〉+ Ẽ[YS]Ẽ[YS′],

which follows from the definition of covariance. We will assume that
∣∣Ea[Ẽ[Ya]

]∣∣ ≤ λ and additionally
that the pseudodistribution is good, which means that for all `, `′ ∈ [s] and k, k′ ∈ [t],

E
~a∼RW`

A,~a
′∼RW`′

A

~a′′∼WRWk
s (a`)

~a′′′∼WRWk′
s (a′

`′)

[
|〈v̂~a⊕~a′′ , v̂~a′⊕~a′′′〉 ≤ δ, (6.1)

for a small parameter δ < 1
64

(2λ)4t. Some of the tools which we develop in this section will be applied
several times during he proof of Claim 7 to different vector combinations. In order to state our tools
with sufficient generality, throughout this section, we define vector-valued functions zk, z′k on A × B
for ` ∈ N via

zk(a, b) := E~a∼WRWk
s (a,b)

S∼D(ak)

[v~a⊕S]; and z′k(a, b) := E~a∼WRWk
s (a,b)

S∼D′(ak)

[v~a⊕S],

for distributions D and D′ which, given a ∈ A, output subsets of A of size at most t + 1, and where
ak is the final vertex in ~a. Note the vector-valued functions wk have this form with D the constant
distribution which always outputs the emptyset. Define the statistics µzk :=

∣∣Ea,b[zk(a, b)]∣∣, and τzk
such that µ2

zk
+ τ 2

zk
= Ea,b

[
|zk(a, b)|2

]
. Additionally, for a ∈ A, let zk(a) := Eb

[
zk(a, b)

]
and τzk(a)

be so |zk(a)|2 + τzk(a)2 = Eb
[
|zk(a, b)|2

]
. Note

∣∣Ea[zk(a)]
∣∣ = µzk . Finally, let τ̂zk be such that

µ2
zk

+ τ̂ 2
zk

= Ea
[
|zk(a)|2

]
. Define µz′k

, τz′k , z′k(a), τz′k(a), and τ̂z′k similarly.

Applying the EML Directly on Pseudoexpectations. For k ∈ N, let zk and z′k be the vector-valued
functions on A×B described above. Suppose we want to bound either

Q1 :=
∣∣∣E a∼A,b∼b′

~a∼WRWk
s (a,b),S∼D(ak)

~a′∼WRW`
s(a,b

′),S′∼D(a′`)

[
Ẽ[Y~a⊕SY~a′⊕S′]

]∣∣∣; or Q2 :=
∣∣∣E a∼a′

~a∼WRWk
s (a),S∼D(ak)

~a′∼WRW`
s(a),S′∼D(a′`)

[
Ẽ[Y~a⊕SY~a′⊕S′]

]∣∣∣.
Since Q1 =

∣∣Ea,b∼b′[〈zk(a, b), z′`(a, b′)〉]∣∣ and Q2 =
∣∣Ea∼a′[〈zk(a), z′`(a

′)〉
]∣∣, these quantities are sub-

ject to bounds via the EML. In order to streamline the analysis in the next section, we will often apply
the EML directly on the quantities in pseudoexpectation form; this will save considerable space because
we will avoid having to convert between pseudoexpectation form and inner product form. Specifically,
during the proof of Claim 7, we will frequently use:

Q1 ≤
∣∣∣E a∼A,b,b′∼B

~a∼WRWk
s (a,b),S∼D(ak)

~a′∼WRW`
s(a,b

′),S′∼D(a′`)

[
Ẽ[Y~a⊕SY~a′⊕S′]

]∣∣∣+ λτzkτz′` ; (6.2)

and
Q2 ≤

∣∣∣E a,a′∼A
~a∼WRWk

s (a),S∼D(ak)

~a′∼WRW`
s(a),S′∼D(a′`)

[
Ẽ[Y~a⊕SY~a′⊕S′]

]∣∣∣+ λ2τzkτz′` , (6.2)

22

which follow from the EML and Ea
[
τzk(a)τz′`(a)

]
, τ̂zk τ̂z′` ≤ τzkτz′` . Indeed, τ̂zk ≤ τzk holds because of

Jensen’s inequality:

µ2
zk

+ τ̂ 2
zk

= Ea
[
|zk(a)|2

]
≤ Ea,b

[
|zk(a, b)|2

]
= µ2

zk
+ τ 2

zk
.

Additionally, Ea
[
τzk(a)τz′`(a)

]2 ≤ Ea
[
τzk(a)2

]
Ea
[
τz′`(a)2

]
≤ τ 2

zk
τ 2
z′`

, where the first inequality is
Cauchy-Schwarz and the second holds because

Ea
[
|zk(a)|2 + τzk(a)2

]
= Ea,b

[
|zk(a, b)|2

]
= µ2

zk
+ τ 2

zk
,

and µ2
zk
≤ Ea

[
|zk(a)|2

]
, again by Jensen’s inequality.

Starting the Wide Replacement Walk in the Middle. Recall that for (a, b) ∈ A×B, the distribution
WRWk

s(a, b) outputs (a0, . . . , ak) ∈ RWk+1
A , generated as follows:

· a shifted random walk (b1, . . . , bk) ∼ RW
:k

B(b) is drawn;

· set a0 = a and for i = 1, . . . , k − 1, ai+1 = φ(ai, b̂i).

Recall φ is the rotation map of A and b̂i is the first coordinate of bi when realized as an element of [d]s.
Because of the regularity of the explicit expander graphs used, it is possible to specify a distribution
which is identical to WRWk

s but which “starts the walk in the middle” by first drawing some ai ∼ A
for i > 0 and bi ∼ bi+1 and then proceeding outward from a with wide replacement walks in both
directions. Specifically, we will use that for all k > s:{

~a :
a ∼ A, b ∼ B

(a0, . . . , ak) ∼ WRWk
s(a, b)

}
≡

~a :

a ∼ A, b ∼ b′

(as, as−1, . . . , a0) ∼
←−−−
WRWs

s(a, b)

(as, as+1, . . . , ak) ∼ WRWk−s
s (a, b′)

 , (6.3)

where both distributions output ~a = (a0, . . . , ak), and where
←−−−
WRWs

s(a, b) is the same distribution as
WRWs

s(a, b) except that in the first step a reverse shifted random walk in B is drawn, rather than
a shifted random walk as usual. We use the convention that

←−−−
WRWs

s(a, b) outputs (as, . . . , a0) with
as = a.

Pseudorandomness. In Claim 5 in Section 3, it is proven that for all k ≤ s, the distribution which
draws a k−length shifted random walk in B, (b1, . . . , bk), and outputs (b̂1, . . . , b̂k) ∈ [d]k is identical to
the uniform distribution on [d]k. The same holds of course if a k−length reverse shifted random walk
in B is drawn and (b̂1, . . . , b̂k) is output. It follows from this that short wide replacement walks (of
length≤ s) are true random walks in A. This property was referred to as pseudorandomness in [Ta-17]
and will be very useful for us. Specifically, we will use that for all k ≤ s and all a ∈ A,

WRWk
s(a) ≡ RWk+1

A (a) ≡
←−−−
WRWk

s(a). (6.4)

Pseudodistribution Consistency. For all T ⊂ S ⊂ A such that |S| ≤ 2(s + t + 1), the distribution
which draws σ ∼ O(S) and outputs σ|T ∈ {0, 1}T is identical to O(T). It follows that for any
distribution on subsets (T, S) of size at most 2(s+ t+ 1) such that T ⊂ S,

ET,S
[
Ẽ[YT]

]
= ET

[
Ẽ[YT]

]
, (6.5)

where the second expectation is over T drawn according to the marginal of the distribution in the first
expectation; the first pseudoexpectation is over O(S), the second is over O(T).

23

The “Ignore First Step” Trick. The observation here is that any two ~a,~a′ ∈ WRWk
s(a, b) with the

same starting pair (a, b) begin at the same vertex and take the same first step since both walk to φ(a, b̂).
This allows for a simplificaion to the expectations which show up in the standard deviation bounds.
Specifically, let zk be the vector-valued function on A×B introduced above. The key identity is:

τ 2
zk
≤ E a∼A

~a,~a′∼WRWk−1
s (a)

S∼D(ak−1),S′∼D(a′k−1)

[
Ẽ[Y~a⊕SY~a′⊕S′]

]
+ λ2τ 2

zk−1
. (6.6)

This is proved as follows

τ 2
zk
≤ µ2

zk
+ τ 2

zk
= Ea,b

[
|zk(a, b)|2

]
= E a∼A,b∼B

~a∼WRWk
s (a,b),S∼D(ak)

~a′∼WRWk
s (a,b),S′∼D(a′k)

[
Ẽ[Y~a⊕SY~a′⊕S′]

]
= E a∼A,b∼B

~a∼WRWk
s (a,b),S∼D(ak)

~a′∼WRWk
s (a,b),S′∼D(a′k)

[
Ẽ[Y~a1:k⊕SY~a′1:k⊕S′]

] (6.5)
= E a∼A,b∼B2b′

~a∼WRWk−1
s (a,b)

~a′∼WRWk−1
s (a,b′)

S∼D(ak−1),S′∼D(a′k−1)

[
Ẽ[Y~a⊕SY~a′⊕S′]

]

(6.2)

≤ E a∼A
~a,~a′∼WRWk−1

s (a)
S∼D(ak−1),S′∼D(a′k−1)

[
Ẽ[Y~a⊕SY~a′⊕S′]

]
+ λ2τ 2

zk−1
.

The first equality on the second line holds because Y~a⊕SY~a′⊕S′ = Y~a1:k⊕SY~a′1:k⊕S′ since α0 = α′0 holds
with probability 1 over O(~a ⊕ S ⊕ ~a′ ⊕ S ′) (since a0 = a′0). The second equality on the second line
holds by pseudodistribution consistency, since if we do not care about the common starting point of two
k−step wide replacement walks which take the same first step, then we can instead draw their common
second vertex randomly, and two random neighbors (in B) of the original b and take (k−1)−step wide
replacement walks.

Generalizations of Lemma 1. Consider the vector-valued function zk on A × B introduced above,
and recall that for a ∈ A, zk(a) = Eb[zk(a, b)]. Note that when k ≤ s, we have

zk(a) = Eb∼B,~a∼WRWk
s (a,b)

S∼D(ak)

[v~a⊕S]
(6.4)
= E~a∼RWk+1

A (a)
S∼D(ak)

[v~a⊕S].

Define and recall the statistics εzk , µzk , and τ̂zk so that

εzk :=
∣∣∣E~a∼RWk+1

A
S∼D(ak+1)

[
Ẽ[Y~a⊕S]

]∣∣∣; and µ2
zk

+ τ̂ 2
zk

= E a∼A
~a,~a′∼RWk+1

A (a)

S∼D(ak+1),S′∼D(a′k+1)

[
Ẽ[Y~a⊕SY~a′⊕S′]

]
.

Then as long as D is such that

Ea∼A,~a∼RWk
A

S∼D(ak)

[
|〈v̂a, v̂~a⊕S〉|

]
≤ δ; and E ~a,~a′∼RWk

A
S∼D(ak),S′∼D(a′k)

[
|〈v̂~a⊕S, v̂~a′⊕S′〉|

]
≤ δ,

then we have that for all k ≥ 1,

εzk ≤
√
δ +

1

2
(2λ)k(εz0 + λτ̂z0); and µ2

zk
+ τ̂ 2

zk
≤ 4δ + (2λ)2(k−1)(εz0 + λτ̂z0)

2. (6.7)

24

These bounds are proved using the same methods as used in the proof of Lemma 1. Specifically, we
use an EML calculation to prove that for all k ≥ 1,

εzk ≤ δ + λεzk−1
+ λ2τ̂zk−1

; and µ2
zk

+ τ̂ 2
zk
≤ δ + ε2

zk−1
+ λ4τ̂ 2

zk−1
. (∗)

From (∗), an inductive argument can be used to show that for all k ≥ 1,

εzk ≤
√
δ +

1

2
(2λ)k(εz0 + λτ̂z0); and τ̂zk ≤ 3

√
δ + (2λ)k−1(εz0 + λτ̂z0). (∗∗)

This establishes the bound on εzk stated in (6.7); the bound on µ2
zk

+τ̂ 2
zk

in (6.7) is recovered by plugging
in the bounds of (∗∗) into the right hand side of the bound for µ2

zk
+ τ̂ 2

zk
given in (∗) and simplifying.

Deriving (∗∗) from (∗) is a simple induction once note that (∗) implies τ̂zk ≤
√
δ+εzk−1

+λ2τ̂zk−1
, since

τ̂zk ≤ (µ2
zk

+ τ̂ 2
zk

)1/2. Plugging in k = 1 gives the base case of (∗∗); the induction step is established by
plugging in the induction hypothesis into the right hand sides of (∗) and simplifying. Finally, to derive
the bounds in (∗) we note that for k ≥ 1 we have

εzk =
∣∣∣E a∼a′

~a∼RWk
A(a′)

S∼D(ak)

[
Ẽ[YaY~a⊕S]

]∣∣∣ (EML)

≤
∣∣∣Ea∼A,~a∼RWk

A
S∼D(ak)

[
Ẽ[YaY~a⊕S]

]∣∣∣+ λ2τ̂zk−1

≤ δ + λεzk−1
+ λ2τ̂zk−1

µ2
zk

+ τ̂ 2
zk

= E a∼A
~a,~a′∼RWk+1

A (a)

S∼D(ak+1),S′∼D(a′k+1)

[
Ẽ[Y~a⊕SY~a′⊕S′]

] (6.5)
= E a∼A2a′

~a∼RWk
A(a),S∼D(ak)

~a′∼RWk
A(a′),S′∼D(a′k)

[
Ẽ[Y~a⊕SY~a′⊕S′]

]
(EML)

≤ E ~a∼RWk
A,S∼D(ak)

~a′∼RWk
A,S
′∼D(a′k)

[
Ẽ[Y~a⊕SY~a′⊕S′]

]
+ λ4τ̂ 2

zk−1
≤ δ + ε2

zk−1
+ λ4τ̂ 2

zk−1
.

6.2 Proof of Claim 7
We establish the four bounds of Claim 7 separately. In each part we will define a parametrized family
of “helper functions” zk, for k ∈ N. These are vector-valued functions on A × B, which will always
have the form

zk(a, b) := E~a∼WRWk
s (a,b)

S∼D(ak)

[
v~a⊕S

]
,

for some distribution D which, given input a ∈ A, outputs a subset S ⊂ A of size at most t. As
usual, we define the statistics µzk =

∣∣Ea,b[zk(a, b)]∣∣ and τzk such that µ2
zk

+ τ 2
zk

= Ea,b
[
|zk(a, b)|2

]
.

Additionally, for a ∈ A, let zk(a) := Eb[zk(a, b)], and let τ̂zk be such that µ2
zk

+ τ̂ 2
zk

= Ea
[
|zk(a)|2

]
.

Finally, let εzk :=
∣∣E~a∼WRWk

s
S∼D(ak)

[
Ẽ[Y~a⊕S]

]∣∣. We stress that the definition of zk will vary in the four parts.

Part 1 − Bounding εk when k ≤ s. Let zk(a, b) := E~a∼WRWk
s (a,b)[v~a] (so for all a ∈ A, the distribu-

tion D(a) outputs the emptyset with probability 1). Note that when k ≤ s,

zk(a) = E b∼B
~a∼WRWk

s (a,b)
[v~a]

(6.4)
= E~a∼RWk+1(a)[v~a],

and so has the form required to apply generalizations of Lemma 1. Note, εz0 ≤ λ by assumption, and
τ̂z0 ≤ 1 is trivial. Thus,

εk = εzk
(6.7)

≤
√
δ +

1

2
(2λ)k+1.

25

Part 2 − Bounding τk when k ≤ s. Continuing with zk(a, b) := E~a∼WRWk
s (a,b)[v~a], we have

τ 2
k

(6.6)

≤ E a∼A
~a,~a′∼WRWk−1

s (a)

[
Ẽ[Y~aY~a′]

]
+ λ2τ 2

k−1

(6.4)
= E a∼A

~a,~a′∼RWk
A(a)

[
Ẽ[Y~aY~a′]

]
+ λ2τ 2

k−1.

= µ2
zk−1

+ τ̂ 2
zk−1

+ λ2τ 2
k−1

(6.7)

≤ 4δ + (2λ)2(k−1) + λ2τ 2
k−1,

from which it follows (e.g., by induction) that τk ≤ 3
√
δ + 2(2λ)k−1.

Part 3 − Bounding εk when k > s. Let us keep zk(a, b) := E~a∼WRWk(a,b)[v~a] as before and addi-
tionally define the function z′k(a, b) := E

~a∼
←−−−
WRWs

s(a,b)
[v~a0:s−1]. Note that

τ 2
z′s

≤ E a∼A,b∼B
~a,~a′∼

←−−−
WRWs

s(a,b)

[
Ẽ[Y~a0:s−1Y~a′0:s−1

]
] (6.5)

= E a∼A,b∼B2b′

~a∼
←−−−
WRWs−1

s (a,b)

~a′∼
←−−−
WRWs−1

s (a,b′)

[
Ẽ[Y~aY~a′]

]
(6.2)+(6.4)

≤ E a∼A
~a,~a′∼RWs

A(a)

[
Ẽ[Y~aY~a′]

]
+ λ2τ 2

k−1

(6.5)
= E a∼A2a′

~a∼RWs−1
A (a)

~a′∼RWs−1
A (a′)

[
Ẽ[Y~aY~a′]

]
+ λ2τ 2

k−1

(6.2)+(6.1)

≤ δ + ε2
s−2 + λ4τ 2

s−2 + λ2τ 2
s−1,

and so τz′s ≤
√
δ + εs−2 + λ2τs−2 + λτs−1 ≤ 3

√
δ + 2(2λ)s−1, via the bounds in parts 1 and 2. We can

now bound εk as follows:

εk =
∣∣E~a∼WRWk

s

[
Ẽ[Y~a]

]∣∣ (6.3)
=

∣∣∣∣E a∼A,b∼b′

~a∼
←−−−
WRWs

s(a,b)

~a′∼WRWk−s
s (a,b′)

[
Ẽ
[
Y~a0:s−1Y~a′

]]∣∣∣∣
(6.2)+(6.4)+(6.5)

≤
∣∣∣E a∼a′

~a∼RWs
A(a)

~a′∼WRWk−s
s (a′)

[
Ẽ[Y~aY~a′]

]∣∣∣+ λτz′sτk−s

(6.2)+(6.1)

≤ δ + εs−1εk−s + λ2τs−1τk−s + λτz′sτk−s ≤
√
δ +

1

2
(2λ)s

[
εk−s + 3τk−s

]
.

Part 4 − Bounding τk when k > s. For k > s, define the quantity ηk so that

η2
k := E a∼A

~a,~a′∼WRWk
s (a)

[
Ẽ[Y~aY~a′]

]
.

Since τ 2
k ≤ η2

k−1 + λ2τ 2
k−1 by (6.6), it suffices to bound η2

k−1. For this purpose, for k, ` ∈ N, define

z`,k(a, b) := E
~a∼
←−−−
WRW`

s(a,b)

~a′∼WRWk−1
s (a0)

[
v~a⊕~a′

]
; and z′`,k(a, b) := E

~a∼
←−−−
WRW`

s(a,b)

~a′∼WRWk−1
s (a`)

[
v~a0:`−1⊕~a′

]
.

Since k > s will remain fixed for us, we write z`(a, b) and z′`(a, b) instead of z`,k(a, b) and z′`,k(a, b).
Note that when ` ≤ s,

z`(a) = E
b∼B,~a∼

←−−−
WRW`

s(a,b)

~a′∼WRWk−1(a0)

[
v~a⊕~a′

] (6.4)
= E ~a∼RW`+1

s (a)

~a′∼WRWk−1(a`+1)

[
v~a⊕~a′

]
,

26

and so has the correct form needed to apply the generalization of Lemma 1. Note εz0 = εk−2 and
τ 2
z0

= τ̂ 2
z0
≤ η2

k−1, thus εz0 +λτ̂z0 ≤ εk−2 +ληk−1. The same argument used to derive the bound in (6.6)
shows that for ` ≤ s, τ 2

z`
, τ 2

z′`
≤ µ2

z`−1
+ τ̂ 2

z`−1
+λ2τ 2

z`−1
≤ 4δ+(2λ)2(`−2)(εk−2+ληk−1)2+λ2τ 2

z`−1
, using

also (6.7). This implies (e.g., by induction) that for all ` ≤ s, τz` , τz′` ≤ 3
√
δ+ 2(2λ)`−2[εk−2 +ληk−1].

We can now bound η2
k−1 as follows:

η2
k−1 = E a∼A

~a,~a′∼WRWk−1
s (a)

[
Ẽ[Y~aY~a′]

] (6.3)
= E a∼A,b∼b′

~a∼
←−−−
WRWs

s(a,b)

~a′∼WRWk−1
s (a0)

~a′′∼WRWk−s
s (a,b′)

[
Ẽ[Y~a0:s−1⊕~a′Y~a′′]

]

(6.2)+(6.4)+(6.5)

≤ E a∼a′
~a∼RWs

A(a)

~a′∼WRWk−1
s (as)

~a′′∼WRWk−s
s (a′)

[
Ẽ[Y~a⊕~a′Y~a′′]

]
+ λτz′sτk−s

(6.2)+(6.1)+(6.7)

≤
√
δ +

1

2
(2λ)s−1(εk−s + 3τk−s)(εk−2 + ληk−1).

This implies (via completing the square)

η2
k−1 ≤ 2

√
δ + (2λ)s−1

[
εk−s + 3τk−s

]
εk−2 +

λ2

2
(2λ)2(s−1)

[
εk−s + 3τk−s

]2
,

as desired.

Acknowledgements
We thank Luca Trevisan for several illuminating conversations during the early stages of this work, and
Alon Rosen for support and encouragement.

References
[ABN+92] Noga Alon, Jehoshua Bruck, Joseph Naor, Moni Naor, and Ron M. Roth. Construction of

asymptotically good low-rate error-correcting codes through pseudo-random graphs. IEEE
Trans. Inf. Theory, 38(2):509–516, 1992.

[AGHP92] Noga Alon, Oded Goldreich, Johan Håstad, and René Peralta. Simple construction of
almost k-wise independent random variables. Random Struct. Algorithms, 3(3):289–304,
1992.

[AJQ+20] Vedat Levi Alev, Fernando Granha Jeronimo, Dylan Quintana, Shashank Srivastava, and
Madhur Tulsiani. List decoding of direct sum codes. In Shuchi Chawla, editor, Proceedings
of the 2020 ACM-SIAM Symposium on Discrete Algorithms, SODA 2020, Salt Lake City,
UT, USA, January 5-8, 2020, pages 1412–1425. SIAM, 2020.

[AKK+08] Sanjeev Arora, Subhash Khot, Alexandra Kolla, David Steurer, Madhur Tulsiani, and
Nisheeth K. Vishnoi. Unique games on expanding constraint graphs are easy: extended
abstract. In Cynthia Dwork, editor, Proceedings of the 40th Annual ACM Symposium on
Theory of Computing, Victoria, British Columbia, Canada, May 17-20, 2008, pages 21–28.
ACM, 2008.

27

[Alo21] Noga Alon. Explicit expanders of every degree and size. Comb., 41(4):447–463, 2021.

[Bog12] Andrej Bogdanov. A different way to improve the bias via expanders. In Topics in (and
out of) the theory of computing, Lecture, 2012, 2012.

[BRS11] Boaz Barak, Prasad Raghavendra, and David Steurer. Rounding semidefinite programming
hierarchies via global correlation. In Rafail Ostrovsky, editor, IEEE 52nd Annual Sympo-
sium on Foundations of Computer Science, FOCS 2011, Palm Springs, CA, USA, October
22-25, 2011, pages 472–481. IEEE Computer Society, 2011.

[BT11] Avraham Ben-Aroya and Amnon Ta-Shma. A combinatorial construction of almost-
ramanujan graphs using the zig-zag product. SIAM J. Comput., 40(2):267–290, 2011.

[Gil52] E. N. Gilbert. A comparison of signalling alphabets. The Bell System Technical Journal,
31(3):504–522, 1952.

[GR08] Venkatesan Guruswami and Atri Rudra. Explicit codes achieving list decoding capacity:
Error-correction with optimal redundancy. IEEE Trans. Inf. Theory, 54(1):135–150, 2008.

[JQST20] Fernando Granha Jeronimo, Dylan Quintana, Shashank Srivastava, and Madhur Tulsiani.
Unique decoding of explicit ε-balanced codes near the gilbert-varshamov
bound. In Sandy Irani, editor, 61st IEEE Annual Symposium on Foundations of Com-
puter Science, FOCS 2020, Durham, NC, USA, November 16-19, 2020, pages 434–445.
IEEE, 2020.

[JST21] Fernando Granha Jeronimo, Shashank Srivastava, and Madhur Tulsiani. Near-linear time
decoding of ta-shma’s codes via splittable regularity. In Samir Khuller and Virginia Vas-
silevska Williams, editors, STOC ’21: 53rd Annual ACM SIGACT Symposium on Theory
of Computing, Virtual Event, Italy, June 21-25, 2021, pages 1527–1536. ACM, 2021.

[Jus72] J. Justesen. Class of constructive asymptotically good algebraic codes. IEEE Transactions
on Information Theory, 18(5):652–656, 1972.

[Plo60] Morris Plotkin. Binary codes with specified minimum distance. IRE Transactions on
Information Theory, 6(4):445–450, 1960.

[RR22] Silas Richelson and Sourya Roy. Analyzing ta-shma’s code via the expander mixing
lemma. CoRR, abs/2201.11166, 2022.

[Ta-17] Amnon Ta-Shma. Explicit, almost optimal, epsilon-balanced codes. In Hamed Hatami,
Pierre McKenzie, and Valerie King, editors, Proceedings of the 49th Annual ACM SIGACT
Symposium on Theory of Computing, STOC 2017, Montreal, QC, Canada, June 19-23,
2017, pages 238–251. ACM, 2017.

[Var57] R. R. Varshamov. Estimate of the number of signals in error correcting codes. Docklady
Akad. Nauk, S.S.S.R., 117:739–741, 1957.

A Omitted Proofs
We include the proofs of Claims 1 and 6.

28

Claim 1 (Restated). Suppose X and Y are jointly distributed real-valued random variables, and
moreover that X is supported on a set of size 2. Then Cov(X,Y)2/Var(X) = Var(Y)−Ex∼X

[
Var(Y|x)

]
.

Proof. Without loss of generality, we can assume that E[X] = E[Y] = 0 and E[X2] = 1. With these
simplifications, we must show that E[XY]2 = Ex∼X

[
E[Y|x]2

]
. Note that as X has E[X] = 0, E[X2] = 1

and has support of size 2, there exists a > 0 such that X = a with probability 1/(a2 +1) and X = −1/a
with probability a2/(a2 + 1). Let A := E[Y|X = a] and B := E[Y|X = −1/a]. This gives us
E[XY]2 = a2

(a2+1)2
· (A−B)2, and Ex∼X

[
E[Y|x]2

]
= 1

a2+1
· (A2 +a2B2). A calculation shows that these

are equal if and only if A+ a2B = 0, which holds because A+ a2B = (a2 + 1) · E[Y].

Claim 6 (Restated). If O is the pseudodistribution obtained during Step 1 of Dk(ỹ), then for all
x ∈ LIST(ỹ, ρ),

E~a,~a′∼WRWt
s

[
Ẽ[(−1)x~a⊕~α⊕x~a′⊕~α

′
]
]
≥ 1

4
ρ4.

Proof. For a pseudodistribution O on {0, 1}A, ỹ ∈ {0, 1}WRWt
s and x ∈ {0, 1}A, define

val(O) := E~a,~a′∼WRWt
s

[
Ẽ[(−1)~α⊕~α

′
]2
]
; val(O,x) := E~a,~a′∼WRWt

s

[
Ẽ[(−1)x~a⊕~α⊕x~a′⊕~α

′
]
]
,

where both of the pseudoexpectations are over (~α, ~α′) ∼ O(~a ∪ ~a′). Now, let O be the pseudodis-
tribution on {0, 1}A which is recovered by the SDP solver during Step 1 of the execution of Dk(ỹ)
for y ∈ {0, 1}WRWt

s , and let x ∈ LIST(ỹ, ρ). Consider the pseudodistribution Ôx which is a convex
combination of O and the constant pseudodistribution which answers according to x. So specifically,
on input S ⊂ A, Ôx(S) returns a sample from O(S) with probability γ, and returns xS with proba-
bility 1 − γ, for some γ ∈ (0, 1) which we will fix later. A straightforward computation shows that
val(Ôx) = γ2val(O) + 2γ(1 − γ)val(O,x) + (1 − γ)2, so since O is an optimal pseudodistribution
for minimizing val(O) subject to the constraints holding, it must be that val(O) − 1

16
ρ8 ≤ val(Ôx)

(it is straightforward to check that the constraints also hold for Ôx, since x ∈ LIST(ỹ, ρ)). Setting
γ = 1− 1

4
ρ4 and rearranging implies

1

2
val(O)− 1

4
ρ4 ≤ val(O,x).

Finally, we show that val(O) ≥ ρ4, which implies that val(O,x) ≥ 1
4
ρ4, completing the proof. This

final bound holds because O satisfies the constraints of the SDP. Indeed,

ρ4 ≤ E~a∼WRWt
s

[
Ẽ[(−1)ỹ~a⊕~α]

]4
≤

(
E~a,~a′∼WRWt

s

[
Cov
(
(−1)ỹ~a⊕~α, (−1)ỹ~a′⊕~α

′)]
+ E~a∼WRWt

s

[
Ẽ[(−1)ỹ~a⊕~α]

]2)2

= E~a,~a′∼WRWt
s

[
Ẽ[(−1)ỹ~a⊕~α⊕ỹ~a′⊕~α

′
]
]2 ≤ E~a,~a′∼WRWt

s

[
Ẽ[(−1)~α⊕~α

′
]2
]

= val(O),

where the final inequality is Jensen’s inequality, and the inequality on the second line holds because
E~a,~a′∼WRWt

s

[
Cov
(
(−1)ỹ~a⊕~α, (−1)ỹ~a′⊕~α

′)]
= Var

(
E~a∼WRWt

s

[
Ẽ[(−1)ỹ~a⊕~α]

])
> 0.

29

ECCC ISSN 1433-8092

https://eccc.weizmann.ac.il

