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Abstract

In a recent result of Bhargava, Saraf and Volkovich [FOCS’18; JACM’20], the first factor
sparsity bound for constant individual degree polynomials was shown. In particular, it was
shown that any factor of a polynomial with at most s terms and individual degree bounded
by d can itself have at most sO(d2 log n) terms. It is conjectured, though, that the “true” sparsity
bound should be polynomial (i.e. spoly(d)). In this paper we provide supporting evidence for
this conjecture by presenting polynomial-time algorithms for several problems that would be
implied by a polynomial-size sparsity bound. In particular, we give efficient (deterministic)

algorithms for identity testing of Σ[2]ΠΣΠ[degxi
≤d] circuits and testing if a sparse polynomial is

an exact power. Hence, our algorithms rely on different techniques.

Keywords: Sparse Polynomials, Identity Testing, Derandomization, Factor-Sparsity, Multivariate
Polynomial Factorization.

1 Introduction

Polynomial Factorization is one of the core problems in algebraic complexity: given a multivariate
polynomial f ∈ F[x1, x2 . . . , xn] over a field F, output all its irreducible factors. In addition to being
a natural problem, its importance is highlighted by various applications such as: list decoding
[Sud97, GS99], derandomization [KI04], cryptography [CR88] and others. In the seminal works of
[Kal89, KT90], efficient randomized factorization algorithms were presented. Yet, coming up with
an efficient deterministic factorization algorithm remains a long-standing open question.

Indeed, one aspect of the computational problem is the representation of the input polynomial.
One natural way to represent a polynomial is by listing all its terms and coefficients. This is known
as dense representation. Yet, even if the individual degree of every variable is bounded by a small
constant d, the total number of terms can be exponentially large, reaching (d + 1)n. Nonetheless,
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in many applications [Zip79, GK85, BOT88, GJR10] the actual number of non-zero terms in a poly-
nomial is much smaller - poly(n). Such polynomials are referred to as sparse polynomials, which
will be the focus of our paper.

A key question that precedes the design of efficient factorization algorithms for sparse poly-
nomial is whether a factor of a sparse polynomial is (itself) sparse. Indeed, this question was first
studied by von zur Gathen and Kaltofen in [GK85] that gave a randomized factorization algo-
rithm where the runtime depends on the number of terms in the output factors. In the same paper
they provided an example inspired by geometric series (see below) of a family of polynomials that
have factors with a super-polynomial (quasi-polynomial) number of terms. We denote by ‖ f ‖ the
sparsity of f . That is, the number of non-zero terms in f .

Example 1.1 ([GK85]). Let n ≥ 1. Consider the polynomial f (x) = ∏
i∈[n]

(xn
i − 1) which can be

written as a product of g(x) = ∏
i∈[n]

(1 + xi + . . . + xn−1
i ) and h(x) = ∏

i∈[n]
(xi − 1).

Observe that ‖ f ‖ = ‖h‖ = 2n while ‖g‖ = nn, resulting in a quasi-polynomial blow-up1.

Furthermore, for fields with finite characteristics the blow-up can be significantly larger:

Example 1.2 ([Vol15]). For a prime p, let f ∈ Fp[x1, . . . xn], and let 0 < d < p. Consider

f (x) = (x1 + x2 + . . . + xn)
p = xp

1 + xp
2 + . . . + xp

n

g(x) = (x1 + x2 + . . . + xn)
d

Notice that g is a factor of f , but ‖ f ‖ = n and ‖g‖ = (n+d−1
d ) = nΩ(d).

Based on the above, we should first try to obtain a “sparsity-bound” on factors of sparse poly-
nomials with constant (i.e. bounded) individual degree. More formally, for some fixed d, we
require that degxi

≤ d, for all variables xi. The simplest case (when d = 1) corresponds to the
so-called multilinear polynomials. In [SV10], it was shown that a factor of an s-sparse2 multilinear
polynomial is itself s-sparse. Subsequently, in [Vol17], this result was extended to the case of mul-
tiquadratic polynomials (i.e. when d = 2). In a recent work of [BSV20], a quasi-polynomial-size
sparsity bound was given for any fixed d. Specifically, it was shown that a factor of an s-sparse
polynomial with individual degree bounded by d is sO(d2 log n)-sparse. In addition, [BSV20] de-
signed a factorization algorithm whose runtime is efficient in terms of the sparsity bound. As
a result they obtained a deterministic quasi-polynomial-time factorization algorithm for sparse
polynomials with bounded individual degree. In the same paper it was also conjectured that the
“true” sparsity bound should be polynomial rather than quasi-polynomial. More formally:

Conjecture 1.3. There exists a universal constant k ∈ N such that for any s, d ∈ N, any factor of an
s-sparse polynomial with individual degree bounded by d has at most sdk

terms.

1Although g is not irreducible, this issue can be resolved using standard techniques. For example, by considering
the product f + yh = (g + y)h for a new variable y.

2A polynomial is s-sparse, it if contains at most s non-zero terms.
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In this paper we provide supporting evidence for this conjecture by presenting deterministic
polynomial-time algorithms for some problems that reduce to sparse polynomial factorization.
It is to be noted that invoking the aforementioned factorization algorithm of [BSV20] with a
polynomial-size sparsity bound would imply a (deterministic) polynomial-time algorithm for sparse
polynomial factorization and hence polynomial-time algorithms for these problems. In the ab-
sence of a polynomial-size sparsity bound, we design our algorithms using new techniques.

1.1 Our Results

We will now describe our main results. In what follows, F is an arbitrary field (finite or otherwise).

1.1.1 Identity Testing for Σ[2]ΠΣΠ[degxi
≤d] Circuits

The Polynomial Identity Testing (PIT) problem asks to decide whether a given input polynomial is
identically zero. The input is usually given in the form of an algebraic circuit (see Appendix A for
definition). The PIT algorithm is called white-box if one can look ‘inside’ the circuit. The algorithm
is called black-box if the circuit is given via an oracle access, where one is only allowed to evaluate
the polynomial on a chosen set of input points. PIT is one of the few natural problems which have
a simple efficient randomized algorithm [DL78, Sch80, Zip79] but lack a deterministic one. Indeed,
it has been a long standing open question to come up with an efficient deterministic algorithm for
this problem. Our first result is an efficient (deterministic) identity testing algorithm for the class
of Σ[2]ΠΣΠ[degxi

≤d] circuits, where a Σ[2]ΠΣΠ[degxi
≤d] circuit C of size s computes a polynomial of

the form:

C =
r

∏
i=1

gi +
m

∏
j=1

hj

where each polynomial (gi and hj) is an s-sparse polynomial with individual degree at most d (for
some fixed d). Note, though, that r and m, and hence the total degree of of C, can be arbitrary
(i.e. polynomially) large. In particular, the polynomial computed by C may not itself be sparse.
This class generalizes the model considered in [Vol17], where m = 1 and the gi-s are irreducible
polynomials. For the formal definition of our circuit model and further discussion, see Section 3.1.

Observe that the identity testing problem for this circuit class reduces to polynomial factor-
ization of sparse polynomials with bounded individual degree. Therefore, by invoking the fac-
torization algorithm of [BSV20], we can get an algorithm whose runtime is efficient in terms of
the sparsity bound. Plugging in the best bound of [BSV20], results in a quasi-polynomial-time
algorithm. Our next result gives a polynomial-time algorithm for this model. In addition, our algo-
rithm operates in the black-box setting, whereas the described factorization-based algorithm is a
white-box algorithm.

Theorem 1. There exists a deterministic algorithm that given a black-box access to a Σ[2]ΠΣΠ[degxi
≤d]

circuit C of size s determines if C ≡ 0, in time poly((sd)d, n).
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An important ingredient in our algorithm is a result that links the gcd of two polynomials, their
subresultant and the resultant of their coprime parts - in the multivariate setting. See Section 3.2
for the formal definitions.

Theorem 2. Let A, B ∈ F[x1, x2, . . . , xn] be two polynomials such that A = f · g and B = h · g and let xi

be a variable. Then
Sxi(d, A, B) = g · Resxi( f , h) · lcxi(g)m′+n′−1

here m = degxi
(A), n = degxi

(B), d = degxi
(g), m′ = degxi

( f ) = m− d and n′ = degxi
(h) = n− d.

In addition:

• Resxi( f , h) is the resultant of f and h w.r.t the variable xi.

• lcxi(g) is the leading coefficient of g when written as a polynomial in xi

• And finally, Sxi(d, A, B) is the d-th subresultant of A and B.

To put the result in context, consider two univariate polynomials A, B ∈ F[x]. A classical result
in the Theory of Resultants (see e.g. [GCL92, GG99, CLO15]) states that:

1. Res(A, B) ≡ 0 if and only if gcd(A, B) is non-trivial.

2. The j-th Subresultant S(j, A, B) ≡ 0 whenever j < deg(gcd(A, B)) .

3. There exist a non-zero field element α ∈ F such that S(j, A, B) = α · gcd(A, B), when j =

deg(gcd(A, B)).

In the multivariate setting one can always regard multivariate polynomials as polynomials in a
single variable with coefficients being rational functions in the remaining variables. Yet, in this
case α is no longer a mere ’field element’ as it can now be an arbitrary rational function in the
remaining variables! From that perspective, our result can be seen as explicitly expressing α as
a polynomial (and not even a rational function) in the remaining variables. We believe that this
explicit relation could be of interest in its own right.

1.1.2 Exact Powers

Our next result pertain to exact powers of polynomials. A polynomial f ∈ F[x1, x2, . . . , xn] is an
exact power if there exists (another) polynomial g ∈ F[x1, x2, . . . , xn] and e ∈ N such that f = ge.
We note that despite the rich structure, the best known sparsity bound for exact roots (i.e. ‖g‖
in terms of ‖ f ‖) is the general sparsity bound of size sO(d2 log n) by [BSV20]. Hence, one can use
the factorization algorithm of [BSV20] to test if a given sparse polynomial is an exact power, in
quasi-polynomial time. Similarly, a polynomial-size sparsity bound, even for the case of exact
roots, would imply a polynomial-time algorithm for exact-power testing problem. We provide a
polynomial-time algorithm for exact-power testing that does not rely on this sparsity bound.
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Theorem 3. There is a deterministic algorithm that given a sparse polynomial f ∈ F[x1, x2, . . . , xn] of
individual degree d as an input, decides whether f = ge for some polynomial g ∈ F[x1, x2, . . . , xn] and
e ∈N, in time poly(sd2

, n).

We remark that the algorithm only performs exact-power testing and does not output a “wit-
ness” polynomial g. Indeed, a polynomial-time algorithm that actually outputs g would imply a
polynomial-size sparsity bound on exact roots! In addition, the runtime of our algorithm is poly-
nomial in the bit-complexity of the field elements since it does not rely on univariate polynomial
factorization. For instance, for finite fields we get the runtime of poly(log |F|) vs poly(|F|).

1.1.3 Improved Sparsity Bounds for Co-factors of Multilinear Polynomials

Given two polynomials f , h ∈ F[x1, x2, . . . , xn] such that f = gh, g is called a quotient polynomial or
a co-factor of h. We study the problem of multilinear co-factor sparsity: suppose f is s-sparse and h
is multilinear. How sparse/dense can g be? We remark that any (even non-constructive) efficient
upper bound on the sparsity of g allows us to compute g efficiently by interpolating the ratio f /h
using a reconstruction algorithm for sparse polynomials (e.g. [KS01]) and verifying the result.

The motivation to study this problem is two-fold: first of all, by previous results (see e.g.
[BSV20]) a multilinear factor of an s-sparse polynomial (of any degree) is itself s-sparse. This sug-
gests more structure for multilinear co-factors we could potentially exploit. Second, a polynomial-
size sparsity bound on multilinear co-factors g (even when the individual degree of g is d = 2)
would imply a polynomial-size sparsity bound for (all factors of) polynomials with individual
degree d = 3. We note that the multicubic (d = 3) case is the first instance where we do not
have a polynomial-size factor-sparsity bound yet. Indeed, multilinear co-factors can be seen as
the “bottle-neck” for this case. The formal argument is given in Section 1.4.

To state our result we need the following technical definition. We say that a polynomial
h ∈ F[x1, x2, . . . , xn] has a unique projection of length k if there exist k variables xi1 , xi2 , . . . , xik and k
corresponding exponents e1, e2, . . . , ek such that h has a unique monomial that contains the pattern
xe1

i1
xe2

i2
· . . . · xek

ik
(see Definition 5.5 for more details).

Theorem 4. Let f ∈ F[x1, x2, . . . , xn] be a polynomial of sparsity s and individual degree at most d such
that f = gh. Suppose, in addition, that h is a multilinear polynomial with a unique projection of length k.
Then the sparsity of g is bounded by sO(dk).

We remark that Example 1.2 with d = p− 1 (resulting in a lower bound of nΩ(p)) showcases
the tightness of our result as here f is n-sparse and h = x1 + . . . + xn has a unique projection of
length 1 (e.g. x1) which results in an upper bound of nO(p) for g.

We can also extend Theorem 4 to the case of a co-factor of a power of a multilinear polynomial.
See Theorem 5.25 for the formal statement. Subsequently, we show that every multilinear s-sparse
polynomial has a unique projection of length O(log s) (see Lemma 5.9). By plugging in this result
into Theorem 4, we obtain a new sparsity bound of size sO(d log s) for all multilinear co-factors.
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Corollary 1.4. Let f ∈ F[x1, x2, . . . , xn] be a polynomial of sparsity s and individual degree at most d such
that f = gh. Suppose, in addition, that h is a multilinear polynomial. Then the sparsity of g is bounded by
sO(d log s).

The obtained bound is slightly better than the general sparsity bound of size sO(d2 log n) by
[BSV20] when s = poly(n). Although our overall improvement may seem incremental (e.g. it does
not allow us to “get rid” of the log n in the exponent) our main contribution here is conceptual:
identifying a combinatorial property - the length of the shortest unique projection - that governs
the bound on the sparsity of multilinear co-factors.

1.2 Related works

For the sparse polynomial factorization problem, [BSV20] have shown that factors of an s-sparse
polynomial of individual degree d, have their sparsity bounded by sO(d2 log n). Currently, this is the
best known bound for factor-sparsity when d ≥ 3. For restricted classes of symmetric polynomi-
als, Bisht and Saxena [BS21] recently improved this bound to sO(d2 log d).

In [GK85], another problem was posed alongside the sparse factorization problem, in the hope
that it might be easier. This problem is referred to as testing sparse factorization. Given m + 1
sparse polynomials f , g1, . . . , gm, it asks to test whether f = g1 · . . . · gm. The work of [SSS13]
gives a polynomial-time algorithm for this problem, in the special case where every gi is a sum of
univariate polynomials. [Vol17] gives a polynomial-time algorithm when f (and therefore every
gi) has constant individual degree and each gi is an irreducible polynomial. Our PIT result is
connected to this problem. In Theorem 1, we give a polynomial-time algorithm to test whether

∏r
i=1 fi = ∏m

j=1 gj, where each fi, gj is a sparse polynomial with constant individual degree. Note
that now LHS is also a product of polynomials. Moreover, there is no restriction placed on gj-s
except that they have bounded individual degree.

The depth-4 ΣΠΣΠ circuit class (see Appendix A for definition) is extremely important in the
context of the PIT problem, as it is known that a polynomial-time black-box PIT for this class im-
plies a quasi-polynomial-time black-box PIT for general VP circuits [AV08, AGS19]. For a long
time, no PIT algorithm better than the trivial dO(n) time algorithm was known for this class, until
the recent breakthrough result of Limaye et al. [LST22], which gives a sub-exponential time algo-
rithm. Various restricted versions of depth-4 circuits are studied to get close to polynomial-time
PIT algorithms. For example, Peleg and Shpilka [PS21] give a polynomial-time PIT algorithm for
Σ[3]ΠΣΠ[2] circuits, where the top fan-in is 3 and the bottom fan-in is 2. Recently, Dutta et al.
[DDS21] gave a quasi-polynomial-time PIT for Σ[k]ΠΣΠ[d] circuits, where the top fan-in k and bot-
tom fan-in d are allowed to be any fixed constants. In this model, the restriction on bottom fan-in
implies that the bottom ΣΠ computes polynomials of total degree at most d. We give polynomial-
time PIT algorithm for Σ[2]ΠΣΠ[degxi

≤d] model, where the top fan-in is 2 and the bottom ΣΠ com-
putes polynomials with individual degree at most d. We note that the individual degree restriction
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is much weaker than the total degree restriction. Indeed, even for the case of individual degree
bounded by 1 (i.e. multilinear polynomials) the total degree can still be Ω(n)! [SV18] gave a
polynomial-time PIT algorithm for the class of multilinear Σ[k]ΠΣΠ circuits, with constant top
fan-in k, where every gate in the circuit computes a multilinear polynomial.

Another related problem is that of divisibility testing, which gives two multivariate polyno-
mials f and h and asks to decide whether h divides f . [For15] gives a quasi-polynomial-time
algorithm when f is sparse and h is a quadratic polynomial (and hence also sparse). We note
that the quadratic restriction on h is much stronger than a constant individual degree restriction,
although there is no constant degree restriction for f here. [Vol17] gives a polynomial-time algo-
rithm when both f , h are sparse and have constant individual degree. In the proof of Corollary 1.4,
we solve a ‘search’ version of the divisibility testing problem, i.e. we actually compute f /h in
quasi-polynomial time, when f is sparse with constant individual degree and h is a multilinear
factor of f .

1.3 Our Techniques & Proof Ideas

1.3.1 Identity Testing for Σ[2]ΠΣΠ[degxi
≤d] Circuits

Let C =
r

∏
i=1

gi +
m
∏
j=1

hj where gi-s and hj-s are s-sparse polynomials in F[x1, x2, . . . , xn] of individual

degree at most d. Clearly, if C ≡ 0 then it will evaluate to zero on any input. Now suppose C 6≡ 0.
Our goal is to find a point a ∈ Fn such that C(a) 6= 0. Our approach relies on the uniqueness of
factorization property of the ring of multivariate polynomials. Specifically, we have that

r

∏
i=1

gi 6= −
m

∏
j=1

hj

Consequently, wlog there exists a factor f of the LHS that does not divide the RHS. Our goal is
to preserve this “situation” while reducing the number of variables. Clearly, a random projection
will be sufficient. However, we wish to obtain a deterministic algorithm.

To this end, we are looking for a projection that does not introduce new dependencies between
factors. That is, for every i, j: if v | gi and u | hj and gcd(u, v) = 1 we need to ensure that
gcd(u′, v′) = 1, when u′ and v′ are the projections of u and v, respectively. The main tool for that
is the resultant. Indeed, one of the fundamental properties of the resultant is that

Res(A, B) 6≡ 0 if and only if gcd(A, B) = 1.

In the multivariate setting, this condition translates into:

∀xk : Resxk(u, v) 6≡ 0 ⇐⇒ Resxk(u
′, v′) 6≡ 0.

In other words, we need to hit all the resultants of the form Resxk(u, v) when v | gi and u | hj. By
definition, Resxk(u, v) is a determinant of 2d× 2d matrix where each entry is a coefficient of u or
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v. Hence, Resxk(u, v) is tO(d)-sparse polynomial with individual degree at most O(d2), where t is
an upper bound on the sparsities of u and v. Consequently, we can use a hitting set generator for
sparse polynomials (e.g. [KS01]) to hit the resultant. As u and v are factors of s-sparse polynomials
of individual degree d, the best upper by [BSV20] will be t = sO(d2 log s). This will result in a quasi-
polynomial-time algorithm. Another idea would be to use the multiplicative properties of the
resultant and hit Resxk(hj, gi) instead. Indeed,

Resxk(hj, gi) 6≡ 0 =⇒ Resxk(u, v) 6≡ 0

and since gi and hj are s-sparse this would get a polynomial-time algorithm. The main issue is
that we could have Resxk(u, v) 6≡ 0 while Resxk(hj, gi) ≡ 0. For example, if hj = au and gi = av for
the same polynomial a.

Going back, one may ask whether we could show a better sparsity bound on Resxk(u, v). While
we do not quite do that, we instead show that Resxk(u, v) is a factor of an sO(d)-sparse polynomial
with individual degree at most O(d2). As the ring of polynomials forms an integral domain,
this allows us to use a polynomial-size hitting set generator. Formally, we show that if A, B ∈
F[x1, x2, . . . , xn] are two polynomials such that A = f · g and B = h · g then for each xk there exists
an sO(d)-sparse polynomial Tk (and a polynomial Wk) such that:

Tk = g · Resxk( f , h) ·Wk

We believe that this explicit relation could of interest in its own right. For a more detailed
version of the result, see Theorem 2.

1.3.2 Exact Power Testing

Let f ∈ F[x1, . . . , xn] be an s-sparse polynomial of constant individual degree d. We show how
to test whether f = ge, for some other polynomial g ∈ F[x1, . . . , xn] and some e ∈ N. We utilize
the notion of reverse-monic polynomials for this result. We call a polynomial h reverse-monic, if
there exists some i ∈ [n], such that h|xi=0 = 1 (see Definition 5.1). If our input polynomial f is
reverse-monic, we show that g is sO(d)-sparse. Moreover, we also get an algorithm to compute this
exact root g. We prove this in Lemmas 4.4 & 4.9 using a formal expansion that can be thought of
as a generalization of the Binomial Expansion:

(1 + x)
1
e =

∞

∑
i=0

( 1
e
i

)
xi.

In general though, our input polynomial f may not be reverse-monic. We first convert f into
a reverse-monic polynomial f̂ with respect to some variable xi, using a known standard transfor-
mation (see Definition 4.10). This step only incurs a slight sparsity blow-up of sd. One important
property of this transformation is that it preserves the “exact power” structure. That is, if f = ge,

8



then f̂ = he, for some polynomial h. We then compute this e-th root of the reverse-monic f̂ , as
mentioned previously.

However, we are still not quite done. It can happen that a polynomial f which was not an
exact power, may become an exact power after the reverse-monic transformation. We need an
additional condition to get the converse implication. We show that if both f̂ and f|xi=0

are exact
powers, then we can correctly conclude that f is also an exact power (Claim 4.12). This gives us
a recursive algorithm, as f|xi=0

is a polynomial in (n − 1) variables. This procedure is described
formally in Algorithm 3.

1.3.3 Co-Factor Sparsity Bound

For the co-factor bounds, our results build on the division elimination techniques of [Str73]. Let
us outline our approach. To this end, let f , h ∈ F[x1, x2, . . . , xn] be s-sparse polynomials such that
h(0, . . . , 0) = 1 and suppose that f = gh for some polynomial g ∈ F[x1, x2, . . . , xn] with individual

degree at most d. Consider the following formal expansion: 1
(1−x) =

∞
∑

j=0
xj. Then we have:

g =
f
h
=

f
(1− (1− h))

=
∞

∑
j=0

f (1− h)j

when the equality is an equality of formal sums of monomials. The key observation is that (1− h)
does not contain any constants, hence total degree of every monomial in (1− h)j (and hence in

every summand f (1− h)j ) is at least j. Consequently, we can “discard” the tail
∞
∑

j=dn+1
f (1− h)j

since every monomial in g has a total degree of at most dn. Indeed, g will be formed by a subset

of monomials of
dn
∑

j=0
f (1− h)j. This allows us to obtain an upper bound on the sparsity of g:

‖g‖ ≤
dn

∑
j=0

sj+1 ≤ sdn+2.

Clearly, the outlined approach has two major flaws:

1. It requires that h(0, . . . , 0) = 1 (or more generally, h(0, . . . , 0) 6= 0). And even then:

2. The obtained bound is exponential in n.

One way to address the former is by a random shift to the variable. However, this may signifi-
cantly increase both the sparsity and the individual degree! We take a different approach. Our
main observation is that the argument still works if we treat the polynomials as polynomials in
“fewer” variables.

Formally, let I ⊆ [n] of size |I| = k. We can regard the polynomials as polynomials in the
variables xI with coefficient in the remaining variables. In particular, suppose that h|xI=0I = 1. In
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this case we say that h is I-reverse monic. Observe that every monomial in (1− h)j contains at least
one variable from xI . That is, the total xI-degree of (1− h)j is at least j and hence (as before) we
can discard the tail. Yet now, g depends “only” on k variables and thus its “total” degree is kd (and
not nd). This way we obtain a better upper bound on the sparsity of g, if k is “small”:

‖g‖ ≤
kd

∑
j=0

sj+1 ≤ skd+2.

Of course, our approach still relies on the assumption that h is I-reverse monic for a “small”
subset I. Although we are unable to lift this assumption, we can weaken it. As was noted earlier,
if h(0, . . . , 0) = α 6= 0 (i.e. when I = [n]) we can just divide by α as it is a field element. However,
this is no longer possible for an arbitrary I (especially, if I is a small set). Yet, we observe that
if h|xI=0I = α and α is a non-zero single monomial (in the remaining variables) we can transform
h into an I-reverse monic polynomial ĥ with the exact same sparsity. The idea is to apply the
transformation xi = α · xi for all i ∈ I. Note that since α is a single monomial, this transformation
is reversible. Indeed, there is an 1-1 correspondence between the monomials of h and ĥ. Given
this connection, we refer to such h as I-reverse pseudo-monic.

Our final ingredient is (yet) another observation that for multilinear polynomials we can weaken
the assumption that h is I-reverse pseudo-monic further by considering unique projections. That is,
monomials that have a “unique pattern”. Formally, we want h to have exactly one monomial that
contains the submonomial: xe1

i1
xe2

i2
· · · xek

ik
. We show that by “flipping” the variables in h we can

transform it into another multilinear polynomial h̃ which is {i1, i2, . . . , ik}-reverse pseudo-monic.
As a result, ‖g‖ ≤ skd+2.

This is our main conceptual contribution: the upper bound on the sparsity of a multilinear
co-factor g is governed by a combinatorial property of the set of monomials of h: the length of
the shortest unique projection. As an application, we show that every s-sparse polynomial has
a unique projection of length at most log s + 1, thus we obtain a new, slightly stronger, sparsity
bound on co-factors of multilinear polynomials.

1.4 Multilinear co-Factor Motivation

Theorem 4 and Corollary 1.4 in this paper apply to the factorization scenario of f = gh where f is
s-sparse and h is multilinear. First of all, note that by previous results (see [BSV20] and references
within) h itself is s-sparse. So we are looking to bound the sparsity of g. As it turns out, this pattern
is the “bottleneck” case for multicubic polynomials. In other words, showing a polynomial-size
sparsity bound on g in this scenario would imply a polynomial-size sparsity bound on factors of
general multicubic polynomials! In fact, it is sufficient to consider the case when the degree of g
in every variable is exactly 2! We remark that getting polynomial-size sparsity bound is open for
d ≥ 3. The following lemma summarizes this formally.
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Lemma 1.5. Let f ∈ F[x1, x2, . . . , xn] be an arbitrary s-sparse multicubic polynomial such that f = gh
and h is multilinear. Suppose there exists a universal constant a ≥ 1 such that for any f as above, the
co-factor g is sa-sparse. Then any factor of any multicubic polynomial is sa-sparse.

Proof. We prove the following claim: Let f ∈ F[x1, x2, . . . , xn] be an s-sparse multicubic polyno-
mial such that f = uv and v 6≡ 0. Then u is sa-sparse. Note that the claim also covers the case
when f = u ≡ 0.

The proof is by induction on n (the number of variables in f ). The base case is when n = 0
(i.e. u, f , v ∈ F) where the claim follows trivially. Suppose n ≥ 1. We have the following cases to
consider:

• There exists a variable xi s.t. degxi
(u) ≥ 1 but degxi

(v) = 0. Let 1 ≤ d ≤ 3 be the degree of
xi in u. In this case we can write:

(udxd
i + . . . + u0)v = uv = f = fdxi

d + . . . + f0.

Here, uj, f j and v do not depend on xi. Formally: f j = ujv for j ∈ {0, . . . , d}. By the induction
hypothesis, we have that ‖uj‖ ≤ ‖ f j‖a for j ∈ {0, . . . , d} and hence:

‖u‖ =
d

∑
j=0
‖uj‖ ≤

d

∑
j=0
‖ f j‖a ≤

(
d

∑
j=0
‖ f j‖

)a

= ‖ f ‖a.

• There exists a variable xi s.t. degxi
(v) ≥ 1, but degxi

(u) = 0. Pick α ∈ F such that v|xi=α 6≡ 0.
We have that:

u · v|xi=α = u|xi=α · v|xi=α = f |xi=α.

By the induction hypothesis: ‖u‖ ≤ ‖ f |xi=α‖a ≤ ‖ f ‖a.

• There exists a variable xi s.t. degxi
(u) = 1. Wlog degxi

(v) ≥ 1. We can write

(u1xi + u0)(vdxd
i + . . . + vexe

i ) = uv = f = ( fd+1xd+1
i + . . . + fexe

i ).

Here, d > e and vd, ve 6≡ 0. In particular, we have that u1vd = fd+1 and u0ve = fe. By the
induction hypothesis: ‖u‖ = ‖u1‖+ ‖u0‖ ≤ ‖ fd+1‖a + ‖ fe‖a ≤ ‖ f ‖a.

• WLOG we are left with the case that for each i ∈ [n] we have that: degxi
(u) = 2 and

degxi
(v) = 1. Based on our assumption, in this case ‖u‖ ≤ ‖ f ‖a and we are done.
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2 Preliminaries

Notations: We use the shorthand [n] for the set {1, 2, . . . , n}. We denote a vector v = (v1, . . . , vn)

in short by v (as a column vector). We denote the n-fold Cartesian product of a set H by Hn. We
will use log x for log2 x. We use the ∆

= symbol for definition.
Let f ∈ F[x] be an n-variate polynomial. The individual degree of a variable xi in f , denoted by

degxi
( f ), is defined as the maximum degree of that variable in f , while the individual degree of f

is the maximum among all the individual degrees, maxi∈[n] degxi
( f ). We will use xe to denote the

monomial xe1
1 xe2

2 · · · x
en
n . We define coeff(xe)( f ) as the coefficient of monomial xe in polynomial f .

We define support of f as supp( f ) = {e | coeff(xe)( f ) 6= 0}. We define the sparsity of f as the
number of non-zero terms in f . Let us denote sparsity of f as ‖ f ‖, which is the same as |supp( f )|.

For a set I ⊆ [n], we use xI to denote the set of variables {xi | i ∈ I} and x[n]\I to denote the
set of remaining variables. We use the symbol f |xI=0I to denote the polynomial resulting from
substituting 0 at all the xI variables in f . For two polynomials g, h, we use the symbol gcd(g, h) to
denote their greatest common divisor.

Using these notations, we can formulate the following known result, which can be found, for
example in [BSV20].

Lemma 2.1. Let f , h ∈ F[x1, x2, . . . , xn] where h is a multilinear polynomial and h | f . Then ‖h‖ ≤ ‖ f ‖.

We state another lemma which is useful in extracting the coefficients when a given multivariate
polynomial f is expressed as a polynomial w.r.t. a single variable. It follows from the standard
trick of polynomial interpolation.

Lemma 2.2 (Folklore). Let f ∈ F[x, y] be an s-sparse polynomial such that degy( f ) = d. Let f =

∑d
i=0 fi · yi, where each fi ∈ F[x]. Then, we can compute the coefficients ( f0, . . . , fd) in poly(s, n, d)

F-operations.

3 PIT for Σ[2]ΠΣΠ[degxi
≤d] Circuits

In this section we prove Theorems 1 and 2. We refer the reader to Appendix A for the formal
definition of an algebraic circuit and PIT algorithm. For the purpose of black-box PIT, we have the
notion of hitting set generators (HSG) or simply generator in short.

Definition 3.1 (Generator). Let C be a class of n-variate polynomials. Consider G = (g1, g2, . . . , gn) :
Fk → Fn, an n-tuple of k-variate polynomials where for each i ∈ [n], gi ∈ F[t1, t2, . . . , tk]. Let f (x1, . . . , xn)

be an n-variate polynomial. We define action of G on polynomial f by f ◦G = f (g1, . . . , gn) ∈ F[t1, . . . , tk].
We call G a k-seeded generator for class C if for every non-zero f ∈ C, f ◦ G 6= 0. Degree of generator G is
defined as deg(G) ∆

= max{deg(gi)}n
i=1.
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For a polynomial-time PIT algorithm, k is kept constant. A generator G acts as a variable
reduction map which converts an input polynomial f ∈ F[x1, . . . , xn] to f ◦ G ∈ F[t1, . . . , tk] such
that f = 0 if and only if f ◦ G = 0. Let D be the degree of G, which makes f ◦ G a polynomial of
individual degree dD, where d is the individual degree of f . Thus, G gives us a hitting-set of size
(dD+ 1)k by brute-force derandomization for f ◦ G using PIT Lemma [Sch80, Zip79, DL78, Ore22].
In other words, we get a polynomial-time black-box PIT algorithm for f when k is constant, G can
be designed in polynomial time and its degree is also polynomially bounded. See [SY10] for more
on equivalence between hitting-sets and generators.

3.1 The Σ[k]ΠΣΠ[degxi
≤d] Model

A size s, depth-4 ΣΠΣΠ circuit computes a polynomial of the form f = ∑k
i=1 ∏m

j=1 fij, where fij are
s-sparse polynomials for each i ∈ [k], j ∈ [m]. For s = poly(n), [LST22] gives the first deterministic
sub-exponential time PIT for constant-depth (depth-4 also) which runs in (sn)O(nµ)-time, where
µ > 0 is any real number. While a polynomial-time PIT algorithm for general depth-4 circuit
continues to be elusive, various restricted versions of this model have been attacked. One such
restriction is to make the top fan-in k constant. For k = 2, even white-box PIT for Σ[2]ΠΣΠ circuits
is still open. A more restricted model is the class of Σ[k]ΠΣΠ[d] circuits, where the top fan-in k and
the bottom fan-in d are constants. For a size-s circuit of this class, fij’s are s-sparse polynomials
of constant total degree at most d. Even this restricted model seems to be quite non-trivial. Only
very recently, [DDS21] gave a quasi-polynomial-time black-box PIT algorithm for this model. For
k = 3 and d = 2 ( fij’s are quadratic polynomials), [PS21] give a polynomial-time black-box PIT
algorithm. For k = 3 and d > 2, coming up with a polynomial PIT algorithm remains an open
question.

We now introduce, what we call the Σ[k]ΠΣΠ[degxi
≤d] model. In the Σ[k]ΠΣΠ[d] model, the

sparse polynomials fij’s have constant total degree ≤ d. We relax this restriction to fij’s being

constant individual degree ≤ d polynomials in Σ[k]ΠΣΠ[degxi
≤d] model. This is a more general

model, since fij’s can now have much higher total degree, like O(n). In Section 3.3, we give
a deterministic polynomial-time black-box PIT algorithm for this model when k = 2 and d is
any constant. We also note that our PIT algorithm works for any field F, while the works of
[PS21, DDS21] do have certain field restrictions.

3.2 GCD, Resultants and Subresultants

Before we jump to our PIT algorithm, we discuss the classical tool of resultants and subresultants
in this section. We prove an interesting connection in Theorem 3.9, that we will crucially use in
our PIT algorithm later.

The polynomial ring F[x1, . . . , xn] is a unique factorization domain (UFD). Hence, the gcd of
two polynomials is well defined up to a multiplication by field element. We can also define gcd
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with respect to a single variable xi, where we treat rest of the variables as field elements. That is,
gcdxi

( f , g) is well defined up to multiplication by a rational function depending on the remaining
variables. By convention we choose the normalized gcd. For example, let f = x2

1x2 + x1x2
2 and

g = x2
1x2

2, then gcd( f , g) = x1x2 while gcdx2
( f , g) = x2. Technically, the former is gcd in F[x1, x2]

and the latter is normalized gcd in F(x1)[x2].
Let A(y), B(y) ∈ R[y] be two non-zero polynomials with y-degree d and e respectively in an

arbitrary UFDR. Suppose A(y) = ∑d
i=0 ai · yi and B(y) = ∑e

j=0 bj · yj. Consider the (d + e)× (d +

e) Sylvester matrix M whose first e rows are the e shifts of the row vector (ad, . . . , a0, 0, . . . , 0) and
next d rows are the d shifts of the row vector (be, . . . , b0, 0, . . . , 0).

M =



ad ad−1 . . . a1 a0

ad ad−1 . . . a1 a0

. . . . . . . . . . . .
ad ad−1 . . . a1 a0

be be−1 . . . b1 b0

be be−1 . . . b1 b0

. . . . . . . . . . . .
be be−1 . . . b1 b0


.

Definition 3.2 (Resultant). The resultant Resy(A, B) ∈ R is defined to be the determinant of this
Sylvester matrix. That is, Resy(A, B) = det(M).

In our setting, R will be a polynomial ring, say F[x1, . . . , xn] and Resy(A, B) will be a polyno-
mial free of y-variable.

Lemma 3.3 (Properties of resultant). Let A, B ∈ F[y, x1, . . . , xn] be two s-sparse polynomials with indi-
vidual degrees at most d. Then,

1. Resy(A, B) ∈ F[x1, . . . , xn] is an (2ds)2d-sparse polynomial with individual degrees at most 2d2.

2. For every a ∈ Fn : Resy(A|x=a, B|x=a) = Resy(A, B)(a).

3. gcdy(A, B) 6= 1 iff Resy(A, B) ≡ 0. That is, A and B share a non-trivial gcd w.r.t. variable y
(degy(gcd(A, B)) > 0) iff resultant of A, B w.r.t. y is 0.

We now study few useful sub-matrices of the Sylvester matrix below.

Definition 3.4 (j-th principal resultant). Let Mj be the submatrix of M formed by deleting last j rows of
A terms, last j rows of B terms and the last 2j columns. We call Mj to be the j-th principal resultant of A
and B.

Note that Resy(A, B) = M = M0.
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Lemma 3.5 (Thm 7.3 of [GCL92]). Let A(y), B(y) ∈ R[y] be two non-zero polynomials. Then, degree of
y in gcdy(A, B) equals to the smallest j ≥ 0 such that det(Mj) 6= 0.

We can now define the subresultant polynomial as follows.

Definition 3.6 (Subresultant). Let Mij be the (d + e− 2j)× (d + e− 2j) submatrix of Sylvester matrix
M formed by deleting:

• rows e− j + 1 to e (each having coefficients of A(y)),

• rows d + e− j + 1 to d + e (each having coefficients of B(y)),

• columns d + e− 2j to d + e, except for column d + e− i− j.

Note that the j-th principal resultant Mj is exactly Mjj.
For 0 ≤ j ≤ e, the j-th subresultant of A(y), B(y) ∈ R[y] is the polynomial inR[y] of degree j defined

by
Sy(j, A, B) = det(M0j) + det(M1j) · y + . . . + det(Mjj) · yj.

By Definition 3.6, Lemma 3.5 and Lemma 3.3, we get the following useful properties for sub-
resultant.

Lemma 3.7 (Properties of subresultant). Let A, B ∈ F[y, x1, . . . , xn] be two s-sparse polynomials with
individual degrees at most d. Then,

1. Sy(j, A, B) ∈ F[y, x1, . . . , xn] is an (2ds)2d+1-sparse polynomial with individual degrees at most
2d2.

2. For every a ∈ Fn : Sy(j, A|x=a, B|x=a) = Sy(j, A, B)(a).

3. gcdy(A, B) has y-degree j iff degy(S(j, A, B)) = j.

We state below a known result in the theory of subresultants, which will be useful for us.

Lemma 3.8 (Lem 7.1 of [GCL92]). Let A(x), B(x) ∈ R[x] be two polynomials over an arbitrary UFD
R. Suppose

A(x) = Q(x) · B(x) + R(x)

with deg(A) = m, deg(B) = n, deg(Q) = m− n, deg(R) = k and m ≥ n > k. Let b and r denote the
leading coefficients of B(x) and R(x) respectively. Then

Sx(j, A, B) = (−1)(m−j)(n−j)



bm−k · Sx(j, B, R) 0 ≤ j < k

bm−k · rn−k−1 · R(x) j = k

0 k < j < n− 1

bm−n+1 · R(x) j = n− 1.
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Theorem 2 is a special case of the following result which, we believe, could be interesting in its
own right.

Theorem 3.9. Let A(x), B(x) ∈ R[x] be two polynomials over an arbitrary UFD R. Suppose A(x) =

f (x) · g(x) and B(x) = h(x) · g(x) with deg(A) = m, deg(B) = n, deg(g) = d, deg( f ) = m′ = m− d
and deg(h) = n′ = n− d. Then

Sx(d, A, B) = g · Resx( f , h) · lc(g)m′+n′−1

Proof. Consider Euclidean division of A by B so that we get A(x) = Q(x) · B(x) + R(x), for some
polynomials Q, R such that deg(R) < deg(B). Note that since g divides both A and B, it must also
divide R. Therefore, R = g · p for some polynomial p(x). Thus, we also get

f (x) = Q(x) · h(x) + p(x) (3.10)

Let deg(R) = k for some k < n and let deg(p) = k′ = k − d. Now, we prove the theorem by
induction on deg(p).

Base case: deg(p) = k′ = 0. In other words, deg(R) = k = d. Thus using second case of
Lemma 3.8, we get that:

Sx(d, A, B) = (−1)(m−d)(n−d) · bm−k · rn−k−1 · R
= (−1)m′.n′ · lc(h)m−k · lc(g)m−k · lc(p)n−k−1 · lc(g)n−k−1 · pg

= (−1)m′.n′ · g · lc(h)m−k · lc(p)n−k · lc(g)m+n−2k−1

Sx(d, A, B) = (−1)m′.n′ · g · lc(h)m−k · lc(p)n−k · lc(g)m′+n′−1 (3.11)

The second last step above follows because p = lc(p) when deg(p) = 0. Now, we shall compute
Resx( f , h). Note that Resx( f , h) = Sx(0, f , h) by definition of subresultant. Considering (3.10) with
deg(p) = 0, we can use second case of Lemma 3.8 to get:

Sx(0, f , h) = (−1)(deg( f )−0).(deg(h)−0) · lc(h)deg( f )−deg(p) · lc(p)deg(h)−deg(p)−1 · p
= (−1)m′.n′ · lc(h)m′ · lc(p)n′−1 · p [as deg(p) = 0]

= (−1)m′.n′ · lc(h)m′ · lc(p)n′ [as p = lc(p)]

Resx( f , h) = (−1)m′.n′ · lc(h)m−k · lc(p)n−k (3.12)

(3.11) and (3.12) together yield Sx(d, A, B) = g · Resx( f , h) · lc(g)m′+n′−1 for the base case.

Induction step: Now, we assume deg(p) = k′ > 1. In other words, deg(R) = k > d. Therefore,
by first case of Lemma 3.8:

Sx(d, A, B) = (−1)(m−d)(n−d) · bm−k · Sx(d, B, R)
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= (−1)m′.n′ · lc(h)m−k · lc(g)m−k · Sx(d, B, R) (3.13)

Now consider Euclidean division of B by R to get

B(x) = Q′(x) · R(x) + R′(x) (3.14)

for some polynomial R′(x) with deg(R′) < deg(R). Since g divides both B and R, we deduce that
g must also divide R′. Let R′ = g · p′ for some polynomial p′. Thus from (3.14), we also get

h(x) = Q′(x) · p(x) + p′(x) (3.15)

In (3.14) since deg(R′) < deg(R) or equivalently deg(p′) < deg(p), we can use induction hypoth-
esis to deduce that,

Sx(d, B, R) = g · Resx(h, p) · lc(g)n′+k′−1 (3.16)

Note that deg(p) = k′ > 0 in induction step, thus we can use first case of Lemma 3.8 on (3.10) to
get

Resx( f , h) = Sx(0, f , h)

= (−1)(deg( f )−0)(deg(h)−0) · lc(h)deg( f )−deg(p) · Sx(0, h, p)

= (−1)m′.n′ · lc(h)m′−k′ · Resx(h, p)

Resx(h, p) =
Resx( f , h)

(−1)m′.n′ · lc(h)m′−k′ . (3.17)

Substituting (3.17) in (3.16), we get:

Sx(d, B, R) = g · Resx( f , h)
(−1)m′.n′ · lc(h)m′−k′ · lc(g)n′+k′−1 (3.18)

Substituting (3.18) back into (3.13), we get

Sx(d, A, B) = (−1)m′.n′ · lc(h)m−k · lc(g)m−k · g · Resx( f , h)
(−1)m′.n′ · lc(h)m′−k′ · lc(g)n′+k′−1

= lc(g)m−k · g · Resx( f , h) · lc(g)n′+k′−1 [as m− k = m′ − k′]

= g · Resx( f , h) · lc(g)m−k+n′+k′−1

= g · Resx( f , h) · lc(g)m′+n′−1 [as m− k + k′ = m− d = m′]

This completes the proof of induction step, as well as that of the theorem.

3.3 The PIT Algorithm

We finally get to our PIT algorithm for the circuit class Σ[2]ΠΣΠ[degxi
≤d]. Let f be a polynomial

having a size-s circuit in this class. Then, f = ∏r
i=1 gi + ∏m

j=1 hj, where each gi, hj is an s-sparse
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polynomial of individual degree bounded by d. It is easy to see that a polynomial-time factoriza-
tion algorithm for sparse polynomials, will then yield a white-box PIT algorithm, since one can
factor every gi and hj and compare the irreducible factorization of both LHS and RHS in (3.20).

To get a black-box algorithm, we need a more careful argument, for which we use the tool
of resultant. If f 6= 0, then (3.20) holds and by uniqueness of factorization, there exists a gi on
LHS with an irreducible factor that does not divide any hj on RHS. Thus, we want a generator G
such that we ‘preserve’ this irreducible factor, i.e. the irreducible factor of gi ◦ G does not divide
hj ◦ G. This will be our certificate of non-zeroness for f ◦ G. Let gi = g′i · qij and hj = h′j · qij, where
qij = gcd(gi, hj). In the proof, we show that it suffices to preserve the co-primality of g′i , h′j for
every j ∈ [m]. Therefore, we only need to hit the resultant of g′i , h′j for every j ∈ [m], i.e. construct a
generator G such that Resx`(g′i , h′j) ◦ G 6= 0, where x` is some variable in supp(g′i). Note that g′i , h′j
are not known to be sparse, though they are factors of sparse polynomials. At this point, we can
actually invoke [BSV20] to deduce that both g′i and h′j are sO(d2 log n)-sparse and hence Resx`(g′i , h′j)
is spoly(d) log n-sparse. We can then invoke the sparse PIT algorithm of [KS01] to get an spoly(d) log n-
time (quasi-poly time) black-box PIT.

The above argument also shows that an spoly(d) factor-sparsity bound will imply a polynomial-
time black-box PIT algorithm for this model, for constant d. In our proof, we show how to
get a polynomial-time black-box PIT algorithm for this model without even proving a factor-
sparsity bound. As discussed earlier, we need a generator that hits Resx`(g′i , h′j). Even though
this resultant polynomial may not be sparse, we show that it is factor of some other sparse poly-
nomial (Theorem 3.9). This polynomial is the subresultant Sx`(k, gi, hj), which is non-zero for
k = deg(gcd(gi, hj)) and is (sd)O(d)-sparse by Lemma 3.7. Since a factor of a non-zero polynomial
is also non-zero, we can hit the desired resultant by hitting this sparse subresultant.

Theorem 3.19. Let C be the class of size-s, n-variate Σ[2]ΠΣΠ[degxi
≤d] circuits. Then, there is a determin-

istic black-box PIT algorithm for C that runs in poly((sd)d, n)-time.

Proof. Let f ∈ C be a non-zero polynomial of the form f = ∏r
i=1 gi + ∏m

j=1 hj, where gi, hj ∈ F[x]
are s-sparse polynomials with individual degree d, for each i ∈ [r] and j ∈ [m]. Then,

r

∏
i=1

gi 6= −
m

∏
j=1

hj (3.20)

We wish to design a generator G such that the inequality in (3.20) is preserved for f ◦ G also.
Observe that if inequality (3.20) holds, then by uniqueness of factorization there exists a gi on LHS
with an irreducible factor, say u, such that u does not divide hj, for every j ∈ [m] (or vice versa).

Let gi = g′i · qij and hj = h′j · qij, for some co-prime polynomials g′i and h′j such that qij
∆
= gcd(gi, hj).

We claim that a generator G that preserves the co-primality of g′i and h′j, will suffice. Formally, we
want that for every j ∈ [m],

gcd(g′i ◦ G, h′j ◦ G) = 1. (3.21)
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If we know the exact gi, we only need to preserve (3.21) for all j ∈ [m], but since we are in the
black-box setting, we don’t know the exact i beforehand. Therefore, we will later iterate over
all i ∈ [n] also, as done in Algorithm 1. We handle this properly later but for now we proceed
assuming that we know the correct gi.

Note that the irreducible factor u is a part of g′i and not qij, since u does not divide hj. And
if (3.21) holds, then u ◦ G does not divide hj ◦ G for every hj, otherwise it will contradict the co-
primality of g′i ◦ G and h′j ◦ G.

Let x` be a variable in the support of u. By Lemma 3.3, Resx`(g′i , h′j) 6= 0 since gcdx`
(g′i , h′j) = 1.

By Theorem 3.9, this resultant polynomial is a factor of the subresultant polynomial, Sx`(k, gi, hj),

where k ∆
= deg(qij) ≤ d. Since gi, hj are s-sparse polynomials, this subresultant is non-zero and

(2ds)2d+1-sparse by Lemma 3.7.
Let G = (g1, . . . , g`−1, g`+1, . . . , gn) be the generator for the class of (n− 1)-variate, (2ds)2d+1-

sparse polynomials (Lemma A.1). We extend G to a generator G` as follows:

G`
∆
= (g1, . . . , g`−1, x`, g`+1, . . . , gn). (3.22)

Then observe that Sx`(k, gi, hj) ◦ G` 6= 0, for any j ∈ [m], by the sparsity argument above. Thus, we
deduce that Resx`(g′i , h′j) ◦ G` 6= 0, since it is a factor of Sx`(k, gi, hj) ◦ G`. Then by Lemma 3.7, we
get that Resx`(g′i , h′j) ◦ G` = Resx`(g′i ◦ G`, h′j ◦ G`) 6= 0. This means that gcdx`

(g′i ◦ G`, h′j ◦ G`) = 1.
Hence, there is a factor of gi ◦ G` (with variable x` in its support), which does not divide hj ◦ G`,
for every j ∈ [m]. By uniqueness of factorization,

r

∏
i=1

(gi ◦ G`) 6= −
m

∏
j=1

(
hj ◦ G`

)
(3.23)

Hence, f ◦ G` 6= 0. Since G` is a generator for sparse polynomials, using Lemma A.1, we note that
G` is efficient as it has poly((sd)d, n) degree and is of seed length 2.

Recall that we picked l to be a number such that x` was a variable in support of some g′i . Since,
input polynomial is only given as a black-box, we don’t know this variable beforehand. Therefore,
we iterate l over all the n variables and get a corresponding generator G` for each iteration. If for
any generator G`, we get that f ◦ G` 6= 0, then we deduce that f is non-zero. This process only
adds a factor of n in the time complexity. We outline this overall process in Algorithm 1.
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Algorithm 1: black-box PIT algorithm for class Σ[2]ΠΣΠ[degxi
≤d]

Input: A polynomial f (x1, . . . , xn) ∈ Σ[2]ΠΣΠ[degxi
≤d], where bottom ∑ ∏ computes

s-sparse polynomials of individual degrees ≤ d.
Output: ZERO, if f is identically zero and NON-ZERO, otherwise.

1 Call Lemma A.1 to get generator G of seed-length 1 for (n− 1)-variate polynomials of
sparsity ≤ (2ds)2d+1.

2 for i← 1 to n do
3 Construct Gi of seed-length 2 by inserting an extra (seed) variable xi at the i-th position

in G as shown in (3.22).
4 Compute bivariate polynomial p← f ◦ Gi.
5 Use brute-force black-box PIT for bivariate p.
6 if p 6= 0 then
7 return NON-ZERO.
8 end

9 end
10 return ZERO.

We now analyze correctness and time-complexity of Algorithm 1.

Correctness: By proof argument in Theorem 3.19, f 6= 0 iff ∃i ∈ [n], f ◦ Gi 6= 0. Indeed the
algorithm outputs ZERO only when f ◦ Gi = 0 for every i ∈ [n], otherwise it outputs NON-ZERO,
as desired.

Time complexity: By Lemma A.1, degree of generator Gi is poly((sd)d, n). Hence, testing non-
zeroness of the bivariate polynomial f ◦ Gi takes only poly((sd)d, n) time. The n iterations add a
factor of n and we still get an overall black-box PIT algorithm of time complexity poly((sd)d, n).

4 Exact Power Testing

In this section we prove Theorem 3. A polynomial f ∈ F[x1, x2, . . . , xn] is an exact power if there
exists (another) polynomial g ∈ F[x1, x2, . . . , xn] and e ∈N such that f = ge.

We first show an sO(d) sparsity bound for g, when f is an s-sparse, reverse-monic polynomial of
individual degree d (Lemma 4.4). Moreover, we also get an algorithm to compute g for this case in
Algorithm 2. For the general case, when f is not reverse-monic, we use a standard transformation
to convert it into a reverse-monic polynomial f̂ (Definition 4.10). This transformation preserves
the exact power structure of f , i.e. f = ge implies f̂ = he, for some suitable polynomial h. One
can then invoke Lemma 4.4 to get a nice sparsity bound for h. Unfortunately, we do not recover a
sparsity bound for g from this. The main reason is that this transformation is not exactly reversible,
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as there is no 1-1 correspondence between monomials of f and f̂ ; there is an sd-sparsity blow-up
in f̂ . Intuitively, there is a ‘loss of information’ in this transformation. However, we still make use
of the ‘available information’ to get a recursive algorithm for determining whether f is an exact
power in Algorithm 3.

4.1 Preliminaries

Notations: Let f ∈ F[x1, . . . , xn]. For some i ∈ [n], let xi be a variable in the support of f .
For the sake of convenience, we slightly abuse the notation x to denote the set {x1, . . . , xn} \ {xi}
throughout this section. Let f = ∑d

j=0 f j · x
j
i such that ∀j, f j ∈ F[x] and fd 6≡ 0. The leading

coefficient of f w.r.t xi is defined as lcxi( f ) ∆
= fd. Polynomial f is called monic w.r.t variable xi, if

lcxi( f ) = 1. We say that f is xi-reverse-monic if f |xi=0 = f0 = 1. We say that f is reverse-monic if
there exists some variable xi ∈ supp( f ) such that f is xi-reverse monic.

Definition 4.1 (Chapter 6 [GG99]). Let R be a unique factorization domain and K be its field of fractions.
Let g ∈ K[y] be a polynomial over K such that g = ∑m

i=0(gi/b) · yi ∈ K[y], where b ∈ R is the common
denominator. The content of g is defined as cont(g) = gcd(g0, . . . , gm)/b. We define primitive part of g
as pp(g) = g/cont(g). Observe that cont(g) ∈ K, while pp(g) ∈ R[y].

Examples: For R = Z and K = Q, consider g = 3y + 9/2 ∈ Q[y]. Then g = (6y + 9)/2 and
cont(g) = gcd(6, 9)/2 = 3/2 ∈ Q. And pp(g) = g/cont(g) = 2y + 3 ∈ Z[y]. Let us now consider
a bi-variate example. Let R = F[x] and K = F(x). Consider g = (x2 − 1) · y + (x− 1)/(x + 1) ∈
F(x)[y]. Then, cont(g) = gcd((x2 − 1)(x + 1), (x − 1))/(x + 1) = (x − 1)/(x + 1) ∈ F(x). And
pp(g) = (x + 1)2 · y + 1 ∈ F[x][y].

The following lemma will be useful to us later on.

Lemma 4.2. Let R be a unique factorization domain and K be its field of fractions. Let f ∈ R[y] and
g ∈ K[y] such that f = ge. Then, g ∈ R[y].

Proof. By definitions of content and primitive parts in Definition 4.1, we know that cont(g) ∈ K,
while pp(g) ∈ R[y] for g = cont(g) · pp(g).

Gauss’s Lemma states that the product of two primitive polynomials is also primitive. From
this, one can derive that for two polynomials g, h ∈ K[y], cont(gh) = cont(g) · cont(h) and
pp(gh) = pp(g) · pp(h). In particular, cont(ge) = cont(g)e and pp(ge) = pp(g)e. Since f = ge, we
get that

cont( f ) = cont(g)e. (4.3)

Since f ∈ R[y], we know that cont( f ) ∈ R by definition. We will now use this to prove
that cont(g) ∈ R also. This will suffice to prove that g = cont(g) · pp(g) ∈ R[y]. Note that we
can write cont(g) in the simplest form as cont(g) = a

b , where a, b ∈ R and gcd(a, b) = 1. Let
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d ∆
= cont( f ) ∈ R. Using (4.3), we get that d =

( a
b

)e
= ae

be . Now, let p be an irreducible factor of b
in R. Since d ∈ R, p must divide the numerator ae. If p divides ae, then p must divide a also. This
contradicts with the fact that gcd(a, b) = 1. This means, that the denominator b must be one and
hence, cont(g) ∈ R. Thus, g ∈ R[y].

4.2 Exact Power Testing

We start with the case when our input polynomial f is reverse-monic w.r.t. some variable. We
generalize it to the general case in the section after.

4.2.1 Reverse Monic Case

We use Newton’s Binomial Theorem to get the sparsity bound for f 1/e below. This tool has been
used before to bound the size of e-th roots for the classes of algebraic circuits, formulas and ABPs.
See for example [Dut18, ST21]. Although, these works assume char(F) to be 0 or a non-divisor of
e, we prove our result below for fields of arbitrary characteristic.

Lemma 4.4. Let f ∈ F[x1, . . . , xn] be an s-sparse polynomial of individual degree d which is xi-reverse
monic, for some i ∈ [n]. If f = ge for some polynomial g ∈ F[x1, . . . , xn] and e ∈ N, then g is sd/e+1-
sparse.

Proof. We can write g as g = f 1/e = (1 + ( f − 1))1/e. By Newton’s Binomial Theorem, this gives

g = (1 + ( f − 1))1/e =
∞

∑
i=0

(
1/e

i

)
( f − 1)i. (4.5)

We first focus on the case when char(F) is either zero or it does not divide e. In that case 1/e is well
defined in F and so are all the binomial coefficients appearing in (4.5). Since f is reverse-monic
in xi, f |xi=0 = 1. This means that ( f − 1) has xi-degree ≥ 1. Since g has xi-degree = d/e, (4.5)
becomes a finite sum modulo the ideal 〈xi〉d/e+1. Thus,

g =
d/e

∑
i=0

(
1/e

i

)
( f − 1)i mod〈xi〉d/e+1. (4.6)

Since ‖ f − 1‖ ≤ s, it is easy to see that G = ∑d/e
i=0 (

1/e
i )( f − 1)i is sd/e+1-sparse. Since g =

G mod〈xi〉d/e+1 and going mod 〈xi〉d/e+1 can only decrease sparsity, we get that g is also sd/e+1-
sparse.

Now we handle the case when char(F) divides e. Let p be the characteristic of F, for some
prime p. Let e = pk · q, where pk is the highest power of p which divides e, for some integer k ≥ 1
and p 6 | q. Then by the famous Frobenius endomorphism, we know that:

g(x1, . . . , xn)
p = g(xp

1 , . . . , xp
n)
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g(x1, . . . , xn)
pk ·q =

(
g(xpk

1 , . . . , xpk

n )
)q

. (4.7)

Since f = ge = gpk ·q, we can use the variable transformation yj ← xpk

j , for each j ∈ [n] to get that

f = g(y1, . . . , yn)
q.

Observe that xi-degree in every non-zero monomial of f is a multiple of e = pk · q, therefore f is
a proper polynomial in F[y1, . . . , yn]. Moreover f is still s-sparse as the transformation does not
affect sparsity. We further note that if f was reverse-monic in xi, it will also be reverse-monic in yi.
Thus, we have reduced to the previous case, since p does not divide q. Moreover, the individual
degree of f is now reduced, specifically yi-degree of f is d′ = d/pk. This implies that g(y1, . . . , yn)

has sparsity ≤ sd′/q+1 = sd/e+1. Since this transformation does not affect sparsity, we deduce that
our original g is also sd/e+1-sparse.

Remark 4.8. Lemma 4.4 is also true for a monic f of sparsity s such that f = ge. This is because
we can convert a monic f into a reverse-monic f̂ by the reversal transformation, f̂ = revd

i [ f ] (see
Definition 5.3). Observe that if f is monic in xi, then f̂ is reverse-monic in xi. By definition, this
transformation is invertible. In fact, f = revd

i [ f̂ ], thus given f̂ , we can recover f . We also get
that ‖ f ‖ = ‖ f̂ ‖ = s. Since f̂ = ĝe and ĝ is sd/e+1-sparse using Lemma 4.4, we also get that g is
sd/e+1-sparse.

In fact, Lemma 4.4 gives rise to an algorithm to compute the eth root of a reverse-monic f , as
shown below.

Lemma 4.9. Let f ∈ F[x1, . . . , xn] be an s-sparse polynomial of individual degree d which is xi-reverse
monic for some i ∈ [n]. If f = ge for some polynomial g ∈ F[x1, . . . , xn] and e ∈ N, then there is a
deterministic algorithm to compute g in poly(sd/e, n, d) F-operations.

Proof. Algorithm 2 below computes the required g when f = ge, for some reverse-monic f .

Correctness: Follows from Lemma 4.4.

Time Complexity: Steps 2 to 6, except Step 4 can be done in O(d) time. Step 4 will take poly(s, n, d)
time as f is s-sparse. Steps 8 and 9, each take poly(sd/e) F-operations as ‖g‖ ≤ ‖G‖ ≤ sd/e+1.
Thus, total complexity is poly(sd/e, n, d) F-operations.

Remark. Using Remark 4.8, Lemma 4.9 also works for a monic f by first making it reverse-monic,
computing its eth root and then returning the reversal of that.
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Algorithm 2: To compute eth root of f :
Input: Polynomial f ∈ F[x1, . . . , xn] of individual degree ≤ d, s-sparse and reverse-monic

in variable xi such that f = ge.
Output: Root g.

1 Let p ∆
= char(F).

2 if p > 0 and p | e then
3 Let e = pk · q, where pk is the highest power of p that divides e and p 6 | q.

4 f ← f
(

x1/pk

1 , . . . , x1/pk

n

)
.

5 d← d/pk.
6 e′ ← e and e← e/pk. /* Saving value of e in e′ and updating e to q */

7 end
8 G ←− ∑d/e

i=0 (
1/e

i )( f − 1)i.

9 g←− G (mod xd/e+1
i ).

10 if p > 0 and p | e′ then

11 g← g
(

xpk

1 , . . . , xpk

n

)
.

12 end
13 return g.

4.2.2 General Case

Now, we handle the case where input f is not monic or reverse-monic in any variable. In this case,
we are not able to compute the exact root, but we can solve the decision version of this problem,
that is we show how to efficiently test if f = ge, for some g and e ≥ 1.

We first give a standard trick to convert a polynomial into a reverse-monic polynomial. The
properties mentioned below are fairly straightforward to prove, see for example [BSV20, Lem 5.5].

Definition 4.10 (Reverse-monic transformation). Let f ∈ F[x1, . . . , xn] be an s-sparse polynomial of
individual degree at most d. Pick any variable xi ∈ supp( f ) such that f |xi=0 6≡ 0. Set xi = y and let

f0
∆
= f |y=0. We define

f̂ =
1
f0
· f (x, f0 · y).

This transformation has some nice properties:

1. f̂ is reverse-monic in y. Moreover f̂ is a proper polynomial in F[x1, . . . , xn] (not a rational function).

2. ‖ f̂ ‖ ≤ sd.

3. Individual degree of f̂ is at most d2. However, degy( f̂ ) = degxi
( f ) ≤ d.
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We remark that it could be the case that the trailing coefficient f0 = 0 for every xi above. We
show how to handle that case in Step 3 of Algorithm 3. So without loss of generality, we can
always convert our polynomial f into reverse-monic f̂ .

By definition of this transformation, one can easily show that if f = ge, then f̂ = he, for some
suitable h. However, the converse is not always true. For example, consider f (x, z) = z(x + 1)2.
It is not an exact power but if we make it reverse-monic w.r.t. x we get f̂ (y, z) = 1/z · f (zy, z). It
turns out to be f̂ = (zy + 1)2, which is an exact power. For testing whether f is an exact power, we
need a converse also. In the two claims below, we find the extra condition on trailing coefficient,
which gives us a suitable converse. This will amount to a recursive algorithm for exact power
testing in Algorithm 3.

Claim 4.11 (⇒). If f = ge in F[x, xi], then f̂ = he in F[x, y] for some polynomial h and f0 = ge
0 in F[x],

where g0
∆
= g|xi=0.

Proof. Let f = fk · xk
i + . . . + f1 · xi + f0 and g = gm · xm

i + . . . + g1 · xi + g0. If f = ge, then k = em
and f0 = ge

0. Thus,

f̂ =
1
f0
· f (x, f0 · y)

=
1
f0
· g(x, f0 · y)e

=

(
g(x, f0 · y)

g0

)e

= he,

for h ∆
= g(x, f0·y)

g0
. By definition of the reverse-monic transformation, f̂ ∈ F[x, y] is a proper poly-

nomial in this ring. Clearly, h is in F(x)[y] by definition. Also f̂ = he ∈ F[x, y], therefore h also
belongs to F[x, y], by Lemma 4.2.

Claim 4.12 (⇐). If f̂ = he in F[x, y] and f0 = be in F[x], then f = ge in F[x, xi].

Proof. Observe that,

f (x, xi) = f0 · f̂
(

x,
xi

f0

)
= f0 · h

(
x,

xi

f0

)e

=

(
b · h

(
x,

xi

f0

))e

=
(

g(x, xi)
)e,

for g ∆
= b · h(x, xi

f0
). Clearly, g ∈ F(x)[xi] from above. But since f ∈ F[x][xi] and f = ge, this implies

g ∈ F[x, xi] by Lemma 4.2.
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Let rF(a, e) denote the time complexity of deciding whether a = be, for a, b ∈ F and for some
e ∈N. Then,

• For a finite field F = Fq, rF = poly(log q) F-opertions (Lemma 4.14).

• For the field of rationals F = Q, rF = poly(e, log a) F-operations. For an integer (or rational
number), it is easy to even compute the e-th root by binary search, or one can simply invoke
univariate factorization ([LLL82]) for xe − a to compute a1/e.

Theorem 3 follows from the next lemma.

Lemma 4.13. Let f ∈ F[x1, . . . , xn] be an s-sparse polynomial of individual degree d. There is a determin-
istic algorithm to test whether f = ge for some polynomial g ∈ F[x1, . . . , xn] and e ∈ N. The algorithm
takes poly(sd2

, n, d) + rF( f (0, . . . , 0), e) F-operations.

Proof. The e = 1 case is trivial. Run the Algorithm 3 below for each e ∈ {2, . . . , d}. If any such e
exists such that f = ge, that is Algorithm 3 outputs YES, then f is an exact power. Otherwise, if
for every e Algorithm 3 outputs NO, then f is not an exact power.

Algorithm 3: Exact power testing
Input: An s-sparse polynomial f ∈ F[x1, . . . , xn] with individual degree d and an integer

e ∈ {2, . . . , d}.
Output: YES, if f = ge for some polynomial g and NO, otherwise.

1 For each i ∈ [n], check whether f is reverse-monic in variable xi. If such an i exists, then

set f̂ ∆
= f , y ∆

= xi and go to Step 8 directly, else go to Step 2.

2 Choose any i ∈ [n]. Set f0
∆
= f |xi=0 and xi

∆
= y.

3 if f0 = 0 then
4 Let k be the highest power of xi such that xk

i divides f.
5 If e 6 | k then output NO and return, otherwise set f = f /xk

i and f0 = f |xi=0.

6 end

7 Define f̂ ∆
= 1

f0
· f (x, f0 · y).

8 Invoke Algorithm 2 for f̂ which is reverse-monic in variable y to get candidate root ĝ.
9 Check whether f̂ = ĝe, by multiplying out. If it is, go to Step 10, otherwise output NO.

10 For the (n− 1)-variate polynomial f0
∆
= f |xi=0 ∈ F[x], recursively check whether f0 is eth

power of some polynomial. If it is, then output YES, otherwise output NO.

We discuss the correctness and time-complexity of Algorithm 3 below.

Correctness: If f is indeed equal to ge for some e ∈ {2, . . . , d}, then by Claim 4.11, f̂ = he for
some h and f0 = be, for b = g|xi=0. Thus, by Lemma 4.9, Step 8 will compute the correct root ĝ and
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in Step 10, the algorithm will output YES. If f is not an exact power for any e ∈ [d], the algorithm
will output NO in either Step 5 or Step 9 or Step 10. This follows due to Claim 4.12 (consider
contrapositive).

Time Complexity: Step 1 takes poly(s, n, d) F-operations as we only have to check whether
f |xi=0 = 1 at most n times. In Steps 2-6, we are required to compute the trailing coefficient of
f w.r.t xi-variable, which takes poly(s, n, d) F-operations by Lemma 2.2. Step 7 takes at most
poly(sd, n, d) time. Step 8 takes at most poly(‖ f̂ ‖d/e, n, d) F-operations by Lemma 4.9 as y-degree
of f̂ is still d. Since ‖ f̂ ‖ ≤ sd, this step takes at most poly(sd2/e, n, d) F-operations. Multiplying
out in Step 9 will take take at most poly(s(d

2/e)·e) = poly(sd2
) F-operations as ‖ĝ‖ ≤ sd2/e+1.

Note that in Step 10, we recurse on f0, which has sparsity ≤ s, therefore there is no blow-up of
sparsity in the recursion. Hence, this step takes poly(sd2

, n, d) F-operations to reach the base case
of deciding whether the field element f (0, . . . , 0) has an e-th root. The total complexity is thus,
poly(sd2

, n, d) + rF( f (0, . . . , 0), e) F-operations.

Using the standard theory of finite fields, we show how to test whether a finite field element is
an exact power. In other words, we show that rF = poly(log q) for a finite field Fq. This is required
for the base case of Algorithm 3, when working over finite fields.

Lemma 4.14 (Folklore). For a finite field Fq, we can decide whether an element a ∈ Fq is a kth power
residue, i.e. a = bk for some b ∈ Fq in poly(log q) Fq-operations.

Proof. We will focus on F∗q since 0 = 0k trivially. We will prove that a = bk for some b ∈ F∗q and

k ≥ 1, if and only if a
q−1

d = 1 in F∗q , where d = gcd(k, q− 1). Having proved that, we can simply

test this by computing a
q−1

d in poly(log q) Fq-operations using repeated squaring. Now we prove
both the directions for

a = bk ⇔ a
q−1

d = 1.

(⇒) Observe that a = bk ⇒ a
q−1

d = b
k(q−1)

d . Since d = gcd(k, q − 1), d divides k, hence k
d is

an integer. Thus, we get that a
q−1

d = b
k(q−1)

d = 1 by using the generalization of Fermat’s Little
Theorem, i.e. xq−1 = 1 for all x ∈ F∗q .

(⇐) We know that F∗q is a cyclic group of order q− 1. Let g be its generator such that a = gr,

for some r ∈ [q − 2] (For r = 0, we know that 1 = 1k trivially). Now, if a
q−1

d = 1, we get that
g

r(q−1)
d = 1. This implies that r

d is an integer or that d divides r. By Bezout’s identity, we know that
d = gcd(k, q− 1) = sk + t(q− 1) for some integers s, t. Since d | r, we get that r = s′k + t′(q− 1).
This proves that a is a kth power residue as:

a = gr = gs′k+t′(q−1) = gs′k = bk

in F∗q for b = gs′ .
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5 Co-Factor Polynomial Sparsity

In this section we prove Theorem 4 as well as Corollary 1.4. In fact, we prove somewhat technically
stronger versions of these theorems with more explicit parameters (not just in terms of big-Oh).
We begin with some technical definitions. Some of these have been used implicitly in the previous
sections.

5.1 Multivariate Reversal operation

Definition 5.1 (Reverse Monic, Reverse Pseudo-Monic). We say that a polynomial f ∈ F[x1, . . . , xn]

is reverse monic if there exists a variable xi ∈ supp( f ) such that f |xi=0 = 1. If we know the variable
beforehand, we say that f is xi-reverse monic. We can extend this definition to a set of variables xI , for
some arbitrary I ⊆ [n]. We say that f is I-reverse monic, if f |xI=0I = 1. We say that f is reverse
pseudo-monic, xi-reverse pseudo-monic, I-reverse pseudo-monic respectively, when instead of 1 the
result of setting variables to 0 is a non-zero field element or a single monomial.

In other words, the constant term of a reverse monic polynomial is 1, when regarded as a
polynomial in the remaining variables. The following are immediate connections between some
of the previously defined concepts.

Observation 5.2. Let h ∈ F[x1, x2, . . . , xn] be a polynomial, i ∈ [n] and I ⊆ [n]. Then:

• supp(h|xi=0) = {e ∈ supp(h) | ei = 0}.

• h is I-reverse pseudo-monic if and only if |supp(h|xI=0I )| = 1.

The following transformation will be useful later on to convert specific polynomials into I-
reverse pseudo-monic polynomials.

Definition 5.3 (Reversal Transformation). Let f ∈ F[x1, . . . , xn] be a polynomial and let ` ∈ N. We
define the reversal operation on f with respect to a variable xi as follows:

rev`
i [ f ] ∆

= x`i · f |xi=
1
xi
= x`i · f (x1, . . . , xi−1,

1
xi

, xi+1, . . . , xn).

By iteration, we can extend this definition to a set of variables xI , for some arbitrary I = {i1, . . . , ir} ⊆ [n].

rev`
I [ f ] ∆

= rev`
i1

[
rev`

i2 [. . . rev`
ir [ f ]]

]
.

Alternatively:

rev`
I [ f ] ∆

= x`i1 · · · x
`
ir · f (y1, . . . , yn),

where yj =


1
xj

, if xj ∈ I

xj, if xj /∈ I.
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For intuition, express f as a polynomial in xi such that f = fdxd
i + fd−1xd−1

i + . . . + f1xi + f0,
where each coefficient f j is a polynomial in variables other than xi. Then, revd

i [ f ] reverses the or-
der of coefficients in this representation. That is, revd

i [ f ] = f0xd
i + f1xd−1

i + . . . + fd−1xi + fd. In
particular, if f is monic in xi then revd

i [ f ] is xi-reverse monic.

The following lemma summarizes some of the basic, yet useful properties of the reversal trans-
formation. Subsequently, we will use these properties implicitly.

Lemma 5.4. Let f , g, h ∈ F[x1, x2, . . . , xn] such that f = g · h. Let i ∈ [n] and suppose that d ≥ degxi
( f ).

Then:

1. revd
i [ f ] is a polynomial (and not a rational function).

2. degxi
(revd

i [ f ]) ≤ d.

3. ‖revd
i [ f ]‖ = ‖ f ‖.

4. Let a, b such that d = a + b. Then revd
i [ f ] = reva

i [g] · revb
i [h].

5.2 Unique Projections

Definition 5.5. Let V ⊆Nn. A unique projection of V of length k is a set {(i1, e1), (i2, e2), . . . , (ik, ek)}
such that there exists a unique vector v ∈ V satisfying ∀j ∈ [k] : vij = ej.
A unique projection of a polynomial h ∈ F[x1, x2, . . . , xn] is defined as a unique projection of supp(h).

In other words, there exists a unique monomial in the monomial representation of h that contains
the pattern xe1

i1
xe2

i2
· · · xek

ik
. The following is immediate from the definition.

Observation 5.6. Let h ∈ F[x1, x2, . . . , xn] be a polynomial and let {(i1, e1), (i2, e2), . . . , (ik, ek)} be a
unique projection of h. Pick j ∈ [k] and let ` ≥ ej. Then

{(i1, e1), (i2, e2), . . . , (ij−1, ej−1), (ij, `− ej), (ij+1, ej+1), . . . , (ik, ek)}

is a unique projection of rev`
ij
[h].

Subsequently, we demonstrate the usefulness of unique projections.

Lemma 5.7. Let h ∈ F[x1, x2, . . . , xn] be a polynomial with a unique projection of the form
{(i1, 0), (i2, 0), . . . , (ik, 0)} (i.e. ∀j ∈ [k] : ek = 0). Then h is {i1, i2, . . . , ik}-reverse pseudo-monic.

Proof. Let I = {i1, i2, . . . , ik}. By iterative application of Part 1 of Observation 5.2, we obtain that

supp(h|xI=0I ) =
{

e ∈ supp(h)
∣∣∣ ∀j ∈ [k] : eij = 0

}
As I corresponds to a unique projection, the set of the RHS contains exactly one vector and the
claim follows from Part 2 of Observation 5.2.
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Lemma 5.8. Let h ∈ F[x1, x2, . . . , xn] be a multilinear polynomial and let {(i1, e1), (i2, e2), . . . , (ik, ek)}
be a unique projection of h. Furthermore, let J =

{
ij
∣∣ ej = 1

}
. That is, the set of all indices ij for which

ej = 1. Then h̃ ∆
= rev1

J [h] is {i1, i2, . . . , ik}-reverse pseudo-monic.

Proof. First, note that since h is a multilinear polynomial, we have that ej = 0 for indices j ∈
{i1, . . . , ik} \ J. Subsequently, by iterative application of Observation 5.6, we obtain that h̃ is a
multilinear polynomial with a unique projection {(i1, 0), (i2, 0), . . . , (ik, 0)}. Note that h̃ is a proper
polynomial (and not a rational function) by iterative application of Part 1 in Lemma 5.4. The claim
then follows from Lemma 5.7.

We conclude this section by showing that every set contains a unique projection of (at most)
logarithmic size and a relation of unique projections with δ-entropy polynomials that were defined
in [BS21].

Lemma 5.9. Let V ⊆Nn of size |V| ≤ s. Then V has a unique projection of length at most log s + 1.

Proof. The proof is by induction on the size of V. For the base case |V| = 1 there exists a unique
projection of length 1. Now assume |V| ≥ 2. Therefore, V contains at least two different vectors
u 6= w. Let i be such that ui 6= wi. Let us denote a = ui and b = wi. Partition V into Va

∆
=

{v ∈ V | vi = a} and Vb
∆
= {v ∈ V | vi = b}. We have that |Va|+ |Vb| ≤ |V|. Hence, wlog 1 ≤

|Va| ≤ s/2. By the induction hypothesis, Va has a unique projection of length at most log(s/2) +
1 = log s. We now add the index i and ei = a to the set to obtain a unique projection for V of size
log s + 1.

Recently, [BS21] defined a class of polynomials called ‘low-entropy’ polynomials and showed
an (nd)O(dδ) sparsity upper bound for the factors of a δ-entropy polynomial. We quickly give their
definition of a δ-entropy set and then show a combinatorial connection of entropy with our notion
of unique projections below. We note this connection between these two combinatorial concepts
but our results are incomparable from those in [BS21].

Definition 5.10 ([BS21]). A vector v ∈ Nn has entropy δ if it has the same value in (n − δ) of its
coordinates. A set V ⊆Nn is called a δ-entropy set if for every v ∈ V, v has entropy ≤ δ.

Lemma 5.11. Let V ⊆Nn be a δ-entropy set. Then V has a unique projection of length at most 2δ + 1.

Proof. Let u ∈ V be a vector with maximum entropy in V. Let m(u) denote the majority value
in u. In other words, u has the largest number of non-majority values among all vectors in V.
Let ui1 , . . . , uik be all the non-majority values in u. Since u has entropy ≤ δ, the length of this
sequence k is at most δ. We note that the remaining elements of u outside this sequence have
the same value (equal to m(u)). We extend the sequence to length k + δ + 1 by adding any δ + 1
elements from these remaining elements of u to get: ui1 , . . . , uik , uik+1 , . . . , uik+δ+1 . We claim that
{(i1, ui1), . . . , (ik+δ+1, uk+δ+1)} is a unique projection of the set V.
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We need to show that if v is another vector in V such that vij = uij , for each j ∈ [k + δ + 1]
(values agree on projection), then v = u. Observe that uik+1 = . . . = uik+δ+1 = m(u), by definition
of k. This means vik+1 = . . . = vik+δ+1 = m(u) also. We deduce that at least δ + 1 coordinates
of v have value m(u). We also know that v has entropy ≤ δ and note that for a ≤ δ-entropy
vector, if any δ + 1 coordinates have the same value, that value is the majority value. Hence,
m(v) = m(u). Now suppose for the sake of contradiction that there exists some coordinate ir

outside the projection (r > k + δ + 1) for which vir 6= uir . Since all the non-majority values of u
have already appeared in the projection coordinates, we deduce that uir = m(u) = m(v). This
means that vir 6= m(v). In that case, vir is another element in v apart from vi1 , . . . , vik which is
distinct from m(v). This is a contradiction to our assumption that u is a vector with maximum
entropy. Hence, vij = uij for all j > k + δ + 1. By our premise, they also agree on the k + δ + 1
projection coordinates. Hence vj = uj, for all j ∈ [n] and thus, v = u. Moreover, since k ≤ δ,
length of this unique projection is k + δ + 1 ≤ 2δ + 1.

5.3 Proofs of Theorem 4 and Corollary 1.4

We are now ready to state and prove the technical results of this section that will imply Theorem
4 and Corollary 1.4. In what follows, let f , h ∈ F[x1, x2, . . . , xn] be two s-sparse polynomials such
that f = gh.

Lemma 5.12. Suppose that h is reverse monic and the individual degree of g is at most d. Then g is sd+2-
sparse.

Proof. By hypothesis, let h be reverse monic w.r.t. some variable xi ∈ supp(h). Express h as a
univariate in xi with coefficients as polynomials in the remaining variables. Since h is xi-reverse
monic, the constant term, h|xi=0 is 1. Therefore, every term in (1− h) has xi-degree ≥ 1. We use
this observation in a division-elimination argument as follows:

g =
f
h
=

f
1− (1− h)

=
∞

∑
j=0

f (1− h)j. (5.13)

Let xi-degree of g be di. Then, we can safely truncate the infinite sum in Equation (5.13) as follows:

g =
di

∑
j=0

f (1− h)j mod 〈xdi+1
i 〉. (5.14)

Equation (5.14) helps us in bounding sparsity of g. Note that going mod 〈xdi+1
i 〉 can only decrease

sparsity, so we focus only on the sparsity of finite sum in (5.14). Since g is a factor of f , its individ-
ual degree di is also upper bounded by d. Also note that both ‖ f ‖, ‖(1− h)‖ ≤ s. Therefore, we
get that ‖g‖ ≤ ∑d

j=0 sj+1 ≤ sd+2.

Generalizing this observation we obtain:
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Lemma 5.15. Suppose that h is I-reverse monic and the individual degrees of the variables of g in xI are at
most d. Then g is sd|I|+2-sparse.

Proof. We follow the same template as in proof of Lemma 5.12, with the change that h is reverse
monic with respect to a set I of variables instead of just a single variable. Express h as a polynomial
in xI variables with coefficients as polynomials in the remaining n − |I| variables. Since h is I-
reverse monic, h|xI=0I (the constant term of h) is 1. Therefore, every term in (1 − h) has total
xI-degree ≥ 1. We then get the same Equation (5.13) for g. Let I = {i1, . . . , ik} ⊆ [n], where
k = |I|. Let individual degree of variable xij in g be dj for each j ∈ [k]. Then, we can truncate the
infinite sum as follows:

g =
dk

∑
j=0

f (1− h)j mod 〈xd1+1
i1

, . . . , xdk+1
ik
〉. (5.16)

By the premises, for each j ∈ [k] each individual degree dj is upper bounded by d. Therefore, we
only need to sum up to j = dk in (5.16) as the total degree in xI variables is upper bounded by dk.
Therefore, we get that ‖g‖ ≤ ∑dk

j=0 sj+1 ≤ sdk+2 = sd|I|+2.

The next lemma transforms a pseudo-monic polynomial into a monic polynomial while main-
taining the sparsity and the multiplicative properties.

Lemma 5.17. Let f = gh. Suppose that h is I-reverse pseudo-monic and the individual degrees of the
variables of g in xI are at most d. Then there exists polynomials f̃ , g̃, h̃ ∈ F[x1, x2, . . . , xn] such that:

1. h̃ is I-reverse monic.

2. f̃ = g̃h̃.

3. ‖ f̃ ‖ = ‖ f ‖, ‖g̃‖ = ‖g‖, ‖h̃‖ = ‖h‖.

4. The individual degrees of the variables of g̃ in xI are at most d.

Proof. Let α
∆
= h|xI=0I . We first define f̂ , ĝ and ĥ by setting xi

∆
= xi · α for all i ∈ I, into f , g and h,

respectively. Next, we set f̃ ∆
= f̂ , g̃ ∆

= ĝ · α and h̃ = ĥ/α. We will now prove each part of the claim.

1. First, observe that h̃ is, indeed, a polynomial (and not a rational function). This is due to the
fact that α divides ĥ. Next, h̃|xI=0I = ĥ|xI=0I /α = h|xI=0I /α = 1.

2. f̃ = f̂ = ĝĥ = (ĝ · α)(ĥ/α) = g̃h̃.

3. Since α is a monomial or a field element there is 1− 1 correspondence between the monomi-
als of f , g, h and f̃ , g̃, h̃, respectively.

4. By definition, α ∈ F[x[n]\I ]. Hence, multiplication or division by α does not affect the degrees
of the variables in I.
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By transforming a pseudo-monic polynomial into a monic polynomial we can generalize Lemma
5.15 to the pseudo-monic case.

Corollary 5.18. Suppose that h is I-reverse pseudo-monic and the individual degrees of the variables of g
in xI are at most d. Then g is sd|I|+2-sparse.

Proof. Apply Lemma 5.15 on f̃ , g̃ and h̃ from Lemma 5.17. We obtain that g̃ and hence g is sd|I|+2-
sparse.

Remark 5.19. In the context of exact-root sparsity, we can extend the result of Lemma 4.4 from
the reverse monic to the I-reverse pseudo-monic case. It is done in the exact same fashion as we
moved from Lemma 5.12 to Corollary 5.18 above. The formal statement is given in Theorem 5.20
below. In addition, we observe that if f = ge then f is I-reverse pseudo-monic iff g is I-reverse
pseudo-monic (for the exact same I).

Theorem 5.20. Let f ∈ F[x1, x2, . . . , xn] be a polynomial of sparsity s and individual degree at most d
such that f = ge for some (other) polynomial g ∈ F[x1, x2, . . . , xn] and e ∈ N. In addition, suppose that
f is I-reverse pseudo-monic for some I ⊆ [n]. Then the sparsity of g is bounded by sO(d·|I|/e).

Theorem 4 and Corollary 1.4 follow from the next two claims.

Theorem 5.21. Let f ∈ F[x1, . . . , xn] be an s-sparse polynomial, with a multilinear factor h such that
f = g · h. Suppose that the individual degree of g is at most d and h has a unique projection of length at
most k. Then g is sdk+2-sparse.

Proof. Let {(i1, e1), (i2, e2), . . . , (ik, ek)} be the guaranteed unique projection of h and let J ={
ij
∣∣ ej = 1

}
. We define:

f̃ ∆
= revd+1

J [ f ] , g̃ ∆
= revd

J [g] and h̃ ∆
= rev1

J [h].

By Lemma 5.4, we have that f̃ = g̃ · h̃, where f̃ is an s-sparse polynomial, g̃ is a polynomial
with individual degree at most d and h̃ is a multilinear polynomial. Furthermore, by Lemma 2.1,
‖h̃‖ ≤ ‖ f̃ ‖ ≤ s. Finally, by Lemma 5.8, h̃ is {i1, i2, . . . , ik}-reverse pseudo-monic. Consequently, by
Corollary 5.18, we obtain that g̃ and hence g are sdk+2-sparse.

Corollary 5.22. Let f ∈ F[x1, . . . , xn] be an s-sparse polynomial, such that f = g · h where h is multilinear
polynomial and g is a polynomial with individual degree at most d. Then g is sd(log s+1)+2-sparse.

Proof. By Lemma 2.1, ‖h‖ ≤ ‖ f ‖ ≤ s. Consequently, by Lemma 5.9, h has a unique projection
length at most log s + 1. Further using Theorem 5.21, we deduce that ‖g‖ ≤ sd(log s+1)+2.

Similarly, by plugging in Lemma 5.11 into Theorem 5.21 we obtain the following relation to
low-entropy polynomials.

33



Corollary 5.23. Let f ∈ F[x1, . . . , xn] be an s-sparse polynomial, such that f = g · h where h is a δ-entropy,
multilinear polynomial and g is a polynomial with individual degree at most d. Then g is sd(2δ+1)+2-sparse.

Remark 5.24. By using the formal expansion:

1
(1− x)`

=
∞

∑
j=0

(
j + `− 1

j

)
xj

for division elimination in the proof of Lemma 5.15, we can get somewhat stronger versions of
Theorem 4 below.

Theorem 5.25. Let f ∈ F[x1, x2, . . . , xn] be a polynomial of sparsity s and individual degree at most d
such that f = gh` for some ` ∈ N. Suppose, in addition, that h is a multilinear polynomial with a unique
projection of length k. Then the sparsity of g is bounded by sO((d−`)k).

6 Future Directions

A lot of interesting open problems arise in the context of this work:

• Design a polynomial-time PIT algorithm for Σ[k]ΠΣΠ[degxi
≤d] circuits with bounded k and d,

for k ≥ 3. To the best of our knowledge, the smallest open case is k = 3 and d = 1!

• Prove a polynomial-size sparsity bound (Conjecture 1.3) even for the special cases of exact-
roots and multilinear co-factors.

– In particular, improve the sparsity bound in Corollary 1.4. Ideally, get rid of the log s
term in the exponent. One can start by studying the structure of polynomials with
non-constant or log-sized unique projections.

– Likewise, generalize Theorem 5.20 to work for any general f with bounded individual
degree d. The smallest open case here is d = 4 and e = 2, in other words prove that
square-root is sparse.
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A Basics of algebraic complexity

In this section, we formally define various algebraic models of computation. We refer the reader
to the excellent survey of [SY10] for a detailed discussion.

A.1 Algebraic computational models:

An algebraic circuit or an arithmetic circuit is a directed acyclic graph with input leaves at the bot-
tom and a single output node at top, where the computation is done bottom-up. The leaves are
labeled with variables or field constants while the internal nodes are either addition or multipli-
cation gates. A directed edge between two nodes u → v is labeled with field constants, which
gets multiplied to the polynomial computed at node u before feeding it to node v. The in-degree
of a node is called its fan-in and out-degree is called fan-out. Size of the circuit is simply size of
the directed graph, which is the maximum among number of edges and number of nodes. Depth
of the circuit is length of the longest path from a leaf to the output node. Degree of the circuit is
maximum degree of a polynomial computed at any node in the circuit.
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A depth-2 ΣΠ circuit of size s computes a sum of s-many monomials. Thus, depth-2 circuits
compute the class of sparse polynomials. A size s, depth-4 ΣΠΣΠ circuit computes a polyno-
mial of the form f = ∑k

i=1 ∏m
j=1 fij, where fij are s-sparse polynomials for each i ∈ [k], j ∈ [m].

The much more general class of poly(n)-sized and poly(n) degree algebraic circuits is called VP,
which is considered the algebraic analog of complexity class P. The class VNP is considered the
algebraic analog of complexity class NP. It is the class of polynomials which can be expressed as
an exponential sum of a projection of a VP circuit family.

An algebraic circuit where fan-out of each node is one is called an algebraic formula. The class
of polynomial sized formulas is called VF.

An algebraic branching program (ABP) is a layered directed graph with a unique source and sink
vertex. Each edge is directed from one layer to the next with a linear polynomial associated to
it as its weight. The weight of a path is the product of edge weights along the path. The ABP
then computes the sum of all weighted paths from source to sink, as its output polynomial. The
length of an ABP is the length of the longest path from source to sink and width of an ABP is the
maximum number of vertices in any layer. The size of ABP is the product of its length and width.
The class of all polynomial sized ABPs is called VBP.

A.2 PIT-Preliminaries

The problem of PIT asks for determining whether a given input polynomial is identically zero or
not. The input polynomial is given in the form of some algebraic circuit. In white-box PIT, one can
look ‘inside’ the input circuit while in black-box PIT, the input is given as a black-box and one can
only evaluate the given circuit on field points. Therefore, in black-box PIT for a class of n-variate
polynomials C, we are asked to provide a setH ∈ Fn such that for any non-zero f ∈ C, there exists
at least one point α ∈ H such that f (α) 6= 0. Such a setH is called hitting-set for class C.

There is also a notion of hitting set generator (HSG) or simply generator in short, which is
equivalent to a hitting set and is easier to work with PIT algorithms. We frame the PIT result in
this work using generators. Definition 3.1 gives the formal definition of a generator.

Below, we mention the sparse PIT map of [KS01] which gives efficient deterministic black-box
PIT for the class of sparse polynomials and few other folklore results.

Lemma A.1 (Sparse HSG; [KS01]). Let f ∈ F[x1, . . . , xn] be a non-zero polynomial of individual degree at
most d, such that ‖ f ‖ ≤ m. Let p be a prime larger than max(d, mn+ 1). Then, there exists a k ∈ [mn+ 1]
such that the univariate polynomial f ′(y) = f (y, yk1 mod p, . . . , ykn−1 mod p) is non-zero. This yields an HSG
G : F→ Fn of seed-length 1 for the class of m-sparse polynomials such that deg(G) = poly(m, n, d).

Lemma A.2 (Folklore). Let f = ∏k
i=1 fi be a non-zero polynomial, where for each i ∈ [k], fi ∈ C, for some

circuit class C. Let G be a generator for C. Then, f ◦ G 6= 0.

Lemma A.3 (Folklore). Let f ∈ C be a non-zero polynomial in circuit class C. Let G be a generator for C.
If f has a non-zero factor g, then g ◦ G 6= 0.
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