
Robustly Separating the Arithmetic Monotone Hierarchy Via
Graph Inner-Product

Arkadev Chattopadhyay* Utsab Ghosal† Partha Mukhopadhyay‡

May 13, 2022

Abstract

We establish an ε-sensitive hierarchy separation for monotone arithmetic computations. The
notion of ε-sensitive monotone lower bounds was recently introduced by Hrubeš [Hru20]. We show
the following:

• There exists a monotone polynomial over n variables in VNP that cannot be computed by 2o(n)

size monotone circuits in an ε-sensitive way as long as ε ≥ 2−Ω(n).

• There exists a polynomial over n variables that can be computed by polynomial size monotone
circuits but cannot be computed by any monotone arithmetic branching program (ABP) of
no(log n) size, even in an ε-sensitive fashion as long as ε ≥ n−Ω(log n).

• There exists a polynomial over n variables that can be computed by polynomial size monotone
ABP but cannot be computed in no(log n) size by monotone formulas even in an ε-sensitive way,
when ε ≥ n−Ω(log n).

• There exists a polynomial over n variables that can be computed by width-4 polynomial size
monotone arithmetic branching programs (ABPs) but cannot be computed in 2o(n1/d) size by
monotone, unbounded fan-in formulas of product depth d even in an ε-sensitive way, when
ε ≥ 2−Ω(n1/d). This yields an ε-sensitive separation of constant-depth monotone formulas and
constant-width monotone ABPs. It seems that even an ordinary separation of the two classes
was not known.

An interesting feature of our separations is that in each case the polynomial exhibited is obtained
from a graph inner-product polynomial by choosing an appropriate graph topology. The closely
related graph inner-product Boolean function for expander graphs was invented by Hayes [Hay11],
also independently by Pitassi [Pit09], in the context of best-partition multiparty communication
complexity.

1 Introduction

While considerable progress has been made in monotone complexity, several fundamental problems
remain open. In particular, it is known that monotone lower bounds of a certain kind are enough to imply
the major breakthrough of obtaining strong general circuit lower bounds. In Boolean complexity, it has
long been known [Val86] that monotone circuit lower bounds for slice functions are sufficient to yield
general lower bounds. In the context of arithmetic complexity, Hrubeš [Hru20] recently formulated an
analogous result by showing that ε-sensitive monotone lower bounds for arbitrarily small but non-zero ε
yield lower bounds even for non-monotone circuits. More generally, consider Fn to be the full polynomial,

*TIFR, Mumbai. Partially supported by a MATRICS grant of the Science and Engineering Research Board, DST, India.
arkadev.c@tifr.res.in

†CMI,Chennai ghosal@cmi.ac.in
‡CMI, Chennai. partham@cmi.ac.in

1

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Report No. 71 (2022)

(1 + x1 + x2 + · · ·xn)n, of degree n that obviously has a simple monotone circuit. For any monotone
polynomial f , Hrubeš showed that super-polynomial lower bounds on the monotone circuit (branching
program, formula) size for Fn + ε · f for arbitrarily small ε > 0, yields general lower bounds on circuit
(branching program, formula1) size for computing f . Setting Fn,m :=

∏n
i=1(xi,1 + · · ·+ xi,m) to be the

full set-multilinear polynomial (over n×m variables) and proving such ε-sensitive bounds yields general
set-multilinear bounds. Hrubeš argues that proving ε-sensitive lower bounds even for moderately small ε
seems to be non-trivial as it’d require exploiting information of the values of coefficients of monomials
appearing in f . Most techniques employed for proving lower bounds in general, and for monotone lower
bounds in particular, ignore the specific values of coefficients. They use the structure of the support set
of the monomials alone. With respect to such techniques, the determinant and permanent polynomials,
two polynomials that Valiant’s VP vs. VNP conjecture asserts have very different complexities, remain
equivalent. Some recent works that are able to exploit the values of coefficients are that of Yehudayoff
[Yeh19] and the work of Srinivasan [Sri20] that builds upon the former. However, these techniques have
not yielded so far ε-sensitive lower bounds. Such bounds were recently obtained by Chattopadhyay,
Datta and Mukhopadhyay [CDM21] and by Chattopadhyay et.al. [CDGM22], adapting techniques from
2-party communication complexity.
Motivated towards gaining a better understanding of ε-sensitive computations, we revisit the question
of separating the powers of some of the key monotone arithmetic models: circuits, branching programs,
formulas and constant-depth (unbounded fan-in) formulas. Arvind, Joglekar and Srinivasan [AJS09]
proved that constant-depth monotone formulas are strictly less powerful than monotone formulas of
unrestricted depth by considering a specialized polynomial. Hrubeš and Yehudayoff [HY11] showed that
elementary symmetric polynomials cannot be computed in polynomial size by monotone formulas. This
provides a separation of the powers of monotone formulas from that of monotone ABPs. Later, a different
work of Hrubeš and Yehudayoff [HY16] showed a similar separation of the power of monotone ABPs and
monotone circuits. This required the construction of an altogether different polynomial. Very recently,
Komarath, Pandey and Rahul [KPR22] provided a unified treatment of these separations (not including
the separation between constant-depth formulas and formulas of unrestricted depth) by making use of
graph homomorphism polynomials. It is natural to ask if these separations can be strengthened/made
robust in the following way: can we exhibit a polynomial f that has polynomial size monotone circuits
(ABPs) but even Fn + ε · f has no polynomial size monotone ABP (formula)?
The main contribution of this work is to provide the first such robust separations between the power of
monotone circuits, ABPs, formulas and constant-depth circuits that are additionally done in a unified
way. Our separations build on the connection developed in [CDM21, CDGM22] between randomized
communication complexity and ε-sensitive lower bounds. In particular, this allows us to exhibit a general
framework to define graph inner-product polynomials such that simply changing the graph appropriately
yields the required polynomial for each of our separations. More precisely, given an undirected graph G
on k vertices and a number m, we first define a Boolean function, called the graph inner-product function
and denoted by IPG : {0, 1}k×m → {1,−1}. Let V (G) := {u1, . . . , uk}. We identify each vertex with a
variable −→ui that takes m-bit binary vectors as values. Then,

IPG(−→u1, . . . ,
−→uk) :=

(
− 1
) ∑

(ui,uj)∈E(G)

〈−→ui,−→uj〉
,

where ∀(ui, uj) ∈ E(G), 〈−→ui ,−→uj〉 :=
∑

t∈[m] u
i
t · u

j
t and −→ui = (ui1, u

i
2, . . . , u

i
m) ∈ {0, 1}m.

1The case of formulas comes with the following subtlety: Hrubeš’ argument uses a homogeneization trick. Unlike circuits
or ABPs, we don’t know yet if formulas can be homogeneized without significant blow-up [Sap21, Subsection 5.1]. This
seemingly prevents a direct application of Hrubeš’ argument to formulas. Nevertheless, using the fact that size s ABPs can be
simulated by size slog s formulas, one concludes quite easily that an ε-sensitive monotone lower bound for formulas of the form
n(logn)1+δ for any δ > 0, is sufficent to imply super-polynomial lower bounds even for general ABPs.

2

We consider a set-multilinear polynomial over an input matrixX of dimension k×nwith entriesX[i, j] :=
xi,j of indeterminates, and n = 2m. The monomials will naturally encode satisfying assignments to
the Boolean graph inner product function defined above. Towards this, define M[X] to be the set of all
set-multilinear monomials of degree k over X = {Xi| i ∈ [k]}, where ∀i Xi = {xi,j | j ∈ [n]}. With
every map ν : [k] → [n], we identify a monomial κν ∈ M[X] as mν :=

∏k
i=1 xi,ν(i). This forms a

bijection between set M[X] and T = {ν| ν : [k]→ [n]}. Now each map ν ∈ T can be identified by a k
tuple of m-bit vectors (−→ν1, . . . ,

−→νk) where for every i ∈ [k] −→νi is the binary representation of ν(i) ∈ [n].
So in this way, given map ν : [k]→ [n], any set-multilinear degree k monomial κ = x1,ν(1) · · ·xk,ν(k)

corresponds to a k tuple of m-bit vectors κ̃ = {−→ν1, . . . ,
−→νk} where each −→νt is the binary representation of

ν(t).
Let,

fG,m :=
∑

IPG(κ̃)=−1

κ

be called the IPG,m polynomial.
Further, let

Fk,n :=

k∏
i=1

(xi,1 + · · ·+ xi,n),

be the full set-multilinear polynomial over M[X].
We can now state our first theorem that implies the first strongly exponential ε-sensitive monotone lower
bounds for an explicit (monotone) polynomial in VNP. Recall that n = 2m.

Theorem 1.1. Let G be a constant-degree expander graph on k vertices. Then, there exists a constant
c > 0 such that any monotone circuit computing either of the polynomial Fk,n ± ε · fG,m has size 2Ω(km)

as long as ε ≥ 2−ckm.

Remark 1.1. Plugging m = 1 in Theorem 1.1, we recover the claimed strongly exponential lower bound
as long as ε = 2−Ω(n).

The VNP upper bound for the polynomial fG,m follows from Valiant’s criterion [Val79, Proposition 4].
Our second theorem obtains an ε-sensitive separation between monotone circuits and monotone ABPs.

Theorem 1.2. Let T be the full binary tree on k vertices. Then, fT,m can be computed by monotone
circuits of size O(kn3). On the other hand, there exists a constant c > 0 such that any monotone ABP
computing either of the polynomial Fk,n ± ε · fT,m has size kΩ(m) as long as ε ≥ k−cm.

We next provide an analogous separation between monotone ABPs and monotone formulas by considering
a path.

Theorem 1.3. Let Γ be a simple path on k vertices. Then, the polynomial fΓ,m can be computed by a
monotone ABP of size O(kn). On the other hand, there exists a constant c > 0 such that any monotone
formula computing either of the polynomial Fk,n ± ε · fΓ,m has size kΩ(m) as long as ε ≥ k−cm.

Finally, we provide a separation between constant-depth monotone formulas and monotone formulas.
In fact, we provide a stronger separation, that of monotone constant-depth formulas and constant-width
ABPs.

Theorem 1.4. Let Γ be a simple path on k vertices. Then, the polynomial fΓ,1 can be computed by a
monotone width-4 ABP of size O(k). On the other hand, there exists a constant c > 0 such that any
monotone formula of product-depth d computing either of the polynomial Fk,2 ± ε · fΓ,1 has size 2k

Ω(1/d)

as long as ε ≥ 2−ck
1/d

.

3

It is known that poly-size bounded-depth monotone formulas can be simulated by poly-size bounded-
width monotone ABPs which in turn can be simulated by monotone formulas of unrestricted depth
and polynomial size. Our result, thus in particular, shows that the class of polynomials computed by
constant-depth monotone formulas of polynomial size are strictly contained (in a strong sense) in the
class of polynomials having bounded-width monotone ABPs of polynomial size. As far as we know, such
a result was not known before.

1.1 Outline of our Technique

We build upon the insight relating ε-sensitive lower bounds with the measure of discrepancy under
universal distributions, originating in [CDM21, CDGM22]. Both of these works prove lower bounds
against monotone circuits for polynomials that are not known to have any efficient monotone computation.
The main concern here is to prove separations in the monotone hierarchy. Thus, the new challenge is
to come up with far ‘easier polynomials’ to which a discrepancy like measure can still be applied. The
canonical example of a ‘function’ to which the discrepancy method applies in communication complexity
is that of Inner-product. However, one important difference between the setting of standard 2-party
communication complexity and arithmetic circuits is that while in the former, every rectangle that appears
in a rectangular decomposition conforms to the same partition of inputs among the players, in the latter
each product polynomial appearing in a decomposition is free to have its own partition of the input
variables. Indeed, the standard Inner-product function becomes trivial for the best (w.r.t the players)
partition.
This is why we turn to best-partition communication complexity, a slightly non-standard model. Hayes
[Hay11], and independently Pitassi [Pit09], designed an appropriate version of the Inner-product function
that they called Graph inner-product (see the definition from the Introduction) which they proved is hard
against all (balanced) partitions. To do this, they chose the graph to be a constant-degree expander. A
standard property of such an expander is that the size of any balanced cut is large. This allows one to say
that for every possible partition of inputs among the players, one can induce a large copy of the standard
inner-product as a sub-function for which the given partition is the worst for the players. This does not
immediately give us a monotone arithmetic circuit lower bound. To get there, we need to argue against
many partitions appearing together in the decomposition. This is where we use the idea from [CDGM22]
of discrepancy w.r.t universal distributions that is a measure which is partition independent. This gives us
our Theorem 1.1, an ε-sensitive strongly exponential lower bounds against monotone circuits.
How does one tune the complexity of a graph Inner-product polynomial so that it becomes easy for
monotone circuits but remains robustly hard against monotone branching programs? The starting point
is to look at the (not robust) separation of these two classes by Hrubeš and Yehudayoff [HY16]. They
showed that there is a subtle difference between decomposition theorems for ABPs and that of circuits.
ABPs give rise to a slightly more structured decomposition where, for every r, we can force each product
polynomial to have a partition such that one part has size exactly r. They further showed that for the
full binary tree on k vertices, any cut where one side has r(k) vertices, has size Ω(k). Exploiting this
insight, we establish Theorem 1.2 by proving a universal discrepancy bound for all such partitions on the
binary-tree inner-product function.
To separate formulas from ABPs, we use the fact that the decomposition theorem for formulas provides
even more structure. Here, every polynomial of degree k appearing in a decomposition can be written
as a product of about log k-many polynomials rather than two. This corresponds, with the usual caveat
of mixed vs. best partition, to the case of the best-partition log k-party number-in-the-hand model of
randomized communication complexity. While the goal of having an efficient ABP upper bound for the
polynomial forces the corresponding 2-party game to be easy for at least some partition, choosing the
graph to be a simple path ends up having the following simple but remarkable feature: for every balanced
log k-wise partition of the inputs, one can design a 2-party game with a hard partition. This reduces the

4

task to proving a discrepancy bound for this hard 2-party partition which drives Theorem 1.3.
To separate monotone ABPs of constant width from monotone constant-depth (but unbounded fan-in)
formulas, we first note that keeping the path inner-product polynomial becomes easy for ABPs of constant
width once we restrict each node in the path to have two (or any constantly many) variables instead of n.
Finally, we exploit the super-structured decomposition theorem for constant-depth (but unbounded fan-in)
formulas. Each product polynomial now is the product of k1/d-many set-multilinear product polynomials,
where d is the product-depth of the formula. Using similar ideas as in the proof of Theorem 1.3 with this
additional structure, we establish appropriate discrepancy bounds to yield Theorem 1.4.

1.2 Other Related Work

Strongly exponential lower bounds on monotone arithmetic circuits were obtained in several previous
works as well (see for example [GS12, RY11, Sri20, CKR20, HY21, CDGM22]). Among them, the
idea of using the discrepancy method appears in Raz and Yehudayoff [RY11] and in Chattopadhyay
et.al. [CDGM22]. The latter work did prove exponential ε-sensitive lower bounds for the spanning tree
polynomial that is known to be in VP. Incomparably, our Theorem 1.1 proves a strongly exponential
ε-sensitive lower bound, but for a polynomial in VNP. ε-sensitive lower bounds were not proved in other
works.
Some separations related to our Theorems 1.2-1.4 have been obtained in other works. For instance, Dvir
et. al. [DMPY12] showed that multilinear branching programs are strictly more powerful that multilinear
formulas. As their witnessing polynomial is computable by, in fact, a monotone branching program,
their separation subsumes a simple separation of the corresponding monotone models. However, our
Theorem 1.3 provides an ε-sensitive lower bound for formulas for a polynomial efficiently computed
by branching programs. Thus, the two separations seem incomparable. Similarly, the work of Raz and
Yehudayoff [RY09], and later by Chillara et.al. [CELS18], provided, among other things, an exponential
separation of the multilinear models of formulas and constant-depth, unbounded fan-in formulas via
monotone polynomials computed efficiently by monotone formulas of unrestricted depth. For the same
reason as before, this separation seems incomparable to the ε-sensitive separation provided by our
Theorem 1.4, although both imply a separation of the simpler corresponding monotone models.
Finally, Arvind, Joglekar and Srinivasan [AJS09] also obtained a monotone depth-hierarchy theorem. In
the process, they also considered the model of bounded-width (monotone) circuits, a model quite related
to bounded-width (monotone) branching programs. They proved a monotone width-hierarchy theorem as
well. As far as we can tell, their work does not separate the class of polynomials having efficient monotone
bounded-depth formulas from the class of polynomials having efficient monotone bounded-width circuits,
although it is known that the latter contains the former. Our Theorem 1.4, on the other hand, shows that
already width-4 monotone ABPs can compute polynomials that require exponential size to be computed
by constant-depth monotone circuits, even in an ε-sensitive sense as long as ε is inverse exponentially
large.

Organization

The paper is organized as follows. We provide some background mainly on communication complexity
and monotone algebraic complexity in Section 2. In Section 3, we prove results on discrepancy bounds for
graph inner product function. The proof of Theorem 1.1 is given in Section 4 that shows ε-sensitive lower
bound for monotone circuits. Section 5 contains the proof of Theorem 1.2 which shows the separation
between monotone circuits and ABPs. Finally in Section 6, we provide the proofs of Theorem 1.3 and
Theorem 1.4 establishing the separations between monotone ABPs vs formulas, and constant width ABPs
vs constant depth formulas.

5

2 Preliminaries

Notation

Let [n] = {1, 2, . . . , n}. Polynomials are always considered over R[X] where R is the set of reals.

Set-multilinear Polynomials

Let X = ∪ki=1Xi be a set of variables where Xi = {xi,1, xi,2, . . . , xi,n}. A polynomial f ∈ R[X] is
set-multilinear if each monomial in f respects the partition given by the set of variables X1, X2, . . . , Xk.
In other words, each monomial κ in f is of the form x1,j1x2,j2 · · ·xk,jk . For the purpose of the paper it is
also useful to think the variables are from a matrix Mk×n where the ith row is {xi,1, xi,2, . . . , xi,n}.

Ordered Polynomials

For a monomial of the form m = xi1,j1xi2,j2 · · ·xik,jk we define the set I(m) = {i1, i2, . . . , ik}. If a
polynomial f has the same set I(m) for every monomial occurring it it with a nonzero coefficient, then
we say that the polynomial is ordered and we write I(f) = I(m) for each m. Clearly, the set-multilinear
polynomials are ordered polynomials with I(f) = {1, 2, . . . , k}.

2.1 Structure of Monotone Circuits

The main structural result for monotone circuits that we use throughout, is the following theorem.

Theorem 2.1. [Yeh19, Lemma 1] Let n > 2 and f ∈ R[X] be an ordered monotone polynomial with
I(p) = [k]. Let C be a monotone circuit of size s that computes f . Then, we can write

f =
s∑
t=1

at · bt

where at and bt are monotone ordered polynomials with k
3 ≤ |I(at)| ≤ 2k

3 and I(bt) = [k] \ I(at).
Moreover, atbt ≤ f for each 1 ≤ t ≤ s, by which we mean that the coefficient of any monomial in atbt is
bounded by the coefficient of the same monomial in f .

A partition P = (A,B) of [k] is said to be perfectly balanced if |A| = |B| = k
2 and is said to be nearly

balanced if k
3 ≤ |A|, |B| ≤

2k
3 . An ordered product polynomial a · b on n variables is said to be nearly

balanced if k3 ≤ |I(a)|, |I(b)| ≤ 2k
3 .

2.2 Structure of Monotone ABPs

We recall the definition of algebraic branching programs (ABPs).

Definition 2.1 (Algebraic Branching Program). An algebraic branching program (ABP) is a layered
directed acyclic graph. The vertex set is partitioned into layers 0, 1, . . . , k, with directed edges only
between adjacent layers (i to i+1). There is a source vertex of in-degree 0 in layer 0, and one out-degree-0
sink vertex in layer k. Each edge is labeled by an affine F-linear form where F is the underlying field.
The polynomial computed by the ABP is the sum over all source-to-sink directed paths of the ordered
product of affine forms labeling the path edges.

The following structure theorem is well-known.

6

Theorem 2.2. [HY16, Lemma 3] Let f be a degree k homogeneous monotone set-multilinear polynomial
computed by a size s ABP. Then for every j ∈ [k] there exists s pairs of monotone ordered set-multilinear
polynomials {gi, hi |i ∈ [s]} such that

f =
s∑
i=1

gi · hi

where for every i, |I(gi)| = j and |I(hi)| = k − j. (I(gi), I(hi)) gives a partition of [k].

2.3 Structure of (Monotone) Set-Multilinear Formulas

Definition 2.2. (Monotone) Set-Multilinear-log-Product Polynomials.
A degree k polynomial f defined over a k×nmatrixM of variables is called a (monotone) set-multilinear-
log-product polynomial if there exists p (monotone) set-multilinear polynomials f1, . . . , fp such that the
following holds.

1. f =
∏p
i=1 fi.

2. ∀i ∈ [p−1], (1
3)ik ≤ |I(fi)| ≤ (2

3)ik where I(fi) is the set of rows ofM on which the polynomial
fi is defined.

3. ∀ i 6= j, I(fi) ∩ I(fj) = ∅.

4. |I(fp)| = 1.

The following structure theorem is well-known and proved in [HY11]. However, we include a self-
contained proof in the appendix for completeness.

Theorem 2.3. [HY11, Lemma 4] Let f be a degree k set-multilinear polynomial computed by a
(monotone) formula of size s. Then there exists (monotone) set-multilinear-log-product polynomials
g1, g2, . . . , gs′ such that s′ ≤ s,

f = g1 + g2 + · · ·+ gs′ .

2.4 Structure of (Monotone) Set-Multilinear Constant Depth Formula

Definition 2.3. (p, `)-Form
A degree k (monotone) set-multilinear polynomial f defined over a matrix Mk×n of variables has a
(p, `)-from if there exists p (monotone) set-multilinear polynomials f1, . . . , fp such that the following
holds.

1. f =
∏p
i=1 fi.

2. ∀ i ∈ [p], |I(fi)| ≥ `, where I(fi) is the set of rows of Mk×n on which the polynomial fi is
defined.

3. ∀ i 6= j, I(fi) ∩ I(fj) = ∅.

The following theorem is a re-statement of Lemma 9 in [HY11]. For completeness, the proof is included
in the appendix.

Theorem 2.4. [HY11, Lemma 9] Let f be a degree k set-multilinear polynomial computed by a
(monotone) formula of size s and product depth d. Let q > 1 be a natural number such that k > (2q)d.
Then there exists (monotone) set-multilinear-(q, k(2q)−d)-form polynomials g1, g2, . . . , gs′ such that
s′ ≤ s,

f = g1 + g2 + · · ·+ gs′ .

7

2.5 Communication Complexity

We recall some basic results from communication complexity. The details can be found in [KN06].
Let us very briefly first recall basic notions in the 2-party communication model of Yao. The joint
input space of Alice and Bob is {0, 1}m × {0, 1}m with each player receiving an m-bit Boolean string,
and they want to evaluate a Boolean function F : {0, 1}m × {0, 1}m → {−1, 1}. One defines a
combinatorial rectangle R as a product set A×B, for some A,B ⊆ {0, 1}m. Put another way, R is just
a sub-matrix of the 2m × 2m communication matrix MF of the function F , that Alice and Bob want to
compute. The rows of this matrix are indexed by possible inputs of Alice and the columns by the ones
of Bob and MF (x, y) = F (x, y). One of the important notions is discrepancy. For a rectangle R, the
discrepancy Discδ(F,R) :=

∣∣δ(R ∩ F−1(1))− δ(R ∩ F−1(−1))
∣∣ where δ is a distribution on the input

space {0, 1}m × {0, 1}m. In other words,

Discδ(F,R) =
∣∣∣ E

(x,y)∼δ
[F (x, y)R(x, y)]

∣∣∣.
The discrepancy of F under δ is defined as

Discδ(F) := max
R

Discδ(F,R).

In this work, we will be forced to look at variable partition models. That is, the n input bits will be
partitioned among Alice and Bob in multiple ways. Each such partition P has its own set of rectangles,
denoted byR(P). Hence, we define,

Discδ,P (F) := max
R∈R(P)

Discδ(F,R).

The 2-party model extends to t-party model naturally. Here, we have t players P1, P2, . . . , Pt and the
joint input space is {0, 1}m1 × {0, 1}m2 × . . . × {0, 1}mt . Player Pi receives an input from {0, 1}mi .
Together, they want to compute a function F : {0, 1}m1 × {0, 1}m2 × · · · × {0, 1}mt → {−1, 1}. We
can similarly define a combinatorial rectangle R = R1 × · · · ×Rt where each Ri ⊆ {0, 1}mi . For any
distribution δ over the input space {0, 1}m1 × {0, 1}m2 × · · · × {0, 1}mt and a rectangle R we define

Disctδ(F,R) :=
∣∣δ(R ∩ F−1(1))− δ(R ∩ F−1(−1))

∣∣ . (1)

Now we define the discrepancy of F in the following way,

Disctδ(F) := max
R

Disctδ(F,R)

Exactly like in the two-party case, we will be considering the t-party discrepancy w.r.t multiple t-way
partitions. Hence, given such a partition P , we analogously define Disctδ,P (F).
Let us recall the inner product function,

IPm(x, y) :=
(
− 1
)∑m

i=1 xiyi
,

that is widely studied. It is well-known that the two-party discrepancy of the inner product function
is small under the uniform distribution U over {0, 1}m × {0, 1}m. This was first proved by Chor and
Goldreich [CG88]. A self-contained proof can be found in [KN06].

Theorem 2.1. [KN06, Example 3.29] Under the uniform distribution U over {0, 1}m × {0, 1}m,
DiscU (IPm) = 2−Ω(m).

8

3 Discrepancy Bound for Graph Inner Product

3.1 Graph Inner Product Function

Given a graph G on k vertices {u1, u2, . . . , uk}, we identify each vertex ui with variable −→ui which takes
m-bit binary vectors as values. Now we define the following function

IPG(−→u1, . . . ,
−→uk) =

(
− 1
) ∑

(ui,uj)∈E(G)

〈−→ui,−→uj〉

where ∀(ui, uj) ∈ E(G) and 〈−→ui ,−→uj〉 =
∑

t∈[m] u
i
t · u

j
t and −→ui = (ui1, u

i
2, u

i
3, . . . , u

i
m) ∈ {0, 1}m.

3.2 Graph Inner Product Polynomial

Consider the input matrix X of dimension k × n with entries X[i, j] := xi,j of indeterminates, and
n = 2m. Define M[X] to be the set of all set-multilinear monomials of degree k over X = {Xi| i ∈ [k]},
where ∀i Xi = {xi,j | j ∈ [n]}. With every map ν : [k] → [n], we identify a monomial κν ∈ M[X] as
κν :=

∏k
i=1 xi,ν(i). This forms a bijection between set M[X] and T = {ν| ν : [k]→ [n]}.

Now each map ν ∈ T can be identified by a k tuple of m-bit vectors (−→ν1, . . . ,
−→νk) where for every i ∈ [k]

−→νi is the binary representation of ν(i) ∈ [n]. So in this way, given map ν : [k]→ [n], any set-multilinear
degree k monomial κ = x1,ν(1) · · ·xk,ν(k) corresponds to a k tuple of m-bit vectors −→κ = {−→ν1, . . . ,

−→νk}.
Let the polynomial,

fG,m :=
∑

IPG(−→κ)=−1

κ

be denoted as IPG,m and be called the G-Inner product polynomial.

3.3 Discrepancy and Lower Bound Correspondence

Recently in [CDGM22], a correspondence between ε-sensitive monotone lower bound for a 0 − 1
coefficient polynomial f an appropriate communication problem has been established via the discrepancy
measure. There the authors only considered two-party communication problem. Here we extend it to
t-party communication problem for t ≥ 2. Let (A1, A2, . . . , At) be any partition of [k] and let there be
t players P1, . . . , Pt. The players are given a map ν : [k] → [n] in a distributed fashion, i.e, Pi gets a
map νi : Ai → [n]. They jointly want to decide if the monomial κν is present in polynomial f or not. In
other words, the players want to compute a Boolean function, denoted by Cf : {0, 1}k×m → {1,−1},
where Cf (ν(1), . . . , ν(k)) = −1 if monomial κν has coefficient 1 in f and otherwise Cf evaluates to 1.
Inspecting the proof in [CDGM22], it is easy to observe that the lower bound technique is independent of
the monotone computation model. In particular, it applies to ABPs, formulas and constant depth formulas
using their respective structure theorems. that is Theorem 2.2, Theorem 2.3 and Theorem 2.4. More
precisely, we can restate their result in the following form.

Theorem 3.1. [CDGM22, Adaptation of their Theorem 1.3] Let f be any 0−1 set-multilinear monotone
polynomial defined over a matrix of variables of dimension k × n. Let ∆ be a distribution over [k]n.

1. The monotone circuit complexity of Fk,n− ε · f (resp. Fk,n + ε · f) is at least ε
3γ (resp. ε

6γ) as long

as ε ≥ 6γ
1−3γ (resp. ε ≥ 6γ

1−12γ), where γ := maxP Disc∆,P (Cf) and P is any nearly balanced
2-wise partition of [k].

2. Let r ∈ [k]. Then the monotone ABP complexity of Fk,n − ε · f (resp. Fk,n + ε · f) is at least ε
3γ

(resp. ε
6γ) as long as ε ≥ 6γ

1−3γ (resp. ε ≥ 6γ
1−12γ), where γ := maxP Disc∆,P (Cf). Here the max

runs over all 2-wise partitions P = (A,B) of [k] such that |A| = r.

9

3. The monotone formula complexity of Fk,n− ε ·f (resp. Fk,n+ ε ·f) is at least ε
3γ (resp. ε

6γ) as long

as ε ≥ 6γ
1−3γ (resp. ε ≥ 6γ

1−12γ), where γ := maxP Disct∆,P (Cf), P runs over all t-wise partitions
with t = Ω(log k).

4. The monotone product depth d formula complexity of Fk,n − ε · f (resp. Fk,n + ε · f) is at least ε
3γ

(resp. ε
6γ) as long as ε ≥ 6γ

1−3γ (resp. ε ≥ 6γ
1−12γ), where γ := maxP Disct∆,P (Cf), P runs over all

t-wise partitions with t = Ω(k
1
d).

3.4 Good Matching in Graphs

Consider a graph G on vertex set V . For a partition P = (V1, V2) of V , let GP be the induced bipartite
graph, i.e., E(GP) := {(u, v) : (u, v) ∈ E(G), u ∈ V1, v ∈ V2}.

Definition 3.1. Let G be a graph and P = (V1, V2) be any partition of the vertex set. A matching M in
the induced bipartite graph GP is called good if for every pair of edges (ui, wi), (uj , wj) in M, none of
(ui, uj), (ui, wj), (wi, wj) and (uj , wi) are in E(G). Further, we define

τ(G,P) = max
M is good w.r.t P

|M |.

Lemma 3.1. Let G be any graph with maximum degree d. Then for any partition P of the vertex set of
G, we have τ(G,P) ≥ |E(GP)|

2d2 .

Proof. Consider the graph GP and build a matching M ⊆ E(GP) by the following process, starting
with an empty M .

1. If E(GP) is empty, return M . Otherwise, add any edge (u, v) in E(GP) to M .

2. Remove every edge currently in E(GP) that is incident to a vertex that is a neighbour of u or v
(including themselves) in G.

3. Go back to 1.

Observe that after each completion of step 2, the number of edges newly added to M is 1 and the number
of edges removed from E(GP) is at most 2d2 since degree of a vertex in G (and therefore in GP as well)
is at most d. Thus, size of M is at least |E(GP)|

2d2 . It’s simple to verify that the pruning done at step 2
ensures M forms a good matching.

The following lemma gives a lower bound on the size of a good matching in a constant degree expander
graph. The proof follows by a simple application of the Expander Mixing Lemma [HLW06, Lemma 2.5]
and Lemma 3.1 . Similar arguments also appear in [Pit09, Lemma 4.2] and in [Hay11]. We provide a
proof for the sake of completeness in the appendix.

Lemma 3.2. [Pit09, Hay11] Let d be a constant and G be a d regular expander graph on k vertices with
the second largest eigen value of the normalized adjacency matrix . 1√

d
and P = (V1, V2) be a nearly

balanced partition of the vertex set V . Then,

τ(G,P) = Ωd(k).

The notation Ωd hides a constant that depends on d.
The next lemma is about good matching in a full binary tree.

10

Lemma 3.3. Given a full binary tree T on k vertices, there exists a number t ≈ 2
3k , such that for any

partition P = (V1, V2) of the vertex set with |V1| = t,

τ(T, P) = Ω(log k).

Proof. In [HY16], it is shown that there exists a number t ≈ 2
3k such that for any partition P = (V1, V2)

with |V1| = t, the induced bipartite graph TP has Ω(log k) many edges. Since the maximum degree of T
is 3, using Lemma 3.1 τ(T, P) = Ω(log k).

3.5 A Communication Problem

Much of what we’re going to prove in this section, derives its intuition from the following communication
problem in Yao’s 2-party model. We state the problem below, although we point out to the reader that if
one is just interested in verifying the monotone lower bounds we claim for the various arithmetic models,
then it is not necessary to know this communication problem.

Problem 3.1. Given a graph G with a vertex set V , where V is partitioned into V1, V2 and |V | = k, we
consider the following communication problem in Yao’s 2-party model: Alice (Bob) gets the assignment
to variables corresponding to vertices of V1 (V2). Together they need to evaluate the Boolean function
IPG on their joint inputs.

Having stated the problem, we prove below the key discrepancy upper bound that shows the above
problem’s communication complexity, w.r.t. any balanced partition, to be high. This consequence of our
discrepancy bound may be of independent interest.

Lemma 3.4. Consider a graph G on vertex set V such that V = {u1, u2, . . . , uk}. For a partition
P = (V1, V2) of V , let GP be the induced bipartite graph. Under the uniform distribution U over
{0, 1}km, the following holds,

DiscU ,P (IPG) ≤ 2−Ω(τ(G,P)·m).

Proof. Let MP be the good matching in GP such that τ(G,P) = |MP |. For convenience let
|MP | = t. For any edge (ui, uj) in the matching MP define

−→
Ci = ⊕ur∈Nbd(ui)\{uj}

−→ur and
−→
Cj = ⊕u`∈Nbd(uj)\{ui}

−→u` . Here Nbd(ui) = {u` : (ui, u`) ∈ E(G)}.
Then, IPG(−→u1,

−→u2, . . . ,
−→uk) = (−1)D where

D =
(∑

(ui,uj)∈MP

(〈−→ui ,−→uj 〉+ 〈
−→
Ci,
−→ui 〉+ 〈

−→
Cj ,
−→uj 〉
)

+
∑

uq ,ur /∈V (MP)
(uq ,ur)∈E(G)

〈−→uq ,−→ur〉

=
(∑

(ui,uj)∈MP

(〈−→ui +
−→
Cj ,
−→uj +

−→
Ci〉+ 〈

−→
Ci,
−→
Cj〉
)

+
∑

uq ,ur /∈V (MP)
(uq ,ur)∈E(G)

〈−→uq ,−→ur〉

=
(∑

(ui,uj)∈MP

〈
−→
u′i ,
−→
u′j 〉+ c

)
(2)

Here
−→
u′i = −→ui +

−→
Cj and

−→
u′j = −→uj +

−→
Ci. Note that

c =
∑

uq ,ur /∈V (MP)
(uq ,ur)∈E(G)

〈−→uq ,−→ur〉+
∑

(ui,uj)∈MP

〈
−→
Ci,
−→
Cj〉.

11

For the partition P = (V1, V2) consider an arbitrary rectangle R ∈ R(P) in {0, 1}|V1|·m × {0, 1}|V2|·m.
Here for the sake of simplicity we abuse the notation R and denote it as a characteristic function for the
rectangle R. Let U be the uniform distribution over {0, 1}|V1|·m × {0, 1}|V2|·m and Um be the uniform
distribution over {0, 1}m.
Notice that

DiscU ,P (IPG, R) =
∣∣∣ E−→ui∼Um

[
IPG(−→u1,

−→u2, . . . ,
−→uk) ·R(−→u1,

−→u2, . . . ,
−→uk)
]∣∣∣

=
∣∣∣ E−→ui∼Um:ui /∈MP

[
E−→ui∼Um:ui∈MP

[
IPG((−→u1, . . . ,

−→uk)R(−→u1, . . . ,
−→uk)
]]∣∣∣ (3)

Let us denote assignments to vertices not in MP collectively by −→w ∈ {0, 1}(k−2t)m, and assignments to
vertices in MP collectively by −→u ∈ {0, 1}2tm. Thus, using (2), we can continue (3) as follows:

DiscU ,P (IPG, R) ≤ E−→w

[∣∣∣ E−→u ∈{0,1}2tm

[(
− 1
) ∑

(ui,uj)∈MP
〈−→ui,−→uj〉

R
−→w (−→u)

]∣∣∣] (4)

The inner expectation is DiscU ′(IP) where U ′ is the uniform distribution over {0, 1}tm × {0, 1}tm. The
value of DiscU ′(IP) is at most 2−Ω(tm) by Theorem 2.1.

We will now consider a multi-party communication problem in the number-in-hand (NIH) model from
the point of view of best partition communication complexity. While 2-party communication problems
are relevant for proving lower bounds against circuits and ABP’s, it’d be helpful to use the multi-party
model for both unrestricted depth formulas and bounded-depth formulas. As the information bottleneck
for players grows with the number of players in the NIH model, this kind of communication problems
capture the limitation of formulas, especially w.r.t. ABPs and circuits.

Problem 3.2. Communication problem Path-IP
Let there be t players P1, P2, . . . , Pt. The problem is defined over a k vertex path Γ with a fixed vertex set
V = {u1, u2, . . . , uk} and its partition into sets V1, V2, . . . , Vt. Each Pi gets the vertex set Vi. The input
to this problem is a map πi : Vi → {0, 1}m given to each Pi which specifies a m bit vector assignment
to each vertex in Vi. Together the players want to decide if 〈−→i1 ,

−→
i2 〉+ 〈−→i2 ,

−→
i3 〉+ · · · + 〈−−→ik−1,

−→
ik 〉 = 1

(mod 2). Here for every j ∈ [k]
−→
ij = π`(uj) when uj ∈ V` (for ` ∈ [t]).

Observe for this communication problem, rectangles are defined to be t-product sets, i.,e. R is called a
rectangle if R = R1 × R2 × · · · × Rt with each Ri ⊆ {0, 1}kim and ki = |Vi| ∀i ∈ [t]. Our goal is to
show under uniform distribution U over {0, 1}km, the discrepancy of any rectangle R is at most 2−Ω(tm).
To show this we first show the following lemma.

Lemma 3.5. Consider a path graph Γ on k vertices. For every partition P = (P1, . . . ,Pt) of the vertex
set of Γ into 2 ≤ t < k parts, there exists a partition P̃ = (PA,PB) into two parts that is a coarsening
of P such that τ(Γ, P̃) is Ω(t).

Proof. Consider a partition P = (P1, . . . ,Pt) of the set of vertices V (Γ). We create a random coarsening
of it, P̃ = (PA,PB), as follows: for every i ∈ [t], toss an independent unbiased coin. If output is head,
put the vertices of Pi in PA and otherwise put them in PB. Since P partitioned V (Γ) into exactly t parts,
there are at least t− 1 edges (ui, ui+1) of Γ such that ui and ui+1 belong to different Pjs. Denote by E ,
the set of such edges. Now, for every edge e = (u, v) in the path Γ define a random variable ye such that

ye =

{
1 if e ∈ cut(P̃),

0 otherwise.

12

Here, cut(P̃) is the set of edges e = (u, v) such that u ∈ P̃A and v ∈ P̃B or vice-versa. Let the random
variable Y =

∑
e ye be the size of cut(P̃). Note,

E[Y] =
∑
e

E[ye] ≥
∑
e∈E

E[ye] =
t− 1

2
= Ω(t).

Thus, there exists a fixed coarser partition P̃ = (PA,PB) of V (Γ) such that the induced bipartite graph
ΓP̃ has Ω(t) many edges. Since Γ has maximum degree 2, by Lemma 3.1 τ(Γ, P̃) = Ω(t).

Lemma 3.6. Let t ≥ 2 and let Γ be a path on k vertices. Under the uniform distribution U over {0, 1}km
for any t-wise partition P , the following holds.

DisctU ,P(IPΓ) ≤ 2−Ω(tm)

Proof. Obtain a coarsening of the partition P prescribed by Lemma 3.5 to get P̃ = (PA,PB). Consider
any rectangleR = R1×· · ·×Rt under partitionP . LetA ⊂ [t] such that for every i ∈ A the vertices ofPi
goes to PA. SimilarlyB = [t]\A and for every j ∈ B vertices of Pj goes to PB. Define, RA := ×i∈ARi
and RB := ×j∈BRj and finally, R̃ := RA × RB . Observe that R̃ forms a two-dimensional rectangle
w.r.t. P̃ . It is simple to verify,

DisctU (R) = DiscU (R̃).

We know using Lemma 3.4 DiscU ,P̃(R̃) ≤ DiscU ,P̃(IPΓ) ≤ 2−Ω(tm).

4 Monotone Circuit Lower Bound via Expander Graph-IP Polynomial

In this section we prove Theorem 1.1. For the sake of convenience we restate it.

Theorem 1.1. Let G be a constant-degree expander graph on k vertices. Then, there exists a constant
c > 0 such that any monotone circuit computing either of the polynomial Fk,n ± ε · fG,m has size 2Ω(km)

as long as ε ≥ 2−ckm.

Proof. Consider the Boolean function IPG described in Subsection 3.1 where the underlying graph G is a
constant degree expander graph on k vertices. Every vertex gets a m bit binary vector assignment. Let P
be any nearly balanced partition of the vertex set V . We first show the following claim.

Claim 4.1. Under the uniform distribution U over {0, 1}km, for every nearly balanced partition P on
the vertex set V ,

DiscU ,P (IPG) ≤ 2−Ω(km).

Proof. From Lemma 3.2 we know that for every nearly balanced partition P of V , τ(G,P) = Ω(k).
Using Lemma 3.4, under the uniform distribution U over {0, 1}km we get that, DiscU ,P (IPG) ≤ 2−Ω(km).

Now the proof follows from the first part of Theorem 3.1. Here the polynomial f = fG,m and Cf is the
Boolean function IPG. From Claim 4.1 it is clear that

γ = max
P

DiscU ,P (IPG) ≤ 2−Ω(km).

The universal distribution ∆ is the uniform distribution U over km bits. Let the value of γ = 2−γ0km

for some constant γ0 > 0. It is easy to verify that choosing ε ≥ 2
−γ0km

10 satisfies the condition ε ≥ 6γ
1−3γ .

Hence monotone circuit complexity of Fk,n − ε · fG,m is at least ε
3γ which is 2Ω(km). The proof for

Fk,n + ε · fG,m is analogous.

13

5 Separation between Monotone Circuits and Monotone ABPs via Tree-
IP Polynomial

In this section we prove Theorem 1.2. For the sake of convenience we restate the theorem here.

Theorem 1.2. Let T be the full binary tree on k vertices. Then, fT,m can be computed by monotone
circuits of size O(kn3). On the other hand, there exists a constant c > 0 such that any monotone ABP
computing either of the polynomial Fk,n ± ε · fT,m has size kΩ(m) as long as ε ≥ k−cm.

The proof of this theorem is divided in the following two subsections.

5.1 Upper Bound

First we show the upper bound. Let Tu be the sub-tree rooted at node u of T . Below we consider
set-multilinear monomials κ such that I(κ) = V (Tu). Further, we denote by −→κ [u] the m-bit binary
assignment to −→u by −→κ . For every node u in T and −→a ∈ {0, 1}m and b ∈ {0, 1}, we define the following
polynomials,

g
−→a
u,b :=

∑
IPTu (−→κ)=(−1)b
−→κ [u]=−→a

κ

and
gu,b :=

∑
−→a ∈{0,1}m

g
−→a
u,b.

Thus, gr,1 is the output polynomial fT,m where r is the root of T . By induction on the depth of T , we
show that for each node u of T and −→a ∈ {0, 1}m, the polynomials g

−→a
u,0, g

−→a
u,1 can be simultaneously

computed by a circuit of size at most O
(

2d23m
)

.
For the base case d = 1. Let u be a node with two children v, w. For the purpose of this section, i, j, k
are used for the integer values of

−→
i ,
−→
j ,
−→
k ∈ {0, 1}m. Now the polynomials computed at node u are

following,
g
−→
i
u,0 =

∑
−→
j ,
−→
k ∈{0,1}m:

〈−→i ,−→j 〉+〈−→i ,
−→
k 〉=0 (mod 2)

xu,ixv,jxw,k

where for every
−→
i the polynomial g

−→
i
u,0 has 22m monomials. Hence we can compute the polynomials

gu,0, g
−→
i
u,o by a monotone circuit of size at most 23m. Similarly we compute the polynomial gu,1. So the

total size of the circuit is 23m+1 and the base case holds.
Consider a vertex u at depth d with children v, w. By inductive hypothesis, we have circuits Cv, Cw,

each of size at most O(2d−123m) computing simultaneously the polynomials g
−→
i
v,0, g

−→
j
v,1 and g

−→
i
w,0, g

−→
j
w,1

respectively, for each
−→
i ,
−→
j ∈ {0, 1}m.

Now we compute the polynomials g
−→
i
u,0, g

−→
j
u,1.

It is easy to observe that

g
−→
i
u,0 =

∑
−→
j ,
−→
k ∈{0,1}m:

〈−→i ,−→j 〉+〈−→i ,
−→
k 〉=0 (mod 2)

(xu,ig
−→
j
v,0g

−→
k
w,0+xu,ig

−→
j
v,1g

−→
k
w,1)+

∑
−→
j ,
−→
k ∈{0,1}m:

〈−→i ,−→j 〉+〈−→i ,
−→
k 〉=1 (mod 2)

(xu,ig
−→
j
v,0g

−→
k
w,1+xu,ig

−→
j
v,1g

−→
k
w,0).

Now from the circuits Cv and Cw we appropriately reuse the subcircuits for {g
−→
j
v,0, g

−→
j
v,1, g

−→
k
w,0, g

−→
k
w,1}. The

other case, that of computing g
−→
j
u,1, is completely analogous.

14

Hence, the final circuit size, denoted by S(d), satisfies the following recurrence:

S(d) ≤ 2S(d− 1) +O(23m).

Solving the recursion we get S(d) is at most O
(

2d23m
)

. The upper bound follows since k = 2d+1 − 1.

5.2 Lower Bound

Next we show the lower bound result. Consider the Boolean function IPT described in Subsection 3.1,
where T is a full binary tree on k vertices.

Claim 5.1. There exists a number t ≈ 2
3k such that for any partition P = (V1, V2) of the vertex set V (T)

with |V1| = t, under the uniform distribution U over {0, 1}km,

DiscU ,P (IPT) ≤ k−Ω(m).

Proof. Using Lemma 3.3 we know there exists a number t ≈ 2
3k such that for any partition P = (V1, V2)

with |V1| = t, τ(T, P) = Ω(log k). By Lemma 3.4, under the uniform distribution U over {0, 1}km, we
know that DiscU ,P (IPT) ≤ 2−Ω(τ(T,P)·m) = k−Ω(m).

Now we apply the second part of Theorem 3.1 to prove the lower bound. Here the polynomial f = fT,m
and Cf is the Boolean function IPT . Using Claim 5.1,

γ = max
P

DiscU ,P (IPT) ≤ k−Ω(m).

Let γ = k−cm for some constant c > 0 and ∆ be the uniform distribution U over {0, 1}km. One
can easily verify that the condition ε ≥ 6γ

1−3γ is satisfied by choosing ε ≥ k
−cm
10 . Using Theorem 3.1,

the monotone ABP complexity of g = Fk,n − ε · fT,m is at least ε
3γ which is kΩ(m). The proof for

Fk,n + ε · fT,m is analogous.

6 Monotone Separations via Path-IP Polynomial

In this section, we prove Theorem 1.3 and Theorem 1.4.

6.1 Separation between Monotone ABPs and Monotone Formulas

For convenience Theorem 1.3 is restated below.

Theorem 1.3. Let Γ be a simple path on k vertices. Then, the polynomial fΓ,m can be computed by a
monotone ABP of size O(kn). On the other hand, there exists a constant c > 0 such that any monotone
formula computing either of the polynomial Fk,n ± ε · fΓ,m has size kΩ(m) as long as ε ≥ k−cm.

The proof is divided in two parts.

Upper Bound

We first give the monotone ABP construction for the polynomial fΓ,m. The ABP has k + 2 layers
0, 1, . . . , k, k + 1. Layer 0 and k + 1 are the source and sink vertex respectively. Let the path Γ be
u1 → u2 → · · · → uk.
Layer 1 and k contains 2m vertices labelled with {(u1, i)|i ∈ [2m]} and {(uk, j)|j ∈ [2m]} respectively.
For every other layer ` ∈ [2, 3, . . . , k−1], we have 2m+1 vertices labelled with {(u`, j)b | j ∈ [2m], b ∈
{0, 1}}. Next we describe the edge relations between consecutive layers.

15

• Layer 0 to layer 1 : The source node s in layer 0 is connected to every node in layer 1. The edge
label of s→ (u1, i) is labeled by variable xu1,i.

• Layer 1 to 2 : A node (u1, i) is connected to (u2, j)b in layer 2 if and only if 〈−→i ,−→j 〉 = b

(mod 2). The edge gets the label xu2,j . Here
−→
i ,
−→
j are the binary representation of i and j

respectively.

• Layer ` to `+ 1 for ` ∈ [2, k− 2] : A node (u`, j)b in layer ` is connected to the node (u`+1, j
′)b′

if and only if b+ 〈−→j ,
−→
j′ 〉 = b′ (mod 2). This edge label is xu`+1,j′ .

• Layer k−1 to k : A node (uk−1, i)b is connected to the node (uk, j) for if and only if b+〈−→i ,−→j 〉 =
1 (mod 2).

• Layer k to k + 1 : Every node in layer k is connected to sink vertex with edge label 1.

The size of the monotone ABP is O(k2m). Note that in the ABP construction each layer incrementally
maintains the partial parity information. More precisely, a monomial xu1,iixu2,i2 · · ·xuk,ik is generated
exactly once between the source and sink if and only if IPΓ(

−→
i1 , . . . ,

−→
ik) = −1. Hence the polynomial

computed between the source and the sink is simply fΓ,m.

Lower Bound

Consider the Boolean function IPΓ described in Subsection 3.1, where Γ is a path on k vertices. We
use the third part of Theorem 3.1 to prove the lower bound. Since there Ω(log k)-wise partitions are
considered, we set t = Ω(log k). By Lemma 3.6, under the uniform distribution U over {0, 1}km for
every t-wise partition P we know that γ = DisctU ,P (IPΓ) = 2−Ω(tm) = k−Ω(m).
Analogous to the case in Section 5, we now use the third part of Theorem 3.1 to show our lower bound
against the size of monotone formulas computing Fk,n − ε · fΓ,m using the aboved discrepancy upper
bound. As in Section 5, the lower bound follows by choosing ε ≥ k−Ω(m) appropriately. The proof for
Fk,n + ε · fΓ,m is analogous.

6.2 Separation between Monotone Constant Width ABPs and Monotone Constant
Depth Formulas

Now we prove Theorem 1.4 which is restated below.

Theorem 1.4. Let Γ be a simple path on k vertices. Then, the polynomial fΓ,1 can be computed by a
monotone width-4 ABP of size O(k). On the other hand, there exists a constant c > 0 such that any
monotone formula of product-depth d computing either of the polynomial Fk,2 ± ε · fΓ,1 has size 2k

Ω(1/d)

as long as ε ≥ 2−ck
1/d

.

Upper Bound

Using the ABP construction given in Section 6.1 we get a width-4 ABP of size O(k) for the polynomial
fΓ,1.

Lower Bound

To show the lower bound, consider the Boolean function IPΓ described in Subsection 3.1 where Γ is a
k vertex path and each vertex gets a 1 bit assignment (i.e, m = 1). Using the fourth part of Theorem

16

3.1, we set t = Ω(k
1
d). By Lemma 3.6 under the uniform distribution U over {0, 1}k for every t-wise

partition P we know DisctU ,P (IPΓ) = 2−Ω(k
1
d).

Now we use the fourth part of Theorem 3.1 to show monotone constant depth formula lower bound for
polynomial Fk,n − ε · fΓ,1 using the discrepancy upper bound. Similar to the earlier cases, the lower

bound follows by choosing ε ≥ 2−Ω(k
1
d) appropriately.

References

[AJS09] Vikraman Arvind, Pushkar S. Joglekar, and Srikanth Srinivasan, On lower bounds for
constant-width arithmetic circuits, 20th International Symposium on Algorithms and Com-
putation (ISAAC), Springer-LNCS, 2009, pp. 637–646.

[CDGM22] Arkadev Chattopadhyay, Rajit Datta, Utsab Ghosal, and Partha Mukhopadhyay, Monotone
complexity of spanning tree polynomial re-visited, 13th Innovations in Theoretical Computer
Science Conference, ITCS 2022, January 31 - February 3, 2022, Berkeley, CA, USA (Mark
Braverman, ed.), LIPIcs, vol. 215, Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2022,
pp. 39:1–39:21.

[CDM21] Arkadev Chattopadhyay, Rajit Datta, and Partha Mukhopadhyay, Lower bounds for mono-
tone arithmetic circuits via communication complexity, STOC ’21: 53rd Annual ACM
SIGACT Symposium on Theory of Computing, Virtual Event, Italy, June 21-25, 2021
(Samir Khuller and Virginia Vassilevska Williams, eds.), ACM, 2021, pp. 786–799.

[CELS18] Suryajith Chillara, Christian Engels, Nutan Limaye, and Srikanth Srinivasan, A near-optimal
depth-hierarchy theorem for small-depth multilinear circuits, 59th IEEE Symposium on
Foundations of Computer Science (FOCS), IEEE, 2018, pp. 934–945.

[CG88] Benny Chor and Oded Goldreich, Unbiased bits from sources of weak randomness and
probabilistic communication complexity, SIAM J. Comput. 17 (1988), no. 2, 230–261.

[CKR20] Bruno Pasqualotto Cavalar, Mrinal Kumar, and Benjamin Rossman, Monotone circuit lower
bounds from robust sunflowers, LATIN 2020: Theoretical Informatics - 14th Latin American
Symposium, São Paulo, Brazil, January 5-8, 2021, Proceedings (Yoshiharu Kohayakawa
and Flávio Keidi Miyazawa, eds.), Lecture Notes in Computer Science, vol. 12118, Springer,
2020, pp. 311–322.

[DMPY12] Zeev Dvir, Guillaume Malod, Sylvain Perifel, and Amir Yehudayoff, Separating multilinear
branching programs and formulas, 44th ACM Symposium on Theory of Computing (STOC),
ACM, 2012, pp. 615–624.

[GS12] S. B. Gashkov and I. S. Sergeev, A method for deriving lower bounds for the complexity of
monotone arithmetic circuits computing real polynomials, Sbornik. Mathematics 203(10)
(2012).

[Hay11] Thomas P. Hayes, Separating the k-party communication complexity hierarchy: An applica-
tion of the zarankiewicz problem, Discrete Mathematics & Theoretical Computer Science 13
(2011), no. 4, 15–22.

[HLW06] Shlomo Hoory, Nathan Linial, and Avi Wigderson, Expander graphs and their applications,
Bull. Amer. Math. Soc. 43 (2006), 439–561.

17

[Hru20] Pavel Hrubeš, On ε-sensitive monotone computations, Computational Complexity 29 (2020),
no. 2, 6.

[HY11] Pavel Hrubes and Amir Yehudayoff, Homogeneous formulas and symmetric polynomials,
Comput. Complex. 20 (2011), no. 3, 559–578.

[HY16] , On isoperimetric profiles and computational complexity, 43rd International Col-
loquium on Automata, Languages, and Programming, ICALP 2016, July 11-15, 2016,
Rome, Italy (Ioannis Chatzigiannakis, Michael Mitzenmacher, Yuval Rabani, and Davide
Sangiorgi, eds.), LIPIcs, vol. 55, Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2016,
pp. 89:1–89:12.

[HY21] Pavel Hrubeš and Amir Yehudayoff, Shadows of newton polytopes, 36th Computational
Complexity Conference, CCC 2021, July 20-23, 2021, Toronto, Ontario, Canada (Virtual
Conference) (Valentine Kabanets, ed.), LIPIcs, vol. 200, Schloss Dagstuhl - Leibniz-Zentrum
für Informatik, 2021, pp. 9:1–9:23.

[KN06] Eyal Kushilevitz and Noam Nisan, Communication complexity, Cambridge University Press,
USA, 2006.

[KPR22] Balagopal Komarath, Anurag Pandey, and C.S. Rahul, Graph homomorphism polynomials:
Algorithms and complexity, to appear in the 49th International Colloquium on Automata,
Languages and Programming (ICALP), LIPIcs, Schloss Dagstuhl - Leibniz-Zentrum für
Informatik, 2022.

[Pit09] Toniann Pitassi, Best-partition multiparty communication complexity, Manuscript online at
http://www.cs.toronto.edu/ toni/Courses/CommComplexity/Papers/bestpartition.ps, 2009,
Course notes for Foundations of Communication Complexity, Fall 2009.

[RY09] Ran Raz and Amir Yehudayoff, Lower bounds and separations for constant depth multilinear
circuits, Computational Complexity 18 (2009), no. 2, 171–207.

[RY11] , Multilinear formulas, maximal-partition discrepancy and mixed-sources extractors,
J. Comput. Syst. Sci. 77 (2011), no. 1, 167–190.

[Sap21] Ramprasad Saptharishi, A survey of lower bounds in arithmetic circuit
complexity, Manuscript online at https://github.com/dasarpmar/lowerbounds-
survey/releases/download/v9.0.3/fancymain.pdf, 2021, A selection of lower bounds
in arithmatic circuit complexity.

[Sri20] Srikanth Srinivasan, Strongly exponential separation between monotone VP and monotone
VNP, ACM Trans. Comput. Theory 12 (2020), no. 4, 23:1–23:12.

[Val79] Leslie G. Valiant, Completeness classes in algebra, Proceedings of the 11h Annual ACM
Symposium on Theory of Computing, April 30 - May 2, 1979, Atlanta, Georgia, USA
(Michael J. Fischer, Richard A. DeMillo, Nancy A. Lynch, Walter A. Burkhard, and Alfred V.
Aho, eds.), ACM, 1979, pp. 249–261.

[Val86] , Negation is powerless for boolean slice functions, SIAM J. Comput. 15 (1986),
no. 2, 531–535.

[Yeh19] Amir Yehudayoff, Separating monotone VP and VNP, Proceedings of the 51st Annual ACM
SIGACT Symposium on Theory of Computing, STOC 2019, Phoenix, AZ, USA, June 23-26,
2019 (Moses Charikar and Edith Cohen, eds.), ACM, 2019, pp. 425–429.

18

A Appendix

The following theorems are re-statements of the corresponding theorems in [HY11]. There, they were
stated for multilinear formulas. Here, we port the statements and their proofs from [HY11] to the
set-multilinear setting needed for our work.

A.1 Structure Theorem for Monotone Set-Multilinear Formulas

Theorem 2.3. [HY11, Lemma 4] Let f be a degree k set-multilinear polynomial computed by a
(monotone) formula of size s. Then there exists (monotone) set-multilinear-log-product polynomials
g1, g2, . . . , gs′ such that s′ ≤ s,

f = g1 + g2 + · · ·+ gs′ .

Proof. Let Φ be the (monotone) set-multilinear formula computing polynomial f . W.l.o.g Φ is a
syntactically set-multilinear formula. For any node w in the formula let Φw be the sub-formula rooted at
node w. Further we denote by Φ(w ← β), the formula obtained after removing the sub-formula rooted at
node w and relabelling it by β. For any node w, let the polynomial computed at node w be fw and I(fw)
be the set of rows of matrix M on which the polynomial fw is defined. First note the following claim.

Claim A.1. There exists a node w in the formula Φ such that k3 ≤ |I(fw)| ≤ 2k
3 .

Proof. W.l.o.g every node in Φ has in-degree 2. The polynomial computed at the root node r has
|I(fr)| = k. Now we traverse on the path towards the leaves by picking the child w among the children
w, v when |I(fw)| ≥ |I(fv)|. The traversing continues whenever the heavier child satisfies the condition
|I(fw)| > 2k

3 . We stop this process when we first encounter a node w such that |I(fw)| > 2k
3 but for

its’ children u, v |I(fu)|, |I(fv)| ≤ 2k
3 . We will choose the heavier child here. I.e, we choose u if

|I(fu)| ≥ |I(fv)| and the node u satisfies the property in the claim.

We prove the theorem 2.3 by doing induction on s. For the base case when s = 1, the polynomial f is
only one variable or constant. So, it trivially satisfies the conditions in the definition 2.2.
Using the claim A.1, let w be a node in the formula satisfying k

3 ≤ |I(fw)| ≤ 2k
3 and size of Φw < s. We

can write the polynomial f in the following way,

f = g · fw + f ′

where the polynomial f ′ is the set-multilinear polynomial computed by Φ(w ← 0). Clearly the formula
size of Φw and Φ(w ← 0) is < s. Let they are sw and s(w ← 0). In particular sw + s(w ← 0) ≤ s.
So we can use induction hypothesis on fw and f ′. That is, we can write fw = h1 + · · · + hs′w and
f ′ = h′1 + · · ·+ h′s′(w←0) where for every i, hi and h′i are set-multilinear-log-product polynomials and
s′w ≤ sw, s′(w ← 0) ≤ s(w ← 0). Clearly g · h′i is set-multilinear polynomial and the sets (I(g), I(h′i))
is a partition of [k] where k

3 ≤ |I(g)| ≤ 2k
3 . Hence the set-multilinear-log-product decomposition of f is

f = gh1 + gh2 + · · ·+ ghs′w + h′1 + · · ·+ hs′(w←0).

A.2 Structure Theorem for Monotone Set-Multilinear Constant Depth Formulas

Theorem 2.4. [HY11, Lemma 9] Let f be a degree k set-multilinear polynomial computed by a
(monotone) formula of size s and product depth d. Let q > 1 be a natural number such that k > (2q)d.
Then there exists (monotone) set-multilinear-(q, k(2q)−d)-form polynomials g1, g2, . . . , gs′ such that
s′ ≤ s,

f = g1 + g2 + · · ·+ gs′ .

19

Proof. Let Ψ be the size s product depth d (monotone) set-multilinear formula computing f . For any node
v in the formula we denote the sub-formula rooted at node v by Ψv. Further we define the polynomial
computed at node v by fv and I(fv) be the set of rows in the matrix Mk×n on which fv is defined. First
note the following claim.

Claim A.2. Let t > 1 be any positive real number such that k > td. Then there exists a product node v
in Ψ such that |I(fv)| ≥ k · t−d+1 and for every children u of v, |I(fu)| < |I(fv)|

t . Moreover if t = 2q
for q ∈ N then fv is in (q, k(2q)−d)-form.

Proof. The proof is by induction on product depth d.
For the base case d = 1. Let v be any product gate with children u1, u2, . . . up. Clearly |I(fv)| = k and
for every child, |I(ui)| ≤ 1 < k

t . So v is the required node in the claim.
Inductively assume the claim is true for every node at product depth d′ < d. Let v be a product node
at depth d with children u1, . . . , up and |I(fv)| = k. If for every children ui, |I(fui)| <

|I(fu)|
t = k

t

, then v is our required node. Otherwise, let ui be a child such that |I(fui)| ≥ k
t . Product depth

of ui < d. So by induction hypothesis there is a node w in Ψui at product depth d′ < d, such that
|I(fw)| ≥ |I(fui)| · t−d

′+1 ≥ k · t−d+1. Also for every children wi of w, |I(fwi)| <
|I(fw)|

t . So, w is the
required node for the claim.
Let v be the node in the claim with children u1, . . . , up such that |I(fv)| = m ≥ kt−d+1 and |I(fui)| <
m
t . Then by appropriately grouping the polynomials fu1 , . . . , fup , it can be ensured that we get a new

set of polynomials {g1, g2, . . . , gp′} such that m
t ≤ |I(gj)| ≤ 2m

t for every j ∈ [p′]. Hence f has
(b t2c,

m
t)-form. Putting t = 2q and m = kt−d+1 we get our desired form.

We prove the theorem 2.4 by doing induction on the size, s. The base case is easy to verify. By Claim
A.2 there is a node v in the formula with polynomial fv is in (q, k(2q)−d)-form. Write

f = g · fv + f ′

where f ′ is the polynomial computed by the formula Ψ after removing the sub-formula rooted at node
v and relabelling it by the element 0. Clearly the sets I(g) and I(fv) forms a partition of the rows of
matrix. From Claim A.2 The polynomial fv is in (q, k(2q)−d) form. That is fv = f1 · f2 · · · fq where
each |I(fi)| ≥ k(2q)−d. Clearly the polynomial (gf1) · · · fq is also in (q, k(2q)−d)-form. Hence the
proof follows by doing induction on the sub-formula of size < s computing f ′.

B Good Matching in Constant Degree Expander Graphs

Lemma 3.2. [Pit09, Hay11] Let d be a constant and G be a d regular expander graph on k vertices with
the second largest eigen value of the normalized adjacency matrix . 1√

d
and P = (V1, V2) be a nearly

balanced partition of the vertex set V . Then,

τ(G,P) = Ωd(k).

Proof. Take the partition P = (V1, V2) such that k
3 ≤ |V1|, |V2| ≤ 2k

3 and construct the induced
bipartite graph GP . using Expander Mixing Lemma [HLW06, Lemma 2.5] we know |E(GP)| ≥
d|V1||V2|

k − λd
√
|V1||V2|. Substituting the values of λ, |V1| and |V2| we get |E(GP)| = Ωd(k). Since it is

a constant degree regular graph, using Lemma 3.1 we get τ(G,P) = Ωd(k).

20

ECCC ISSN 1433-8092

https://eccc.weizmann.ac.il

