
Unbalanced Expanders from Multiplicity
Codes

Itay Kalev*1 and Amnon Ta-Shma†1

1Department of Computer Science, Tel Aviv University, Tel Aviv, Israel.

Abstract

In 2007 Guruswami, Umans and Vadhan gave an explicit construction
of a lossless condenser based on Parvaresh-Vardy codes. This lossless con-
denser is a basic building block in many constructions, and, in particular, is
behind the state of the art extractor constructions.

We give an alternative construction that is based on Multiplicity codes.
While the bottom-line result is similar to the GUV result, the analysis is
very different. In GUV (and Parvaresh-Vardy codes) the polynomial ring
is closed to a finite field, and every polynomial is associated with related
elements in the finite field. In our construction a polynomial from the poly-
nomial ring is associated with its iterated derivatives. Our analysis boils
down to solving a differential equation over a finite field, and uses previ-
ous techniques, introduced by Kopparty (in [Kop15]) for the list-decoding
setting. We also observe that these (and more general) questions were stud-
ied in differential algebra, and we use the terminology and result developed
there.

We believe these techniques have the potential of getting better construc-
tions and solving the current bottlenecks in the area.

*The research leading to these results was supported by Len Blavatnik and the Blavat-
nik Family foundation and by the Israel Science Foundation grant number 952/18. Email:
itaykalev@mail.tau.ac.il.

†The research leading to these results was supported by the Israel Science Foundation grant
number 952/18. Email: amnon@tauex.tau.ac.il.

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Report No. 73 (2022)

1 Introduction
A condenser is a probabilistic mapping from a large universe {0,1}n to a smaller
universe {0,1}m that preserves the entropy of not too large sets. More formally,
C : {0,1}n× [D]→{0,1}m is a (k1,k2,ε) condenser, if for every distribution X on
{0,1}n with k1 min-entropy, the output distribution C(X ,UD) is ε-close to having
k2 min-entropy (see Definition 2.4 for a formal definition).

Ideally, we would like to explicitly build a condenser for any n, k1 < n, and ε =
ε(n) > 0 and have D as small as possible, k2 as close as possible to k1 + log(D),
and have k2 as close as possible to m. Let us call d = log(D) the seed length of
C, it measures the amount of randomness the probabilistic construction uses, and
clearly the smaller the better. Similarly, let us call k1 +d− k2 the entropy loss of
C. The entropy loss measures the difference between the amount of entropy in
the system (k1 + d) and the amount of entropy we preserve (k2), and we want it
small. Finally, let us call m− k2 the entropy gap of C. The entropy gap measures
how dense the output distribution C(X ,UD) is in its ambient space {0,1}m, and the
smaller the better. Thus, in this terminology, given n, k1 and ε we would like to
find an explicit construction simultaneously minimizing the seed length, entropy
loss and entropy gap of the condenser.

An important special case is when the entropy gap m− k2 is 0, and then
C is called a (k1,ε) extractor. Non-explicitly, there are extractors (and so the
entropy gap zero) with entropy loss 2 log(1

ε
) + O(1) and seed length log(n−

k1)+ 2log(1
ε
)+O(1), and each one of these bounds is tight (even individually)

[RTS00].
Dodis et al. [DPW14] observe that if we allow some entropy gap (and in par-

ticular even if it is only a constant) then non-explicitly the entropy loss dramati-
cally drops to O(log log(1

ε
)) and the seed length to log(n− k)+1 · log(1

ε
)+O(1).

With larger entropy gaps, the entropy loss continues to drop until it basically turns
into zero, and then we get a lossless condenser. For the dependence of the entropy
loss on the entropy gap see [DPW14] (and also [ATS19]).

The GUV lossless condenser [GUV09] has logarithmic seed length and con-
stant fraction entropy gap. Specifically,

Theorem 1.1. (The GUV condenser)[GUV09, Theorem 1.7] For every n∈N,kmax≤
n,ε > 0, and 0<α ≤ 1, there exists an m≤ 2d+(1+α)kmax and an explicit func-
tion

C : {0,1}n×{0,1}d →{0,1}m

1

with d = (1+1/α) · (logn+ logkmax+ log1/ε)+O(1) such that for all k≤ kmax,
C is an (n,k)→ε (m,k+d) (lossless) condenser.

The GUV condenser has found numerous applications (as can be easily seen
by looking at the hundreds of papers that cite it). In particular, GUV present
an extractor construction by first applying the GUV lossless condenser, and then
an extractor construction specifically designed for high min-entropy sources (see
[GUV09, Section 4]). Roughly speaking, this extractor construction inherits its
entropy loss from the entropy gap of the lossless condenser. As a result, the ex-
tractor construction presented in [GUV09] has linear entropy loss.

The problem of constructing explicit extractors with short seed length and
small entropy loss is widely open and there has been only modest improvement
over the extractor of [GUV09] that has linear entropy loss. Specifically, [DKSS13]
construct explicit extractors with the slightly sub-linear entropy loss k

polylog(k) .
Their construction uses improved mergers that are obtained using the polynomial
method with multiplicities. In another work, [TSU12] modify the GUV condenser
construction and using again the multiplicity method of [DKSS13] together with
other ideas, give a condenser with small entropy loss and the slightly sub-linear
entropy gap m

polylog(n) . This condenser implies an explicit extractor with a short
seed and the same slightly sub-linear entropy loss. Constructing an extractor with
a short seed and a better entropy loss is still a major open problem.

In this paper we give another explicit construction of a GUV like lossless
condenser. While we do not improve the parameters, our construction uses a
different analysis that we believe has the potential to substantially improve current
state of the art results. Specifically, we prove:

Theorem 1.2. (Our condenser) For every n ∈ N,kmax ≤ n,ε > 0, and 16log n
ε√

kmax
≤

α ≤ 1, there is an m≤ d +(1+α)kmax and an explicit function

C : {0,1}n×{0,1}d →{0,1}m

with d = (1+1/α) · (logn+ logkmax+ log1/ε)+O(1) such that for all k≤ kmax,
C is an (n,k)→ε (m,k+d) (lossless) condenser.

In a similar fashion to [GUV09], our condenser follows from a new construc-
tion of an unbalanced bipartite expander graph.

Theorem 1.3. For every field Fq,n,s ∈ N such that 15 ≤ s+ 2 ≤ n ≤ char(Fq),
there exists an explicit graph Γ : Fn

q×Fq→ Fs+2
q , which is a (K,A) expander for

2

every K > 0 with

A = q− n(s+2)
2

· (qK)
1

s+2 . (1)

In [GUV09] there is a similar expression with A= q−(n−1)(s+1)(K
1

s+1−1).
While the bound on m in Theorem 1.2 is slightly better than the one in Theo-

rem 1.1, the former has more restrictions on α then the latter. In any case, those
two differences are minor, and as stated before, the main contribution of Theo-
rem 1.2 is the method used to prove it, which is very different then the one used
in [GUV09], as we next explain.

1.1 Our construction and the GUV construction
Both our construction and the GUV construction have the following structure.
The input that we want to condense is interpreted as a degree n− 1 uni-variate
polynomial over Fq, i.e., as an element f from F<n

q [X]. Given the output length
s + 1 ∈ N (with s + 1 < n) both constructions associate with f s + 1 different
polynomials f0, . . . , fs where fi ∈ F<n

q [X]. In GUV the association is done as
follows:

1. First, put a field structure on F<n
q [X] and fix h∈N, that way f hi

(where mul-
tiplication and powering is in the field) can also be interpreted as a degree
less than n polynomial.

2. Define fi = f hi
.

For example, one may choose a degree n irreducible polynomial E ∈Fq[X] and
define the field F= Fq[X]mod E. Then, the condenser construction is as follows:

The condenser C

Parameters: Fix a field Fq, n,s ∈ N, n,s≥ 1. Identify the elements of Fn
q

with univariate polynomials of degree less than n.

Construction: Define C : Fn
q×Fq→ F(s+2)

q by:

C(f ,y) = (y, f0(y), f1(y), . . . , fs(y)) (2)

3

Our construction has the same structure, but our choice of the associated func-
tions f0, . . . , fs is different. Instead of choosing f0, . . . , fs as in GUV, we choose

fi = f (i),

i.e., f (i) is the i’th iterated derivative of f in Fq[X].
To see why our construction is natural, let us look at it from a coding theory

perspective. We can associate a function C : V × [D]→ Σ with a linear code of
length D and alphabet Σ, where for every v ∈V we have the codeword

(c(v)1, . . . ,c(v)D) ∈ Σ
D

where c(v)i =C(v, i). Using this translation, the GUV construction exactly corre-
sponds to the PV code [PV05] and our construction exactly corresponds to multi-
plicity codes [KSY14, GW13].

PV codes and Multiplicity codes are among the few explicit constructions of
ECC with close to optimal list-decoding capacity. In the list decoding problem
our goal is to find a construction such that for every given word (w1, . . . ,wD)∈ ΣD

there are few v ∈ V such that c(v) is close to w. In the condenser construction
problem we wish to solve the list recoverability problem, where the input is a
large subset W ⊆ ΣD, and the output should be the (hopefully few) v ∈ V such
that c(v) ∈W (or the variant where c(v) is close to a word in W). Indeed, GUV
write that the known connection between codes and extractors (pointed out, e.g., in
[TSZ04]) and the fact that PV codes have list decoding close to capacity motivated
them to explore whether PV codes give condensers with good list recoverability.

Looking at it from this perspective, in this paper we ask whether multiplicity
codes, which are known to have list decoding close to capacity, also have good
list recoverability and hence give good condensers. In Theorems 1.2 and 1.3 we
show that this is indeed the case.

While our construction and the GUV construction are similar in structure, they
are very different in implementation. In GUV the ring of polynomials F<n

q [X] is
“lifted” to a finite field, and the associated functions fi are chosen so that they lie
on a curve, specifically, over the extension field F, all the functions fi are just poly-
nomials in one common variable. The challenge is proving that if Q(y, f0, . . . , fm)
is a non-zero polynomial in the polynomial ring, then Q composed with the curve
is a non-zero, univariate polynomial over the extension field F. In general, prov-
ing that a non-zero polynomial composed with a given curve remains non-zero
is a non-trivial challenge, and GUV solve it with a specific trick, that works, but
gives constant entropy gap.

4

In contrast, our construction does not lift to an extension field. Instead the as-
sociated functions are just the derivatives of the given input. Thus, we completely
avoid the question of proving that a non-zero polynomial composed with a curve
remains non-zero, and, instead, we are left with a question similar to interpola-
tion from derivatives. This leads to a widely different analysis as we explain next.
We hope that further extensions of it might lead to constructions better than the
current state of the art.

1.2 The proof technique
We give a proof sketch of Theorem 1.3 (the expanding graph). It is enough to
prove that for every W ⊆ Fs+2

q of size at most AK− 1 we have |LIST(W)| < K.
Fix a set W ⊆ Fs+2

q of size AK− 1. Our goal is to bound the number of degree
n−1 polynomials f such that Γ(f)⊆W .

Our starting point is to find a non-zero, low-degree, multi-variate polynomial
Q(X ,Y0, . . . ,Ys) such that Q(w) = 0 for every w ∈W . This step is identical to the
first step in the proof of GUV. The total degree of Q is O(|W |1/(s+2)s). It is a
standard observation that for every f with Γ(f)⊆W it must be that

Q◦d f = Q(x, f (x), f ′(x), . . . , f (s)(x))

is the zero polynomial, i.e., f solves the differential equation Q. The challenge
now is to bound that number of functions f such that Γ(f)⊆W .

To bound the number of degree n− 1 polynomials such that Γ(f) ⊆W we
adapt the list-decoding algorithm of [Kop15] to the list recovery setting (much
the same as GUV adapt the [PV05] list decoding algorithm to the list recovery
setting). The main lemma Kopparty uses is that given (y,w0, . . . ,ws) ∈ Fq×Fs+1

q ,
there is usually at most one degree n−1 polynomial f such that:

• The first s derivatives of f at y agree with w0, . . . ,ws, i.e., f (i)(y) = wi, for
i = 1, . . . ,s, and,

• Q◦d f is the zero polynomial.

Formally, this is true whenever the Separant of the equation, ∂Q
∂Ys

, is non-singular
at w, i.e.,

∂Q
∂Ys

(y,w0, . . . ,ws) ̸= 0.

Kopparty proves this lemma using Hensel lifting. We rephrase the proof using dif-
ferential algebra terminology and intuition from [Rit50]. We believe our proof is

5

simpler, and also more amenable to generalizations. Furthermore, this theory was
generalized in [Lim15, FZV22], where generalized Separants were introduced,
and we believe these generalization might be useful for future improvements of
the analysis.

Going back to the list recovery problem, and following the list decoding algo-
rithm from [Kop15], let us denote by W1 the set of all w∈W such that ∂Q

∂Ys
(w) ̸= 0.

We see that for every f such that Γ(f)⊆W and Γ(f)∩W1 ̸= /0, we can recover f
by going over all w ∈W1, and for each such w output the unique suitable degree
n−1 polynomial, given by the above main lemma.

We are then left with the task of outputting all the degree n− 1 polynomials
such that Γ(f)⊆W0 =W \W1. We notice that each of these polynomials solve the
lower degree differential equation ∂Q

∂Ys
(x, f (x), . . . , f (s)) = 0. Reiterating the pro-

cess we get a new list of solution. As each time we get a lower degree differential
equation, we can iterate the process at most deg(Q) times. Doing the calcula-
tion more carefully (as is done in [Kop15]) saves even this loss, and, furthermore,
shows expansion by a factor of about q− sn s+2

√
|W |. We explain the thin in detail

in Section 4.

2 Preliminaries
We use the following notation:

(n)t =n · (n−1) · . . . · (n− t +1) =
n!

(n− t)!
,

where for t = 0, (n)0 = 1. Thus, (n)t = t!
(n

t

)
.

Also, for J = (J1, . . . ,Jm) and I = (I1, . . . ,Im) we define

(J)I =Π
m
ℓ=1(Jℓ)Iℓ,(

J
I

)
=Π

m
ℓ=1

(
Jℓ
Iℓ

)
, and,

I! =Π
m
ℓ=1Iℓ!.

Thus, (J)I = I!
(J

I
)
. Finally, J− I = (j1− i1, . . . , jm− im).

2.1 Multi-variate derivatives
Let R = F[X1, . . . ,Xm] be the ring of polynomials in m variables over F. For I =
(i1, . . . , im) with i1, . . . , im ∈N we define the partial derivative in direction I as the

6

linear operator on R defined by ∂XJ

∂ I = (J)I ·XJ−I. We denote

Q(I)(X) =
∂Q
∂ I

(X).

The order of I is w(I) = I1 + . . .+ Im. Notice that for uni-variate polynomials
Q(X), Q(i)(X) coincides with the i’th iterated derivative.

Let w = (w1, . . . ,wm) where wi ∈ N. The w-weighted degree of a monomial
XJ = XJ1

1 · . . . ·XJm
m is ∑

m
i=1 wiJi. The w-weighted degree of Q, denoted degw(Q),

is the largest w-weighted degree of a monomial in Q. We let |w| denote ∑wi,
Π(w) = Πwi, and Mw,t the number of monomials XJ with w-weighted degree at
most t. Beged-Dov gave upper and lower bounds on Mw,t :

Lemma 2.1. [Bd72]

tm

m! ·Π(w)
≤ Mw,t ≤

(t + |w|)m

m! ·Π(w)

2.2 Condensers
In this subsection let C : {0,1}n×{0,1}d →{0,1}m.

Definition 2.2. We say C is a (K,A) expander if for every S⊂{0,1}n of cardinality
K the set

Γ(S) =
⋃

s∈S,y∈{0,1}d

C(s,y)

has cardinality at least K ·A.

A simple lemma is:

Lemma 2.3. [GUV09, Lemma 3.2] C is a (K,A) expander iff for every set T ⊆
{0,1}m of cardinality at most AK−1, LIST(T) has cardinality at most K−1..

We next define a condenser:

Definition 2.4. We say C is an (n,k)→ε (m,k′) condenser if for all distributions
X with min-entropy at least k, the distribution C(X ,Ud) is ε-close to a distribution
with min-entropy at least k′. The condenser is explicit if C can be computed in
time poly(n, 1

ε
).

7

To prove that a function is a condenser, we use the “list-decoding” approach
described in [GUV09]. For C : {0,1}n×{0,1}d→{0,1}m and T ⊆{0,1}n define:

LIST(T) ={x : Γ(x)⊆ T}

LIST(T,ε) =
{

x : Pr
y
[C(x,y) ∈ T]≥ ε

}
Lemma 2.5. [TSUZ07, Thm 8.1],[GUV09, Lemma 5.4] Let C : {0,1}n×{0,1}d→
{0,1}m be a function.

• If C is a (K,(1−ε)2d) expander, then C is a (n,k)→ε (m,k+d) condenser,
i.e., it is a lossless condenser with error ε ,

• If for all T ⊆ {0,1}m of size at most L the set LIST(T,ε) has cardinality at
most H, then C is a (n, log(H

ε
))→2ε (m, log(L

ε
)−1) condenser.

3 The Separant
Let Q ∈ Fq[X ,Y0, . . . ,Ys]. When we think of Q as a differential equation, we look
for all (low-degree) polynomials f ∈ Fq[X] such that

Q(X , f (X), f (1)(X), . . . , f (s)(X)) =0 ∈ Fq[X].

Let us define

d f =(X , f (X), f (1)(X), . . . , f (s)(X), . . . , f (n)(X), . . .)

Notice that if f ∈ F<n
q [X], then f (i)(X) is identically zero for all i≥ n. Let us also

think of Q as a polynomial Q ∈ Fq[X ,Y0, . . . ,Ys, . . . ,Yn . . .] that depends only on X
and Y0, . . . ,Ys. In this notation f solves the differential equation Q iff Q◦d f = 0∈
Fq[X].

A differential equation Q can be itself derived. While formally Q depends on
X and Y0, . . . ,Yn, . . ., we think of Y0 as a function depending on X , Y0 = f (X) and
of Yi+1 as ∂Yi

∂X . This motivates the following definition:

Definition 3.1. Let Q ∈ Fq[X ,Y0, . . . ,Ys]. define the infinite sequence of polynomi-
als Q(0),Q(1), . . . where Q(k) ∈ F[X ,Y0, . . . ,Yk+s] is defined by:

Q(0) = Q

Q(k+1) =
∂Q(k)

∂X
+

k+s

∑
i=0

∂Q(k)

∂Yi
·Yi+1.

8

The motivation behind this definition is apparent given:

Lemma 3.2. For every f ∈ Fq[X] and ℓ≥ 0

(Q◦d f)(ℓ) =Q(ℓ) ◦d f .

Proof. By induction. The case ℓ= 0 is immediate. Assume for ℓ and let us prove
for ℓ+1. Using the chain rule:

(Q◦d f)(ℓ+1) =((Q◦d f)(ℓ))′ = (Q(ℓ) ◦d f)′

=
∂Q(ℓ)

∂X
◦d f +

s+ℓ

∑
i=0

∂Q(ℓ)

∂Yi
◦d f · ∂ f (i)

∂X

=
∂Q(ℓ)

∂X
◦d f +

s+ℓ

∑
i=0

∂Q(ℓ)

∂Yi
◦d f · f (i+1)

=(
∂Q(ℓ)

∂X
+

s+ℓ

∑
i=0

∂Q(ℓ)

∂Yi
·Yi+1)◦d f

=Q(ℓ+1) ◦d f ,

where the first equality is because we use iterated derivations, the second is induc-
tion, the third is the chain rule (and notice that Q(ℓ) depends on X ,Y0, . . . ,Ys+ℓ).

We call Q(ℓ) the ℓ-th derivative of Q. This operation comes from differential
algebra [Rit50]. As its name suggests, this operator has some properties similar
to regular derivative

Claim 3.3. [Rit50]

1. (linearity) For every Q,P ∈ Fq[X ,Y0, . . .],λ ,µ ∈ Fq, ℓ≥ 0

(λQ+µP)(ℓ) = λQ(ℓ)+µP(ℓ)

2. (Leibniz product rule) For every Q,P ∈ Fq[X ,Y0, . . .]

(P ·Q)(1) = P(1) ·Q+P ·Q(1)

3. (repeated derivation) For every Q ∈ Fq[X ,Y0, . . .], ℓ1, ℓ2 ≥ 0

(Q(ℓ1))(ℓ2) = Q(ℓ1+ℓ2)

9

Claim 3.4. Let Q ∈ Fq[X ,Y0, . . .] and ℓ ∈ N.

• deg(0,1,1,...) Q(ℓ) = deg(0,1,1,...) Q, and,

• deg(0s+2,1,2,3,...) Q(ℓ) ≤ ℓ. I.e., if we give X ,Y0, . . . ,Ys weight 0, and Ys+ j
weight j, then the ℓ’th derivative degree is at most ℓ.

Proof. For the first item notice that ∂Q(ℓ)

∂X is either zero or does not change the
degree in Y0, Also, the effect of ∂Q

∂Yi
·Yi+1 is to reduce the degree in Yi by one

and increase the degree in Yi+1 by one.
For the second item, we prove by induction. The case ℓ= 0 is immediate. For

the induction step, ∂Q(ℓ)

∂X and ∂Q(ℓ)

∂Yi
·Yi+1 for i < s, are either zero or do not change

the weighted degree, while ∂Q(ℓ)

∂Yi
·Yi+1 for i ≥ s increase the weighted degree by

one.

One consequence of Claim 3.4 is that Ys+ℓ appears with degree at most 1 in
Q(ℓ) and that the coefficient of Ys+ℓ in Q(ℓ) is a function of X ,Y0, . . . ,Ys alone.
Indeed, we next prove the coefficient of Ys+ℓ in Q(ℓ) is ∂Q

∂Ys
.

Definition 3.5. (Separant) Let Q ∈ F[X ,Y0, . . . ,Ys]. The separant of Q, denoted
SQ, is

SQ =
∂Q
∂Ys

.

A classical lemma from differential algebra (see [Rit50, Page 30]) states that:

Lemma 3.6. For every ℓ≥ 1,

Q(ℓ) =SQ ·Ys+ℓ+Rℓ

where Rℓ ∈ F[X ,Y0, . . . ,Ys+ℓ−1] does not depend on Ys+ℓ.

Proof. By induction. For ℓ = 1, the only way to get Ys+1 in Q(1) is in the term
∂Q
∂Ys
·Ys+1. Assume for ℓ and let us prove for ℓ+1. The only way to get Ys+ℓ+1 in

Q(ℓ+1) is by taking ∂Q(ℓ)

∂Ys+ℓ
. By induction, Ys+ℓ only appears in Q(ℓ) in the linear term

SQ ·Ys+ℓ. Thus, the only term involving Ys+ℓ+1 in Q(ℓ+1) is ∂ (SQ·Ys+ℓ)
∂Ys+ℓ

·Ys+ℓ+1 =

SQ ·Ys+ℓ+1.

Lemma 3.7. Fix Q∈Fq[X ,Y0, . . . ,Ys], (α,b)= (α,b0, . . . ,bs)∈Fs+2
q and SQ(α,b) ̸=

0. Suppose f ∈ Fq[X] such that:

10

• f (i)(α) = bi, for i = 0, . . . ,s, and

• Q◦d f = 0.

Then there are unique values bs+1, . . . ,bn such that f (i)(α) = bi.

Proof. We prove by induction on n. The base case n = s is clear. Assume for
n and let us prove for n+ 1. By assumption we know there are unique values
bs+1, . . . ,bn such that bi = f (i)(α) for i = s+1, . . . ,n. Our goal is to show there is
a unique value possible for f (n+1)(α).

We will use Q(n−s+1) and the fact that Yn+1 appears linearly in it with coeffi-
cient SQ, and that at (α,b), SQ(α,b) ̸= 0. First we notice that

Q(n−s+1)(α,b0, . . . ,bn, f (n+1)(α)) =Q(n−s+1)(α, f (α), . . . , f (n+1)(α))

=Q(n−s+1) ◦d f (α)

=(Q◦d f)(n−s+1)(α) = 0,

where the first equality is by induction, the second by definition, the third using
Lemma 3.2, and the last equality because we know Q◦d f is the zero polynomial
in Fq[X].

Next we recall that by Lemma 3.6

Q(n−s+1)(X ,Y0, . . . , . . . ,Yn+1) =SQ(X ,Y0, . . . ,Ys) ·Yn+1 +R(X ,Y0, . . . ,Yn),

and therefore

0 =Q(n−s+1)(α,b0, . . . ,bn, f (n+1)(α))

=SQ(α,b) · f (n+1)(α)+R(α,b0, . . . ,bn).

Thus, f (n+1)(α) =−R(α,b0,...,bn)
SQ(α,b) is uniquely determined.

In words, this means the following. f solves the differential equation if Q ◦
d f = 0. We can think of the conditions f (i)(α) = bi, for i = 0, . . . ,s, as s+1 initial
conditions on the Taylor expansion of f at α . In this terminology, Lemma 3.7
says that that if the separant SQ is non-zero at the point (α,b) then there can be
at most one solution to the differential equation Q with degree smaller than the
characteristic, satisfying the initial conditions (α,b).

11

4 Reconstruction with the Polynomial Method
In this section we present a “de-condensing” procedure that given Γ : Fn

q×Fq→
Fm

q and a set W ⊆ Fs+2
q outputs LIST(W). Throughout this section we assume that

n ≤ char(Fq). The de-condensing algorithm works as follows. Given W we first
find a low-degree polynomial Q that vanishes over W , namely,

Claim 4.1. There exists a non-zero polynomial Q ∈ Fq[X ,Y0, . . . ,Ys] with

deg(1,n,...,n−s)Q≤ D =

⌈
n ·

[
|W | · (s+2)!

] 1
s+2

⌉
that vanishes on W.

Proof. By Lemma 2.1 the number of monomials in Fq[X ,Y0, . . . ,Ys] with (1,n,n−
1, . . . ,n− s)-weighted degree at most D is some value F such that

F ≥ Ds+2

(s+2)! ·∏s
j=0(n− j)

> |W |.

To find a polynomial Q that vanishes on W , we write a homogeneous linear system
over Fq where the variables are the coefficients of the above monomials, and for
every w ∈W we have a linear equation forcing that the polynomial vanishes on
w. As the number of variables is larger than the number of constraints, there is a
non-zero solution.

It then follows that every f ∈ F<n
q [T] with Γ(f) ⊆W satisfies the differential

equation Q(x, f (x), . . . , f (s)(x)) = 0. Formally,

Claim 4.2. If f ∈ LIST(W), and q > D, than

R f (T) = Q(T, f (T), . . . , f (s)(T)) ∈ Fq[T]

is the zero polynomial.

Proof. As deg(1,n,...,n−s)(Q) ≤ D and deg(f (i)) < n− i, R f has degree at most D.
Also, for every α ∈ Fq,

R f (α) = Q(α, f (α), . . . , f (s)(α)) = 0.

As q > D we must have R f = 0 in Fq[T].

12

The main challenge is proving the number of low-degree solutions to the dif-
ferential equation Q with starting conditions W is small, and designing an algo-
rithm finding all such solutions. For that we define algorithm Solve. The input
to the algorithm is a polynomial Q̇ ∈ Fq[X ,Y0, . . . ,Ys] and Ẇ ⊆ Fs+2

q . The output
contains all polynomials f ∈ F<n

q [X] such that Γ(f) ⊆ Ẇ and Q̇ ◦ d f = 0. The
algorithm works as follows:

1: procedure SOLVE(Q̇,Ẇ)
2: If Q̇ does not depend on Y0, . . . ,Ys return /0.
3: Let s∗ be the largest j ∈ {0, . . . ,s} for which Q̇ depends on Yj.
4: Set L1← /0 and

Ẇ1←
{

w ∈ Ẇ | ∂ Q̇
∂Ys∗

(w) ̸= 0
}
.

5: for w = (α,w0, . . . ,ws) ∈ Ẇ1 do
6: Assuming there exits some polynomial g ∈ Fq[X] such that

Q̇◦dg = 0 ∈ Fq[X] and g(i)(α) = wi for all 0≤ i≤ s,
find the unique values ws+1, . . . ,wn−1 such that g(i)(α) = wi
for all 0≤ i < n. Such a unique solution exits by Lemma 3.7.

7: Define

f (x) =
n−1

∑
i=0

wi

i!
(x−α)i.

8: If Γ(f)⊆ Ẇ add f to L1.
9: Set

Ẇ0←
{

w ∈ Ẇ | ∂ Q̇
∂Ys∗

(w) = 0
}
.

10: L0←SOLVE(∂ Q̇
∂Ys∗

,W0).
11: return L0∪L1

With that the de-condensing algorithm is:

Decondensing

Input:

13

• Parameters q,s,n and the condenser Γ : Fn
q×Fq→ F(s+2)

q .

• A set W ⊆ Fs+2
q of size B.

Algorithm:

1. Set D =

⌈
n ·

[
|W | · (s+2)!

] 1
s+2

⌉
.

2. Construct a non-zero polynomial Q ∈ Fq[X ,Y0, . . . ,Ys] with

deg(1,n,...,n−s)Q≤ D

that vanishes on W .

3. Output Solve(Q,W).

4.1 Analysis of Solve

Lemma 4.3. (Correctness of Solve) Fix a non-zero polynomial Q∈Fq[X ,Y0, . . . ,Ys]
such that deg(1,n,...,n−s)(Q) < q, and W ⊆ Fs+2

q . Every f ∈ F<n
q [T] for which

Q(x, f (x), . . . , f (s)(x)) = 0 and Γ(f)⊆W appears in the output of Solve(Q,W).

Proof. The proof is by induction on the degree of Q as a polynomial in Y0, . . . ,Ys,
i.e., deg(0,1,...,1)(Q). In the Base case Q depends only on X , thus Q = Q(X). As
Q ̸= 0, there are no solutions to Q(T, f (T), . . . , f (s)(T)) = Q(T) = 0 and L = /0
is the correct output.

Now let f (T) ∈ F<n
q [T] such that Γ(f)⊆W and Q(T, f (T), . . . , f (s)(T)) = 0.

We have two cases:

1. ∂Q
∂Ys∗

(T, f (T), . . . , f (s)(T)) ̸= 0. Note that

deg
(

∂Q
∂Ys∗

(T, f (T), . . . , f (s)(T))
)
≤ deg(1,n,...,n−s)

(
∂Q
∂Ys∗

(X ,Y0, . . . ,Ys)

)
≤ deg(1,n,...,n−s) (Q(X ,Y0, . . . ,Ys))< q.

Therefore there must be some α ∈ Fq for which

∂Q
∂Ys∗

(α, f (α), . . . , f (s)(α)) ̸= 0.

14

As (α, f (α), . . . , f (s)(α)) ∈ Γ(f) ⊆W , in the for loop we iterate over this
vector and therefore in Line 6 we find the unique solution of the ODE with
these initial conditions, and because of the uniqueness this solution must be
f . As Γ(f)⊆W we add it to the list L in Line 8.

2. ∂Q
∂Ys∗

(T, f (T), . . . , f (s)(T)) = 0. We notice that in this case Γ(f)⊆W0, as for

every α ∈Fq we have ∂Q
∂Ys∗

(α, f (α), . . . , f (s)(α))= 0. Also deg(0,1,...,1)(
∂Q

∂Ys∗
)<

deg(0,1,...,1)(Q), hence by induction f ∈L0.

Lemma 4.4. (List size of Solve) For every non-zero Q ∈ Fq[X ,Y0, . . . ,Ys] with
deg(1,n,n−1,...,n−s)(Q) ≤ D < q and every W ⊆ Fs+2

q , the size of the output of

Solve(Q,W) is at most |W |q−D .

Proof. We prove by induction on the (0,1, . . . ,1)-degree of Q. If deg(0,1,...,1)(Q)
is zero, the list is empty, the list size is zero and the claim holds. We next prove
the induction step.

For every w = (α,w0, . . . ,ws) ∈W1, there exists a unique f that may be joined
to the list. Furthermore, since w ∈W1 we have that:

∂Q
∂Ys∗

(α, f (α), . . . , f (s)(α)) =
∂Q
∂Ys∗

(α,w0, . . . ,ws) ̸= 0,

thus ∂Q
∂Ys∗

(T, f (T), . . . , f (s)(T)) ̸= 0, and its degree is at most D, meaning that it
equals 0 for at most D values of T , hence it is non-zero for at least q−D values of
T ∈ Fq. Also, if f appears in the list then Γ(f)⊆W . Hence, each of those q−D
values lies in W (and therefore in W1) and reconstructs f . We conclude that f is
reconstructed from at least q−D different points in W1, thus |L1| ≤ |W1|

q−D .

We remain with the list size of L0 which is obtained from Solve(∂Q
∂Ys∗

,W0).

Since deg(0,1,...,1)(
∂Q

∂Ys∗
) < deg(0,1,...,1)(Q), and the (1,n, . . . ,n− s)-weighted de-

gree of ∂Q
∂Ys∗

is at most D, we know by induction that |L0| ≤ |W0|
q−D . Altogether,

|L | ≤ |W1|
q−D + |W0|

q−D = |W |
q−D .

4.2 Putting it together
Proof. (of Theorem 1.3) By Lemma 2.3 it is enough to prove that for every W ⊆
Fs+2

q of size at most AK−1 we have |LIST(W)|< K. Fix a set W ⊆ Fs+2
q of size

15

AK−1 < qK. Let Q be as in Claim 4.1, with

D =

⌈
n ·

[
qK · (s+2)!

] 1
s+2

⌉
≤ n · (qK)

1
s+2 · (((s+2)!)

1
s+2 +1)

≤ n(s+2)
2

· (qK)
1

s+2 = q−A

Where the second to last inequality is due to the fact that (k!)1/k +1≤ k
2 for every

k ≥ 15. Let L be the output list of Solve(Q,W). Then,

LIST(W)≤ |L | ≤ |W |
q−D

≤ AK−1
q−D

< K,

where the first inequality is by Lemma 4.3, the second by Lemma 4.4 and the last
inequality by using the fact that A≤ q−D.

By choosing the parameters of in the same way as done in [GUV09, Theorem
3.5] we get the following expander

Theorem 4.5. For every positive integers N, Kmax≤N, all ε > 0, and
16log

(
logN

ε

)
√

logKmax
≤

α ≤ 1, there is an M ≤ D ·K1+α
max and an explicit (≤ Kmax,(1− ε)D) expander

Γ : [N]× [D]→ [M] with degree D = O(((logN)(logKmax))/ε)1+1/α).

For completeness we repeat the proof from [GUV09].

Proof. Let n = logN and k = logKmax. Let h0 = (2nk/ε)1/α , h = ⌈h0⌉, and let q
be a prime in the interval (h1+α/2,h1+α].

Set s+ 2 = ⌈k/ logh⌉, so that hs+1 ≤ Kmax ≤ hs+2. As 15 ≤ s+ 2 ≤ n ≤ q =
char(Fq), by Theorem 1.3, the graph Γ : Fn

q×Fq→ Fs+2
q is a (≤ hs+2,A) expander

for A= q− n(s+2)
2 ·(qK)

1
s+2 , because Kmax≤ hs+2, it is also a (≤Kmax,A) expander.

Note that the number of left-vertices in Γ is qn ≥ N, and the number of right-
vertices is

M = qs+2 ≤ q ·h(1+α)(s+1) ≤ q ·K1+α
max

The degree is

D = q≤ h1+α ≤ (h0 +1)1+α

= O(h1+α

0) = O((nk/ε)1+1/α)

16

Lastly, we consider the expansion factor, A= q− n(s+2)
2 ·(qK)

1
s+2 ≥ q− nkhq

1
s+2

2 ,
of the graph, first notice

nkh≤ ε
h1+α

2
≤ εq

where the first equality is due to the fact that nk/ε ≤ hα/2. Secondly, we can
convert our lower bound on α to a lower bound on k

k ≥ 256
α2 log

(n
ε

)
and by using it we get

s+2≥ k
logh

≥
256
α2 log2 (n

ε

)
logh

≥
64
α2 log2 (nk

ε

)
logh

≥
16
α2 log2 (2nk

ε

)
logh

=
16log2 h0

logh
≥ 4log2 h

logh
= 4logh≥ (1+α) logh≥ logq

by combining the two inequalities

nkhq1/(s+2)

2
= nkh · q

1/(s+2)

2
≤ εq.

By substituting back to A we get A ≥ (1− ε)q = (1− ε)D, which concludes the
proof.

Finally, Theorem 1.2 is an immediate consequence of Lemma 2.5 applied to
Theorem 4.5.

References
[ATS19] Nir Aviv and Amnon Ta-Shma. On the entropy loss and gap of con-

densers. ACM Transactions on Computation Theory (TOCT), 11(3):1–
14, 2019. 1

[Bd72] Aharon Gavriel Beged-dov. Lower and upper bounds for the number
of lattice points in a simplex. SIAM Journal on Applied Mathematics,
22(1):106–108, 1972. 7

17

[DKSS13] Zeev Dvir, Swastik Kopparty, Shubhangi Saraf, and Madhu Sudan.
Extensions to the method of multiplicities, with applications to kakeya
sets and mergers. SIAM Journal on Computing, 42(6):2305–2328,
2013. 2

[DPW14] Yevgeniy Dodis, Krzysztof Pietrzak, and Daniel Wichs. Key deriva-
tion without entropy waste. In Annual International Conference on the
Theory and Applications of Cryptographic Techniques, pages 93–110.
Springer, 2014. 1

[FZV22] Sebastian Falkensteiner, Yi Zhang, and Thieu Vo. Formal power series
solutions of algebraic ordinary differential equations. Mediterranean
Journal of Mathematics, 19, 04 2022. 5

[GUV09] Venkatesan Guruswami, Christopher Umans, and Salil Vadhan. Un-
balanced expanders and randomness extractors from parvaresh–vardy
codes. Journal of the ACM (JACM), 56(4):20, 2009. 1, 2, 3, 7, 8, 16

[GW13] Venkatesan Guruswami and Carol Wang. Linear-algebraic list decod-
ing for variants of reed–solomon codes. IEEE Transactions on Infor-
mation Theory, 59(6):3257–3268, 2013. 4

[Kop15] Swastik Kopparty. List-decoding multiplicity codes. Theory of Com-
puting, 11(5):149–182, 2015. 1, 5, 6

[KSY14] Swastik Kopparty, Shubhangi Saraf, and Sergey Yekhanin. High-rate
codes with sublinear-time decoding. Journal of the ACM (JACM),
61(5):1–20, 2014. 4

[Lim15] M. Limonov. Generalized separants of differential polynomials.
Moscow University Mathematics Bulletin, 70:248–252, 11 2015. 5

[PV05] Farzad Parvaresh and Alexander Vardy. Correcting errors beyond the
guruswami-sudan radius in polynomial time. In 46th Annual IEEE
Symposium on Foundations of Computer Science (FOCS’05), pages
285–294. IEEE, 2005. 4, 5

[Rit50] Joseph Fels Ritt. Differential algebra. Colloquium publications
(American Mathematical Society) ; v. 33. American Mathematical So-
ciety, New York, 1950. 5, 9, 10

18

[RTS00] Jaikumar Radhakrishnan and Amnon Ta-Shma. Bounds for dispersers,
extractors, and depth-two superconcentrators. SIAM Journal on Dis-
crete Mathematics, 13(1):2–24, 2000. 1

[TSU12] Amnon Ta-Shma and Christopher Umans. Better condensers and new
extractors from parvaresh-vardy codes. In Computational Complexity
(CCC), pages 309–315, 2012. 2

[TSUZ07] Amnon Ta-Shma, Christopher Umans, and David Zuckerman. Loss-
less condensers, unbalanced expanders, and extractors. Combinator-
ica, 27(2):213–240, 2007. 8

[TSZ04] Amnon Ta-Shma and David Zuckerman. Extractor codes. Information
Theory, IEEE Transactions on, 50(12):3015–3025, 2004. 4

19

ECCC ISSN 1433-8092

https://eccc.weizmann.ac.il

