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Abstract

We study the power of randomized polynomial-time non-adaptive reductions to the problem
of approximating Kolmogorov complexity and its polynomial-time bounded variants.

As our first main result, we give a sharp dichotomy for randomized non-adaptive reducibility
to approximating Kolmogorov complexity. We show that any computable language L that has a
randomized polynomial-time non-adaptive reduction (satisfying a natural honesty condition) to
ω(log(n))-approximating the Kolmogorov complexity is in AM∩coAM. On the other hand, using
results of Hirahara [28], it follows that every language in NEXP has a randomized polynomial-
time non-adaptive reduction (satisfying the same honesty condition as before) to O(log(n))-
approximating the Kolmogorov complexity.

As our second main result, we give the first negative evidence against the NP-hardness
of polynomial-time bounded Kolmogorov complexity with respect to randomized reductions.
We show that for every polynomial t′, there is a polynomial t such that if there is a ran-
domized time t′ non-adaptive reduction (satisfying a natural honesty condition) from SAT to
ω(log(n))-approximating Kt complexity, then either NE = coNE or E has sub-exponential size
non-deterministic circuits infinitely often.

1 Introduction

Meta-complexity studies the complexity of computational problems that are themselves about
complexity, such as the Minimum Circuit Size Problem MCSP which asks if a Boolean function
represented by its truth table has circuits of a given size, and the problem Kpoly of determining
the polynomial-time bounded Kolmogorov complexity of a string. One of the main open questions
in meta-complexity is: Are MCSP and related problems such as Kpoly NP-hard? This is a question
with a long history; indeed, Levin is reported [15] to have delayed publication of his seminal NP-
completeness results [40] because he hoped to show that MCSP was NP-complete. More than 50
years on, the question remains unresolved, despite much effort [41, 12, 29, 34, 36, 35], and MCSP
is one of the few remaining natural problems in NP for which there is no clear evidence either of
NP-hardness or of non-NP-hardness.

Why is it so difficult to show MCSP is NP-hard? This has been investigated in a series of
works [37, 43, 33, 30, 14, 13, 44]. The theme of this line of works is that hardness of MCSP under
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various kinds of deterministic reducibility is related to our ability to prove longstanding complexity
conjectures. The basic idea is simple: since we can generate negative instances of SAT efficiently,
an efficient honest reduction from SAT to MCSP would allow us to generate negative instances of
MCSP efficiently, which would enable us to prove circuit lower bounds for EXP. There are many
refinements of this idea in the aforementioned series of works, and in particular [42] unconditionally
rule out hardness of MCSP under polylogarithmic-time projections, a class of reductions that is
sufficient to show hardness for all known natural NP-complete problems.

Note that the difficulty identified above relies on the determinism of the reductions. Indeed,
truth tables of hard Boolean functions are easy to generate for randomized algorithms - a uniformly
random string is likely to be hard! Therefore, previous works shed no light on whether MCSP and
related problems can be shown to be hard under randomized reductions. This question is at the
heart of our work.

Question 1. How powerful are randomized reductions to meta-complexity problems?

We note that several works showing hardness results for meta-complexity problems [6, 8, 11, 34,
36, 28] do employ randomness in their reductions, which is a further reason to consider Question 1.
As far as we are aware, there is no evidence in the literature against solving all of NP with efficient
randomized reductions to meta-complexity problems such as MCSP 1, Kpoly or even the problem
of computing Kolmogorov complexity, even for the case of many-one reductions.

In fact, the hardness results for meta-complexity problems mentioned above [6, 8, 11, 34, 36, 28]
are even robust to close approximations of the complexity measure of interest, in the sense that the
reduction continues to work even if the oracle only knows a close approximation to the complexity
measure rather than an exact value. This motivates us to consider Question 1 more broadly in
terms of robustness to approximation for randomized reductions. It is known, for instance [37, 6],
that if one-way functions exist, then circuit size of a Boolean function with truth table size N is
even hard to approximate to within an N1−ε factor for any ε > 0. One might hope that such
strong inapproximability results continue to hold under the weaker assumption that NP 6⊆ BPP.
Moreover, an intriguing recent line of work [22, 27, 45] on worst-case to average-case reductions for
meta-complexity problems seem to require an inapproximability assumption to infer a conclusion
on average-case hardness. So, for example, if our goal is to show that NP has worst-case to average-
case reductions using these results, we need to show NP-hardness of approximating circuit size or
Kpoly complexity.

1.1 Our Results

Our two main results address Question 1 by showing that efficient randomized non-adaptive re-
ductions to the meta-complexity problems of additively approximating the Kolmogorov complexity
and additively approximating the polynomial-time bounded Kolmogorov complexity are surpris-
ingly weak, even when the approximation term is super-logarithmic2. We first state the results
informally, and then describe them in more detail.

1As pointed out by an anonymous reviewer, the results of [43] unconditionally rule out NP-hardness of MCSP
under a very special form of randomized reduction: projections computable in sublinear time. The techniques of [43]
do not seem immediately applicable to reductions that are not projections, or where the bits of the output take at
least linear time to compute.

2Note that a smaller approximation term makes a negative result stronger.
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Theorem 1.1. (Informal) If there is a “nice” randomized non-adaptive poly-time reduction from
L to approximating the Kolmogorov complexity within some super-logarithmic additive term, then
L ∈ AM ∩ coAM.

Theorem 1.2. (Informal) Under plausible complexity assumptions, if there is a “nice” randomized
non-adaptive fixed poly-time reduction from L to approximating the Kpoly complexity within some
super-logarithmic additive term, then L ∈ AM ∩ coAM.

Here “nice” has a fairly standard meaning: the reduction is required to be polynomially hon-
est, meaning that it doesn’t make queries which are too small. In the statement of Theorem 1.2,
“fixed poly-time” means that the reduction runs within a time bound that is independent of the
polynomial time bound used in the definition of Kpoly. As direct corollaries of Theorem 1.1 and
Theorem 1.2, we get that under plausible complexity assumptions, neither additively approxi-
mating the Kolmogorov complexity to a super-logarithmic term nor additively approximating the
polynomial-time bounded Kolmogorov complexity to a super-logarithmic term is NP-hard under
efficient randomized reductions.

All our results in this paper have to do with non-adaptive reductions - analysing adaptive
reductions is an interesting open question. Indeed, it is not even known whether hardness of MCSP
under general deterministic adaptive reductions leads to any new complexity lower bounds, or has
any other surprising consequences3.

1.1.1 Randomized Reductions to Approximating Kolmogorov Complexity

As a first step, we consider Question 1 when the meta-complexity problem is to approximate
Kolmogorov complexity. Several known reductions to meta-complexity problems such as MCSP
[6, 8, 11, 34, 36], especially those that exploit ideas from pseudorandomness, continue to work
when the meta-complexity oracle is substituted with a Kolmogorov complexity oracle. Moreover,
the power of reductions to Kolmogorov complexity has been studied extensively in its own right
[7, 5, 21, 32, 10, 9, 4, 28]. Question 4.8 of Allender’s survey [2] explicitly asks about the power of
reductions to approximating Kolmogorov complexity.

When considering reductions to a Kolmogorov complexity4 oracle, there is an ambiguity: Kol-
mogorov complexity KU is defined with respect to some universal Turing machine U . In several
works [5, 21, 10, 9, 4], the following approach has been taken to resolve the ambiguity. A language L
is said to be reducible to Kolmogorov complexity if L is reducible to KU for every universal machine
U . In this paper, we take a different approach, as proposed by Allender [2]: we consider reductions
to additively approximating Kolmogorov complexity rather than reductions to exact Kolmogorov
complexity. In practice, reductions rarely take advantage of the exact Kolmogorov complexity of a
queried string, so this doesn’t lose us too much in terms of modelling known reductions. Moreover,
by varying the approximation parameter, we can ensure robustness with respect to the universal
machine, and even with respect to the precise notion of Kolmogorov complexity. For instance,
reducibility to ω(1)-additively approximating Kolmogorov complexity is robust to the universal

3Some partial results in this direction appear in [44]. Analogous questions about the power of adaptivity in the
setting of worst-case to average-case reductions [23, 20] have remained open despite significant effort.

4Most works in the literature consider the Kolmogorov random strings as oracle, or else the overgraph for Kol-
mogorov complexity [3]. Without loss of generality, we instead consider the functional oracle that when asked a query
q, returns the Kolmogorov complexity of q. Note that the Kolmogorov random strings and the overgraph are both
reducible to the functional oracle why simple deterministic non-adaptive reductions.
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machine, using the fact that for any two universal machines U and U ′, KU and KU ′ are at most
a constant apart. Reducibility to O(log(n))-additively approximating Kolmogorov complexity is
robust to whether we consider the standard version of Kolmogorov complexity or the prefix free
version5, using the fact that for any string, the Kolmogorov complexity and prefix-free Kolmogorov
complexity are at most a logarithmic term apart.

Intuitively, a deterministic non-adaptive reduction cannot make use of the Kolmogorov random-
ness oracle in an effective way, because queries generated by the reduction on compressible inputs
have low Kolmogorov complexity. However, if the reduction is allowed to be randomized, this limita-
tion disappears, because the reduction can take advantage of randomness to produce queries of high
complexity. Hirahara [28] recently showed that every language in NEXP (non-deterministic expo-
nential time) is randomized polynomial-time non-adaptively reducible to the Kolmogorov random
strings. This implies a strong positive answer to Question 1 when the meta-complexity problem is
to approximate Kolmogorov complexity, and the approximation gap is small.

We show, somewhat counter-intuitively, that randomized polynomial-time non-adaptive reduc-
tions to approximating the Kolmogorov complexity are inherently limited when the approximation
gap is ω(log(n)). Indeed, languages with such reductions (satisfying a natural honesty condition)
are in AM∩coAM. As far as we are aware, the previous best complexity upper bound known for lan-
guages that are randomized polynomial-time non-adaptively reducible to ω(log(n))-approximating
the Kolmogorov complexity was EXPSPACE [10].

Indeed, we get a sharp complexity dichotomy based on the approximation gap, by combining
our results with those of [28]:

Theorem 1.3. If a language L is computable and there is a randomized polynomial-time non-
adaptive reduction F from L to ω(log(n))-additively approximating Kolmogorov complexity such
that F is polynomially honest and has inverse polynomial advantage, then L ∈ AM ∩ coAM. On
the other hand, every L ∈ NEXP has a randomized polynomial-time non-adaptive reduction making
q queries to O(log(n))-additively approximating Kolmogorov complexity that is polynomially honest
and has constant advantage.

Theorem 1.3 is a more precise version of Theorem 1.1.
A polynomially honest reduction is one where any query on input x is of size |x|Ω(1). We do

have a more general result that is operative even when queries are only guaranteed to have super-
constant size, but we adopt the formulation of Theorem 1.3 here because it is more easily stated.
The honesty condition is a very natural one that is satisfied in most reductions of which we are
aware. It appears for technical reasons, which we describe in Section 1.2. The advantage of a
reduction is ε if it is correct with probability at least 1/2 + ε; thus the condition on advantage in
the statement of Theorem 1.3 is the mildest reasonable one.

Our result yields an interesting phenomenon in terms of the tradeoff between adaptivity of the
reduction and the robustness to approximation of the reduction. As mentioned before, it is shown in
[28] that approximating Kolmogorov complexity when the approximation term is sufficiently small,
i.e., logarithmically bounded, is hard for NEXP under randomized non-adaptive reductions. When
the randomized reduction is allowed to be adaptive, it follows from work of [6] that approximating
Kolmogorov complexity, even for large multiplicative approximation gap |q|1−ε for any ε > 0, is
hard for PSPACE. Theorem 1.3 shows that we cannot get a hardness result that combines the best

5The prefix free version of Kolmogorov complexity considers only prefix-free Turing machines, i.e., Turing machines
M such that if M halts on x, M does not halt on xy for any non-empty y. This is more natural in certain contexts.
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of both worlds: if we require the reduction to be non-adaptive, and in addition the approximation
gap is large, then the power of the reduction decreases significantly.

Theorem 1.3 has an application to non-adaptive black-box constructions of hitting set generators
from worst-case hardness assumptions. Recall that a hitting set generator with seed length s(n) < n
is an efficiently computable function from s(n) bits to n bits such that the range of the generator
hits every dense set that is computable by polynomial-size circuits. Motivated by connections to
uniform hardness-randomness tradeoffs, [26] showed that if there is a randomized non-adaptive
reduction from a language L to avoiding the range of an exponential-time computable hitting set
generator with seed length < n/4, then L ∈ BPPNP. Recently, [31] improved this by showing that
if there is a randomized non-adaptive reduction from a language L to avoiding the range of an
exponential-time computable hitting set generator with seed length (1 − ε)n for some ε > 0, then
L ∈ AM ∩ coAM. Since a Kolmogorov complexity oracle can be used to avoid the range of any
computable hitting set generator (by using the fact that outputs of the hitting set generator have
non-trivial Kolmogorov complexity), we get the following immediate corollary:

Corollary 1.4. If a language L is computable and there is a randomized polynomial-time non-
adaptive reduction F from L to avoiding the range of a computable hitting set generator with seed
length n− ω(log(n)) such that F is polynomially honest, then L ∈ AM ∩ coAM.

Corollary 1.4 is not directly comparable to the main result of [31] because of the honesty
condition, but modulo this condition, it shows an optimal limitation on reductions to avoiding the
range of hitting set generators in terms of the seed length. We note that [28] shows that for every
language L ∈ NEXP, L randomized polynomial-time non-adaptively reduces to avoiding the range
of a EXPNP-computable hitting set generator with seed length n − O(log(n)). Under standard
derandomization assumptions [38], AM∩ coAM = NP∩ coNP, which is strictly contained in NEXP.

As discussed in [31], close connections between hitting-set generators and average-case hardness
mean that Corollary 1.4 also relates to a long line of work ruling out non-adaptive black-box
worst-case to average-case reductions for NP [23, 20, 1].

1.1.2 Randomized Reductions to Approximating Polynomial-Time Bounded Kol-
mogorov Complexity

The main application of Theorem 1.3 is to the question of NP-hardness of meta-complexity
problems. As an immediate consequence of Theorem 1.3, even computing an approximation of
Kolmogorov complexity with small gap is not NP-hard under (honest) randomized non-adaptive
reductions, unless there is a surprising complexity collapse.

Corollary 1.5. Suppose there is a randomized polynomial-time non-adaptive reduction from SAT
to ω(log(n))-additively approximating Kolmogorov complexity that is polynomially honest. Then the
Polynomial Hierarchy collapses.

Corollary 1.5 follows from Theorem 1.3 by using the fact that if SAT is in AM ∩ coAM, then
the Polynomial Hierarchy collapses [46].

As far as we are aware, Corollary 1.5 gives the first negative implication of the assumption
that approximating Kolmogorov complexity is NP-hard under randomized non-adaptive reductions.
Several recent works on hardness of meta-complexity problems [34, 36, 35] are only able to handle
small approximation gap - Corollary 1.5 provides one possible explanation of this (in cases when the
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reduction is not refined enough to distinguish between Kolmogorov complexity and other complexity
measures).

Corollary 1.5 does not immediately imply that NP-hardness of Kpoly under randomized reduc-
tions is unlikely, as there is no known efficient non-adaptive reduction from Kpoly to Kolmogorov
complexity. By working quite a bit harder, we are able to show the following result.

Theorem 1.6. Suppose that there is a polynomially bounded function t′ : N→ N such that for all
large enough t = poly(t′), there is a randomized time t′ non-adaptive reduction that is polynomially
honest, has fixed query length and inverse polynomial advantage, from SAT to ω(log(m))-additively
approximating Kt complexity. Then either E has non-deterministic circuits of size 2o(n) infinitely
often, or NE = coNE.

Theorem 1.6 is a more precise version of Theorem 1.2.
This appears to be the first negative evidence against NP-completeness of a meta-complexity

problem in NP with respect to randomized non-adaptive reductions in the unrelativized setting6.
Note that previous results on consequences of hardness with respect to deterministic reductions of
MCSP do not suggest that such reductions are unlikely, but rather that they are hard to show. In
contrast, the consequent of Theorem 1.6 would be considered unlikely by many complexity theorists.

A subtlety in the statement of Theorem 1.6 is that the negative evidence depends on the running
time of the reduction being smaller than the time bound for Kolmogorov complexity. Typically,
reductions from SAT to NP-complete L run in quasi-linear time. Theorem 1.6 suggests that the
picture is very different for Kpoly - if it is indeed NP-complete under randomized polynomial-time
reductions, then the reductions are likely to need a lot of time.

1.2 Proof Techniques

We sketch the ideas behind the proofs of our main results: Theorem 1.3 and Theorem 1.6. We
first introduce some notation, as per Section 2. Given a function β : N → N, we say that two
functional oracles O : Σ∗ → N and O′ : Σ∗ → N are β-close if |O(q) − O′(q)| ≥ β(|q|) for every
string q. In the following, we use β-closeness with β(n) = ω(log(n)).

Suppose M is an oracle machine implementing the reduction hypothesized in Theorem 1.3. At
a high level, we’d like to construct an explicit computable oracle K ′ such that :

1. K ′ is β-close to K

2. There is an Arthur-Merlin protocol that given a string q and integer a to K ′(q), allows Merlin
to prove to Arthur that a is “close” to K ′(q).

Suppose we have such an oracle K ′. The hypothesis that M is a non-adaptive reduction to
β-approximating Kolmogorov complexity with inverse polynomial advantage implies that MK′

computes L with advantage ε = 1/nO(1). We then hope to use the second condition above to show
that it is possible to give an AM protocol that allows Merlin to give a proof of the output value of
MK′(x) by having Merlin provide answers to all of the queries and then prove them to Arthur.

6A result of Ko [39] states there is no relativizing NP-hardness proof for Kpoly, but this seems to say little about
the unrelativized case. Also, a result of Hirahara and Watanabe [30] shows that 1-query randomized reductions to
MCSP that are “oracle independent” only exist for languages in AM∩coAM. We do not need the “oracle indepedent”
restriction and our results hold for any number of queries, as long as they are non-adaptive.
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The proof roughly follows this strategy, but there are several obstacles that require modification.
We don’t know how to construct the desired oracle K ′. Instead we consider a generalized notion of
oracle called a context-sensitive oracle. This is an oracle O whose answer to a query q can depend
not just on q but also on the “context” within which q is generated, i.e., the oracle machine M
making the query and the input x on which M makes the query. In what follows we use oracle to
mean a possibly context-sensitive oracle and refer to an ordinary oracle as context-insensitive.

We will define a context-sensitive oracle which we call J that will be used in place of K ′ in the
above outline. Here is a rough description of J . Fix the machine M and input x. Suppose that the
machine M makes k queries to K, where the choice of queries is a function of the auxiliary random
string ρ. For i ∈ {1, . . . , k}, let qi(ρ) denote the ith query when the random string is ρ. Let π(q)
denote the probability (over ρ and random i ∈ {1, . . . , k}) that qi(ρ) = q. The context-sensitive
oracle JMx (q) is the ceiling of log 1/π(q). It is not hard to show that, for fixed M and x, J(q) is
β-close to K(q) for all but a small fraction of q.

We want to show that (a) MJ computes the same language as MK , and (b) the language
computed by MJ is in AM ∩ coAM. We can’t show either of these, but we are able to state and
prove small modifications to these assertions that suffice to give the desired conclusion.

We would like that MJ computes the same language as MK . By hypothesis L = MK′ for
every context-insensitive oracle K ′ that is a β-approximation to K with advantage ε, but J is
context-sensitive. Nevertheless, we are able to show that for all sufficiently long inputs x, the
probability (with respect to the randomness of M) that MJ(x) 6= MK(x) is at most ε/2, and since
MK computes L with advantage ε, we conclude that MJ computes L on all sufficiently long inputs
with advantage at least ε/2. To do this we fix a “sufficiently long” input x. We describe how to
construct a context insensitive oracle K ′ (depending on x) that satisfies (i) if MJ and MK′ are
run on x then with probability at least 1 − ε/2 over the auxiliary random string ρ, J and K give
the same answers on all of the queries q1(ρ), . . . , qk(ρ) and therefore the probability that MJ and
MK′ give different output on x is at most ε/2, and (ii) K ′ is β-close to K, which implies that MK′

computes L with advantage ε. Therefore MJ(x) gives the correct output with advantage ε/2.
We conclude that MK and MJ compute the same language except for finitely many strings.

We can modify MJ to fix those strings.
For the second part of the proof we aim to show that one can simulate the computation of MJ in

AM∩ coAM. The J oracle can be viewed as solving an approximate counting problem: For a given
query q, how many pairs (ρ, i) have qi(ρ) = q, and such counting problems can be approximated in
AM ∩ coAM [25, 20].

However, there is a major difficulty in translating this intuition into a simulation of MJ in
AM ∩ coAM. We are not guaranteed that the Merlin-Arthur protocol provides consistent answers
that depend only on x and M . In order to get around this diffculty, our main idea is to use the
following perturbation argument.

We define a family of oracles J [γ] for γ ∈ [0, 1). J [γ] is a shifted version of J ; it is the ceiling
of the logarithm of log(1/(1 + γ)π(x)). We show that given M , there is a γ (in fact a random γ
works with high probability) such that MJ [γ] can be computed in AM ∩ coAM.

In order to use this we show a stronger version of the first step: for all sufficiently long inputs
x, for all γ ∈ [0, 1), the probability that MJ [γ] disagrees with MK is at most ε/2.

The Arthur-Merlin protocol we use bears significant similarities to the ideas of [23, 20, 31],
however we need to work a bit harder to accommodate the perturbation argument.

Why does the honesty condition comes into our results? Our argument works by contradiction
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and involves using the fact that the first x on which the simulation fails has low Kolmogorov
complexity. But this complexity bound is in terms of |x|, while the approximation condition on the
Kolmogorov complexity oracle is in terms of the query length |q|. Thus it is important that there
is some way of connecting |x| and |q| when q is a query asked on x, and this is what the honesty
condition guarantees. In fact our more general Theorem 4.1 is applicable even when the reduction
is not polynomially honest, but it does require that query length is at least super-constant.

We now proceed to sketch the ideas behind Theorem 1.6. A natural idea is to try to deran-
domize the reduction using a standard derandomization hypothesis, and then argue that efficient
deterministic non-adaptive reductions are unlikely. However, this doesn’t work for the following
reason: in order to derandomize the reduction using a standard derandomization hypothesis, we
need to fool the test that checks, given fixed x and random string r, that the input x is consistent
with the output f(x, r) of the reduction. This test involves running machines both for the langage
from which we are reducing and the language to which we are reducing, and a naive implementation
takes at least non-deterministic time t (to simulate Kt). Hence the derandomized reduction will
run in time poly(t), which is greater than the time bound for Kolmogorov complexity, and we do
not know how to argue against this possibility.

Instead, we use Theorem 1.3. The idea is to show that, under a standard derandomization hy-
pothesis, oracle access to Kt can be replaced by oracle access to K, without affecting the correctness
of the reduction. We prove a new lemma stating that for with high probability over samples from
a distribution D samplable in time t′, the Kt complexity of the sample q is at most O(log(|q|))
apart from the K complexity. This lemma uses the derandomization hypothesis that E requires
exponential-size non-deterministic circuits, and the time bound t is polynomially bounded in t′ once
the parameters of the derandomization hypothesis are fixed. The derandomization hypothesis is
required to get a hitting set generator whose seed length has optimal dependence on the error pa-
rameter [19]. Our lemma implicitly improves a result of Antunes and Fortnow [16], which requires
a stronger derandomization hypothesis.

However, we are unable to implement this idea for an arbitrary language L that reduces to Kt.
The idea does work for unary languages however, and we get that every unary language in NP is in
AM∩ coAM, applying Theorem 1.3. The derandomization hypothesis can now be applied one more
time to get a simulation in NP ∩ coNP. By a standard upward translation argument, we get that
NE = coNE. Thus, under the assumption on reducibility, either the derandomization hypothesis
fails or NE = coNE, both of which are unlikely or, at the very least, surprising consequences.

2 Preliminaries

2.1 Basic Complexity Notions

We refer to the book by Arora and Barak [18] for definitions of standard complexity classes.
A time-constructible function T : N → N is a function such that there is a Turing machine

transducer M , which for each n, on input 1n halts with output T (n) within O(T (n)) steps.
We say that L is a tally language if it is contained in Σ∗ for some single-letter alphabet Σ.

2.2 Oracle Turing Machines

We consider randomized oracle Turing machines (OTMs). Our OTMs have a read-only input
tape, a write-only output tape, one or more work tapes, a random tape, and an oracle tape. The
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alphabet for all tapes is {0, 1}. If the TM never makes oracle queries we say it is oracle-free.
We refer to an ordered pair (M,x) where M is a Turing machine and x is the input as a context.
We assume without loss of generality that a polynomial-time bounded randomized Turing Ma-

chine M comes equipped with a poly-time computable function rM : {0, 1}∗ −→ N where rMn is a
polynomial upper bound on the number of random bits generated by the machine on input x. On
input x the TM starts by generating an auxiliary random string ρ of length rMx which is written
on the random tape, and the program operates deterministicially on the pair x, ρ.

Normally, an oracle is a function O from a query set Q to an answer set A. We also need a
more general notion of a context-sensitive oracle in which the response depends on the query q and
the context (machine M and input x that is calling the oracle). We write OMx (q) for the output of
oracle O to query q.

Unless otherwise specified all oracles in this paper have query set Q = {0, 1}∗ and answer set
A = N.

An OTM M instantiated by oracle O, denoted MO is the program that uses oracle O to answer
any queries. If O is computable, then MO is computably instantiated, and can be identified with
an oracle-free Turing machine, even in the case that O is a context-sensitive oracle.

The randomized OTMs we consider are decision machines which means that they always halt
and output either 1 (identified with accept) or 0 (identified with reject). The language L(MO)
recognized by an (possibly randomized) instantiated decision OTM MO is the set of x for which
the probability that M(x) accepts is greater than 1/2.

Let ε : N −→ [0, 1]. We say that L is accepted by MO with advantage ε if every accepted string
x is accepted with probability at least (1 + ε(|x|))/2 and every rejected string is accepted with
probability at most (1− ε(|x|))/2. Note that computing with advantage ε = 1 means that MO(x)
always outputs L(x).

An algorithm that accepts L with advantage ε can be converted to an algorithm with advantage
(1− ε′) by repeating the algorithm O(log(1/ε′) + (1/ε))2 times and taking majority vote.

We restrict attention to OTMs that are nonadaptive. A nonadaptive OTM comes equipped
with:

• A computable function kM : {0, 1}∗ −→ N. For x ∈ {0, 1}∗, kMx is the number of oracle
queries that M makes on input x. For convenience (and with no significant loss of generality)
we assume that kMn is a power of 2.

• A computable function qM that takes as input a string x and an integer i ∈ {1, . . . , kM|x|},
and (if the OTM is randomized) a random string ρ of length rM|x|, and outputs an element of

{0, 1}∗. qMx (i, ρ) is the ith query asked by M on input x when the random string is ρ.

• A computable function outM that takes as input x and the sequence of query answers
(a1, . . . akMx ) and (if the OTM is randomized) the random string ρ and outputs either 0 or 1.

outMx (a1, . . . , akMx , ρ) is the output of the algorithm on input x, random string ρ when the
query answers are r1, . . . , rkMx .

In the above definition the nonadaptive OTM M is deterministic if rMx is identically 0. Thus
the function qMx depends only on the query index i.

QMx denotes the set of all q ∈ {0, 1}∗ such that on input x, M asks query q with positive

probability. QMx is a finite set of size at most 2r
M
x kMx since there are 2r

M
x choices for ρ and each

results in kMx queries.
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We say that M is α-honest, for α : N −→ N, provided that on any input x, all oracle queries
have length at least α(|x|). If α(n) = nτ for some constant τ > 0 we say that M is polynomially
honest. Conventionally, a polynomially honest oracle algorithm is referred to simply as honest, but
it will be useful for us to distinguish different kinds of honesty.

If M is α-honest for some α that tends to ∞ we say that M is weakly honest. We say that M
is fixed query length if the length of each query of M on input x depends only on |x|.

2.3 Approximate Oracles and Robust Oracle Algorithms

Recall that in this paper we consider oracles that take as input a string and output an integer.
We now introduce two related concepts for an oracle (possibly context-sensitive) O:

• Approximation of O by another oracle O′ that is “suitably close”.

• An oracle algorithm M instantiated by O that is robust with respect to replacing O by any
O′ that is close enough to O.

The closeness of two oracles is measured by a nonnegative valued closeness function β with two
arguments, a string q and natural number n. The value of β at these arguments is written βn(q).
We say that O and P are β-close with respect to M provided that for all inputs x to M , and queries
q ∈ QMx , |OMx (q)− PMx (q)| ≤ β|x|(q).

Let M be a randomized oracle algorithm, O be an oracle and L be the language accepted by
MO. Let β be a closeness function and let ε : N −→ [0, 1]. We say that M is (β, ε)-robust with
respect to oracle O provided that for every oracle O′ that is β-close to O, MO′ accepts L with
advantage ε. We say that M is β-robust if it is (β, 1)-robust, which means that for every oracle O′

that is β-close to O, MO′(x) always outputs the correct answer L(x).

2.4 Descriptions and Kolmogorov complexity

Throughout we assume a fixed pairing function < · > and a standard encoding of Turing
machines M by binary strings, with M̃ denoting the encoding of M .

We fix a universal Turing machine U that for any Turing machine M and input x takes as input
< M̃, x > and outputs M(x). The Kolmogorov complexity K(q) of q (with respect to U), denoted
K(q), is the minimum length of y such that U(y) = q. We define the Kolmogorov complexity of a
machine M to be K(M̃). We have:

Proposition 2.1. For every computable function f : {0, 1}∗ −→ {0, 1}∗ there is a constant Cf
such that if q = f(z) then K(q) ≤ K(z) + Cf .

In particular, for f being the identity function ID we have

Proposition 2.2. For all strings q, K(q) ≤ |q|+ CID.

Proposition 2.3.
∑

q∈{0,1}∗
2−K(q)

K(q)2 ≤ 2.

Proof. Letting Sk be the set of strings of Kolmogorov complexity exactly k, we can rewrite the
above sum as: ∑

k≥1

∑
q∈Sk

2−k

k2

Since |Sk| ≤ 2k, this is at most
∑

k≥1 1/k2 < 2.

10



The canonical order on {0, 1}∗ is the order in which x precedes y if |x| < |y| or |x| = |y| and x
is lexicographically less than y.

Proposition 2.4. Let L be a computable language that contains infinitely many strings.

1. Let Λ : N −→ N be any computable unbounded function. Let xj be the first string (according
to the canonical order) satisfying |xj | ≥ Λ(j) and x ∈ L. There is an integer C (depending
on L and Λ) such that for all integers j, K(xj) ≤ log(j) + C.

2. Let κ : N −→ Z be any computable nondecreasing function that tends to ∞. Let L be a
computable language that contains infinitely many strings. Then L contains a string x for
which K(x) < κ(|x|).

Proof. Let M be a Turing Machine that computes L and N be a Turing machine that computes
Λ. We can construct a machine M ′ that on input j outputs xj . M first evaluates Λ(j) and then
enumerates strings x of length at least Λ(j) in the canonical order and stops when it finds the first
string in L. M ′ is a program whose length is a constant (depending on |N | and |M |) and so the
pair M ′, j has a description of length log(j) + C.

For the second part, given κ, let Λ be the function where Λ(j) is the least integer m such
that 2 log(j) < κ(m). The function Λ is computable. Applying the first part, there is a constant
C (depending on L and Λ) such that for all j, xj is a string of length at least Λ(j) such that
K(xj) ≤ log(j) + C. Choose j = 2C . Then xj has length at least Λ(j), and K(xj) ≤ log(j) + C ≤
2 log(j) < κ(Λ(j)) ≤ κ(|xj |), as required.

We also need the followng proposition giving symmetry of information for Kolmogorov com-
plexity.

Proposition 2.5 (Symmetry of information). Let x, y be strings. Then K(x; y) = K(x)+K(y|x)+
O(log(K(x, y))).

2.5 Resource-Bounded Kolmogorov Complexity

We study various notions of resource-bounded Kolmogorov complexity, and associated decision
problems.

In the RK problem, the instance is a string x, and the question is whether K(x) ≥ |x|/2. Given
a function g : N→ N, the RK problem with gap g is the promise problem whose NO instances are
strings x with K(x) ≥ |x|/2 and whose YES instances are strings x with K(x) < |x|/2 − g(|x|).
Given a function α : N→ R such that α(n) ≥ 1 for all n, the RK problem with multiplicative gap
α is the promise problem whose NO instances are strings x with K(x) ≥ |x|/2 and whose YES
instances are strings x such that K(x) < |x|/(2α(|x|)).

Given a time bound t : N→ N, the Kt complexity of a string is defined as follows:
K(x) = min{|p| : U(p) halts and outputs x within t steps}.

In the MCSP problem, the instance is a string x together with a parameter s, and the question
is whether x is the truth table of a Boolean function with circuit complexity at most s.

MCSP is easily seen to be in NP, but it is unknown whether MCSP is NP-hard. A brute-force
search strategy of trying all circuits C of size at most s and checking if any of them computes the
function with truth table x can easily be implemented to run in time poly(|x|)sO(s).
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3 Simulating MK: the deterministic case

In this section we consider deterministic oracle machines M such that MK′ computes L for
any context-sensitive oracle K ′ that is suitably close to K and show (under suitably assumptions)
that L is especially simple: either in P or P/poly. Allender, Buhrman, Friedman and Loff [4] use
related ideas to show that any computable language that is non-adaptively reducible to Kt for
some fixed time bound t is in P/poly. Their task is somewhat simpler because the reduction is to
time-bounded Kolmogorov complexity for some fixed time bound; we, on the other hand, need to
exploit the robustness of our presumed reduction with respect to approximation.

Theorem 3.1. Let β = βn(q) be a closeness function that is computable in time polynomial in n
and |q|. Let L be a decidable language and M be a polynomial time deterministic oracle Turing
Machine such that L is computed by MK′ for any K ′ that is β-close to K. Let C and r be constants
so that the running time of M on input x of length at most n is at most Cnr.

1. Suppose that βn(q) = (2r + 1) log(n) + ωn(1). Then L ∈ P.

2. If M is polynomially honest and βn(q) = ω(log(|q|)) then L ∈ P.

3. If βn(q) = δK(q) for some constant δ > 0 then L ∈ P/poly.

Proof. Let L and M be as hypothesized.
For each string x, recall that kx is the number of queries asked by M on input x. Let Qx =

{qx(1), . . . , qx(kx)} be the set of queries asked on input x. Each of the queries qx(i) can be computed
given i,x and M and so K(q) ≤ log(kx) + 2K(x) +O(1) for any q ∈ Qx. Since kx ≤ C|x|r we have
that for all x and all q ∈ Qx:

K(q) ≤ K(x) + 2r log(|x|) +O(1). (1)

(The factor 2 multiplying r is more than is needed, but is used to keep the expressions simple.)
The proofs of the first and third parts of the theorem have the following structure. In each

part we make a specific definition for an oracle U , define B to be the set of strings x such that
MU (x) 6= L(x). If B is finite, we can modify M to the machine M̂ which on input x checks whether
x ∈ B and if so outputs L(x) and otherwise runs MU . The machine M̂U also computes L. In the
first part U is a just the oracle that always outputs 0, and so the resulting computation is in P . In
the third part, U is a more complicated oracle, but the operation of U when MU is run on input
of length n can be implemented efficiently given an advice string An of polynomial length, and so
the resulting computation is in P/poly.

So it will suffice to prove that B is finite. We will make use of the following:

Lemma 3.2. Let z be a string such that for all queries q ∈ {qz(1), . . . , qz(kz)} we have |Uz(q) −
K(q)| ≤ β|z|(q). Then on input z, MU outputs L(z). In particular, z 6∈ B.

Proof. Given such a z define the context-sensitive oracle U ′ as follows: U ′y(q) is equal to Uy(q) if
y = z and q ∈ {qz(1), . . . , qz(kz)} and is equal to K(y) otherwise. It follows immediately from the
hypothesis on z that the oracle U ′ is β-close to K and therefore by the hypothesis of the theorem
MU ′ computes L correctly on all inputs. Also MU ′ and MU behave identically on input z, so
MU (z) outputs L(z).
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To prove that B is finite we assume for contradiction that B is infinite. Let F be the subset of
x ∈ B such that x is lexicographically minimum among all strings y ∈ B of length x. Then F is
also infinite. We then prove:

(*) For any sufficiently large x ∈ F , |K(q)− Ux(q)| ≤ β|x|(q) for every query q ∈ Qx.

We then select z ∈ F so that |z| is sufficiently large for this to happen. But then Lemma 3.2
contradicts that z ∈ B.

We now carry out this strategy for the first and third part of the Theorem.
For the first part of the Theorem, as mentioned, we define U so that Ux(q) = 0 for any input x

and query q. Note that MU is a polynomial time oracle-free computation.
Defining B as above, it suffices to show that B is finite. Suppose for contradiction that B is

infinite, and define F as above. As noted above, it suffices to show (*) above. Note that for x ∈ F ,
K(x) = log |x| + O(1) since x can be described by the machine M , the oracle-free machine N
that computes L (since L is computable) and the number |x|. Using (1), for any q ∈ Qx we have
K(q) ≤ (2r+ 1) log(|x|) +O(1). By the hypothesis on β, and for x sufficiently large we get that for
all q ∈ Qz, K(q) ≤ β|x|(q) and therefore |U(q)−K(q)| ≤ β|x|(q).

The second part of the theorem follows from the first part. Assume that M is polynomially
honest. Then there is a constant γ > 0 so that on input of length n, all queries have size at least
nγ . By hypothesis, βn(q) = ω(log(|q|)) = ω(log(n)), and thus the hypothesis of the first part is
satisfied.

For the third part, given δ and r as hypothesized let D = (2r + 2)/δ. Define the (context
sensitive) oracle U as follows: on input x and oracle query q, Ux(q) outputs min(K(q), D log(n)(.
Again we need to prove that the set B is finite. Assuming this is true, we can modify the machine
MV to the machine M̂V which on input x first checks whether x ∈ B, and if so outputs L(x) and
otherwise runs MW [x]. Now M̂V can be implemented in P/poly since for any input x of size n,
the action of V on queries asked during the computation MV (x) can be specified by an advice
string An of polynomial size. Indeed, let Sn be the set of strings of length at most cnr that satisfy
K(q) < D log(n) and let An be the set of ordered pairs (q,K(q)) for q ∈ Sn. (Note that during the
computation of MV (x) given a query q, Vx(q) = D log(n) unless q ∈ Sn, in which case the second
part of the ordered pair specifies the query answer.)

For use below, we observe that K(Ax) ≤ D log(|x|) + O(1) since A|x| can be reconstructed by

knowing the number T ≤ 2nD of programs of length less than D log(|x|) that output a string in
S|x|. (Given T , S|x| can be determined by interleaving the execution of all programs of length less
than D log(n) until T of them halt with an output of length at most cnr. Sn is then the set of such
output strings, and for each string q ∈ Sn, K(q) is the length of the shortest program that output
q.)

It remains to prove that B is finite, and again we suppose for contradiction that B is infinite,
and define the infinite set F as above. Again we will show that (*) is satisfied. For x ∈ F ,
K(x) = log |x|+K(A|x|) +O(1) since since x can be described by the machine M , the oracle-free
machine N that computes L (since L is computable) the advice string A|x| (which allows simulation
of the oracle V during the computation of M(x)) and the number |x|. From (1), for any q ∈ Qx
we have K(q) ≤ (2r + 1) log(|x|) +K(Ax) + O(1) ≤ (2r + 1 +D) log(|x|) + O(1) which is at most
D(1 + δ) log(|x|) provided that |x| is sufficiently large. For any such x, if K(q) < D log(|x|), then
Ux(q) = K(q) so that |Ux(q) −K(q)| = 0, or K(q) ≥ D log(|x|), in which case Ux(q) = D log(|x|)
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and K(q) ∈ [D log(|x|), D(1 + δ) log(|x|)] and so |Ux(q)−K(q)| ≤ δD log(|x|) ≤ δK(q), establishing
(*) as required.

4 Simulating robust K-oracle computation in AM ∩ coAM
Throughout this section we make the following assumptions.

H1 M is a randomized nonadaptive decision OTM

H2 MK recognizes the computable language L.

H3 β = βn(q) is a computable closeness function.

H4 ε : N −→ [0, 1].

H5 M is (β, ε)-robust with respect to oracle K.

H6 α : N −→ N is an unbounded non-decreasing function.

Also, let kMn denote the maximum of kMx over x of length n.
Our overall goal is to prove the following theorem:

Theorem 4.1. Suppose M,α, β, ε satisfy hypotheses [H1-H6]. Suppose also that βn(q) = log(kMn /ε(n))+
2 logK(q) + α(n) + 5. Then both L and L̄ have constant round Arthur-Merlin protocols for mem-
bership whose running time is polynomial in the running time of M and 1/ε. In particular if M
runs in polynomial time then L ∈ AM ∩ coAM .

The rather cumbersome condition on β arises from the proof. It is more natural if the closeness
function depends only on the query q and not on the length of the input x to the calling algorithm.

We prove Theorem 4.1 in two parts. First, in this section, we construct a parameterized
family {J [γ] : γ ∈ [0, 1)} of computable context-sensitive oracles J based on simple combinatorial
properties of the machine M and show that there exists an integer ` such that under [H1]-[H6],
M [`]J [γ] computes L with advantage ε/2 for every γ ∈ [0, 1).

Then, in the next section, we show that if L satisfies the conclusion of the first part, then it has
an efficient AM protocol and coAM protocol.

4.1 Some additional preliminaries

Let (M,x) be a context. As usual, for a set or quantity Z that depends on the context, we
denote this dependence by ZMx , but we often suppress this dependence and write simply Z. For
example we write r for rMx and k for kMx .

Let Γ = ΓMx = {(ρ, i) : (ρ, i) ∈ {0, 1}r × {1, . . . , k}}. Under the assumption stated earlier that
k is a power of 2 we have that log |Γ| = r + log k is an integer, and we can identify Γ with the set
{0, 1}r+log k.

It will be convenient to introduce notation for some elementary functions of positive real num-
bers.

For a nonnegative integer s:
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• φ is the function given by φ(s) = dlog(Γ
s )e = log(|Γ|)− blog sc.

• µ is the function given by: µ(s) is the least nonnegative number γ such that s(1 + γ) is a
power of 2. Note that µ(s) ∈ [0, 1).

It is easy to check:

Proposition 4.2. For γ ∈ [0, 1) and s > 0, φ((1+γ)s) = φ(s) if γ < µ(s) and φ((1+γ)s) = φ(s)−1
if γ ≥ µ(s).

The following technical fact will be needed later.

Proposition 4.3. Let s, t ∈ N and τ ∈ [0, 1) with t ∈ [s/(1 + τ), s(1 + τ)]. Let γ ∈ [0, 1) be such
that γ 6∈ [µ(s)− 2τ, µ(s) + 2τ ] ∪ [1− 2τ, 1) ∪ [0, 2τ). Then φ((1 + γ)s)) = φ((1 + γ)t).

Proof. We prove the contrapositive. Suppose φ((1 + γ)s) 6= φ((1 + γ)t). Then blog((1 + γ)s)c 6=
blog((1 + γ)t)c. This means that there is an integral power of 2 between them, which means that
the interval [(1 + γ)s/(1 + τ), (1 + γ)(1 + τ)s] contains an integral power of 2, say 2w. Note that
s ≤ 2w+1 < 8s. This implies that (1 + µ(s))s = 2w+1, or (1 + µ(s))s = 2w, or (1 + µ(s))s = 2w−1.

Case 1. Suppose (1+µ(s))s = 2w+1. This means s > 2w, and since [(1+γ)s/(1+τ), (1+γ)(1+
τ)s] contains 2w, we have that τ > γ. Hence γ ∈ [0, 2τ).

Case 2.Suppose (1+µ(s))s = 2w. Then (1+µ(s))s belongs to the interval [(1+γ)s/(1+τ), (1+
γ)(1+τ)s] so 1+µ(s) belongs to the interval [(1+γ)/(1+τ), (1+γ)(1+τ)] ⊆ [1+γ−2τ, 1+γ+2τ ]
which implies γ ∈ [µ(s)− 2τ, µ(s) + 2τ ].

Case 3. Suppose (1+µ(s))s = 2w−1. Then 2 ≤ 2(1+µ(s)) = 2w/s ≤ (1+γ)(1+ τ) ≤ 1+γ+2τ
which implies γ ≥ 1− 2τ .

4.2 Replacing K by the oracle J [γ]

As described earlier the context (M,x) determines a function qMx : Γ −→ {0, 1}∗ where qMx (ρ, i)
is the ith query asked by M on input x when the random string is ρ.

For a query q, we define S(q) = SMx (q) to be the set {(ρ, i) ∈ Γ : qMx (ρ, i) = q}.
Let s(q) = |S(q)| and let π(q) = πMx (q) = sMx (q)

|Γ| . This is the probability, with respect to (ρ, i)

chosen uniformly from Γ that q(ρ, i) = q. Note that for the function φ defined earlier we have
φ(s(q)) = dlog 1

π(q)e.
For each γ ∈ [0, 1), define the function J [γ] on queries by:

J [γ](q) = J [γ]Mx (q) = φ((1 + γ)s(q)).

If γ = 0 we often write J(q) for J [γ](q).
From the definition we observe that for all γ ∈ [0, 1):

J [γ](q) ∈ [log(
1

π(q)
)− 1, log(

1

π(q)
) + 1]. (2)

We view J [γ] as a context-sensitive oracle and we will see below that J [γ]Mx can be used in
place of K in a suitably robust oracle algorithm. The following Lemma relates J [γ] to K:
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Lemma 4.4. Let M be a randomized oracle algorithm and x a string. Recall that QMx is the set of
queries q such that M on input x asks the query q with positive probability.

1. There are constants C0, C1 such that for any string q ∈ QMx , K(q)−J [γ]Mx (q) ≤ C0K(x)+C1.

2. For u > 0 let PMx (u) be the set of strings in QMx such that J [γ]Mx (q)−K(q) ≥ u+ 2 logK(q).
Then πMx (PMx (u)) ≤ 23−u.

Proof. Fix M and x. We omit the superscript M and subscript x from J [γ], π, P and Q.
For the first part, order the elements of Q lexicographically by the triple (1/π(q), |q|, q). For a

query q, let p(q) be the number of q′ ∈ Q that precede q in this order. Given the Turing machine
M and input x we can construct a Turing machine of size O(K(x)) +O(1) that takes as input an
integer h ∈ {0, . . . , |Q| − 1} and outputs q such that p(q) = h.

Therefore K(q) ≤ O(K(x))+log p(q)+O(1). Since there are at most 1/π(q) members of Q that
precede q in the order, we have p(q) ≤ (1/π(q)) and therefore log p(q) ≤ log(1/π(q)) ≤ J [γ](q) + 1.
Therefore K(q)− J [γ](q) ≤ O(K(x)) +O(1), as required.

For the second part, (2) implies π(q) ≤ 21−J [γ](q). For q ∈ P (u) we therefore have π(q) ≤
21−K(q)−u/K(q)2. Summing over all q ∈ P (u) this is at most 21−u∑

q∈P (u) 2−K(q)/K(q)2 which is

at most 22−u by Proposition 2.3.

4.3 Replacing a K oracle by a J [γ] oracle

In this section we prove:

Theorem 4.5. Assume hypotheses [H1]-[H6] and that β|x|(q) = log(kMx /ε(|x|)) + 2 logK(q) +

α(|x|) + 5. Then there is an integer ` such that for all γ ∈ [0, 1], M [`]J [γ](x) computes L with
advantage ε/2, where M [`] is the OTM that outputs L(x) on any input x of length less than ` and
otherwise executes M on x. Letting N = M [`], there is an OTM N such that NJ [γ](x) computes L
with advantage ε/2.

Proof. Fix M . Say that x is bad for γ if MJ [γ](x) outputs L(x) with probability less than 1
2(1 +

ε(|x|)/2) and let B[γ] be the set of strings that are bad for γ. Let B = ∪γ∈[0,1)B[γ].
If B is finite, let ` be the length of the largest string in B. Then M [`] satisfies the desired

conclusion. So we assume that B is infinite and derive a contradiction.
Note that x ∈ B holds if and only if one of the infinitely many conditions x ∈ B[γ] holds. The

following Proposition reduces this to a finite set of conditions.

Proposition 4.6. Let x ∈ {0, 1}∗ and let Γx = {µ(s(q)) : q ∈ QMx } (where QMx is the (finite) set
of queries that are asked with nonzero probability by M on input x and µ is the function defined in
the definition of J [γ]). Then x ∈ B if and only if x ∈ B[γ] for some γ ∈ Γx.

Proof. For each γ ∈ [0, 1) let γ− = max{µ(s(q)) : q ∈ QMx , µ(s(q)) ≤ γ}. By the definition of J [γ],
we have J [γ](q) = J [γ−](q) for all q ∈ Q. Therefore MJ [γ](x) behaves identically to MJ [γ−](x) and
so x ∈ B if and only if there exists γ ∈ Γx such that x ∈ B[γ].

16



Let us define γx to be the least γ ∈ Γx for which x ∈ B[γx].
The set Γx is computable from x, and for each γ ∈ Γx we can computably determine the

probability that MJ [γ](x) agrees with L(x). Therefore there is an (instantiated) program of size
|M |+O(1) that on input x, tests whether x ∈ B.

Let β∗(n) be the minimum over all q and all n′ ≥ n of βn′(q). To obtain the desired contradiction
we will prove:

Lemma 4.7. For any string x there is an oracle K[x] satisfying:

• K[x] is β-close to K and therefore the probability that MK[x] on input x differs from MK on
input x is at most (1− ε(|x|))/2.

• If K(x) < (β∗(|x|)−C1)/C0 (where C0, C1 are given in Lemma 4.4) then the probability that
MK[x] on input x differs from MJ on input x is at most ε(|x|)/4.

The lemma implies any string x satisfying K(x) < (β∗(|x|) − C1)/C0 is not in B, since the
probability that MJ on input x disagrees with MK on input x can be upper bounded by (1 −
ε(|x|)/2 + ε(|x|)/4 ≤ (1 − ε(|x|)/2)/2. But by applying the second part of Proposition 2.4 to the
language B and κ(n) = (β∗(n)−C1)/C0 there is a string x ∈ B such that K(x) < (β(|x|)−C1)/C0,
which yields the desired contradiction. Note that κ is an unbounded non-decreasing function as
required for the application of Proposition 2.4 by the definition of β∗ and the fact that α is an
unbounded non-decreasing function.

So it remains to prove Lemma 4.7. Given x, we define the oracle K[x] as follows. Recall
that QMx is the set of queries q that are made by M with non-zero probability when the input
is x(w). Let Qclose be the set of q ∈ QMx for which |J [γ]Mx (q) − K(q)| ≤ β|x|(q), let Q> be the

set of q ∈ QMx for which J [γx]Mx (q) > K(q) + β|x|(q) and let Q< be the set of q ∈ QMx for which
J [γx](q) < K(q) − β|x|(q) Define the oracle K[x] as follows: K[x](q) = J [γx](q) if q ∈ Qclose and
K[x](q) = K(q) otherwise.

By definition K[x] is β-close to K and therefore by hypothesis MK[x] computes L with advantage
ε. In particular MK[x] on input x differs from L(x) with probability at most (1 − ε(|x|))/2. This
completes the first part of the lemma.

For the second part of the lemma, assume that x is such that K(x) < (β(|x|)−C1)/C0 (where
C0, C1 are given in Lemma 4.4).

If all of the queries asked by M on input x are in Qclose then all query answers during the
computation MJ [γ](x) are identical to those during the computation MK[x](x), and therefore the
output is the same. .

So it now suffices to prove an upper bound of ε(x)/4 on the probability that at least one of the
selected queries on input x belongs to Q< ∪Q>.

From the hypothesis, we have K(x) ≤ (β(|x|) − C1)/C0. We now show that this implies that
Q< = ∅. By the first part of Lemma 4.4, for all queries q ∈ QMx we have K(q) − JMx (q) ≤
C0K(x) + C1 which is at most β(|x|) and so q 6∈ Q<.

Hence we only need to upper bound the probability that, on input x, at least one query belongs
to Q>. For brevity let k = kMx . For i ∈ {1, . . . , k} let pi be the probability that the ith query is
in Q>. Let σ =

∑
i pi, it suffices to show that σ ≤ ε(|x|)/4. Note that σ/k is the chance that a

random query i (with respect to the random bits and the choice of i ∈ {1, . . . , k}) is in Q>. By
the second part of Lemma 4.4, with u = β(|x|) − 2 log(K(q)), p ≤ 22+2 log(K(q))−β(|x|). Using the
hypothesis on β(|x|) this is at most ε(|x|)/4k and therefore σ ≤ ε(|x|)/4, as required.
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5 The Arthur-Merlin protocol

The starting point for this section is the conclusion of Theorem 4.5:

Hypothesis AM(N). N is an oracle machine such such that for all γ ∈ [0, 1), NJ [γ](x)
computes L with advantage ε/2.

We will show that this implies that there is an Arthur-Merlin protocol for L whose running time is
in the running time of N .

We make use of two known AM protocols. The input to both protocols includes:

• A function f : {0, 1}w −→ {0, 1}∗ given by a circuit Cf . The function f induces a probability
distribution πf on {0, 1}∗, with πf (q) equal to |f−1(q)|/22, which is the probability that a
uniformly chosen element of {0, 1}w maps to q.

• ζ, δ > 0 are input parameters for the protocol.

Lemma 5.1. (Entropy Estimation Protocol.) [24] There is a constant round AM-protocol
that takes as input a circuit Cf as above, an integer h and an error parameter δ, runs in time
|Cf |poly(log(1/δ)), and outputs accept or reject with the following conditions

1. If |h−H(πf )| ≤ 1 then Merlin has a strategy that causes Arthur to reject with probability at
most δ.

2. If |h−H(πf )| ≥ 2 then the probabilty that the verification is accepted is at most δ.

Lemma 5.2. (Lower Bound protocol.) [25] There is a constant round protocol with input Cf ,
input sequences q1, . . . , qm ∈ ({0, 1}∗)m and (s1, . . . , sm) ∈ Nm, and error parameters (ζ, δ) both in
(0, 1) that runs in time Cfpoly(m, 1/ζ, log(1/δ)), and outputs either accept or reject according
to the following:

1. If si ≥ |f−1(qi)| for every i, then Merlin has a strategy such that the protocol rejects with
probability at most δ.

2. If si ≤ |f−1(qi)|/(1 + ζ) for some i then for any strategy of Merlin the probabilty that the
verification is accepted is at most δ.

We fix some notation for this section:

• x denotes the string whose membership in L is to be determined.

• r = rNx is the length of the random string generated by N on input x.

• k = kNx is the number of queries asked by N on input x. We assume (with no significant loss
of generality) that log k is an integer.

• For ρ ∈ {0, 1}r, q1(ρ), . . . , qk(ρ) denotes the queries asked by N on input x.

• f denotes the function on {0, 1}r+log k that maps (ρ, i) to qi(ρ).

• Let π = πf be the probability distribution on {0, 1}∗ induced by f , which is given by πf =
|f−1(q)|/2r+log k.
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• Q = QNx is the image of the function f , which is the set of queries that are asked with positive
probability.

• For ρ ∈ {0, 1}r, a1[γ](ρ), . . . , ak[γ](ρ) is the sequence of answers from the oracle J [γ] to the
queries q1(ρ), . . . , qk(ρ).

• When the random string is ρ, the output of the algorithm is out(a1[γ](ρ), . . . , ak[γ](ρ); ρ).
We denote this by z[γ](ρ).

• ε = εN|x|.

We note the following technical fact:

Proposition 5.3. Let π be a probability distribution over {0, 1}w.

1. If q is selected according to π, E[log(1/π(q))] = H(π) where H(π) is the binary entropy of π.

2. Suppose q1, . . . , qt are selected independently according to π. Then

Prob[
1

t

t∑
i=1

log(1/π(qi))−H(π)| > ζ] ≤ w2

tζ2
.

Proof. The first part follows directly from the definition of H(π). For the second part, let Zi =
log(1/π(qi)) and let Z = 1

t

∑
Zi. Note that E[Z] = 1

t

∑
E[Zi] = H(π) by the first part. Also,

note that since Z is an average of t i.i.d. random variables, it’s variance is 1
tVar(Zi) ≤ w2

t since
a random variable taking values in [0, w] has variance at most w2. By Chebyshev’s inequality, for

any random variable X, the probability that |Z − E[Z]| > ζ is at most V ar(Z)/ζ2 ≤ w2

tζ2 .

In describing the Arthur-Merlin protocol we refer to the actions of “Honest Merlin” which is
the ideal behavior for Merlin (which Merlin may not follow).

The protocol makes use of several parameters, whose values are determined by the analysis.
For reference we list these parameters here with their values:

• t is the sample complexity, and it set to t = 32000max(r,1)2k2

ε(|x|)2 .

• τ is the safety parameter, which is set to τ = ε(|x|)
16(4k+2)

• ν is the lower bound parameter, which is set to ν = ε(|x|)2

20000k2 .

• D is the precision parameter and is a positive integer. We choose D = d16(4k+2)
ε(|x|) e.

It is straightforward to verify that these parameter values satisfy the following conditions:
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Proposition 5.4.

τ ≤ ε(|x|)
16(4k + 2)

ν ≤ τε(|x|)/128k

t ≥ 256k

ε(|x|)
log

16

ε(|x|)

t ≥ 16
(r + log k)2

ε(|x|)
.

t ≥ 320k

ε(|x|)τ
.

D ≥ 1

τ
.

D ≥ 32(k + 1)

ε(|x|)

The inequalities stated in this Proposition are needed in the analysis of the protocol. The values
of the parameters were chosen to ensure these conditions.

We are now ready to state the protocol:

Step 1. Merlin provides an integer h. Arthur and Merlin perform the Entropy estimation pro-
tocol of Lemma 5.1 for the probability distribution π and input h with error parameter
δ = ε(|x|)/16. (If Merlin is honest, then Merlin sets h so that |h − H(π)| ≤ 1, and adopts
the strategy from the first part of Lemma 5.1 that makes the rejection probability at most
ε(|x|)/16.)

Step 2. Random strings ρ1, . . . , ρt, each of length r, are generated using public coins. Let χ be
the t× k matrix with χi,j = f(ρi, j), the jth query asked when the random string is ρi.

Step 3. Merlin provides a t by k positive integer matrix B (Honest Merlin sets B to be equal to
the matrix B∗ whose i, j entry is |f−1(χi,j)|.)

Notational Remark. It is convenient here to define some matrices and vectors that are deter-
mined from B. For γ ∈ [0, 1) the t × k matrix A[γ] is given A[γ]i,j = φ((1 + γ)Bi,j), and
the vector z[γ] ∈ {0, 1}t is given by z[γ]i = out(A[γ]i,1, . . . , A[γ]i,k). The matrix A∗[γ] and
vector z∗[γ] are obtained analogously with B replaced by B∗. Note that row i of A∗[γ] is
exactly the sequence of query answers provided by oracle J [γ] when the random string is ρi
and z∗[γ]i is the output of NJ [γ](x) for random string is ρi.

Step 4. For each row index i, Arthur randomly chooses ĵ(i) ∈ {1, . . . , k}. Define

σ(B) =
1

t

∑
i

(r − log(Bi,ĵ(i))).

Arthur computes σ(B) approximately to determine an integer H ′ that belongs to the interval
[σ(B)− 1, σ(B) + 1]. Arthur rejects this step if |H ′ − h| > 3 and accepts this step otherwise.
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Step 5. Arthur-Merlin perform the lower bound protocol of Lemma 5.2 for the above-mentioned
function f that maps (ρ, i) to qi(ρ), with error parameters (ζ, δ) = (ν, ε(|x|)/16). The input
(q1, . . . , qm), (s1, . . . , sm) to the protocol is the sequence of tk entries of the matrix χ and the
corresponding sequence of entries of the matrix B. (If Merlin is Honest then since B = B∗,
si = |f−1(qi)| for every i and Merlin follows the strategy from the first part of Lemma 5.2
so that the probability of rejection is at most ε(|x|)/16.)

Step 6. Arthur selects a uniformly random λ̂ ∈ {1, . . . , D} and a uniformly random î ∈ {1, . . . , t}.
ẑ is defined to be z[λ/D]̂i. For future reference we also define ẑ∗ to be ẑ if B is replaced by
B∗.

Step 7. If any of the steps 1,4 or 5 result in reject, then the protocol outputs failure. Otherwise
the output is ẑ.

This protocol outputs either failure or 0 or 1. The main theorem of this subsection is:

Theorem 5.5. Under the hypotheses AM(N) given earlier, the above protocol satisfies:

1. If Merlin behaves honestly, then the protocol outputs L(x) with probability at least 1
2 +ε(|x|)/16.

2. For any behavior of Merlin, the probability that the protocol outputs failure or outputs L(x)
is at least 1

2 + ε(|x|)/16.

Corollary 5.6. Both L and L̄ can be recognized by AM protocols that run in time polynomial in
the 1/ε and the running time of N .

Proof. The protocol obtained by changing a failure output to 0 (resp. 1) is an AM protocol (resp.
coAM protocol) for L.

Proof. (of Theorem 5.5) We first note the following:

Proposition 5.7. The value ẑ∗ determined in Step 6 in the case that B = B∗ agrees with L(x)

with probability at least 1
2 + ε(|x|)

4 .

Proof. The value ẑ∗ determined in Step 6 is equal to the output of NJ [λ/D] on input x when the
random string is ρî. Since ρî is a uniformly random string, the hypothesis on N implies that this

is equal to L(x) with probability at least 1
2 + ε(|x|)

4 .

We now prove the first part of the Theorem. For s ∈ {1, 4, 5} define the event Rs to be the
event that the test in Step s outputs reject.

Assume Merlin behaves honestly, and therefore B = B∗. By the above proposition, the proba-
bility that the output of the protocol is L(x) is at least:

1

2
+
ε(|x|)

4
− Prob[R1 ∨R4 ∨R5] ≥ 1

2
+
ε(|x|)

4
− Prob[R1]− Prob[R4]− Prob[R5]

. As noted in the description of Steps 1 and 5, Prob[R1] and Prob[R5] are each at most ε(|x|)/16.
So it suffices to show that Prob[R4] ≤ ε(|x|)/16, which we now do.

Step 4 is rejected only if |H ′ − h| > 3. We have:

|H ′ − h| ≤ |H ′ − σ(B∗)|+ |σ(B∗)−H(π)|+ |H(π)− h|.
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|H ′ − σ(B∗)| ≤ 1 by the choice of H ′ and the fact that B = B∗, and |H(π) − h| ≤ 1 since Merlin
is assumed to be honest. Therefore Prob[R4] ≤ Prob[|σ(B∗)−H(π)| > 1. So it suffices to prove:

Proposition 5.8. Prob[|σ(B∗)−H(π)| > 1] ≤ ε(|x|)/16.

Proof. By the definition ofB∗, B∗
i,ĵ

= 2r+log kπ(χi,ĵ(i)) and so r+log k−log(B∗
i,ĵ(i)

) = log(1/π(χi,ĵ(i)))

and so σ(B∗) = 1
t

∑t
i=1 log(1/π(χi,ĵ(i))). Since χ1,ĵ(1), . . . , χt,ĵ(t) is a sequence of independent sam-

ples from the distribution π, Proposition 5.3 implies

Prob[
1

t

∑
i

log(1/π(χi,ĵ(i)))−H(π)| > 1] <
(r + log k)2

t
≤ ε(|x|)/16,

where the last inequality used Proposition 5.4.

This completes the proof of the first part of the theorem.
We now turn to the proof of the second part. We consider an arbitrary strategy for Merlin. We

break up into cases according to properties of the matrix B.
We divide into three cases.
Case 1.There is at least one entry (i, j) with Bi,j < B∗i,j/(1 + ν). By the property of the

Lower bound protocol performed in Step 5, this will reject with probability at least 1− ε(|x|)/16 ≥
1
2) + ε(|x|)/4.

Case 2. Bi,j ≥ B∗i,j/(1 + ν) for all entries (i, j) and there are more than ε(|x|)t/16 entries with
Bi,j > (1+τ)B∗i,j . We claim that Step 4 will reject with probability at least 1−ε(|x|)/8 ≥ 1/2+ε/4.
For this we give a lower bound on the probability H ′ −H(π) exceeds 3. We have

H ′ −H(π) = σ(B)− σ(B∗)− (Σ(B)−H ′)− (H(π)− σ(B∗))

≥ σ(B)− σ(B∗)− |σ(B)−H ′| − |H(π)− σ(B∗)|.

By the choice of H ′, |σ(B)−H ′| ≤ 1. Therefore:

Prob[H ′ −H(π) > 3] ≥ Prob[(σ(B)− σ(B∗) ≥ 5) ∧ (|σ(B∗)−H(π)| < 1)]

≥ 1− Prob[σ(B) < σ(B∗) + 5]− Prob[|σ(B∗)−H(π)| ≥ 1].

The desired lower bound will follow by showing that each of the two probabilities on the right is at
most ε(|x|)/16. Proposition 5.8 shows this for the second probability. So we now bound the first
probability.

For i ∈ {1, . . . , t} define:

• Vi = {j ∈ {1, . . . , k} : logBi,j ≥ (1 + τ)B∗i,j . (Note that
∑

i Vi ≥ ε(|x|)t/16 by the case
assumption.)

• Yi is the 0-1 indicator of the event that ĵ(i) ∈ Vi, and Y =
∑

i Yi.

We now make two claims.
Claim 1. σ(B)− σ(B∗) ≥ τY − νt.
Claim 2. Prob[Y < 1

2
ε(|x|)t

16k ] ≤ ε(|x|)/16.
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If Y ≥ 1
2
ε(|x|)t

16k , then by the conditions on τ and ν given by Proposition 5.4 we have that
τY − νt ≥ 5 and so

Prob[σ(B)− σ(B∗) < 5] ≤ Prob[Y <
1

2

ε(|x|)t
16k

] ≤ ε(|x|)/16.

To prove the first claim, note that for i such that Yi = 1, we have

log(Bi,ĵ(i)) ≥ log((1 + τ)B∗
i,ĵ(i)

≥ log(B∗
i,ĵ(i)

) + τ

(since log(1 + τ) ≥ τ for τ ∈ [0, 1]). For i such that Yi = 0, we have Bi,ĵ(i) ≥ Bi,ĵ(i)/(1 + ν) which

implies logBi,ĵ(i) ≥ logBi,ĵ(i) − 2ν since log(1 + ν) ≤ 2ν). Therefore σ(B)− σ(B∗) ≥ τY − νt.
For the second claim, note that that E[Y ] =

∑
i E[Yi] =

∑
i
|Vi|
k ≥

ε(|x|)t
16k , by the case assumption.

The “multiplicative Chernoff bound” implies that if Y is a sum of independent 0-1 random variables,
then Prob[Y ≤ 1

2E[Y ]] ≤ e−E[Y ]/8. Applying this here we obtain Prob[Y ≤ ε(|x|)t
32k ≤ e−ε(|x|)t256k ≤

ε(|x|)/16 by Proposition 5.4.
Case 3. Bi,j ≥ B∗i,j/(1 + ν) for all entries (i, j) and there are at most ε(|x|)t/16 entries with

Bi,j > (1 + τ)B∗i,j .

By Proposition 5.7, ẑ∗ is equal to L(x) with probability at least 1
2 + ε(|x|)/4. We show that

under the case assumption the probability that ẑ 6= ẑ∗ is at most ε(|x|)/8 which will show that ẑ is
equal to L(x) with probability at least 1

2 + ε(|x|)/8.
We say that a row index i ∈ {1, . . . , t} is unsafe if there is at least one j such that Bi,j >

(1 + τ)B∗i,j and is safe otherwise. We identify the following “bad” events:

B1 The selected row index î is unsafe.

B2 The selected λ̂ satisfies λ̂/D ∈ [0, 2τ) ∪ [1− 2τ, 1) ∪
⋃k
j=1[µ(B∗

î,j
)− 2τ, µ(B∗

î,j
) + 2τ ].

We claim that if neither bad event happens then ẑ = ẑ∗. Since [B1] doesn’t happen, î is safe.
Together with the case assumption and the fact that ν ≤ τ this implies that for each j ∈ [k],
Bî,j ∈ [B∗

î,j
/(1 + τ), B∗

î,j
(1 + τ)]. Since [B2] doesn’t happen, then for all j ∈ {1, . . . , k}, the

hypotheses of Proposition 4.3 hold for (s, t) = (Bî,j , B
∗
î,j

) from which we conclude that for all

j ∈ {1, . . . , k}

A[λ/D]̂i,j = φ((1 + λ/D)Bî,j)) = φ((1 + λ/D)B∗
î,j

)) = A∗[λ/D]̂i,j ,

which implies that ẑ[λ/D] = ẑ∗[λ/D].
So now it will be enough to show that Prob[B1] and Prob[B2] are both at most ε(|x|)/16.

Prob[B1] is equal to the fraction of unsafe rows, which is at most ε(|x|)/16 by the case assumption.
Since λ is chosen uniformly from {1, . . . D}, Prob[B2] is the fraction of integers in {1, . . . , D}

that belong to the set [0, 2Dτ) ∪ [D(1− 2τ), D) ∪
⋃k
j=1[D(µ(B∗

î,j
)− 2τ), D(µ(B∗

î,j
) + 2τ)]

Now we use the fact that the number of integers in an interval [a, b) is less than b− a+ 1 and
an interval [a, b] is at most b− a+ 1. Therefore the number of integers in [0, 2Dτ)∪ [D(1− 2τ), D)
is less than 4τD + 2 and the number of integers in each set of the big union is at most 4τD + 1.
Summing up over all intervals the number of integers in the union is at most (4k + 4)τD + k + 1.
Since τD ≤ 1/4 by Proposition 5.4, this is at most 2k + 2. So the probability that λ is in this set
is at most (2k + 2)/D which is at most ε(|x|)/16 by Proposition 5.4.
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6 A Dichotomy

We first make Theorem 4.1 more concrete by identifying some interesting parameter settings.
One natural setting is where the number of queries is polynomial and the advantage is inverse
polynomial.

Theorem 6.1. Suppose L is computable and there is a randomized polynomial-time non-adaptive
reduction F from L to ω(log(|q|))-additively approximating Kolmogorov complexity such that F is
polynomially honest and has inverse polynomial advantage. Then L ∈ AM ∩ coAM.

Proof. We apply Theorem 4.1 with kMn = poly(n), ε(n) = 1/poly(n), and α(n) = O(log(n)).
Hence we have βn(q) = O(log(n)). Since F is polynomially honest, we have that βn(q) = O(log(q))
for every q ∈ QMx for x of length n. Hence by the conclusion of Theorem 4.1, we have L ∈
AM ∩ coAM.

Another natural setting is where the number of queries and the advantage are both constant.
In this case, we can get a conclusion from a smaller upper bound on the approximation gap.

Theorem 6.2. Suppose L is computable and there is a computable function η = ω(1) such that
there is a randomized polynomial-time non-adaptive reduction F from L to (2 log(K(q)) + η(|q|))-
additively approximating Kolmogorov complexity such that F makes O(1) queries, is weakly honest
and has advantage Ω(1). Then L ∈ AM ∩ coAM.

Proof. Let λ : N→ N be an unbounded function such that F is λ-honest. When applying Theorem
4.1, we choose kMn = O(1) and ε(n) = Ω(1). We also choose α appropriately so that βn(q) ≥
2 log(K(q)) + η(|q|) - this is possible since F is weakly honest, by ensuring α(λ−1) = o(η). Once
more, applying Theorem 4.1 gives us the desired condlusion.

Theorem 6.1 supplies the first part of our dichotomy result. We require the following result of
Hirahara [28] for the second part of our dichotomy. This is Theorem 6.3 in [28], where it is stated
without mentioning the honesty property of the reduction. The proof of Theorem 6.3 in [28] does
yield a polynomially honest reduction.

Theorem 6.3. [28] For any constant c ∈ N, there exists an EXPNP computable function G = {Gn},
where Gn maps n − c log(n) bits to n bits, such that for any L ∈ NEXP, there is a randomized
polynomial-time polynomially honest non-adaptive reduction from L to distinguishing G from uni-
form.

Corollary 6.4. For every constant c ∈ N and any L ∈ NEXP, there is a randomized polynomial-
time non-adaptive reduction F from L to c log(|q|)-additively approximating Kolmogorov complexity
such that F is polynomially honest and has constant advantage.

Proof. Let c ∈ N , and let K ′ be any oracle that c log(|q|)-additively approximates Kolmogorov
complexity. Wlog we assume c ≥ 3 - note that establishing the conclusion for a constant c also
establishes it for any constant c′ ≤ c. Applying Theorem 6.3, we have that there is a computable
function G = {Gn}, where Gn maps n − 3c log(n) bits to n bits such that for any L ∈ NEXP,
there is a randomized polynomial-time polynomially honest non-adaptive reduction from L to D,
where D is any language distinguishing G from the uniform distribution. We define D(q) = 1
if K ′(q) < |q| − 1.5c log(|q|). Note that any output of the generator G can be described with
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log(n)+n−3c log(n)+O(1) bits, and hence has Kolmogorov complexity < n−2.5c log(n) for large
enough n. This implies that for every n-bit output y of the generator Gn, K ′(y) < n− 1.5c log(n).
On the other hand, with probability at least 1 − 1/nc/2 over y ∼ Un. we have that K(y) ≥
n−0.5c log(n), and hence K ′(y) ≥ n−1.5c log(n). Thus K ′ does distinguish the output of Gn from
uniform. Since D′ can be computed with a single deterministic query to K ′ of the same length as
the input, we have that for any L ∈ NEXP, there is a randomized polynomial-time polynomially
honest non-adaptive reduction from L to K ′. Since this holds for any K ′ that c log(|q|)-additively
approximates Kolmogorov complexity, the result follows.

Theorem 6.1 together with Corollary 6.4 establishes the dichotomy result in Theorem 1.3.

7 On Randomized Reductions to Kt

In this section, we show limitations on randomized nonadaptive reductions to Kt for polynomi-
ally bounded t. We first need to define the notion of a hitting set generator.

Definition 7.1. Given integers n and ` < n and rational error parameter ε ∈ [0, 1] with ε ≥ 1/2n,
a hitting set generator Hn,ε for size n with seed length ` and error ε is a function from `(n) bits to
n bits, such that for any circuit Cn of size n, if Cn accepts at least an ε fraction of inputs of length
n, we have that Prz∈{0,1}` [Cn(Hn,ε(z)) = 1] > 0. Given a function ` : N× [0, 1]→ N, we say that a
sequence Hn,ε of functions is a polynomial-time computable hitting set generator with seed length `
if for each integer n and rational ε ∈ [0, 1] such that ε ≥ 1/2n, Hn,ε is a hitting set generator for size
n with error ε and seed length `(n, ε), and moreover Hn,ε can be computed in time poly(n, log(1/ε))
when given n and dlog(1/ε)e in unary.

A key component of our proof is a construction of hitting set generators with optimal dependence
on ε in the seed length [19].

Theorem 7.2. [19] If E requires non-deterministic circuits of size 2Ω(n), then there is a polynomial-
time computable hitting set generator H with seed length O(log(n)) + log(1/ε).

It is crucial for our results that the constant factor in front of the log(1/ε) term is 1; if we
could afford an arbitrary constant factor there, we would only need an assumption on hardness for
deterministic circuits. We note that the result of [19] is stated for ε with a fixed dependence on n,
but it is easy to see that their proof works also if log(1/ε) is given as an independent parameter to
the algorithm computing the hitting set generator.

We next use Theorem 7.2 to argue that under a standard derandomization assumptions, the
Kolmogorov complexity of a typical sample from a polynomial-time samplable distributions does
not differ by much from the time-bounded Kolmogorov complexity. We require that the time
bound when measuring time-bounded Kolmogorov complexity is large enough compared to the
time required for sampling.

Lemma 7.3. Let t′ : N → N be a polynomially bounded function, and {Dm} be a sequence of
distributions samplable in time t′(m), where for each m ∈ N, Dm is supported on m-bit strings.
Suppose that E requires non-deterministic circuits of size 2Ω(n). Then there is t : N→ N such that
t = poly(t′) and Prx∼Dm [Kt(x)−K(x) = ω(log(m))] = 1/mω(1).
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Proof. Let {Dm} be a sequence of distributions, where Dm is supported on m-bit strings, sampled
by an algorithm A running in time t′(m). Using the standard simulation of deterministic time by
circuit size, A can be simulated by a sequence of circuits {C ′m}, where C ′m is of size at most t′(m)2

for large enough m. Also, let f = ω(log(m)) be an arbitrary function.
Let z be a fixed string of length at most n = 2t′(m)2 that is assigned probability ε by Dm.

We argue that the polynomial-time bounded Kolmogorov complexity of z is at most log(1/ε) +
O(log(n)), under the assumption that E required non-deterministic circuits of size 2Ω(n). Indeed,
under the given derandomization assumption, there is hitting set generator H = {Hn,ε} with seed
length O(log(n)) + log(1/ε)) computable in polynomial time as per Definition 7.1. Let B be an
algorithm that computes H in polynomial time.

We show that there must be at least one output r of Hn,ε such that C ′m outputs z on input r.
Indeed, consider a circuit Cn that on input r′ of length at most n, runs C ′m(r′) and accepts iff the
answer is z. Since z has probability ε according to Dm and C ′m samples from Dm, we have that
Cn accepts with probability at least ε on a uniformly random input. Since Hn,ε is a hitting set
generator, we have that at least one output r of the hitting set generator is such that C ′m(r) = z.

Let y be the seed of length O(log(n)) + log(1/ε) for which Hn,ε(y) = r. We describe z using the
code of B, the string y and descriptions of n and dlog(1/ε)e in binary. This composite description is
of size at most O(log(n)) + log(1/ε), and z can be computed in time t = poly(n, log(1/ε)) from this
description by running the algorithm B with parameters n and log(1/ε) and input y to produce a
string r, and then running A on r to produce z. Hence Kt(z) = O(log(n)) + log(1/ε). Let C be an
explicit constant such that Kt(z) ≤ C log(m) + log(1/ε) for large enough n.

In the next part of our argument, we show that the cumulative probability according to Dm

of strings with additive gap at least f(m) between Kolmogorov complexity and t-time bounded
Kolmogorov complexity is 1/mω(1), establishing our result.

Partition all binary strings of length m into 2m groups as follows. The group Si, i ∈ [2m − 1]
contains all strings of length m sampled with probability at most 1/2i−1 and greater than 1/2i from
Dm. The group Sm contains all strings of length m sampled with probability at most 1/22m−1.
We will obtain our upper bound on the likelihood of a large gap between K and Kt complexity by
using a union bound on the groups Si.

Consider any group Si, i ∈ [2m − 1]. Let g(m) = f(m) − C log(m). Since f(m) = ω(log(m)),
so is g(m). Call a string x of length m i-bad if x ∈ Si and K(x) ≤ i − g(m). By the upper
bound on Komogorov complexity, we have that there are at most 2i−g(m) = 2i/mω(1) i-bad strings.
Since each i-bad string is in Si, it has probability at most 1/2i−1 of being sampled according
to Dm, and therefore the cumulative probability of i-bad strings according to Dm is at most
1/2i−1 · 2i/mω(1) = 1/mω(1).

By the argument earlier in the proof, each string in Si has Kt complexity at most C log(m) +
log(1/2i) = C log(m) + i. Hence any string x ∈ Si such that Kt(x) − K(x) ≥ f(m) is i-bad,
and the cumulative probability of all such strings according to Dm is 1/mω(1). By a union bound
over i ∈ [2m − 1], we have that the cumulative probability of all strings with gap at least f(m)
between Kolmogorov complexity and t-time bounded Kolmogorov complexity and that occur with
probability greater than 1/22m in Dm is 1/mω(1). Since there are only 2m m-bit strings, the
cumulative probability according to Dm of strings from S2m is at most 2−m = 1/mω(1). Hence, by
another union bound, Prx∼Dm [Kt(x)−K(x) = ω(log(m))] = 1/mω(1), as desired.

We note that a weaker version of Lemma 7.3, where the hypothesis is that E requires Σp
2-oracle
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circuits of truly exponential size, is implicit in work of Antunes and Fortnow [16].
We require a couple of other well-known results. The first is a proposition shown using a

straightforward padding argument.

Proposition 7.4. If every tally language in NTIME(n) is in coNP, then NE = coNE.

The second is a standard derandomization result.

Theorem 7.5. [38] If there is an ε > 0 such that E does not have non-deterministic circuits of
size 2εn, then AM = NP.

Now we have the tools to state and prove the main result of this section, which also appears as
Theorem 1.6 in the Introduction.

Theorem 7.6. Suppose that there is a polynomially bounded function t′ : N→ N such that for all
large enough t = poly(t′), there is a randomized time t′ non-adaptive reduction that is polynomially
honest, has fixed query length and inverse polynomial advantage, from SAT to ω(log(m))-additively
approximating Kt complexity. Then either E has non-deterministic circuits of size 2o(n) infinitely
often, or NE = coNE.

Proof. Suppose there is a randomized time t′ non-adaptive reduction R from SAT to O(log(n))-
additively approximating Kt complexity with the properties specified in the statement of the The-
orem, where t = poly(t′) and the precise polynomial dependence is to be specified later. We use
Lemma 7.3 to show that under the assumption that E does not have non-deterministic circuits of
size 2εn for some ε > 0, R also reduces any tally language in NTIME(n) to ω(log(m))-additively
approximating K complexity, and then apply Theorem 6.1.

Indeed, let L ∈ NTIME(n) be a tally language. By the Cook-Levin theorem, there is a m-
reduction from L to SAT running in time n polylog(n). This reduction is polynomially honest and
has fixed query length. By composing this reduction with the reduction R in the assumption, we
get that there is a randomized time t′′ non-adaptive reduction R′ from L to ω(log(m))-additively
approximating Kt complexity, where the reduction is polynomially honest and has fixed query
length, and where t′′ = t(n polylog(n)) is polynomially bounded.

Now we apply Lemma 7.3 to the sequence of distributions Dm sampled by running the ran-
domized reduction R′ on input 1m and outputting a random query 7. Applying Lemma 7.3 and a
union bound, we have that with probability 1 − 1/mΩ(1) over the randomness r of R′, all queries
z asked on randomness r have |K(z) − Kt(z)| = O(log(m)), and since the reduction has inverse
polynomial advantage, replacing an oracle that ω(log(m))-additively approximates Kt complexity
with one that ω(log(m))-additively approximates K complexity will preserve the answer of the
reduction for each string 1m. Hence we have that the hypothesis of Theorem 6.1 is satisfied, and
we get that L ∈ AM ∩ coAM.

Using the assumption that E does not have non-deterministic circuits of size 2εn once more and
applying Theorem 7.5, we have that L ∈ NP∩coNP. Since this is the case for every L ∈ NTIME(n),
we can use Proposition 7.4 and conclude that NE = coNE, as desired.

7Technically speaking, it might be unclear if Lemma 7.3 applies here, as the sampled strings do not in general
have length m, but the proof of Lemma 7.3 continues to work as long as the sampled strings have length mΩ(1)

27



8 Future Directions

There are two obvious directions to pursue. The first is to extend our negative results to other
meta-complexity problems such as MCSP. As mentioned before, [43] unconditionally rule out NP-
hardness of MCSP under randomized sublinear-time projections, but nothing seems to be known
about less specialized forms of reduction.

The second is to obtain evidence against NP-hardness of meta-complexity problems with respect
to randomized adaptive reductions. An anonymous reviewer suggests that it might be possible to
use ideas from [17] to obtain interesting consequences from NP-hardness of approximating Kol-
mogorov reductions with respect to randomized reductions with bounded adaptivity.
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A Limitations of Randomized m-Reductions to Approximating
Kolmogorov Complexity

In this section, we show that any language that has a low-error randomized polynomial-time
m-reduction to a gap version of the Kolmogorov random strings is solvable in Statistical Zero
Knowledge.

Theorem A.1. Let L be any decidable language such that there is a randomized poly-time m-
reduction with error 1/nω(1) from L to RK with gap g for some time-constructible g = ω(log(n)).
Then L ∈ SZK.

Proof. Let L be a language as in the statement of the theorem. Let f be a randomized poly-time
m-reduction with error 1/nω(1) to RK with gap g for some g = ω(log(n)).
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We can assume without loss of generality that any query made by f on input x of length n is of
length p(n) for some polynomial p. Indeed, let p(n) be an upper bound on the running time of f .
We modify the reduction by ”padding” any query made by f to length m = 2p(n) as follows. Let
c be the constant in the O(·) in Proposition 2.5. If the query q is of length k, we sample a string
y = r0(m−k)/2−2c log(n) where r ∈ {0, 1}(m−k)/2+2c log(n) is chosen uniformly at random, and output
the query qy. Observe that by Proposition 2.5, with probability 1− 1/nω(1), if q is a YES instance
of RK , then qy is a YES instance of RK , and if q is a NO instance of RK , then qy is a NO instance
of RK .

For each x ∈ {0, 1}∗, f(x) is a random variable supported on {0, 1}2p(|x|). We claim that the
following holds. If x 6∈ L, the random variable f(x) has entropy at least p(|x|) − g(2p(|x|))/2 + 1,
and if x ∈ L, the random variable f(x) has entropy at most p(|x|)− g(2p(|x|))/2− 1.

We first show that the claim implies that L ∈ SZK, and then establish the claim. To see that
the claim implies L ∈ SZK, we use the fact that Entropy Difference is in SZK. Namely, there is a
statistical zero-knowledge protocol that, given a circuit C sampling a distribution over m bits and
a parameter s, accepts when the entropy of C is at least s + 1 and rejects when the entropy of C
is at most s − 1. Note that a circuit C sampling f(x) can easily be computed from x. Since SZK
is closed under poly-time m-reductions, we have that L ∈ SZK, by reducing to Entropy Difference
with parameter m/2− g(m)/2.

Next we establish the claim. Assume for the sake of contradiction that the claim fails for
infinitely many inputs. Let {ni} be an infinite sequence of numbers such that the claim fails for at
least one input of length ni for each i, and let xi be the first input of length ni for which the claim
fails. Note that K(xi) = O(log(ni)). The reason is that we can describe xi by a program which
has ni in binary encoded into it, and then searches for the first string z of length ni such that the
claim fails for z, i.e., either z ∈ L and the entropy of f(z) is greater than p(|z|)− g(2p(|z|)/2− 1,
or z 6∈ L and the entropy of f(z) is smaller than p(|z|)− g(2p(|z|))/2 + 1.

Let i be large enough and xi be the first string of length ni for which the claim fails. Let
m = 2p(ni). Either xi ∈ L and the entropy of f(xi) is greater than m/2 − g(m)/2 − 1, or xi 6∈ L
and the entropy of f(xi) is smaller than m/2 − g(m)/2 + 1. We show that either case leads to a
contradiction.

In the first case, the random variable f(xi) has entropy greater than m/2− g(m)/2− 1. Then
with probability at least 1/m over y ∈ {0, 1}m sampled from f(xi), K(y) > m/2− g(m). Indeed, if
not, the entropy of f(xi) is at most 1/m∗m+(1−1/m)∗ (m/2−g(m)) ≤ m/2−g(m)+1 < m/2−
g(m)/2− 1, which contradicts the lower bound on the entropy of f(xi). But if K(y) > m/2− g(m)
with probability at least 1/m, the reduction cannot be correct for xi ∈ L, as correctness of the
reduction would imply K(y) ≤ m/2 − g(m) with probability 1 − 1/nω(1) (as we could answer NO
for all queries y with K(y) > m/2− g(m)).

In the second case, the random variable f(xi) has entropy at most m/2− g(m)/2 + 1. We show
that in this case, with probability 1/nΩ(1), y sampled from f(xi) has K(y) < m/2, which again
contradicts the correctness of the reduction.

We show that with probability 1/nΩ(1) over y sampled from f(xi), K(y|xi) < m/2−ω(log(m)),
from which the previous line follows using Proposition 2.5 and the fact that K(xi) = O(log(ni)) =
O(log(m)). Indeed let k be the entropy of f(xi) and let y1 . . . y2k+log(m) be the first 2k+log(m) strings
in the support of f(xi) in order of decreasing probability, and let Y be the set of these strings.
Conditioned on xi, each such string can be described with a program of size k+log(m)+O(log(m)),
which is m/2− ω(log(m)), using the facts that k ≤ m/2− g(m)/2 + 1 and g(m) = Ω(log(m)). We
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claim that with probability at least 1/m, y sampled from f(xi) belongs to Y . Indeed, if not,
we have that with probability greater than 1 − 1/m, y sampled from f(xi) has probability at
most 2−(k+log(m)), and hence the contribution to the entropy of f(xi) from such strings is at least
(1− 1/m)(k + log(m)) > k, which is impossible.

Thus we have that with probability 1/m, y sampled from f(xi) belongs to Y , and that each
string in Y has Kolmogorov complexity smaller than m/2. But this contradicts the correctness
of the reduction, as xi is a NO instance, and hence with probability 1 − 1/nω(1), y sampled from
f(xi) should have K(y) ≥ m/2 (as otherwise we could answer YES for all queries y with K(y) <
m/2− g(m)).

33

ECCC   ISSN 1433-8092 

https://eccc.weizmann.ac.il


