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Abstract

We study the following natural question on random sets of points in Fm
2 :

Given a random set of k points Z = {z1, z2, . . . , zk} ⊆ Fm
2 , what is the dimension of

the space of degree at most r multilinear polynomials that vanish on all points in Z?

We show that, for r ≤ γm (where γ > 0 is a small, absolute constant) and k = (1− ε) · ( m
≤r)

for any constant ε > 0, the space of degree at most r multilinear polynomials vanishing on a
random set Z = {z1, . . . , zk} has dimension exactly ( m

≤r) − k with probability 1− o(1). This
bound shows that random sets have a much smaller space of degree at most r multilinear
polynomials vanishing on them, compared to the worst-case bound (due to Wei (IEEE Trans.
Inform. Theory, 1991)) of ( m

≤r)− (log2 k
≤r )� ( m

≤r)− k.
Using this bound, we show that high-degree Reed-Muller codes (RM(m, d) with d > (1−

γ)m) “achieve capacity” under the Binary Erasure Channel in the sense that, for any ε > 0,
we can recover from (1− ε) · ( m

≤m−d−1) random erasures with probability 1− o(1). This also
implies that RM(m, d) is also efficiently decodable from ≈ ( m

≤m−(d/2)) random errors for the
same range of parameters.

1 Introduction

The Reed-Muller (RM) code is one of the most basic error-correcting codes studied in coding the-
ory, first introduced by Muller [Mul54] and Reed [Ree54] in 1954. Stated in the language of polyno-
mials, the RM code with parameters m and r for positive integers m > r, denoted by RM(m, r), is
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the code whose codewords are evaluations of m-variate multilinear polynomials of degree at most
r over the vector space Fm

2 . Despite these being one of the earliest codes discovered in coding
theory, several properties of these codes (weight-distribution, capacity-achieving on any binary
memory-less symmetric (BMS) channel) are not yet fully-understood.

A natural problem that arises while investigating the Shannon-capacity of RM code is the
following:

Given a set Z of k points Z = {z1, z2, . . . , zk} ⊆ Fm
2 , what is the dimension of the space Ir(Z)

of degree at most r multilinear polynomials that vanish on all points in Z?

To understand the connection to RM codes, we give an equivalent description of this problem
in terms of the parity check matrix of the RM code. Let E(m, r) be the ( m

≤r) × 2m-matrix whose
columns are indexed by elements in Fm

2 and rows by m-variate multilinear monomials of degree
at most r. The zth column of E(m, r) for z ∈ Fm

2 is the column vector z(r) consisting of evaluations
of all multilinear m-variate degree ≤ r monomials at the point z. It is not hard to see that E(m, r)
is the parity check matrix of the Reed-Muller code RM(m, m− r− 1). An equivalent formulation
of the above question in terms of the matrix E(m, r) is the following: given a set Z of k points Z =

{z1, z2, . . . , zk} ⊆ Fm
2 , what is the rank of the ( m

≤r)× |Z| sub-matrix E(m, r)Z of E(m, r) obtained by
picking the columns corresponding to the points in Z.

While studying the generalized Hamming weights of RM codes over F2, Wei [Wei91] proved
worst-case bounds for the above problem. In its simplest form, these worst-case bounds show that
if |Z| = 2` for some 0 ≤ ` ≤ m, then dim(Ir(Z)) ≤ ( m

≤r)− ( `
≤r). These worst-case bounds were

then generalized to arbitrary fields by Keevash and Sudakov [KS05] and have had applications
in combinatorics as well as theoretical computer science. Ben-Eliezer, Hod and Lovett [BHL12]
reproved the above form of this bound and used it to study the correlation of random polynomi-
als with lower-degree polynomials. Nie and Wang [NW15] used these bounds bound to prove
extensions of the Kakeya Theorem. Chen, De, and Vijayaraghavan [CDV21] used these bounds
to analyze their algorithms for learning mixtures of subspaces over finite fields. In the context of
RM codes, Abbe, Shpilka and Wigderson [ASW15] used these worst-case bounds to show that RM
codes of high rate (r = m− o(

√
m/ log m)) achieve Shannon-capacity over the BEC channel.

These bounds due to Wei only prove extremal (i.e., worst-case) bounds on dim(Ir(Z)). The
tightness of this bound is witnessed when Z is a subcube of size 2`, where dim(Ir(Z) = ( m

≤r)− ( `
≤r)

which is considerably larger than ( m
≤r)− |Z| = ( m

≤r)− 2`. We note that ( m
≤r)− |Z| is a lower bound

on the dimension of Ir(Z) since each point in Z can reduce the dimension by at most 1. It is thus
natural to ask how large is dim(Ir(Z)) for sets Z other than a subcube. In particular, how does
dim(Ir(Z)) compare to ( m

≤r)− |Z| when Z is a random set of points of size K < ( m
≤r). Our main

result shows that for small r (more precisely, for r ≤ γm for a small, but absolute, constant γ > 0)
and |Z| = (1− ε) · ( m

≤r) for any constant ε ∈ (0, 1), a random set Z behaves very differently from a
subcube and the dimension of Ir(Z) is as small as it can be, namely ( m

≤r)− |Z|.
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Theorem 1.1 (dimension of degree-r vanishing space of random set). There exists a constant γ0 > 0
such that for all ε > 0 the following is true. Let K = (1− ε) · ( m

≤r) and r < γ0m. Then,

Pr
Z⊆Fm

2

[
dim(Ir(Z)) =

(
m
≤ r

)
− K

]
= 1− o(1)

where Z = {z1, . . . , zK} is a uniformly random set of K distinct points in Fm
2 . In other words, the proba-

bility that the set of columns {z(r)1 , z(r)2 , . . . , z(r)K } is not linearly independent is o(1), where z(r) denotes the
vector consisting of evaluations of all multilinear m-variate degree ≤ r monomials at the point z.

Abbe, Shpilka and Wigderson [ASW15] also proved a similar result for a smaller range of r,
namely r = o(

√
m/ log m) using Wei’s extremal bound. We note that if γ0 is chosen sufficiently

small such that K ≤ ( m
≤r) = o(2m/2), then it does not matter if the points z1, . . . , zk are chosen with

or without replacement since the two distributions are then o(1)-indistinguishable. When the
points are chosen with replacement, then one cannot expect to improve the range of r for which
the above theorem holds (up to the choice of the constant γ0) since if K � 2m/2, then with high
probability two of the zi’s are equal in which case Ir(Z) will definitely have dimension strictly
larger than ( m

≤r)− K.
As one would expect, this average-case bound on dim(Ir(Z)) leads to a better understanding

of the Shannon-capacity of RM codes over the high-rate regime.

Shannon-capacity of Reed-Muller codes Reed-Muller codes were shown to achieve Shannon-
capacity over the BEC channel in the extremal regimes (low rate r = o(m) and high rate r =

m− o(m)) by Abbe, Shpilka and Wigderson [ASW15] and in the constant rate regime (r = m/2±
O(
√

m)) by Kudekar et al [KKMPŞU17]. More recently, Reeves and Pfister [RP21] showed that RM
codes over the constant rate regime (r = m/2±O(

√
m)) achieve Shannon-capacity over any BMS

channel. Despite all this progress, the general question of whether RM codes achieve capacity
over the entire regime (1 ≤ r < m− 1) and over any BMS channel remains open.

The results of Kudekar et al [KKMPŞU17] and Reeves and Pfister [RP21] are obtained using
Boolean function analysis while the results of Abbe, Shpilka and Wigderson for the Shannon-
capacity over the BEC channel of RM codes in the low-rate regime (r = o(m)) were obtained using
the weight-distribution bound of Kaufman, Lovett and Porat [KLP12]. Subsequent improvements
in the weight distribution due to Sberlo and Shpilka [SS20] led to the Shannon-capacity of RM
codes over the BEC channel for a wider range of the degree parameter r, more precisely for r = γm
for γ < 1/70.

The Shannon-capacity of RM over the high-rate regime (r = m − o(
√

m/ log m) were also
proved by Abbe, Shpilka and Wigderson using Wei’s worst-case bounds on dim(Ir(Z)). In partic-
ular, these latter results do not use the weight distribution of RM codes and hence the subsequent
improvements in our understanding of the weight distribution of RM codes due to Samorodnit-
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sky [Sam20] and Sberlo-Shpilka [SS20] did not lead to an improved understanding of the Shannon-
capacity of RM codes in the high-rate regime. We rectify this gap by giving an alternate bound for
the Shannon-capacity in terms of the our average-case bound on dim(Ir(Z)) and widen the range
of the degree parameter r for which high-rate RM codes achieve Shannon-capacity over the BEC
channel.

Theorem 1.2 (high-degree RM codes under erasures). There exists a constant γ0 > 0 such that for all
ε > 0 the following is true. Let m, d be growing parameters with d > m(1− γ0). Then, the code RM(m, d)
can correct K = (1− ε)( m

≤m−d−1) random errors with probability 1− o(1).

Abbe, Shpilka and Wigderson [ASW15] and Saptharishi, Shpilka and Volk [SSV17] showed
how to reduce the resilience of certain RM codes under the BSC to the resilience of appropriate
RM codes under the BEC. Using this reduction, we obtain the following corollary of the above
theorem for the BSC channel.

Corollary 1.3 (high-degree RM codes under errors). There exists a constant γ0 > 0 such that for all ε >

0 the following is true. Let m, r be growing parameters with r < γ0m. Then, the code RM(m, m− 2r− 2)
can be efficiently decode from K = (1− ε)( m

≤r) random errors.

See Section 4 for further discussion on Shannon-capacity and what it means for high-rate RM
codes to achieve it over the BEC and BSC channels.

We remark that our proof methods work for any linear code, not necessarily the RM code,
provided one has good bounds on the weight distribution of the dual code.

1.1 Proof Overview

Recall that Theorem 1.1 is a statement about the dimension of the degree-r vanishing space of a
uniformly random subset Z of Fm

2 of size K where K = (1− ε) · ( m
≤r). In the regime of parameters

we are interested in (i.e., r < γ0m for a small enough constant γ0), this is more or less equivalent to1

choosing K points z1, . . . , zK independently and uniformly from Fm
2 . We assume that Z is defined

this way for the rest of this section.
To argue about the dimension of the degree-r vanishing space Ir(Z), we instead argue about

the size S of Ir(Z). Note that since dim(Ir(Z)) ≥ D := ( m
≤r)− K, this set has size at least 2D, and

has size at least 2D+1 if dim(Ir(Z)) > D. In light of this, it is sufficient to show that

E[S] = exp2(D)(1 + o(1)).

Estimating E[S] turns out to be very closely related to a recent result of Sberlo and Shpilka [SS20],
who prove strong results on the parameters of capacity-achieving Reed-Muller codes in the low-
degree setting.

1In the sense that the two distributions have small statistical distance.
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More precisely, we can easily see that the probability that a uniformly random polynomial
P ∈ RM(m, r) belongs to Ir(Z) is exactly (1 − wt(P))K where wt(P) is the fractional Hamming
weight of P (i.e., the fraction of points where it does not vanish). Thus, we have

E[S] = ∑
P∈RM(m,r)

(1−wt(P))K.

Now, while there are polynomials P ∈ RM(m, r) of very small weight2, most polynomials in
RM(m, r) have weight close to 1/2, which should indicate that the sum is close to 2−K as required.
However, a careful analysis is required, as the contribution of a polynomial P increases exponen-
tially as its weight decreases.

It turns out that Sberlo and Shpilka [SS20] analyzed a very similar quantity in their recent work.
More precisely they showed that for any constant δ > 0 (and also a large range of sub-constant δ),
we have

∑
P∈RM(m,r)\{0}

(1−wt(P))(1+δ)·( m
≤r) = o(1).

While this is very closely related to our result, we are not able to recover the exact bound we need
using this inequality.

However, the technical lemmas used to derive the above result are strong results on the weight
distribution of RM(m, r), which are upper bounds on the number of polynomials of small weight.
Using these upper bounds and carrying out the relevant computations yields Theorem 1.1.

The application to resilience under the BEC and BSC (Theorem 1.2 and Corollary 1.3) follow
from Theorem 1.1 in a straight-forward manner from the works of Abbe, Shpilka and Wigder-
son [ASW15] and Saptharishi, Shpilka and Volk [SSV17].

Organisation

We discuss some notation and preliminaries in Section 2 and proceed to the proof of Theorem 1.1
in Section 3. We then present the applications to proving the resilience of RM codes under BEC
and BSC in Section 4.

2It is a standard fact (e.g. by the Schwartz-Zippel lemma) that the minimum weight of a non-zero polynomial from
RM(m, r) is 2−r.

5



2 Notation and preliminaries

1. We use [m] to represent the set {1, 2, 3, . . . , m} and the expression ( m
≤r) to denote the sum(

m
0

)
+ · · ·+

(
m
r

)
.

2. We denote by ([m]
r ) and ([m]

≤r) the sets {S ⊆ [m] : |S| = r} and {S ⊆ [m] : |S| ≤ r} respectively.

3. We shall abuse notation and use RM(m, r) to denote the vector space of all m-variate multi-
variate polynomials in F2[x1, . . . , xm] of degree at most r. Throughout the paper, the param-
eter m will be unchanged and we will avoid mentioning it for brevity. Let n = 2m.

4. For parameters m, r, define the matrix E(m, r) as the ( m
≤r) × 2m-matrix whose columns are

indexed by elements in Fm
2 and rows by multlinear m-variate monomials of degree at most r

and whose z-th column is the vector consisting of the evaluation of all multilinear m-variate
degree ≤ r monomials on z.

5. For a polynomial P ∈ RM(m, r), we use wt(P) to denote the fractional Hamming weight:

wt(P) :=
|{z ∈ Fm

2 : P(z) 6= 0}|
2m

We shall say that a polynomial P ∈ RM(m, r) is η-biased if |wt(P)− 1/2| ≥ η. We shall also
use RMη(m, r) to denote the set of all η-biased polynomials in RM(m, r).

6. For a real number α ∈ (0, 1), we denote by WtDistm,r(α) the number of polynomials of
(fractional) weight at most α in RM(m, r), i.e., WtDistm,r(α) := |{P ∈ RM(m, r) : wt(p) ≤
α}|.

7. All complexity notations used in the paper are with respect to m as the growing parameter.

2.1 Weight distribution bounds

We use the following bounds on the weight-distribution of Reed-Muller codes due to Sberlo and
Shpilka [SS20].

Theorem 2.1 (Sberlo and Shpilka [SS20]: bounds for low-weight codewords). For any ` ≥ 1, we
have

WtDistm,r(2−`) ≤ exp2

(
O(m4) + 17 · (cγ`+ dγ) · γ`−1 ·

(
m
≤ r

))

where cγ = 1/(1− γ) and dγ = (2−γ)
(1−γ)2 .
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In particular, if γ ≤ (1/2), we have

WtDistm,r(2−`) ≤ exp2

(
O(m4) + O(` · γ`−1) ·

(
m
≤ r

))
. (2.2)

Theorem 2.3 (Sberlo and Shpilka [SS20]: bounds for medium-weight codewords). Assume that
γ ∈ (0, (1/2)−Ω(1)). For a positive integer ` such that `/m upper bounded by a small enough constant3,
we have

WtDistm,r

(
1
2
− 2−`

)
≤ exp2

(
O(m4) + (1− 2−c(γ,`)) ·

(
m
≤ r

))
(2.4)

where c(γ, `) = O(max{γ2`, γ}).

3 Degree-r vanishing spaces and closures

We first define the notion of a vanishing space. This is similar to the notion of vanishing ideals in basic
algebraic geometry but we refer to them as vanishing space instead to stress that we are studying
them as a vector space and not an ideal.

Definition 3.1 (degree-r vanishing spaces). For a set Z ⊆ Fm
2 , we use Ir(Z) to denote the degree-r

vanishing space defined as

Ir(Z) := {P ∈ RM(m, r) : P(z) = 0 for all z ∈ Z} . ♦

Related to the vanishing ideals is also the notion of the degree-r closure (similar to the Zariski
closure in standard algebraic geometry but restricted to the setting of Fm

2 ), which is the set of
points on which every polynomial in the degree-r vanishing space vanishes.

Definition 3.2 (degree-r closure). For a set Z ⊆ Fm
2 , we use Closurer(Z) to denote the degree-r closure

of Z defined as

Closurer(Z) := {u ∈ Fm
2 : P(u) = 0 for all P ∈ Ir(Z)} . ♦

The above notion can be equivalently defined as the set of all u ∈ Fm
2 such that column of

E(m, r) indexed by u is in the span of columns of E(m, r) indexed by z ∈ Z. That is,

Closurer(Z) =
{

u ∈ Fm
2 : u(r) ∈ span

{
z(r) : z ∈ Z

}}
,

where z(r) denotes the ( m
≤r)-dimension vector of evaluations of all m-variate degree at most r mono-

3[SS20, Theorem 1.3] only guarantees this for ` = o(m) but [SS20, Remark 1.1] after the theorem statement says that
in this setting it holds for ` = Ω(m).
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mials at the point z.

For any set Z ⊆ Fm
2 of size k, note that Ir(Z) is a vector space of dimension at least ( m

≤r)− k, as
each constraint P(z) = 0 adds one homogeneous linear constraint on the ambient space RM(m, r).
In fact, it is easy to see that Ir(Z) has rank ( m

≤r)− k if and only if each point of Z is not in the closure
of the previous points.

Observation 3.3 (vanishing ideals of minimal rank). Let Z = {z1, . . . , zk} ⊆ Fm
2 . Then,

dim Ir(Z) =
(

m
≤ r

)
− k⇐⇒ (∀i = 1, . . . , k− 1 : zi /∈ Closurer({z1, . . . , zi−1})) .

3.1 Dimension of the degree-r vanishing spaces of random sets

In this section, we will be interested in studying the vanishing spaces and closures of a random set
Z obtained by picking K = (1− ε)( m

≤r) points from Fm
2 (where ε > 0 is some constant). We restate

Theorem 1.1 below.

Theorem 1.1 (dimension of degree-r vanishing space of random set). There exists a constant γ0 > 0
such that for all ε > 0 the following is true. Let K = (1− ε) · ( m

≤r) and r < γ0m. Then,

Pr
Z⊆Fm

2

[
dim(Ir(Z)) =

(
m
≤ r

)
− K

]
= 1− o(1)

where Z = {z1, . . . , zK} is a uniformly random set of K distinct points in Fm
2 . In other words, the proba-

bility that the set of columns {z(r)1 , z(r)2 , . . . , z(r)K } is not linearly independent is o(1), where z(r) denotes the
vector consisting of evaluations of all multilinear m-variate degree ≤ r monomials at the point z.

We will use the following lemma to prove the above theorem.

Lemma 3.4 (size of degree r-vanishing space of random set). There exists a constant γ0 > 0 such that
for all ε > 0 the following is true. Let K = (1− ε) · ( m

≤r) and r < γ0m. Then,

E

 |Ir(Z)|
exp2

(
( m
≤r)
)
 = 2−K(1 + o(1))

where Z = {z1, . . . , zK} is a uniformly random set of K distinct points in Fm
2 .

We first use the above lemma to prove Theorem 1.1. Lemma 3.4 is proved in Section 3.2.

Proof of Theorem 1.1. Let p be the probability that dim(Ir(Z)) = ( m
≤r)− K. Note that dim(Ir(Z)) is

always at least ( m
≤r)−K, as the space Ir(Z) is a subspace of RM(m, r) defined by K linear equations.
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Thus,

E

 |Ir(Z)|
exp2

(
( m
≤r)
)
 = E

[
exp2

(
dim(Ir(Z))−

(
m
≤ r

))]
≥ p · exp2(−K) + (1− p) · 2 · exp2(−K).

Combining this with Lemma 3.4 we get that

p · exp2(−K) + (1− p) · 2 · exp2(−K) ≤ 2−K(1 + o(1))

which gives 1− p ≤ o(1). Hence, we get that p = 1− o(1).

3.2 Proof of Lemma 3.4

We start with reformulating the problem of bounding size of Ir(Z) to computing a certain weighted
sum of the polynomials in RM(m, r).

Let Q be a uniformly random polynomial chosen from RM(m, r). Then,

E

 |Ir(Z)|
exp2

(
( m
≤r)
)
 = E

Z,Q
[1[Q ∈ Ir(Z)]]

= E
Q

[
E
Z
[1[Q ∈ Ir(Z)]]

]
= ∑

P∈RM(m,r)
exp2

(
−
(

m
≤ r

))
·
((1−wt(P))2m

K )

(2m

K )

= exp2(−K) ·
[

∑
P∈RM(m,r)

exp2

(
−ε ·

(
m
≤ r

))
·
((1−wt(P))2m

K )

(2m

K )

]
.

To complete the proof of Lemma 3.4 we therefore need the following claim.

Claim 3.5.

∑
P∈RM(m,r)

exp2

(
−ε ·

(
m
≤ r

))
·
((1−wt(P))2m

K )

(2m

K )
≤ 1 + o(1).

Given Claim 3.5, we see that

E

 |Ir(Z)|
exp2

(
( m
≤r)
)
 = exp2(−K) ·

[
∑

P∈RM(m,r)
exp2

(
−ε ·

(
m
≤ r

))
·
((1−wt(P))2m

K )

(2m

K )

]

≤ exp2(−K) · (1 + o(1)),

9



which concludes the proof of Lemma 3.4.

Next, we proceed to prove Claim 3.5.

Proof of Claim 3.5. Let u = ( m
≤r) in the following. Recall that K = (1− ε)u. Also,

∑
P∈RM(m,r)

exp2 (−εu) ·
((1−wt(P))2m

K )

(2m

K )
≤ ∑

P∈RM(m,r)
exp2 (−εu) · (1−wt(P))(1−ε)u.

Set δ =
(

1
( m
≤r)

)2
and let RMδ(m, r) = {P ∈ RM(m, r) : |wt(P) − 1/2| ≥ δ/2}, i.e., the set of

polynomials with bias at least δ.
Now,

∑
P∈RMδ(m,r)

exp2 (−εu) · (1−wt(P))(1−ε)u

≤ 2 · ∑
P : wt(P)≤1/2−δ/2

exp2 (−εu) · (1−wt(P))(1−ε)u,

since the term corresponding to a polynomial P of weight greater than 1/2 + δ/2 can be upper
bounded by the term corresponding to the polynomial 1+ P which has weight at most 1/2− δ/2.

Since the RHS of the above equation involves polynomials whose weights are in the interval
[1/2r, 1/2− δ], we will split this interval into sub-intervals and analyse the contribution from each.

Lowi := [1/2i+1, 1/2i] for i = 2, 3, . . . , r− 1,

Medi := [(1/2− 1/2i), (1/2− 1/2i+1)] for i = 2, 3, . . . , t = log
1
δ

.

Let us use the following quantities to denote the number of polynomials with weights in the above
intervals:

Li := |{P ∈ RM(m, r) : wt(P) ∈ Lowi}|
Mi := |{P ∈ RM(m, r) : wt(P) ∈ Medi}| .

Therefore,

∑
P∈RMδ(m,r)

exp2 (−εu) · (1−wt(P))(1−ε)u ≤ 2 · ∑
P : wt(P)≤1/2−δ/2

exp2 (−εu) · (1−wt(P))(1−ε)u

≤ 2

(
r−1

∑
i=2

Li · (1− 1/2i+1)k +
t

∑
i=2

Mi · (1/2 + 1/2i)k

)
· 1

exp2

(
( m
≤r)− K

) .

By Claim 3.6 proved below using the weight distribution bounds of Sberlo and Shpilka (Theo-
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rem 2.1 and Theorem 2.3), we have that(
r−1

∑
i=2

Li · (1− 1/2i+1)k +
t

∑
i=2

Mi · (1/2 + 1/2i)k

)
· 1

exp2

(
( m
≤r)− K

) ≤ O(δ2).

Hence,

∑
P∈RM(m,r)

exp2 (−εu) · (1−wt(P))(1−ε)u

= ∑
P∈RMδ(m,r)

exp2 (−εu) · (1−wt(P))(1−ε)u

+ ∑
P/∈RMδ(m,r)

exp2 (−εu) · (1−wt(P))(1−ε)u

≤ O(δ2) + ∑
P/∈RMδ(m,r)

exp2 (−εu) · (1/2 + δ/2)(1−ε)u

≤ O(δ2) + (1 + δ)(1−ε)u

≤ O(δ2) + exp(δu)

≤ 1 + O(1/u) = 1 + o(1).

It remains to prove the following technical claim.

Claim 3.6. 1. For all i = 2, . . . , r− 1, we have

Li · (1− 1/2i+1)k

exp2

(
( m
≤r)− k

) ≤ δ3.

2. For all i = 2, . . . , t = log 1
δ , we have

Mi · (1/2 + 1/2i)k

exp2

(
( m
≤r)− k

) ≤ δ3.

Prooff of Claim 3.6(1). Note that (1− 1/2i+1)k ≤ exp(−k/2i+1) ≤ exp2(−k/2i+1). Hence,

Li · (1− 1/2i+1)k

exp2

(
( m
≤r)− k

) ≤ WtDistm,r(2−i) · exp2(−k/2i+1)

exp2

(
( m
≤r)− k

) .

11



Using Theorem 2.1 to bound WtDistm,r(2−i), we get

Li · (1− 1/2i+1)k

exp2

(
( m
≤r)− k

) ≤ exp2

(
O(m4) + O(iγi−1) ·

(
m
≤ r

)
− k/2i+1 −

(
m
≤ r

)
+ k
)

= exp2

(
O(m4)−

(
m
≤ r

)
· (1−O(iγi−1)) + k · (1− 2−i−1)

)
,

where γ = r/m. If this γ is a small enough absolute constant, we can see that the O(iγi−1) term is
always at most 2−i−1. Using this and continuing the computation above, we get

Li · (1− 1/2i+1)k

exp2

(
( m
≤r)− k

) ≤ exp2

(
O(m4)−

((
m
≤ r

)
− k
)
· (1− 2−i−1)

)

≤ exp2

(
O(m4)− ε

(
m
≤ r

)
· (1− 2−i−1)

)
≤ exp2

(
O(m4)− ε

2
·
(

m
≤ r

))
≤ exp2

(
−Ω

((
m
≤ r

)))
≤ δ3

where for the second inequality above, we used the fact that k ≤ K = (1− ε) · ( m
≤r).

Proof of Claim 3.6(2). Note that

(1/2 + 1/2i)k = 2−k · (1 + 1/2i−1)k

≤ 2−k · exp(k/2i−1) = 2−k · exp2(k/2i−1 · log2 e)

= exp2(−k · (1− 2 log2 e · 2−i)).

Using the fact that Mi ≤WtDistm,r (1/2− 1/2i+1), we get

WtDistm,r (1/2− 1/2i+1) · exp2(−k · (1− 2 log2 e · 2−i))

exp2

(
( m
≤r)− k

)
≤

exp2

(
O(m4) + (1− 2−O(max{γ2i,γ})) · ( m

≤r)− k · (1− 2 log2 e · 2−i))
)

exp2

(
( m
≤r)− k

)
= exp2

(
O(m4)− 1

2O(max{γ2i,γ}) ·
(

m
≤ r

)
+ k · 1

2−(i−1−log2 log2 e)

)
where γ = r/m, and we used Theorem 2.3 for the second inequality.

Note that as long as γ is a small enough absolute constant, the O(max{γ2i, γ}) term above
is at most i − 1 − log2 log2 e for each i ∈ {2, . . . , t}. Using this bound, we continue the above
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computation as follows.

Mi · (1/2 + 1/2i)k

exp2

(
( m
≤r)− k

) ≤ exp2

(
O(m4)− 2−O(max{γ2i,γ}) ·

((
m
≤ r

)
− k
))

≤ exp2

(
O(m4)− 2−O(max{γ2i,γ}) ·

((
m
≤ r

)
− K

))
= exp2

(
O(m4)− 2−O(max{γ2i,γ}) · ε ·

(
m
≤ r

))
≤ exp2

(
O(m4)−Ω

(√(
m
≤ r

)))
≤ δ3,

where for the last inequality we used the fact that ( m
≤r) ≥ 2Ω(γ log(1/γ)m) and hence for small enough

absolute constant γ, we have

2−O(max{γ2i,γ}) ·
(

m
≤ r

)
≥ 2−O(γ2t) ·

(
m
≤ r

)
≥ exp2(Ω(γ log(1/γ)m)−O(γ2 log(1/δ)))

= exp2(Ω(γ log(1/γ)m)−O(γ3 log(1/γ)m)) = exp2(Ω(m)).

This completes the proof of Lemma 3.4.

4 Resilience of Reed-Muller codes under erasures and errors

For parameters m, r, recall that E(m, r) is the ( m
≤r)× 2m-matrix where the columns are indexed by

elements in Fm
2 , and the z-th column is the column vector consisting of evaluations of all multilinear

m-variate degree ≤ r monomials on z. It is well-known that the matrix E(m, r) is the generator
matrix of the RM(m, r) code, and is also the parity-check matrix of the RM(m, m− r− 1) code.

Theorem 1.1 can be re-interpreted as a statement about random sub-matrices of E(m, r) in the
regime where r ≤ γm for a small absolute constant γ > 0.

Corollary 4.1 (rank of random sub-matrices of E(m, r)). Let γ > 0 be an absolute constant and m, r
growing parameters with r ≤ γm. Then, for any constant ε > 0, a random set of K = (1− ε)( m

≤r) columns
of E(m, r) are linearly independent with probability 1− o(1).

Proof. A set of columns of E(m, r) indexed by Z = {z1, . . . , zK} are linearly dependent if and only
if Ir(Z) has dimension strictly larger than ( m

≤r) − K. Theorem 1.1 asserts that this happens with
only o(1) probability.

13



4.1 Channels under consideration

The above corollary can be used to talk about the resilience of Reed-Muller codes under the erasure
and error channels. We first define the precise definitions to be able to state the results accurately.

Definition 4.2 (binary erasure channel (BEC)). The binary erasure channel with parameter α, denoted
by BECα, is the channel with input alphabet {0, 1} where the each binary symbol is “erased” (replaced by
the ‘?’ symbol) independently with probability α. ♦

A closely related model is where we have a fixed number of random erasures instead of each
coordinate being erased with a fixed probability. We will refer to this as the BEC∗ model although
this isn’t a channel in the traditional sense of altering each coordinate independently.

Definition 4.3 (capped binary erasure channel (BEC*)). The capped binary erasure channel with
parameter K, denoted by BEC∗K, refers to the channel with input alphabet {0, 1}n that replaces a random
subset of at most K of the coordinates by the ‘?’ symbol. ♦

The Binary Symmetric Channel deals with errors or corruptions as opposed to erasures in the
Binary Erasure Channel.

Definition 4.4 (binary symmetric channel (BSC)). The binary symmetric channel with parameter α, is
the channel where the each binary symbol is “flipped” (that is, 0 changed to 1 and vice-versa) independently
with probability α. ♦

In similar spirit to Definition 4.3, we define the capped binary symmetric channel.

Definition 4.5 (capped binary symmetric channel (BSC*)). The capped binary symmetric channel
with parameter K, denoted by BSC∗K, refers to the channel with input alphabet {0, 1}n that “flips” a random
subset of at most K of the coordinates. ♦

In most cases, resilience with respect to BECα (or BSCα) is the same as resilience with respect
to BEC∗K (or BSC∗K)for K = αn, by standard concentration inequalities but this might require some
subtlety when dealing with codes of rate very close to zero or close to one. For a concrete example,
the code RM(m, m− 1) has rate R = 1− 1/2m and is not resilient under BECα for α = (1− R)/2 =

1/2m+1 (with constant probability we may have two coordinates erased, and this is not recoverable),
but is vacuously resilient under BEC∗K for K = α2m. To avoid these nuances, we will only be dealing
with the setting of capped channels although this does not make much difference with most of our
range of parameters.

Notion of “capacity achieving” codes with respect to BECα

Shannon’s seminar work [Sha48] showed that, for any constant rate, the supremum of rates of
random codes that is resilient to BECα is exactly R = 1− α. That is, for any ε > 0, there are codes
of rate 1− α− ε that can decode from BECα with decoding error 1− o(1). However, when the rate
is very close to zero or one, the situation becomes more nuanced due to the asymptotics involved.

14



Dealing specifically with Reed-Muller codes, let us consider the code RM(m, m− r − 1) with

r ≤ m/2. This has rate R = 1− ( m
≤r)

2m and can recover from a maximum of ( m
≤r) errors. Abbe, Shpilka

and Wigderson [ASW15] defined the notion of “capacity achieving under BEC” to mean that the
code can decode (with 1− o(1) probability) from (1− ε)( m

≤r) erasures for any constant ε > 0. We
refer the reader to [ASW15, Section 1] and [SS20, Section 2.2] for a nuanced discussion on this.

4.2 Reed-Muller codes under BEC*

An immediate consequence of the above corollary is that RM(m, d) with d ≥ m(1− γ) for a small
but absolute constant γ > 0 achieves capacity (as defined above) under the Binary Erasure Channel.

Theorem 1.2 (high-degree RM codes under erasures). There exists a constant γ0 > 0 such that for all
ε > 0 the following is true. Let m, d be growing parameters with d > m(1− γ0). Then, the code RM(m, d)
can correct K = (1− ε)( m

≤m−d−1) random errors with probability 1− o(1).

Proof. The code RM(m, d) can recover from erasures on coordinates indexed by Z ⊆ Fm
2 if and

only if the corresponding columns of the parity check matrix are linearly independent. Since the
parity-check matrix of RM(m, d) is E(m, r) for r = m− d− 1, we have from Corollary 4.1 that a
random set of K columns are linearly independent with probability 1− o(1).

4.3 Reed-Muller codes under BSC*

The following theorem of Abbe, Shpilka and Wigderson [ASW15] provides a method to derive the
resilience of certain Reed-Muller codes under the BSC by using the resilience of appropriate Reed-
Muller codes under the BEC. Subsequent work of Saptharishi, Shpilka and Volk also showed that
these codes also have efficient decoding procedures to recover from random errors.

Theorem 4.6 ([ASW15], [SSV17]). For any growing parameters m, r > 0, if the code RM(m, m− 2r− 2)
can recover from a subset Z ⊆ [2m] of erasures, then the code RM(m, m− r) can efficiently recover from
errors on the subset Z.

In particular, if the code RM(m, m− 2r− 2) can recover K random erasures with probability 1− o(1),
then the code RM(m, m− r) can efficiently decode from K random errors.

Applying the above theorem to Theorem 1.2 yields the following corollary.

Corollary 1.3 (high-degree RM codes under errors). There exists a constant γ0 > 0 such that for all ε >

0 the following is true. Let m, r be growing parameters with r < γ0m. Then, the code RM(m, m− 2r− 2)
can be efficiently decode from K = (1− ε)( m

≤r) random errors.

Corollary 4.7. There exists a constant γ0 > 0 such that for all γ < γ0 and ε > 0 the following is true.
Let m, r be growing parameters with r = γm. Then, the code RM(m, m− 2r− 2) can be efficiently decode
from K = (1− ε)( m

≤r) random errors.
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It is worth noting that the minimum distance of the code RM(m, m− 2r− 2) is merely 22r+2 �
( m
≤r) when r = γm for a small enough γ > 0. Thus, the above corollary shows that high-degree (or

high-rate) Reed-Muller codes are resilient to random errors well beyond their minimum distance,
and efficiently so.
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