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Abstract

We consolidate two widely believed conjectures about tautologies—
no optimal proof system exists, and most require superpolynomial size
proofs in any system—into a p-isomorphism-invariant condition sat-
isfied by all paddable coNP-complete languages or none. The con-
dition is: for any Turing machine (TM) M accepting the language,
P-uniform input families requiring superpolynomial time by M exist
(equivalent to the first conjecture) and appear with positive upper
density in an enumeration of input families (implies the second). In
that case, no such language is easy on average (in AvgP) for a distri-
bution applying non-negligible weight to the hard families.

The hardness of proving tautologies and theorems is likely related.
Motivated by the fact that arithmetic sentences encoding “string x is
Kolmogorov random” are true but unprovable with positive density
in a finitely axiomatized theory T (Calude and Jürgensen), we con-
jecture that any propositional proof system requires superpolynomial
size proofs for a dense set of P-uniform families of tautologies encoding
“there is no T proof of size ≤ t showing that string x is Kolmogorov
random”. This implies the above condition.

The conjecture suggests that there is no optimal proof system be-
cause undecidable theories help prove tautologies and do so more ef-
ficiently as axioms are added, and that constructing hard tautologies
seems difficult because it is impossible to construct Kolmogorov ran-
dom strings. Similar conjectures that computational blind spots are
manifestations of noncomputability would resolve other open prob-
lems.
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1 Introduction

The literature has explored the possibility that any TM accepting a given
coNP-complete language requires superpolynomial time on some P-uniform
input family (a hard sequence).1 This paper considers a stronger conjecture
that such hard sequences appear with positive upper density in an enumer-
ation of input families (dense hard sequences, precise definitions will follow).
It finds that if any paddable coNP-complete language has dense hard se-
quences, they all do, and none are in AvgP. It also explores whether prov-
ing tautologies and theorems is hard on average, and whether these two are
related.2 It also considers the hypothesis that computational hardness is a
manifestation of noncomputability, by formalizing the intuition that resource-
bounded Turing machines (TMs) have blind spots regarding noncomputable
languages.

The existence of hard sequences for a coNP-complete language L has
broad implications, as shown by a rich literature.3 To define terms, let (xs)s∈N
be a sequence of inputs xs ∈ L such that some TM A on input 1s produces xs

in at most sc steps, for some constant c. Say that (xs)s∈N is a hard sequence
for M if (TM(xs))s∈N is not polynomially bounded, where TM is the function
that maps a string x to how many steps M(x) takes. If every M accepting
L has hard sequences, say that L has hard sequences. In that case, L cannot
have a best algorithm M , because we can create M ′ that checks whether an
element of the hard sequence appears as the input and runs M otherwise.
In that case, say that L has no almost optimal M , that is, it is not the case
that for any other M ′, there exists c, such for all x, TM(x) ≤ (TM ′(x)+ |x|)c.

Hard sequences can also be defined for propositional proof systems for
tautologies (TAUT). A propositional proof system is a function h ∈ FP with
range TAUT.[11] For tautology τ , any string w such that h(w) = τ is a proof

1Comments are appreciated from Scott Aaronson, Valentina Harizonov, Mehmet
Kayaalp, Daniel Monroe, Pavel Pudlák, Luca Trevisan, and participants in seminars at
George Washington University and Davidson College. This paper originated from a dis-
cussion with Russell Impagliazzo on formalizing the idea that proof speedup for tautologies
and arithmetic were the same phenomenon. Remaining errors are my own.

2The phrase “hardness of proving tautologies” below refers only to proof size and not
the hardness of finding proofs.

3This literature was launched by Kraj́ıček and Pudlák[18]. Hard sequences for TMs and
for proof systems have been examined by Chen et al[9], Kraj́ıček[16][17], and Monroe[20].
The definition of almost optimal comes from [18], but that terminology is from Chen and
Flum[7].
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of τ . The proof system h is p-optimal if for any other proof system f , there
exists g ∈ FP such that h(g(x)) = f(x).[18] A hard sequence of tautologies
for a proof system is defined the same as for TMs but with the requirement
that tautologies have proofs of superpolynomial size. The concepts coincide
for a nondeterministic TM that accepts TAUT with the accepting path as the
proof.

The existence of hard sequences for a paddable coNP-complete language
is one of a large group of equivalent statements listed in the following theorem.
Statement (i) (and therefore the others) is widely believed to hold, while
statement (ix) will play a key role in this paper.

Theorem 1.1 The following statements are equivalent:

i. There is no p-optimal propositional proof system for TAUT.[18]

ii. There exists a paddable coNP-complete language with hard sequences.[9]

iii. All paddable coNP-complete languages have hard sequences.[9]

iv. There exists a paddable coNP-complete language with no almost opti-
mal algorithm.[18]

v. For all paddable coNP-complete languages, there is no almost optimal
algorithm.[18]

vi. For any propositional proof system, some hard sequence of tautologies
in P has superpolynomial size proofs.4

vii. No theory T proves the soundness of all propositional proof systems.[24]

viii. For any M accepting coBHP = {⟨N, x, 1t⟩| there is no accepting path
of nondeterministic TM N on input x with t or fewer steps}, there
exists some non-halting ⟨N ′, x′⟩ such that f(t) = TM(⟨N ′, x′, 1t⟩) is
superpolynomial.[20]

ix. For any M accepting coTHEOREMS = {⟨ϕ, 1t⟩| sentence ϕ has no formal
proof in theory T with size ≤ t}, there exists some sentence ϕ′ with no
proof in T of any length, such that f(t) = TM(⟨ϕ′, 1t⟩) is superpolyno-
mial.5

4See Kraj́ıček[16] Theorem 14.2.2 and Chen et al[9] Theorem 6.7.
5Chen and Flum[8] Theorem 31 that coBHP and coTHEOREMS are fixed parameter

tractable reducible to each other, so Monroe[20] applies.
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If any of the above statements hold, thenP ̸= NP andEXP ̸= NEXP.[18]
The converse is not known to hold. There are nondeterministic analogs of
each of the above statements which imply NP ̸= coNP and NEXP ̸=
coNEXP.

Statements (viii) and (ix) are more specific than the others and high-
light an apparent linkage with noncomputability. These statements suggest
that resource-bounded TMs have blind spots regarding the noncomputable
languages “nonhalting TMs” and “unprovable arithmetic sentences”. This
paper goes further by exploring whether the blind spots are more severe,
relating to a dense set of true unprovable arithmetic sentences.

The paper is organized as follows. Section 2 shows that if one paddable
coNP-complete language has dense hard sequences, they all do, and none
are easy on average. Section 3 notes that true arithmetic sentences with no
proof (of any size) have positive density among length n sentences (Calude
and Jürgensen) and suggests this is connected to the existence of dense hard
sequences. Section 4 considers whether the set of tautologies has dense hard
sequences. Section 5 concludes and identifies questions for further research.

2 Density of Hard Sequences

This section shows that a language is not easy on average if it has dense
hard sequences, focusing initially on the example of coTHEOREMS rather than
TAUT to highlight the role of hard sequences. Define coTHEOREMS = {⟨ϕ, 1t⟩|
sentence ϕ has no formal proof in theory T with size ≤ t}. The theory T
can be any finitely axiomatized, sound, consistent theory sufficiently strong
to formalize arithmetic, such as Peano arithmetic (PA) or Zermelo Fraenkel
set theory with the axiom of choice (ZFC).

If the statements in Theorem 1.1 hold, then by statement (ix), there exists
some hard sequence for coTHEOREMS of the form (⟨ϕ, 1t⟩)t∈N, where ϕ is not
provable in T (for any size proof). A statement of density rather than just
existence is as follows. Fix an acceptable numbering of sentences (ϕi) in T
for i ∈ N. For TM M accepting coTHEOREMS, let HM = {i|(⟨ϕi, 1

t⟩)t∈N
is a hard sequence for M}. Say that HM has positive upper density if

lim sup
n→∞

|HM ∩ {1, 2, . . . , n}|
n

> 0. Denote this limit as pM . Let pcoTHEOREMS

be the minimum pM over all M . Say that coTHEOREMS has dense hard se-
quences if for every M , HM has positive upper density, and pcoTHEOREMS > 0.
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If coTHEOREMS (or any other language) has dense hard sequences, then
accepting it is not easy on average (in AvgP), with one proviso. Recall that
a distributional problem (L,D) (where D is an ensemble of distributions for
length n inputs) is in AvgP if there is a TM M accepting L and constants

C and ϵ > 0 such for that every n: E
y∈RDn

[
TM(y)ϵ

n

]
≤ C.

A distribution that applied zero or negligible weight to the hard sequences
would negate their effect on the average-case hardness of coTHEOREMS, so a
technical assumption is needed to rule this out. Define a balanced distribu-
tion as one that applies non-negligible weight to the dense hard sequences
for coTHEOREMS—the probability weight applied to those length n inputs ap-
pearing in a dense hard sequence exceeds some bound c infinitely often. The
uniform distribution is an obvious example.6

Then we have:

Theorem 2.1 If any language L has dense hard sequences, then L /∈ AvgP
for a balanced distribution.

Proof: Fix M , C and ϵ, where M accepts L and calculate the expectation
considering only inputs y appearing in a hard sequence for M . For each
sequence, TM(y) grows faster than |y|k, in particular for k greater than 1/ϵ.

Therefore, E
y∈RDn

[
TM(y)ϵ

n

]
is unbounded as n tends to infinity.

The converse is not known to hold: the property “has dense hard sequences”
appears to be stronger than “is not in AvgP”. The literature has similarly
noted that the property “has hard sequences” appears to be stronger than
“is not in P”.

If one paddable coNP-complete language has (not necessarily dense) hard
sequences, then they all do (Chen et al[9]), and none are in P. This result
follows from the p-isomorphism of such languages, and the invariance of the
property “has hard sequences” under p-isomorphism. We prove a similar
result: if one paddable coNP-complete language has dense hard sequences,
then they all do, and none are in AvgP for a balanced distribution. We
do so by extending the definitions for these terms from coTHEOREMS to other
coNP-complete languages so as to ensure invariance under p-isomorphism.

6The universal distribution is also balanced, because it applies at least probability
weight 2−|x| to any input x and therefore applies non-negligible weight to any potential
hard sequence. See Li and Vitanyi[19].
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Let L be any paddable coNP-complete language. A p-isomorphism be-
tween languages coTHEOREMS and L is a bijective map f : coTHEOREMS → L
such that x ∈ coTHEOREMS if and only if f(x) ∈ L and f and its inverse can be
computed in time polynomial in their arguments. Berman and Hartmanis[1]
show that any two paddable coNP-complete languages are p-isomorphic.
Thus, the set of paddable coNP-complete languages can be seen as a sin-
gle language with different encoding schemes that take polynomial time to
encode and decode. We will take this view, with coTHEOREMS as that single
language, and with all other paddable coNP-complete languages considered
as being coTHEOREMS with a different polynomial time encoding scheme f .
By doing so, we are effectively treating coTHEOREMS as a canonical form for
paddable coNP-complete languages with the crucial information about the
dense hard sequences.

For a paddable coNP-complete language L other than coTHEOREMS with
p-isomorphism f , consider the sequences (f(⟨ϕi, 1

t⟩))t∈N in L, which will
play the role of (⟨ϕi, 1

t⟩)t∈N in coTHEOREMS.7 Say that L has dense hard se-
quences if for any ML accepting L, a positive upper density of the sequences
(f(⟨ϕi, 1

t⟩))t∈N over i are hard sequences. Since M = ML ◦ f is a TM ac-
cepting coTHEOREMS, this is equivalent to the statement “coTHEOREMS has
dense hard sequences”. Say that a distribution over L is balanced if it ap-
plies non-negligible weight to the dense hard sequences (f(⟨ϕi, 1

t⟩))t∈N. This
is crucial—the balanced distributions for L are determined by f and by the
structure of dense hard sequences for coTHEOREMS.8 Keep in mind that the
uniform distribution for coTHEOREMS is always balanced; the next section
formulates a conjecture implying a clearer specification of what “balanced”
means.

Theorem 2.2 Suppose one paddable coNP-complete language has dense
hard sequences. Then they all do, and none are easy on average (in AvgP)

7The same approach can be applied for p-isomorphisms of coTHEOREMS with itself.
8To illustrate the role of this assumption, design a coNP-complete language L to be

easy on average for a uniform distribution. Let HC100 be those graphs, with a weight
for each edge stored using 100 bits including leading zeros, for which there is a Hamilton
Circuit in which each edge has weight one with 99 leading zeros. With uniformly random
weights, no edge in a graph will have 99 leading zeros with probability one asymptotically,
meaning they will be easily identified as being in coHC100, so this coNP-complete language
would be easy on average with a uniform distribution. A balanced distribution would
apply negligible weight to the easy cases for coHC100. We appreciate an anonymous Stack
Exchange user for suggesting this construction.
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for a balanced distribution.9

Proof: We have chosen definitions to make this true.

Theorem 2.2 proves a strong conclusion with little work, by comparison
with the literature on average-case completeness for NP.[3] Without defining
reductions and completeness, the theorem already identifies what are essen-
tially a set of complete languages. It follows immediately from Theorem
2.2:

Corollary 2.3 If coTHEOREMS has dense hard sequences, then TAUT has dense
hard sequences and is not easy on average (in AvgP) for a balanced distri-
bution.

The next section provides an argument why we should expect TAUT to
have dense hard sequences and which ones they are.

3 Density of True Unprovable Sentences

Gödel’s First Incompleteness Theorem’s shows that undecidable sentences
exist for any sound, consistent theory, which raises the question of how
prevalent they are. This section will show that the true unprovable (for
any size proof) sentences predicted by Chaitin’s version of the Incomplete-
ness Theorem are dense, following Calude and Jürgensen[5], and extend that
result. It then formulates a conjecture that sequences associated with these
true unprovable sentences (for proofs of any size) are dense hard sequences
for coTHEOREMS (for proofs of size ≤ t). The next section shows that this
conjecture implies that TAUT has dense hard sequences.

Chaitin[6] showed that although most strings have high Kolmogorov com-
plexity, no sound, consistent, finitely axiomatized theory can prove any string

9It is possible to show with a weaker assumption that all paddable coNP- (and NP-)
complete languages are not in AvgP, but with highly skewed distributions (per Luca
Trevisan, private communication). If the statements in Theorem 1.1 hold, then EXP ̸=
NEXP, there is a unary language L in NP/P, and L /∈ AvgP assuming a distribution
with probability one for the 1n string. Suppose L with that distribution has a length non-
decreasing reduction to a distributional problem (A,D), where D is uniform over length n
strings of the form f(1t) for t ≤ n, if any exist, and applies probability one to 0n otherwise.
If (A,D) ∈ AvgP, then there is a worst-case polynomial time algorithm for L, which is a
contradiction.
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has Kolmogorov complexity above a threshold.10 A counting argument due
to Calude and Jürgensen[5] shows that the set of sentences stating “string x
has high Kolmogorov complexity” is not only infinite but dense, because the
set of strings with high Kolmogorov complexity is itself dense.

Fix a universal TM U . Strings are encoded in binary (essential for the
proof); let |x| be the length of string x. Define the plain Kolmogorov com-
plexity C(x) = min{|p| : U(p) = x}.11 Define the set of random strings

as RC = {x : C(x) ≥ |x|
2
}.12 Let rx be a sentence in the language of a

sound, consistent, finitely-axiomatized theory T that encodes “x ∈ RC”. By
Chaitin’s Incompleteness Theorem, theory T cannot prove rx for |x| suffi-
ciently large.[6] Calude and Jürgensen show:13

Theorem 3.1 The set H = {i|ϕi = rx} has positive upper density.

Proof: We have |rx| = |x|+c for some c, where c is the overhead in bits to
formalize arithmetically that string x is Kolmogorov random. The essence of
the proof is that we can replace x with any other Kolmogorov random string
of the same length. Nearly all strings of length |x| are random as |x| grows
large (a share of 1 − 2−

|x|
2 ), by a counting argument.14 Therefore, there are

nearly 2|x| random strings to fill in the length |x| slot in rx. Then, the share
of length n sentences that are true but unprovable is bounded below by a
number slightly less than 2−c.

By a similar argument, the set of arithmetic sentences formalizing “string x
has non-zero length”, which are true and provable, has positive upper density.
Downey et al[12] refer to such sets as being partially computable at density
r.

We now use Theorem 3.1 to motivate a conjecture about dense hard
sequences. Just as T has difficulty with sentence ϕi = rx (it cannot prove it

for |x|
2
sufficiently large), we similarly might expect that nondeterministic M

10Following the literature, we will use this term rather than Chaitin complexity, although
the result builds on Chaitin’s work.[6] See Li and Vitanyi[19] Section 2.7.1.

11For more background on Kolmogorov complexity, see Li and Vitanyi[19] and Calude[4].
12An extensive literature has examined the power of random strings, for instance,

Hirihara[14]. Other definitions of random strings that have been used in the literature
would work equally well for this paper’s results.

13See the proof of Theorem 5.2.
14There are only 2

|x|
2 −1 possible short strings, so most strings of length |x| cannot be

compressed.
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has difficulty (requires superpolynomial time) with ⟨ϕi, 1
t⟩ where ϕi = rx for

|x|
2

sufficiently large.15 That is, we might expect that H is a blind spot for
M and not only T .

Define set H ′ to include H as well as any other dense sets of true unprov-
able sentences in T . H ′ includes sentences rx for any universal TM U used
to define C(.) and RC . The set of U that are universal is noncomputable
because “is universal” is a nontrivial property, so by Rice’s Theorem H ′ is
noncomputable. Furthermore, we define H ′ to include dense sets relative to
U with an arbitrary iterations of the Turing jump (i.e., adding an oracle for
halting).

Conjecture 3.2 For any nondeterministic M accepting coTHEOREMS, there
is a dense subset H ′

M of H ′ for which i ∈ H ′
M if and only if (⟨ϕi, 1

t⟩)t∈N is a
hard sequence for M .

Conjecture 3.2 implies that coTHEOREMS has dense hard sequences. Note
that H ′ and therefore the term “balanced” may not be well defined—there
may be dense sets of true unprovable sentences beyond those identified above,
and which are inherently difficult to describe. This works in our favor, as
the misbehavior of H ′ strengthens the rationale that no M could accept
coTHEOREMS in polynomial time.

The following stronger conjecture states that M ’s blind spot about H ′ is
extremal:

Conjecture 3.3 Given nondeterministic M accepting coTHEOREMS, there
exists a dense subset H ′

M of H ′, such that for any sufficiently large |x| which
depends on M and T , M requires 2t steps for all t on any input ⟨ϕi, 1

t⟩ where
i ∈ H ′

M .

Conjecture 3.3 has a similar form to Chaitin’s Incompleteness Theorem, with
an absolute upper threshold for the size of strings beyond which M has no
information at all, and must apply brute force for all t.

15We specify that M is nondeterministic here and below, which will facilitate discussion
of propositional proof systems in the next section.
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4 Dense Hard Sequences for Tautologies

The section discusses Conjecture 3.2’s implications for propositional proof
systems.16

Theorem 4.1 If Conjecture 3.2 holds, then: (i) TAUT has dense hard se-
quences for nondeterministic TMs and for proof systems; (ii) it is not easy
on average for a nondeterministic TM to recognize tautologies, i.e., TAUT /∈
AvgP; and (iii) in particular, for any TM M (propositional proof system
Q), a dense subset of tautologies which encode “there is no T proof of size
≤ t shows that string x is Kolmogorov random” are hard sequences for M
(for Q).

Proof: (i) If Conjecture 3.2 holds, then coTHEOREMS has dense hard se-
quences for nondeterministic TMs. By Theorem 2.2, equivalently TAUT has
dense hard sequences for nondeterministic TMs. (ii) This follows from The-
orem 2.1. (iii) Choose a p-isomorphism f mapping coTHEOREMS to TAUT.
By the conjecture, for a dense set of i ∈ H ′, the sequences of tautologies
(f(⟨ϕi, 1

t⟩))t∈N are dense hard sequences for nondeterministic TMs and en-
code “there is no T proof of size ≤ t shows that string x is Kolmogorov
random”. They are also dense hard sequences for proof systems.

The above statement is stronger than a folklore informal conjecture in
the literature that most tautologies hard for any given proof system, as this
conjecture is focused on individual tautologies and not families.17

It is possible that TAUT has dense hard sequences that can be described by
p-isomorphism with coTHEOREMS, but Conjecture 3.2 does not hold. It is also
possible that TAUT has dense hard sequences, but these cannot be described
by p-isomorphism with coTHEOREMS. The value added of Conjecture 3.2
is that it provides information on which are the dense hard sequences of
tautologies,18 why no optimal propositional proof system exists, and which
distributions are balanced.

16There is an extensive literature considering families of tautologies that may be hard,
surveyed in Kraj́ıček[17].

17Kraj́ıček[17] states that this has been a folklore conjecture since at least Chvátal and
Szemerédi[10].

18Pich and Santhanam[21] explore the hardness of proving tautologies related to random
strings relative to a time-bounded variant of Kolmogorov complexity.
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Conjecture 3.2, if true, suggests that the nonexistence of an optimal
propositional proof system is inherently a manifestation of undecidability,
as that conjecture employs a dense set of undecidable sentences. This could
be formalized as follows:

Conjecture 4.2 For any propositional proof system Q, there is a conserva-
tive extension T of ZFC (or PA) that outperforms Q in proving tautologies.
Adding an undecidable statement as a new axiom to T to create a conserva-
tive extension T ′ further improves upon T in proving tautologies.

We suspect that Conjecture 3.2 implies Conjecture 4.2 but can prove
only this weaker implication: Under Conjecture 3.2, for any M that accepts
coTHEOREMS, there is a hard sequence for M corresponding to a true sentence
which is unprovable in the theory T used to define coTHEOREMS. M can be
improved by creating a new TM M ′ which checks for this hard sequence in
its input and accepts, and otherwise runs M . This is analogous to adding
an undecidable sentence as an axiom for a theory. However, it is different,
as M ′ outperforms M on only one hard sequence. By contrast, adding an
undecidable sentence in a theory as an axiom has more far reaching effects
of proving infinitely more theorems and shortening proofs to an arbitrary
extent.19 We might expect this new theory to perform significantly better
as a propositional proof system, with smaller proofs on more than just one
hard sequence.

5 Conclusion and Further Research

This paper has stated a conjecture linking the average-case hardness proving
tautologies are theorems. It suggests numerous avenues for further research.

A key question is whether the above analysis is relevant to NP and the
existence of one-way functions (OWFs), which has been the driving force
behind research on average-case complexity. In particular, do dense hard
sequences or just hard sequences exist for some NP-complete languages and
for OWFs? If OWFs exist, it is easy to generate hard instances, and therefore
hard sequences exist for a given OWF. It is known that SAT has no almost
optimal algorithm if and only if it has hard sequences if and only if there is

19See Ehrenfeucht and Mycielski[13].
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no optimal proof system for SAT, i.e., there are endless improvements on a
satisfying assignment as certificate for SAT (Beyersdorff et al[2]).

There are statements structurally similar to Conjecture 3.2 implying a
resolution to other open problems. If there are sequences in a Πp

2-complete
language that are hard even for M with an oracle for coNP, then the poly-
nomial hierarchy (PH) does not collapse at the first level (Πp

i ̸= Πp
i+1 for

i = 1). The reason is that for M with an oracle for coNP, there are no hard
sequences for a language in coNP. A series of similar statements for each i
imply no collapse at any level. By the argument in Monroe[20], the existence
of hard sequences for some Πp

i -complete language implies that some hard se-
quence takes the form of a statement about bounded nonhalting that refers
to the noncomputable language Πi, as in Theorem 1.1 (viii) above. These
link the noncollapse of the polynomial and arithmetic hierarchies.

Statements about hard sequences are highly flexible tools, and it may be
possible to “axiomatize” many beliefs about open questions into a similar
form. As another example, NL ̸= P if for any nondeterministic M accepting
a P-complete language, there is a an L-uniform sequence that M cannot
accept within a logarithmic space bound. More generally, a statement “any
M accepting language L in class C has hard sequences”, we can adjust the
enhancements to or constraints on M ’s resources, the language L, the class
C, what “hard” means in defining a hard sequence, what resource constraint
is used to define uniformity, how prevalent are the hard sequences (existence
versus density), and why we think the hard sequences are hard like Conjecture
3.2.

These examples suggest a noncomputability hypothesis : for most open
problems, some statement about hard sequences with a link to noncom-
putability implies a resolution to that problem.20 This hypothesis is testable—
we can try to come up with such statements or fail. For instance, we have
thus far failed to identify a statement about hard sequences would imply
that the Unique Games Conjecture holds. A better understanding of which
open problems can and cannot be linked to a statement about hard sequences
might reveal what tools are needed to resolve those problems.21

Such conjectures also provide a tentative set of axioms describing a hy-

20This is analogous to and partly overlaps Pudlák’s Feasible Incompleteness Thesis—see
[23] and [22] Section 6.4.

21Pudlák[22] (p. 564) suggests there may be value in identifying conjectures that can
serve as tentative axioms until their nature is identified as provable theorems, independent
statements, or factually incorrect statements.
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pothetical world to explore. For instance, the existence of hard sequences
allows us to reason about the set of all TMs accepting a language, which has
been a key challenge for complexity theory. They create a partial order over
all TMs, organizing them so as to provide clarity regarding the behavior of
the set of all TMs.

A recurring question in the literature is whether hard sequences of inputs
or tautologies can be constructed. Conjecture 3.2 is rooted in Chaitin’s
Incompleteness Theorem, which is inherently nonconstructive unlike Gödel’s
First Incompleteness Theorem. However, there is a scenario in which a hard
sequence could be constructed. Under Conjecture 3.3, hard sequences are
defined to require 2t steps for all t. Given M , it is therefore possible to
enumerate ϕi for which M on sequence ⟨ϕi, 1

t⟩ does not require 2t steps for
all t—because for these sequences, M requires less than 2t steps for some t.
The set of such ϕi is c.e. If the set is not only c.e. but also c.e.-complete,
this would allow construction of a hard sequence since the complement would
then be a productive set (Rogers [15]).

The set H ′, which includes all dense sets of true unprovable sentences, de-
serves further study. We suspect thatH ′ is more complex and poorly-behaved
than the statements above. Another interesting question is whether there are
dense sets of true unprovable sentences that do not have Kolmogorov random
strings embedded.

In sum, there are numerous areas for further research including the rele-
vance of hard sequences for NP and OWFs, developing conjectures implying
a resolution of other open problems, elaborating the implications of these
conjectures, exploring other applications for hard sequences, understanding
whether hard sequences can be constructed, and exploring the nature of
H ′.
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[16] Jan Kraj́ıček, Bounded arithmetic, propositional logic, and complexity
theory, Cambridge University Press, New York, NY, 1995.

[17] , Proof complexity, Cambridge University Press, New York, NY,
2019.
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