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Abstract

We construct an explicit family of 3-XOR instances hard for Ωpnq-levels of the Sum-of-Squares
(SoS) semi-definite programming hierarchy. Not only is this the first explicit construction to beat brute
force search (beyond low-order improvements (Tulsiani 2021, Pratt 2021)), combined with standard gap
amplification techniques it also matches the (optimal) hardness of random instances up to imperfect
completeness (Grigoriev TCS 2001, Schoenebeck FOCS 2008).

Our result is based on a new form of small-set high dimensional expansion (SS-HDX) inspired by
recent breakthroughs in locally testable and quantum LDPC codes. Adapting the recent framework of
Dinur, Filmus, Harsha, and Tulsiani (ITCS 2021) for SoS lower bounds from the Ramanujan complex
to this setting, we show any (bounded-degree) SS-HDX can be transformed into a highly unsatisfiable
3-XOR instance that cannot be refuted by Ωpnq-levels of SoS. We then show Leverrier and Zémor’s
(Arxiv 2022) recent qLDPC construction gives the desired explicit family of bounded-degree SS-HDX.
Incidentally, this gives the strongest known form of bi-directional high dimensional expansion to date.
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1 Introduction

The Sum-of-Squares (SoS) semi-definite programming (SDP) hierarchy is one of the most powerful and
widely studied algorithmic frameworks for approximating constraint satisfaction problems (CSPs) in the-
oretical computer science, yet very little is known about the structure of instances that are hard for the
paradigm. Indeed, while it has long been known that random instances of CSPs are hard for Sum-of-Squares
[Gri01b, Sch08, Tul09, BCK15, Cha16, KMOW17], there are essentially no explicit constructions of hard
instances better than brute force search [DFHT20, Tul21, Pra22]. Leveraging recent breakthroughs in lo-
cally testable [DEL`21, LH22a] and quantum low-density parity-check (qLDPC) codes [PK21a, LZ22], we
resolve this problem, giving the first explicit family of highly unsatisfiable CSPs that cannot be refuted by
Ωpnq-rounds of Sum-of-Squares.

Theorem 1.1 (Main Result: Explicit 3-XOR Instances Hard for SoS). There exist constants µ1, µ2 P p0, 1q

and an infinite family of 3-XOR instances constructable in deterministic polynomial time such that:

1. No assignment satisfies more than a 1 ´ µ1 fraction of constraints

2. No instance can be refuted by µ2n levels of the corresponding Sum-of-Squares SDP Relaxation.

Though Theorem 1.1 only exhibits an ‘integrality gap’ of 1 v.s 1´µ1 (meaning the instance are p1´µ1q-
satisfiable but look fully satisfiable to SoS), combined with standard PCP-like reductions in the SoS hierarchy
this gap can be amplified to 1 ´ ε v.s 1

2 ` ε for any ε ą 0 [Tul09, DFHT20], which matches the hardness
of random 3-XOR instances up to imperfect completeness [Gri01b, Sch08].1 In fact, it is worth noting
that Theorem 1.1 is the first explicit family of CSPs to even beat more than Oplogpnqq levels of the SoS
hierarchy, which can be done either by unique neighbor expanders [Pra22, AC02] or (up to lower order
factors) simply by brute force search [Tul21]. While explicit constructions against Ωpnq-rounds of SoS were
known in proof complexity (e.g. Tseitin formulas [Gri98], knapsack [Gri01a]), these examples do not lead to
inapproximability since their satisfiability is not bounded away from 1.

Thus, at a high level, Theorem 1.1 provides the first example of an approximation problem with short
witnesses of unsatisfiability that cannot be captured by the Sum-of-Squares proof system, settling (in the
negative) the completeness of SoS in this setting. Furthermore, it is worth noting that 3-XOR is not somehow
‘special’ in this sense. As observed in [DFHT20] (who showed an analogous result for Op

a

logpnqq-levels
of SoS), Theorem 1.1 also gives explicit hard instances across many types of CSPs by standard reduction
techniques [Tul09], including instances with optimal integrality gaps for CSPs with approximation resistant
predicates based on pairwise independent subgroups [Cha16, DFHT20].

1.1 High Dimensional Small-Set Expanders

Theorem 1.1 is based on a new form of high dimensional expansion (HDX), a nascent area of computer
science and math that has already seen an impressive array of breakthrough results across areas such as
coding theory [JST21, DEL`21, PK21a, LH22a], approximate sampling [KO20, ALOV19, AL20, ALO20],
approximation algorithms [AJT19, BHKL22], analysis of boolean functions [DDFH18, BHKL21, GLL21],
agreement testing [DK17, DD19], and, recently, Sum-of-Squares lower bounds [DFHT20]. While most
of these works consider notions of expansion on hypergraphs (often called simplicial complexes in this
setting), we take inspiration from recent breakthroughs on LTCs [DEL`21, LH22a] and quantum codes
[PK21a, LZ22] and consider expansion on the more general class of chain complexes:

X : FXp0q

2

δ0
Õ
B1

FXp1q

2

δ1
Õ
B2

FXp2q

2 .

1Indeed one can see such a gap is essentially optimal, as a random assignment to any 3-XOR instance will satisfy 1{2 the
constraints in expectation.
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Here Xp0q, Xp1q, and Xp2q are sets, δ0 and δ1 are linear maps (called the co-boundary operators), B2 and
B1 are their transposes (called the boundary operators), and both satisfy B1B2 “ 0, δ1δ0 “ 0.

Chain complexes admit a natural analog of boundary (edge) expansion in graphs called high-dimensional
(co)-boundary expansion [LM06]. To see this, we first note an important inherent structural property of
chain complexes: any function f P impδ0q (called a co-boundary) satisfies |δ1f | “ 0. A complex is called a
ρ-co-boundary expander essentially when this is the only obstruction to |δ1f | being large:

@f P FXp1q

2 : |δ1f | ě ρ ¨ dpf, impδ0qq.

For intuition, it is worth briefly discussing why this generalizes boundary expansion on graphs. Any graph
G “ pV,Eq (or indeed hypergraph, see Section 4.2) can be written as a chain complex:

X : FH
2

δ0
Õ
B1

FV
2

δ1
Õ
B2

FE
2 ,

where δ0fpvq “ fpHq, δ1fppu, vqq “ fpuq ‘ fpvq, and it is easily checked that δ1δ0 “ 0. Notice that in
this setting the only co-boundaries are impδ0q “ tH, V u, and furthermore that for any S Ă V and e P E, the
value of δ11S on e is 1 iff e crosses the cut defined by S. This implies the ratio |δ11S |

dp1S ,impδ0qq
“

EpS,V zSq

mint|S|,|V zS|u
,

which is just the standard boundary expansion of G!
Unfortunately, while standard boundary expansion on (random) graphs has been quite useful for proving

SoS lower bounds in the past [BSW99, Gri01b, Sch08], high dimensional co-boundary expansion seems
to be too strong a notion for this setting: good (co)-boundary expanders are not known to exist (even
probabilistically), and their structure is prohibitively restrictive in other senses as well.2 We avoid these issues
by introducing a simple relaxation of boundary expansion to small-sets:

Definition 1.2 (Small-set (Co)-Boundary Expansion). We call X a pρ1, ρ2q-small-set boundary expander if
the weight of any ‘small’ function f P FXp1q

2 satisfying |f | ď ρ1|Xp1q| expands:

|B1f | ě ρ2 ¨ dpf, impB2qq.

Similarly, X is a pρ1, ρ2q-small-set co-boundary expander if all f P FXp1q

2 s.t. |f | ď ρ1|Xp1q| satisfy:

|δ1f | ě ρ2 ¨ dpf, impδ0qq.

We call X a pρ1, ρ2q-small-set HDX (SS-HDX) if it satisfies both the above conditions.

Small-set (co)-boundary expansion is a direct generalization of small-set expansion on graphs, a notion
that lies at the heart of many problems in hardness of approximation (especially with respect to Khot’s unique
games conjecture [Kho02, RST12, KMS18]). Similar notions of high dimensional small-set expansion
have also been considered on simplicial complexes in work towards building good co-systolic expanders (a
different weakening of co-boundary expansion) [KKL14, EK16, KM18, KM21]. We discuss these notions
and their relation to our definition in more depth in Section 3.1.

In the next section, we will show how SS-HDX naturally lead to hard instances of XOR for Sum-of-
Squares (largely following a similar result of Dinur, Filmus, Harsha, and Tulsiani [DFHT20] for the LSV
complex [LSV05]), giving the first connection between hardness of approximation and high dimensional
small-set expanders. Thus, Theorem 1.1 boils down to constructing an infinite family of SS-HDX on a growing
number of vertices, each of which can be constructed in deterministic polynomial time. While this may
seem hopelessly strong, a weaker variant of these requirements was very recently achieved in breakthrough
constructions of qLPDC codes by [PK21a, LZ22]. Indeed, it turns out these known constructions are already
enough: we show Leverrier and Zémor’s [LZ22] recent qLDPC codes are in fact small-set HDX as well.

2We’ll discuss this issue in Section 2, but in brief co-boundary expansion implies kerpδ1q “ impδ0q. Like [DFHT20], our
instances will rely on a function in kerpδ1qz impδ0q to enforce global structure on the CSP that cannot be detected through local
algorithms like Sum-of-Squares.
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Theorem 1.3 (Small-Set HDX Exist (informal Theorem 8.1)). There exist constants ρ1, ρ2 P p0, 1q and an
explicit (polynomial time constructable) infinite family of bounded-degree3 (3-term) chain complexes tXiu

satisfying:

1. Xi has non-trivial ‘co-homology,’ i.e. impδ0q ‰ kerpδ1q

2. Xi is a pρ1, ρ2q-SS HDX.

The guarantees of Theorem 1.3 are stronger than those originally proved by Leverrier and Zémor [LZ22]
(see Section 3.1 for discussion), and give the strongest known form of bi-directional high dimensional
expansion to date.4 Indeed the expansion is so strong that if one could remove the small-set requirement5

or prove similar bounds for a 5-term chain complex, it would resolve the qLTC conjecture [KKL14, EH17,
LH22a], a major open problem in quantum computation.

2 Proof Overview

We now overview the constructions and proof techniques underlying our main result (Theorem 1.1). Broadly
speaking, this breaks into two main steps:

1. Show any SS-HDX implies a hard instance of 3-XOR

2. Construct an explicit infinite family of SS-HDX.

To start, it will be useful to cover some basic background on CSPs, Sum-of-Squares, and chain complexes in
a bit more detail. A more formal treatment is given in Section 4 and Section 7.

2.1 Background

In this work, we study the limitations of the Sum-of-Squares proof system for refuting MAX-k-XOR, a
widely studied class of constraint satisfaction problems (CSPs). An instance of MAX-k-XOR I consists of a
set of variables txiuiPrns and constraints tCiuiPrms, where each Ci is a boolean function of the form:

Cipxq “ 1
␣

xi1 ‘ . . . ‘ xij “ bi
(

,

where j “ jpiq ď k and ti1, . . . , iju Ă rns. If all constraints have exactly k variables, we say I is an instance
of k-XOR. We will usually omit the indicator 1 from notation when clear from context. The value of I is the
maximum fraction of constraints that can be satisfied by any assignment, and we say I is p1 ´ µq-satisfiable
if there exists an assignment satisfying at least a p1 ´ µq fraction of constraints. We call an infinite family of
instances tIiu explicit if each instance can be constructed in deterministic polynomial time in the number of
variables.

The Sum-of-Squares semi-definite programming hierarchy is a powerful algorithmic framework for
approximating the value of any CSP (or more generally for solving constrained polynomial optimization
problems). The hierarchy consists of rounds or levels of progressively stronger SDP relaxations (see
Algorithm 1). For the moment, it is enough to know that the round-t SoS relaxation is local6 in the sense that

3A complex is bounded degree roughly if each element in Xpiq only has constantly many neighbors with respect to the boundary
and co-boundary operators. See Section 4 for an exact definition.

4In fact it’s worth mentioning we actually prove a stronger guarantee regarding local functions. See Remark 8.9 and discussion in
Section 3.1.

5Though it is worth noting one must be careful that the dimension of the cohomology stays large, which requires weakening the
expansion guarantee to a related notion called (co)-systolic expansion (the correct notion for qLTC regardless) [EH17].

6We note the relaxation does have (low-degree) global consistency checks, so it is not fully a local algorithm in this sense.
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it ranges over subsets of variables of size at most t. We will cover more details on the SoS framework as they
arise.

Finally, it will be useful to have some basic terminology corresponding to chain complexes. Recall that a

chain complex is a sequence X : FXp0q

2

δ0
Õ
B1

FXp1q

2

δ1
Õ
B2

FXp2q

2 such that B1B2 “ 0, δ1δ0 “ 0. Functions in the

image of B2 and δ0 are called boundaries and co-boundaries respectively, and are denoted:

impB2q “ B1, impδ0q “ B1.

Functions in the kernel of B1 and δ1 are called cycles and co-cycles respectively, and are denoted:

kerpB1q “ Z1, kerpδ1q “ Z1.

The structure of a chain complex promises that B1 Ă Z1 Ă FXp1q

2 and B1 Ă Z1 Ă FXp1q

2 . This leads to
notions of homology and co-homology given by (co)-cycles mod (co)-boundary and respectively denoted:

H1 “ Z1{B1, H1 “ Z1{B1,

where G{H denotes the quotient group. A complex has non-trivial co-homology if B1 ‰ Z1.

2.2 From SS-HDX to Hardness

With notation out of the way, we can now discuss how to transform an expanding chain complex into a
hard instance of 3-XOR. Before we give an informal theorem statement to this effect, it is instructive to
overview how one even relates a CSP to a chain complex at all. To this end, let’s first recall the classical
construction of CSPs (also frequently seen in coding theory) based upon a bipartite graph B “ pL,R,Eq.
In this setting, elements in L correspond to variables txvuvPL, and elements in R correspond to the set
of constraints tCrurPR. Fixing some assignment β P t0, 1uR to constraints, the XOR instance classically
associated with the graph B is characterized by ensuring the (mod 2) sum across neighbors of each r P R is
given by βprq:

Cr :“

$

&

%

ÿ

vPNprq

xv “ βprq pmod 2q

,

.

-

. (1)

In prior hardness constructions, B is typically picked at random in order to satisfy strong expansion properties,
while β is typically chosen at random to ensure un-satisfiability (see e.g. [Gri01b, Sch08, KMOW17]). While
it is sometimes possible to de-randomize the choice of B and retain good inapproximability guarantees, no
de-randomization of β better than brute force search over logpnq-size instances was known up until this point.

The basic form of our XOR instances from chain complexes is actually very similar to Equation (1)
(indeed they can be viewed as a special instantiation of this framework). Recall that a chain complex is a
sequence:

X : FXp0q

2

δ0
Õ
B1

FXp1q

2

δ1
Õ
B2

FXp2q

2 ,

and in particular that the co-boundary operator δ0 : FXp0q

2 Ñ FXp1q

2 is a linear map. To define an instance
of XOR on X , we simply move to the graph representation of δ0. Namely, recall that any linear operator
mapping from FXp0q

2 to FXp1q

2 can be written as an p|Xp1q| ˆ |Xp0q|q-dimensional matrix over F2. We can
think of this matrix as the bipartite adjacency matrix of a graph on left vertex set L “ Xp0q and right vertex
set R “ Xp1q. Thus given a function β P FXp1q

2 , we construct the associated XOR instance, denoted IX,β as
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in Equation (1) by adding the constraint for each r P Xp1q:

Cr :“

$

’

’

’

&

’

’

’

%

ÿ

vPXp0q:
eTr δ0ev“1

xv “ βprq pmod 2q

,

/

/

/

.

/

/

/

-

, (2)

where ev P FXp0q

2 and er P FXp1q

2 are the standard basis vectors associated to v P Xp0q and r P Xp1q. Note
that eTr δ0 P FXp0q

2 is just the list of neighbors of r, so this is indeed an instantiation of the standard bipartite
framework. We note that this construction also generalizes the recent approach of [DFHT20] who built XOR
instances via a 3-dimensional simplicial complex (4-uniform hypergraph) by letting triangles correspond
to constraints, and edges correspond to variables. This is exactly the result of the above construction when
applied to the natural chain complex associated with a 3-dimensional simplicial complex (see Section 4.2 for
further details).

So far, we have not used the fact that δ0 is part of a chain complex, or even the fact that the higher
dimensional component Xp2q exists at all. This structure comes into play in the choice of β. Notice that by
construction, the instance corresponding to X and a choice of β is satisfiable exactly when β is a co-boundary.
Following the framework laid out in [DFHT20], the idea is to choose β P Z1zB1, a function which is a
co-cycle, but not a co-boundary. On a sufficiently expanding complex, this choice induces global structure
on the XOR instance that cannot be captured by local views of the complex, where both the homology and
co-homology look trivial. Since Sum-of-Squares only looks over local views in this sense, this leads to the
following direct translation between SS-HDX and hard instances of XOR.

Theorem 2.1 (SS-HDX ùñ Hard XOR Instance (Informal Theorem 6.4)). Let X : FXp0q

2

δ0
Õ
B1

FXp1q

2

δ1
Õ
B2

FXp2q

2 be an SS-HDX with non-trivial co-homology. Then there exist µ1, µ2 P p0, 1q such that for any
β P Z1zB1, the associated XOR instance IX,β satisfies:

1. Soundness: IX,β is at most p1 ´ µ1q-satisfiable,

2. Completeness: IX,β cannot be refuted by µ2|Xp0q| levels of the SoS hierarchy.

Before moving on to the construction of SS-HDX, let’s discuss how small-set expansion implies soundness
and completeness for these instances. Soundness, the simpler of the two, intuitively comes from the fact that
small-set co-boundary expansion promises that any element in Z1zB1 must be far from the co-boundary.7

Recall that by construction, the instance IX,β is satisfiable exactly when β P FXp1q

2 is a co-boundary.
Intuitively one might then expect that functions which are far from the co-boundary would therefore be far
from satisfiable. Indeed this intuition holds true—it is easy to show this robust version of the statement holds
for small-set co-boundary expanders, and therefore that our instances are far from satisfiable as well.

Completeness is somewhat trickier and, unlike soundness, does actually require the full power of small-set
boundary expansion. We stated earlier that the completeness of our instances, much like those of [DFHT20],
comes from the fact that the global structure of (co)-homology cannot be detected through local views of the
complex. This is formalized by observing that small-set boundary expansion can be equivalently re-stated as
the following isoperimetric inequality (see Lemma 5.4): “small, minimal8 functions have large boundaries.”
Largely following [DFHT20] (who use a much weaker isoperimetric inequality for the LSV complex due

7It is worth noting that this property, called co-systolic distance, is quite well studied. Indeed as we will soon discuss it is exactly
the property needed (in both directions) to build good qLDPC codes [PK21a], and was also used directly by [DFHT20] to prove
soundness of their 3-XOR instances by the same argument stated here.

8A function f P FXp1q

2 is said to be minimal if adding any boundary can only increase its size (Hamming weight).
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to Gromov [Gro83]), the idea is then to combine this fact with the classical arguments of Ben-Sasson and
Wigderson [BSW99] to show that the width9 of any refutation of IX,β in the ‘-resolution proof system10

is large. Since Schoenebeck [Sch08] showed any such bound transfers to a completeness lower bound for
Sum-of-Squares, this completes the proof.

In slightly more detail, a refutation in the ‘-resolution system can be viewed as an (in-degree two) DAG
where leaves correspond to the original XOR constraints, internal nodes correspond to the XOR of their two
parents (as in the ‘-resolution derivation rule), and the root derives the contradiction 0 “ 1. Recall that each
element s P Xp1q corresponds to a constraint in our XOR instance. Following [DFHT20], the idea is to
assign a function in hv P FXp1q

2 for each node v in the DAG that tracks which XOR constraints are being
used at that node. The boundary of this function, B1hv P FXp0q

2 , is exactly the set of variables appearing in
the equation corresponding to node v. Thus lower bounding the width of the refutation boils down to finding
a node with large boundary.

This is where small-set boundary expansion (namely the isoperimetric formulation) finally comes into
play. In particular, the corresponding inequality states that it is enough to find a node v of ‘medium’ weight:11

small enough that one can apply the inequality, but large enough to result in a large boundary. This can be
done by fairly standard potential arguments (see e.g. [BSW99, DFHT20]) where one sets of up a potential
function tracking this weight throughout the DAG, and argues that the leaves have small potential, the root
has large potential, and that potential is sub-additive. This implies the existence of an interior node with
medium potential and completes the proof. The details are given in Section 6.

Finally, before moving on to overviewing our construction of SS-HDX, we note that except in very special
cases (e.g. the simplicial complexes considered in [DFHT20]), the CSPs given by Equation (2) (and therefore
also Theorem 2.1) are actually instance of MAX-k-XOR, not 3-XOR, where k is given by the maximum
degree of the complex. As it turns out, this is not a significant issue because the SS-HDX we construct in the
next section are bounded degree, meaning not only that every constraint in the XOR has a constant number
of variables, but also that every variable only appears in a constant number of constraints. This observation
allows us to move to hard instances of 3-XOR by standard NP-reduction type arguments within the SoS
hierarchy [Sch08, Tul09] while only losing constant factors in the soundness and levels of hardness for SoS.

2.3 Constructing SS-HDX

Now that we know how to transform an expanding chain complex into a hard instance of 3-XOR, we turn
our attention to the construction of such complexes. Our method relies on recent breakthroughs on LTCs
[DEL`21, LH22a] and quantum LDPC codes [PK21a, LZ22]. As such, we’ll split this section into three
parts: a review of the connection between quantum LDPC codes and expanding chain complexes, the recent
qLDPC construction of Leverrier and Zémor [LZ22], and our proof of small-set (co)-boundary expansion.

2.3.1 Quantum LDPC Codes and Chain Complexes

A classical error correcting code is a method of encoding k classical bits into n ą k classical bits such that it
is possible to recover the original bit string even if the encoded string becomes corrupted. We will consider
linear codes, which are defined by a linear operator M : Fn

2 Ñ Fn´k
2 called the parity check matrix,12 where

the corresponding code C :“ kerM .
9The width of a refutation is the largest number of variables appearing in any equation.

10In this proof system, one is allowed to combine linear equations (equivalently XOR constraints) ℓ1 “ b1 and ℓ2 “ b2 to derive
the equation ℓ1 ‘ ℓ2 “ b1 ‘ b2. A refutation is a proof based on this rule deriving a contradiction (0 “ 1), which is equivalent in our
setting to showing the XOR instance is unsatisfiable.

11We note that weight here is not just the standard Hamming weight, but must take into account distance from the boundary as
well. See Section 6.

12We note the parity check matrix is traditionally denoted by ‘H ,’ but this conflicts with the notation for homology.
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Similar to the classical setting, a quantum code encodes quantum bits into a larger number of quantum
bits, but is resistent to two types of corruption: the X-type errors (bit flips) and the Z-type errors (phase flips).
In this work, we will focus on a popular notion of quantum codes called CSS-codes [CS96, Ste96], which
come with the benefit of having an entirely classical interpretation. In particular, a length n CSS-code is made
up of two classical codes C0 :“ kerM0 Ă Fn

2 and C1 :“ kerM1 Ă Fn
2 such that CK

0 Ă C1, or equivalently
M1 ¨ MT

0 “ 0.13 The dimension of the code is defined as k “ dim C0 ´ dim CK
1 , and its distance (which

measures how much corruption it can handle) is defined as d “ minpdx, dzq where

dx “ min
vPC0zCK

1

|v|, dz “ min
vPC1zCK

0

|v|

and dx (dz) is called the X-distance (Z-distance). The quantum low-density parity-check (LDPC) conjecture,
recently resolved by [PK21a], states that there exists a family of quantum CSS codes with linear dimension
and distance, k “ Θpnq and d “ Θpnq, where M0 and M1 have at most some constant number of ones in
any row or column (and thus are ‘low-density’ parity check matrices).

Since we are promised by definition that M1 ¨ MT
0 “ 0, it is easy to see that any CSS-code induces the

following chain complex:

X : Fm0
2

MT
0

Õ
M0

Fn
2

M1
Õ
MT

1

Fm1
2 ,

where mi “ dim pimpMiqq. Indeed the same holds in reverse as well, given a chain complex

X : FXp0q

2

δ0
Õ
B1

FXp1q

2

δ1
Õ
B2

FXp2q

2 ,

one obtains a quantum CSS code by letting M0 :“ B1, and M1 :“ δ1.
In fact, it turns out this equivalence between quantum CSS codes and chain complexes runs deeper: all of

the discussed properties (e.g. distance, LDPC) have analogs in the homological language we developed in
the previous section. The classical codes C0 and C1, for instance, correspond to the cycles and co-cycles of
the chain complex (C0 “ Z1, C1 “ Z1), while the dual codes CK

0 and CK
1 correspond to the co-boundaries

and boundaries (CK
0 “ B1, CK

1 “ B1). The dimension of the code k corresponds to the dimension of
the co-homology (k “ dimH1), and the maximum degree of the complex corresponds to the maximum
density of the parity check codes (so the bounded-degree and LDPC conditions are equivalent). Finally, the
X-distance and Z-distance of the code correspond to what is known as the (co)-systolic distance of the chain
complex, the minimum weight of any (co)-cycle that is not a (co)-boundary:

dx “ min
vPC0zCK

1

|v| “ min
vPZ1zB1

|v|,

dz “ min
vPC1zCK

0

|v| “ min
vPZ1zB1

|v|.

In [PK21a] and [LZ22], the authors construct two different explicit families of good quantum LDPC
codes. This partially solves our problem since the codes correspond to a family of bounded-degree chain
complexes with non-trivial co-homology and linear co-systolic distance (which is enough to imply soundness
of our XOR construction). We will show these complexes in fact satisfy the stronger small-set (co)-boundary
expansion condition, which as discussed in the previous section further implies completeness and (up to
reduction to 3-XOR) finishes the proof of Theorem 1.1.

13Here CK
0 denotes the dual code, consisting of all elements orthogonal to C0. This code is generated by the transpose of the parity

check matrix MT
0 .
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2.3.2 Leverrier and Zémor’s qLDPC Codes

Before discussing the proof, we need to overview the original construction of [LZ22]. A significantly more
detailed description of the construction and its associated components is given in Section 7 and Section 8.

Leverrier and Zémor’s qLDPC codes are based on a classical object called a Tanner code [Tan81]. Given
an n0-regular graph G “ pV,Eq and a linear code C of length n0, the Tanner code T pG, Cq Ă FE

2 is

tc P FE
2 : @v P V, c|Epvq P Cu,

where c|Epvq P Fn0
2 is the vector formed by the values on the edges incident to v. Tanner codes have long

been used in coding theory. The main insight of [LZ22] was to observe that one can construct a quantum CSS
code via two Tanner codes coming from a higher-dimensional object called the left-right Cayley complex,
recently developed in [DEL`21] to construct c3-LTCs.

The left-right Cayley complex corresponding to a group G and two sets of generators A “ A´1 and
B “ B´1 consists of a vertex set V “ G, edges given by (left) Cayley graph CpG,Aq and (right) Cayley
graph CpG,Bq, and higher-dimensional ‘squares’ of the form tg, ag, gb, agbu for g P G, a P A, b P B. More
formally, [LZ22] consider the double cover of this complex where:

• The vertices are V “ V0 Y V1 where V0 “ G ˆ t0u and V1 “ G ˆ t1u.

• The ‘A-edges’ and ‘B-edges’ are respectively:

EA “ ttpg, 0q, pag, 1qu : g P G, a P Au, EB “ ttpg, 0q, pgb, 1qu : g P G, b P Bu.

• The squares are

F “ ttpg, 0q, pag, 1q, pgb, 1q, pagb, 0qu : g P G, a P A, b P Bu.

Notice each square contains exactly two vertices in V0 and two vertices in V1. This allows us to think of
each square as an edge between two vertices in V0 (or V1) and to define corresponding graphs G˝

0 “ pV0, F q

and G˝
1 “ pV1, F q. The local view around each vertex in pg, iq P G˝

i then corresponds to the squares
tpg, iq, pag, 1 ´ iq, pgb, 1 ´ iq, pagb, iqu for a P A, b P B. Assuming |A| “ |B| “ ∆ for some constant ∆,
we will always think about these local views as square matrices with rows indexed by A and columns indexed
by B.

Leverrier and Zémor [LZ22] observed that the Tanner codes associated to these graphs, C0 “ T pG˝
0 , C

K
0 q

and C1 “ T pG˝
1 , C

K
1 q, give a quantum CSS code (i.e. satisfy CK

0 Ă C1) whenever the associated local codes
C0 “ CA b CB and C1 “ CK

A b CK
B are tensors14 of linear codes CA Ď FA

2 and CB Ď FB
2 . Furthermore,

they showed that whenever CA, CB, C
K
A , C

K
B have linear distance and the codes CK

1 “ CA bFB
2 `FA

2 bCB ,
and CK

0 “ CK
A b FB

2 ` FA
2 b CK

B satisfy certain robustness properties (see Section 7.5), then the associated
quantum code has linear distance. [LZ22] complete their construction by showing random base codes CA, CB

satisfy these properties with high probability. Note that because these base codes are constant size, this final
step can be brute-forced to maintain explicitness of the construction.

2.3.3 Proving Small-Set (Co)-Boundary Expansion

With [LZ22]’s construction in hand, we can now sketch the proof of small-set (co)-boundary expansion. As
mentioned previously, all other major requirements (e.g. non-trivial homology, bounded-degree) already
follow from the fact that the complex corresponds to a good qLDPC code. We will focus here on proving

14The tensor code CA b CB is the set of matrices whose rows are given by elements of CB and columns are given by elements of
CA.
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small-set co-boundary expansion in particular, but we note that small-set boundary expansion follows the
same argument by symmetry of [LZ22]’s construction.

With this in mind, recall that small-set co-boundary expansion can equivalently be phrased as an
isoperimetric inequality for small, minimal functions (see Lemma 5.4). In particular, to show small-set
co-boundary expansion for the chain complex

X : Fm0
2

δ0:“CT
0

ÝÝÝÝÑ Fn
2

δ1:“C1
ÝÝÝÝÑ Fm1

2 ,

it is enough to show there exist constants ρ1, ρ2 P p0, 1q such that any minimal x P Fn
2 with weight |x| ď ρ1n

has large boundary: |δ1x| ě ρ2|x|. We proceed by contradiction. Assuming |δ1x| ă ρ2|x|, we will show x is
not minimal by finding y P B1 such that |x ` y| ă |x|.

The proof of this fact largely follows the technique of [LZ22] for proving the weaker co-systolic distance
property. The main difference is that while [LZ22] only consider functions x P Fn

2 that are co-cycles,
we consider arbitrary functions. In particular, recall that the co-cycles in our construction correspond to
codewords in the Tanner code T pG˝

1 , C
K
1 q, or equivalently to functions x P Fn

2 whose ‘local view’ around
each vertex pg, 1q P V1 is given by a codeword of CK

1 . Since our functions do not a priori have this structure,
we will need to track the set of ‘violations’ coming from local views that are not codewords (this essentially
corresponds to where δ1x is non-zero).

To this end, recall x is a bit string indexed by the squares of the double-covered Cayley complex, and let
S Ă V1 denote the set of vertices incident to any square in x. We partition S into three parts: the violated
vertices Sv, the normal vertices Sn, and the exceptional vertices Se. A vertex is violated if the local view
of x around the vertex does not form a codeword in CK

1 . When the local view does form a codeword, if
the codeword has weight less than w :“ ∆3{2´ε we call it normal, and otherwise call it exceptional. This
weight-based distinction comes from the robustness condition of the local tensor code. We cover this in
detail in Section 7.5, but for the moment it is sufficient to think of robustness as a structural condition forcing
codewords with weight less than w to be zero outside of a small number of rows and columns. In particular,
this promises that each column (respectively row) in the local view of a normal vertex is at most Op∆1{2´εq

away from a codeword in CA (respectively CB).
Following [LZ22], our goal is now to find a vertex v P V0 that shares Ωp∆q columns or rows with Sn. As

long as Se and Sv are not too large compared to Sn, robustness of the code then implies the local view of v
is within Op∆3{2`εq of a codeword c P CA b CB , but also has total weight Ωp∆2q.15 This means we can
construct a vector y P B1 by defining y to be c on the local view of v and 0 everywhere else. Since x ` y and
x match outside the local view (where x has weight Ωp∆2q and x ` y has weight Op∆3{2`εq), this implies
|x ` y| ă |x| as desired.

It therefore remains to find such a vertex v P V0, which is the main technical component of the proof.
Let T Ă V0 be the vertices that share at least one ‘heavy’ column or row with a normal vertex (that is one
with many 1s). One can equivalently think of this as an edge between V0 and V1 that is ‘heavy’ in the sense
that it is contained in many squares in x. The idea is then to show that there are many such heavy edges
passing between S and T . Using expansion of the underlying graph and our assumption |δ1x| ă ρ2 |x|, one
can prove that T , Se, and Sv are small compared to Sn. This implies that a typical vertex in T has not just
one, but Ωp∆q heavy edges to Sn, which in turn corresponds to sharing Ωp∆q rows and columns with normal
vertices and completes the proof.

15We note CA and CB can be chosen to have linear distance to ensure this.
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3 Discussion

3.1 Related Work

Sum-of-Squares Lower Bounds: At a conceptual level, our work fits into a long line of research on the
limitations of Sum-of-Squares and related proof systems (e.g. Nullstellensatz [BIK`96, Gri98], Polynomial
Calculus [CEI96, BGIP01]), and LP/SDP hierarchies (e.g. Sherali-Adams [CMM09, MS09, BGMT12],
Lovász-Schrijver [AAT05, STT07, GMPT10]). Most relevant to our setting is the line of work on Sum-
of-Squares lower bounds initiated by Grigoriev [Gri01b] (and later independently Schoenebeck [Sch08]),
who used boundary expansion to prove random 3-XOR instances cannot be refuted by Ωpnq levels of SoS.
This lead to a number of works improving integrality gaps for more general classes of random k-CSPs
[Tul09, BCK15, Cha16, KMOW17] along with a number of other combinatorial optimization problems by
reduction [Sch08, Tul09].

In a sense, these prior works on SoS lower bounds for random instances can be viewed as increasingly
strong and general formulations of the statement: ‘Sum-of-Squares fails to capture the probabilistic method.’
In contrast, Dinur, Filmus, Harsha, and Tulsiani [DFHT20] recently exhibited the first explicit families of
CSPs hard for Sum-of-Squares based on an algebraic, highly structured family of objects called Ramanujan
(or LSV) complexes [LSV05], suggesting a new paradigm of hardness for structured instances. Due to
the poor systolic expansion of the Ramanujan complex, [DFHT20]’s bounds only hold up to Op

a

logpnqq

rounds of SoS as compared to Ωpnq levels for random instances. Nevertheless, the authors conjectured it
might be possible to use such anti-random objects to fool Ωpnq levels as well. Our work can be viewed as a
confirmation of this general hypothesis: anti-random structure (in particular certain algebraic structure) is
indeed as hard as random for Sum-of-Squares.

High Dimensional Expansion: High dimensional expansion in the form we consider (i.e. topological
expansion) was originally introduced by Linial and Meshulam [LM06] to study the vanishing of cohomology
on random simplicial complexes, and independently by Gromov [Gro10] to study the topological overlapping
principle. While our particular notion of small-set (co)-boundary expansion has not been studied in the
literature, a stronger isoperimetric inequality for small, locally minimal16 functions was used by Kaufman,
Kazhdan, and Lubotzky [KKL14] to show the existence of bounded degree co-systolic expanders (another
weakening of co-boundary expansion that replaces distance from B1 with distance from Z1), and later in
[EK16, KM18, KM21] as well. A similar strategy was recently employed by Lin and Hsieh to construct c3-
LTCs [LH22a] and later (conditional) qLDPC codes [LH22b]. It is worth noting that this stronger condition
actually holds for our construction as well (see Remark 8.9).

Quantum Codes and LTCs: Quantum LDPC and locally testable codes have long been known to share a
close connection with topological notions of high dimensional expansion (see e.g. [EH17]). Indeed it was
qLDPC constructions based on the Ramanujan complex [EKZ20, KT21] that first broke the

?
n distance

barrier and started the race to good qLDPCs [EKZ20, BE21, PK21b, KT21, HHO21, PK21a, JMO`21,
LZ22]. As discussed in Section 2.3.1, qLDPC codes satisfy a weaker variant of expansion called (co)-systolic
distance, but must do so in both directions. This is in strong contrast to typical constructions in the HDX
literature which, due to the inherent asymmetry of simplicial complexes, typically have very poor boundary
expansion (indeed this is also why we avoid simplicial complexes in this work). Such a guarantee was
only recently achieved by Panteleev and Kalachev [PK21a] using refined products of chain complexes, and
very recently simplified through a more geometric lens by Leverrier and Zémor [LZ22]. Since small-set

16A function is locally minimal if its weight cannot be decreased by adding the image of any standard basis vector B2pevq. Any
minimal function is also locally minimal (and the converse does not in general hold), so this is a strictly stronger notion of expansion
than we study.

11



(co)-boundary expansion is a stronger notion than (co)-systolic distance (see Section 5), our analysis provides
the strongest form of two-sided topological expansion to date. Further, this stronger form of two-sided
expansion also gives some hope for a positive resolution of the famous qLTC conjecture. If, for instance, one
can construct a 5-term chain complex satisfying similar bi-directional small set expansion guarantees, qLTC
would follow by the arguments of [KKL14, EH17, LH22a].

3.2 Further Directions

Improved Integrality Gaps: We prove the existence of an explicit family of 3-XOR instances with a
constant integrality gap of 1 v.s 1 ´ µ for 3-XOR, which falls short of reaching the 1 v.s 1

2 ` ε gap exhibited
by random instances [Gri01b, Sch08]. While standard reductions in the SoS hierarchy can improve our
gap to arbitrarily close (1 ´ ε v.s 1

2 ` ε), perfect completeness is lost in the process. The same issue was
observed in [DFHT20]’s original explicit construction from the Ramanujan complex. They asked whether it
is possible to bypass imperfect completeness by giving a direct construction with co-systolic distance at least
1
2 ´ ε. This remains a natural open question in our setting as well—can one directly construct a small-set
boundary expander with co-systolic distance 1

2 ´ ε? This would lead to a 1 v.s 1
2 ` ε gap for MAX-k-XOR.

Another natural question is whether such a bound can be transferred to 3-XOR without losing factors in the
soundness. Our current reduction loses a factor in k, but we have made no attempt to optimize this step (since
any constant gap is sufficient to amplify with PCP techniques if one is okay with imperfect completeness).

Hardness Beyond XOR: Many of the best integrality gaps known for combinatorial optimization prob-
lems (e.g. maximum independent set, chromatic number) are proved by reduction from k-CSPs [Tul09].
Unfortunately, such reductions are often randomized, so they do not imply explicit hard instances even when
combined with our XOR construction. This raises a natural question: can we build explicit reductions from
k-CSPs to classical combinatorial problems such as maximum independent set? Combined with our con-
struction, this could lead to new families of hard instances for many well-studied combinatorial optimization
problems. On a related note, it is worth observing that these reductions usually rely on CSPs with better
integrality gaps than k-XOR. For instance, it is not hard to see that while random instances of k-XOR only
exhibit a 1 v.s 1{2 ` ε integrality gap, more constrained k-CSPs (e.g. constraints of the form Ax “ b for
some matrix A P Fdˆk

2 ) can lead to much larger integrality gaps up to 1 v.s 2k
2k

` ε [Tul09]. Can we use high
dimensional expanders to recover explicit k-CSPs matching these bounds?

Small-Set HDX and Hardness of Approximation: Small set expansion plays a fundamental role in
hardness of approximation, ranging from use as a computational hardness assumption itself [RS10], to its
pivotal use in the proof of the 2-2 games conjecture [KMS17, DKK`18b, DKK`18a, BKS18, KMMS18,
KMS18] and recent converse use for algorithms for unique games [BBK`21, BHKL22]. This work gives the
first application of high dimensional small-set expansion to hardness of approximation, raising the natural
question: does this high dimensional variant have a broader role to play in the field as well?

4 Preliminaries I: SS-HDX to Hardness

We now cover the preliminary definitions required to understand our general translation of expanding
chain complexes into hard instance of 3-XOR, including basics on Sum-of-Squares, chain complexes, and
traditional notions of high dimensional expansion. Background required for the HDX construction itself (e.g.
on left-right Cayley complexes, robust tensor codes, etc.) is postponed to Section 7.
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4.1 Sum of Squares and Refutations

The Sum-of-Squares Semidefinite Programming Hierarchy is a powerful method for approximately solving
constrained polynomial optimization problems, and is in particular the strongest known algorithmic framework
for approximating CSPs. In brief, the SoS heirarchy presents a series of successively stronger SDP relaxations
of a problem, where the ‘round-t’ relaxation optimizes over t-local views and runs in time nOptq. We refer
the reader to [BS14, FKP19] for general information on the SoS hierarchy.

In this work, we focus in particular on the SoS relaxations of MAX-k-XOR, the family of CSPs on n
variables tx1, . . . , xnu and m constraints tCiuiPrms of the form:

xi1 ‘ . . . ‘ xij “ zi,

where zi P t0, 1u, ti1, . . . , iju Ă rns, and j “ jpiq ď k. Let Ti Ă rns denote the set of variables appearing
in the ith constraint. Then the round-t SoS SDP relaxation for MAX-k-XOR can be written as:

Algorithm 1: Round-t SoS Relaxation for MAX-k-XOR
Input: variables tvSu

SPprns

ďtq

Maximize: 1
2 ` 1

2m

m
ř

i“1
p´1qzixvTi , vHy

Constraint to:

1. @S1 ‘ S2 “ S3 ‘ S4, |Si| ď t : xvS1 , vS2y “ xvS3 , vS4y

2. @S, |S| ď t : ∥vS∥2 “ 1

We refer to the maximum obtained by this SDP as the value of the round-t relaxation, and say an infinite
family of instances of MAX-k-XOR is hard for (or cannot be refuted by) t rounds of Sum of Squares if there
exists a constant µ such that every instance is at most p1 ´ µq-satisfiable, but the round-t SDP relaxation has
value 1. In other words, t-rounds of the SoS hierarchy cannot distinguish between completely satisfiable and
p1 ´ µq-satisfiable instances—this is often said to induce an integrality gap for the problem of size 1

1´µ .
Rather than working directly with the Sum-of-Squares SDP relaxations, we prove our hardness results

through a fruitful connection with refutation complexity due to Schoenebeck [Sch08] and Tulsiani [Tul09].
More formally, following [DFHT20] we will use a proof system called ‘-resolution where, given a system
of linear equations Λ over F2, we may derive new equations by mod 2 summation:

tℓ1 “ b1u, tℓ2 “ b2u ùñ ℓ1 ‘ ℓ2 “ b1 ‘ b2.

A refutation in this system is a derivation that 0 “ 1, and in our setting corresponds to a proof that the XOR
instance given by Λ is unsatisfiable. Schoenebeck [Sch08] and Tulsiani [Tul09] showed that any system
without a short refutation has a matching SoS lower bound.

Theorem 4.1 ([Sch08, Lemma 13] (as stated in [DFHT20])). Let Λ be a system of linear equations in n
variables over F2. If all refutations of Λ have an equation using at least 2t variables, then the round-t SoS
Relaxation of Λ has value 1.

4.2 Chain Complexes

While previous works constructing hard instances of CSPs rely on structure coming from graphs (e.g. [Gri01b,
Sch08]) or hypergraphs [DFHT20], we take inspiration from recent work on c3-LTCs [DEL`21, LH22a]
and qLDPC codes [PK21a, LZ22] and instead study a more general set of objects called chain complexes.
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Definition 4.2 (Chain Complex). Let Xp0q, Xp1q, and Xp2q be sets, and B2 : F
Xp2q

2 Ñ FXp1q

2 , B1 : F
Xp1q

2 Ñ

FXp0q

2 linear maps. The sequence

X : FXp0q

2
B1
Ð FXp1q

2
B2
Ð FXp2q

2

is called a (3-term) chain complex if B1B2 “ 0.

For the sake of intuition, let’s take a moment to see why chain complexes are indeed a generalization
of hypergraphs. Given an r-uniform hypergraph H Ď

`

rns

r

˘

, let Xpiq Ă
`

rns

i

˘

denote any i-set contained in
some r-set in H . H then induces an pr ` 1q-term chain complex:17

X : FXp0q

2
B1
Ð FXp1q

2
B2
Ð . . .

Br
Ð FXprq

2 ,

where Bifpxq is given by summing f (mod 2) over x’s ‘boundary:’

@f P FXpiq
2 : Bifpxq “

ÿ

yPXpiq:yĄx

fpyq. (3)

For instance, when x is a vertex, B2fpxq averages over all edges containing x. As such, B is usually called
the boundary operator, and it can be checked without too much difficulty that Bi´1Bi “ 0 (e.g. for r “ 3, this
follows by noting a vertex is incident to either 0 or 2 edges of any given triangle).

In fact, the boundary operators can actually always be seen to have a similar form to Equation (3), even
on a generic chain complex. This follows from passing to the matrix representation as discussed in Section 1.
Namely, we may view our 3-term chain complex as a pair of bipartite graphs B0 “ pXp0q, Xp1q, E1q and
B1 “ pXp1q, Xp2q, E2q, whose bipartite adjacency matrices are given by the matrix representations of B1

and B2 respectively (in the standard basis). In this setting, it is easy to see that B1 and B2 are also given by
mod 2 summation over neighbors on these underlying bipartite graphs:

@f P FXp1q

2 : B1fpxq “
ÿ

yPXp1q:px,yqPE1

fpyq pmod 2q

@f P FXp2q

2 : B2fpyq “
ÿ

zPXp2q:py,zqPE2

fpzq pmod 2q,

where we have assumed for simplicity that B1 and B2 are non-degenerate in the sense that every row and
column have at least one 1.18 All complexes we study are non-degenerate, so we make this assumption
throughout.

In matrix form, it is also easy to see that the transpose operators of B, called the co-boundary operators
and denoted δ0 :“ BT

1 and δ1 :“ BT
2 , also form a chain complex in the opposite direction. As a result, we will

usually write our chain complexes in the following form:

X : FXp0q

2

δ0
Õ
B1

FXp1q

2

δ1
Õ
B2

FXp2q

2 .

We call elements of FXpiq
2 i-chains, and note FXpiq

2 is often written as “Ci” in the literature. We avoid this
notation since it conflicts with classical notation for codes used later in the paper.

Finally, before moving on to expansion on chain complexes, we cover two further concepts that will
control important parameters of our corresponding XOR instaces: maximum degree and explicitness.

17Note Xp0q is defined to be the empty set, and that our indexing is off by 1 from the usual notation in topology.
18In a graph, for instance, non-degeneracy corresponds to have no free-floating (degree 0) vertices.
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Definition 4.3 (Maximum Degree). The maximum degree of a chain complex X : FXp0q

2

δ0
Õ
B1

FXp1q

2

δ1
Õ
B2

FXp2q

2

is the maximum Hamming weight19 across rows and columns of B1 and B2.

In the bipartite graph view, this is simply the maximum vertex degree across both graphs. We call an
infinite family of chain complexes bounded degree if there exists some constant d P N such that all complexes
in the family have maximum degree at most d.

Finally, in this work we will be interested in infinite families of chain complexes (and their associated
XOR instances), so we need to define a notion of computational complexity over these objects. We will
follow the standard notions used for expander families, and call a family of complexes explicit if its elements
can be constructed in deterministic polynomial time (this is often called mildly explicit, but the difference is
not particularly important in our setting).

Definition 4.4 (Explicit Chain Complexes). We call an infinite family of chain complexes tXiu explicit if
there exists a determinstic algorithm computing each Xi in time polynomial in |Xip0q Y Xip1q Y Xip2q|.

All complexes studied in this work will be bounded-degree, in which case this notion may equivalently
be defined looking only at the size of Xip0q. This corresponds correctly to the standard notion of complexity
for the associated k-CSP family where |Xip0q| gives the number of variables.

4.3 Homology and High Dimensional Expansion

High dimensional expansion is a generalization of expansion in graphs originally introduced by Linial and
Meshulam [LM06] (and later independently by Gromov [Gro10]) to study the vanishing of homology in
simplicial complexes. In this section we cover the basics of homology and introduce Linial and Meshulam’s
original notion of (co)-boundary expansion. These notions (or modifications thereof) will play an important
role in our CSP construction.

Following standard notation, we call functions in the kernel of Bi cycles, and functions in the kernel of δi
co-cycles, denoted:

Zi “ kerpBiq, Zi “ kerpδiq.

Since δ2 “ B2 “ 0, notice that impBi`1q are always cycles, and impδi´1q are always co-cycles. We call
functions in these classes boundaries and co-boundaries respectively, denoted:

Bi “ impBi`1q, Bi “ impδi´1q.

The homology and co-homology of the chain complex correspond to (co)-cycles mod (co)-boundary:

Hi “ Zi{Bi, H i “ Zi{Bi,

where G{H denotes the quotient group. The notions of cycles and boundaries can be used to define a natural
generalization of expander graphs to chain complexes called (Co)-boundary expansion.

Definition 4.5 ((Co)-Boundary Expansion). We call X : FXp0q

2

δ0
Õ
B1

FXp1q

2

δ1
Õ
B2

FXp2q

2 a ρ-boundary expander if

the weight of any element in FXp1q

2 zB1 is proportional to its distance from the boundary:

@f P FXp1q

2 zB1 :
|B1f |

dpf,B1q
ě ρ,

where dpf,B1q “ minbPB1 |f ` b|. Similarly, X is an ρ-co-boundary expander if:

@f P FXp1q

2 zB1 :
|δ1f |

dpf,B1q
ě ρ.

19The Hamming weight of binary vector v, denoted |v|, counts the number of entries with a 1.
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Since this definition may seem un-motivated at first glance, let’s again take a look at the case of a graph
G “ pV,Eq which induces the (3-term) chain complex:

X : FH
2

δ0
Õ
B1

FV
2

δ1
Õ
B2

FE
2 .

It is not hard to see that the co-boundary expansion of this chain is exactly Cheeger’s constant:

hpGq :“ min
S‰V,H

"

EpS, V zSq

mint|S|, |V zS|u

*

,

where EpS, V zSq is the standard notation for the size of the edge boundary between S and the rest of the
graph. This connection follows from noting that the only co-boundaries on this chain are V and H, and that
|δ11S | exactly counts the edge-boundary of S, so in particular we have:

|δ11S |

dp1S , B1q
“

EpS, V zSq

mint|S|, |V zS|u
.

5 Small Set Boundary Expansion

(Co)-boundary expansion is a very strong property, and unconditional construction of bounded degree (co)-
boundary expanders is still a major open question in topological high dimensional expansion. Furthermore,
(co)-boundary expansion actually implies the vanishing of (co)-homology. This is an issue in and of itself
in our setting, since as discussed in Section 2, our CSP construction rests crucially on the associated chain
complex having non-trivial co-homology. With this in mind, we introduce a new notion of high dimensional
expansion which requires boundary expansion to hold only over small sets.

Definition 5.1 (Small-Set (Co)-Boundary Expansion). We call X : FXp0q

2

δ0
Õ
B1

FXp1q

2

δ1
Õ
B2

FXp2q

2 a pρ1, ρ2q-

small-set boundary expander if the weight of small chains in FXp1q

2 is proportional to their distance from the
boundary:

@f P FXp1q

2 zB1, |f | ď ρ1|Xp1q| :
|B1f |

dpf,B1q
ě ρ2.

Similarly, X is a pρ1, ρ2q-small-set co-boundary expander if:

@f P FXp1q

2 zB1, |f | ď ρ1|Xp1q| :
|δ1f |

dpf,B1q
ě ρ2

We call X a pρ1, ρ2q-small-set HDX if it is both a pρ1, ρ2q-small-set boundary and pρ1, ρ2q-small-set co-
boundary expander.

Just like standard co-boundary expansion is a higher-order analog of Cheeger’s constant (edge-expansion)
in graphs, small-set co-boundary expansion is the natural analog of small-set expansion on graphs. As
discussed in Section 3.1, various strengthened notions of (unidirectional) high-dimensional small-set ex-
pansion have been considered on both simplicial [KKL14, EK16, KM18, KM21] and chain complexes
[LH22a, LH22b], but this basic generalization seems to be missing from the literature. In this work we
show how small-set HDX can be transformed into explicit hard CSP instances for linear levels of Sum-of-
Squares. Given the general prominence of small-set expansion throughout hardness of approximation (see
e.g. [RS10, KMS18]), we expect SS-HDX may have many further applications in the area.

Before moving on, it will be useful to observe two important implications of a complex satisfying
small-set (co)-boundary expansion. First, while the notion does not require the vanishing of (co)-homology
like standard boundary expansion, it does still imply a strong restriction on the structure of elements in
Z1zB1: they must be large.
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Lemma 5.2 (Small-Set (Co)-Boundary Expansion Ñ (Co)-Systolic Distance). If X is a pρ1, ρ2q-small-set
boundary expander, then all chains f P Z1zB1 are large:

min
fPZ1zB1

t|f |u ą ρ1|Xp1q|. (4)

Similarly, if X is a pρ1, ρ2q-small-set co-boundary expander, then all chains f P Z1zB1 are large:

min
fPZ1zB1

t|f |u ą ρ1|Xp1q|. (5)

Proof. We prove the first statement only, the second follows similarly. Assume h1 P Z1zB1 satisfies
|h1| ď ρ1|Xp1q|. Since h1 is a cycle, we have B1h1 “ 0, but then by small-set boundary expansion we have
dph1, B1q “ 0, so h1 P B1 giving the desired contradiction.

We say complexes satisfying Equation (4) have systolic distance ρ1, and complexes satisfying Equation (5)
have co-systolic distance ρ1. As discussed in Section 2, these properties were recently crucial to the
construction of good qLDPC codes [PK21a], and were also used by [DFHT20] to prove the soundness of
their 3-XOR construction. Indeed it is worth noting that bounded co-systolic distance is actually enough for
soundness in our construction as well, we only truly need the full power of small-set boundary expansion in
one direction.

Second, we will crucially rely on a standard connection between boundary expansion and a concept
known as an isoperimetric inequality, which relates the size of an object to the size of its boundary.20 In
particular, it is well known that boundary expansion is actually equivalent to an isoperimetric inequality for
minimal chains (see e.g. [KKL16]).

Definition 5.3 (Minimal Chains). A function h P FXp1q

2 is called minimal if @b P B1, |h ` b| ď |h|.

A similar equivalence holds for small-set boundary expansion as well, and will be crucial for the
completeness of our CSP instances: X is a small-set boundary expander if and only if small, minimal chains
in X satisfy an isoperimetric inequality.

Lemma 5.4 (Small-Set (Co)-Boundary Ø (Co)-Isoperimetric Inequality). Let X be a pρ1, ρ2q-small-set
boundary expander. Then for any h P FXp1q

2 satisfying:

1. h is small: |h| ď ρ1|Xp1q|

2. h is minimal: @b P B1 : |h ` b| ě |h|

the boundary B1h must be large relative to h:

|B1h| ě ρ2 |h| . (6)

Conversely if Equation (6) holds for any small minimal chain, then X is a pρ1, ρ2q-small-set boundary
expander.

Proof. We start with the forward direction. Since |h| ď ρ1|Xpiq| and h is minimal, by small-set boundary
expansion we have that:

|B1h| ě ρ2dph,Bq “ ρ2min
bPB

t|h ` b|u “ ρ2 |h| .

20For example the isoperimetric inequality on R2 says the length (boundary) of any closed curve is at least 2
?
π times the square

root of its area.
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The converse implication is similar. Let h P FXp1q

2 be a small chain satisfying |h| ď ρ1|Xp1q|, and let b P B1

be the boundary minimizing |h ` b|. Then by isoperimetry of h ` b, we have:

|B1h| “ |B1ph ` bq| ě ρ2 |h ` b| “ ρ2dph,B1q

as desired.

We note the same result holds for co-boundary expansion by the same proof. Isoperimetry (combined
with good systolic distance) will be crucial for showing completeness of our XOR instances, replacing the
use of Gromov’s filling inequality in [DFHT20].

6 From Expansion to Hardness

We now show how to translate any family of expanding, bounded-degree 3-term chain complexes with
non-trivial cohomology into hard instances of 3-XOR for Ωpnq-levels of Sum-of-Squares.

Theorem 6.1. Let tXiu be an explicit family of chain complexes of maximum degree k P N and µ, ρ1, ρ2 P

p0, 1q constants such that:

1. H1 is non-trivial,

2. X has µ-co-systolic distance,

3. X is a pρ1, ρ2q-small-set boundary expander.

Then there exist constants µ1, µ2 P p0, 1q depending only on k, µ, ρ1, and ρ2 and an explicit family of
MAX-3-XOR instances tIiu on ni variables such that:

1. Every instance is at most p1 ´ µ1q-satisfiable,

2. No instance can be refuted by µ2ni levels of the SoS hierarchy.

Moreover if the complex has degree lower bounded by 3, tIiu are instances of 3-XOR.

Theorem 6.1 is actually proved mainly by associating an instance of MAX-k-XOR to every complex Xi

in the family. Moving to 3-XOR can then be done through standard NP-reduction arguments within the SoS
hierarchy.21 Thus the main challenge is to build hard instances of MAX-k-XOR from our complexes. We’ll
start by overviewing our construction, which is a generalization of [DFHT20]’s 3-XOR construction from
simplicial complexes to generic chain complexes.

Construction: It will be convenient to phrase our construction in the bipartite graph formulation discussed

in Section 4. Recall that any chain complex X : FXp0q

2

δ0
Õ
B1

FXp1q

2

δ1
Õ
B2

FXp2q

2 may be written as a pair of bipartite

graphs B1 “ pXp0q, Xp1q, E1q and B2 “ pXp1q, Xp2q, E2q where E1 and E2 are uniquely determined by
the matrix representations of the boundary operators. Assuming our complex has non-trivial co-homology,
let β P Z1zB1.22 Our associated CSP IX,β is given by adding for every y P Xp1q the constraint:

Cy :“

$

&

%

ÿ

xPXp0q:px,yqPE1

x pmod 2q “ βpxq

,

.

-

.

21Though one must be careful that the number of variables does not blow up in the reduction, as we discuss later in the section.
22Note that β can be found in polynomial time by standard linear algebraic techniques.
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Since the choice of β P Z1zB1 will not matter, in what follows we will drop it from the notation and just
write IX . We make two observations about IX before moving on. First, let’s confirm IX is indeed an
instance of MAX-k-XOR.

Observation 6.2. If X has maximum degree k, then IX is an instance of MAX-k-XOR.

Proof. This follows immediately from the chain complex having maximum degree k, as every y P Xp1q then
has at most k neighbors in Xp0q (i.e. that there are at most k elements x such that px, yq P E1).

Second, we observe that our instances have at most a linear number of constraints.

Observation 6.3. If X has maximum degree k, then IX has at most k|Xp0q| constraints.

Proof. Since our complex is non-degenerate and degree at most k, we have that |Xp1q| ď k|Xp0q|. IX has
|Xp1q| constraints by construction.

As a result, any explicit infinite family of bounded degree chain complexes with non-trivial cohomology
induces an explicit infinite family of MAX-k-XOR instances with linearly many constraints for some constant
k P N. The main work in proving Theorem 6.1 therefore boils down to proving that the instances IX are
sound (at most p1 ´ µq-satisfiable), and complete (look satisfiable to SoS).

Theorem 6.4. Let X be a chain complex of maximum degree k and µ, ρ1, ρ2 P p0, 1q constants such that:

1. H1 is non-trivial,

2. X has µ-co-systolic distance,

3. X is a pρ1, ρ2q-small-set boundary expander.

Then IX is an instance of MAX-k-CSP on |Xp0q| variables satisfying:

1. Soundness: IX is at most p1 ´ µq-satisfiable,

2. Completeness: IX cannot be refuted by
`

ρ1ρ2
4k |Xp0q|

˘

-levels of the SoS hierarchy.

We’ll break the proof of Theorem 6.4 into two parts, corresponding to soundness and completeness.

Soundness: The soundness of our construction can be proved with no further background, and is a direct
generalization of arguments in [DFHT20] from simplicial complexes to general chain complexes.

Proof of Soundess (Theorem 6.4). Recall that our constraints are defined by some function β P Z1zB1. Let
f P FXp0q

2 be a potential assignment to variables in our instance. For any constraint y P Xp1q, we can check
if f satisfies y by evaluating pβ ` δ0fqpyq:

pβ ` δ0fqpyq “ βpyq `
ÿ

px,yqPE1

fpxq.

In other words, the Hamming weight |β ` δ0f | exactly corresponds to the number of violated constraints in
our instance. The key is now to observe that since β P Z1zB1, β ` δ0f also lies in Z1zB1. Since X has
µ-co-systolic distance, we have |β ` δ0f | ě µ|Xp1q|, so any assignment to variables must violate at least a
µ fraction of constraints as desired.
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Completeness: Proving the completeness of Theorem 6.4 requires a bit more setup. As discussed in
Section 4, we appeal to the general paradigm of Grigoriev [Gri01b], Schoenebeck [Sch08], and Tulsiani
[Tul09] relating refutation width with Sum-of-Squares completeness. Our lower bound on the refutation width
of IX can be viewed in some sense as a mix of the classical strategy of Ben-Sasson and Wigderson [BSW99]
(who used traditional boundary expansion on graphs to show lower bounds against refuting Tseiten formulas)
and the recent argument of [DFHT20] using Gromov’s filling inequality on the Ramanujan complex. We
mostly follow the exposition given in the latter.

We will consider refutations in the ‘-resolution proof system, in which two linear equations ℓ1 “ b1 and
ℓ2 “ b2 can be added to derive ℓ1 ‘ ℓ2 “ b1 ‘ b2. By Theorem 4.1, it is enough to prove that any refutation
of the linear equations corresponding to IX has width at least ρ1ρ2

2k |Xp0q|, where width measures the largest
number of variables appearing in any equation in the refutation. A refutation in the ‘-resolution proof system
can be modeled as a DAG where leaves correspond to linear equations (our XOR constraints), internal nodes
have two incoming edges and correspond to the XOR of their parents, and the root derives the contradiction
0 “ 1.

To track the number of variables at each step, we follow the strategy of [DFHT20] and associate to
each node v of the DAG a function hv P FXp1q

2 and value bv P t0, 1u as follows. Since each leaf in the
refutation corresponds to one of our XOR constraints, assign the leaf corresponding to s P Xp1q the indicator
1s P FXp1q

2 and value βpsq P F2 (where we recall β P Z1zB1 was the chain used to define our constraint
values). The function and value assigned to each internal node v with parents v1, v2 is then defined recursively
to be the (mod 2) sum of its parents:

hv “ hv1 ‘ hv2 , and βv “ βv1 ‘ βv2 .

Notice that by construction, B1hv exactly corresponds to the variables appearing in the linear equation at
node v. This means we can bound the width of the refutation by identifying some node v in the refutation
whose associated function hv has large boundary.

To this end, following [DFHT20]’s high dimensional variant of [BSW99]’s original technique we define
the following potential function across nodes in our refutation:

κpvq :“ min
bPB1

|hv ` b| .

Our goal will be to find a node in the refutation whose potential is large, but still small enough that we can
apply small-set boundary expansion. Namely, if we can find v such that ρ1

2 |Xp1q| ď κpvq ď ρ1|Xp1q|, then
by our isoperimteric inequality for small sets (Lemma 5.4) we have:

|Bhv| “ |Bphv ` bq| ě ρ2 |hv ` b| ě
ρ1ρ2
2

|Xp1q| ě
ρ1ρ2
2k

|Xp0q|

which would give the desired bound on refutation width. With this in mind, we can finally prove completeness.

Proof of completeness (Theorem 6.4). As discussed above, it is sufficient to prove that any refutation has
width at least ρ1ρ2

2k |Xp0q|, and that this can be done by finding a node v with potential ρ1
2 |Xp1q| ď κpvq ď

ρ1|Xp1q|. The proof follows the classical strategy of [BSW99]. Namely it is enough to show the following
three properties:

1. The root node has large potential: κprq ą ρ1|Xp1q|

2. The leaves have small potential: κpsq ď 1

3. The potential function is sub-additive: κpvq ď κpv1q ` κpv2q.

20



As long as these hold, getting from the leaf potential of (at most) 1 to the root potential of κprq ą ρ1|Xp1q|

requires passing through some internal node v with ρ1
2 |Xp1q| ď κpvq ď ρ1|Xp1q| as desired.

It is left to prove the three properties, which follow from similar analysis as in [DFHT20] for the
Ramanujan complex. The second and third properties are essentially immediate. Leaves are given by the
indicator function of elements s P Xp1q, which are at most distance one from 0⃗ P B1 (the all 0s function).
Sub-additivity follows from the triangle inequality. For a node v with parents v1 and v2, let b1 and b2 be
boundaries minimizing dphv1 , B1q and dphv2 , B1q, then we have:

κpv1q ` κpv2q “ |hv1 ` b1| ` |hv2 ` b2| ě |hv1 ` b1 ` hv2 ` b2| “ |hv ` b1 ` b2| ě κpvq.

For the first property, we argue the root node r must satisfy hr P Z1zB1. If this is the case we are done by
the fact that our complex has good co-systolic distance by Lemma 5.2:

κphrq “ min
bPB1

|hr ` b| ą ρ1|Xp1q|,

since any hr ` b P Z1zB1 as well. To see that hr P Z1zB1, first note that since the root node in our refutation
corresponds to the equation 0 “ 1, we must have B1hr “ 0 and therefore hr P Z1. To complete the proof we
therefore only need to show hr R B1, which follows from the fact that br “ 1 for the root node. Namely,
notice that for any node v we have bv “ xβ, hvy by construction (since we are just summing mod 2 over the
constraints), and in particular that xβ, hry “ 1. On the other hand, if hr P B1, then by definition there exists
f P FXp2q

2 such that hr “ B2f and since δ1 “ BT
2 we have

xβ, hry “ xβ, B2fy “ xδ1β, fy “ 0

since β P Z1. Thus hr is in Z1 but not B1, which completes the proof.

We are now one step away from proving Theorem 6.1; we just need to show how to move from a hard
instance of MAX-k-XOR to a hard instance of 3-XOR. Such a reduction is fairly standard within the SoS
literature, but we’ll include the proof for completeness. To do so, we’ll need to introduce a second way to
characterize completeness of an instance for t rounds of SoS through an object called a pseudo-expectation.
Given a set of variables txiuiPrns and d P N, let polyRptxiu, dq denote the set of degree at most d polynomials
in Rrx1, . . . , xns. For our purposes, it is enough to think of a degree 2t pseudo-expectation as an operator
Ẽ : polyRptxiu, 2tq Ñ R that ‘pretends’ to be an expectation in the following four ways:

1. Scaling: Ẽr1s “ 1

2. Linearity:

@a, b P R, ppxq, qpxq P polyRptxiu, 2tq : Ẽrappxq ` bqpxqs “ aẼrppxqs ` bẼrqpxqs

3. Positivity of Squares:
@qpxq P polyRptxiu, tq : Ẽrqpxq2s ě 0

4. Booleanity:
@j P rns, ppxq P polyRptxiu, 2t ´ 2q : Ẽrx2jppxqs “ Ẽrppxqs.

With this in mind, let I be an instance of XOR on n variables tx1, . . . , xnu. It will be convenient to express
constraints in Ci P I multiplicatively as:

Ci :“
␣

xi1 . . . xij “ bi
(
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where bi P t´1, 1u and assignments now range over t´1, 1un. Let Cipxq be shorthand for the lefthand
product of variables in the constraint, and |Ci| denote the degree of Cipxq. It turns out (see e.g. [FKP19])
that completeness of I against t levels of Sum-of-Squares is equivalent to the existence of a degree 2t
pseudo-expectation which respects every constraint Ci P I in the following strong sense:

@ppxq P polyRptxu, 2t ´ |Ci|q : ẼrCipxqppxqs “ biẼrppxqs. (7)

With this in mind, we can finally put everything together and prove Theorem 6.1.

Proof of Theorem 6.1. We’ll start by constructing an explicit family of hard instances of MAX-k-XOR, then
reduce to 3-XOR through the above machinery. By Theorem 6.4, every complex Xi in our family corresponds
to an instance IXi of MAX-k-XOR on ni “ |Xip0q| vertices and mi ď k|Xp0q| constraints that is at most
p1 ´ µq-satisfiable but cannot be refuted by the ρ1ρ2

4k ni-level SoS relaxation. Furthermore each instance IXi

can be constructed in polypniq time. This follows immediately from the fact that tXiu itself is explicit (and
bounded degree), and that finding some β P Z1zB1 can be done in polynomial time by basic linear algebra
over dimension Opniq vector spaces.

It is left to argue that we can use IXi to construct a corresponding instance of 3-XOR that remains hard
for Sum-of-Squares. We will use the following simple approach: given a clause with more than 3 variables,
split it into two clauses of about half the size whose product is the original clause. More formally, given a
constraint Ci :“

␣

xi1 . . . xij “ bi
(

, we apply the transformation:

Ci Ñ

!

C
p0q

i :“ txi1 . . . xitj{2u
yi “ biu, C

p1q

i :“ txitj{2u`1
. . . xijyi “ 1u

)

(8)

where yi is a newly introduced ‘dummy’ variable. Given a generic instance of MAX-k-XOR Ik, let ΦpIkq

denote the CSP resulting from applying the above transformation to every constraint with more than 3
variables. We will argue that ΦpIkq has about half as many variables per clause as the original instance, but
maintains soundness and completeness up to constant factors.

Claim 6.5. Let Ik be an instance of MAX-k-XOR for k ě 4 on n variables and m constraints such that:

1. Ik is at most p1 ´ µq-satisfiable,

2. Ik cannot be refuted by t rounds of Sum-of-Squares.

Then ΦpIkq is an instance of MAX-j-XOR for j “ rk{2s ` 1 on at most n ` m variables and 2m constraints
satisfying:

1. Ik is at most p1 ´ µ{2q-satisfiable,

2. Ik cannot be refuted by 2t
k rounds of Sum-of-Squares.

Let’s first show Claim 6.5 completes the proof of our main theorem. Starting from our MAX-k-XOR
instance IXi , Claim 6.5 shows that ΦrlogpkqspIXiq is an instance of MAX-3-XOR on Okpniq variables that is
at most p1 ´ Ωkpµqq-satisfiable but cannot be refuted by Ωkpniq rounds of Sum-of-Squares. This follows
from the fact that the original (and all transformed instances) have m ď Okpniq constraints.23 Finally, if the
original instance had no constraints with fewer than 3 variables (which occurs if the original complex has
degree lower bounded by 3), ΦrlogpkqspIXiq is an instance of 3-XOR. With this in mind, it is left to prove the
claim.

23We note that it is possible to improve the dependence on k by slightly more involved analysis, but since k is just a constant we
choose to work with iterated applications of the above for simplicity of exposition.
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Proof of Claim 6.5. The fact that ΦpIkq is an instance of MAX-j-XOR for j “ rk{2s ` 1 on at most n ` m
variables and at most 2m constraints is immediate from construction. The main interest lies in proving
soundness and completeness of the instance.

Soundness: Soundness of ΦpIkq follows from observing that since y2i “ 1, Ci “ C
p0q

i ¨C
p1q

i . Namely by the
soundness of the original instance, any assignment of variables to ΦpIkq must fail at least a µ fraction of
original constraints Ci (since these have no dependence on the new dummy variables). If Ci “ C

p0q

i ¨ C
p1q

i

is violated it must be the case that either Cp0q

i or Cp1q

i is violated, so any assignment of variables to our
transformed CSP ΦpIkq must still violate at least a µ{2 fraction of its constraints.

Completeness: Given a degree 2t pseudo-expectation Ẽ satisfying the constraints of Ik (in the sense
of Equation (7)), we must construct a new pseudo-expectation ẼΦ on the variables of ΦpIkq satisfying the
transformed constraints. Given a polynomial ppx, yq P Rrtxiu, tyjus, let ppx, 1q P Rrtxius denote the result
of setting each y variable to 1. The idea is to observe that each dummy variable yi in the new instance can
really be thought of as a ‘stand-in’ for the product bixi1 . . . xitj{2u

“ biC
p0q

i px, 1q in the sense that replacing

each yi with biC
p0q

i px, 1q simply returns the original instance. This suggests a natural strategy for defining
our new pseudo-expectation ẼΦ: just replace yi with biC

p0q

i px, 1q.24

Formally, this takes a bit of work. Let S Ď rms denote the set of indices on which we transformed
our original instance, tyjujPS denote the newly introduced variables, and T : RrtxiuiPrns, tyjujPSs Ñ

Rrx1, . . . , xns denote the map which independently replaces each occurrence of yj with bjC
p0q

j px, 1q (and
leaves variables in txiu unchanged). It is an elementary exercise to show that T satisfies the following useful
properties:

1. T is (additively) linear:

T pazpx, yqq “ aT pzpx, yqq and T pz1px, yq ` z2px, yqq “ T pz1px, yqq ` T pz2px, yqq

2. T is (multiplicatively) linear:

T pz1px, yqz2px, yqq “ T pz1px, yqqT pz2px, yqq

3. T does not substantially blow up degree:

DegpT pzpx, yqqq ď tk{2uDegpzpx, yqq.

With this in mind, define the value of our new pseudo-expectation on any degree at most 2t
tk{2u

polynomial
zpx, yq P RrtxiuiPrns, tyjujPSs as:

ẼΦrzpx, yqs :“ ẼrT pzpx, yqqs

which is well-defined by the third property. It is an easy exercise to check that ẼΦ remains a pseudo-
expectation, as the linearity of T ensures scaling, linearity, positivity of squares, and booleanity are all
inherited from Ẽ. Thus it is left to check that ẼΦ satisfies every constraint Cpjq

i P ΦpIkq in the sense of
Equation (7). To see this, first observe that

ẼΦrC
pjq

i px, yqzpx, yqs “ ẼrT pC
pjq

i px, yqzpx, yqqs

“ ẼrT pC
pjq

i px, yqqT pzpx, yqqs.

24We thank Sam Hopkins for suggesting this general approach.
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Taking a closer look at T pC
pjq

i px, yqq, we have by definition that:

T pC
pjq

i px, yqq “

#

biCipxq if j “ 1

bipC
p0q

i px, 1qq2 if j “ 0.

Breaking into case analysis, we then have for j “ 1:

ẼrT pC
p1q

i px, yqqT pzpx, yqqs “ ẼrbiCipxqT pzpx, yqqs

“ ẼrT pzpx, yqqs

“ ẼΦrzpx, yqs

and for j “ 0 that:

ẼrT pC
p0q

i px, yqqT pzpx, yqqs “ ẼrbipC
p0q

i px, 1qq2T pzpx, yqqs

“ biẼrT pzpx, yqqs

“ biẼΦrzpx, yqs

which match the form of the constraints given in Equation (8) as desired.

7 Preliminaries II: Constructing SS-HDX

We now cover the tools necessary for constructing our small-set HDX, including background on basic
expander graphs, left-right Cayley complexes, error correcting codes, Tanner codes, and tensor codes. We
closely follow the discussion in [LZ22] who largely cover the same background material.

7.1 Expander Graphs

The main building block of Leverrier and Zémor’s qLDPC codes are a ubiquitous class of graphs in computer
science called spectral expanders. Let G “ pV,Eq be an undirected ∆-regular (multi)-graph on n vertices,
and define λpGq :“ maxt|λ2|, |λn|u where ∆ “ λ1 ě λ2 ě ... ě λn are the eigenvalues of the adjacency
matrix of G. We say G is a λ-spectral expander if λpGq ď λ, and call it Ramanujan if λpGq ď 2

?
∆ ´ 1,

which is the optimal expansion for infinite families of fixed degree [Alo86].
We will rely on spectral expanders for two main reasons. First, as we will discuss in the following section,

infinite families of these objects are well-known not only to exist, but to be explicitly constructable (see
e.g. [Mor94]). Second, spectral expansion provides a useful proxy for edge-expansion in the sense that for
any S, T Ď V , there cannot be too many edges passing between S and T . This is classically known as the
expander-mixing lemma, and likely first appeared in [AC88]:

Lemma 7.1 (Expander mixing lemma). Let G be a ∆-regular graph. Then for any subset S, T Ă V pGq we
have

|EpS, T q| ď
∆

|V |
|S||T | ` λpGq

a

|S||T |.

When |S| and |T | are small compared with |V |, we will think of λpGq
a

|S||T | as the main term and
∆

|V |
|S||T | as the error term (we note this is the opposite of how the lemma is often applied).
It will also be important for us that the expander mixing lemma holds for double covers of a spectral

expanders with a small modification. The double cover G1 “ pV 1, E1q of a graph G “ pV,Eq has vertex set
V 1 “ V0 YV1, for V0 “ V ˆ t0u and V1 “ V ˆ t1u, and edge set E1 “ ttpv, 0q, pw, 1qu : v, w P V, tv, wu P

Eu. The expander mixing lemma applies for double covered graphs when S Ă V0, T Ă V1.
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Lemma 7.2 (Expander mixing lemma for double covered graph). Let G be a ∆-regular graph and G1 be its
double cover. Then for any subset S Ă V0pG1q, T Ă V1pG1q we have

|EpS, T q| ď
∆

|V pGq|
|S||T | ` λpGq

a

|S||T |.

This can be shown easily by projecting S and T back to the original graph.

7.2 Left-Right Cayley Complexes

While expansion is a useful property in its own right, our arguments require higher dimensional structure.
The key lies in an object called the left-right Cayley complex introduced in [DEL`21] to build c3-LTCs. A
left-right Cayley complex is determined by a group G and two sets of generators A “ A´1 and B “ B´1.
The complex consists of vertices, A-edges, B-edges, and squares as follows:

• The vertices are V 0 “ G.

• The A-edges are E0
A and the B-edges are E0

B where

E0
A “ ttg, agu : g P G, a P Au, E0

B “ ttg, gbu : g P G, b P Bu.

• The squares are
F 0 “ ttg, ag, gb, agbu : g P G, a P A, b P Bu.

The main criterion for choosing G, A, and B is to ensure the Cayley graphs CaypG,Aq and CaypG,Bq

are good expanders, and in particular are Ramanujan. Besides this, for simplicity we further assume two
technical conditions as in [DEL`21]: that |A| “ |B| “ ∆, and the so-called total no-conjugacy condition

@a P A, b P B, g P G, ag ‰ gb.

The total no-conjugacy condition ensures squares are non-degenerate (contain exactly 4 distinct vertices),
and that each vertex is incident to exactly k2 squares [DEL`21, Claim 3.7]. Leveraging classical results of
Morgenstern [Mor94] and Lubotzky, Samuels, and Vishne [LSV05], [DEL`21] show that explicit families
of left-right Cayley complexes exist for infinitely many degrees.

Theorem 7.3 ([DEL`21, Claim 6.7]). There exists an infinite sequence of degrees ∆ “ q ` 1 (where q is
an odd prime power) such that for each fixed ∆ there exists an explicit infinite family of left-right Cayley
complexes with Gi “ PSL2pqiq and generator sets Ai and Bi such that |Ai| “ |Bi| “ ∆, CaypGi, Aiq and
CaypGi, Biq are Ramanujan, and Ai,Bi satisfy the total no-conjugacy condition.

As in [LZ22], we will use the double cover of the left-right Cayley complex, defined as:

• The vertices are V “ V0 Y V1 where V0 “ G ˆ t0u and V1 “ G ˆ t1u.

• The A-edges are EA and the B-edges are EB where

EA “ ttpg, 0q, pag, 1qu : g P G, a P Au, EB “ ttpg, 0q, pgb, 1qu : g P G, b P Bu.

• The squares are

F “ ttpg, 0q, pag, 1q, pgb, 1q, pagb, 0qu : g P G, a P A, b P Bu.
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Note that every square in the original left-right Cayley complex corresponds to two squares in the double
cover, and therefore that the double cover has a total of ∆2|G|

2 squares. Since we will only use the double
cover in our arguments, from now on the term “square” will always refer to these double-covered squares,
not the squares in the original Cayley complex.

Following [LZ22]’s notation, we will mainly think of the double-covered complex as represented by
the following graphs. First, we’ll define a graph that captures the vertices and edge-structure of the Cayley
complex: GY “ pV,EA Y EBq. Second, we’ll define graphs25 G˝

0 “ pV0, E
˝
0q and G˝

1 “ pV1, E
˝
1q capturing

squares in the double cover, where

E˝
i “ ttpg, iq, pagb, iqu : g P G, a P A, b P Bu

for i P t0, 1u. Notice that the edges in these graphs have a one-to-one correspondence with the double-covered
squares, namely that E˝

i – F for i “ 0, 1 through the following identifications:

tpg, 0q, pagb, 0qu Ø tpg, 0q, pag, 1q, pgb, 1q, pagb, 0qu

and
tpg, 1q, pagb, 1qu Ø tpg, 1q, pag, 0q, pgb, 0q, pagb, 1qu.

These identifications will be particularly important in the proof of small-set (co)-boundary expansion as we
move between the squares of our complex and their associated graph representations.

Finally, it will be important to observe that these graphs inherit the spectral properties of CaypG,Aq and
CaypG,Bq. Namely that when the latter are Ramanujan, GY,G˝

0 ,G˝
1 are also very good expanders.

Lemma 7.4 ([LZ22, Lemma 4]). If CaypG,Aq, CaypG,Bq are Ramanujan graphs, then λpG˝
0q ď 4∆,

λpG˝
1q ď 4∆, and GY is the double cover of a 4

?
∆-spectral expander.

We note this is not exactly the statement given in [LZ22], but the proof is the same.

7.3 Error Correcting Codes

A classical pn, k, dq-error correcting (erasure) code is a method for encoding a string of k classical bits into
n ą k classical bits such that one can recover the original string even when up to d ´ 1 bits of the encoded
string are erased. More formally, we will consider the standard setting of linear codes, where the encoded
space is a linear subspace C Ă Fn

2 . Here n is the length of the code, k :“ dimpCq is its dimension, and the
minimum weight of any element (also called codeword) of C, d :“ mincPCt|c|u, is called its distance.26 One
can check that in a linear code of distance d, it is indeed possible to uniquely correct up to d ´ 1 errors.
Finally, the ratio r :“ k

n is called the rate of the code, and measures the overhead from the original to encoded
space. We will typically be interested in families of codes that have constant rate and linear distance.

One of the main reasons to use linear codes is that there are nice linear algebraic ways of describing the
objects. In particular, the linear subspace (code) C is typically described either by a parity-check matrix, or a
generator matrix. In particular, one can always find a parity-check matrix M : Fn

2 Ñ Fn´k
2 whose kernel is

the code in question (C :“ kerM Ă Fn
2 ), and likewise a generator matrix M 1 : Fk

2 Ñ Fn
2 whose image gives

the code (C :“ imM 1 Ă Fn
2 ). When clear from context, we sometime abuse notation and write C to mean the

parity check matrix of C.
25We note these may technically be multi-graphs as in [LZ22], but this has no effect on our arguments.
26We note that this is similar to the distance operator dp¨, ¨q used to define co-boundary expansion. Indeed the distance of a code C

is just dpH, Cq. We will abuse notation slightly to match standard coding theory notation and write this as dpCq throughout.
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7.4 Tanner Codes

The Tanner construction (or tanner code) [Tan81] is a classical strategy in coding theory to build a linear
code out of a ‘large’ regular graph and a ‘small’ local code that sits on the neighborhood of each vertex.
Crucially, when the underlying graph is an expander, it is often the case that the Tanner code inherits desirable
properties from the small code.

More formally, let G “ pV,Eq be a ∆-regular graph and Epvq denote the set of edges incident to any
v P V . Assume an identification of FEpvq

2 with F∆
2 for each v P V , which we call the local view of v. Given a

local code C0 with length ∆, the Tanner code T pG, C0q Ă FE
2 is given by

tc P FE
2 : @v P V, c|Epvq P C0u,

where c|Epvq P F∆
2 is the vector formed by the values of c on the local view of v.

It will be convenient for us to view the Tanner construction through its parity check matrix, which will
make up the co-boundary operators of our chain complex. If our local code C0 has parity check matrix M0

and rate r0, the parity check matrix of the Tanner code T pG, Cq is given by the composition:

FE
2 Ñ FV ˆ∆

2 Ñ FV ˆp1´r0q∆
2

where the first map copies the value on the edge to each local view of the vertices, and the second map applies
M0 to each local view independently for each vertex. We will sometimes refer to this parity check matrix as
the Tanner map.

7.5 Robust Tensor Codes Against Puncture

The properties of our Tanner maps are highly dependent on the local code used to instantiate them. Following
[LZ22], we use a special type of local code called a tensor code. We closely follow the discussion of these
objects given in [LZ22].

Recall that the generators of our left-right Cayley complex A and B have size ∆. We will consider
codes on FAˆB

2 with tensor product structures. Namely, given two linear codes CA Ă FA
2 , CB Ă FB

2 , we
define the tensor code CA b CB to be the set of ∆ ˆ ∆ matrices M where each column vector pMabqaPA

belongs to CA and each row vector pMabqbPB belongs to CB . We define the dual tensor code to be the sum
CA b FB

2 ` FA
2 b CB , where CA b FB

2 are the ∆ ˆ ∆ matrices whose columns belong to CA, and FA
2 b CB

are the ∆ˆ∆ matrices whose rows belong to CB . The following claims about the dimension and distance of
these codes are standard and easy to verify:

1. dimpCA b CBq “ dimpCAq dimpCBq

2. dpCA b CBq “ dpCAqdpCBq

3. dimpCA b FB
2 ` FA

2 b CBq “ ∆dimpCAq ` ∆dimpCBq ´ dimpCAq dimpCBq

4. dpCA b FB
2 ` FA

2 b CBq “ minpdpCAq, dpCBqq.

To ensure our Tanner maps have the right properties, we will actually require our local tensor codes to
have a stronger property called robustness. One can think of robustness as a generalization of distance of
usual linear codes to the context of tensor codes, or as we will soon see, as a sort of robust testability property.

Definition 7.5 (Robust [LZ22, Definition 5]). Let CA Ă FA
2 , CB Ă FB

2 be codes of length ∆ of distance
dA and dB respectively. We say the dual tensor code C “ CA b FB

2 ` FA
2 b CB is w-robust if for every

codeword c P C with Hamming weight |c| ă w, there exist A1 Ă A,B1 Ă B, |A1| ď |c|{dB, |B1| ď |c|{dA,
such that cab “ 0 for any a R A1 and b R B1.
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Leverrier and Zémor [LZ22] prove that robust tensor codes satisfy a useful small-set robust testability
property.

Lemma 7.6 ([LZ22], Proposition 6). Let CA Ă FA
2 , CB Ă FB

2 be codes of length ∆ of distance dA and
dB respectively. If the dual tensor code C “ CA b FB

2 ` FA
2 b CB is w-robust with w ď dAdB{2, then

any word x close to both the column and row code is also close to the tensor code. More explicitly, if
dpx,CA b FB

2 q ` dpx,FA
2 b CBq ă w then:

dpx,CA b CBq ď
3

2

`

dpx,CA b FB
2 q ` dpx,FA

2 b CBq
˘

.

In fact, [LZ22] need a slightly stronger condition than just robustness of the code: it needs to remain
robust even after the removal of a small set of rows and columns. Conceptually, this is similar to the
idea of smooth codes [DSW06] where the code maintains nice properties even after the removal of a
small number of variables or checks. Given a code CA Ă FA

2 and A1 Ă A, let CA1 Ă FA1

2 denote the
puncture code which is the restriction of all codewords in CA to the coordinates in A1 (more precisely,
CA1 “ tpcaqaPA1 : pcaqaPA P CAu).

Definition 7.7 (Robust against puncture [LZ22, Definition 7]). Given linear codes CA Ă FA
2 , CB Ă FB

2 , we
say the dual tensor code CA b FB

2 ` FA
2 b CB is w-robust with p-resistance to puncture if for any w1 ď p

and A1 Ă A and B1 Ă B such that |A1| “ |B1| “ ∆ ´ w1, the dual tensor code CA1 b FB1

2 ` FA1

2 b CB1 is
w-robust.

Extending prior work of [PK21a], [LZ22] show random tensor codes are robust against puncture.

Theorem 7.8 ([LZ22, Theorem 8]). Let 0 ă rA ă 1 and 0 ă rB ă 1. Let 0 ă ε ă 1{2 and 1{2`ε ă γ ă 1.
Let CA be a random code obtained from a random uniform rA∆ ˆ ∆ generator matrix, and let CB be a
random code obtained from a random uniform p1 ´ rBq∆ ˆ ∆ parity-check matrix. With probability tending
to 1 when ∆ goes to infinity, the dual tensor code

CA b FB
2 ` FA

2 b CB

is ∆3{2´ε-robust with ∆γ-resistance to puncturing.

Because the dual of a random code is again a random code, this implies both CA b FB
2 ` FA

2 b CB and
CK
A b FB

2 ` FA
2 b CK

B are robust against puncture with high probability.

Corollary 7.9 ([LZ22, Theorem 17]). Fix r P p0, 1{2q, ε P p0, 1{2q, γ P p1{2 ` ε, 1q and δ ą 0 satisfying
´δ log δ ´ p1 ´ δq logp1 ´ δq ă r. When k is large enough, there exist codes CA and CB of length ∆ such
that

1. dimCA “ tr∆u and dimCB “ ∆ ´ dimCA

2. The distances of CA, CB, C
K
A , C

K
B are all at least δ∆

3. Both dual tensor codes CK
0 “ pCA b CBqK and CK

1 “ pCK
A b CK

BqK are ∆3{2´ε-robust with ∆γ-
resistance to puncturing

4. CA, CB, C
K
A , and CK

B have generator matrices where every row and column have at least two ones.

We note that this is not exactly the statement of [LZ22, Theorem 17], who prove the first three conditions
occur with probability going to 1 as ∆ becomes large when CA and CB are generated as in Theorem 7.8.
The fourth item is not included in [LZ22], but also occurs under this distribution with high probability by
fairly standard arguments. We give the proof in the appendix for completeness.
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8 Constructing Small-Set HDX

We are finally ready to construct a family of 3-term chain complexes with small-set boundary and co-boundary
expansion.

Theorem 8.1. There exists an explicit infinite family of chain complexes tXiu and constants d P N and
ρ1, ρ2 P p0, 1q such that each Xi satisfies:

1. Xi has maximum degree d and minimum degree at least 3

2. Xi has non-trivial co-homology H1

3. Xi is a pρ1, ρ2q-small-set HDX.

Combined with Theorem 6.1 which transforms SS-HDX into hard instances of 3-XOR, this completes
the proof of our main theorem.

Proof of Theorem 1.1. Theorem 6.1 gives the desired explicit family of 3-XOR instances as long as it is
provided an explicit family of chain complexes with bounded maximum degree, minimum degree at least 3,
non-trivial co-homology, and which are pρ1, ρ2q-small-set boundary expanders with µ-co-systolic distance for
some set of constants µ, ρ1, ρ2 P p0, 1q. Since any pρ1, ρ2q-small-set co-boundary expander has ρ1-co-systolic
distance (Lemma 5.2), Theorem 8.1 provides an explicit family of chain complexes matching these conditions
with µ “ ρ1.

As discussed, Theorem 8.1 is proved via Leverrier and Zémor’s [LZ22] recent construction of good
qLPDC codes. They show the associated 3-term chain complex has linear systolic and co-systolic distance.
Our contribution is to observe that the same construction actually satisfies the stronger small-set boundary
and co-boundary expansion conditions. We note that while we only show this property for Leverrier and
Zémor’s [LZ22] simplified construction, similar arguments likely hold for Panteleev and Kalachev’s [PK21a]
original good qLDPC codes as well.

Construction: We first describe Leverrier and Zémor’s construction, which is based upon Tanner maps
(parity-check matrices of Tanner codes). To start, we’ll first need to describe the underlying graphs and local
codes of these maps. Recall the explicit family of left-right Cayley complexes promised by Theorem 7.3 and
for any fixed complex Xi in the family let the group G “ Gi and generator sets A “ Ai, B “ Bi be as in the
theorem. The graphs underlying our Tanner maps will be the ‘square graphs’ G˝

0 and G˝
1 , which we recall

have

• Vertices Vi “ G ˆ tiu,

• Edges E˝
i “ ttpg, iq, pagb, iqu : g P G, a P A, b P Bu

for i P t0, 1u respectively. It bears repeating that edges in these graphs are in one-to-one correspondence
with squares of the double covered Cayley complex via the following identifications:

tpg, iq, pagb, iqu Ø tpg, iq, pag, 1 ´ iq, pgb, 1 ´ iq, pagb, iqu.

We will frequently refer to edges in G˝
i as squares due to this connection.

Since the square graphs G˝
i are ∆2-regular, we can define a Tanner map by combining them with any

length ∆2 local code. This role will be played by the robust dual tensor codes promised by Corollary 7.9.
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Namely, letting CA : F∆
2 Ñ Fr∆

2 and CB : F∆
2 Ñ Fp1´rq∆

2 be as in Corollary 7.9 for some choice of r, ε,
and γ, our local codes will be CK

0 and CK
1 where C0 “ CA b CB and C1 “ CK

A b CK
B .27

Combining these graphs and local codes gives the Tanner maps C0 “ T pG˝
0 , C

K
0 q : Fn

2 Ñ Fm
2 and C1 “

T pG˝
1 , C

K
1 q : Fn

2 Ñ Fm
2 , where n “ |F | “ ∆2|G|{2 is the number of squares, and m “ rp1 ´ rq∆2|V0| “

rp1 ´ rq∆2|G| comes from the fact that the both dual tensor codes have dimension p1 ´ rp1 ´ rqq∆2.
Associating the edges of G˝

i with squares in the discussed manner, one can check that C1CT
0 “ 0 (see [LZ22,

Section 4.1]) and therefore that these maps define a chain complex:

X : Fm
2

δ0:“CT
0

ÝÝÝÝÑ Fn
2

δ1:“C1
ÝÝÝÝÑ Fm

2 . (9)

Moreover, this process gives an explicit family of chain complexes tXiu by choosing Gi, Ai, and Bi as in
the explicit family of left-right Cayley complexes promised by Theorem 7.3, and computing CA, CB with
the desired properties by brute force search over all pairs of length ∆ codes CA, CB of dimensions r∆ and
p1 ´ rq∆ respectively.28

This completes the construction. We now move to showing that X has the three desired properties:
bounded-degree, non-trivial co-homology, and small-set (co)-boundary expansion.

X has (upper) bounded-degree: By definition X is bounded-degree if and only if the parity-check
matrices of our two Tanner codes have a bounded number of ones in every row and column. By the nature of
the Tanner code construction the support of any row or column is at most twice the degree of the underlying
graph. Since our graphs are of degree ∆2 (a constant with respect to the family), the resulting complex is
bounded-degree as desired.

X has (lower) bounded-degree: Recall we are promised that CA, CB, C
K
A , and CK

B have generator matrices
where every row and column have at least two ones. This implies that the tensor codes CAbCB and CK

A bCK
B

can be taken to have generator matrices with at least four ones in each row and column. Since these correspond
to the parity check matrices of CK

0 “ pCA b CBqK and CK
1 “ pCK

A b CK
BqK respectively, it can be easily

checked that the parity check matrices of the associated Tanner codes T pG˝
0 , C

K
0 q and T pG˝

1 , C
K
1 q also have

at least four ones in every row and column.

H1 is non-trivial: This follows immediately from dimensionality arguments. In particular, notice that
dimZ1 ě n´m, whereas dimB1 ď m. As a result we have dimH1 ě n´2m “ p1{2´2rp1´rqq∆2|G|

which is ą 0 whenever r ‰ 1{2.

X is a small-set (co)-boundary expander: It is left to show our complexes are small-set (co)-boundary
expanders. In what follows we show the co-boundary expansion case. Since the construction is symmetric, a
similar proof gives small-set boundary expansion. For convenience, we first re-formulate the problem as the
following technical theorem. Note that this is the analog of [LZ22, Theorem 1] where co-systolic distance is
replaced with small-set co-boundary expansion. We follow their notation when possible for consistency.

Theorem 8.2. Fix ε P p0, 1{2q, γ P p1{2` ε, 1q and δ ą 0. For any fixed large enough ∆, if the linear codes
CA and CB have minimum distance at least δ∆ and if the dual tensor code CA b FB

2 ` FA
2 b CB “ CK

1

is w-robust with p-resistance to puncturing for w “ ∆3{2´ε{2 and p “ ∆γ ,29 then the chain complex in
27Note we are assuming for simplicity that r∆ and p1´rq∆ are integer valued, but these can be replaced with tr∆u and ∆´ tr∆u

without substantially affecting the proof (see [LZ22]).
28Note that since ∆ is a constant with respect to our infinite family, brute force search only requires Op1q time here.
29We note that the value of w here is slightly different than in [LZ22]. This corrects a small error in the application of robust

testability (Lemma 7.6) in the original work.
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Equation (9):

X : Fm
2

δ0:“CT
0

ÝÝÝÝÑ Fn
2

δ1:“C1
ÝÝÝÝÑ Fm

2 ,

satisfies the following isoperimetric inequality for small, minimal chains:

@x P Fn
2 s.t. x is minimal and |x| ď ρ1n : |δ1x| ě ρ2 |x| ,

where ρ1 “ δ
6∆3{2`ε , ρ2 “ 56

∆3´2ε .

Recall that this isoperimetric condition is equivalent to pρ1, ρ2q-small-set co-boundary expansion (Lemma 5.4),
so this indeed proves the desired property. The proof of Theorem 8.2 closely follows the analogous proof
in [LZ22] for systolic distance. The main difference is that we must track an additional set of elements
consisting of vertices in G˝

0 corresponding to violated constraints. Since [LZ22] only need to consider x P Fn
2

that are true codewords, this is not a relevant consideration in their result. We note that throughout we set our
coefficients to match those in [LZ22] for ease of comparison.

Proof of Theorem 8.2. We assume x ‰ 0, as the theorem holds trivially otherwise. We proceed by contra-
diction. Assuming |δ1x| ă ρ2 |x|, we will show there exists y P B1 such that |x ` y| ă |x|, contradicting
minimality of x.

We first lay out some relevant notation. Thinking of x as a subset of E˝
1 (the edge set of G˝

1 ), we will
consider the edge-induced subgraph G˝

1,x Ă G˝
1 and denote its vertex set by S Ă V1. Recall that each vertex

pg, 1q P V1 has a corresponding local view made up of |A| ¨ |B| incident squares, which we’ll denote by:

ℓpg, 1q :“ ttpg, 1q, pag, 0q, pgb, 0q, pagb, 1qu : a P A, b P Bu .

Thinking of x now as a set of squares, let x|ℓpg,1q P FAˆB
2 denote the restriction of x to the local view of

pg, 1q, and recall that x is a co-cycle exactly when these local views correspond to codewords in CK
1 “

CA b FB
2 ` FA

2 b CB .
Since x is arbitrary in our setting (unlike [LZ22] who only consider co-cycles) we will partition the

vertices of our induced subgraph into three parts: S “ Sv Y Sn Y Se. First, let Sv Ă S denote the set of
violated vertices pg, 1q P V1 whose local views x|ℓpg,1q do not form codewords in CK

1 . Following [LZ22], we
split the remaining vertices in SzSv into two parts based upon their degree in the induced subgraph G˝

1,x: the
normal vertices Sn with degree less than w2 :“ ∆3{2´ε, and the exceptional vertices Se with degree at least
w2. The intuition behind this strategy is that because CK

1 is pw ą w2q-robust, the codewords associated to
vertices in Sn have particularly nice structure: they are zero outside of a small set of at most w2{pδ∆q rows
and columns. This implies that any column (respectively row) is close to a codeword in CA (respectively
CB) which will eventually help us apply small-set robust testability (Lemma 7.6) to prove x is close to a
co-boundary (and is therefore non-minimal).

To find such a co-boundary, we’ll first need to look to the other side of the complex. Broadly speaking,
the idea (which is the same as in [LZ22]) is to find a vertex v Ă V0 whose local view shares many (heavy)
rows and columns with local views of vertices in Sn. One can then apply robustness to see that the value
of x on this local view is close to a codeword in CA b CB which can easily be translated to the desired
co-boundary.

More formally, let Ex Ă GY denote the set of edges incident to the squares in x,30 and call an edge heavy
if it is incident to at least δ∆ ´ ∆1{2´ε{δ squares in x. We will consider the set of vertices T Ă V0 which are
adjacent to Sn Ă V1 through a heavy edge in the graph GY. Given v P T , note that every heavy edge with
an element in Sn corresponds to a row or column that is shared in their local view (and is therefore close to

30In particular for any square tpg, 0q, pag, 1q, pgb, 1q, pagb, 0qu P x, add its four edges tpg, 0q, pag, 1qu, tpg, 0q, pbg, 1qu,
tpagb, 0q, pag, 1qu, and tpagb, 0q, pgb, 1qu to Ex.
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a codeword of CB or CA respectively). The goal is therefore to show that there exists a vertex in T that is
adjacent to many elements in Sn through heavy edges, while simultaneously adjacent to few ‘bad’ vertices in
Se and Sv. This will allow us to apply robustness against puncture to find a co-boundary that reduces the
weight of x. We formalize these statements below in the following two claims.

Claim 8.3 (Modification of [LZ22, Claim 13]). There exist h1 ě Ωp∆q, d1 ď Op∆1{2`εq, and v P T such
that v is incident to at least h1 heavy edges and adjacent to at most d1 vertices of Se Y Sv.

Claim 8.4 (Summary of paragraph following [LZ22, Claim 13]). For all sufficiently large31 ∆, if there exists
a vertex v P V0 incident to h1 ě Ωp∆q heavy edges and at most d1 ď Op∆1{2`εq vertices of Se Y Sv, then
we can find a vector y P B1 such that |x ` y| ă |x|.

Together, Claim 8.3 and Claim 8.4 complete the proof of Theorem 8.2, as they promise the existence
of some y P B1 such that |x ` y| ă |x|, violating minimality of x. Thus it is left to prove the claims.
While Claim 8.4 follows largely from arguments in [LZ22], it is helpful to present first to motivate the more
technical proof of Claim 8.3.

Proof of Claim 8.4. Recall we are given an element v P V0 which is incident to at least h1 ě Ωp∆q heavy
edges and adjacent to at most d1 ď Op∆1{2`εq vertices in Se Y Sv. We consider the local view of x around
v (considered as an element of G˝

0 ), denoted xv P FAˆB
2 here for notational simplicity. Because at most d1

vertices adjacent to v in GY are exceptional or violated (as considered in G˝
1,x), one can find A1 Ă A,B1 Ă B

with |A1| “ |B1| ě ∆ ´ d1, such that A1 and B1 are indexed by either normal vertices, or vertices not in S.
Furthermore, since d1 ď ∆γ for large enough ∆, we also have by robustness to puncture that the restricted
dual tensor code pCK

1 q1 :“ CA1 b FB1

2 ` FA1

2 b CB1 is w-robust.
Let x1

v be the restriction of xv in A1 ˆ B1. Recall each column (row) of the local view of a normal vertex
is at most w2{pδ∆q away from a codeword by w-robustness. Then since each column (row) of x1

v is indexed
by either a normal vertex or a vertex whose local view is all zero (i.e. not in S), every column (respectively
row) of x1

v is at most w2{pδ∆q “ ∆1{2´ε{δ away from a codeword in CA1 (respectively CB1). Since there
are at most ∆ rows and columns, this means that x1

v is at most ∆3{2´ε{δ away from either CA1 b FB1

2 or
FA1

2 b CB1 , and moreover that:

dpx1
v, CA1 b FB1

2 q ` dpx1
v,FA1

2 b CB1q ď 2∆3{2´ε{δ ď w

for sufficiently large ∆. Because pCK
1 q1 is w-robust, we can apply small-set robust testability (Lemma 7.6) to

infer that x1
v is close to some codeword c1 P CA1 b CB1 :

dpx1
v, c

1q ď
3

2

´

dpx1
v, CA1 b FB1

2 q ` dpx1
v,FA1

2 b CB1q

¯

ď 3
∆3{2´ε

δ
.

Finally, since the total number of punctured rows and columns is less than the code distance for large enough ∆,
we can extend c1 uniquely to a codeword c P CAbCB . Taking into account the rows and columns added in this
process, the distance from xv to c then becomes at most dpxv, cq ď dpx1

v, c
1q`2d1∆ ď Op∆3{2`εq ă op∆2q

since ε ă 1{2.
On the other hand, because v is incident to Ωp∆q heavy edges, the weight |xv| “ Θp∆2q. Thus for large

enough ∆, it must be the case that flipping c strictly reduces the weight of x. More precisely, set y to be c on
the local view xv and 0 elsewhere, then we have |x ` y| ă |x|. Since c P CA b CB “ C0, y P B1 is indeed
a co-boundary which completes the proof.

The only thing left is to show that our main technical claim actually holds, the existence of a vertex with
many heavy edges that is adjacent to few violated or exceptional vertices. The proof technique is similar to
that of [LZ22, Claim 13], and mostly boils down to proving that Sv and Se are small compared to Sn.

31Here we mean in terms of r, ε, and γ, so ∆ remains constant with respect to the infinite family.
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Proof of Claim 8.3. We split the proof into the following three claims. First, we claim T is non-empty.

Claim 8.5. |T | ą 0.

With this in mind, let α, β “ Θp1q be constants to be set later in the proof. Following [LZ22], we claim
that a reasonable fraction of T is incident to many heavy edges:

Claim 8.6 ([LZ22, Claim 12]). At least an α{2 fraction of vertices in T are incident to at least h1 “ α∆
heavy edges,

and further that at most some smaller fraction is adjacent to greater than d1 violated and exceptional vertices:

Claim 8.7 ([LZ22, Paragraph between Claim 4.10 and Claim 4.11]). At most an α{4 fraction of vertices in T
are incident to more than d1 “

4β
α ∆1{2`ε vertices of Se Y Sv.

Combining these claims implies at least an α{4 fraction of vertices satisfy the requirements of Claim 8.3.
Since T is non-empty, this must apply to at least one v P T which gives the desired result.

The key to proving all three claims lies in showing that the number of vertices in Se Y Sv is small
compared to Sn. We will show that Sv can be upper bounded by taking ρ2 sufficiently small, and Se can be
upper bounded by the expander mixing lemma as in [LZ22].

Lemma 8.8 (Modification of [LZ22, Claim 6]). The number of exceptional and violated vertices is at most

|Se Y Sv| ď
64

∆1´2ε
|S|. (10)

On the other hand, the number of normal vertices is at least

|Sn| ě p1 ´
64

∆1´2ε
q|S|. (11)

Proof. The latter fact follows immediately from the former and recalling that Se, Sv, and Sn partition S. We
now show |Sv| is small. Note that by assumption we have that

|Sv| ď |δ1x| ă ρ2 |x| ,

since δ1 is the parity-check matrix of C1 and every violated vertex corresponds to at least one violated
constraint in C1. Because V1 has degree ∆2 in G˝

1 (i.e. each vertex sits in ∆2 squares), we also have
|x| ď ∆2|S|{2. Altogether this gives

|Sv| ă ρ2∆
2|S|{2 “ 28|S|{∆1´2ε

for our choice of ρ2.
Now we show |Se| is small. The degree of each non-violated vertex is at least δ∆ because the local view

corresponds to a non-zero codeword in CA b FB
2 ` FA

2 b CB . This implies |Sn| ` |Se| ď
2|x|

δ∆ . Combining
this with our bound on |Sv| gives

|S| “ |Sn| ` |Se| ` |Sv| ď pρ2 `
2

δ∆
q|x| ď

4

δ∆
|x| (12)

where the second inequality holds for large enough ∆ (recalling that ρ2 “ Op∆´3`2εq). Applying the
expander mixing lemma to EpSe, Sq, we then obtain

|EpSe, Sq| ď
∆2

|V1|
|Se||S| ` 4∆

a

|Se||S|

ď
4∆

δ|V1|
|x||Se| ` 4∆

a

|Se||S|

“
1

3
∆3{2´ε|Se| ` 4∆

a

|Se||S|
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where we have used the assumption that |x| ď δn
6∆3{2`ε and the fact that |V1| “ |G| “ 2n{∆2. On the other

hand, by definition of exceptional vertices we have that |EpSe, Sq| ě ∆3{2´ε|Se|. Combining the inequalities
we obtain |Se| ď 36|S|{∆1´2ε, and plugging in our bound on |Sv| then gives |Se Y Sv| ď 64|S|{∆1´2ε as
desired.

Finally, we prove Claim 8.5, Claim 8.6, and Claim 8.7, completing the result. The latter two follow
essentially as in [LZ22] (replacing Se with Se Y Sv), but we give the proofs here for completeness.

Proof of Claim 8.5. We wish to prove T is non-empty. First, recall that since x ‰ 0 by assumption, |S| ą 0.
By Lemma 8.8, we then have |Sn| ą 0 as well. We now argue that every vertex in Sn is incident to at least
one heavy edge. Since Sn is non-empty, this implies T is non-empty as desired.

To see each vertex in Sn has a heavy edge, recall the local view of each normal vertex is a codeword in
CA b FB

2 ` FA
2 b CB with weight less than w “ ∆3{2´ε. Because the dual tensor code is w-robust, each

column (respectively row) is within ∆1{2´ε{δ of a codeword in CA (respectively CB). Since these codes all
have distance at least δ∆, there must be a row or column with at least δ∆ ´ ∆1{2´ε{δ ones which exactly
corresponds to a heavy edge. We note this fact also implies the total number of heavy edges is at least |Sn|,
which will be useful later on.

Proof of Claim 8.6. Now that we have confirmed the existence of T , we want to show it is incident to many
heavy edges. To do so, we’ll argue that T is small compared to the number of heavy edges.

To start, we show that |T | ď 64
δ2∆

|S|. The proof is the same as [LZ22, Claim 11], but we give it here
for completeness. First, note that by the expander mixing lemma on GY (which is the double cover of a
4

?
∆-spectral expander) we have:

|EpS, T q| ď
2∆

|G|
|S||T | ` 4

?
∆
a

|S||T |

ď
2∆1{2´ε

3
|T | ` 4

?
∆
a

|S||T |

where as in Lemma 8.8 we have again used the fact that

|S| ď
4

δ∆
|x| ď

2

3∆5{2`ε
n “

1

3∆1{2`ε
|G|.

On the other hand, since each vertex v P T is incident to at least one heavy edge e by definition, v (and e) are
contained in at least δ∆ ´ ∆1{2´ε{δ squares in x. Since each of these contains an additional (unique) edge
incident to v, we also have the following lower bound

|EpS, T q| ě pδ∆ ´ ∆1{2´ε{δq|T |.

Combining these inequalities one can check that |T | ď 64
δ2∆

|S| for large enough ∆ as desired.
With this in hand, recall from the proof of Claim 8.5 that the total number of heavy edges in Ex is at

least |Sn| ě p1 ´ 64
∆1´2ε q|S| (where the inequality is given by Lemma 8.8). Together, this implies the average

number of heavy edges incident to a vertex in T is at least:

|Sn|

|T |
ě

δ2∆

64

ˆ

1 ´
64

∆1´2ε

˙

“: 2α∆. (13)

Finally given that the average degree is at least 2α∆, we want to show there is some fraction of vertices with
degree ě α∆. This is immediate from recalling that the maximum degree of GY (and thus T ) is 2∆, which
implies at least an α{2 fraction of vertices in T are incident to at least α∆ heavy edges as desired.
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Proof of Claim 8.7. Finally, we want to show there are few edges between T and Se YSv. This follows from
the fact that both sets are small, and the underlying graph GY is the double cover of a 4

?
∆-expander on

|G| “ 2n
∆2 vertices. In particular, combining the expander mixing lemma with our bounds from Lemma 8.8

gives:

EpSe Y Sv, T q ď
2∆

|G|
|Se Y Sv||T | ` 4

?
∆
a

|T ||Se Y Sv|

ď
128∆2ε

|G|
|S||T | ` 32∆ε

a

|T ||S|.

Recall that |S| ď 1
3∆1{2`ε |G|. Further, since each normal vertex is adjacent to T and the degree of T is

at most 2∆, we have p1 ´ 64
∆1´2ε q|S| ď |Sn| ď 2∆|T |, and thus for large enough ∆ that |S| ď 4∆|T |.

Altogether we therefore have:

EpSe Y Sv, T q ď
128

3∆1{2´ε
|T | ` 64∆1{2`ε|T | ď β∆1{2`ε|T |

where β “ 64 ` 128
3∆ . As a result, at most an α{4 fraction of vertices in T are incident to more than

d1 “
4β
α ∆1{2`ε vertices of Se Y Sv as desired, which completes the proof of Claim 8.3 and Theorem 8.2 in

turn.

Putting everything together, we now prove the existence of an explicit family of SS-HDX.

Proof of Theorem 8.1. Fix any r P p0, 1{2q, ε P p0, 1{2q, γ P p1{2 ` ε, 1q, and δ P p0, 1q satisfying
´δ log δ ´ p1 ´ δq logp1 ´ δq ă r, and let ∆ “ ∆pr, ε{2, γ, δq P N be sufficiently large that the guarantees
of Corollary 7.9 and Theorem 8.2 are met. Brute forcing over pairs of length ∆ codes CA, CB of dimensions
r∆ and p1 ´ rq∆ respectively, Corollary 7.9 promises we can find in O∆p1q time codes CA, CB such that:

1. dimCA “ tr∆u and dimCB “ ∆ ´ dimCA,

2. The distances of CA, CB, C
K
A , C

K
B are all at least δ∆,

3. Both dual tensor codes CK
0 “ pCA b CBqK and CK

1 “ pCK
A b CK

BqK are ∆3{2´ε{2-robust with
∆γ-resistance to puncturing.

4. CA, CB, C
K
A , and CK

B have generator matrices where every row and column have at least two ones.

Following the construction and the discussion earlier this section, the Tanner maps resulting from these
codes and the explicit left-right Cayley complexes of [DEL`21] give an explicit family of chain complexes
with degree between 3 and 2∆2 and non-trivial co-homology. Furthermore each individual complex in the
family satisfies the requirements of Theorem 8.2 in both directions, so by symmetry the complexes are
pρ1, ρ2q-small-set HDX for ρ1 “ δ

6∆3{2`ε and ρ2 “ 56
∆3´2ε . This concludes the proof of Theorem 8.1.

Remark 8.9. We note that the proof of Theorem 8.2 actually gives a stronger guarantee than small-set
(co)-boundary expansion. In particular, because the boundary y that reduces the weight of x is supported on
a local view of a single vertex, the result actually gives an isoperimetric inequality for the broader class of
small, locally minimal functions:

@x P Fn
2 s.t. x is locally minimal and |x| ď ρ1n : |δ1x| ě ρ2 |x| ,
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where x is locally minimal if |x| ď |x ` δ0pevq| for all basis vectors ev P Fm
2 . As discussed in Section 3.1,

this stronger isoperimetric inequality has seen prior use in the topological HDX literature [KKL14, EK16,
KM18, KM21] as well as in recent work on c3-LTCs [LH22a] and qLDPC codes [LH22b].
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A Existence of Good Base Codes

In this section we prove Corollary 7.9, the existence of base codes CA and CB with the properties needed for
our SS-HDX construction in Theorem 8.1. We restate the result here for convenience.

Corollary A.1. Fix r P p0, 1{2q, ε P p0, 1{2q, γ P p1{2 ` ε, 1q and δ ą 0 satisfying ´δ log δ ´ p1 ´

δq logp1 ´ δq ă r. When k is large enough, there exist codes CA and CB of length ∆ such that

1. dimCA “ tr∆u and dimCB “ ∆ ´ dimCA

2. The distances of CA, CB, C
K
A , C

K
B are all at least δ∆

3. Both dual tensor codes CK
0 “ pCA b CBqK and CK

1 “ pCK
A b CK

BqK are ∆3{2´ε-robust with ∆γ-
resistance to puncturing

4. CA, CB, C
K
A , and CK

B have generator matrices where every row and column have at least two ones.

Proof. We assume for notational simplicity that r∆ and p1 ´ rq∆ are integral (the proof is essentially the
same without this assumption). We will argue that all four properties are satisfied with probability going to
one (as ∆ becomes large) under some distribution for the generation of CA and CB . By a union bound, a pair
satisfying all properties must then exist for large enough ∆.

Consider the distribution over codes CA and CB given by generating CA by a uniformly random r∆ ˆ ∆
generator matrix, and CK

B from an independent uniformly random r∆ ˆ ∆ generator matrix. Leverrier and
Zémor [LZ22] prove that the first three conditions occur with probability going to one under this distribution
(see [LZ22, Theorem 17]), so we need only show the last condition holds.

This follows easily from a few basic observations. Let r0 P p0, 1q be any constant. First, observe that
conditioned on being full rank, a uniformly random r0∆ ˆ ∆ generator matrix corresponds to a uniformly
random subspace of dimension r0∆, and furthermore that such a matrix is full rank with probability going to
1 as ∆ grows large. Second, note that by a Chernoff and union bound, the probability this random generator
matrix has any row or column with less than two ones also quickly goes to zero. This implies that for any
fixed r0, as ∆ grows large the probability that a random subspace of dimension r0∆ has a generator matrix
satisfying condition 4 goes to 1.

Since CA and CK
B are generated by uniformly random r∆ ˆ ∆ generator matrices, they clearly satisfy

condition 4 with high probability. The trick is then simply to notice that (conditioned on full rank), CK
A and

CB are uniformly random subspaces of dimension p1 ´ rq∆, and therefore also satisfy condition 4 with
probability going to one by the above observation.
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