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Abstract

The sign-rank of a matrix A with ±1 entries is the smallest rank of a real matrix with the
same sign pattern as A. To the best of our knowledge, there are only three known methods for
proving lower bounds on the sign-rank of explicit matrices: (i) Sign-rank is at least the VC-
dimension; (ii) Forster’s method, which states that sign-rank is at least the inverse of the largest
possible average margin among the representations of the matrix by points and half-spaces;
(iii) Sign-rank is at least a logarithmic function of the density of the largest monochromatic
rectangle.

We prove several results regarding the limitations of these methods.

• We prove that, qualitatively, the monochromatic rectangle density is the strongest of these
three lower bounds. If it fails to provide a super-constant lower bound for the sign-rank
of a matrix, then the other two methods will fail as well.

• We show that there exist n × n matrices with sign-rank nΩ(1) for which none of these
methods can provide a super-constant lower bound.

• We show that sign-rank is at most an exponential function of the deterministic communi-
cation complexity with access to an equality oracle. We combine this result with Green
and Sanders’ quantitative version of Cohen’s idempotent theorem to show that for a large
class of sign matrices (e.g., xor-lifts), sign-rank is at most an exponential function of the
γ2 norm of the matrix. We conjecture that this holds for all sign matrices.

• Towards answering a question of Linial, Mendelson, Schechtman, and Shraibman regarding
the relation between sign-rank and discrepancy, we conjecture that sign-ranks of the ±1
adjacency matrices of hypercube graphs can be arbitrarily large. We prove that none of
the three lower bound techniques can resolve this conjecture in the affirmative.

1 Introduction

A sign matrix is a matrix with ±1 entries. The sign-rank of a sign matrix Am×n is the smallest
rank of a real matrix Bm×n such that the entries of B are nonzero and have the same signs as
their corresponding entries in A. This fundamental notion arises naturally in areas as diverse as
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learning theory [BDES02, KS07, She08a, SS05, Fel17, FGV21], discrete geometry and geometric
graphs [AFR85, FGL+12, FPS+17, Suk16, EMRPS14], communication complexity [PS86, CM18,
She08b, HHL20], circuit complexity [RS10, BT16, SW19], and the theory of Banach spaces [Mat96,
Nao18].

The notion of sign-rank was formally defined in 1986 in connection with randomized commu-
nication complexity in the unbounded-error model [PS86]. After almost four decades of research,
sign-rank remains one of the most elusive matrix parameters in discrete analysis. To the best of our
knowledge, there are only three known methods for proving lower bounds on the sign-rank of an
explicit matrix: VC-dimension, size of the largest monochromatic rectangle, and Forster’s method,
and among those, only Forster’s method can imply super-logarithmic lower bounds.

The results presented in this paper arose from our attempts to solve two fundamental open
problems about sign-rank, presented as Question 1.4 and Question 1.11 below. Attempting to
give negative answers to these questions, we proved that none of the known techniques could yield
adequate sign-rank lower bounds for these purposes. Of course, this observation does not necessarily
imply that the techniques are inherently weak, as there is a possibility that the correct answer to
both questions is positive. As a natural next step, we examined the limitations of these techniques
more carefully and, among other things, proved the existence of n × n matrices with sign-rank
nΩ(1), for which none of these methods could provide a super-constant lower bound.

We start by reviewing and reformulating the results that are relevant to this article.

Counting argument: Shortly after the introduction of sign-rank in [PS86], Alon, Frankl, and
Rödl [AFR85] used results of [Mil64, Tho65, War68] on the number of connected components of
real algebraic varieties and obtained a linear lower bound on the sign-rank of random sign matrices.
This argument was later refined in [AMY16, Lemma 24] to the following bound on the number of
low sign-rank matrices.

Lemma 1.1 (See [AMY16, Lemma 24]). For d ≤ n
2 , the number of n×n sign matrices of sign-rank

at most d does not exceed (O(n/d))2dn ≤ 2O(dn log(n)).

It follows from Lemma 1.1 that most n× n sign matrices have sign-rank Ω(n).

The VC-dimension lower bound: The Vapnik-Chervonenkis (VC) dimension of a sign matrix
A is the largest k such that A contains a submatrix with k columns and 2k distinct rows. To
state the relation between the VC dimension and sign-rank, we discuss a geometric definition of
sign-rank.

A real matrix BX×Y has rank d iff the entries of B can be represented as Bxy = ⟨ux, vy⟩ for
vectors ux, vy ∈ Rd. Since the normalization of these vectors does not affect the signs of ⟨ux, vy⟩,
we can restate the definition of sign-rank as follows.

Definition 1.2 (Sign-rank). The sign-rank of a sign matrix AX×Y , denoted by rank±(A), is the
smallest d such that there exist unit vectors ux, vy ∈ Rd with Axy = sgn(⟨ux, vy⟩) for all (x, y) ∈
X × Y.

The vectors in Definition 1.2 represent A as points and half-spaces in the d-dimensional space:
Axy = 1 iff the point ux belongs to the half-space {z : ⟨z, vy⟩ > 0}. Since the VC dimension of
any such configuration of points and half-spaces in Rd is at most d, we have

rank±(A) ≥ VC(A). (1)
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This lower bound was already implicit in the paper of Paturi and Simon [PS86, Theorem
4]. Since the VC dimension of every n × n matrix is at most log n, this method cannot prove
super-logarithmic lower bounds on sign-rank. In addition, Alon, Moran, and Yehudayoff [AMY16]
established strong separations between the two parameters. For example, they showed that there

are n× n sign matrices of VC dimension 3 that have sign-rank Ω
( √

n
logn

)
.

Margin and Discrepancy: There is another natural parameter that is associated with the
representations of a sign matrix as points and half-spaces. The quantity minx,y |⟨ux, vy⟩| is called
the margin of such a representation; it measures the smallest distance between the points ux and
the hyperplanes defined by vy.

Definition 1.3 (Margin). The margin of a sign matrix AX×Y is

m(A) := supmin
x,y

|⟨ux, vy⟩| ,

where the supremum is over all d ∈ N and unit vectors ux, vy ∈ Rd with Axy = sgn(⟨ux, vy⟩).

Linial and Shraibman [LS09a] proved that margin essentially coincides with the well-studied
parameter of discrepancy in communication complexity, defined as

disc(A) := inf
µ

max
S⊆X
T⊆Y

|Exy∼µ[Axy1S(x)1T (y)]| , (2)

where the infimum is over all probability distributions µ on X × Y. They proved

disc(A) ≤ m(A) ≤ 8 disc(A).

The notion of discrepancy is a well-understood parameter, and many lower bounds in commu-
nication complexity are established by proving that the discrepancy of the corresponding matrix is
small. Such proofs often entail finding a “hard” distribution µ such that the maximum in Equa-
tion (2) is small. We shall discuss this more later in the context of Forster’s lower bound method.

The problem of understanding the relation between sign-rank and margin is an important one
because these notions optimize two fundamental attributes of the geometric representations of the
matrix. Sign-rank minimizes the dimension while allowing the margin to be arbitrarily small.
Margin maximizes the margin of the representation while allowing the dimension to be arbitrarily
large.

Hatami, Hosseini, and Lovett [HHL20] constructed n× n sign matrices that have a very small

margin (equivalently discrepancy) of O
(
log(n)

n1/8

)
while their sign-rank is only 3. The converse

direction regarding the question of margin vs sign-rank remains open. Does large margin imply
small sign-rank?

Question 1.4. Is there a function η such that for every sign matrix A, we have rank±(A) ≤
η(m(A)−1)?

Question 1.4 is essentially due to [LMSS07, Corollary 3.2, Lemma 4.2, and Section 8], where
they proved the inequality rank±(A) ≤ m(A)−2 · log(n), and asked whether the log factor in this
inequality is necessary.
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It is known that margin, discrepancy, public-coin randomized communication complexity, and
approximate γ2 norms are all related, in the sense that each can be used to provide an upper bound
on any other (see Section 3.3 for more details). Therefore, one can equivalently restate Question 1.4,
with m(A)−1 replaced with any of the mentioned parameters. We propose the following conjecture
that would imply a negative answer to Question 1.4, as m(Qd)

−1 = O(1) (see Proposition 3.4).

Conjecture 1.5 (Sign-rank of hypercube graphs). Let Qd be the 2d−1 × 2d−1 sign matrix whose
rows and columns are indexed with, respectively, odd-parity and even-parity elements of {0, 1}d, and
Qd(x, y) = −1 iff x and y differ in exactly one coordinate. Then

lim
d→∞

rank±(Qd) = ∞.

Forster’s sign-rank lower bound: For explicit matrices, the VC-dimension lower bound re-
mained state of the art for almost two decades until the breakthrough work of Forster [For02].
Forster used a convex geometric approach to prove a linear lower bound on the sign-rank of
Hadamard matrices, establishing the first super-logarithmic lower bound on the sign-rank of an
explicit matrix.

Forster’s proof first transforms the vectors vy to be in isotropic position, and then uses the
anti-concentration of measure in low dimensions to show that the average Ey |⟨ux, vy⟩| is relatively
large for every vector ux. In other words, the “average margin” of such a representation is large.
We will consider a slight generalization of Forster’s approach that allows arbitrary distributions on
Y.

Definition 1.6 (Average margin). The average margin of a sign matrix AX×Y with respect to a
probability distribution ν on Y is defined as

mavg
ν (A) = supmin

x
Ey∼ν |⟨ux, vy⟩|,

where the supremum is over all sign-representations of A using unit vectors ux, vy ∈ Rd for any d.
The average margin of A is defined as mavg(A) = infν m

avg
ν (A).

Note that mavg(A) ≥ m(A) since Ey∼ν |⟨ux, vy⟩| ≥ miny |⟨ux, vy⟩|. A slightly different notion
of average margin is studied by Kallweit and Simon in [KS11], however, since mavg(A) is always
smaller than Kallweit and Simon’s notion of average margin, it provides a stronger lower bound on
sign-rank in Theorem 1.7 below. We summarize Forster’s approach as the following theorem.

Theorem 1.7 (Forster [For02]). For every sign-matrix A, we have

rank±(A) ≥ mavg(A)−1.

We will provide a proof of Theorem 1.7 in Section 2.1 since our formulation of Forster’s approach
is slightly more general than the ones appearing in the literature.

Forster’s original paper [For02] applies the average margin method to show that sign-rank is
large when the spectral norm is small. Subsequent works [FKL+01, FS06, RS10] showed that,
more generally, this method can extend discrepancy bounds to lower bounds on sign-rank if the
witnessing hard distribution µ in Equation (2) is well-spread on most of the entries. This is intuitive
considering that discrepancy is equivalent to margin, and the lower bound in Theorem 1.7 is based
on average margin.

It is straightforward (see Proposition 2.5) to prove that every sign matrix satisfies mavg(A)−1 ≥√
VC(A), which demonstrates that VC dimension is essentially a weaker lower bound technique

than Forster’s method.
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Monochromatic rectangles and sign-rank: A submatrix of a matrix A is called a monochro-
matic rectangle if all the entries in this submatrix have the same value. In addition to VC-dimension
and Forster’s method, there is a third known approach for proving super-constant lower bounds on
sign-ranks of explicit matrices, which is based on the size of the largest monochromatic rectangle.

We define the following parameter based on the size of monochromatic rectangles.

Definition 1.8 (Monochromatic rectangle ratio). For every sign-matrix AX×Y , define

rect(A) = inf
µ×ν

max
R

µ× ν(R),

where the infimum is over all product probability measures µ× ν on X × Y, and the maximum is
over all monochromatic rectangles in A.

Alon, Pach, Pinchasi, Radoičić and Sharir [APP+05] proved that every m × n sign matrix of
sign-rank d contains an m

2d+1 × n
2d+1 monochromatic rectangle. Similar bounds are obtained by Fox,

Pach, and Suk [FPS16] using the cutting lemma of Chazelle [Cha93]. We provide a different proof
in Proposition 2.6. While Proposition 2.6 follows from the result of [FPS16], we believe our short
and simple proof could provide some geometric intuition for why matrices of low sign-rank contain
large monochromatic rectangles.

The following relation between sign-rank and monochromatic rectangle ratio follows from the
bound of [APP+05, Theorem 1.3].

Theorem 1.9 (See [APP+05, Theorem 1.3]). For every sign-matrix A, we have

rank±(A) ≥
log2

(
rect(A)−1

)
2

− 1. (3)

Remark 1.10. The result of [APP+05, Theorem 1.3] says that every m×n sign matrix of sign-rank
d contains an m

2d+1 × n
2d+1 monochromatic rectangle. To deduce Equation (3), given a product

probability measure µ× ν on X × Y, pick a large K and duplicate every row x for ⌊Kµ(x)⌋ many
times. Similarly duplicate every column y for ⌊Kν(y)⌋ many times. The resulting M ×N matrix
has the same sign-rank as A and thus contains an M

2d+1 × N
2d+1 monochromatic rectangle, which

translates to a monochromatic rectangle of µ× ν-measure approximately 1
2d+1 × 1

2d+1 in A. Taking
the limit as K grows to infinity yields Equation (3).

Note that similar to the VC-dimension, Theorem 1.9 cannot imply super-logarithmic lower
bounds on sign-rank, since every n× n sign matrix satisfies rect(A) ≥ 1

2n . To see the latter claim,
note that for every probability distribution µ on the rows, there is always a row x with measure
≥ 1

n , and any probability distribution ν over the columns has measure at least 1
2 on either the 1’s

or the −1’s of this row.

Sign-rank of semi-algebraic matrices, an open problem: A real semi-algebraic set in Rd

is the set of all points that satisfy a given finite Boolean combination of polynomial inequalities in
the d coordinates. We say that such a set has description complexity t if in some representation,
the number of inequalities and the degrees of the corresponding polynomials are all bounded from
above by t.

Every collection of points u1, . . . , um ∈ Rd and semi-algebraic sets K1, . . . ,Kn ⊆ Rd define a
sign matrix Am×n where Aij = 1 iff ui ∈ Kj . We say that A has a representation in Rd with
description complexity t if every Ki has description complexity t.
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We call a class of sign matrices semi-algebraic if there exists d, t ∈ N such that every matrix in
this class has a representation in Rd of description complexity at most t. Semi-algebraic classes of
sign matrices capture natural geometric constructions of graphs on finite dimensional real spaces,
such as interval graphs, incidence graphs, disc graphs, and more generally, all graph classes where
vertices are points in a real Euclidean space and the edges are defined by a semi-algebraic relation
of constant complexity.

An affirmative answer to the following question would imply that semi-algebraic classes of sign
matrices coincide with bounded sign-rank classes.

Question 1.11 (Sign-rank of semi-algebraic matrices). Is there a function η : N×N → N such that
every sign matrix with a d-dimensional representation of description complexity t has sign-rank at
most η(d, t)?

For the converse direction, note that if rank±(A) = η, then the corresponding sign-representation
of A using vectors ui, vj ∈ Rη is a representation with description complexity 1: We have Aij = 1
iff ui ∈

{
x ∈ Rd : ⟨vj , x⟩ > 0

}
, and note that ⟨vj , x⟩ is a polynomial of degree 1 in the coordinates

of x.
Let Γ : {−1, 1}t → {−1, 1} be a predicate and let A1, . . . , At be m × n sign matrices. Let

Γ(A1, . . . , At) denote the m × n sign matrix with ij-entries Γ(A1(i, j), . . . , At(i, j)). As we will
discuss in Section 3.5, a simple linearization trick shows that Question 1.11 can be reformulated as
the following question.

Question 1.12 (First reformulation of Question 1.11). Is there a function η : N × N → N such
that for every predicate Γ : {−1, 1}t → {−1, 1} and every set of m × n sign matrices A1, . . . , At

with sign-ranks at most d, we have

rank±(Γ(A1, . . . , At)) ≤ η(d, t)?

The formulation in Question 1.12 is interesting from the perspective of learning theory: Consider
a binary data set encoded as a sign matrix Γ. The entry Γij is called the label of the data-point j
according to the concept i. Suppose that these labels are determined by a few other binary labels.
For example, whether a person i is likely to watch a movie j may be determined by whether j is
the genre of movie that they like, whether j features some of their favorite actors, and whether
j is available at a theater near them. Now suppose that each of these latter binary data sets
has a low-dimensional representation. Does this mean that our data set has a low-dimensional
representation?

The formulation in Question 1.12 is also interesting from the perspective of communication
complexity: since the logarithm of sign-rank is equivalent to the unbounded-error communication
complexity (see Equation (10) below), Question 1.12 asks whether a matrix constructed by the
entrywise application of a logical predicate to matrices A1, . . . , At, each with a small unbounded-
error communication complexity, must have a small unbounded-error communication complexity.
It is straightforward to show that a similar statement is indeed true in the bounded-error case.

Question 1.12 can be further simplified to a fascinating simple-to-state question. Let A∧B be the
matrix whose ij-th entries are the point-wise minimums of the entries of A and B, corresponding
to the Boolean and operator. Let ¬A := −A. Recall that {∧,¬} is a complete basis, i.e., it
is a functionally complete set in the logical sense. Hence the function Γ in Question 1.12 can
be implemented using the two operations ∧ and ¬, and since for every sign matrix A, we have
rank±(A) = rank±(¬A), Question 1.12 is equivalent to the following.
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Question 1.13 (Second reformulation of Question 1.11). Is there a function η : N → N such that
for every two sign matrices A and B with sign-ranks at most d, we have rank±(A ∧B) ≤ η(d)?

In comparison, let us consider the Hadamard product A ◦ B of two matrices A and B, which
corresponds to entrywise ⊕ operator in the Boolean setting. It is well-known that rank(A ◦ B) ≤
rank(A) · rank(B), which implies that for every two m× n sign matrices A and B, we have

rank±(A ◦B) ≤ rank±(A) · rank±(B).

However, this cannot be used in a similar argument as the and case above to answer Question 1.11,
as {⊕,¬} is not a complete basis.

Contributions and organization: For the following discussion, recall the three aforementioned
lower bound techniques for sign-rank:

VC(A) ≤ rank±(A), mavg(A)−1 ≤ rank±(A),
log2

(
rect(A)−1

)
2

− 1 ≤ rank±(A),

and note that all these lower bounds are non-increasing when restricting to submatrices: For every
submatrix M of A, we have

VC(M) ≤ VC(A), mavg(M)−1 ≤ mavg(A)−1, rect(M)−1 ≤ rect(A)−1.

• In Section 3.1, we study the relation between the average margin and the rectangle ratio. In
Theorem 3.1, we prove that

mavg(A)−1 ≤ rect(A)−1,

which, combined with Proposition 2.5, shows√
VC(A) ≤ mavg(A)−1 ≤ rect(A)−1. (4)

These inequalities demonstrate that if the monochromatic rectangle ratio cannot provide a
super-constant lower bound for the sign-rank of a matrix, then the other two methods will
fail as well.

The significance of Theorem 3.1 is that proving an upper bound on rect(A)−1 is often much
easier than directly analyzing the average margin. This allows us to demonstrate some limi-
tations of Forster’s method.

• In Section 3.2, we combine Theorem 3.1 with a counting argument to prove our main sep-
aration result: In Theorem 3.2, we show the existence of n × n sign matrices A that have
sign-rank nΩ(1) but VC(A), m(A)−1 and rect(A)−1 are all O(1). In other words, there exists
matrices of very large sign-rank such that none of the known lower bound techniques can
provide a lower bound that is larger than O(1).

• In Section 3.3, we discuss the limitation of sign-rank lower bounds in answering Question 1.4
and Conjecture 1.5. In particular, in Proposition 3.4 we observe that rect(Qd)

−1 = O(1), and
thus none of the known lower bound methods can prove Conjecture 1.5.
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• In Section 3.4, we study a question that is closely related to the relation between margin and
sign-rank (i.e., Question 1.4). As discussed above, one can equivalently rephrase Question 1.4
in terms of upper-bounding sign-rank by a function of the approximate γ2 norm (see Defini-
tion 2.1). As stated in Conjecture 1.5, we believe the answer to be negative. However, one
can strengthen the assumption and ask whether the sign-rank can be upper-bounded by a
function of the γ2 norm instead:

Conjecture 1.14. There exists a function η such that for every sign matrix A, we have
rank±(A) ≤ η(∥A∥γ2).

Towards proving Conjecture 1.14, in Theorem 3.8, we show that

rank±(A) ≤ 4D
eq(A), (5)

where Deq(A) denotes the deterministic communication complexity of the matrix A with ac-
cess to an equality oracle. In Corollary 3.9, we combine this with Green and Sanders’ [GS08a,
GS08b, San19, San11, San20a] quantitative versions of Cohen’s idempotent theorem and a
theorem of [HHH21] to verify Conjecture 1.14 for a broad class of sign-matrices: We prove
there exists a function η such that if f : G → {−1, 1} for a finite group G, and AG×G is the
sign matrix with entries A(x, y) = f(xy−1), then

rank±(A) ≤ η(∥A∥γ2).

In the case of abelian G, we have

rank±(A) ≤ exp
(
exp
(
C∥A∥4γ2

))
,

where C is a universal constant. Note that takingG = Zn
2 corresponds to the class of xor-lifts.

Equation (5) is also interesting from the point of view of communication complexity. It implies

U(A) ≤ 2Deq(A) +O(1).

where U(A) denotes the unbounded-error randomized communication complexity of A, for-
mally defined in Equation (10).

• In Section 3.5, we study the sign-rank of semi-algebraic sign matrices. In Corollary 3.10, we
prove that if A and B are two sign matrices of sign-rank at most d, then

VC(A ∧B) ≤ 20d and mavg(A ∧B)−1 ≤ rect(A ∧B)−1 ≤ 2−2d−2.

These demonstrate the inability of the known lower bound techniques to give a negative
answer to Question 1.11 by providing a super-constant lower bound on the sign-rank of semi-
algebraic matrices.

• In Section 3.6 we prove that sign matrices of sign-rank d have small communication complexity
in the average communication model over any product distribution.
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2 Notation, Background, and Basic Observations

Much of the notation we will use is implicit in the introduction, but it may be helpful to clarify
things here.

We will use the standard computer science asymptotic notations [CLRS01] of O(·), Ω(·), Θ(·),
o(·), and ω(·). We denote the indicator function of a set S by 1S , that is, 1S(x) := 1 if x ∈ S, and
1S(x) := 0 otherwise. For i = 1, . . . , d, we denote the i-th standard vector by ei ∈ Rd. For a vector
u ∈ Rd, we denote the Euclidean norm of u by ∥u∥.

For a real matrix BX×Y , we denote by sgn(B) the sign matrix corresponding to the signs of the
entries of B. We say that the unit vectors ux, vy ∈ Rd sign-represent AX×Y if Axy = sgn(⟨ux, vy⟩)
for all x ∈ X and y ∈ Y.

A finite set of vectors v1, . . . , vm ∈ Rd are in isotropic position if for every unit vector u ∈ Rd,
we have

1

m

m∑
i=1

|⟨u, vi⟩|2 =
1

d
.

All matrices in this article are real and finite, and all normed spaces are defined over the reals.
The spectral norm of a matrix AX×Y is defined as

∥A∥ = max
x∈RY :∥x∥=1

∥Ax∥,

and its trace norm is defined as

∥A∥tr = tr
(√

AtA
)
=

min(|X |,|Y|)∑
i=1

σi,

where σi are the singular values of A. Next, we define the γ2 norm of a matrix, which is an
important tool for proving lower and upper bounds in discrepancy theory and communication
complexity [LS09b].

Definition 2.1 (γ2 norm). The γ2 norm of a matrix AX×Y , denoted by ∥A∥γ2, is the smallest c ≥ 0
such that there exists d ∈ N and vectors ux, vy ∈ Rd with maxx,y ∥ux∥ · ∥vy∥ ≤ c and Axy = ⟨ux, vy⟩
for all x, y.

For ϵ ∈ [0, 1), the approximate γ2 norm of AX×Y with error parameter ϵ is defined as

∥A∥γ2,ϵ = inf
B

∥B∥γ2 ,

where the infimum is over all real matrices BX×Y with maxx,y |Axy − Bxy| ≤ ϵ. Note that despite
what the notation might suggest, ∥ · ∥γ2,ϵ is not a norm.

By definition, a matrix BX×Y satisfies ∥B∥γ2 = 1 if and only if for some d ∈ N, there exist
unit vectors ux, vy ∈ Rd with Bxy = ⟨ux, vy⟩ for all (x, y) ∈ X × Y. Hence, one can reformulate
Definition 1.3 and Definition 1.6 in terms of the γ2 norm as

m(A) = sup
B:∥B∥γ2=1
sgn(B)=A

min
x,y

|Bxy|,
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and
mavg

ν (A) = sup
B:∥B∥γ2=1
sgn(B)=A

min
x

Ey∼ν |Bxy|.

Finally, note that the dual of the γ2 norm is

∥A∥γ∗
2
:= sup

B:∥B∥γ2=1
tr
(
ABt

)
= sup

B:∥B∥γ2=1

∑
x,y∈X×Y

AxyBxy, (6)

where both A and B are X × Y matrices.

2.1 Forster’s lower bound

Forster’s lower bound is based on the geometric fact that every set of vectors in general position
is transformable to be in isotropic position by applying an invertible linear transformation. This
powerful fact in convex geometry was first established by Barthe [Bar98] as a key step in his proof
of a reverse form of the Brascamp-Lieb inequality. It seems that Forster was unaware of Barthe’s
paper, and he gave a different proof in his paper [For02]. The following variation of this fact
from [HKLM20] is proved using Barthe’s theorem.

Theorem 2.2 (Isotropic position [HKLM20, Thereom A.2]). Consider a probability distribution
ν over a finite set Y and non-zero vectors vy ∈ Rd for all y ∈ Y. There is an invertible linear
transformation T such that

Ey∼ν⟨Tvy, u⟩2 =
1

d

for every unit vector u ∈ Rd iff the following holds. For every 0 < k < d and every k-dimensional
subspace V , either

• ν({y : vy ∈ V }) < k
d , or

• ν({y : vy ∈ V }) = k
d and the remaining mass lies in a (d− k)-dimensional subspace.

We will summarize Forster’s approach for proving lower bounds on sign-rank as the following
theorem.

Theorem 2.3 (Theorem 1.7 restated). For every sign-matrix AX×Y , we have

rank±(A) ≥ mavg(A)−1.

Proof. Let d = rank±(A) and ν be a probability distribution on Y. We consider two cases.
Case I: There exists y0 ∈ Y such that ν(y0) ≥ 1

d . In this case, we show that regardless of
the value of rank±(A), we always have mavg

ν (A) ≥ 1
d . Pick any sign representation of A with unit

vectors ux, vy ∈ Rk for a k ∈ N. Consider a small δ > 0 and define the unit vectors

u′x = (δux,
√

1− δ2 sgn(Axy0)) ∈ Rk+1 for all x ∈ X ,

and

v′y =

{
ek+1 y = y0
(vy, 0) y ̸= y0

10



for all y ∈ Y. These vectors provide a sign representation of A by unit vectors in Rk+1. Moreover,
for every x ∈ X ,

Ey∼ν

∣∣〈u′x, v′y〉∣∣ ≥ 1

d

∣∣〈u′x, v′y0〉∣∣ ≥
√
1− δ2

d
.

Therefore, mavg
ν (A) ≥

√
1−δ2

d for every δ > 0. Taking the limit as δ tends to 0 shows mavg
ν (A) ≥ 1

d .
Case II: For every y ∈ Y, we have ν(y) < 1

d . Let ux, vy ∈ Rd be unit vectors that sign-
represent A. By applying a small perturbation to the vectors ux and vy, we can assume without
loss of generality that they are in general position.

Since the vectors vy are in general position, for every 0 < k < d and every k-dimensional
subspace V , we have |{y : vy ∈ V }| ≤ k, and thus ν({y : vy ∈ V }) < k

d . Hence, by Theorem 2.2,
there exists an invertible linear transformation T such that for every unit vector u ∈ Rd, we have

Ey∼ν⟨Tvy, u⟩2 =
1

d
.

Since ⟨T−1ux, T vy⟩ = ⟨ux, vy⟩, by replacing ux and vy with unit vectors T−1ux
∥T−1ux∥ and

Tvy
∥Tvy∥ , respec-

tively, we can assume without loss of generality that

Ey∼ν⟨vy, u⟩2 =
1

d
,

for every unit vector u ∈ Rd. Since |⟨ux, vy⟩| ≤ 1, it follows that

min
x∈X

Ey∼ν |⟨ux, vy⟩| ≥ min
x

Ey∼ν ⟨ux, vy⟩2 =
1

d
.

Therefore, mavg
ν (A) ≥ 1

d .

Note that for any matrix AX×Y and unit vectors ux, vy ∈ Rd, we have

∑
x,y

Axy⟨ux, vy⟩ =

d∑
i=1

∑
x,y

Axyux(i)vy(i)

≤
d∑

i=1

∥A∥

(∑
x

|ux(i)|2
)1/2(∑

y

|vy(i)|2
)1/2

≤ ∥A∥

(
d∑

i=1

∑
x

|ux(i)|2
)1/2( d∑

i=1

∑
y

|vy(i)|2
)1/2

≤ ∥A∥
√
|X ||Y|.

Therefore, by Equation (6), we have

∥A∥γ∗
2
≤ ∥A∥

√
|X ||Y|. (7)

Forster’s original paper [For02] shows

rank±(A) ≥
√

|X ||Y|
∥A∥

,

11



and [LS09b] later improved this bound to

rank±(A) ≥ |X ||Y|
∥A∥∗γ2

.

The following proposition, which is based on [LS09b, For02], recovers these bounds, as rank±(A) ≥
mavg(A)−1 by Theorem 1.7.

Proposition 2.4. For every sign-matrix AX×Y , we have

mavg(A)−1 ≥ |X ||Y|
∥A∥∗γ2

≥
√
|X ||Y|
∥A∥

.

Proof. Let ν be the uniform distribution on Y, and consider a sign representation of A with unit
vectors ux, vy ∈ Rd with mavg

ν (A) = minx Ey |⟨ux, vy⟩|. We have

mavg(A) ≤ mavg
ν (A) = min

x
Ey |⟨ux, vy⟩| ≤ Ex,y |⟨ux, vy⟩| = Ex,y ⟨ux, vy⟩Axy ≤

∥A∥∗γ2
|X ||Y|

,

which combined with Equation (7) finishes the proof.

2.2 VC dimension and average margin

Here we record a simple argument that shows that VC dimension is a weaker lower bound technique
than Forster’s method.

Proposition 2.5. For every sign matrix A, we have mavg(A)−1 ≥
√
VC(A).

Proof. Suppose VC(A) = k. By the definition of the VC dimension, A contains a 2k × k submatrix
Uk with all the possible different rows. Note that

UT
k Uk = 2kIk.

In particular, we have ∥Uk∥ = 2k/2, which combined with Proposition 2.4, gives

mavg(A) ≤ mavg(Uk) ≤
2k/2√
k2k

=
1√
k
.

2.3 Small sign-rank implies large monochromatic rectangles

In this section, we provide a short and robust geometric argument for the fact that sign matrices of
small sign-rank contain large monochromatic rectangles. Our proof is quite different from the proof
of [FPS16], which is based on the divide-and-conquer cutting lemma of Chazelle [Cha93]. However,
we note that our bound is slightly weaker than the n

2O(d log d) × n
O(1) bound of [FPS16].

Proposition 2.6. There exists a constant c > 0 such that the following holds. Every sign matrix
An×n with sign-rank d contains a monochromatic rectangle of size

n

2cd log d
× n

4d
.

12



Proof. Let Sd−1 denote the unit sphere in Rd. Consider a sign representation of A with unit vectors
ui, vj ∈ Rd. Without loss of generality, we can assume that the vj ’s are in isotropic position.

For every u ∈ Sd−1, consider the spherical cap of height α := 1√
2d
, defined as

Cu =
{
x ∈ Sd−1 : ⟨u, x⟩ ≥

√
1− α2

}
,

and the equator region

Eu =
{
x ∈ Sd−1 : |⟨u, x⟩| ≤ α

}
.

Note that the sets
R+

u := {i : ui ∈ Cu} × {j : vj ̸∈ Eu, ⟨vj , u⟩ > 0}

and
R−

u := {i : ui ∈ Cu} × {j : vj ̸∈ Eu, ⟨vj , u⟩ < 0}

correspond, respectively, to a (+1)-monochromatic and a (−1)-monochromatic rectangle in A.
Since the vj ’s are in isotropic position, for every u ∈ Sd−1, we have

n∑
j=1

⟨u, vj⟩2 =
n

d
.

On the other hand ∑
j:vj∈Eu

⟨u, vj⟩2 ≤ nα2 =
n

2d
,

which shows
|{j : vj ̸∈ Eu}| ≥

n

d
− n

2d
=

n

2d
.

In particular

|{j : vj ̸∈ Eu, ⟨vj , u⟩ > 0}| ≥ n

4d
or |{j : vj ̸∈ Eu, ⟨vj , u⟩ < 0}| ≥ n

4d
.

To estimate the surface area of Cu, recall that the surface area of the d-dimensional sphere of radius
r is given by

Ad(r) :=
2πd/2

Γ(d/2)
rd−1 =

∫ 1

−1
Ad−1

(√
1− h2

)
dh =

2π
d−1
2

Γ(d−1
2 )

∫ 1

−1

(√
1− h2

)d−2
dh.

Hence the ratio between the surface area of Cu and the whole sphere Sd−1 can be estimated as

|Cu|
Ad(1)

=

∫ 1√
1−α2

(√
1− h2

)d−2
dh∫ 1

−1

(√
1− h2

)d−2
dh

≥

∫√
1−α2

4√
1−α2

(√
1− h2

)d−2
dh∫ 1

−1 1dh

≥

√
1− α2

4 −
√
1− α2

2
× (α/2)d−2 = 2−O(d log d).

Picking a u ∈ Sd−1 uniformly at random, with positive probability, one of the rectangles R+
u or

R−
u satisfies the assertion of the theorem.
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3 Main Results

3.1 Monochromatic rectangle ratio vs average margin

Our first theorem relates the monochromatic rectangle ratio of a sign matrix to its average margin.

Theorem 3.1. For every sign matrix A, we have

mavg(A)−1 ≤ rect(A)−1.

Proof. Suppose AX×Y is a sign matrix, and let ν be a probability distribution on Y. Consider the
following zero-sum game, where the first player chooses x ∈ X and the second player chooses a
monochromatic rectangle R of A. Define the payoff of the game to be

Ey∼ν [1R(x, y)] = Pr
y∼ν

[(x, y) ∈ R] .

By the minimax theorem, we have

rect(A) ≤ min
µ

max
R

Ex∼µ Ey∼ν [1R(x, y)] = max
η

min
x

ER∼η Ey∼ν [1R(x, y)] , (8)

where µ ranges over all probability distributions over X and η ranges over all probability distribu-
tions on the set of monochromatic rectangles of A. Take η to maximize this quantity. Denote by
Ri = Si × Ti the i-th monochromatic rectangle in the support of η, and define ai ∈ {−1, 1} to be
the value of A on the rectangle Ri, and let ηi = PrR∼η[R = Ri]. Now, consider the vectors ux and
vy defined with coordinates

ux(i) =
√
ηi · 1Si(x), vy(i) = ai

√
ηi · 1Ti(y).

Note that ∥ux∥2 = PrR=S×T∼η[x ∈ S] ≤ 1 and similarly ∥vy∥2 = PrR=S×T∼η[y ∈ T ] ≤ 1. Let S be
the matrix with entries Sxy = ⟨ux, vy⟩. For (x, y) ∈ X × Y, it is clear that

Sxy =
∑
i

ηi · ai · 1Ri(x, y) = Axy · Pr
R∼η

[(x, y) ∈ R] ,

and thus sgn(Sxy) = Axy. Therefore, by Equation (8),

mavg
ν (A) ≥ min

x
Ey∼ν [|Sxy|] = min

x
Ey∼ν ER∼η[1R(x, y)] ≥ rect(A),

where the first inequality follows from the definition of average margin since S sign-represents A
and the ux and vy’s have Euclidean norm at most 1.

3.2 Sign-rank vs. current lower bound methods

Our next theorem shows a significant limitation for the three discussed lower bound methods.
It shows that there are matrices with polynomially large sign-rank, while neither of the known
methods can yield super constant bounds.

Theorem 3.2 (Main Theorem). There exists n× n sign matrices A with sign-rank Ω( n1/3

log(n)) that
satisfy

VC(A) ≤ 2 and mavg(A)−1 ≤ rect(A)−1 ≤ 215.
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Proof. The idea is to construct a large collection of sign matrices, each with a large monochromatic
rectangle ratio. The statement then would follow from the upper bound on the number of matrices
of small sign-rank, presented in Lemma 1.1.

Let N be a positive integer, and consider the sets

P = {(x, y) ∈ Z2 : 1 ≤ x ≤ N, 1 ≤ y ≤ 2N2}

and
L = {(a, b) ∈ Z2 : 1 ≤ a ≤ N, 1 ≤ b ≤ 2N2}.

We think of the elements ℓ = (a, b) ∈ L as lines y = ax + b in R2, and we consider (x, y) ∈ P as
points in R2.

Define the sign matrix FL,P by point line incidences:

Fℓ,p =

{
−1 p ∈ ℓ

1 p ̸∈ ℓ
.

Set n = N3 and note that F is a 2n× 2n matrix, and for every ℓ = (a, b) and p = (x, y), we have

Fℓ,p = sgn

(
(ax+ b− y)2 − 1

2

)
= sgn

(
a2x2 − 2axy + y2 + 2abx− 2by +

(
b2 − 1

2

))
.

Since each term in the last line corresponds to a rank 1 matrix, we have

rank±(F ) ≤ 6.

Additionally, F has the following useful properties:

1. Since any two distinct lines have at most one point in common, F does not contain any 2× 2
(−1)-monochromatic subrectangles.

2. Each line ℓ = (a, b) with b ≤ N2 goes through N = n1/3 points from P. Consequently, F

contains at least n
4
3 negative entries.

Consider all 2n × 2n sign matrices A that can be obtained from F by changing the sign of a
subset of the negative entries to positive. There are at least 2n

4/3
such matrices. By Lemma 1.1,

most such matrices A have sign-rank Ω(n1/3/ log n). Let A be any such matrix obtained from F ,
so that rank±(A) = Ω(n1/3/ log n).

Since A is obtained from a submatrix of F by only changing its −1 entries, A also satisfies the
first property above. That is, A does not contain any 2× 2 (−1)-monochromatic subrectangle, and
consequently VC(A) ≤ 2 as desired.

We proceed to bounding the rectangle ratio and hence also the average margin of A. Let
µ× ν be any product distribution on L × P. Since rank±(F ) ≤ 6, by Theorem 1.9, there exists a
monochromatic rectangle R of F with

µ× ν(R) ≥ 2−14.
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If R is a 1-monochromatic rectangle in F , then it is also a 1-monochromatic rectangle in A. On
the other hand, if R is a (−1)-monochromatic rectangle in F , then by the first property above, it
is either a 1 × k or a k × 1 rectangle for some k. In both cases R contains a subrectangle R′ ⊆ R
that is monochromatic in A and satisfies

µ× ν(R′) ≥ µ× ν(R)

2
≥ 2−15.

We conclude that
rect(A) ≥ 2−15.

Finally, by Theorem 3.1, we have mavg(A)−1 ≤ rect(A)−1 ≤ 215.

3.3 Does large margin imply small sign-rank?

Next, we discuss the relation between sign-rank and margin, namely Question 1.4 and Conjec-
ture 1.5. We start with a short discussion of the equivalence of margin and several other complexity
and analytic parameters associated with sign matrices. We have already mentioned the result of
Linial and Shraibman [LS09a] stating

disc(A) ≤ m(A) ≤ 8 disc(A).

Let Rϵ(A) denote the public-coin randomized communication complexity of the matrix A with
two-sided error ϵ. We refer the reader to [KN97] for a formal definition of this complexity measure.
The following folklore proposition shows that for any fixed ϵ ∈ (0, 12), the gap between disc(A)−1

and Rϵ(A) is at most exponential.

Proposition 3.3 (folklore). For every ϵ ∈ (0, 12) and every sign-matrix A, we have

log
(
(1− 2ϵ) · disc(A)−1

)
≤ Rϵ(A) ≤ O

(
log

(
1

ϵ

)
disc(A)−2

)
. (9)

Proof. For a proof of the lower bound in Equation (9), we refer the reader to [LS07, Theorem 4.9].
We provide a proof of the upper bound.

Suppose AX×Y is a sign matrix with disc(A) = δ. We will show that R 1−δ
2
(A) ≤ 2, and the

upper bound of Equation (9) then follows by applying a standard error reduction procedure.
Recall the definition disc(A) = minµmaxR |Exy∼µ[Axy1R(x, y)]|, where R ranges over all com-

binatorial rectangles of X × Y. Consider the zero-sum game, where the first player chooses (R, b)
where R is a rectangle and b ∈ {−1, 1} and the second player chooses (x, y) ∈ X ×Y. If (x, y) ̸∈ R,
then the payoff is zero, otherwise, the payoff is 1 if b = Axy and −1 if b ̸= Axy. Denote the mixed
strategies of the first and the second players by ν and µ, respectively. By the minimax principle,
we have

disc(A) = min
µ

max
R,b

Exy∼µ [bAxy1R(x, y)] = max
ν

min
x,y

E(R,b)∼ν [bAxy1R(x, y)] .

Therefore, there is a distribution ν over the set of all (R, b) such that for every (x, y), we have

E(R,b)∼ν [bAxy1R(x, y)] ≥ δ.
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Consider the two-bit randomized communication protocol π for A, where on inputs (x, y), the
players use the public randomness to sample (R, b) ∼ ν, and output b if (x, y) ∈ R, and otherwise,
output uniformly at random a ±1 bit. Let π(x, y) denote the output of the protocol on input (x, y).
For every (x, y) ∈ X × Y, we have

Pr[π(x, y) = Axy] =
1

2
+

1

2
E[π(x, y) ·Axy] =

1

2
+

1

2
Pr
R
[(x, y) ∈ R]E[b ·Axy|(x, y) ∈ R] ≥ 1

2
+

δ

2
,

where the second equality is due to the fact that E[π(x, y)Axy] = 0 when (x, y) /∈ R.
We conclude that R 1−δ

2
(A) ≤ 2. Finally, by a standard error-reduction (see [RY20, Chapter 3]

for example), we have

Rϵ(A) ≤ R 1−δ
2
(A) ·O

(
log

(
1

ϵ

)
· δ−2

)
.

By Proposition 3.3, one can equivalently consider Rϵ(A) instead of m(A)−1 in Question 1.4 and
Conjecture 1.5. This is particularly interesting in light of the equivalence of the logarithm of sign-
rank and the unbounded-error communication complexity U(A), due to Paturi and Simon [PS86]:

U(A) := lim
ϵ↗ 1

2

Rprv
ϵ (A) = log(rank±(A)) +O(1). (10)

We refer the reader to [KN97] for the definition of the private-coin randomized communication
complexity Rprv

ϵ (A).
Finally, let us discuss the equivalence to approximate γ2 norms. The following relationship with

public-coin randomized communication complexity is known

log ∥A∥γ2,ϵ ≤ R ϵ
2
(A) ≤ O

(
log(1/ϵ)

(1− ϵ)2
∥A∥2γ2,ϵ

)
, (11)

where A is a sign matrix and ϵ ∈ (0, 1). The lower bound is from [LS09b] and the upper bound is
proven in [HHH21, Corollary 2.8 (c)]. However, since those papers use a different notation, for the
convenience of the reader, we provide a proof in Proposition A.2.

To summarize, for every fixed ϵ ∈ (0, 12), we have

m(A)−1 ≈ disc(A)−1 ≈ ∥A∥γ2,ϵ ≈ Rϵ(A), (12)

where the equivalence notation ≈ means that each parameter can be bounded by applying a uni-
versal function (that could depend on ϵ) to the other parameter.

The following proposition shows that a positive answer to Conjecture 1.5 is beyond the reach
of the current known lower bound techniques.

Proposition 3.4 (Barrier to Conjecture 1.5). Let Qd be the sign matrix defined in Conjecture 1.5.
There exists a constant c such that for every d ∈ N, we have

m(Qd)
−1 ≤ c,

and
VC(Qd),m

avg(Qd)
−1, rect(Qd)

−1 ≤ c.
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Proof. The bound m(Qd)
−1 = O(1) follows from the equivalence of the margin and the randomized

communication complexity discussed above, and the fact that R1/3(Qd) = O(1), due to [ZS09].

Since
√

VC(A) ≤ mavg(Qd)
−1 ≤ m(Qd)

−1, it only remains to show rect(Qd)
−1 = O(1).

Next, we will show how to bound rect(Qd)
−1. Let X and Y be the set of odd-parity and even-

parity elements of {0, 1}d corresponding, respectively, to the rows and columns of Qd. Let µ and
ν be distributions, respectively, over X and Y. Recall that Qd(x, y) = −1 iff x ∈ X and y ∈ Y
differ in exactly one coordinate. We will use the fact that Qd does not contain any 2× 3 or 3× 2
(−1)-monochromatic rectangles, which also directly implies VC(Qd) ≤ 3. We will consider two
cases.

Case 1. Suppose
Pr

x∼µ,y∼ν
[Qd(x, y) = −1] ≥ c := 1/2.

Applying Jensen’s inequality twice, we have

c6 ≤
(
Ex∼µ,y∼ν [1Qd(x,y)=−1]

)6 ≤ (Ex∼µ(Ey∼ν [1Qd(x,y)=−1])
3
)2

=

Ex∼µ Ey1,y2,y3∼ν

[∏
j

1Qd(x,yj)=−1

]2

≤ Ey1,y2,y3∼ν

Ex∼µ

[ 3∏
j=1

1Qd(x,yj)=−1

]2

= Ex1,x2∼µ,y1,y2,y3∼ν

[∏
i,j

1Qd(xi,yj)=−1

]
.

The last term is the probability that the random rectangle {x1, x2} × {y1, y2, y3} is a (−1)-
monochromatic rectangle of Qd. Since Qd does not contain any 2×3 (−1)-monochromatic rectangle,
we must have

Pr[x1 = x2 ∨ |{y1, y2, y3}| ≤ 2] ≥ c6.

Therefore, one of the two distributions µ or ν has noticeable collision probability. Specifically,
either Prx,x′∼µ Pr[x = x′] ≥ c6/4 or Pry,y′∼ν [y = y′] ≥ 1

3 Pr[|{y1, y2, y3}| ≤ 2] ≥ c6/4. Without loss
of generality, assume that the former is true. In this case

Pr
[
x = x′

]
=
∑
a∈X

Pr[x = a]2 ≤ max
a∈X

Pr[x = a].

Therefore, there is an a ∈ X such that Pr[x = a] ≥ c6/8. Now, note that the a’th row of Qd either
has a µ× ν-measure of at least c6/16 on its (−1)’s or on its 1’s.

Case 2. If Case 1 does not hold, then

Pr
x∼µ,y∼ν

[|x− y|1 ≥ 3] ≥ 1/2, (13)

where |x − y|1 denotes the Hamming distance between x and y. For a subset S ⊆ [d], let ϕS :
{0, 1}d → {0, 1, 2, 3} be defined as ϕS(x) =

∑
i∈S xi mod 4.
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For x, y ∈ {0, 1}d satisfying |x− y|1 ≥ 3, let j1, j2, j3 be distinct indices where they differ. Pick
S ⊆ [d] uniformly at random by first picking a random subset S1 ⊆ [d] \ {j1, j2, j3} and then taking
its union with a random S2 ⊆ {j1, j2, j3}. For every choice of S1, there exists at least one choice of
S2 such that |ϕS(x)− ϕS(y)| = 2. Therefore,

Pr
S
[|ϕS(x)− ϕS(y)| = 2] ≥ 1/8.

Combining with Equation (13), we have

Pr
S

x∼µ,y∼ν

[|ϕS(x)− ϕS(y)| = 2] ≥ Pr
S
[|ϕS(x)− ϕS(y)| = 2 | |x− y|1 ≥ 3] Pr

x∼µ,y∼ν
[|x− y|1 ≥ 3] ≥ 1/16.

Hence, there is a choice of S ⊆ [d] such that

Pr
x∼µ,y∼ν

[|ϕS(x)− ϕS(y)| = 2] ≥ 1/16.

Hence, there exist r, t ∈ {0, 1, 2, 3} with |r − t| = 2 such that

Pr
x∼µ,y∼ν

[ϕS(x) = r and ϕS(y) = t] ≥ 2−8.

In this case, the set {x|ϕS(x) = r} × {y|ϕS(y) = t} is a 1-monochromatic rectangle of measure at
least 2−8.

In light of Proposition 3.4 it might seem worthwhile to seek a different candidate sign matrix
for establishing a negative answer to Question 1.4. By Proposition 2.5 and the definition of average
margin, for every sign matrix A, we have√

VC(A) ≤ mavg(A)−1 ≤ m(A)−1, (14)

and thus Forster’s method and the VC dimension method cannot imply a negative answer to
Question 1.4. Therefore, rect(A)−1 remains the only known approach.

The following conjecture of Chattopadhyay, Lovett, and Vinyals [CLV19, Problem 6.1] (see
also [HHH21, Conjecture I]), if true, would imply that rect(A)−1 is also small if m(A)−1 is small.

Conjecture 3.5 (Chattopadhyay, Lovett, Vinyals [CLV19]). There exists a function η such that

every sign matrix AX×Y contains an |X |
k × |Y|

k monochromatic rectangle for k ≤ η(m(A)−1).

By Remark 1.10, Conjecture 3.5 is equivalent to the existence of a function η such that every
sign matrix AX×Y , we have

rect(A)−1 ≤ η(m(A)−1).

In particular, assuming Conjecture 3.5, even rect(A)−1 cannot be used towards giving a negative
answer to Question 1.4.

19



3.4 Communication Complexity with Equality Oracle

In Section 3.3, we showed that Question 1.4 can be formulated in terms of the approximate γ2 norm:
Is it true that for sign matrices, ∥A∥γ2,ϵ = O(1) implies rank±(A) = O(1)? As we mentioned in
Conjecture 1.5, we believe that the answer to this question is negative. However, it seems plausible
that such a statement could hold if we strengthen the assumption by replacing the approximate γ2
norm with the γ2 norm:

Conjecture 3.6 (Conjecture 1.14 restated). There exists a function η such that for every sign
matrix A, we have rank±(A) ≤ η(∥A∥γ2).

Zero-one valued matrices that satisfy ∥A∥γ2 = O(1) are important in operator theory as they
correspond to the bounded idempotents of the algebra of Schur multipliers. Inspired by Cohen’s
idempotent theorem in harmonic analysis, a characterization of these matrices was conjectured in
[HHH21]. To state this conjecture, we need to introduce the notion of a blocky matrix. We call a
zero-one valued matrix MX×Y blocky if

{(x, y) | Mxy = 1} =
⋃
i

Xi × Yi,

for disjoint sets Xi ⊆ X and disjoint sets Yi ⊆ Y. A simple example of a blocky matrix is the identity
matrix. Note that every blocky matrix can be obtained from the identity matrix by duplicating
rows and columns and adding all zero rows and columns. Since the γ2 norm is invariant under
these operations, every non-zero blocky matrix M satisfies ∥M∥γ2 = 1. It is shown in [Liv95] that
blocky matrices are precisely the set of Boolean matrices with ∥M∥γ2 ≤ 1.

Blocky matrices are related to deterministic communication complexity with access to an equal-
ity oracle. In this model, a protocol for a sign matrix A corresponds to a binary tree. Each non-leaf
node v in the tree corresponds to a query to eq(av(x), bv(y)), where eq(a, b) = 1 if a = b and −1
otherwise. Note that av(x) and bv(y) can be computed, respectively, by the first and the second
party in the communication protocol. Every input (x, y) naturally corresponds to a path from the
root of the tree to a leaf, and it is required that the leaf is labeled with the correct value Axy.
The cost of the protocol is the depth of the tree. The deterministic communication complexity of
the matrix A with access to an equality oracle, denoted by Deq(A), is the smallest depth of such a
protocol for A.

Note that for any two functions a(x) and b(y), the function (x, y) 7→ eq(a(x), b(y)) corresponds
to an X×Y blocky matrix as its 1’s consist of a union of row-disjoint and column-disjoint rectangles.

Conjecture 3.7 ([HHH21, Conjecture III]). For every sign-matrix A, if ∥A∥γ2 = O(1), then A
can be expressed as a ±1-linear combination of O(1) blocky matrices, equivalently Deq(A) = O(1).

The following theorem shows that if Conjecture 3.7 is true, then the answer to Conjecture 1.14
is positive.

Theorem 3.8. For every sign matrix AX×Y , we have

rank±1(A) ≤ 4D
eq(A).

Proof. We proceed by induction on d := Deq(A). When d = 1, A corresponds to a blocky matrix,
which in fact has rank±(A) ≤ 3. For larger d, consider a cost d protocol for a sign matrix A and
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suppose the equality query at the root of tree is eq(a(x), b(y)). We may assume without loss of
generality that a(x), b(y) ∈ N. Let SX×Y be the matrix with entries Sxy = 1a(x)=b(y). We branch
according to the output of the first query either to the left or the right subtree of the root, each
corresponding to a protocol of cost at most d−1. Let the corresponding matrices for these protocols
be Π1 and Π2, and note that

A = S ◦Π1 + (J− S) ◦Π2,

where J := JX×Y is the all-ones matrix. By the induction hypothesis, Π1 and Π2 have sign-rank
at most ≤ 4d−1. Let Π̃1 and Π̃2 be real matrices with rank at most 4d−1 that satisfy sgn(Π̃1) = Π1

and sgn(Π̃2) = Π2. Let EX×Y be the rank-3 matrix with entries Exy = (a(x) − b(y))2. Note that
for a sufficiently large k, we have

A = sgn(Π̃1 + kE ◦ Π̃2).

Finally, we have

rank(Π̃1 + kΠ̃2 ◦ E) ≤ rank(Π̃1) + rank(Π̃2) · rank(E) ≤ 4d−1 + 3 · 4d−1 = 4d.

Conjecture 3.7 is inspired by quantitative versions of Cohen’s seminal idempotent theorem in
harmonic analysis, developed by Green and Sanders [GS08a, GS08b] and Sanders [San19, San11,
San20a]. As it is noticed in [HHH21], these theorems verify Conjecture 3.7 for a large natural
class of matrices: sign matrices AG×G where G is a finite group and the entries are defined as
Axy = f(xy−1) for some f : G → {−1, 1}. Note that taking G = Zn

2 corresponds to the class of
xor-lifts, which is a well studied class of functions in communication complexity. In the following
corollary, we combine these results with Theorem 3.8 to verify Conjecture 1.14 for this class of
matrices.

Corollary 3.9. There exists a function η such that the following holds. If f : G → {−1, 1} for a
finite group G, and AG×G is the sign matrix with entries A(x, y) = f(xy−1), then

rank±(A) ≤ η(∥A∥γ2).

In the case of abelian G, we have

rank±(A) ≤ exp
(
exp
(
C∥A∥4γ2

))
,

Proof. By applying results of Davidson and Donsig [DD07] and Mathias [Mat93], it is shown in
[HHH21, Corollary 3.13] that every matrix AG×G with Axy = f(xy−1) for a function f : G → R
satisfies

∥A∥γ2 =
1

|G|
∥A∥tr = ∥f∥A(G),

where ∥f∥A(G) denotes the Fourier algebra norm of f .
In particular, for the matrix A in the statement of Corollary 3.9, we have ∥A∥γ2 = ∥f∥A(G), and

f : G → {−1, 1}. This puts us in the setting of idempotent theorems in harmonic analysis: [San11,
Theorem 1.2] states that there is a constant ℓ = L(∥f∥A(G)), subgroups H1, . . . ,Hℓ ⊆ G, elements
a1, . . . , aℓ ∈ G, and signs σ1, . . . , σℓ ∈ {−1, 1} such that

f =
ℓ∑

i=1

σi1Hiai .
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In particular

Axy =
ℓ∑

i=1

σi1Hiai(xy
−1).

This implies Deq(A) ≤ ℓ as 1Hiai(xy
−1) can be evaluated using a single equality oracle query to

check that x and aiy belong to the same right coset of Hi.
WhenG is an abelian group, Sanders [San20b] proved that it is possible to take ℓ ≤ exp

(
C∥f∥4A

)
,

which combined with Theorem 3.8 gives the desired double exponential bound.

3.5 Sign-rank of Semi-algebraic matrices, an open problem.

We start by discussing why Question 1.11, Question 1.12, and Question 1.13 are equivalent. Recall
that a d-dimensional semi-algebraic set of description complexity t is of the form{

y ∈ Rd : Γ(1p1(y)≥0, . . . ,1pt(y)≥0) = 1
}
.

for a predicate Γ : {0, 1}t → {0, 1} and polynomials p1, . . . , pt on d variables.

Proof of Equivalence of Question 1.11 and Question 1.12. Clearly, Question 1.12 is a special case
of Question 1.11. In order to prove the nontrivial direction of this equivalence, consider a semi-
algebraic sign-matrix A defined by points u1, . . . , um ∈ Rd and semi-algebraic setsK1, . . . ,Kn ⊆ Rd,
each with description complexity t. Note that there are only 22

t
different possible predicates

{0, 1}t → {0, 1}, and hence in Question 1.11, we can assume without loss of generality that all the
sets Ki are defined using the same predicate Γ : {0, 1}t → {0, 1}.

Let p ∈ R[x1, . . . , xd] be a polynomial of degree t. Let Id,t denote the set of all α = (α1, . . . , αd) ∈
Zd
≥0 with

∑d
i=1 αi ≤ t. The monomials of degree at most t in variables x1, . . . , xd are indexed by

α ∈ Id,t with the correspondence xα = xα1
1 . . . xαd

d . Note that every polynomial p(x) =
∑

α∈Id,t aαx
α

of degree at most t corresponds to an inner product

p(x) = ⟨Ψt(p),Φt(x)⟩,

where Ψt(p) := (aα)α∈Id,t ∈ R|Id,t| and Φt(x) := (xα)α∈Id,t ∈ R|Id,t|. Applying this linearization idea
to all the defining polynomials of the semi-algebraic sets allows us to view the matrix A as a single
predicate applied to a collection of sign matrices, each of sign-rank at most |Id,t| each.

Hence, Question 1.11, Question 1.12, and Question 1.13 are all equivalent. Question 1.13, in
particular, has a simple statement. Regarding this formulation, Bun, Mande, and Thaler [BMT21]
used Forster’s method to show the existence of matrices A and B of sign-rank d such that rank±(A∧
B) ≥ Ω(d2). However, the following corollary of Theorem 3.1 shows that neither of the known
methods can imply a negative answer to Question 1.13.

Corollary 3.10 (Corollary to Theorem 3.1). If A and B are two m×n sign matrices of sign-rank
at most d, then

VC(A ∧B) ≤ 20d and mavg(A ∧B)−1 ≤ rect(A ∧B)−1 ≤ 24d+4.
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Proof. By Equation (1), we have VC(A),VC(B) ≤ d. By Theorem 1.9, we have

rect(A), rect(B) ≥ 2−2(d+1),

which immediately implies

rect(A ∧B) ≥ rect(A) rect(B) ≥ 2−4(d+1).

Hence, by Theorem 3.1, we have

mavg(A ∧B)−1 ≤ rect(A ∧B)−1 ≤ 24d+4.

We can combine this with Proposition 2.5 to upper bound VC(A ∧B). However, as it is shown in
[BEHW89], a direct proof yields a stronger upper bound:

Consider a set of k columns. By the Sauer-Shelah lemma, the corresponding m×k submatrices
of A and B have at most

∑d
i=0

(
k
i

)
distinct rows. It follows that the corresponding submatrix in

A ∧B has at most
(∑d

i=0

(
k
i

))2
distinct rows. For k = 20d, we have

(
d∑

i=0

(
k

i

))2

< (d+ 1)2
(
ke

d

)2d

≤ (d+ 1)2 (20e)2d ≤ (d+ 1)2212d < 220d,

and thus no set of 20d columns is shattered in A ∧B.

Intersections of Half-spaces. The problem of bounding the sign-rank of A∧B is closely related
to bounding the sign-rank of the matrices that are defined by points and intersections of pairs of
half-spaces. For distinct y, y′ ∈ Rd, let Iy,y′ = {z | ⟨y, z⟩ > 0} ∩ {z | ⟨y′, z⟩ > 0} ⊂ Rd denote the
intersection of the two half-spaces defined by y and y′, respectively. We refer to these sets as half-
space intersections. Given a finite set of points X ⊆ Rd and a finite set of half-space intersections
I in Rd, define the matrix FX×I as

Fx,I =

{
1 x ∈ I

−1 x ̸∈ I
.

Is sign-rank of F bounded by a constant cd? Note that for x ∈ X and Iy,y′ ∈ I, we have
Fx,I = sgn ⟨x, y⟩ ∧ sgn ⟨x, y′⟩, and thus F can be expressed as the ∧ of two sign matrices of sign-
rank d. Consequently, such a constant cd exists if the answer to Question 1.13 regarding the
sign-rank of A ∧B is positive.

It turns out that the opposite direction is also true, but with a slight increase in the value of d.

Claim 3.11. If the constant c2d−1 exists, then for sign matrices A and B with rank±(A), rank±(B) ≤
d, we have rank±(A ∧B) = O(c2d−1).

Proof. Consider two sign matrices Am×n and Bm×n of sign-rank at most d. There are vectors
ui, vj , u

′
i, v

′
j ∈ Rd such that Aij = sgn⟨ui, vj⟩ and Bij = sgn⟨u′i, v′j⟩ for i ∈ [m] and j ∈ [n]. By

adding a small independent noise to the vectors, we may assume that all the coordinates of these
vectors are non-zero. We then normalize these vectors according to the value of their last coordinate
and assume that the their last coordinates are ±1.
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We partition the set of rows i ∈ [m] into 22d many parts according to the value of (sgn(ui), sgn(u
′
i)) ∈

{−1, 1}d × {−1, 1}d. Similarly, we partition the columns into 22d parts according to the sign pat-
terns of vj and v′j . These two partitions divide A∧B into 22d × 22d blocks, and to prove the claim,
it suffices to bound the sign-rank of each block. Hence, without loss of generality, we assume that
(sgn(ui), sgn(u

′
i), sgn(vj), sgn(v

′
j)) is a fixed vector in {−1, 1}4d that does not depend on i or j.

Since ⟨ui, vj⟩ = ⟨−ui,−vj⟩, we can assume that the last coordinate of every ui and u′i is positive
and thus it is equal to 1. Let a, a′ ∈ {−1, 1} denote the last coordinates of vj ’s and v′j ’s, respectively.

For every vector w ∈ Rd, let w̃ ∈ Rd−1 denote the restriction of w to the first d − 1 coordinates.
Note that

⟨ui, vj⟩ =
〈
(ũi, ũ′i, 1), (ṽj , 0

d−1, a)
〉

and 〈
u′i, v

′
j

〉
=
〈
(ũi, ũ′i, 1), (0

d−1, ṽ′j , a
′)
〉
,

thus sgn ⟨ui, vj⟩ ∧ sgn
〈
u′i, v

′
j

〉
= 1 iff (ũi, ũ′i, 1) belongs to the intersection of the two half-spaces

defined by (ṽj , 0
d−1, a) and (0d−1, ṽ′j , a

′).

It is communicated to us by Shay Moran that it is known that the matrix F defined by half-space
intersections in R3 has bounded sign-rank.

Proposition 3.12 (Communicated by Shay Moran). There exists a constant c3 such that given a
finite set X of points x ∈ R3 and a finite set I of half-space intersections Iy,y′ in R3, the matrix
FX×I with entries

Fx,I =

{
1 x ∈ I

−1 x ̸∈ I

satisfies rank±(F ) ≤ c3.

Proof. Recall that for x ∈ X and I := Iy,y′ ∈ I, we have

Fx,I = sgn ⟨x, y⟩ ∧ sgn
〈
x, y′

〉
.

Adding a small independent noise to the vectors x, y, y′ allows us to assume throughout the proof
that these vectors have several non-degeneracy properties. For example, we may assume that all
the coordinates are non-zero. Similar to the proof of Claim 3.11, it suffices to consider the case
where

• The sign pattern of x, y, y′ is fixed. More precisely, there exists Γ ∈ ({−1, 1}3)3 such that
(sgn(x), sgn(y), sgn(y′)) = Γ for all x ∈ X and Iy,y′ ∈ I.

• The third coordinate of every x ∈ X is 1.

Every x ∈ X is of the form x = (x1, x2, 1), corresponding to the point (x1, x2) ∈ R2. For every
y ∈ R3, define ℓy : R2 → R as ℓy(x) := ⟨x, y⟩ = x1y1 + x2y2 + y3. For I := Iy,y′ ∈ I, consider the
two lines on R2 defined by ℓy(x) = 0 and ℓy′(x) = 0, and let qI = (qI1 , q

I
2) be their intersection, i.e.,

the unique solution to ℓy(q) = ℓy′(q) = 0. By the discussion in the first paragraph of the proof, we
may assume that there exists an ϵ > 0 such that

• The two lines ℓy(x) = 0 and ℓy′(x) = 0 are not parallel, and thus the point qI is well-defined.
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• |qI1 − x1| > ϵ for all x = (x1, x2, 1) ∈ X and I ∈ I.

• For every Iy,y′ ∈ I and x ∈ X , we have |ℓy(x)|, |ℓy′(x)| > ϵ.

Note that the lines ℓy(x) = 0 and ℓy′(x) = 0 divide R+ into four open regions such that the signs
of ℓy(x) and ℓy′(x) are fixed in each region. Let PI be the unique region that is entirely contained
in the half-space {(x1, x2) : x1 > qI1}. Let (σI , σ′

I) ∈ {−1,+1}2 be such that sgn(ℓy(x)) = σI and
sgn(ℓy′(x)) = σ′

I for every x ∈ PI .
We will construct a real matrix BX×I of low rank such that for all x ∈ X and I := Iy,y′ ∈ I,

we have
sgn(Bx,I) = sgn ⟨x, y⟩ ∧ sgn

〈
x, y′

〉
= Fx,I .

To define the entries of B, we consider the four possible cases for (σI , σ
′
I).

ly′(x) = 0

ly(x) = 0
x1 = qI1

−− Case: ++

+−

−+

ly′(x) = 0

ly(x) = 0
x1 = qI1

++ Case: −+

−−

++

ly′(x) = 0

ly(x) = 0
x1 = qI1

−+ Case: +−

++

−−

ly′(x) = 0

ly(x) = 0
x1 = qI1

++ Case: −−

−+

+−

Figure 1: The grey area is PI . The pairs of signs correspond to sgn(ℓy), sgn(ℓy′) on each region.

• Case (σI , σ
′
I) = (+1,+1): Let K be a large constant, and for every x ∈ X , define

Bx,I := eK(x1−qI1)ℓy(x)ℓy′(x)− 1.

By choosing K to be sufficiently large, for every x ∈ X , we have

sgn(Bx,I) =

{
−1 x1 < qI1
sgn(ℓy(x)ℓy′(x)) x1 > qI1

.

Note that as a function of x, we have

Bx,I ∈ span
{
eKx1 , eKx1x1, e

Kx1x2, e
Kx1x21, e

Kx1x22, e
Kx1x1x2, 1

}
,
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and thus the restriction of B to the points Iy,y′ that satisfy the conditions of this case has
rank at most 7.

• Case (σI , σ
′
I) = (−1,+1): In this case, define

Bx,I := eK(x1−qI1)ℓy(x) + ℓy′(x),

and note that for every x ∈ X , we have

sgn(Bx,I) =

{
sgn(ℓy′(x)) x1 < qI1
sgn(ℓy(x)) x1 > qI1

.

In this case, as a function of x, we have

Bx,I ∈ span
{
eKx1 , eKx1x1, e

Kx1x2, x1, x2, 1
}
,

and thus the restriction of B to these columns has rank at most 6.

• Case (σI , σ
′
I) = (+1,−1): In this case, define

Bx,(y,y′) := eK(x1−qI1)ℓy′(x) + ℓy(x),

and note that for every x ∈ X , we have

sgn(Bx,I) =

{
sgn(ℓy(x)) x1 < qI1
sgn(ℓy′(x)) x1 > qI1

.

Similar to the previous case, the restriction of B to these columns has rank at most 6.

• Case (σI , σ
′
I) = (−1,−1): In this case, define

Bx,I := eK(qI1−x1)ℓy(x)ℓy′(x)− 1,

and note that for every x ∈ X , we have

sgn(Bx,I) =

{
−1 x1 > qI1
sgn(ℓy(x)ℓy′(x)) x1 < qI1

.

In this case, as a function of x, we have

Bx,I ∈ span
{
e−Kx1 , e−Kx1x1, e

−Kx1x2, e
−Kx1x21, e

−Kx1x22, e
−Kx1x1x2, 1

}
,

which shows that the rank is at most 7.

These cases are illustrated in Figure 1. In all cases, for every x ∈ X , we have

sgn(Bx,I) = sgn ⟨x, y⟩ ∧ sgn
〈
x, y′

〉
= Fx,I .

Proposition 3.12 combined with Claim 3.11 implies the following special case of Question 1.13
for sign matrices of sign-rank at most 2.

Corollary 3.13. There is a constant c > 0 such that for every two sign matrices Bm×n and Cm×n

with sign-rank at most 2, we have rank±(B ∧ C) ≤ c.
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3.6 Average Communication Complexity

In this section, we observe a simple connection between sign-rank and another model of commu-
nication complexity, average communication complexity. For any distribution µ over X × Y, let
CCavg

µ (A) be the smallest expected communication complexity of a deterministic protocol that
computes A correctly on all inputs. Moreover, define

CCavg(A) = sup
µ

CCavg
µ (A),

where µ ranges over all product distributions over X × Y.

Proposition 3.14. For every sign-matrix AX×Y , we have

CCavg(A) ≤ 2 rect(A)−1.

Proof. Let µ be any distribution on X × Y and let δ = rect(A). By definition, A has a monochro-
matic rectangle R = S × T such that µ(R) ≥ δ. The two parties recursively proceed as follows.
Given x and y as inputs, after communicating the two bits 1x∈S and 1y∈T , they can agree on
whether (x, y) ∈ R. At which point, they have reduced their search to one of the four matrices
AS×T , ASc×T , AS×T c , and ASc×T c . Note that in the first case, both parties know the answer and
can conclude the protocol. In all the other three cases, the µ-measure of the search-space has been
reduced to at most 1 − δ, and they can recurse on the resulting submatrix according to the same
protocol applied to µ conditioned on the submatrix.

For a distribution µ, let cµ denote the average cost of the above protocol, and let µ be the
maximizer for cµ. Let µ1, µ2, µ3 denote µ conditioned on S × T c, Sc × T c, and Sc × T respectively.
We have

cµ ≤ 2Pr[(x, y) ∈ R] + Pr[(x, y) ̸∈ R] · (2 + max
i

cµi) = 2 + Pr[(x, y) ̸∈ R] max
i

cµi ≤ 2 + (1− δ)cµ.

Therefore, cµ ≤ 2/δ as claimed.

Combined with Theorem 1.9, we get the following bound in terms of sign-rank.

Corollary 3.15. For every sign matrix A we have

CCavg(A) ≤ 22rank±(A)+3.

Theorem 3.2 shows that there is no converse to Corollary 3.15. In particular, there are n×n sign
matrices A with sign-rank nΩ(1) and rect(A) = O(1). By Proposition 3.14, we have CCavg(A) =
O(1), and thus there is a strong separation between sign-rank and CCavg(A).

4 Concluding remarks

In light of the results in the present paper, the following open problem captures the limitation of
the currently known lower bound techniques for sign-rank.

Problem 4.1. Construct an explicit sequence of matrices An such that rect(An)
−1 = O(1) and

lim
n→∞

rank±(An) = ∞.
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By Theorem 3.2, we know such sequences of matrices exist. On the other hand, by Theorem 3.1
and Proposition 2.5, we have √

VC(A) ≤ mavg(A)−1 ≤ rect−1(A),

and thus none of the known lower bound techniques are capable of solving Problem 4.1. Note that
a positive answer to Conjecture 1.5 would solve Problem 4.1.

Finally, let us mention that it is unclear whether the proof of Proposition 3.12 can be generalized
to infinite matrices, which raises the following intriguing question.

Question 4.2. Is the sign-rank of an infinite sign matrix AN×N finite if the sign-rank of every
finite submatrix of AN×N is bounded by a fixed constant d?
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A Appendix

Recall the following well-known inequality.

Lemma A.1 (Hoeffding’s inequality). For i = 1, . . . , n, let Xi be independent random variables
taking values from range [ai, bi] and let X =

∑n
i=1Xi. Then,

Pr[|X − E[X]| ≥ t] < 2 exp

(
− 2t2∑

i(bi − ai)2

)
.

The next proposition proves the equivalence of the approximate γ2 norm and the randomized
communication complexity.

Proposition A.2 ([LS09b, HHH21]). For every sign matrix AX×Y and every ϵ ∈ (0, 1), we have

log ∥A∥γ2,ϵ ≤ R ϵ
2
(A) ≤ O

(
log(1/ϵ)

(1− ϵ)2
∥A∥2γ2,ϵ

)
.

Proof. Lower-bound: Consider a randomized protocol πR of cost c = R ϵ
2
(A) that computes AX×Y

with two-sided error at most ϵ
2 . In this notation, the subscript R denotes the random variable that

corresponds to the randomness in the protocol, and any fixation of R to a value r corresponds
to a deterministic protocol πr of communication cost at most c. Let Πr denote the matrix that
corresponds to the output of the deterministic protocol πr. A deterministic communication protocol
πr of cost c provides a partition of X × Y into at most 2c rectangles, and thus Πr can be written
as a sum of at most 2c rank-1 sign matrices. Since the γ2 norm of a non-zero rank-1 sign matrix is
1, we have ∥Πr∥γ2 ≤ 2c. By convexity

∥ER[ΠR]∥γ2 ≤ ER [∥ΠR∥γ2 ] ≤ max
r

∥Πr∥γ2 ≤ 2c.

Since πR has error at most ϵ/2, we have

|Axy − ER[πR(x, y)]| = 2 · Pr[Axy ̸= πR(x, y)] ≤ ϵ,

which implies ∥A∥γ2,ϵ ≤ 2c as desired.
Upper-bound: The approximate norm ∥A∥γ2,ϵ is defined as the infimum of ∥B∥γ2 such that

∥A−B∥ ≤ ϵ. Hence, for every η > 0, there exists a real matrix B with ∥B∥γ2 ≤ ∥A∥γ2,ϵ and
∥A−B∥∞ ≤ ϵ+ η. Pick a small positive η < 1−ϵ

2 , and consider such a B.
As it is stated in [LS09a, Equation (2.3)], it follows from Grothendieck’s inequality that the

γ2 norm is equivalent to the so-called ν-norm. In particular, there exist rank-1 sign matrices
B1, . . . , Bm and real numbers λ1, . . . , λm ∈ R with L :=

∑m
i=1 |λi| ≤ π

2 ln(1+
√
2)
∥B∥γ2 such that

B =

m∑
i=1

λiBi.
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We will convert this to a randomized protocol. Pick D randomly from {B1, . . . , Bm} according
to the probability distribution

Pr[D = Bi] =
|λi|∑k
i=1 |λi|

.

Note that for every (x, y) ∈ X × Y, we have E[Dxy] = Bxy/L and |Dxy| = 1. Let δ = 1−ϵ
2 and

N = 2δ−2L2 log(4/ϵ) = 8L2 log(4/ϵ)
(1−ϵ)2

. LetD1, . . . , DN be i.i.d. copies ofD and define D̃ = L
N

∑N
i=1Di.

Note that for every (x, y) ∈ X × Y, by applying Hoeffding’s inequality (Lemma A.1), we have

Pr
[
|D̃xy −Bxy| ≥ δ

]
< 2 exp

(
− 2δ2

4N · (L/N)2

)
≤ ϵ

2
,

where the last inequality is by the choice of N .
Let E be the ±1 rounding of D̃, that is Exy = 1 iff D̃xy ≥ 0. Since ∥B−A∥∞ ≤ ϵ+ η, for every

(x, y) ∈ X × Y, we have

Pr[Exy ̸= Axy] ≤ Pr
[
|D̃xy −Bxy| ≥ 1− ϵ− η

]
≤ Pr

[
|D̃xy −Bxy| ≥

1− ϵ

2

]
≤ Pr

[
|D̃xy −Bxy| ≥ δ

]
≤ ϵ

2
.

Each Di can be computed with communication cost at most 2. Since D̃xy can be computed
by rounding a linear combination of N such Di’s, it can be computed with communication cost at

most 2N = O
(
log(1/ϵ)
(1−ϵ)2

∥A∥2γ2,ϵ
)
. This concludes the statement.
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