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Abstract
The Merge Resolution proof system (M-Res) for QBFs, proposed by Beyersdorff et al. in 2019,
explicitly builds partial strategies inside refutations. The original motivation for this approach was
to overcome the limitations encountered in long-distance Q-Resolution proof system (LD-Q-Res),
where the syntactic side-conditions, while prohibiting all unsound resolutions, also end up prohibiting
some sound resolutions. However, while the advantage of M-Res over many other resolution-based
QBF proof systems was already demonstrated, a comparison with LD-Q-Res itself had remained
open. In this paper, we settle this question. We show that M-Res has an exponential advantage over
not only LD-Q-Res, but even over LQU+-Res and IRM, the most powerful among currently known
resolution-based QBF proof systems. Combining this with results from Beyersdorff et al. 2020, we
conclude that M-Res is incomparable with LQU-Res and LQU+-Res.

Our proof method reveals two additional and curious features about MRes: (i) M-Res is not
closed under restrictions, and is hence not a natural proof system, and (ii) weakening axiom clauses
with existential variables provably yields an exponential advantage over MRes without weakening.
We further show that in the context of regular derivations, weakening axiom clauses with universal
variables provably yields an exponential advantage over M-Res without weakening. These results
suggest that M-Res is better used with weakening, though whether M-Res with weakening is closed
under restrictions remains open. We note that even with weakening, M-Res continues to be simulated
by eFrege + ∀red (the simulation of ordinary M-Res was shown recently by Chew and Slivovsky).
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1 Introduction

Testing satisfiability of CNF formulas (the propositional SAT problem) is NP-complete and
is hence believed to be hard in the worst case. Despite this, modern SAT solvers routinely
solve industrial SAT instances with hundreds of thousands or even millions of variables in
close to linear time [31, 13, 24]. Recently some mathematics problems, some of which were
open for almost a century, have been solved by employing SAT solvers (see [21] for a survey).
This apparent disconnect between theory and practice has led to a more detailed study of
the different solving techniques.

Most successful SAT solvers use a non-deterministic algorithm called conflict-driven clause
learning (CDCL) [28, 25], which is inspired by and an improvement of the DPLL algorithm
[18, 17]. The solvers use some heuristics to make deterministic or randomized choices for the
non-deterministic steps of the CDCL algorithm. The CDCL algorithm (and the resulting
solvers) can be studied by analysing a proof system called resolution. Resolution contains a
single inference rule, which given clauses x ∨ A and x ∨ B, allows the derivation of clause
A ∨B [11, 26]. To be more precise, from a run of the CDCL algorithm (or a solver) on an
unsatisfiable formula, resolution refutations of the same length (as the run of the solver)
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can be extracted. This means that refutation size lower bounds on resolution translate to
runtime lower bounds for the CDCL algorithm and the solvers based on it. See [24] for more
on CDCL based SAT solvers and [13] for their connection to resolution.

With SAT solvers performing so well, the community has set sights on solving Quantified
Boolean formulas (QBFs). Some of the variables in QBFs are quantified universally, allowing
a more natural and succinct encoding of many constraints. As a result, QBF solving has
many more practical applications (see [27] for a survey). However, it is PSPACE-complete
[29] and hence believed to be much harder than SAT.

The main way of tackling QBFs is by adapting resolution (and CDCL based solvers)
to handle universal variables. There are two major ways of doing this, which have given
rise to two orthogonal families of proof systems. Reduction-based systems allow dropping
a universal variable from a clause if some conditions are met — proof systems Q-Res and
QU-Res [23, 20] are of this type. In contrast, expansion-based systems eliminate universal
variables at the outset by expanding the universal quantifiers into conjunctions, giving a
purely propositional formula — proof systems ∀Exp + Res and IR [22, 9] are of this type. It
was soon observed that, under certain conditions, producing a clause containing a universal
variable in both polarities (to be interpreted in a special way, not as a tautology) is not
only sound but also very useful for making proofs shorter [33, 19]. This led to new proof
systems of both types: reduction-based systems LD-Q-Res, LQU-Res and LQU+-Res [2, 3],
and expansion-based system IRM [9].

Since all these proof systems degenerate to resolution on propositional formulas, lower
bounds for resolution continue to hold for these systems as well. However such lower bounds
do not tell us much about the relative powers and weaknesses of these systems. QBF proof
complexity aims to understand this. This is done by finding formula families which have
polynomial-size refutations in one system but require super-polynomial size refutations in
the other system. For example, among the reduction-based and expansion-based resolution
systems, LQU+-Res and IRM respectively are the most powerful and are known to be
incomparable [3, 9].

In this paper, we study a proof system called Merge Resolution (M-Res). This system was
proposed in [6] with the goal of circumventing a limitation of LD-Q-Res. The main feature of
this system is that each line of the refutation contains information about partial strategies for
the universal player in the standard two-player evaluation game associated with QBFs. These
strategies are built up as the proof proceeds. The information about these partial strategies
allows some resolution steps which are blocked in LD-Q-Res. This makes M-Res very powerful

— it has short refutations for formula families requiring exponential-size refutations in Q-Res,
QU-Res, ∀Exp + Res, and IR, and also in the system CP + ∀red introduced in [10]. However,
the authors of [6] did not show any advantage over LD-Q-Res — the system that M-Res was
designed to improve. They only showed advantage over a restricted version of LD-Q-Res, the
system reductionless LD-Q-Res. In a subsequent paper [7], limitations of M-Res were shown

— there are formula families which have polynomial-size refutations in QU-Res, LQU-Res,
LQU+-Res and CP+∀red, but require exponential size refutations in M-Res. This, combined
with the results from [6], showed that M-Res is incomparable with QU-Res and CP + ∀red.
More recently, it has been shown that eFrege + ∀red proof system p-simulates M-Res [15].
On the solving side, M-Res has recently been used to build a solver, though with a different
representation for strategies [12].

In this paper, we show that M-Res is indeed quite powerful, answering one of the main
questions left open in [6]. We show that there are formula families which have polynomial-size
refutations in M-Res but require exponential-size refutations in LD-Q-Res. In fact, we show
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Figure 1 Relations among resolution-based QBF proof systems, with new results and observations
highlighted using thicker lines. In addition, regular M-ResW∀ strictly p-simulates regular M-Res.
(i) Lines from a big grey box mean that the line is from every proof system within the box. (ii) The
missing relations follow from transitivity, otherwise the systems are incomparable.

that there are formula families having short refutations in M-Res but requiring exponential-
size refutations in LQU+-Res and IRM — the most powerful resolution-based QBF proof
systems. Combining this with the results in [7], we conclude that M-Res is incomparable
with LQU-Res and LQU+-Res; see Theorems 3.6 and 3.12.

The power of M-Res is shown using modifications of two well-known formula families:
KBKF-lq [3] which is hard for M-Res [7], and QUParity [9] which we believe is also hard. The
main observation is that the reason making these formulas hard for M-Res is the mismatch
of partial strategies at some point in the refutation. This mismatch can be eliminated if
the formulas are modified appropriately. The resultant formulas, called KBKF-lq-split and
MParity, have polynomial-size refutations in M-Res but require exponential-size refutations
in IRM and LQU+-Res respectively.

We observe that the modification of KBKF-lq is actually a weakening of the clauses.
This leads to an observation that weakening adds power to M-Res. Weakening is a rule
that is sometimes augmented to resolution. This rule allows the derivation of A ∨ x from A,
provided that A does not contain the literal x. The weakening rule is mainly used to make
resolution refutations more readable — it can not make them shorter [1]. The same holds for
all the known resolution-based QBF proof systems with the exception of M-Res — allowing
weakening can make M-Res refutations exponentially shorter. We distinguish between two
types of weakenings, namely existential clause weakening and strategy weakening. Both these
weakenings were defined in the original paper [6] in which M-Res was introduced. However,
these weakenings were used only for Dependency-QBFs (DQBFs); in that setting they are
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necessary for completeness. The potential use of weakening for QBFs was not explicitly
addressed. Here, we show that existential clause weakening adds exponential power to
M-Res; see Theorem 4.1. We do not know whether strategy weakening adds power to M-Res.
However, we show that it does add exponential power to regular M-Res; see Theorem 4.5.
At the same time, weakening of any or both types does not make M-Res unduly powerful; we
show in Theorem 4.13 that eFrege + ∀red polynomially simulates (p-simulates) M-Res even
with both types of weakenings added. This is proven by observing that the p-simulation of
M-Res in [15] can very easily be extended to handle weakenings.

Another observation from our main result is that M-Res is not closed under restrictions.
Closure under restrictions is a very important property of proof systems. For a (QBF)
proof system, it means that restricting a false formula by a partial assignment to some of
the (existential) variables does not make the formula much harder to refute. Note that a
refutation of satisfiability of a formula implicitly encodes a refutation of satisfiability of all
its restrictions, and it is reasonable to expect that such refutations can be extracted without
paying too large a price. This is indeed the case for virtually all known proof systems to
date. Algorithmically, CDCL-based solvers work by setting some variables and simplifying
the formula [24]. Without closure under restrictions, setting a bad variable may make the
job of refuting the formula exponentially harder. Because of this reason, proofs systems
which are closed under restrictions have been called natural proof systems [4]. We show in
Theorem 4.14 that M-Res, with and without strategy weakening, is unnatural. We believe
this would mean that it is hard to build QBF solvers based on it. On the other hand, we
do not yet know whether it remains unnatural if existential clause weakening or both types
of weakenings are added. We believe that this is the most important open question about
M-Res — a negative answer can salvage it.

Our results are summarized in Figure 1.

2 Preliminaries

The sets {1, 2, . . . , n} and {m,m+ 1, . . . , n} are abbreviated as [n] and [m,n] respectively. A
literal is a variable or its negation; a clause is a disjunction of literals. We will interchangeably
denote clauses as disjunctions of literals as well as sets of literals.

A Quantified Boolean Formula (QBF) in prenex conjunctive normal form (p-cnf), denoted
Φ = Q.ϕ, consists of two parts: (i) a quantifier prefix Q = Q1Z1, Q2Z2, . . . , QnZn where
the Zi are pairwise disjoint sets of variables, each Qi ∈ {∃,∀}, and Qi ̸= Qi+1; and (ii) a
conjunction of clauses ϕ with variables in Z = Z1 ∪ · · · ∪ Zn. In this paper, when we say
QBF, we mean a p-cnf QBF. The set of existential (resp. universal) variables of Φ, denoted
X (resp. U), is the union of Zi for which Qi = ∃ (resp. Qi = ∀).

The semantics of a QBF is given by a two-player evaluation game played on the QBF.
In a run of the game, the existential player and the universal player take turns setting the
existential and the universal variables respectively in the order of the quantification prefix.
The existential player wins the run of the game if every clause is set to true. Otherwise
the universal player wins. The QBF is true (resp. false) if and only if the existential player
(resp. universal player) has a strategy to win all potential runs, i.e. a winning strategy.

For a formula Φ and a partial assignment ρ to some of its variables, Φ↾ρ denotes the
restricted formula resulting from setting the specified variables according to ρ.

▶ Definition 2.1. A QBF proof system P is closed under restrictions if for every false
QBF Φ and every partial assignment ρ to some existential variables, the size of the smallest
P -refutation of Φ↾ρ is at most polynomial in the size of the smallest P -refutation of Φ.
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▶ Remark 2.2. Sometimes a stricter definition is used, requiring that a refutation of Φ↾ρ be
constructible in polynomial time from every refutation of Φ. We will prove that M-Res is not
closed under restrictions for the weaker definition (and hence also for the stricter definition).

▶ Definition 2.3 ([4]). A proof system is natural if it is closed under restrictions.

Merge Resolution
Merge Resolution (M-Res) is a proof system for refuting false QBFs. Its definition is a bit
technical and can be found in [6]. We give an informal description, see [7] for a slightly longer
but still informal description.

Each line of an M-Res refutation consists of an ordered pair — the first element of the
pair is a clause C over the existential variables; and the second part is a set of functions
{Mu | u ∈ U}, one for each universal variable. The function for a particular universal variable
u takes as input an assignment to the existential variables to the left of u in the quantifier
prefix and outputs an assignment for u. Each function is stored as some deterministic
branching program [32] (also called merge-map here) computing the function.

In a refutation, each axiom A is converted into a clause, merge-map pair where C is the
maximal sub-clause of A with existential variables, and the merge-maps falsify each universal
literal in A (constant merge-maps) and leave other universal variables unassigned (trivial
merge-maps). Given two lines L1 = (x ∨A, {Mu

1 | u ∈ U}) and L2 = (x ∨B, {Mu
2 | u ∈ U}),

we can derive (A ∨B, {Mu
3 | u ∈ U}) provided the merge-maps Mu

1 and Mu
2 satisfy certain

conditions. These conditions specify that for each u preceding x in the prefix, either at least
one of Mu

1 or Mu
2 is trivial, or Mu

1 and Mu
2 are isomorphic (and hence compute the same

function). If the rule is applicable, the resultant merge-map Mu
3 is a combination of Mu

1 and
Mu

2 . To be precise, for each u ∈ U ,
if Mu

1 is trivial, then Mu
3 = Mu

2 ;
else if Mu

2 is trivial, then Mu
3 = Mu

1 ;
else if Mu

1 is isomorphic to Mu
2 , then Mu

3 = Mu
1 ;

else if x precedes u in the quantifier prefix, then Mu
3 is the following branching program:

if x = 0, then go to Mu
1 , otherwise go to Mu

2 . (In this, if Mu
1 and Mu

2 have some nodes
in common, these nodes are not duplicated in Mu

3 . This makes Mu
3 a branching program

rather than a decision tree, and prevents an exponential blowup).

The following invariant is maintained at each line Li = (Ci, {Mu
i | u ∈ U}) of the refut-

ation: for every existential assignment α falsifying Ci, if β = {u = Mu
i (α) | u ∈ U}, then

the assignment α ∪ β falsifies at least one axiom [6]. The end goal is to derive a line whose
existential clause part is □, i.e. the empty clause — implying that the given QBF is false.

For concreteness, we reproduce a simple example from [6]:

▶ Example 2.4. For the QBF family
∃x, ∀u,∃t. (x ∨ u ∨ t) ∧ (x ∨ u ∨ t) ∧

(
x ∨ u ∨ t

)
∧

(
x ∨ u ∨ t

)
, here is an M-Res refutation.

x ∨ t, u = 0 x ∨ t, u = 1
t, u = x

x ∨ t, u = 0 x ∨ t, u = 1
t, u = x

□, u = x

(To be pedantic, each line should contain the merge-map for u. For simplicity, we avoid it
here, describing only the function computed by the merge-map.)
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3 Power of Merge Resolution

In this section, we prove that neither IRM nor LQU+-Res simulates M-Res.

3.1 Advantage over IRM
To show that M-Res is not simulated by IRM, we use a variant of the well-studied KBKF
formula family. This family was first introduced in [23], and along with multiple variants, has
been a very influential example in showing many separations. In particular, it was used to
prove that LD-Q-Res is strictly stronger than Q-Res [19]. The variant KBKF-lq was defined
in [3] and used to show that LD-Q-Res does not simulate QU-Res. In [7], KBKF-lq was also
shown to require exponentially large M-Res refutations. We reproduce the definition of this
family below and then define two further variants that will be useful for our purpose.

▶ Definition 3.1 ([3]). KBKF-lq[n] is the QBF with the quantifier prefix
∃d1, e1,∀x1, . . . ,∃dn, en,∀xn,∃f1, . . . , fn and with the following clauses:

A0 =
{
d1, e1, f1, . . . , fn

}
Ad

i =
{
di, xi, di+1, ei+1, f1, . . . , fn

}
Ae

i =
{
ei, xi, di+1, ei+1, f1, . . . , fn

}
∀i ∈ [n− 1]

Ad
n =

{
dn, xn, f1, . . . , fn

}
Ae

n =
{
en, xn, f1, . . . , fn

}
B0

i =
{
xi, fi, fi+1, . . . fn

}
B1

i =
{
xi, fi, fi+1, . . . fn

}
∀i ∈ [n− 1]

B0
n = {xn, fn} B1

n = {xn, fn}

We now define two new formula families: KBKF-lq-weak and KBKF-lq-split.

▶ Definition 3.2. KBKF-lq-weak has the same quantifier prefix as KBKF, and all the
A-clauses of KBKF-lq, but it has the following clauses instead of B0

i and B1
i :

weak-B0
i = di ∨B0

i

weak-B1
i = di ∨B1

i

}
∀i ∈ [n]

▶ Definition 3.3. KBKF-lq-split has all variables of KBKF-lq and one new variable t quan-
tified existentially in the first block, so its quantifier prefix is ∃t, ∃d1, e1,∀x1, . . . ,∃dn, en,∀xn,

∃f1, . . . , fn. It has all the A-clauses of KBKF-lq, but the following clauses instead of B0
i and

B1
i :

split-B0
i = t ∨B0

i

split-B1
i = t ∨B1

i

T 0
i =

{
t, di

}
T 1

i =
{
t, di

}

 ∀i ∈ [n]

▶ Lemma 3.4. KBKF-lq-weak has polynomial-size M-Res refutations.

Proof. Let L′′
i denote the M-Res-resolvent of weak-B0

i and weak-B1
i . It has only one non-

trivial merge-map, setting xi = di. Starting with A0, resolve in sequence with Ae
1, Ad

1, Ae
2,

Ad
2, and so on up to Ae

n, Ad
n to derive the line with all negated f literals and merge-maps

computing xi = di for each i. Now sequentially resolve this with L′′
1 , L′′

2 , up to L′′
n to obtain

the empty clause. It can be verified that none of these resolutions are blocked, and the final
merge-maps compute the winning strategy xi = di for each i.

The refutation is pictorially depicted below. The abbreviations A0, A
d
i ,weak-B0

i etc. will
denote the clause, merge-map pair corresponding to the respective axioms.
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A0 Ae
1

Le
1 Ad

1

Ld
1

Ld
n−1 Ae

n

Le
n Ad

n

L′
1

weak-B0
1 weak-B1

1

L′′
1

L′
2

L′
n

weak-B0
n weak-B0

n

L′′
n

(□, {x1 = d1, . . . , xn = dn})

Here Le
i , L

d
i , L

′
i, L

′′
i , for all i ∈ [n], are the following lines, with only non-trivial merge-maps

written explicitly:
Le

1 =
({
d1, d2, e2, f1, . . . , fn

}
, {x1 = 1}

)
Le

i =
({
di, di+1, ei+1, f1, . . . , fn

}
, {x1 = d1, . . . , xi−1 = di−1, xi = 1}

)
for all i ∈ [2, n− 1]

Le
n =

({
dn, f1, . . . , fn

}
, {x1 = d1, . . . , xn−1 = dn−1, xn = 1}

)
Ld

i =
({
di+1, ei+1, f1, . . . , fn

}
, {x1 = d1, . . . , xi = di}

)
for all i ∈ [n− 1]

L′
i =

({
fi, . . . , fn

}
, {x1 = d1, . . . , xn = dn}

)
for all i ∈ [n]

L′′
i =

({
fi, fi+1, . . . fn

}
, {xi = di}

)
for all i ∈ [n− 1]

L′′
n = ({fn} , {xn = dn}) ◀

Observe that the extra di variable in weak-B0
i and weak-B1

i (in contrast to B0
i and B1

i in
KBKF-lq) allows us to resolve these two lines. This gives the clause L′′

i whose merge-map
computes xi = di. This merge-map is isomorphic to the merge-map for xi in the line derived
by resolving the Ai lines. This isomorphism allows the polynomial-size refutation.

▶ Lemma 3.5. KBKF-lq-split has polynomial-size M-Res refutations.

Proof. For each i ∈ [n] and k ∈ {0, 1}, resolving split-Bk
i and T k

i yields weak-Bk
i . This gives

us the KBKF-lq-weak formula family which, as shown in Lemma 3.4, has polynomial-size
M-Res refutations. ◀

▶ Theorem 3.6. IRM does not simulate M-Res.

Proof. The KBKF-lq-split formula family witnesses the separation. By Lemma 3.5, it has
polynomial size M-Res refutations. Restricting it by setting t = 0 gives the family KBKF-lq,
which requires exponential size to refute in IRM, [9]. Since IRM is closed under restrictions
(Lemma 11 in [9]), KBKF-lq-split also requires exponential size to refute in IRM. ◀

3.2 Advantage over LD-Q-Res, LQU-Res and LQU+-Res
To show that LQU+-Res does not simulate M-Res, we define a new formula family called
MParity, as a modification of the QParity formula family [9].

Let us first give a brief history of QParity and other formulas based on it. This was first
defined in [9] and was used to show that Q-Res does not p-simulate ∀Exp + Res [9] and
LD-Q-Res [16]. (A subsequent elegant argument in [5] reproved its hardness for QU-Res and
CP + ∀red.) The variant LQParity, also defined in [9], was used to show that LD-Q-Res does
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not p-simulate ∀Exp + Res. Finally, the variant QUParity, built by duplicating the universal
variable of LQParity, was used to show that LQU+-Res does not p-simulate ∀Exp + Res.

We give the definition of QParity, informally describe the variants LQParity and QUParity,
and then define our new variant MParity. We use parityc (y1, y2, . . . , yk) as a shorthand
for the following conjunction of clauses:

∧
S⊆[k], |S|≡1(mod 2) ((∨i∈Syi) ∨ (∨i/∈Syi)). Thus

parityc (y1, y2, . . . , yk) is satisfied by assignment a1, . . . , ak iff a1 + a2 + · · · + ak ≡ 0 (mod 2).

▶ Definition 3.7. QParityn is the following QBF:

∃x1, . . . , xn,∀z,∃t1, . . . , tn.

 ∧
i∈[n+1]

ζi


where each ζi contains the following clauses:

For i = 1, each C ∈ parityc (x1, t1).
For all i ∈ [2, n], each C ∈ parityc (ti−1, xi, ti).
For i = n+ 1, the clauses {tn, z} and

{
tn, z

}
.

With the same quantifier prefix, replacing each clause C of QParity that does not contain z
with the two clauses C ∨ z and C ∨ z gives the family LQParity.

To obtain QUParity, the universal variable is duplicated. That is, the block ∀z is replaced
with the block ∀z1, z2. Each clause of the form C∪{z} in LQParity is replaced with the clause
C ∪ {z1, z2}, and each clause of the form C ∪ {z} is replaced with the clause C ∪ {z1, z2}.

The short LD-Q-Res refutation of QParity (from [16, p. 54]) relies on the fact that most
axioms do not have universal variable z. This enables steps in which a merged literal z∗ is
present in one antecedent but there is no literal over z in the other antecedent. LQParity
is created from QParity by replacing each clause C not containing z by two clauses C ∨ z

and C ∨ z. Since, every axiom of LQParity (and hence also each derived clause) now has
a literal over z, we can no longer resolve clauses containing the merged literal z∗ with any
other clause. This forbids the creation of merged literals, which in turn, forbids all possible
short refutations. The same problem seems to occur in M-Res also — though M-Res allows
resolution steps if the merge-maps are isomorphic, we do not know of any way of making
them isomorphic. This leads us to define the new variant MParity. We notice that if the
formula family is modified appropriately, we can indeed make the merge-maps isomorphic,
and additionally throwing in the modifications of LQParity and QUParity does not destroy
this feature. This leads us to define the modified family MParity.

▶ Definition 3.8. MParityn is the following QBF:

∃
i,j∈[n]

ai,j ,∃x1, . . . , xn,∀z1, z2,∃t1, . . . , tn.

 ∧
i∈[n+1]

ψi


where each ψi contains the following clauses:

For i = 1, for all C ∈ parityc (x1, t1), the clauses
A0

1,C = C ∪ {z1, z2, a1,n} and A1
1,C = C ∪ {z1, z2, a1,n}

For all i ∈ [2, n− 1], for all C ∈ parityc (ti−1, xi, ti), the clauses
A0

i,C = C ∪ {z1, z2, ai,n} and A1
i,C = C ∪ {z1, z2, ai,n}.

For i = n, for all C ∈ parityc (tn−1, xn, tn), the clauses
A0

i,C = C ∪ {z1, z2} and A1
i,C = C ∪ {z1, z2}.

For i = n+ 1, the clauses {tn, z1, z2} and
{
tn, z1, z2

}
.
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For all i ∈ [n− 1], the following clauses:

B0
i,j = {ai,j , xj , ai,j−1} , B1

i,j = {ai,j , xj , ai,j−1} ∀j ∈ {n, n− 1, . . . , i+ 2}
B0

i,i+1 = {ai,i+1, xi+1} , B1
i,i+1 = {ai,i+1, xi+1}

We can adapt the LD-Q-Res refutation of QParity to an M-Res refutation of MParity.
We describe below exactly how this is achieved. The proof has two stages. In the first stage,
the a variables are eliminated. The role of these ai,j variables and the B-clauses is to build
up complex merge-maps meeting the isomorphism condition, so that subsequent resolution
steps are enabled. In the second phase, the LD-Q-Res refutation of QParity is mimicked,
eliminating the t variables.

(In the proofs below, notice that each line contains a single merge-map. This is done
because the merge-maps for z1 and z2 in every line are same. So, we write them only once
to save space.)

For i ∈ [n+ 1], let gi be the function ⊕j≥ixj , and let hi denote its complement. (The
parity of an empty set of variables is 0; thus gn+1 = 0 and hn+1 = 1.) Let M1

i (resp. M0
i ) be

the smallest merge-map which queries variables in the order xi, . . . , xn and computes the
function gi (resp. hi). Note that both these merge-maps have 2(n− i) + 1 internal nodes and
two leaf nodes labelled 0 and 1.

The main idea is to replace the constant merge-maps in the axioms of A0
i,C and A1

i,C by
the merge-maps M0

i+1 and M1
i+1 — the clause, merge-map pairs so generated will be denoted

by ψ̃i (and are defined below). These merge-maps will allow us to pass the isomorphism
checks later in the proofs.

For i ∈ [n], let ψ̃i be the following sets of clause, merge-map pairs:

ψ̃i =
{(
C,M b

i+1
)

| C ∈ parityc(ti−1, xi, ti), b ∈ {0, 1}
}

∀i ∈ [2, n]

ψ̃1 =
{(
C,M b

2
)

| C ∈ parityc(x1, t1), b ∈ {0, 1}
}

▶ Lemma 3.9. For all i ∈ [n], ψi ⊢M-Res ψ̃i. Moreover the size of these derivations is
polynomial in n.

Proof. At i = n, ψ̃n is the same as ψn so there is nothing to prove.
Consider now an i ∈ [n − 1]. For each b ∈ {0, 1} and each C ∈ parityc (ti−1, xi, ti) (if

i = 1, omit ti−1), the clause Ab
i,C ∈ ψi yields the line (C ∪ {ai,n},M1−b

n+1). Resolving each
of these with each of Bd

i,n for d ∈ {0, 1}, we obtain four clauses that can be resolved in two
pairs to produce the lines (C ∪ {ai,n−1},M b

n). (See the derivation at the end of this proof.)
Repeating this process successively for j = n, n − 1, . . . , i + 2, using the clause pairs Bd

i,j

with the previously derived clauses, we can obtain each (C ∪ {ai,j},M b
j+1). In each stage,

the index j of the variable ai,j present in the clause decreases, while the merge-map accounts
for one more variable. Finally, when we use the clause pairs Bd

i,i+1, the ai,i+1 variable is
eliminated, variables xi+1, . . . , xn are accounted for in the merge-map, and we obtain the
lines (C,M b

i+1), corresponding to the clauses in ψ̃i.
The derivation at one stage is as shown below.

(
C ∪ {ai,j} , M1

j+1
) B0

i,j︷ ︸︸ ︷
({ai,j , xj , ai,j−1} , ∗)(

C ∪ {xj , ai,j−1} , M1
j+1

) (
C ∪ {ai,j} , M0

j+1
) B1

i,j︷ ︸︸ ︷
({ai,j , xj , ai,j−1} , ∗)(

C ∪ {xj , ai,j−1} , M0
j+1

)(
C ∪ {ai,j−1} , M1

j

)
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(
C ∪ {ai,j} , M1

j+1
) B1

i,j︷ ︸︸ ︷
({ai,j , xj , ai,j−1} , ∗)(

C ∪ {xj , ai,j−1} , M1
j+1

) (
C ∪ {ai,j} , M0

j+1
) B0

i,j︷ ︸︸ ︷
({ai,j , xj , ai,j−1} , ∗)(

C ∪ {xj , ai,j−1} , M0
j+1

)(
C ∪ {ai,j−1} , M0

j

)
◀

In the second phase, we successively eliminate the t variables in stages.

▶ Lemma 3.10. The following derivations can be done in M-Res in size polynomial in n:
1. For i = n, n− 1, . . . , 2,

(
{ti} ,M1

i+1
)
,
({
ti

}
,M0

i+1
)
, ψ̃i ⊢

(
{ti−1} ,M1

i

)
,
({
ti−1

}
,M0

i

)
.

2.
(
{t1} ,M1

2
)
,
({
t1

}
,M0

2
)
, ψ̃1 ⊢

(
□,M1

1
)
.

Proof. For i ≥ 2, the derivation is as follows:({
ti−1, xi, ti

}
, M1

i+1
) (

{ti} , M1
i+1

)(
{ti−1, xi} , M1

i+1
) (

{ti−1, xi, ti} , M0
i+1

) ({
ti

}
, M0

i+1
)(

{ti−1, xi} , M0
i+1

)(
{ti−1} , M1

i

)
({

ti−1, xi, ti

}
, M1

i+1
) (

{ti} , M1
i+1

)({
ti−1, xi

}
, M1

i+1
) ({

ti−1, xi, ti

}
, M0

i+1
) ({

ti

}
, M0

i+1
)({

ti−1, xi

}
, M0

i+1
)({

ti−1
}

, M0
i

)
The derivation at the last stage is as follows:({

x1, t1
}

, M1
2
) (

{t1} , M1
2
)(

{x1} , M1
2
) (

{x1, t1} , M0
2
) ({

t1
}

, M0
2
)(

{x1} , M0
2
)(

□, M1
1
)

◀

We can now conclude the following:

▶ Lemma 3.11. MParity has polynomial size M-Res refutations.

Proof. We first use Lemma 3.9 to derive all the ψ̃i. Next, we start with
(
{tn} ,M1

n+1
)

and({
tn

}
,M0

n+1
)
, the lines corresponding to the clauses in ψn+1. From these lines and ψ̃n, we

derive
(
{tn−1} ,M1

n

)
and

({
tn−1

}
,M0

n

)
, using Lemma 3.10. We continue in this manner

deriving
(
{ti} ,M1

i+1
)

and
({
ti

}
,M0

i+1
)

for i = n − 2, n − 3, . . . , 1. From
(
{t1} ,M1

2
)

and({
t1

}
,M0

2
)
, we derive

(
□,M1

1
)

using ψ̃1 using Lemma 3.10. ◀

▶ Theorem 3.12. LD-Q-Res does not p-simulate M-Res; and LQU-Res and LQU+-Res are
incomparable with M-Res.

Proof. We showed in Lemma 3.11 that the MParity formulas have polynomial size M-Res
refutations. We will now show that MParity requires exponential size LQU+-Res refutations.
We first note that QUParity requires exponential size LQU+-Res refutations [9]. We further
note that LQU+-Res is closed under restrictions (Proposition 2 in [3]). Since restricting
the MParity formulas by setting ai,j = 0, for all i, j ∈ [n], gives the QUParity formulas, we
conclude that MParity requires exponential size LQU+-Res refutations. Therefore LQU+-Res
does not simulate M-Res. Since LQU+-Res p-simulates LD-Q-Res and LQU-Res, these two
systems also do not simulate M-Res.
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In [7] it is shown that M-Res does not simulate QU-Res. (The separating formula is in
fact KBKF-lq.) Since LQU-Res and LQU+-Res p-simulate QU-Res [3] and the simulation
order is transitive, it follows that M-Res does not simulate LQU-Res and LQU+-Res.

Hence LQU-Res and LQU+-Res are incomparable with M-Res. ◀

▶ Remark 3.13. In these proofs, note that the hardness for LQU+-Res and IRM was proven
using restrictions. But the same did not apply to M-Res — a restricted formula being hard
for M-Res does not mean that the original formula is also hard. This means that M-Res is
not closed under restrictions, and is hence unnatural.
▶ Remark 3.14. Another observation is that the clauses of the KBKF-lq-weak formula family
are weakenings of the clauses of KBKF-lq. Since KBKF-lq requires exponential-size M-Res
refutations but KBKF-lq-weak has polynomial-size M-Res refutations, we conclude that
weakening adds power to M-Res.

4 Role of weakenings, and unnaturalness

4.1 Weakenings
Let (C, {Mu | u ∈ U}) be a line. Then it can be weakened in two different ways [6]:

Existential clause weakening: C ∨ x can be derived from C, provided it does not contain
the literal x. The merge-maps remain the same. Similarly, C ∨ x can be derived if x ̸∈ C.
Strategy weakening: A trivial merge-map (∗) can be replaced by a constant merge-map
(0 or 1). The existential clause remains the same.

Adding these weakenings to M-Res gives the following three proof systems:
M-Res with existential clause weakening (M-ResW∃),
M-Res with strategy weakening (M-ResW∀), and
M-Res with both existential clause and strategy weakening (M-ResW∃∀).

In the remainder of this subsection, we will study the relation among these systems.
First, we note that existential clause weakening adds exponential power.

▶ Theorem 4.1. M-ResW∃ is strictly stronger than M-Res.

Proof. Since M-ResW∃ is a generalization of M-Res, M-ResW∃ p-simulates M-Res.
The KBKF-lq formulas can be transformed into the KBKF-lq-weak formulas in M-ResW∃

using a linear number of applications of the existential weakening rule. The transformed
KBKF-lq-weak formulas have polynomial size M-Res (and hence M-ResW∃) refutations,
Lemma 3.4. Thus the KBKF-lq formulas have polynomial size M-ResW∃ refutations. Since
the KBKF-lq formulas require exponential size M-Res refutations [7], we get the desired
separation. ◀

Next we observe that a lower bound for M-Res from [7] can be lifted to M-ResW∀.

▶ Lemma 4.2. KBKF-lq requires exponential size refutations in M-ResW∀.

Proof. We observe that the M-Res lower bound for KBKF-lq in [7] works with a minor
modification. In [7, Lemma 21], item 3 says that Mxi = ∗. However a weaker condition
Mxi ∈ {∗, 0, 1} is sufficient for the lower bound. With this modification, we observe that the
remaining argument carries over, and hence the lower bound also works for M-ResW∀. ◀

This tells us that strategy weakening is not as powerful as existential weakening.
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▶ Theorem 4.3. M-ResW∀ does not simulate M-ResW∃; and M-ResW∃∀ is strictly stronger
than M-ResW∀.

Proof. We showed that the KBKF-lq formulas require exponential size refutations in
M-ResW∀ (Lemma 4.2) but have polynomial size refutations in M-ResW∃ and M-ResW∃∀
(proof of Theorem 4.1). Therefore M-ResW∀ does not simulate M-ResW∃ and M-ResW∃∀.
Since M-ResW∃∀ p-simulates M-ResW∀, M-ResW∃∀ is strictly stronger than M-ResW∀. ◀

The next logical question is whether strategy weakening adds power to M-Res. We do
not know the answer. However, we can answer this for the regular versions of these systems.

▶ Definition 4.4. A refutation (in M-Res, M-ResW∃, M-ResW∀ or M-ResW∃∀) is called
regular if each variable is resolved at most once along every path.

▶ Theorem 4.5. Regular M-ResW∀ is strictly stronger than regular M-Res.

To prove this theorem, we will use a variant of the Squared-Equality (Eq2) formula family,
called Squared-Equality-with-Holes (H-Eq2(n)). Squared-Equality, defined in [6], is a two-
dimensional version of the Equality formula family [5], and has short regular tree-like M-Res
refutations. It was used to show that the systems Q-Res, QU-Res, reductionless LD-Q-Res,
∀Exp + Res, IR and CP + ∀red do not p-simulate M-Res. We recall its definition below:

▶ Definition 4.6. Squared-Equality (Eq2(n)) is the following QBF family:

∃
i∈[n]

xi, yi, ∀
j∈[n]

uj , vj , ∃
i,j∈[n]

ti,j .

(
∧

i,j∈[n]
Ai,j

)
∧B

where

B = ∨i,j∈[n]ti,j,
For i, j ∈ [n], Ai,j contains the following four clauses:

xi ∨ yj ∨ ui ∨ vj ∨ ti,j , xi ∨ yj ∨ ui ∨ vj ∨ ti,j ,

xi ∨ yj ∨ ui ∨ vj ∨ ti,j , xi ∨ yj ∨ ui ∨ vj ∨ ti,j

We observe that the short M-Res refutation of Eq2(n) crucially uses the isomorphism
of merge-maps. For each i, j ∈ [n], the four clauses in Ai,j are resolved to derive the line
(ti,j , {ui = xi, vj = yj}). These lines are then resolved with the line

(
∨i,j∈[n]ti,j , {∗, · · · , ∗}

)
to derive the line (□, {ui = xi, vj = yj | ∀i, j ∈ [n]}). The resolutions over the ti,j variables
are possible only because the merge-maps are isomorphic. If we modify the clauses of Eq2 such
that the merge-maps produced from different Ai,j are non-isomorphic, then the refutation
described above is forbidden. This is the motivation behind the Squared-Equality-with-Holes
(H-Eq2) formula family defined below. It is constructed from Eq2 by removing some of
the universal variables from the Ai,j clauses. The resulting QBF family remains false but
different Ai,j lead to different merge-maps. We believe that this QBF family is hard for
M-Res, but we have only been able to prove the hardness for regular M-Res, and hence the
separation is between the regular versions of M-Res and M-ResW∀.

The variant identifies regions in the [n] × [n] grid, and changes the clause sets Ai,j

depending on the region that (i, j) belongs to. We can use any partition of [n] × [n] into
two regions R0, R1 such that each region has at least one position in each row and at least
one position in each column; call such a partition a covering partition. One possible choice
for R0 and R1 is the following: R0 = ([1, n/2] × [1, n/2]) ∪ ([n/2 + 1, n] × [n/2 + 1, n]) and
R1 = ([1, n/2] × [n/2 + 1, n]) ∪ ([n/2 + 1, n] × [1, n/2]). We will call R0 and R1 two regions
of the matrix.
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▶ Definition 4.7. Let R0, R1 be a covering partition of [n] × [n].
Squared-Equality-with-Holes (H-Eq2(n)(R0, R1)) is the following QBF family:

∃
i∈[n]

xi, yi, ∀
j∈[n]

uj , vj , ∃
i,j∈[n]

ti,j .

(
∧

i,j∈[n]
Ai,j

)
∧B

where

B = ∨i,j∈[n]ti,j,
For (i, j) ∈ R0, Ai,j contains the following four clauses:

xi ∨ yj ∨ ui ∨ vj ∨ ti,j , xi ∨ yj ∨ ui ∨ ti,j ,

xi ∨ yj ∨ vj ∨ ti,j , xi ∨ yj ∨ ti,j

For (i, j) ∈ R1, Ai,j contains the following four clauses:

xi ∨ yj ∨ ti,j , xi ∨ yj ∨ vj ∨ ti,j ,

xi ∨ yj ∨ ui ∨ ti,j , xi ∨ yj ∨ ui ∨ vj ∨ ti,j

(We do not always specify the regions explicitly but merely say H-Eq2.)

▶ Lemma 4.8. H-Eq2(n) requires exponential size refutations in regular M-Res.

Before proving this, we show how to obtain Theorem 4.5.

Proof of Theorem 4.5. Since regular M-ResW∀ is a generalization of regular M-Res, it
p-simulates regular M-Res.

Using strategy weakening, we can get Eq2 from H-Eq2 in a linear number of steps. Since
Eq2 has polynomial-size refutations in regular M-Res, we get polynomial-size refutations
for H-Eq2 in regular M-ResW∀. On the other hand, Lemma 4.8 gives an exponential lower
bound for H-Eq2 in regular M-Res. Therefore regular M-ResW∀ is strictly stronger than
regular M-Res. ◀

It remains to prove Lemma 4.8. This is a fairly involved proof, but in broad outline and
in many details it is similar to the lower bound for Eq2 in reductionless LD-Q-Res ([6]).

The size bound is trivially true for n = 1, so we assume that n > 1. Let Π be a Regular
M-Res refutation of H-Eq2(n). Since a tautological clause cannot occur in a regular M-Res
refutation, we assume that Π does not have a line whose clause part is tautological.

Let us first fix some notation. Let X = {x1, . . . , xn}, Y = {y1, . . . , yn}, U = {u1, . . . , un},
V = {v1, . . . , vn}, and T = {ti,j | i, j ∈ [n]}. For lines L1, L2, etc., the respective clauses and
merge-maps will be denoted by C1, C2 and M1, M2 etc. For a line L in Π, ΠL denotes the
sub-derivation of Π ending in L. Viewing Π as a directed acyclic graph, we can talk of leaves
and paths in Π. For a line L of Π, let Uci(L) = {(i, j) | Ai,j ∩ leaves(ΠL) ̸= ∅}.

We first show some structural properties about Π. The first property excludes using
many axioms in certain derivations.

▶ Lemma 4.9. For line L = (C,M) of Π, and i, j ∈ [n], if ti,j ∈ C, then Uci(L) = {(i, j)}.

Proof. Since the literal ti,j only occurs in clauses in Ai,j , so leaves(L) ∩ Ai,j ̸= ∅, hence
Uci(L) ⊇ {(i, j)}.

Now suppose Uci(L) > 1. Let (i′, j′) be an arbitrary element of Uci(L) distinct from
(i, j). Pick a leaf of ΠL using a clause in Ai′,j′ , and let p be a path from this leaf to L

and then to the final line of Π. Both ti,j and ti′,j′ are necessarily used as pivots on this
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path. Assume that ti,j is used as a pivot later (closer to the final line) than ti′,j′ ; the other
case is symmetric. Let Lc = res(La, Lb, ti′,j′) and Lf = res(Ld, Le, ti,j) respectively be the
positions where ti′,j′ and ti,j are used as resolution pivots on this path (here La and Ld are
the lines of path p, hence ti′,j′ ∈ Ca and ti,j ∈ Cd). Then Cb has the negated literal ti′,j′ ;
hence B ∈ leaves(Lb). Since ti,j ∈ B but ti,j /∈ Ld, ti,j is used as a resolution pivot in the
derivation ΠLd

. This contradicts the fact that Π is regular. ◀

The next property is the heart of the proof, and shows that paths with B at the leaf
must have a suitable wide clause.

▶ Lemma 4.10. On every path from
(
∨i,j∈[n]ti,j , {∗, · · · , ∗}

)
(the line for axiom clause B)

to the final line, there exists a line L = (C,M) such that either X ⊆ var(C) or Y ⊆ var(C).

Proof. With each line Ll = (Cl,Ml) in Π, we associate an n×n matrix Nl in which Nl[i, j] = 1
if ti,j ∈ Cl and Nl[i, j] = 0 otherwise.

Let p = L1, . . . , Lk be a path from
(
∨i,j∈[n]ti,j , {∗, · · · , ∗}

)
to the final line in Π. Since

Π is regular, each ti,j is resolved away exactly once, so no clause on p has any positive ti,j
literal. Let l be the least integer such that Nl has a 0 in each row or a 0 in each column.
Note that l ≥ 2 since N1 has no zeros. Consider the case that Nl has a 0 in each row; the
argument for the other case is identical. We will show in this case that X ⊆ var(Cl). We
will use the following claim:

▷ Claim 4.11. In each row of Nl, there is a 0 and a 1 such that the 0 and 1 are in different
regions (i.e. one is in R0 and the other in R1).

We proceed assuming the claim. We want to prove that X ⊆ var(Cl). Suppose, to the
contrary, there exists i ∈ [n] such that xi /∈ var(Cl). We know that there exist j1, j2 ∈ [n] such
that Nl[i, j1] = 0 and Nl[i, j2] = 1; and either (i, j1) ∈ R0 and (i, j2) ∈ R1, or (i, j1) ∈ R1 and
(i, j2) ∈ R0. Without loss of generality, we may assume that (i, j1) ∈ R0 and (i, j2) ∈ R1.

We know that on path p, there is a resolution with pivot ti,j1 before Ll and a resolution
with pivot ti,j2 after Ll. Let the former resolution be Lc = res(La, Lb, ti,j1) where Lb is on
path p, and let the latter resolution be Lf = res(Ld, Le, ti,j2) where Le is on path p. Since
Π is a regular refutation, ti,j1 ∈ Ca, ti,j1 ∈ Cb and ti,j2 ∈ Cd, ti,j2 ∈ Ce. Thus along path p

these lines appear in the relative order B,Lb, Lc, Ll, Le, Lf ,□.

▷ Claim 4.12. xi ∈ Cc.

Proof. By Lemma 4.9, Uci(Ld) = {(i, j2)}, or equivalently leaves(Ld) ⊆ Ai,j2 . Since
(i, j2) ∈ R1, no clause in Ai,j2 has literal ui. Hence Mui

d ∈ {∗, 1}. Furthermore, if Mui

d = ∗,
then xi ∈ Cd. Since the pivot for resolving Ld and Le is ti,j2 , this would imply that xi ∈ Cf .

By a similar argument, we can conclude that (i) leaves(La) ⊆ Ai,j1 , (ii) Mui
a ∈ {∗, 0},

and (iii) if Mui
a = ∗, then xi ∈ Cc.

If Mui

d = ∗ and Mui
a = ∗, then xi ∈ Cf and xi ∈ Cc. So xi must be used twice as pivot,

contradicting regularity.
If Mui

d = ∗ and Mui
a = 0, then xi ∈ Cf and ΠLa

uses some clause containing xi to make
the merge-map for ui non-trivial. Thus xi ∈ ΠLa , xi ̸∈ Ll by assumption, xi ∈ Lf . Hence xi

is used twice as pivot, contradicting regularity.
Hence Mui

d = 1. Since the resolution at line Lf is not blocked, Mui
e ∈ {∗, 1}. But Le is

derived after, and using, La. Since merge-maps don’t get simpler along a path, Mui
a ∈ {∗, 1}.

It follows that Mui
a = ∗. Hence xi ∈ Cc. ◀
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Since xi /∈ Cl, xi has been used as a resolution pivot between Lc and Ll on path p. Let
Lw = res(Lu, Lv, xi) be the position on path p where xi is used as pivot (since the refutation
is regular, such a position is unique). Let Lv be the line on path p. By regularity of the
refutation, xi ∈ Lu and xi ∈ Lv.

As observed at the outset, Lw is on path p and so does not contain a positive t literal.
Since Cw is obtained via pivot xi, this implies that Cu also does not contain a positive t
literal. Since all axioms contain at least one t variable but only B contains negated t literals,
so B ∈ leaves(Lu).

Let q be a path that starts from a leaf using B, passes through Lu to Lw, and then
continues along path p to the final clause. Since the refutation is regular, Nv = Nu = Nw.
Hence Nv[i, j1] = 0 i.e. ti,j1 /∈ Cv. This implies that ti,j1 is used as resolution pivot before
Lv on path q.

We already know that ti,j2 is used as a pivot after line Ll on path p, and hence on path q.
Arguing analogous to Claim 4.12 for path p but with respect to path q, we observe that xi

belongs to at least one leaf of Lu. Since xi ∈ Cu and since the refutation is regular, xi is not
used as a resolution pivot before Cu on path q. This implies that xu ∈ Cu. We already know
that xi ∈ Cu, since it contributed the pivot at Lw. This means that Cu is a tautological
clause, a contradiction.

It remains to prove Claim 4.11.

Proof of Claim 4.11. We already know that Nl has a 0 in each row. We will first prove
that Nl also has a 1 in each row. Aiming for contradiction, suppose that Nl has a full 0
row r. Since l ≥ 2, Nl−1 exists. Note that, by definition of resolution, there can be at most
one element that changes from 1 in Nl−1 to 0 in Nl. Since Nl−1 does not have a 0 in every
column, it does not contain a full 0 row. Hence, the unique element that changed from 1 in
Nl−1 to 0 in Nl must be in row r. Thus all other rows of Nl−1 already contain the one 0 of
that row in Nl. Since n ≥ 2, Nl−1 also has at least one 0 in row r; thus Nl−1 has a 0 in each
row, contradicting the minimality of l.

Since R0 and R1 form a covering partition, it cannot be the case that all the 0s and 1s of
any row are in the same region Rb; that would imply that R1−b does not cover the row. ◀

With the claim proven, the proof of Lemma 4.10 is now complete. ◀

We can finally prove Lemma 4.8. This part is identical to the corresponding part of the
proof of Theorem 28 in [6]; we include it here for completeness.

Proof of Lemma 4.8. For each a = (a1, . . . , an) ∈ {0, 1}n, consider the assignment σa to
the existential variables which sets xi = yi = ai for all i ∈ [n], and ti,j = 1 for all i, j ∈ [n].
Call such an assignment a symmetric assignment. Given a symmetric assignment σa, walk
from the final line of Π towards the leaves maintaining the following invariant: for each line
L = (C, {Mu | u ∈ U ∪ V }), σa falsifies C. Let pa be the path followed. By Lemma 4.10,
this path will contain a line L = (C, {Mu | u ∈ U ∪ V }) such that either X ⊆ var(C) or
Y ⊆ var(C). Let us define a function f from symmetric assignments to the lines of Π as
follows: f(a) = (C, {Mu | u ∈ U ∪ V }) is the last line (i.e. nearest to the leaves) on pa such
that either X ⊆ var(C) or Y ⊆ var(C). Note that, for any line L of Π, there can be at most
one symmetric assignment a such that f(a) = L. This means that there are at least 2n lines
in Π. This gives the desired lower bound. ◀
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4.2 Simulation by eFrege + ∀red

It was recently shown that eFrege + ∀red p-simulates all known resolution-based QBF proof
systems; in particular, it p-simulates M-Res [15]. We observe that this p-simulation can be
extended in a straightforward manner to handle both the weakenings in M-Res. Hence we
obtain a p-simulation of M-ResW∃, M-ResW∀ and M-ResW∃∀ by eFrege + ∀red.

▶ Theorem 4.13. eFrege + ∀red strictly p-simulates M-ResW∃, M-ResW∀ and M-ResW∃∀.

Proof. The separation follows from the separation of the propositional proof systems resolu-
tion and eFrege [30]. We prove the p-simulation below.

It suffices to prove that eFrege + ∀red p-simulates M-ResW∃∀. The proof is essentially
same as that of the p-simulation of M-Res in [15], but with two additional cases for the
two weakenings. So, we will briefly describe that proof and then describe the required
modifications.

Let Π be an M-ResW∃∀ refutation Π of a QBF Φ. The last line of this refutation gives
a winning strategy for the universal player; let us call this strategy S. We will first prove
that there is a short eFrege derivation Φ ⊢ ¬S. Then, as mentioned in [15], the technique of
[8, 14] can be used to derive the empty clause from ¬S using universal reduction.

We will now describe an eFrege derivation Φ ⊢ ¬S. Let Li = (Ci, {Mu
i | u ∈ U}) be the

ith line of Π. We create new extension variables: su
i,j is the variable for the jth node of Mu

i .
If node j is a leaf of Mu

i labeled by constant c, then su
i,j is defined to be c. Otherwise, if

Mu
i (j) = (x, a, b), then su

i,j is defined as su
i,j ≜

(
x∧ su

i,a

)
∨

(
x∧ su

i,b

)
. The extension variables

for u will be to its left in the quantifier prefix.
We will prove that for each line Li of Π, we can derive the formula Fi ≜ ∧u∈Ui

(u ↔
su

i,r(u,i)) → Ci; where r(u, i) is the index of the root of merge-map Mu
i , and Ui is the set of

universal variables for which Mu
i is non-trivial.

Our proof will proceed by induction on the lines of the refutation.
The base case is when Li is an axiom; and the inductive step will have three cases

depending on which rule is used to derive Li: (i) resolution, (ii) existential clause weakening,
or (iii) strategy weakening. The proof for the base case and the resolution step case is as
given in [15]. We give proofs for the other two cases below:

Existential clause weakening: Let line Lb = (Cb, {Mu
b | u ∈ U}) be derived from line

La = (Ca, {Mu
a | u ∈ U}) using existential clause weakening. Then Cb = Ca ∨ x for some

existential literal x such that x /∈ Ca, and Mu
b = Mu

a for all u ∈ U . By the induction
hypothesis, we have derived the formula Fa ≜ ∧u∈Ua

(u ↔ su
a,r(u,a)) → Ca. We have to

derive the formula Fb ≜ ∧u∈Ub
(u ↔ su

b,r(u,b)) → Cb = ∧u∈Ub
(u ↔ su

b,r(u,b)) → Ca ∨ x.
Since Mu

b = Mu
a for each u, there is a short eFrege + ∀red derivation of the formula

su
a,j ↔ su

b,j for each u ∈ Ui, and each node j of Mu
a . This allows us to replace variable

su
a,j by su

b,j in Fa. As a result, we get the formula F ′
b ≜ ∧u∈Ub

(u ↔ su
b,r(u,b)) → Ca. Now,

using an inference of the form p → q ⊢ p → q ∨ r, we obtain the formula Fb.
Strategy weakening: Let line Lb = (Cb, {Mu

b | u ∈ U}) be derived from line La =
(Ca, {Mu

a | u ∈ U}) using strategy weakening for a variable v. Then Cb = Ca, Mu
b = Mu

a

for all u ∈ U \ {v}, and Mv
a = ∗, Mv

b is a constant, say d. Similar to the above case, we
start with the inductively obtained Fa and replace each su

a,j with su
b,j to obtain a formula

F ′
b ≜ ∧u∈Ub\{v}(u ↔ su

b,r(u,b)) → Cb. With a final inference of the form p → q ⊢ p∧r → q,
we can then add (v ↔ sv

b,r(v,b)) to the conjunction to obtain Fb. ◀
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4.3 Unnaturalness
In this section, we observe that M-Res and M-ResW∀ are unnatural proof systems, i.e. they
are not closed under restrictions.

▶ Theorem 4.14. M-Res and M-ResW∀ are unnatural proof systems.

Proof. The KBKF-lq-split formula family has polynomial-size refutations in M-Res (and
M-ResW∀), as seen in Lemma 3.5. The restriction of this family obtained by setting t = 0 is
exactly the KBKF-lq formula family, which, as shown in Lemma 4.2, is exponentially hard
for M-ResW∀ and hence also for M-Res. ◀

5 Conclusion and future work

M-Res was introduced in [6] to overcome the weakness of LD-Q-Res. It was shown that
M-Res has advantages over many proof systems, but the advantage over LD-Q-Res was
not demonstrated. In this paper, we have filled this gap. We have shown that M-Res has
advantages over not only LD-Q-Res, but also over more powerful systems, LQU+-Res and
IRM. We have also looked at the role of weakening — that it adds power to M-Res. On the
negative side, we have shown that M-Res with and without strategy weakening is unnatural

— which we believe makes it useless in practice.
For the system to still be useful in practice, one will have to prove that it can be made

natural by adding existential weakening or both weakenings. This, in our opinion, is the
most important open question about M-Res.
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