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Abstract

Determinantal Point Processes (DPPs) are a widely used probabilistic model for negatively
correlated sets. DPPs have been successfully employed in Machine Learning applications to select
a diverse, yet representative subset of data. In these applications, the parameters of the DPP
need to be fitted to match the data; typically, we seek a set of parameters that maximize the
likelihood of the data. The algorithms used for this task to date either optimize over a limited
family of DPPs, or use local improvement heuristics that do not provide theoretical guarantees
of optimality.

It is natural to ask if there exist efficient algorithms for finding a maximum likelihood DPP
model for a given data set. In seminal work on DPPs in Machine Learning, Kulesza conjectured
in his PhD Thesis (2011) that the problem is NP-complete. The lack of a formal proof prompted
Brunel, Moitra, Rigollet and Urschel (COLT 2017) to conjecture that, in opposition to Kulesza’s
conjecture, there exists a polynomial-time algorithm for computing a maximum-likelihood DPP.
They also presented some preliminary evidence supporting their conjecture.

In this work we prove Kulesza’s conjecture. In fact, we prove the following stronger hardness
of approximation result: even computing a

(
1−O( 1

log9N
)
)
-approximation to the maximum

log-likelihood of a DPP on a ground set of N elements is NP-complete. At the same time, we also
obtain the first polynomial-time algorithm that achieves a nontrivial worst-case approximation
to the optimal log-likelihood: the approximation factor is 1

(1+o(1)) logm unconditionally (for data

sets that consist of m subsets), and can be improved to 1− 1+o(1)
logN if all N elements appear in a

O(1/N)-fraction of the subsets.
In terms of techniques, we reduce approximating the maximum log-likelihood of DPPs on

a data set to solving a gap instance of a “vector coloring" problem on a hypergraph. Such a
hypergraph is built on a bounded-degree graph construction of Bogdanov, Obata and Trevisan
(FOCS 2002), and is further enhanced by the strong expanders of Alon and Capalbo (FOCS
2007) to serve our purposes.
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1 Introduction

Determinantal Point Processes (DPPs) are a family of probability distributions on sets that feature
repulsion among elements in the ground set. Roughly speaking, a DPP is a distribution over all 2N

subsets of {1, . . . , N} defined by a positive semidefinite (PSD) N ×N matrix K (called a marginal
kernel or correlation kernel) whose eigenvalues all lie in [0, 1], such that, for any S ⊆ {1, . . . , N},
random subsets X drawn according to the distribution satisfy Pr[S ⊆X] = det(KS), where KS is
the principal submatrix of K indexed by S.

DPPs were first proposed in quantum statistical physics to model fermion systems in thermal
equilibrium [Mac75], but they also arise naturally in diverse fields such as random matrix theory,
probability theory, number theory, random spanning trees and non-intersecting paths [Dys62, BP93,
RS96, Sos00]. After the seminal work of [KT12], DPPs have attracted a flurry of attention from
the machine learning community due to their computational tractability and excellent capability at
producing diverse but representative subsets, and subsequently fast algorithms have been developed
for sampling from DPPs [HKPV06, KT10, RK15, LJS16a, LJS16b, AGR16, DCV19, LGD20]. Fur-
thermore, DPPs have since found a vast variety of applications throughout machine learning and data
analysis, including text and image search, segmentation and summarization [LB12, KT12, ZA12,
GKT12b, GKT12a, YFZ+16, KT11a, AFAT14, LCYO16, AKFT13, CGGS15, AFT13], signal pro-
cessing [XO16, KSG08, GKS05], clustering [ZA12, Kan13, SG13], recommendation systems [ZKL+10],
revenue maximization [DRS09], multi-agent reinforcement learning [OR19, YWW+20], modeling neu-
ral spikes [SZA13], sketching for linear regression [DW18, DLM20], low-rank approximation [GS12],
and likely many more.

Maximum likelihood estimation. Many of these applications require inferring a set of parame-
ters for a DPP capturing a given data set. As a DPP specifies a probability distribution, hence in
contrast to supervised learning problems, the quality of a DPP cannot be estimated by the “error
rate” of the model’s predictions. The standard approach to estimate a DPP from data is to find
parameters that maximize the likelihood of the given data set being produced by a sample from
the DPP [KT12], i.e., the probability density of the observed data in the joint distribution. When
the samples are identically and independently chosen from the DPP, the likelihood is the product
of the probability densities the DPP assigns to the sampled subsets. The goal of the maximum
likelihood estimator (MLE) method is to find a kernel matrix that maximizes the likelihood of
the data set. [BMRU17b] showed that the maximum likelihood estimate indeed converges to the
true kernel at a polynomial rate. In general, maximizing the likelihood of a DPP gives rise to a
non-convex optimization problem, and has been approached with heuristics such as expectation
maximization [GKFT14], fixed point algorithms [MS15], and MCMC [AFAT14]. In the continuous
case, the problem has been studied under strong parametric assumptions [LMR15], or smoothness
assumptions [Bar13].

1.1 Our results

In spite of the wide applications of DPPs and the central role of the learning step, no efficient
algorithms are known to find a maximum likelihood DPP. Instead, as mentioned above, two
families of algorithms are known: one seeks to learn an optimal DPP within certain parameterized
families of DPP structures [KT12, AFAT14, GPK16, MS16, GPK17, UBMR17, DB18], while the
other invokes heuristics to maximize the likelihood in an unconstrained search over the parameter
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space [KT11b, GKFT14, AFAT14, MS15]. Neither of these approaches provides any guarantees for
how close the likelihood of the obtained parameters are to the maximum over all DPPs.

Indeed, Kulesza [KT11b, Kul12] conjectured over a decade ago that the problem of finding a set
of parameters is NP-hard, but indicated that he was unable to formally establish a reduction: his
thesis includes a sketch of a reduction from Exact-3-cover to a related problem1 with numerical
evidence suggesting its correctness but without a formal proof. The subsequent literature adopted
this belief, despite the lack of a solid theoretical foundation.

In this work, we resolve this question by proving Kulesza’s conjecture: computing maximum
likelihood DPP kernels is indeed NP-hard. In fact, we establish a stronger, gapped hardness result:
even approximating the maximum likelihood is NP-hard.

Theorem 1 (Informal Statement of the Main Theorem). There is a ground set of size N such that
it is NP-hard to

(
1−O( 1

log9N
)
)
-approximate the maximum DPP log-likelihood value of a sample set.

Remark 1. Some comments on our (somewhat confusing) convention of approximation factors are in
place. Since log likelihood functions are always negative real numbers and it is a bit awkward to work
with optimizing negative quantities, we therefore add a minus sign at the front of our definition of log
likelihood functions. Consequently, we minimize log likelihood functions instead of maximizing them.
On the other hand, as our hard learning instances are reduced from Max-3SAT and 3-Coloring,
to be consistent with hardness results in the literature on these problems, we use α-approximation
(where 0 < α < 1, for maximization problems) in the statements of our hardness and algorithmic
results. Note that here “α-approximation” actually means that the log likelihood function (in our
definition and ought to be minimized) output by an algorithm is at most 1

α time the optimal log
likelihood function.

Therefore, the difficulty of learning a DPP is not tied to any particular representation of the
marginal kernel, as in fact estimating the maximum likelihood value itself is NP-hard. Note,
however, that many problems in learning are hard merely due to the difficulty of finding a specific
representation [PV88], which is not the case for our problem.

The NP-hardness of maximum likelihood learning naturally raises the question of whether any
nontrivial approximation is possible. We show that such an approximation is possible: we present a
simple, polynomial-time algorithm obtaining a 1

(1+o(1)) logm -approximation for a data set with m
subsets.

Theorem 2 (Informal Statement of the Approximation Algorithm). There is a polynomial-time
approximation algorithm achieving the following: on an input data set consisting of m subsets over a
ground set of size N , it returns a kernel that 1

(1+o(1)) logm -approximates the maximum log likelihood.
Moreover, if every element in the ground set appears in at most O(1/N)-fraction of the subsets, the
kernel achieves a (1− 1+o(1)

logN )-approximation to the maximum log likelihood.

We stress that in contrast to the prior work on learning DPP kernels with guarantees [UBMR17],
our algorithm does not rely on the data being produced by a DPP to have a “cycle basis” of short
cycles or large nonzero entries. We obtain an approximation to the optimal likelihood for any data
set. Although a 1

(1+o(1)) logm -approximation is weak, when every element appears in relatively few

1Technically, the reduction proposed by Kulesza targets a variant of the maximum-likelihood DPP learning problem
in which the instance specifies a set of positive-semidefinite matrices along with the data, and the objective is to find
a DPP kernel in the cone of the given matrices that maximizes the likelihood.

2



subsets (which is common in practice), our algorithm is much better: the actual approximation
factor is 1 − 1

log(m/amax) , where amax/m is the fraction of the data subsets containing the most
frequent element in the ground set. Hence, if all elements appear in at most a ∼ 1/N -fraction
of the subsets, we obtain a (1 − 1+o(1)

logN )-approximation to the log likelihood. Although we don’t
expect our algorithm to obtain substantially better likelihood than various heuristics employed in
practice, it may nevertheless serve as a benchmark to estimate how close to optimal these solutions
are. Moreover, the family of instances constructed in our reduction indeed satisfies this condition;
therefore, to improve the hardness of approximation bound beyond 1− 1+o(1)

logN , the hard instance of
data set must have some elements appearing in ω(1/N)-fraction of the subsets.

1.2 Our approach and techniques

We show that it is NP-hard to approximate the optimal DPP likelihood function by reducing from a
coloring problem, rather than from Exact-3-Cover, which was Kulesza’s [Kul12] initial approach.

We begin with some intuition leading to a notion of vector coloring that we use in the reduction.
As any marginal kernel K ∈ RN×N is positive semidefinite, it can be factored as K = Q>Q, where
Q ∈ Rk×N , Q> stands for the transpose of M , and k is called the dimension of the kernel. If
we denote the column vectors of Q by q1, . . . , qN , each qi ∈ Rk, then one can think of these qi’s
as providing an embedding of the elements in {1, . . . , N} into the space Rk, and the embedding
vectors capture similarities among elements. Specifically, the preference of DPPs for diverse subsets,
roughly speaking, stems from the following fact: if a subset S includes elements that are similar, the
submatrix KS would contain columns that are nearly co-linear embedding vectors, and hence its
determinant (and correspondingly, the probability that S is the random subset generated by the
marginal kernel K) is close to zero.2

Consider, for simplicity, a training set that consists of a collection of subsets of {1, . . . , N}, each
of size r where r is a constant. What can we say about a maximum-likelihood DPP kernel for such
a data set? Ideally, the embedding vectors should encode an “r-vector-coloring” of the elements in
the following sense. Each of the r colors is represented by a unit vector (after normalizations) in an
orthonormal basis; to maximize the likelihood function, every subset S = {i1, . . . , ir} that appears in
the training set corresponds to a “rainbow coloring” of the embedding vectors {qi1 , . . . , qir} (“rainbow
coloring” means that the r embedding vectors are all colored differently), while for the r-subsets
that do not appear in the training set, we would like as many as possible of them to contain some
repeated color.3

Thus, it is natural to attempt a reduction from Graph r-Coloring to Maximum Likelihood
Learning of DPP. However, if we view each edge as a 2-subset, then we fail to get a hard problem to
begin with, since graph 2-coloring is easy. We overcome this by “lifting” each edge to a size-3 subset
(or equivalently, we transform a graph into a 3-uniform hypergraph, and view all its hyperedges as
size-3 subsets in the data set) so that we can still work with 3-Colorability. On an input graph
G = (V,E), our goal would be to show the following: if G is 3-colorable, then there is a DPP kernel
whose likelihood is large (completeness); if G is not 3-colorable, then the likelihood of every DPP
kernel is small (soundness).

2Recall that, since K and hence KS are Gram matrices, det(KS) is equal to the square of the volume of the
parallelepiped spanned by the embedding vectors of elements in S.

3Implicitly, we would also like to have k = r so that no non-degenerate parallelepiped of dimension higher than r
exists, as the number of size-(r + 1) or larger subsets dominates those of size-r subsets; see Conjecture 1 below.
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As the column vectors of DPP kernels are in Euclidean spaces instead of discrete ones, the
continuous variant of coloring that works for us is the notion of vector coloring of graphs. A
vector coloring of a graph G = (V,E) is a mapping from vertices in V to points (vectors) in some
low-dimensional metric spaceM, such that the presence or absence of edges between any pair of
vertices prescribes the value of the inner product between the two corresponding vectors. (See
Section 1.3.) Our problem differs from this one in two important ways: first, we do not care too
much about the minimum dimension of the Euclidean space in which a vector representation exists;
second, which is more subtle and will be elaborated below, we need a “gapped” reduction.

There are several technical challenges we need to address in order to make the reduction from
3-Colorability work. First, we need to understand the structure of kernels that achieve maximum
likelihood values. To this end, by an extension of an argument of [BMRU17a], we prove that the
square of the norm of every embedding vector is equal to the empirical frequency of the element.
Furthermore, via a projection argument, we show that there always exists a good rank-3 DPP kernel
without giving up too much likelihood. This greatly simplifies the analysis of the gadgets employed
in our reduction.

Secondly, instead of a “decision” hardness result on vector coloring of hypergraphs (e.g. it is
NP-hard to decide if there is a 3-dimensional orthogonal representation for the elements in the set
that satisfies certain orthogonality conditions), we rather require a “gapped ” reduction, obtaining
something like “starting with a Yes instance, we end up with a set of embedding vectors so that
the average volume of the 3-dimensional parallelepipeds spanned by these embedding vectors of
hyperedges is large; starting with a No instance, then every possible embedding scheme will make
the average volume of those parallelepipeds small”. Namely, in an “averaging” sense, we need the
resulting hypergraph transformed from a No instance to be “far from” 3-vector colorable. Accordingly,
the No instance of 3-Colorability should have the property that, even after removing a small
fraction of the edges, it is still not 3-colorable. On the other hand, the strongest known hardness
results [KLS00, GK04, DMR09, BG16] on coloring 3-colorable graphs are based on dense graphs;
the requirement on No instance mentioned above, when applied to dense graphs, would make the
problem fall into the regime of property testing, which is unfortunately known to be computationally
easy [GGR98].

We circumvent this obstacle by adapting a sparse graph construction of Bogdanov, Obata
and Trevisan [BOT02] (referred to as BOT graph henceforth). Based on the hardness of approx-
imating Max-3SAT, BOT graph was used in [BOT02] to prove query lower bound for testing
3-Colorability in the bounded-degree model. We fix some minor mistakes in the construction
and analysis of [BOT02], further enhance the robustness of BOT graph with the strong expander
construction of Alon and Capalbo [AC07]. These modifications allow us to show that, for some
absolute constant δ, we can decode a 3-coloring of the vertices which satisfies at least (1− δ)-fraction
of the edges in the original BOT graph, as long as the DPP log likelihood of a training set constructed
from the edges of the BOT graph were close enough to the maximum value of a 3-colorable graph.
An overview of the reduction sequence is illustrated in Figure 1.

Algorithmic results. For the upper bound, we obtain an approximation algorithm by using
some of the properties required for the analysis of our reduction. The algorithm itself is very
simple: given a data set X1, X2, . . . , Xm, output the DPP marginal kernel given by the N × N
diagonal matrix K such that Kii = |{j : Xj 3 i}|/m for all i in the ground set. In other words,
the diagonal entries of the marginal kernel are just the empirical probabilities of elements in the
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3-CNF formula

Max-3SAT

BOT graph

3-Coloring

BOT hypergraph

vector-coloring

DPP learner

MLE-DPP-kernel

Figure 1: High level overview of our reductions.

data set. Hadamard’s inequality gives a lower bound on the optimal likelihood that is similar to
the likelihood of the diagonal kernel; if the elements all appear in at most a amax/m-fraction of

the subsets, the ratio log likelihood output by the algorithm
optimal log likelihood is at most 1 +

log((1−amax
m

)1−amax/m)

log((amax
m

)amax/m)
≈ 1 + 1

logN

when amax/m is O(1/N). For an unconditional upper bound, observe that elements in all m sets
should occur with probability 1 in the maximum likelihood DPP (and thus may be disregarded
without loss of generality), hence we may plug amax = m− 1 into the aforementioned bound and
obtain a (1 + o(1)) logm upper bound on the ratio.

1.3 Related work

Learning DPPs. As mentioned earlier, [UBMR17] in particular proposed an algorithm for recov-
ering a DPP’s kernel up to similarity, which is efficient when (i) the graph defined by interpreting
the kernel as a weighted adjacency matrix has a “cycle basis” of cycles of bounded length and (ii) the
nonzero entries are not too small. Furthermore, they gave a lower bound on the sample complexity
of estimating the DPP kernel, showing that it indeed depends similarly on these quantities. Thus,
when there is enough data to permit exact recovery of the kernel, this algorithm will perform well,
but otherwise there is no guarantee that the algorithm produces a kernel for a DPP with likelihood
close to maximum.

In a companion paper, [BMRU17a] also studied the rate of estimation obtained by the maximum
likelihood kernel. Again, they determined classes of DPPs for which it is efficient (or not). Moreover,
they identified an exponential number of saddle points, and conjectured that these are the only
critical points; they further suggested that a proof of this conjecture might lead to an efficient
algorithm for computing a maximum likelihood kernel. But, they did not actually provide algorithms
for computing the likelihood or the kernel itself.

Starting with the pioneering work of [KT11b], various empirical learning algorithms have been
proposed for learning discrete DPPs, such as Bayesian methods [AFAT14], expectation-maximization
(EM) algorithms [GKFT14], fixed-point iteration [MS15], learning non-symmetric DPPs [GBDK19],
learning with negative sampling [MGS19], and minimizing Wasserstein distance [AGR+20]. However,
none of these algorithms has theoretical guarantees. Efficient learning algorithms have also been
designed for restricted classes of DPPs [MS16, GPK17, DB18, ORG+18]. A related problem, namely
testing DPPs, recently has been investigated by [GAJ20].

We note that in contrast to the problem of learning the DPP kernel from a data set as considered
here, the problem of computing the mode (“MAP estimate”) of a DPP given by its kernel has long
been known to be NP-complete [KLQ95, CMI09]. The inapproximability for this problem was
recently strengthened substantially by [Ohs21].
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Vector coloring problems. The notion of orthogonal representation (in which there is an edge
between two vertices if and only if the two corresponding representation vectors are orthogonal4) was
introduced by [Lov79], and was used in the definition of the famous Lovász’s ϑ function, which has
been employed to bound quantities such as Shannon capacity, the clique numbers or the chromatic
numbers of graphs. More generally, a geometric representation of a graph is a mapping from vertices
in V to points in a metric spaceM, such that two vertices are connected by an edge if and only if the
distance between the two corresponding points satisfies certain condition. For example, orthogonal
representation is a special case of the unit-distance graph where (in the framework of geometric
representation) the underlying metric space is the unit sphere (with distance 1 replaced by sphere
distance π/2). Geometric representation of graphs is a well-studied subject, revealing many surprising
connections between parameters (e.g. dimension) of geometric representations and properties of the
original graph, such as chromatic number, connectivity, excluded subgraphs, tree width, planarity,
etc; see e.g. [Lov79, LSS89, PP89, KMS98, LV99, LSS00, HPS+10] and the recent textbook [Lov19].

Matrix completion problem. Geometric representations of graphs are intimated connected
to another class of problems, matrix completion problems. For instance, the celebrated result
of [Pee96], showing NP-hardness of deciding whether a 3-dimensional orthogonal representation
over a finite field exists for a graph, was obtained through reducing 3-Colorability to a low-
rank matrix completion problem. Matrix completion studies under what conditions a partially
specified matrix can be completed into one which belongs to a certain class of matrices, such as
low-rank matrices, semidefinite matrices, Euclidean distance matrices, etc. See e.g. [Lau09] for an
overview of the important results in this area. Interestingly, a recent work of [HMRW14], which
proved the hardness of low-rank matrix completion problem under the incoherence assumption
(a commonly used assumption for many matrix completion results), was also based on gapped
versions of computationally hard problems on graphs such as the r-Coloring problem and the
(r, ε)-Independent-Set problem.5

1.4 Organization of the paper

The rest of the paper is organized as follows. In Section 2 we summarize notation, definitions and
theorems to be used later, define formally the problem of maximum likelihood learning of DPPs
and state our main theorem on hardness of MLE learning DPPs. Then we outline the proof of the
main theorem, while deferring some technical proofs to later sections. Specifically, in Section 3, we
provide a detailed description of our slightly modified BOT graph construction and prove some
useful properties of these graphs. In Section 4, we show the following: given any training set, at least
one of its optimal DPP kernels satisfy that their diagonals are equal to the empirical frequencies
of elements in the ground set. In Section 5, we explicitly construct a rank-3 optimal kernel for
3-colorable BOT graphs. For general BOT graphs, we further prove in Section 6 that one may restrict
to optimizing over rank-3 DPP kernels only, without sacrificing too much in likelihood. Then in
Section 7 we put these pieces together and prove the soundness theorem, which completes the proof
of our main NP-hardness of DPP learning theorem. In Section 8 we present and analyze our simple
approximation algorithm. Finally, we conclude in Section 9 with discussions and open problems.

4Some authors, for example [Lov79], define orthogonal representation by mandating the vectors of two non-adjacent
vertices to be orthogonal.

5In this problem, one is given an undirected graph that is promised to be r-colorable and is asked to find an
independent set of size εn, where ε < 1/r and n is the number of the vertices in the graph.
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2 Maximum likelihood learning of DPP and our main hardness
result

2.1 Preliminaries

Unless stated otherwise, all logarithms in this paper are to the base e (i.e. natural logarithms). For
positive integer n, we write [n] to denote the set {1, 2, . . . , n}. For an n-dimensional real vector x,
we use ‖x‖2 =

√
x2

1 + · · ·+ x2
n to denote the `2 or Euclidean norm of x.

Matrix analysis. Let A be an m× n matrix. The (i, j)th entry of A will be denoted by Ai,j . All
matrices in this paper are over real numbers R; therefore the Hermitian adjoint of A, AH is the
same as A>, the transpose of A. By the spectral theorem, the eigenvalues of a real, symmetric
matrix M ∈ Rn×n are all real numbers, and will be denoted λ1(M) ≥ λ2(M) ≥ · · · ≥ λn(M). A
real, symmetric matrix M is called positive semidefinite (PSD) if all its eigenvalues are non-negative
(i.e., λn(M) ≥ 0). Well-known equivalent characterizations of PSD matrices include x>Mx ≥ 0 for
all x ∈ Rn, and the existence of a matrix Q ∈ Rk×n for some k > 0 such that M = Q>Q.

A useful variational characterization of the eigenvalues of real, symmetric matrices is the Courant-
Fischer theorem, which states that for every 1 ≤ k ≤ n (when a set of vectors whose indices are
outside the range [n], then the set is understood to be empty) we have

λk(A) = min
x1,...,xk−1∈Rn

max
y 6=0, y∈Rn
y⊥x1,...,xk−1

y>Ay

y>y
,

and

λk(A) = max
xk+1,...,xn∈Rn

min
y 6=0, y∈Rn

y⊥xk+1,...,xn

y>Ay

y>y
.

The singular values of a matrix A ∈ Rm×n are defined as the (positive) square roots of the
eigenvalues of AHA = A>A (a real, symmetric n × n matrix). Namely, σi(A) =

√
λi(A>A),

i = 1, . . . , n. We also arrange the singular values of a matrix A in decreasing order, that is
σ1(A) ≥ σ2(A) ≥ · · · ≥ σn(A). The Frobenius norm of A, denoted ‖A‖F , is defined to be
‖A‖F =

√∑m
i=1

∑n
j=1 |Ai,j |2. It is well-known that ‖A‖2F = σ2

1(A) + · · · + σ2
n(A). Finally, the

spectral norm of a square n× n matrix A is defined as the square root of the maximum eigenvalue of
AHA, i.e.,

‖A‖2 =
√
λ1(A>A) = max

x6=0

‖Ax‖2
‖x‖2

= σ1(A).

Discrete determinantal point processes. A discrete determinantal point process (DPP) P
over a finite set X is a probability measure over the set of all subsets of the ground set X . The
distribution of P is specified by a marginal kernel K ∈ RX×X , which is a positive semidefinite matrix
with eigenvalues in [0, 1], in the following manner: if Y ⊆ X is a random subset drawn according to
P, then its probability mass function PK is defined such that, for every S ⊆ X ,

Pr
Y ∼PK

[S ⊆ Y ] = det(KS).

Here KS is the principal submatrix of K indexed by S ⊆ X .
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If it is the case that all eigenvalues of K are in [0, 1), then P is called an L-ensemble, whose kernel
can be defined to be the positive definite6 matrix L = K(I −K)−1. In this case, the corresponding
probability mass function, denoted PL, can be shown to be

Pr
Y ∼PL

[Y = S] =
det(LS)

det(I + L)
,

for every S ⊆ X . Hence, PrY ∼PL [Y = ∅] = det(I −K), and consequently a DPP is an L-ensemble
if and only if the random variable Y = ∅ with non-zero probability.

2.2 Maximum Likelihood Learning of DPPs

We define the Maximum Likelihood Learning of DPPs problem as follows. A learning algorithm
receives a training data sample {X ′t}T

′
t=1 (viewed as a multiset) drawn independently and identically

from a distribution D over the subsets of a ground set X . The goal of the learning algorithm is to
find a DPP kernel K based on the training sample so that to minimize7 the following maximum log
likelihood estimator

`(K) = − 1

T ′
log

T∏
t=1

Pr
Y ∼PK

[Y = Xt] = − 1

T ′

T∑
t=1

log Pr
Y ∼PK

[Y = Xt],

where {X1, . . . , XT } is the set of distinct elements in the multiset {X ′t}T
′

t=1. When the training data
sample {X ′t}T

′
t=1 is clear from context, we simply denote the value of the maximum log likelihood of

an optimal DPP kernel by `∗.
One common way to establish the hardness of maximum likelihood learning problems is to show

that even computing the maximum value of the log likelihood `∗ is hard (if one could efficiently find
an optimal DPP kernel K, then since evaluations of determinants can be performed in polynomial
time, clearly the corresponding log likelihood `∗ would be efficiently computable as well). That is
also the approach we take in this paper. In fact, the lower bound actually proved is much stronger:
we show that it is NP-hard even to compute a 1−O( 1

log9N
)-approximation of `∗ for a ground set of

size N .

Theorem 3 (Main). There are infinitely many positive even integers N such that the following
holds.8 Let X = {1, 2, . . . , N}. There is a training data sample {Xt}N/2t=1 of size N/2, where Xi ⊆ X
for each i, such that it is NP-hard to

(
1−O( 1

log9N
)
)
-approximate the maximum log likelihood value

that a DPP kernel can achieve on the training set.

2.3 Proof of the Main Theorem: an outline

Max-3SAT with bounded occurrence. Our starting point is the hardness of Max-3SAT, in
which given a Boolean formula φ in 3-CNF form, the goal is to output the maximum number of

6A real, symmetric matrix is called positive definite (PD) if all its eigenvalues are positive.
7We add a negative sign at the front to make the estimator to be always positive, and thus changing the maximization

problem into a minimization one. To be consistent, we still call the quantity as a “maximum” likelihood estimator; see
Remark 1.

8As we will see later that N/2 is the number of edges in a specially constructed graph. We then construct a
3-uniform hypergraph based on this graph, and add a new node to the hypergraph for each edge in the graph. The
ground set consists of these newly added nodes together with the set of vertices in the original graph, hence the
cardinality of the ground set is at most N .
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clauses of φ that can be satisfied by any truth assignment of the variables. A classical hardness result
is the Håstad’s 3-bit PCP theorem [Hås01], which states that it is NP-hard to (7/8 + ε)-approximate
Max-3SAT for any constant ε > 0. However, for our purpose, we need the formula φ to have
bounded occurrence of any variable. Let Max-3SAT(k) to denote a subclass of Max-3SAT, in
which the instances satisfy that every variable occurs in at most k clauses. [Hås00] showed that
it is NP-hard to 7/8 + 1/(log k)c-approximate Max-3SAT(k) where c is some absolute constant.9

Therefore,

Lemma 1 ([Hås00]). There are constant integer k and constant ε > 0 (depending only on k) such
that it is NP-hard to (1− ε)-approximate Max-3SAT(k).

That is, for infinitely many integers n, there are two families of instances φY and φN in Max-
3SAT(k) of size n each with the following property: φY is satisfiable; every truth assignment can
satisfy at most an 1− ε fraction of the clauses in φN ; and it is NP-hard to distinguish between the
two cases.

3-Coloring for bounded degree graphs. Next, we adapt a gap-preserving reduction of
Bogdanov, Obata and Trevisan [BOT02], which was originally used to prove an Ω(n) query lower
bound for testing 3-Colorability in bounded-degree graphs under the property testing model. On
input an instance φ of Max-3SAT(k), the reduction outputs a degree-bounded graph Gφ (BOT
graph) which satisfies the following: if φ is satisfiable then Gφ is 3-colorable; and if every truth
assignment can satisfy at most 1− ε fraction of the clauses in φ then every 3-coloring of the vertices
of Gφ can make at most 1− ε′ fraction of the edges in Gφ non-monochromatic. Here ε′ is a constant
depending only on ε and k.

Lemma 2 ([BOT02]). There are absolute constants d and ε′ > 0 such that the following holds. For
infinitely many integers n, there are two degree-d bounded graphs Gφ,Y and Gφ,N of size n such that:
Gφ,Y is 3-colorable; no 1− ε′ fraction of the edges of Gφ,N is 3-colorable; and yet it is NP-hard to
distinguish between the two cases.

Very strong expanders. The main idea of the reduction of [BOT02] is to make k copies of True,
False and Dummy for each variable and its negation, and use an expander to connect these copies
together to ensure truth value consistency among different copies. Any constant-degree expander
with reasonable vertex-expansion suffices: on one hand, the resulting graph Gφ is of bounded degree;
on the other hand, by the expansion property, deleting a small fraction of the edges in Gφ will still
leave the graph with a large connected component, using which, one can — from the coloring of Gφ
— decode a satisfying assignment that satisfies most of the clauses.

However, for our purpose of proving hardness of DPP Maximum Likelihood Learning, we need
the expander to have some additional properties, which are encapsulated in the following definition.

Definition 1 (Very strong expanders [AC07]). A graph G = (V,E) is called a d-regular very strong
expander on n vertices if the average degree in any subgraph of G on at most n/10 vertices is at
most d/6, and the average degree in any subgraph of G on at most n/2 vertices is at most 2d/3.

The nice properties of very strong expanders that we require are summarized in the following
theorem from [AC07].

9We may also use the NP-hardness results of [BKS03] for 3-SAT instance in which every variable appears exactly 4
times, or assuming RP 6= NP and use the hardness result of [Tre01] with better parameters.
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Theorem 4 ([AC07]). Let G = (V,E) be a very strong d-regular expander on n vertices. If we
delete an arbitrary subset of m′ ≤ nd/150 edges from G and denote the resulting graph by G′, then
G′ contains a subgraph H on at least n− 15m′/d vertices and the diameter of H is O(log n).

The known explicit constructions of Ramanujan graphs [LPS88, Mar88] yield families of d-regular
strong expanders on n vertices for infinitely many n’s.

3-uniform hypergraph. To obtain the training data sample, we transform a BOT graph Gφ =
(V,E) into a 3-uniform hypergraph Hφ = (V ′, E′) as follows. The vertex set V ′(Hφ) is V (G)∪E(G),
and for notational convenience, we will simply label the “graph-vertex” vertices by av for every
v ∈ V (G), and label the “graph-edge” vertices in V ′(Hφ) by a(u,v) for every edge (u, v) ∈ E(G).
Then the set of hyper-edges is E′(Hφ) = {(au, av, a(u,v)) : (u, v) ∈ E(G)}. It follows that Hφ is a
3-uniform hypergraph with10 N = |V ′(Hφ)| = n+m and |E′(Hφ)| = m, where n and m denote the
number of vertices and edges of the BOT graph Gφ, respectively.

Now, what happens if we use the set of hyper-edges of Hφ as the training data sample {Xt}mt=1,
and feed it to a DPP Maximum Likelihood Learning algorithm? Our first step in understanding the
optimal DPP kernel is to establish a connection between DPP kernel of learning BOT hypergraphs
and a problem called “vector coloring”.

Connecting DPP kernels with vector colorings. Since K is a positive semidefinite matrix,
we can write K as K = Q>Q for some matrix Q. Let q1, . . . , qN ∈ Rk be the columns of Q. We can
further decompose these vectors as qi = ‖qi‖2χi, where χi ∈ Rk is a unit vector. The quantity ‖qi‖2
is a measure of the “importance” of item i, and χi is a normalized vector which encodes diversity
features of item i. Now the entries of the marginal kernel satisfy Kij = ‖qi‖2χ>i χj‖qj‖2, where
χ>i χj ∈ [−1, 1] is a signed measure of the similarity between item i and item j. In particular, the
diagonal entries satisfy that Kii = ‖qi‖22 for every i ∈ [N ].

We prove the following theorem, which allows us to somewhat decouple ‖qi‖2 and χi for each
item i, and identify (from the training set) the value of the “importance” (i.e. value ‖qi‖2) for each
item.11 Our result essentially determines at least one of the optimal settings of the importance of
each item.

Theorem 5. Let K be a marginal kernel with likelihood `(K). Then there exists a marginal kernel
K ′ with `(K ′) ≤ `(K) such that the diagonal of K ′ (indexed by vertices and edges of Gφ) satisfies

K ′ii =

{
degGφ

(u)

m for i = u ∈ V (Gφ);
1
m for i = (u, v) ∈ E(Gφ).

Thus, it remains to determine the diversity features that maximize the likelihood. To this end,
we use a variant of 3-colorability in which the “colors” are generalized to vectors in Rk and the
“coloring constraint” for an edge (i, j) is satisfied if the vectors χi and χj assigned to the vertices i
and j are orthogonal.

10In order to not overload the statement in Theorem 3 with multiple parameters, we may add isolated vertices to
graph Gφ so that n = m and hence the ground set size is N and the sample size is m = N/2.

11It is no coincidence that our simple algorithm (see Section 8 for details), using this “first-moment” information
from the training set in a similar manner, constructs its DPP that achieves nontrivial worst-case approximation to the
optimal log likelihood.
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More formally, let Sk−1 be the unit sphere in k-dimensional Euclidean space; that is, Sk−1 =
{x ∈ Rk : ‖x‖2 = 1}. Given a graph G = (V,E), we define a vector k-coloring of G to be a function
χ : V (G)→ Sk−1. We say that a vector k-coloring χ is orthogonal if, for every edge (u, v) ∈ E(G),
we have χ>u χv = 0. We define the error of a vector k-coloring χ of G to be

errχ(G) :=
1

|E(G)|
∑

(u,v)∈E(G)

|χ>u χv|2

so that a vector k-coloring χ of G is orthogonal if and only if errχ(G) = 0. Since χu and χv are unit
vectors, |χ>u χv| = | cos θuv| for all (u, v) ∈ E(G), where θuv is the angle between χu and χv.

Now, by combining Theorem 5 with the fact that any 3-coloring of G naturally induces a vector
3-coloring of G, it is not hard to prove the following “completeness” theorem.

Theorem 6 (Completeness theorem). Let Gφ be a BOT graph, and let n = |V (Gφ)| be the number
of vertices and m = |E(Gφ)| be the number of edges of Gφ, respectively. If φ is satisfiable, then there
exists a rank-3 DPP marginal kernel K such that

`(K) = `∗ = 3 logm− 1

m

∑
(u,v)∈E(Gφ)

(
log(degGφ(u)) + log(degGφ(v))

)
.

Projecting DPP kernels to R3. Intuitively, the maximum likelihood marginal kernel has dimen-
sion 3 so that zero probability measure will be assigned for subsets of size at least 4. We were unable
to prove this, but we nevertheless manage to show that the loss in making such an assumption is not
too great:

Theorem 7. Let Gφ be a BOT graph with maximum degree at most k. There is a constant Ck
depending only on k such that the following holds. Let K be an optimal marginal kernel with likelihood
`(K) ≤ `∗ + δ for some 0 < δ ≤ 1/(128k)2, then there exists a marginal kernel K ′ of dimension 3
such that `(K ′) ≤ `∗ + Ckδ

1/4.

We conjecture that an even stronger statement is in fact true.

Conjecture 1 (Cardinality-rank conjecture). If the cardinality of every subset in a training set
is at most k ≥ 1, then every optimal maximum likelihood marginal kernel for the training set has
dimensional at most k.

This conjecture may be of independent interest outside the realm of maximum likelihood learning
of DPPs.

Decoding truth assignments from vector colorings. Because of Theorem 7, from now on we
assume that the dimension of Q is 3. Therefore, for each (au, av, a(u,v)) ∈ E′(Hφ),

Pr
Y ∼PK

[Y = {au, av, a(u,v)}] = det(K{au,av ,a(u,v)}),

where K = Q>Q is the marginal kernel of DPP P . To maximize the likelihood, we want to maximize
the product of determinants of the above form. Since each a(u,v) occurs in only one sample, we
can assume that χa(u,v)

is always taken to be orthogonal to χau and χav . Thus, the likelihood
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contribution from (au, av, a(u,v)) is maximized when χ>auχav = 0; or equivalently, when χau and χav
are orthogonal. We formally prove this correspondence between the “orthogonality” of the associated
vector 3-coloring of Gφ and the likelihood of the corresponding DPP with marginal kernel K = Q>Q,
where the column of Q corresponding to vertex u is ‖qau‖2χau . Moreover, we can even decode the
truth-assignment of the Boolean formula φ if the vector 3-coloring of Gφ is very close to satisfying
all edges of Gφ.

Theorem 8 (Soundness theorem). Let `∗ be the optimal log likelihood as in Theorem 6. Then there
exists a constant C > 0 which depends only on k and ε′ as those defined in Theorem 2, such that the
following holds. If there is a DPP marginal kernel K of rank 3, which satisfies `(K) ≤ `∗ + C

log2 n

where n = |V (Gφ)| is the number of vertices in the BOT graph, then there is a truth assignment that
satisfies at least (1− ε) fraction of the clauses in φ, where ε is the constant defined in Theorem 1.

To see why Theorem 8 implies our main theorem, Theorem 3, consider that we start the reduction
with two families of instances φY and φN in Max-3SAT(k) which are NP-hard to distinguish. Then
we construct their corresponding BOT hypergraphs, HφY and HφN , and use the edge sets of these
two hypergraphs as training sets of size m for a DPP maximum likelihood learning algorithm. The
log likelihood estimator of φY is `∗ = Θ(logN) by Theorem 6. What is the log likelihood estimator of
φN? Well, by Theorem 7, if the marginal kernel of GφN has log likelihood `(K) ≤ `∗+δ for some small
enough δ > 0, then there exists a marginal kernel K ′ of dimension 3 such that `(K ′) ≤ `∗ + Ckδ

1/4.
By Theorem 8, we must have δ = Ω( 1

log2N
) for φN . That is, the log likelihood estimator of φN

is `∗ + Ω( 1
log8 N

). Now if there were an polynomial-time algorithm A which approximates the log
likelihood estimator within a factor of 1 − 1/Ω(log9N), then A would be able to tell apart φY
from φN — thus solving an NP-complete problem — simply by approximating the maximum log
likelihood estimators on training data sample from HφY and HφN , respectively.

3 Robustness of very strong expanders – Proof of Lemma 2

3.1 BOT graphs

We now provide a detailed description and analysis of the construction in [BOT02], as our hardness
proof relies crucially on the properties of BOT graphs.

Recall that in the classic reduction from 3-SAT to 3-Coloring, there are three designated
nodes True, False and Dummy which form a triangle so that in any 3-coloring of the graph they
must be assigned to different colors. The reduction then connects the nodes in literal gadgets and
clause gadgets to these three nodes so that every literal is connected to the Dummy node, and any
3-coloring of the graph can be decoded into a satisfying assignment simply by reading the color
of every literal node. On the other hand, any satisfying assignment of the variables can also be
transformed into a valid 3-coloring of the graph by assigning “True” literal nodes the same color as
the True node and assigning “False” literal nodes the same color as the False node.

The basic idea of the construction in [BOT02] is to make k “local” copies for each literal node as
well as for the three designated True, False and Dummy nodes, so that each local copy of these
nodes used only once in the clause gadgets. The benefit of doing so is that deleting any single node
or any single edge will affect (or “destroy”) a single clause, hence makes the reduction from 3-SAT to
3-Coloring (up to a constant factor) distance-preserving. However, this introduces a new difficulty:
we need to make sure that all k copies of literal nodes (True, False and Dummy nodes) should be
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Figure 2: Literal blocks. This gadget enforces that the jth copy of literal xi and x̄i will always be
assigned opposite truth values, as long as the assignments of True, False and Dummy nodes in
x
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(b) The clause gadget for a clause (`a∨ `b∨ `c). For concrete-
ness, we illustrate the construction with `a = x1 (using the
3rd copy), `b = x̄3 (using the 2nd copy) and `c = x5 (using
the 4th copy).

Figure 3: Two basic gadgets of BOT graphs.
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block in the underlying expander.

Figure 4: The expander part of BOT graph.

assigned with the same color. Such consistency is ensured by embedding these local copies on an
expander so that the graph is robust against deletions of a small number of edges or nodes, and at
the same time the blowup in the maximum degree is bounded.

Specifically, given a Boolean formula φ in 3-CNF form, in which φ has n variables, m clauses
and each literal appears in at most k clauses, construct an undirected graph Gφ(V,E) as follows:

1. Create 2kn literal nodes: for each variable xi, 1 ≤ i ≤ n, create k copies of it x(j)
i , and another

k copies of its negation x̄(j)
i , where j = 1, . . . , k;

2. For each of the 2kn literal nodes x(j)
i (resp. x̄(j)

i ), create a block — called x(j)
i -block (resp. x̄(j)

i -
block) — of 3 color nodes T (j)

i , F
(j)
i , D

(j)
i (resp. T̄ (j)

i , F̄
(j)
i , D̄

(j)
i ), which serve as local copies of

True, False and Dummy nodes. Add a triangle on (T
(j)
i , F

(j)
i , D

(j)
i ) (resp. (T̄

(j)
i , F̄

(j)
i , D̄

(j)
i ))

for each literal block;

3. For each literal, add an edge between the literal node and its negation node, so that literals
and their negations will always be assigned to different colors. These edges, as well as the
x

(j)
i -block and the x̄(j)

i -block, are illustrated in Fig. 2;

4. For each literal xi (resp. x̄i), use the equality gadget as illustrated in Fig. 3a to connect between
each pair of its k copies. That is, create a “k-clique” among {x(j)

i }j∈[k] (resp. {x̄
(j)
i }j∈[k]) such

that each “edge” in the “clique” is actually an independent copy of the equality gadget;

5. For each clause, add a clause gadget to connect 3 literals in that clause together with their
corresponding True nodes (in the blocks that are created in step 1) with 6 auxiliary nodes as
shown in Fig 3b. Note that all literal nodes and True nodes in the clause gadgets are used
only once; and
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6. Build a constant-degree expander graph of size 2kn, with x(j)
i -blocks and x̄(j)

i -blocks, 1 ≤ i ≤ n
and 1 ≤ j ≤ k, as its vertices. Then, for any two blocks that are connected by an edge in the
expander, connect their corresponding True nodes (resp. False nodes and Dummy nodes)
with an independent copy of the equality gadget. See Fig. 4 for an illustration.

Note that for a bounded occurrence instance φ of 3-CNF formula, the number of clauses is at
most m ≤ 2kn/3.

3.2 Properties of BOT graph and proof of Lemma 2

We first record the following correctness result of Gφ from [BOT02], which follows a similar proof of
the classic reduction from 3-SAT to 3-Coloring.

Proposition 1 ([BOT02]). The 3-CNF formula φ is satisfiable if and only if graph Gφ is 3-colorable.

Next we do some simple calculations on the parameters of Gφ.

Proposition 2. Suppose the underlying expander is d-regular, then Gφ satisfies the following.

• The maximum degree is max(2d+ 3, 2k + 1) ≤ 2 max(k, d) + 3;

• |V (Gφ)| = O(nk) ·max(k, d); and

• |E(Gφ)| = O(nk) ·max(k, d).

Proof. The maximum degree follows by noticing that (for simplicity, we only consider nodes for the
un-negated literals) deg(D

(j)
i ) = 2d+3, deg(F

(j)
i ) = 2d+2, deg(T

(j)
i ) ≤ 2d+3, and deg(x

(j)
i ) ≤ 2k+1.

Note that every equality gadget introduces 2 auxiliary nodes and 5 additional edges. Similarly,
every clause gadget introduces 6 auxiliary nodes and 12 additional edges. The nodes in Gφ consists
of 2nk literals nodes, 6nk literal block nodes and auxiliary nodes introduced by gadgets. That is

|V (Gφ)| = 8nk + 2n · k(k − 1)

2
· 2 + 3 · 2nk · d

2
· 2 + 6m

≤ 8nk + 2n(k2 − k) + 6nkd+ 4nk = O(nk) ·max(k, d),

where in the second last step we use the bound m ≤ 2kn/3. Finally,

|E(Gφ)| = nk(3 + 6) + 2n · k(k − 1)

2
· 5 + 3 · 2nk · d

2
· 5 + 12m

≤ 9nk + 5n(k2 − k) + 15nkd+ 8nk = O(nk) ·max(k, d),

where the first term counts the edges in Fig. 2 for all k copies of each variable, and the next two
terms count the total number of edges in the equality constraints and the last term counts the total
number of edges in the clause gadgets.

We say an equality gadget is broken if any of the 5 edges in Fig. 3a is deleted, and say a literal
node (x

(j)
i (resp. x̄(j)

i )) is isolated if either all its k − 1 equality connections with other copies of xi
(resp. x̄i) are all broken, or all its d equality connections with other literal nodes in the expander
graph are all broken. We say a literal pair (x

(j)
i , x̄

(j)
i ) is damaged if any of the edges within the two

literal blocks in Fig. 2 is deleted, or either x(j)
i node or x̄(j)

i node becomes isolated.
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Let E′ ⊂ E(Gφ) be a subset of the edges of graph Gφ. What happens if we delete all the edges
in E′? Define the survived subgraph induced by E′ of Gφ, denoted G′φ,E′ as follows. Delete all literal
pairs that are damaged from deleting edges in E′, and delete all the edges connected with damage
pairs; delete all clause gadgets that contain one or more damaged literals. We make the following
two simple observations on a survived subgraph G′φ,E′ .

Claim 1. Let φ′ be the 3-CNF formula by keeping only the survived clauses in G′φ,E′. Then φ′ is
satisfiable if and only if G′φ,E′ is 3-colorable.

Proof. This follows directly by noticing that G′φ,E′ can be regarded as the BOT graph constructed
from formula φ′.

Claim 2. If we delete a subset of edges E′, then the number of survived clauses in φ′ is at least
m− 2|E′|.

Proof. This is because deleting an edge causes at most one literal pair damaged, and thus affects at
most two clauses.

Our main goal in this Section is the prove the following lemma on the gap-preserving reduc-
tion from Max-3SAT(k) to 3-Coloring of bounded-degree graphs of Bogdanov, Obata and
Trevisan [BOT02].

Lemma 2 (restatement). There are absolute constants d and ε′ > 0 such that the following holds.
For infinitely many integers n, there are two degree-d bounded graphs Gφ,Y and Gφ,N of size n such
that: Gφ,Y is 3-colorable; no 1− ε′ fraction of the edges of Gφ,N is 3-colorable; and yet it is NP-hard
to distinguish between the two cases.

Proof. Recall that, by Lemma 1, there are constant integer k and constant ε(k) > 0 such that there
are two families of instances φY and φN in Max-3SAT(k) of size n each, φY is satisfiable and any
truth assignment can satisfy at most 1 − ε(k) fraction of the clauses in φN , and it is NP-hard to
distinguish between these two formulas. Now, use the very strong expander given in Theorem 4 to
construct the corresponding BOT graphs Gφ,Y and Gφ,N for φY and φN , respectively (we just need
to make sure that the number of vertices of the very strong expander is at least 2nk; if the number
of vertices is larger, then we can simply make some of the literals more than k copies). Let n be the
number of variables and m be the number of clauses of the Boolean formula, where m ≥ n. Define
ε′ = ε·n

2|E(Gφ,N )| . Since both k and d are constants, then by Proposition 2, ε′ is an absolute constant
depending on ε, k and the degree d of the underlying expander graph. Clearly Gφ,Y is 3-colorable. It
is also not hard to prove that Gφ,N is not (1− ε′) 3-colorable. Indeed, suppose that Gφ,N is (1− ε′)
3-colorable. Then we can delete at most ε′|E(Gφ,N )| edges from Gφ,N , obtain a survived subgraph
with at least m− ε ·n ≥ (1− ε)m clauses which is 3-colorable. Now by Claim 1, the 3-coloring of the
survived subgraph can be decoded into a satisfying assignment for the survived, at least (1− ε)m
clauses of φN , a contradiction. Finally the constant degree bound of the constructed BOT graphs
follows from the first item of Proposition 2.

4 Structure of max-likelihood solutions – Proof of Theorem 5

For convenience of the reader, we repeat Theorem 5 here.
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Theorem 5 (restatement). Let K be a marginal kernel with likelihood `(K). Then there exists a
marginal kernel K ′ with `(K ′) ≤ `(K) such that the diagonal of K ′ (indexed by vertices and edges of
Gφ) satisfies

K ′ii =

{
degGφ

(u)

m for i = u ∈ V (Gφ);
1
m for i = (u, v) ∈ E(Gφ).

The proof follows from the following slightly stronger lemma, which implies that we can assume
that the diagonal of a max likelihood kernel K (indexed by vertices and edges of Gφ) satisfies that
Kii is equal to the normalized frequency of element i in the training set.

Lemma 3. Let [N ] be the ground set, S = {Xj}mj=1 be a set of m samples with each Xj ⊆ [N ].
Let D be the empirical distribution induced by the sample set S: namely, for every X ⊆ [N ],
D(X) = |{X ∈ S}|/m if X is in the sample set, and D(X) is zero otherwise. Then there is a
maximum likelihood marginal kernel K which satisfies that the diagonal entry of K at each element
in [N ] is equal to the element’s empirical frequency in the sample set. That is, Kii =

∑
X∈S:X3i

D(X)

for every i ∈ [N ].

The rest of this section is devoted to a proof of Lemma 3.

4.1 The L-ensemble case

We start by assuming that all of K’s eigenvalues are in (0, 1), and follow a similar strategy as of
the proof of Proposition 13 in [BMRU17a]. Note that in this case the DPP is an L-ensemble, where
L = K(I −K)−1. If K is a maximum likelihood DPP, then the corresponding L is a critical point
of the likelihood function, and accordingly the directional derivative of the likelihood function in
every direction is zero. Thus, in “direction” of any matrix H ∈ RN×N , we get∑

X⊆[N ]

D(X)Tr(L−1
X HX)− Tr((I + L)−1H) = 0

Fix t1, t2, . . . , tn ∈ R, and let T be the diagonal matrix with diagonal t1, t2, . . . , tn. Setting
H = 1

2LT + 1
2TL (this ensures that we consider symmetric kernels), we get HX = 1

2LXTX + 1
2TXLX .

Since (I + L)−1 and L commute, and the trace is invariant under cyclic permutations, we get

∑
X⊆[N ]

D(X)
∑
j∈X

tj = Tr(KT ) =
N∑
j=1

Kjjtj

Fix i ∈ [N ], and consider the setting where ti = 1 and tj = 0 for all j 6= i. The above equation
becomes ∑

X⊆[N ]:X3i

D(X) = Kii, (1)

completing the proof of the lemma for the L-ensemble case.
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4.2 Perturbing the training example distribution

To deal with the non L-ensemble case, we apply a continuity argument: specifically, we employ a
Lipschitz property of the log likelihood function with respect to small perturbations of the training
example distribution. In the rest of the proof we think N (hence both n and m) as a fixed constant
and let the small quantities such as ε tend to zero independent of N .

Let D be the original empirical distribution induced by the sample set S of size m. Without
loss of generality, we assume12 both D(∅) = 0 and D([N ]) = 0. We perturb D by adding very tiny
probabilities at ∅ and [N ] so that the corresponding correlation kernel is an L-ensemble.13 Formally,
define Dε to be a distribution on 2[N ] such that for any X ⊆ [N ]

Dε(X) =


(1− ε)D(X) if X ∈ S;
ε/2 if X = ∅;
ε/2 if X = [N ];
0 otherwise.

(2)

We stress that the small quantity ε is independent of the DPP learning instance under consideration.
In the following, we will use K∗ to denote a (non L-ensemble) optimal marginal kernel for the

original training distribution D, and use Kε to denote an optimal marginal kernel for the perturbed
training distribution Dε. Since Dε(∅) > 0 and Dε([N ]) > 0, Kε is necessarily an L-ensemble and
hence by our previous argument, the diagonals of Kε satisfy (1). In particular, for every i ∈ [N ]

(Kε)ii =
ε

2
+

∑
X∈S:X3i

(1− ε)D(X), (3)

which approaches
∑

X∈S:X3iD(X) when ε tends to zero.
To make the dependency of the maximum log likelihood estimator on the empirical distribution

explicit, we write `(K,D) for the log likelihood function of DPP kernel K on training distribution
D. Therefore,

`(K∗, D) =
∑
X∈S

D(X) log

(
1

PrY ∼PK∗ [Y = X]

)
, (4)

and

`(Kε, Dε) =
ε

2
log

(
1

PrY ∼PKε [Y = ∅]

)
+
∑
X∈S

(1− ε)D(X) log

(
1

PrY ∼PKε [Y = X]

)
+
ε

2
log

(
1

PrY ∼PKε [Y = [N ]]

)
. (5)

The main goal in this subsection is to prove the following inequality, which says that the L-
ensemble marginal kernel Kε, which is defined to be optimal for the perturbed training distribution
Dε, is also close to being optimal for the original training distribution D.

12For if D(∅) 6= 0, any optimal DPP kernel for D is necessarily an L-ensemble. We further assume D([N ]) = 0 to
simplify exposition. It is easy to see that the there are two parts in the definition of K∗ε below: the rescaling part is to
deal with DPP kernel singularity at ∅, and the spectrum shifting part is to deal with DPP kernel singularity at [N ].
One can therefore keep only the rescaling part in K∗ε when D([N ]) is bounded away from zero.

13Making the empirical distribution to be non-zero at ∅ ensures that the kernel is an L-ensemble; however, in order
to apply the matrix derivative argument in [BMRU17a], we need to make the distribution to be non-zero at [N ] as
well.
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Proposition 3. Let D, K∗, Dε and Kε be defined as before. Then for every ε > 0 that is small
enough

`(Kε, D) ≤ `(K∗, D) +O(ε log
1

ε
), (6)

where the hidden constant in the O(ε log 1
ε ) term depends only on N .

Proof. Let IN denote the N ×N identity matrix. Define a new marginal kernel K∗ε as

K∗ε = (1− ε)K∗ +
ε

2
IN .

Clearly, since K∗ is PSD, λN (K∗ε ) ≥ ε/2. It is also not hard to verify that λ1(K∗ε ) = (1 −
ε)λ1(K∗) + ε/2 ≤ 1− ε/2. It follows that K∗ε is indeed a DPP marginal kernel.

We will prove the following sequence of inequalities

`(K∗ε , D) ≤ `(K∗, D) +O(ε). (7)

`(K∗ε , Dε) ≤ `(K∗ε , D) +O(ε log
1

ε
). (8)

`(Kε, Dε) ≤ `(K∗ε , Dε). (9)
`(Kε, D) ≤ `(Kε, Dε) +O(ε). (10)

First of all, let’s state and prove two useful bounds.

Fact 1. Let D′ be an arbitrary empirical distribution over the ground set [N ], and let `∗(D′) denote
the optimal value of the DPP maximum log likelihood estimator for D′. Then `∗(D′) ≤ N log 2.

Proof. This is because the trivial diagonal kernel KI := 1
2IN , which corresponds to the uniform

distribution over all 2[N ] subsets, is a legal DPP marginal kernel for any distribution D′ over [N ],
and its log likelihood estimator is easily seen to be N log 2.

Fact 2. Let S = {Xj}mj=1 be a set of m samples with each Xj ⊆ [N ], the ground set. Let K be any
maximum likelihood marginal kernel of the empirical distribution induced by the sample set S. Then,
for any Xj ∈ S,

Pr
Y ∼PK

[Y = Xj ] ≥ e− log 2·mN > e− log 2·N2
.

Proof. This follows by combining Fact 1 with the fact that in (4), D(Xj) ≥ 1/m.

4.2.1 Proof of inequality (7)

For any DPP marginal kernel K and X ⊆ [N ], it is well-known that using inclusion-exclusion
principle, we can express PrY ∼PK [Y = X] in terms of K as

Pr
Y ∼PK

[Y = X] =
∑
T⊇X

(−1)|T\X| det(KT ) = (−1)|X|
∑
T⊇X

(−1)|T | det(KT )

= (−1)|X| det(IX̄ −K) = |det(K − IX̄)|,

where IX̄ stands for the diagonal matrix whose (i, i)-entry is 1 if i ∈ X̄ and is 0 otherwise.
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Now fix any X ∈ S. Then PrY ∼PK∗ [Y = X] = |det(K∗− IX̄)| = |det(A)|, where A := K∗− IX̄ .
By Fact 2, | det(A)| ≥ e−mN log 2. Similarly,

Pr
Y ∼PK∗ε

[Y = X] = |det(K∗ε − IX̄)| = | det(A+ εE)|,

where E := 1
2IN −K

∗.
We use the following result to bound the difference between det(A+ εE) and det(A).

Theorem 9 ([IR08]). Let A and E be two N × N complex matrices. Let σ1 ≥ · · · ≥ σN be the
singular values of A, and suppose that the spectral norm of E satisfies ‖E‖2 < 1. Then

|det(A+ E)− det(A)| ≤ sN−1‖E‖2 +O(‖E‖22),

where sN−1 is the (N − 1)st elementary symmetric function in the singular values of A and is upper
bounded by Nσ1 · · ·σN−1.

Since A = K∗ − IX̄ is symmetric, {σ1(A), . . . , σN (A)} = {|λ1(A)|, . . . , |λN (A)|}. To bound the
singular values of A, we recall Weyl’s theorem on the changes to eigenvalues of a Hermitian matrix
that is perturbed. Specifically, the theorem states that if A,B and C are Hermitian matrices of size
n× n, C = A+B, then

λ1(A) + λn(B) ≤ λ1(C) ≤ λ1(A) + λ1(B)

· · · · · · · · ·
λn(A) + λn(B) ≤ λn(C) ≤ λn(A) + λ1(B)

Now all the eigenvalues of K∗ are in [0, 1], and all the eigenvalues of −IX̄ are in {−1, 0}, therefore,
all the eigenvalues of A = K∗ − IX̄ are in [−1, 1]. It follows that σ1, . . . , σN ∈ [0, 1] and sN−1 ≤ N .

Since E = 1
2IN −K

∗, its eigenvalues are just the corresponding eigenvalues of −K∗ but shifted
by 1

2 , hence all eigenvalues of E are in [−1
2 ,

1
2 ] and ‖E‖2 ≤ 1

2 .
Now we can plug in all these bounds into Theorem 9 to obtain∣∣∣∣∣ Pr

Y ∼PK∗
[Y = X]− Pr

Y ∼PK∗ε
[Y = X]

∣∣∣∣∣ ≤
∣∣∣∣det(K∗ − IX̄)− det

(
K∗ − IX̄ + ε(

IN
2
−K∗)

)∣∣∣∣
≤ εN

2
+O(

ε2

4
) < εN,

for all small enough ε.
It follows that, for all small enough ε,

Pr
Y ∼PK∗ε

[Y = X] ≥ Pr
Y ∼PK∗

[Y = X]− εN ≥ Pr
Y ∼PK∗

[Y = X](1−Nelog 2·N2
ε) ≥ Pr

Y ∼PK∗
[Y = X]e−O(ε),

where the last step follows from the inequality that 1− x ≥ e−
3
2
x for all 0 ≤ x ≤ 1/2.

Since this lower bound on DPP probability of kernel K∗ε holds for every X ∈ S, plugging it into
the log likelihood estimator (4) for empirical distribution D proves inequality (7).
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4.2.2 Proof of inequality (8)

Since D(∅) = D([N ]) = 0, we have

`(K∗ε , Dε) = (1− ε)`(K∗ε , D) +
ε

2
log

(
1

PrY ∼PK∗ε
[Y = ∅]

)
+
ε

2
log

(
1

PrY ∼PK∗ε
[Y = [N ]]

)

≤ `(K∗ε , D) +
ε

2
log

(
1

PrY ∼PK∗ε
[Y = ∅]

)
+
ε

2
log

(
1

PrY ∼PK∗ε
[Y = [N ]]

)
.

We can lower bound PrY ∼PK∗ε
[Y = ∅] and PrY ∼PK∗ε

[Y = [N ]], using the bounds on λ1(K∗ε ) and
λN (K∗ε ) obtained right after the definition of K∗ε , as follows.

Pr
Y ∼PK∗ε

[Y = ∅] = det(I −K∗ε ) =

N∏
i=1

(1− λi(K∗ε )) ≥ (
ε

2
)N .

Similarly,

Pr
Y ∼PK∗ε

[Y = [N ]] = det(K∗ε ) =

N∏
i=1

λi(K
∗
ε ) ≥ (

ε

2
)N .

Therefore,

`(K∗ε , Dε) ≤ `(K∗ε , D) +Nε log
2

ε
= `(K∗ε , D) +O(ε log

1

ε
).

4.2.3 Proof of inequality (9)

This follows directly from the fact that Kε is an optimal kernel for the sample distribution Dε.

4.2.4 Proof of inequality (10)

Recall that

`(Kε, Dε) =
ε

2
log

(
1

PrY ∼PKε [Y = ∅]

)
+
∑
X∈S

(1− ε)D(X) log

(
1

PrY ∼PKε [Y = X]

)
+
ε

2
log

(
1

PrY ∼PKε [Y = [N ]]

)
.

Therefore,

`(Kε, D) =
∑
X∈S

D(X) log

(
1

PrY ∼PKε [Y = X]

)
≤ 1

1− ε
`(Kε, Dε)

≤ (1 + 2ε)`(Kε, Dε) (as long as ε ≤ 1/2)
≤ `(Kε, Dε) + (2 log 2)Nε

= `(Kε, Dε) +O(ε),

where in the second last step we use the fact that Kε is an optimal DPP kernel for Dε and the bound
in Fact 1.
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4.2.5 Putting everything together

Adding inequalities (7), (8), (9) and (10) together yields `(Kε, D) ≤ `(K∗, D) + O(ε log 1
ε ), which

completes the proof of Proposition 3.

4.3 An optimal kernel as a limiting matrix

Let ε be a small enough positive number so that Proposition 3 holds. Define an infinite de-
creasing sequence {ε1, . . . , εk, . . .}, where εk = ε/k. Define an infinite sequence of distributions
{Dε1 , . . . , Dεk , . . .} as in (2) for each εk. Correspondingly, let {Kε1 , . . . ,Kεk . . .} be a sequence of
optimal DPP kernels for distributions {Dε1 , . . . , Dεk , . . .}. Note that, since there can be more than
one optimal DPP kernel for each distribution, such an infinite sequence of kernels is in general not
unique. We just fix one such sequence.

If we view14 the set of all (symmetric) N ×N positive semidefinite matrices whose maximum
eigenvalues are bounded by 1 as a subset P of RN2 , then for any M ∈ P,

N∑
i,j=1

|Mi,j |2 =

N∑
k=1

σ2
k(M) =

N∑
k=1

λ2
k(M) ≤ N,

where σk(M) denotes the kth singular value of matrix M . It follows that P is a bounded set.
Consider {Kε1 , . . . ,Kεk , . . .}, which is an infinite sequence in P . Recall the Bolzano-Weierstrass

theorem, which states that every bounded infinite sequence in a finite-dimensional Euclidean space
RN2 has a convergent subsequence. Therefore there exists an infinite sequence of indices i1, . . . , ik, . . .
of N such that the infinite subsequence of matrices {Kεi1

, . . . ,Kεik
, . . .} converge in P.

Let K∞ be the limiting matrix of the converging sequence {Kεi1
, . . . ,Kεik

, . . .}. That is,

K∞ := lim
k→∞

Kεik
.

Since each of the marginal kernel in {Kεi1
, . . . ,Kεik

, . . .} satisfies the diagonal entry condition
in (3), so does K∞. That is, for every j ∈ [N ]

(K∞)jj = lim
k→∞

(Kεik
)jj = lim

ε→0

 ε

2
+

∑
X∈S:X3j

(1− ε)D(X)

 =
∑

X∈S:X3j
D(X).

Moreover, by Proposition 3,

`(K∞, D) = lim
k→∞

`(Kεik
, D) ≤ `(K∗, D) + lim

k→∞
O(εik log

1

εik
) = `(K∗, D),

which shows that K∞ is an optimal DPP kernel for the original sample distribution D. This
completes the proof of Lemma 3.

14Correspondingly, the underlying matrix norm is the Frobenius norm.
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5 An optimal kernel for 3-colorable graphs – Proof of Theorem 6

We now prove Theorem 6, which states that if formula φ is satisfiable (hence the corresponding BOT
graph Gφ is 3-colorable), then there exists a rank-3 optimal DPP marginal kernel K, and the log
likelihood function is `(K) = 3 logm− 1

m

∑
(u,v)∈E(Gφ)

(
log(degGφ(u)) + log(degGφ(v))

)
.

Proof. From Theorem 5, we can assume that the diagonal of K (indexed by vertices and edges of
Gφ) satisfies

Kii =

{
degGφ

(u)

m for i = u ∈ V (Gφ)
1
m for i = (u, v) ∈ E(Gφ)

.

We first prove a lower bound on the log likelihood function of any marginal kernel K, by means
of the Hadamard inequality.

Lemma 4 (Hadamard’s inequality, see e.g. Theorem 7.8.1 in [HJ12]). For every positive semidefinite
matrix B, det(B) ≤

∏
iBii, with equality if and only if B is diagonal.

Therefore, for every example T = (au, av, a(u,v)) ∈ E′(Hφ), we can upper bound the probability
that marginal kernel K outputs T as

Pr
Y ∼PK

[Y = T ] ≤ Pr
Y ∼PK

[T ⊆ Y ] = det(KT ) ≤
degGφ(u)

m

degGφ(v)

m

1

m
=

degGφ(u) degGφ(v)

m3
,

The average log likelihood of the DPP associated with any marginal kernel K thus satisfies

`(K) ≥ 3 logm− 1

m

∑
(u,v)∈E(Gφ)

(
log degGφ(u) + log degGφ(v)

)
.

Next, for any 3-colorable BOT graph Gφ, we construct a rank-3 marginal kernel K with matching
log likelihood function, hence proving the optimality of the kernel. The kernel K is constructed by
the natural 3-dimensional embedding induced by the vertex coloring of Gφ.

Let χ : V (Gφ) → {1, 2, 3} be a proper 3-coloring of Gφ. We extend the coloring function
χ to include the edge set E(Gφ) in the natural way: for every (u, v) ∈ E(Gφ), let χ((u, v)) =
{1, 2, 3} \ {χ(u), χ(v)}. Since χ is a proper coloring of Gφ, such an extended definition of χ is
unambiguous.

Let e1 =

1
0
0

, e2 =

0
1
0

, and e3 =

0
0
1

. Let N = |V (Gφ)|+ |E(Gφ)|. Let Q, the embedding

matrix of coloring χ, be a 3×N matrix whose columns are indexed by the vertices and edges of Gφ:

Q =

q1 q2 · · · qN

 ,

Each qi is a 3-dimensional column vector set as follows:

• If i = u ∈ V (Gφ), then set qi =

√
degGφ

(u)

m eχ(u);
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• if i = (u, v) ∈ E(Gφ), then set qi =
√

1
meχ((u,v)).

Finally, define the marginal kernel as K = Q>Q.
Clearly, rank(K) = 3. Since K is a Gram matrix, it is positive semidefinite and the diagonals of

K satisfy the conditions specified in Theorem 5. Next we prove that λ1(K) — the largest eigenvalue
of K — is equal to 1, which would imply that K is indeed a DPP marginal kernel.

By Courant-Fischer’s variational formulation of the eigenvalues,

λ1(K) = sup
x∈RN , ‖x‖2=1

x>Kx = sup
x∈RN , ‖x‖2=1

‖Qx‖2.

For notational convenience, for each column vector in Q, let qi =
√
piej where j ∈ {1, 2, 3} is the

color of node i in hypergraph Hφ. That is, pi =
degGφ

(i)

m if node i corresponds to a vertex in Gφ and
pi = 1

m if node i corresponds to an edge in Gφ. Let W1 =
∑

i∈[N ]:χ(node i)=1 xi
√
pi, and similarly

define W2 and W3. Also define P1 (respectively P2 and P3) to be W1 =
∑

i∈[N ]:χ(node i)=1 pi. An
important observation is that, since χ is a proper 3-coloring of Gφ, P1 = P2 = P3 = 1.

Clearly

Qx =

W1

W2

W3

 ,

and by the Cauchy-Schwarz inequality

W 2
1 ≤

 ∑
i∈[N ]:χ(node i)=1

pi

 ∑
i∈[N ]:χ(node i)=1

x2
i

 =
∑

i∈[N ]:χ(node i)=1

x2
i .

Similar inequalities hold for W2 and W3. Therefore,

λ1(K) = sup
x∈RN , ‖x‖2=1

‖Qx‖22 = W 2
1 +W 2

2 +W 2
3

≤
∑

i∈[N ]:χ(node i)=1

x2
i +

∑
i∈[N ]:χ(node i)=2

x2
i +

∑
i∈[N ]:χ(node i)=3

x2
i

=
∑
i∈[N ]

x2
i = 1.

Furthermore, it is easy to see that we can choose qi’s such that qi is proportional to
√
pi for every

i ∈ [N ], thus making the Cauchy-Schwarz inequalities to be equalities. This shows that the spectral
norm of K is indeed one.15

It is well-known that, if q1, . . . , qk are k vectors in an inner product space and form the k × k
Gram matrix A whose (i, j) entry is the inner product between qi and qj , then det(A) is equal to
the square of the volume of the k-dimensional parallelepiped spanned by q1, . . . , qk. Now by our

15We remark that, for Gφ that is not 3-colorable, a marginal kernel constructed from a 3-coloring may fail to be
an optimal DPP kernel for two reasons. Firstly, such a coloring necessarily make some edges in Gφ monochromatic,
and hence the corresponding DPP probabilities vanish. Secondly, it may incurs some discrepancy among three colors.
Since P1 +P2 +P3 = 3 always holds, the discrepancy then implies λ1(K) = max{P1, P2, P3} > 1, and consequently we
need to scale down the matrix K by a factor larger than one in order to make it a DPP kernel. This in turn implies
that kernel such constructed can not be an optimal one, as indicated by Theorem 5.
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construction, for every example T = (au, av, a(u,v)) ∈ E′(Hφ), the uth, vth, and (u, v)th column
vectors of Q are pairwise orthogonal. It follows that, since rank(K) = 3,

Pr
Y ∼PK

[Y = T ] = Pr
Y ∼PK

[T ⊆ Y ] = det(KT ) =
degGφ(u)

m

degGφ(v)

m

1

m
.

Consequently,

`(K) = 3 logm− 1

m

∑
(u,v)∈E(Gφ)

(
log degGφ(u) + log degGφ(v)

)
,

which completes the proof of the theorem.

6 Good rank-3 kernels exist – Proof of Theorem 7

In this section we prove Theorem 7, which shows that, if the log likelihood function is already close
to optimal, then there exists correspondingly a rank-3 kernels whose log likelihood function is also
close (with worse proximity parameter) to optimal.

Theorem 7 (restatement). Let Gφ be a BOT graph with maximum degree at most k. There is a
constant Ck depending only on k such that the following holds. Let K be an optimal marginal kernel
with likelihood `(K) ≤ `∗ + δ for some 0 < δ ≤ 1/(128k)2, then there exists a marginal kernel K ′ of
dimension 3 such that `(K ′) ≤ `∗ + Ckδ

1/4.

6.1 Proof overview

Without loss of generality, we can assume that the diagonal of K is consistent with Theorem 5,
namely it satisfies that the diagonal is

Kii =

{
degGφ

(u)

m for i = u ∈ V (Gφ)
1
m for i = (u, v) ∈ E(Gφ)

.

By our construction of Gφ, we may assume that every element i ∈ [m+ n] occurs in at most k
training examples in T for some absolute constant k.

Since K is PSD, there exists a matrix Q such that K = Q>Q. Let q1, q2, . . . , qN denote the
columns of Q, and for a set T ⊆ [N ], define QT = span({qi : i ∈ T}). Recall that we need to compare

`∗ = `∗(K) = 3 logm− 1

m

∑
(u,v)∈E(Gφ)

(
log degGφ(u) + log degGφ(v)

)
,

which corresponds to an embedding with perfect vector coloring, with

`(K) ≥ 3 logm− 1

m

∑
(u,v)∈E(Gφ)

(
log(degGφ(u)) + log(degGφ(u)) + log(sin2 θ(u,v))

)
.

Note that `(K) can be greater than the RHS above because, for some edge (u, v) ∈ E(Gφ), the edge
vector q(u,v) may not be perpendicular to the plane spanned by qu and qv. Since “vertex” (u, v) in the
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hypergraph Hφ is connected only with vertices u and v, and our goal is to maximize the likelihood
of K (hence minimize the log likelihood `(K)), from now on we assume that q(u,v) is always taken to
be orthogonal to both qu and qv, for every (u, v) ∈ E(Gφ).

It is more convenient to work with likelihood functions, which are L(K) = exp(`(K)) and
L∗(K) = exp(`∗(K)). After simple manipulations, we have

L∗(K)

L(K)
=

∏
(u,v)∈E(Gφ) PrY ∼PK [Y = {u, v, (u, v)}]∏

(u,v)∈E(Gφ) ‖qu‖22 · ‖qv‖22 · ‖q(u,v)‖22
=

∏
(u,v)∈E(Gφ)

sin2 θ(u,v) ≥ exp(−δm), (11)

by our assumption that `(K) ≤ `∗ + δ.
That is, the ratio between the likelihood of a marginal kernel K and the likelihood of a perfect

coloring kernel is just the product of sin2 θ(u,v), over all edges (u, v) ∈ E(Gφ).
To construct a good dimension-3 kernel K ′ from kernel K, our basic idea is to project each

column vector of Q onto a subspace of dimension 3 (so that the dimension of the new kernel is at
most 3), and show that the likelihood does not decrease too much. However, there are several issues
we need to cope with. First, how to find such a subspace? Second, there can be pairs of column
vectors qu and qv of Q such that the angle θ(u,v) between them is small, and this angle may become
even smaller or even zero upon projection. Last, there can be column vectors whose projections onto
the subspace have extremely small or even zero lengths.

Since the log likelihood function of K is close to optimal, there exists an edge (u, v) ∈ E(Gφ)
such that qu and qv are nearly orthogonal (recall that we always take q(u,v) to be orthogonal to
the plane spanned by qu and qv) by a simple probabilistic argument. The subspace spanned by
{qu, qv, q(u,v)} will be the dimension-3 subspace onto which we project each column vector of Q. To
tackle the other two issues mentioned above, we employ a simple counting method and the negative
association property of conditional DPPs to bound the numbers of column vectors involved in these
two bad situations, and apply a greedy algorithm to assign new directions for these vectors while
keep their norms unchanged. This allows us to lower bound the probabilities of seeing these “bad
edges” under the new DPP kernel. Finally, we lower bound the likelihood function of the new kernel
on the training set by providing an upper bound on the scaling factor needed to ensure that the new
kernel’s eigenvalues are bounded by 1.

6.2 Finding a good dimension-3 subspace

Let K = Q>Q be a marginal kernel such that L(K) ≥ exp(−δm)L∗(K). If rank(Q) ≤ 3, we
are done. So we assume that rank(Q) > 3. By geometric averaging, there exists a size-3 subset
S = {u, v, (u, v)} such that

Pr
Y ∼PK

[Y = S] ≥ exp(−δ)
∏
i∈S
‖qi‖22.

In the following, we use S̄ := [N ] \ S to denote the complement of S.
Denote the dimension-3 subspace spanned by the embedding vectors of these three elements by

V , namely
V = span{qu, qv, q(u,v)}.

Then V will the subspace onto which we project all column vectors of Q. More importantly, we will
show that the average length orthogonal to V of the column vectors of Q is small.
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Lemma 5. Let V be a dimension-3 subspace as constructed above, then∑
i∈S̄

‖projV ⊥qi‖22 ≤ δ,

where V ⊥ denotes the dimension rank(Q)− 3 subspace orthogonal to V .

Proof. Let Y be a random set distributed according to the DPP kernel K, and let Y S be a random
set which is distributed according kernel K, conditioned on S occurring in Y S . It is well-known
that conditioning a DPP on the event that all of the elements in a fixed set are observed gives rise
to another DPP distribution (over the ground set S̄) (see, e.g. [Kul12]). Therefore if we define
Z := Y S \ S as the random set containing elements outside S which appear in Y S , then Z is
distributed as a DPP.16

By our choice of subset S,

exp(−δ)
∏
i∈S
‖qi‖22 ≤ Pr

Y ∼PK
[Y = S]

= Pr
Y ∼PK

[S ⊆ Y ] · Pr[Y S = S] = Pr
Y ∼PK

[S ⊆ Y ] · Pr[Z = ∅]

= det(KS) · Pr[Z = ∅].

Since det(KS) ≤
∏
i∈S ‖qi‖22, it follows that Pr[Z = ∅] ≥ exp(−δ).

Recall that a set of random variables X1,X2, . . . ,XN is said to be negatively associated (NA)
if for any two disjoint index subsets S, T ⊂ [N ] and any two functions f, g that depend only on
variables in subsets S and T respectively, and are either both monotone increasing or both monotone
decreasing, we have

E [f(Xi : i ∈ S) · g(Xj : j ∈ T )] ≤ E [f(Xi : i ∈ S)] · E [g(Xj : j ∈ T )] .

Lyons [Lyo03] proved that the indicator random variables of elements in the set are negatively
associated if the probability distribution on the set is a DPP.

Claim 3. If X1,X2, . . . ,XN are negatively associated {0, 1}-valued random variables such that
Pr[
∧N
i=1(Xi = 0)] ≥ exp(−α), then E[

∑N
i=1 Xi] ≤ α.

Proof. First of all, define fi(Xi) := 1(Xi = 0) for every i ∈ [N ]. Note that for disjoint subsets S
and T , f :=

∏
i∈S fi and g :=

∏
i∈T fi depend on disjoint subsets of variables and are both monotone

decreasing. Therefore, applying inductively the negatively associated property of X1,X2, . . . ,XN ,
we have E

[∏
i∈[N ] fi(Xi)

]
≤
∏
i∈[N ] (E[fi(Xi)]), or equivalently

Pr[

N∧
i=1

(Xi = 0)] ≤
N∏
i=1

Pr[Xi = 0].

16In fact, Z is distributed as a DPP with marginal kernel K − KS̄SK
−1
S KSS̄ [BR05], where KAB denotes the

submatrix of K consisting of the rows in A and columns in B. However, the actual form of the DPP kernel is
unimportant for our argument here.
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Therefore,

exp(−α) ≤ Pr[
N∧
i=1

(Xi = 0)] ≤
N∏
i=1

Pr[Xi = 0]

=
N∏
i=1

(1− Pr[Xi = 1]) ≤
N∏
i=1

exp(−Pr[Xi = 1])

= exp(−
N∑
i=1

Pr[Xi = 1]) = exp(−E[

N∑
i=1

Xi]).

Hence the claim follows.

Claim 4. Let Z be the random set containing elements outside S which appear in Y S as before,
then E[|Z|] ≤ δ.

Proof. Define Xi to be the {0, 1}-indicator random variable corresponding to the event i ∈ Z for
each i ∈ S̄. Then applying Claim 3 to these variables, and observing that |Z| =

∑
i∈S̄ Xi proves the

claim.

Now we have

E[|Z|] =
∑
i∈S̄

Pr[i ∈ Z] =
∑
i∈S̄

PrY ∼PK [S ∪ {i} ⊆ Y ]

PrY ∼PK [S ⊆ Y ]
=
∑
i∈S̄

det(KS∪{i})

det(KS)
,

and interpreting the determinants as squared volumes of parallelepipeds, we have∑
i∈S̄

det(KS∪{i})

det(KS)
=
∑
i∈S̄

‖projV ⊥qi‖22

and applying Claim 4 completes the proof.

6.3 Bounding the number of “bad” vertices

Let ε0 < 1
8 be a fixed constant. Define

Be = {(u, v) ∈ E(Gφ) : sin2 θ(u,v) < ε0}.

Lemma 6. The size of Be can be upper bounded as |Be| ≤ δm.

Proof. If we rewrite (11) as

exp(−δm)L∗(K) ≤ L(K) ≤ L∗(K)
∏

(u,v)∈E(Gφ)

sin2 θ(u,v),

then
exp(−δm) ≤

∏
(u,v)∈E(Gφ)

sin2 θ(u,v) < ε0
|Be|.

Taking logarithms on both sides yields −δm ≤ |Be|(log ε0) ≤ |Be| log(1/8), so |Be| ≤
δm

log 8
≤

δm/2.
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Define B1 as the set of “bad” vertices of the first kind; that is, the set of vertices whose embedding
vectors that are too close to some of their neighboring (in graph Gφ)) embedding vectors:

B1 = {u ∈ V (Gφ) : ∃v such that sin2 θ(u,v) < ε0}.

Then clearly,

|B1| ≤ 2|Be| ≤ δm. (12)

6.4 Assigning projections for “bad vectors”

Define B2 to be the set of “bad” vertices of the second kind; these are vertices whose embedding
vectors’ (relative) norms along V ⊥ are not small (consequently, the norms of the projections onto V
of such vectors are not large enough):

B2 = {i ∈ [N ] : ‖projV ⊥qi‖22 ≥
√
δ‖qi‖22}.

Let B := B1 ∪ B2 be the set of all “bad” vertices (correspondingly, “bad” embedding vectors).
We will call a vertex (and its corresponding embedding vector) “good” if it is not “bad”.

First of all, since ‖qi‖22 ≥ 1
m for each i ∈ [N ], by Lemma 5, the size of B2 can be bounded by

|B2| ≤
√
δm. (13)

Combined with (12), this gives

|B| ≤ 2
√
δm. (14)

For every “good” vertex u /∈ B, let

Assigning embedding vectors for “good” vertices

q′u ← projV qu

What about “bad” vertices? For each v ∈ B, we will use the greedy algorithm outlined in Fig. 5
to find a good direction z (as the direction of its new embedding vector q′v) so that the angle between
z and the new embedding vector of any neighbor (in graph Gφ) of v is not too small. Note that in
the description of the algorithm, we assume that the the projection subspace V = R3 and use θ(x, y)
to denote the angle between any two vectors x and y in R3.

Claim 5. There is an absolute constant τk depending on k only such that, for all (u, v) ∈ E(Gφ)
with at least one of u and v is “bad”, the angle between their new embedding vectors satisfies that
sin2 θ(q′u, q

′
v) ≥ τk.

Proof. Recall that every element u ∈ V (Gφ) has at most k neighbors in V (Gφ). Then we can take
τk to be the solution to the following optimization problem

min
x1,x2,...,xk∈S2

max
y∈S2

min
i

sin2 θ(xi, y),

Observe that τk is an absolute constant between 0 and 1. Indeed, one can obtain a simple lower
bound on τk as follows: let rk be the maximum radius of a spherical cap such that k + 1 identical
such caps can be placed disjointly on the surface of a unit sphere. Now for any configuration of
x1, x2, . . . , xk ∈ S2, at least one cap will contain no xi. Letting y be the center of such a cap is a
certificate that τk ≥ r2

k.
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Assigning embedding vectors for “bad” vertices

1. order all n vertices arbitrarily
2. for each v ∈ V (Gφ)

If v is “good”
continue (that is, q′v ← projV qv as we did before)

Else (v is “bad”)
let N be the set of neighboring vertices of v that appear before v
let z = argmax max

y∈S2
min
u∈N

sin2 θ(u, y)

(such maximal direction in general is not unique: any one works)
assign q′v ← ‖qv‖2z

Figure 5: Algorithm for computing the new embedding vector for “bad” vertices.

Once we set new embedding vector for every vertex v ∈ V (Gφ), let

Q′ =

q′1 q′2 · · · q′N

 ,

and set
K ′ = β(Q′)>Q′,

where β is a parameter to be determined later to make the eigenvalues of K ′ at most 1.

6.5 Bounding the likelihood function of the new kernel

To lower bound the likelihood function of new kernel K ′ on the training set, we compare the
probabilities of kernels K and K ′ seeing an arbitrary subset T := {u, v, (u, v)} in the training set.
We distinguish between two cases.

Both u and v are “good” vertices. Since u is “good”, the angle θ′u between qu and its projection
q′u is small. Indeed, since ‖q′u‖22 > (1 −

√
δ)‖qu‖22, we have sin θ′u < δ1/4, or θ′u < sin−1 δ1/4 ≤

2
π δ

1/4 < δ1/4. It follows that, if both u and v are “good” vertices, and denote the angle between their
projected vectors by θ′(u,v), then we have

θ′(u,v) > ε0 − 2δ1/4, (15)

by triangle inequality.
Therefore, we have

PrY ′∼PK′ [Y
′ = {u, v, (u, v)}]

PrY ∼PK [Y = {u, v, (u, v)}]
≥

PrY ′∼PK′ [Y
′ = {u, v, (u, v)}]

PrY ∼PK [{u, v, (u, v)} ⊆ Y ]

=
det(K ′T )

det(KT )
(since K ′ is a dimension-3 DPP marginal kernel)
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= β3
‖q′u‖22‖q′v‖22 sin2 θ′(u,v)

‖qu‖22‖qv‖22 sin2 θ(u,v)

≥ β3(1−
√
δ)2 sin2(ε0 − 2δ1/4)

sin2 ε0
(‖q′i‖22/‖qi‖22 > 1−

√
δ for “good” embedding vectors and using (15))

≥ β3(1−
√
δ)2

(
1− 2δ1/4

sin2 ε0

)
(using the fact that | d

dx
(sin2 x)| ≤ 1 for all x)

≥ β3(1−
√
δ)

(
1− 3δ1/4

sin2 ε0

)
,

where the factor β3 comes from the scaling factor β in our definition of K ′, and the fact that these
probabilities are determinants of 3× 3 principal minors of β(Q′)>Q′.

At least one of u and v is “bad”. Using Claim 5, we have for such edges

PrY ′∼PK′ [Y
′ = {u, v, (u, v)}]

PrY ∼PK [Y = {u, v, (u, v)}]
≥

PrY ′∼PK′ [Y
′ = {u, v, (u, v)}]

PrY ∼PK [{u, v, (u, v)} ⊆ Y ]
=

det(K ′T )

det(KT )

= β3
‖q′u‖22‖q′v‖22 sin2 θ′(u,v)

‖qu‖22‖qv‖22 sin2 θ(u,v)

≥ β3(1−
√
δ)τk,

since at least one of u and v is a “bad” vertex, and ‖q′i‖22/‖qi‖22 = 1 for such vertices.

Putting the two cases together.

L(K ′)

L(K)
=

∏
(u,v)∈E(Gφ) PrY ′∼PK′ [Y

′ = {u, v, (u, v)}]∏
(u,v)∈E(Gφ) PrY ∼PK [Y = {u, v, (u, v)}]

≥
∏

(u,v)∈E(Gφ)
u/∈B and v/∈B

β3(1−
√
δ)

(
1− 3δ1/4

sin2 ε0

) ∏
(u,v)∈E(Gφ)
u∈B or v∈B

β3(1−
√
δ)τk

≥ β3m(1−
√
δ)m

(
1− 3δ1/4

sin2 ε0

)m−k|B|
τ
k|B|
k

≥ β3m(1−
√
δ)m

(
1− 3δ1/4

sin2 ε0

)(1−2k
√
δ)m

τ2k
√
δm

k

≥ β3m exp

[
−

(
3δ

2
+

3δ1/4

sin2 ε0
(1− 2k

√
δ) + 2k log(

1

τk
)
√
δ

)
m

]
≥ β3m exp

(
−C ′′k δ1/4m

)
,

where C ′′k is some constant depending only on k and in the second last step we use the inequality
1− x ≥ exp(−3x/2) for all 0 ≤ 1/2 ≤ x. It follows that

L(K ′)

L∗(K)
≥ β3m exp

(
−C ′′k δ1/4m

)
· exp(−δm) ≥ β3m exp

(
−C ′kδ1/4m

)
, (16)
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for some absolute constant C ′k depending on k only.

6.6 Bounding the scaling factor β

We finish the proof by providing a lower bound on β. First, we consider K ′′ = (Q′′)>Q′′, where the
ith column of Q′′ is projV qi for every i ∈ [N ]. Recall that the spectral norm of a matrix A, ‖A‖2, is
the largest singular value of A, we have ‖Q′′‖2 ≤ ‖Q‖2 ≤ 1, as Q′′ is a projection onto a subspace
spanned by a subset of its columns. By our bound on the number of “bad” embedding vectors (14),
at most 2

√
δm of the columns of Q′ are not the same projection as in Q′′. Each column is replaced

by a vector of the same length, which is at most
√
k/m. We use the Frobenius norm of Q′′ −Q′ to

upper bound its spectral norm as follows. For every “bad” vertex i,

‖qi − q′i‖22 = ‖qi‖22 + ‖q′i‖22 − 2〈qi, q′i〉 ≤ 4‖qi‖22 ≤ 4k/m.

Therefore,

‖Q′′ −Q′‖22 ≤ ‖Q′′ −Q′‖2F =

N∑
i=1

‖qi − q′i‖22 =
∑
i∈B
‖qi − q′i‖22 ≤ 2

√
δm · 4k/m = 8k

√
δ.

Now, by the triangle inequality, we have

‖Q′‖2 ≤ ‖Q′′‖2 + ‖Q′′ −Q′‖2 ≤ 1 +

√
8k
√
δ.

In order for K ′ = βQ>Q to be the marginal kernel of a DPP, we need to ensure that ‖K ′‖2 ≤ 1.
As ‖K ′‖2 = |β|‖Q>Q‖2 = |β|‖Q‖22, we can take β = 1

(1+
√

8k
√
δ)2
≥ 1− 2

√
8k
√
δ = 1−

√
32k
√
δ ≥

exp
(
−
√

72kδ1/4
)
.

Finally, plugging the bound β ≥ exp
(
−
√

72kδ1/4
)
into (16) to get that

L(K ′)

L∗(K)
≥ β3m exp

(
−C ′kδ1/4m

)
≥ exp

(
−
√

648kδ1/4m
)
· exp

(
−C ′kδ1/4m

)
= exp

(
−Ckδ1/4m

)
,

where Ck = C ′k +
√

648k. Or equivalently, `(K ′) ≤ `∗ + Ckδ
1/4 for some constant Ck which depends

only on k. This completes the proof of Theorem 7.

7 Putting it all together – Proof of Theorem 8

Now it is time to assemble the parts we have built so far and prove the following soundness theorem,
which basically says that there must be a gap between the log likelihood functions of the training set
derived from the YES instance BOT graph and that from the NO instance BOT graph.

Theorem 8 (Soundness theorem, restatement). Let `∗ be the optimal log likelihood as in Theorem 6.
Then there exists a constant C > 0 which depends only on k and ε′ as those defined in Theorem 2,
such that the following holds. If there is a DPP marginal kernel K of rank 3, which satisfies
`(K) ≤ `∗ + C

log2 n
where n = |V (Gφ)| is the number of vertices in the BOT graph, then there is a

truth assignment that satisfies at least (1− ε) fraction of the clauses in φ, where ε is the constant
defined in Theorem 1.
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In conventional graph coloring, a coloring χ : V → {c1, . . . , ck} satisfies an edge (u, v) if the
edge is non-monochromatic, i.e. χ(u) 6= χ(v). In other words, an edge connecting u and v forces
the colors of the two vertices to be different. In vector coloring, the notion of edge (u, v) being
non-monochromatic is generalized to vectors assigned to u and v being (almost) orthogonal. From
Lemma 2 we know that an “almost perfect” 3-coloring of the vertices in Gφ can be used to decode a
truth assignment that satisfies “almost all” the clauses in φ. However, in our maximum likelihood
DPP learning reduction, we represent vertices by their embedding vectors and work with vector
coloring accordingly, therefore it is natural to ask: Given an almost perfect vector 3-coloring of the
vertices in Gφ, can we still decode a truth assignment that satisfies “almost all” the clauses in φ, like
what we did from a 3-coloring of Gφ? Our key observation is that the equality gadgets and clause
gadgets in [BOT02] are “robust” even for a vector 3-coloring, with the help of several simple facts
about spherical geometry.

From now on, for any vector v ∈ R3, we use (v1, v2, v3) to denote its Cartesian coordinates.

Claim 6. Let a, b, c, d ∈ S2 be unit vectors in R3 and let 0 ≤ t ≤ 1/5. If |〈a, b〉| ≤ t, |〈b, c〉| ≤ t,
|〈c, a〉| ≤ t, |〈d, b〉| ≤ t, then |〈a, d〉| ≥ 1− 5t2.

Intuitively, if vectors a, b and c in S2 are close to forming an orthonormal basis, and a fourth
vector d ∈ S2 is almost orthogonal to both b and c, then d is necessarily close to a.

Proof. Without loss of generality, assume that b = (0, 0, 1). Then 0 ≤ |a3|, |c3|, |d3| ≤ t. Let a′, c′ and
d′ be the projection to the X-Y plane of a, c and d, respectively. Note that ‖a′‖, ‖c′‖, ‖d′‖ ≥

√
1− t2,

and since |〈a, c〉| ≥ 〈a′, c′〉 − |a3||c3|, we have |〈a′, c′〉| ≤ t+ t2. Similarly, |〈d′, c′〉| ≤ t+ t2.
Without loss of generality, assume that c′ = (0, ‖c′‖). Then, because |〈a′, c′〉| ≤ t + t2 and

‖c′‖ ≥
√

1− t2, we have |a2| ≤ t+t2√
1−t2 , and consequently |a2

1| ≥ 1− t2 −
(

t+t2√
1−t2

)2
. Similar bounds

hold for d. Now

|〈a, d〉| ≥ |〈a, d〉| − |a3||d3|
≥ |a1||d1| − |a2||d2| − t2

≥ 1− t2 −
(

t+ t2√
1− t2

)2

− t2(1 + t)2

1− t2
− t2

= 1− 2t2 − 2t2
1 + t

1− t
≥ 1− 5t2,

where the last step we use 1+t
1−t ≤ 3/2 for 0 ≤ t ≤ 1/5.

Corollary 1. Let a, b, c, d be unit vectors in S2 satisfy that π
2 − θ ≤ θ(a,b), θ(a,c), θ(b,c), θ(b,d), θ(c,d) ≤

π/2 with 0 ≤ θ ≤ θ0 = sin−1(1/5). Then θ(a,d) ≤ 3θ.

Proof. Let (x, y) ∈ {(a, b), (a, c), (b, c), (b, d), (c, d)} and t = sin θ. Then |〈x, y〉| = cos θ(x,y) ≤
cos(π/2 − θ) = sin θ = t, so by Claim 6, |〈a, d〉| ≥ 1 − 5 sin2 θ. It follows that θ(a,d) ≤ cos−1(1 −
5 sin2 θ) ≤ 3θ, because sin2(3α) ≥ 5 sin2 α for all 0 ≤ α ≤ π/7 and θ0 < π/7.

The following Claim facilitates transforming between the angle between a pair of vectors in S2

and their inner product, especially for the cases when the two vectors are almost orthogonal or very
close to each other.
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Claim 7. We have the following inequalities between inner product of unit vectors and the angle
between them.

1. Suppose 0 ≤ θ ≤ π/2 and sin2 θ = 1− ε for some 0 ≤ ε < 1. Let α := π/2− θ be the angular
distance between θ and π/2. Then

√
ε ≤ α ≤ π

2

√
ε.

2. If u, v ∈ S2 and |〈u, v〉| = ε (i.e. u and v are close to orthogonal), and let α := π/2− θ(u,v) be
the angular distance between θ(u,v) and π/2, then ε ≤ α ≤ π

2 ε.

3. If u, v ∈ S2 and |〈u, v〉| = 1− ε (i.e. u and v are ε-close), then
√

2ε ≤ θ(u,v) ≤ π√
2

√
ε.

Proof. Item 1 follows from the equality sin2 α = ε and the fact that, for α ∈ [0, π/2], 2
πα ≤ sinα ≤ α.

Item 2 follows directly from the above inequality. For Item 3, since sin θ(u,v) = 1−ε, sin2 θ(u,v)

2 = ε2/2.

Now apply Item 1 to θ(u,v)

2 .

Remark 2. Note that our vector 3-coloring only specifies the inner-product between any pair of
vertex vectors χ>(u)χ(v), and for the purpose of proving hardness of DPP learning, all we care is
sin2 θ(u,v) = 1− |χ>(u)χ(v)|2. This information does not uniquely determine all the vertex vectors
on S2 though, even if we fix certain vertex vector to be (1, 0, 0), say. This is because, for a fixed
vector χ(v), χ(u) and −χ(u) give rise to the same value of sin2 θ(u,v). Therefore, from now on, we
will not distinguish between χ(u) and −χ(u), and always assume θ(u,v) to be in [0, π/2].

Now we can show that the equality gadget in Fig. 3a is robust against small noise.

Lemma 7 (The equality gadget is robust). Let χ : V (Gφ)→ S2 be a vector 3-coloring which satisfies
that θ(u,v) ≥ π/2− δ for every (u, v) ∈ E(Gφ). Then, for the the equality gadget in Fig. 3a, the angle
between node x and node y is at most 3δ.

Proof. This follows directly by plugging a = χ(x), b = χ(y), c = χ(u) and d = χ(v) into Corollary 1.

The case of clause gadget requires a bit more work. Note that we make no attempt to optimize
the robustness parameters in the following statements, but focus on arguing qualitatively that the
clause gadgets are robust against small noise.

Abusing notation, in the following, we use the names of nodes in the gadget to also denote the
coloring vectors of the nodes.

Lemma 8 (The clause gadget is robust). Let χ : V (Gφ)→ S2 be a vector 3-coloring which satisfies
that θ(u,v) ≥ π/2 − δe for every (u, v) ∈ E(Gφ), where δe = o(1) for our BOT hypergraph setting.
Further, assume that for any pair of two True nodes in the clause gadgets as shown in Fig. 3b or for
any pair of two Dummy nodes in the literal blocks as shown in Fig. 2, the angle between the two color
vectors u and v satisfy that θ(u,v) ≤ δp, where δp = π/300 is some small absolute constant. Consider
the clause gadget as shown in Fig. 3b. Then at least one of the three literals must be “assigned” value
True in the sense that its color vector is close to that of its corresponding True node: there exists
at least one i ∈ {a, b, c} such that |〈`i, Ti〉| > t0, where t0 = 0.98 (this corresponds to θ(`i,Ti) < π/15).

We first need to argue about the coloring vectors of a simplified clause gadget as shown in Fig. 6.

34



T

`

u

D

Figure 6: The simplified clause gadget.

Claim 8. Let D,T, u, ` ∈ S2 be unit vectors in R3 and t0 = 0.98 as in Lemma 8. Suppose that
|〈D,T 〉| ≤ ε, |〈D, `〉| ≤ ε, |〈u, T 〉| ≤ ε, |〈u, `〉| ≤ ε. If |〈T, `〉| ≤ t0, then |〈D,u〉| ≥ 1− 202ε2.

Basically the Claim asserts that if the vector 3-coloring satisfies all four edges in the gadget
with closeness parameter 1− ε, then if vectors T and ` are not close to each other, this would force
vectors D and u to be aligned along almost the same direction — or equivalently, be assigned to the
same “color” (note that if T and ` are very close, then u would have the freedom to choose between
the color of D or the color that is “orthogonal” to both T and D; namely, the color of False nodes).

Proof. For convenience, we take the plane spanned by T and ` to be the X-Y plane and in particular
set T = (1, 0, 0) and t := |〈T, `〉| ≤ t0. Then without loss of generality, let ` = (t,

√
1− t2, 0). Let

u = (u1, u2, u3). From |〈u, T 〉| ≤ ε and |〈u, `〉| ≤ ε, we deduce that |u1| ≤ ε and |u2| ≤ 1+t√
1−t2 ε =√

1+t
1−tε ≤ 10ε. It follows that u2

3 ≥ 1 − 101ε2. By symmetry, the same bounds hold for the three
coordinates of vector D. Therefore

|〈D,u〉| = |D1u1 +D2u2 +D3u3| ≥ |D3||u3| − |D1||u1| − |D2||u2|
≥ 1− 101ε2 − ε2 − (10ε)2

= 1− 202ε2.

Proof of Lemma 8. Pick any fixed pair of True node and Dummy node in a literal block (see Fig. 2)
and denote them by T and D respectively.

Now suppose that none of the literal color vectors `a, `b and `c in Fig. 3b is close to their
corresponding True node, i.e. |〈Ti, `〉i| ≤ t0, for every i ∈ {a, b, c}.

Let us consider nodes `a and ua. Since `a is connected to some Da node in its literal block (so
the angle between `a and Da is π/2− o(1)), and the angle between Da and the fixed Dummy node
D is at most δp, it follows that θ(`a,D) ≥ π/2 − δp − o(1). On the other hand, since D and T is
connected by an edge, they are very close to orthogonal; moreover, the angle between Ta and T is at
most δp. Therefore, θ(Ta,D) ≥ π/2 − δp − o(1). Since ua is connected to both Ta and `a, we have
θ(Ta,ua) ≥ π/2 − o(1) and θ(`a,ua) ≥ π/2 − o(1). Therefore, the conditions of Claim 8 are met for
vectors D, Ta, ua and `a for ε = sin(δp + o(1)) ≤ δp + o(1) ≤ 1.01δp for all sufficiently large BOT
graph size n. Hence, by Claim 8, |〈D,ua〉| ≥ 1− 202ε2 ≥ 1− 207δ2

p. By the same reasoning, we have
|〈D,ub〉| ≥ 1− 207δ2

p and |〈D,uc〉| ≥ 1− 207δ2
p. By Claim 7, item 3, the angle between D and each

of the ua, ub and uc is at most 32δp.
To finish the proof, note that, since each ui is connected with vi for every i ∈ {a, b, c}, it follows

that the angle between D and each vi is at least π/2− 33δp (whenever n is large enough). Applying

35



Corollary 1 and noting that va, vb and vc form an almost orthonormal basis, and D is close to
orthogonal to both va and vb with closeness parameter θ = 33δp, we conclude that θ(D,vc) ≤ 99δp.
But we also know that the angle between D and vc is at least π/2 − 33δp, therefore we reach a
contradiction as long as δp < π/264.

Proof of Theorem 8. We begin by writing the log maximum likelihood estimator of a DPP kernel K
as

`(K) = 3 logm− 1

m

∑
(u,v)∈E(Gφ)

(
log(degGφ(u)) + log(degGφ(v)) + log(sin2 θ(u,v))

)
.

Let K be a DPP kernel rank 3 which satisfies that `(K) ≤ `∗ + C
log2 n

, where C is some very small
absolute constant to be determined later. Therefore, E(u,v)∈E(Gφ)[log(sin2 θ(u,v))] ≥ − C

log2 n
. By

Markov inequality, except for an ε′′ fraction of the edges in the BOT graph Gφ, all edges (u, v)
satisfy that

log(sin2 θ(u,v)) ≥ −
C/ε′′

log2 n
,

where ε′′ is an absolute constant to be specified later. Call an edge in the BOT graph that satisfies
this condition good, and bad otherwise. Consequently,

sin2 θ(u,v) ≥ e
− C/ε′

log2 n ≥ 1− C

ε′ log2 n
,

By Claim 7, the angle between all good edges (u, v) satisfies that θ(u,v) ≥ π
2 −

√
Cπ
2ε′′

1
logn .

Next we record some facts about the “robustness” of a very strong expander against deletion
of a small fraction of its edges. First, following Alon and Capalbo, we note the following notion of
expanders which is slightly weaker than very strong expanders.

Definition 2 (Strong expanders [AC07]). A graph G = (V,E) is called a d-strong expander on n
vertices if its minimum vertex degree is at least d, the average degree in any subgraph of G on at
most n/10 vertices is at most 2d/9, and the average degree in any subgraph of G on at most n/2
vertices is at most 8d/9.

Lemma 9 ([AC07]). Let G = (V,E) be a very strong d-regular expander on n vertices. Let E′ ⊂ E
be an arbitrary subset of edges satisfying |E′| ≤ nd

150 . Consider the process that we first delete E′ from
G, and then repeatedly delete from G the set of vertices with degree smaller than 3d/4 + 2 (and all
the edges incident to such vertices) as long as such vertices exist. Let Dense(G,E′) be the resulting
subgraph of G of this vertex-trimming process, and let S denote the set of vertices deleted from G

during this process. Then |S| ≤ 15|E′|
d .

It is easy to check (by lower bounding the number of edges between any subset of vertices X of
size at most n/10 and n/2 respectively, with the rest of the vertices in G; namely |E(X,V −X)|)
that the following lemma holds.

Lemma 10 ([AC07]). Any subgraph of minimum degree at least 3d
4 of a very strong d-regular

expander is a 3d
4 -strong expander.

It follows that Dense(G,E′) is a 3d
4 -strong expander.

Lastly, the following lemma shows that the diameter of Dense(G,E′) is O(log n).
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Lemma 11 ([AC07]). For any d and n, a d-regular strong expander on n vertices has diameter at
most 2

3 log n+ 14 (which is at most log n for all large enough n).

Let n be the number of variables in the 3-CNF instance φ. Then the underlying very strong
expander has |V (Gexp)| = 2nk vertices and |E(Gexp)| = nkd edges, where d is the degree of the very
strong expander. Also recall that the BOT graph has |V (Gφ)| = O(nk) · max(k, d) vertices and
|E(Gφ)| = O(nk) ·max(k, d) edges.

Now, if we set the constant ε′′ such that ε′′|E(Gφ)| · 15
d = εn, or ε′′ = nd

15|E(Gφ)|ε, where ε is the
constant in Lemma 1, then removing any ε′′-fraction of the edges in Gφ makes at least (1− ε)-fraction
of the clauses intact and thus can be satisfied. Note that, since both d and k are constants, ε′′ = θ(ε),
another (small) constant.

Let G′φ be the subgraph of Gφ after removing all the bad edges. Note that this can be translated
into deleting edges of the underlying very strong expander Gexp; namely, if any of the equality gadget
edges between two literal blocks is deleted, delete the edge between the corresponding two vertices
in Gexp. Now we perform the vertex trimming process as described in Lemma 9 to Gexp. That is, if
an edge between two vertices in Gexp is deleted in the process, then we delete the gadget between
the two corresponding literal blocks in G′φ. Let G

′′
φ be the resulting graph. Now by our argument in

the previous paragraph and Lemma 11, there is a truth assignment that satisfies at least (1 − ε)
fraction of the clauses in G′′φ. Moreover, every edge in G′′φ is good and the distance between any two
vertices in G′′φ is O(log n).

Now we can unambiguously decode all the True nodes, False nodes and Dummy nodes in G′′φ.

Lemma 12. All the True nodes (resp. False nodes and Dummy nodes) in G′′φ can be decoded into
the same color.

Proof. The decoding algorithm works as follows. Pick any survived literal block in G′′φ. Set the
vector of the True node in the literal block to be (0, 0, 1). Set the direction in S2 that is closest to
the False vector and orthogonal to direction (0, 0, 1) to be (1, 0, 0). Since the True, False and
Dummy nodes in the literal block are interconnected by good edges, the angle between False vector
and (1, 0, 0) together with the angle between Dummy vector and (0, 1, 0) are both O( 1

logn).
Now, by the facts that the distance between any pair of True nodes in G′′φ is O(log n), equality

gadgets are robust (Lemma 7) and angle on the points in S2 is a metric space (in particular, angle
metric satisfies the triangle inequality), if the constant C in Theorem 8 is small enough, then the
angle between any pair of True vectors is at most δp := π/300. Denote17

STrue = {v ∈ S2 : angle(v, (0, 0, 1)) ≤ δp}

Then all True vectors inG′′φ fall into region STrue. Similarly define SFalse := {v ∈ S2 : angle(v, (1, 0, 0)) ≤
δp} and SDummy := {v ∈ S2 : angle(v, (0, 1, 0)) ≤ δp}. Then similar argument shows that all False
(resp. Dummy) vectors in G′′φ fall into region SFalse (resp. SDummy). Finally, since STrue, SFalse and
SDummy are clearly disjoint, we therefore unambiguously decode all the True nodes, False nodes
and Dummy nodes in G′′φ.

17Recall that, by our convention, STrue is actually the union of two disconnected regions: {v ∈ S2 : angle(v, (0, 0, 1)) ≤
δp} ∪ {v ∈ S2 : angle(v, (0, 0,−1)) ≤ δp}; that is, STrue is a small cap centered around the “north pole” plus a small
cap centered around the “south pole”. Similar conventions hold for SFalse and SDummy as well.
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Note that the proof of Lemma 12 makes it possible to decode a truth assignment for all n
variables that satisfies at least (1 − ε) fraction of the clauses in φ, as we now describe. Since
the angle between every pair of True node vectors is at most δp := π/300, the assumption of
Lemma 8 is satisfied. Therefore, by Lemma 8, at least one of the three literals in each clause is
π/15 + π/300 = 21π/300 close to direction (0, 0, 1). Moreover, since all the survived copies of the
same literal are inter-connected by an equality gadget, it follows that each of these at most k copies
of the literal is 21π/300 + o(1) < π/12 close to (0, 0, 1). On the other hand, since each literal is
connected with its negation by a good edge, its negation is at least π/2 − π/12 − o(1) > π/3 far
from (0, 0, 1). Therefore, we can decode unambiguously the truth assignment of each variable as
follows: if all the survived copies of xi are π/12 close to (0, 0, 1), assign xi to True; else, if all the
survived copies of x̄i are π/12 close to (1, 0, 0), assign xi to False; otherwise, xi is a free variable
and can be assigned truth value arbitrarily. This completes the proof of Theorem 8.

8 The approximation algorithm

Let DiagonalKernel be the algorithm that, given a collection of subsets X1, X2, . . . , Xm ⊆ [N ],
returns the N × N diagonal matrix K such that Kii = 1

m · |{j : Xj 3 i}| for all i ∈ [N ]. Clearly,
DiagonalKernel runs in at most O(mN) time.

Theorem 10. Let ` be the log likelihood of the DPP defined by the marginal kernel output by
DiagonalKernel on examples X1, X2, . . . , Xm, and let `∗ be the optimal log likelihood achieved by a
DPP kernel on the same training set. Then ` ≤

(
1 + 1

log( m
amax

)

)
`∗, where amax := maxi∈[N ] |{j : Xj 3

i}| is the maximum element frequency in examples. It follows immediately that ` ≤ (1+ 1+o(1)
logN )`∗, when

amax = O(m)/N . As an unconditional weaker bound, we always have ` ≤ (1 + (1 + 1
m−1) logm)`∗.

Proof. Let ` and `∗ be the log likelihoods of DiagonalKernel kernel and optimal kernel, respectively.
In the following we upper bound the ratio `

`∗ .
For each i ∈ [N ], define ai := |{j : Xj 3 i}| to be the frequency of element i in the examples.

Then K is a diagonal matrix with Kii = ai
m for each i ∈ [N ]. If X is a random variable distributed

according to this diagonal DPP, then X is distributed as a product distribution of N independent
random variables, with Pr[i ∈X] = Kii for every i ∈ [N ]. It follows that, for every subset example
Xj ⊆ [N ],

Pr
X∼PK

[X = Xj ] =
∏
i∈Xj

Kii

∏
i/∈Xj

(1−Kii) =
∏
i∈Xj

ai
m

∏
i/∈Xj

(
1− ai

m

)
.

Since there are exactly ai sets that contain element i and m− ai that do not contain element i,
the log likelihood of the marginal DPP kernel K is

` = − log

 m∏
j=1

∏
i∈Xj

ai
m

∏
i/∈Xj

(1− ai
m

)

 = − log

[
N∏
i=1

(ai
m

)ai (
1− ai

m

)m−ai]
.

By Theorem 5, we can assume that the diagonal entries of a kernel K∗ achieving log likelihood
`∗ match those of the diagonal entries of K. Let X∗ be a random variable distributed according to
such a marginal kernel, then by Lemma 4 (Hadamard’s Inequality) we have
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Pr
X∗∼PK∗

[X∗ = Xj ] ≤ Pr
X∗∼PK∗

[Xj ⊆X∗] = det(K∗Xj )

≤
∏
i∈Xj

K∗ii =
∏
i∈Xj

Kii =
∏
i∈Xj

ai
m
.

It follows that

`∗ ≥ − log

(
N∏
i=1

(ai
m

)ai)
.

We now observe that

`

`∗
≤

log
(∏N

i=1

(
ai
m

)ai (1− ai
m

)m−ai)
log
(∏N

i=1

(
ai
m

)ai) = 1 +
log(

∏N
i=1

(
1− ai

m )m−ai
)

log
(∏N

i=1

(
ai
m

)ai)
= 1 +

log
(∏N

i=1(1− ai
m )1−ai

m

)
log
(∏N

i=1

(
ai
m

)ai
m

)
= 1 +

∑N
i=1 log

(
(1− ai

m )1−ai
m

)
∑N

i=1 log
((

ai
m

)ai
m

) .

For x ∈ (0, 1), let g(x) := − log
(
(1− x)1−x) and h(x) := − log (xx), and define

f(x) :=
g(x)

h(x)
=

log
(
(1− x)1−x)
log (xx)

=
(1− x) log(1− x)

x log x
.

Then it is easy to check that, for every 0 < x < 1, both g(x) and h(x) and hence f(x) are positive;
moreover, f(x) is an increasing function in x . Therefore,

`

`∗
≤ 1 +

∑N
i=1 g(aim )∑N
i=1 h(aim )

≤ 1 + max
i∈[N ]

g(aim )

h(aim )

= 1 + max
i∈[N ]

log
(

(1− ai
m )1−ai

m

)
log
((

ai
m

)ai
m

)
= 1 + f(

amax
m

). (17)

Using the inequality that (1 + x) log (1 + x) ≥ x for all x > −1, we get that f(x) ≤ − 1
log x

for all 0 < x < 1. Thus, when amax
m ≤ C

N , the kernel output by DiagonalKernel satisfies ` ≤
(1− 1

log(C/N))`∗ = (1 + 1
log(N/C))`∗.

When the condition amax
m ≤ C

N is not satisfied, in order to obtain an unconditional upper bound
on the log likelihood of DiagonalKernel , observe that without loss of generality, we may consider
only the cases when amax ≤ m− 1. This is because elements occur in all the training subsets will
be assigned probability 1 in a maximum likelihood DPP, hence have 1 at the diagonal entry and
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0’s at all other off-diagonal entries. This means that such elements can be “factored out” from the
marginal kernel. Thus, plugging amax

m = m−1
m into (17), we obtain

`

`∗
≤ 1 +

1
m log 1

m

(1− 1
m) log(1− 1

m)
= 1 +

logm

(m− 1) log(1 + 1
m−1)

≤ 1 + (1 +
1

m− 1
) logm,

where in the last step we use again the inequality (1 + x) log(1 + x) ≥ x for all x > −1 (and setting
x = 1

m−1).

Thus this simple algorithm does surprisingly well, unless there are some high frequent elements
that appear in a non-trivial fraction of the training data, which is often not the case in practice.
Further, it’s worth noting that the training set constructed in our hardness of learning proof also
satisfies that amax

m ≤ C
N for some constant C.

9 Discussion and open problems

In this work, we establish that it is NP-hard to obtain a 1−O( 1
log9N

)-approximation to the maximum
log likelihood of DPPs. We also demonstrate a simple polynomial-time algorithm that achieves

1
(1+o(1)) logm -approximation. One immediate open problem is to close this large gap. A natural and
plausible approach is to prove the cardinality-rank conjecture or at least to improve the bound in
Theorem 7. Note that our hardness result does not rule out efficient learning with some constant
factor of approximation: it is still possible that there is a polynomial-time algorithm that obtains
a DPP kernel with a 99%-approximation to the maximum log likelihood. As observed earlier, we
cannot preclude constant-factor approximations by a better analysis of the constructed hard instance:
the approximation algorithm shows that our hardness result is tight up to a polynomial factor for
the type of subset collections employed in the proof. Therefore any stronger hardness proof would
require constructing a collection of subsets in which some element appears in a non-trivial fraction
of the subsets.

Our investigation just takes a first stab at understanding the computational landscape of learning
DPPs. In particular, our knowledge for the complexity of learning DPPs when the data set is
indeed generated by an unknown DPP is still very limited: Can one design efficient algorithms for
such a task? Can the DPP kernel be learned with arbitrary accuracy? And if not, what is the
best approximation factor can such an algorithm achieve? Note that the data here is no longer
a worst-case data set, but only sampled from a worst-case DPP. The underlying model is thus a
semi-random one, and it seems challenging to extend NP-completeness hardness to such settings;
some kind of average-case hardness is likely to be the best one can hope for. This is essentially
the approach that [BMRU17a] had envisioned when examining the optimization landscape of the
likelihood function for DPP kernels. The convergence of the empirical log-likelihood function to the
true log-likelihood function only holds with high probability, and so in particular doesn’t carry over
to the kinds of worst-case data sets produced by our reduction. Thus, their conjectured property
may still hold, and may be a route to an efficient algorithm in this setting. On the other hand,
“realizability” is probably a too strong assumption for practical purposes; DPPs are generally used to
model processes featuring negative association, and it often seems implausible that the data actually
follows a DPP distribution. Therefore, finding more appropriate assumptions is yet to be explored,
and an algorithm for a realizable setting would be a natural first step along this direction.

40



As the other side of the coin, it is entirely conceivable that such efficient algorithms may not
exist at all. One may view our main result as proving the hardness of “agnostic-learning” DPPs,
while here the task would be proving hardness of “PAC-learning” DPPs. Presumably this is more
difficult, as PAC-learning is in general easier than agnostic learning, it is thus harder to obtain
lower bounds in the former setting. In particular, the usual approach of proving PAC-learning lower
bounds involves uniform distributions over some prescribed collections of subsets. Such distributions
are within the scope of PAC-learning model as it allows arbitrary distributions. By contrast, DPPs
are normally unable to generate the uniform distribution over an arbitrary collection of subsets.
Indeed, we believe that the data set we construct would be atypical for all DPPs. This is why
contrary to the usual representation-specific hardness theorems in PAC-learning, we believe that an
average-case hardness assumption will be necessary here.
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