
Characterizing Derandomization Through Hardness of

Levin-Kolmogorov Complexity

Yanyi Liu
Cornell Tech

yl2866@cornell.edu

Rafael Pass∗

Cornell Tech & Tel-Aviv University
rafael@cs.cornell.edu

June 2, 2022

Abstract

A central open problem in complexity theory concerns the question of whether all efficient
randomized algorithms can be simulated by efficient deterministic algorithms. We consider this
problem in the context of promise problems (i.e,. the prBPP v.s. prP problem) and show that for
all sufficiently large constants c, the following are equivalent :

• prBPP = prP.

• For every BPTIME(nc) algorithm M , and every sufficiently long z ∈ {0, 1}n, there exists
some x ∈ {0, 1}n such that M fails to decide whether Kt(x | z) is “very large” (≥ n− 1) or
“very small” (≤ O(log n)).

where Kt(x | z) denotes the Levin-Kolmogorov complexity of x conditioned on z. As far as we
are aware, this yields the first full characterization of when prBPP = prP through the hardness of
some class of problems. Previous hardness assumptions used for derandomization only provide a
one-sided implication.

∗Work done while being on a sabbatical at Tel-Aviv University. Supported in part by NSF Award SATC-1704788,
NSF Award RI-1703846, AFOSR Award FA9550-18-1-0267, and a JP Morgan Faculty Award. This material is based
upon work supported by DARPA under Agreement No. HR00110C0086. Any opinions, findings and conclusions or
recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the
United States Government or DARPA.

1

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Report No. 84 (2022)

1 Introduction

Randomness is an ubiquitous tool in algorithm design. A central open problem in complexity theory
concerns the question of whether all randomized algorithms can be derandomized; that is, can every
randomized polynomial-time algorithm be simulated by a deterministic polynomial-time one? In this
work, we consider this question with respect to promise problems; as usual, we refer to prBPP as the
class of promise problems (as opposed to languages) that can be solved in probabilistic polynomial
time (with 2-sided error), and prP to the class of promise problems than can be solved in deterministic
polynomial time, and we here consider the question of whether prBPP = prP.

A long sequence of works originating with the works of Blum-Micali [BM84], Yao [Yao82],
Nisan [Nis91], Nisan-Widgerson [NW94], Babai-Fortnow-Nisan-Wigderson [BFNW93], Impagliazzo-
Wigderson [IW97] have presented beautiful connections between this problem and the problem of
proving computational-complexity lower bounds—the so-called hardness v.s. randomness paradigm.
For instance, the results of [NW94, IW97] show that prBPP = prP under the assumption that
E = DTIME(2O(n)) contains a language that requires Boolean circuits of size 2Ω(n) for almost all
input lengths (i.e., E is not contained in ioSIZE(2Ω(n))). Additionally, results by Impagliazzo, Ka-
banets and Wigderson [IKW02] show a partial converse: if prBPP = prP, then some non-trivial
circuit lower bound also must hold. In more detail, if prBPP = prP (or even just MA = NP), then
NEXP 6⊆ P/poly; very recent works [Tel19, MW18] managed to strengthen the conclusion to e.g.,
NTIME[npoly logn] 6⊆ P/poly.

But despite over 40 years of research on the topic of derandomization, there is still a large “gap”
between the hardness assumptions required for derandomizing prBPP, and the ones that are known
to be necessary for derandomization, leaving open the following question:

Does there exist some hardness assumption that is equivalent to prBPP = prP?

Most notably, known derandomization results for prBPP require complexity lower-bounds on func-
tions in EXP, whereas it is only known that derandomization of prBPP implies complexity lower
bounds for functions in non-deterministic classes.

Circumventing this problem, an elegant result by Goldreich [Gol11]—which will be instrumental in
the current work—provides a characterization of prBPP = prP through the existence of a generalized
form of a pseudo-random generator (PRG). In more detail, Goldreich [Gol11] shows that prBPP = prP
if and only if a certain type of a targeted PRG exists; roughly speaking, this is a PRG g that gets an
additional target z as input, and indistinguishability holds with respect to uniform algorithms that
also get the target z as input. In other words, g is just like a normal PRG, but with the exception
that both the PRG and the distinguisher get access to the auxiliary “target” string z, and we require
security to hold for all strings z. Since we consider PRGs in the context of derandomization, we allow
the running-time of the PRG to be (polynomially) larger than the running-time of the distinguisher.
As noted by Goldreich, such targeted PRGs suffice to derandomize prBPP, where the instance to be
decided can be used as the “target”; Goldreich next provides a construction of such a targeted PRG
assuming that prBPP = prP. As pointed out by Goldreich, however, the existence of a PRG is not
a “hardness” assumption, and thus his work does not provide a characterization of derandomization
in terms of some hardness assumption.

As far as we are aware, the only work that that shows an equivalence between prBPP = prP and
some hardness assumption does so under a conjecture (a weaker version of the non-deterministic
exponential-time hypothesis) [CRTY20]. Very recently, however, two intriguing works make progress
on closing the gap between the necessary and sufficient assumptions for derandomization:

• Chen and Tell [CT21], relying on the work by Goldreich [Gol11], present a new uniform hardness
assumption—roughly speaking, that there exists a multi-output function f computable by

polynomial size logspace-uniform circuits with depth bounded by n2 that cannot be computed
in some (a-priori bounded) probabilistic polynomial time on any sufficiently large inputs—
which implies that prBPP = prP. They also show a partial converse: That a relaxed version of
this conjecture, where the depth requirement is dropped, also is necessary.

• A work by Hirahara [Hir20] presents an equivalence between hitting set generators (HSG)
[ACR98, ACRT99] with respect to some circuit class and the hardness of approximating a
Kolmogorov complexity problem (in more detail, the Levin-Kolmogorov complexity problem)
with the same circuit class. While his result is stated with respect to low-level complexity
classes (such as AC0 ◦ XOR), his proof actually extends also to classes such as P/poly. While
HSG w.r.t., P/poly are known to imply that prBPP = prP, and they are a central tool toward
establishing this in known results, they are not known to be implied by derandomization.

1.1 Characterizing prBPP = prP through the Hardness of Conditional Kt-complexity

In this work, we present a hardness assumption that is both necessary and sufficient for derandom-
izing prBPP. In more detail, we present an (in our eyes) natural class of promise problems such that
prBPP = prP if and only if every problem in this class is (almost-everywhere) worst-case hard. The
class of problems is related to Kolmogorov complexity.

Conditional Time-bounded Kolmogorov Complexity What makes the string 1212121212121
2121 less random than 60484850668340357492? The notion of Kolmogorov complexity (K-complexity),
introduced by Solomonoff [Sol64], Kolmogorov [Kol68] and Chaitin [Cha69], provides a method for
measuring the amount of “randomness” in individual strings: The K-complexity of a string is the
length of the shortest program Π (to be run on some fixed universal Turing machine U) that out-
puts the string x. K-complexity, however, disregards the running time of the program Π. Levin-
Kolmogorov Complexity [Lev73] is an elegant way for incorporating the running time of the program
Π into the complexity: Kt(x) is defined as the minimal cost of a program Π that outputs x, where
the cost of Π is defined as the sum of the length of Π and the logarithm of its running time.

We can also consider a conditional version of Kt-complexity: The Conditional Levin-Kolmogorov
Complexity [ZL70, Lev73, Tra84, LM91] of a string x conditioned on a string z—denoted Kt(x | z)—
is the minimal “cost” of a program that, given the “auxiliary input” z (for free), outputs the string
x.

We will here be interested in a promise version of the decisional conditional Kt-complexity
problem, parametrized by thresholds TYES, TNO that specify on what Kt-complexities a decider
needs to work. In more detail, the promise problem GapMcKtP[TYES, TNO] is defined as follows:

• YES instances: (x, z) such that |x| = |z|, and Kt(x | z) ≤ TYES(|x|).

• NO instances: (x, z) such that |x| = |z|, and Kt(x | z) ≥ TNO(|x|).

Note that this is a “gap” problem as we are not considering strings that have “intermediary” condi-
tional Kt-complexity.

The Main Theorem We are now ready to state our main theorem.

Theorem 1.1. There exists a constant c such that the following are equivalent:

• prBPP = prP;

• For all BPTIME(nc) algorithm M , all sufficiently large z ∈ {0, 1}n, there exists some x ∈ {0, 1}n
such that M fails to decide whether (x, z) ∈ GapMcKtP[O(log n), n− 1].

2

In other words, prBPP = prP iff GapMcKtP[O(log n), n− 1] is hard to decide for all (sufficiently
large) auxiliary inputs z (w.r.t., nc time probabilistic algorithms).

Comparison with [Hir20] Let us start by comparing Theorem 1.1 with the results established
by Hirahara [Hir20]. As mentioned above, Hirahara characterizes hitting sets generators as op-
posed to derandomization, but the problem he considered is very related to the one we consider.
More specifically, Hirahara consider the exact same promise problem, but without any condition-
ing/auxiliary inputs, and shows that hardness with respect to circuits (as opposed to uniform prob-
abilistic algorithms as we do) implies HSGs that are hard with respect to the same class of circuits.

He also used this result to characterize some non-trivial derandomization (i.e., RTIME[2Õ(
√
n)] into

DTIME[2n−ω̃(
√
n)] on feasibly generated inputs).

On a high level, Hirahara constructs a HSG by using the first O(log n) bits of the seed to select
a program M , lets the output of the program determine a truthtable of a function f , and then relies
on the Impagliazzo-Wigderon (IW) PRG [IW97] (applied to the second part of the seed) using f as
the “hard function”.1 Hirahara shows that any attacker for such a HSG can be used to distinguish
whether Kt(x) is smaller than O(log n) or at least n− 1.

Our construction of a targeted PRG relies on similar principles. Similarly to [Hir20], we use
the first O(log n) bits of the seed to select a program M , but instead of letting M operate not just
on the empty input (as in [Hir20]), we also let the program M access the target string z; in other
words, we can think of this approach as using the target/instance to get a hard function, and next
applying IW to this function. As we shall see, when doing this, we can show that any distinguisher
for the targeted HSG that works given a target z can be used, together with the IW reconstruction
procedure, to distinguish for any x ∈ {0, 1}|z| whether Kt(x | z) is small or large.

Comparison with [CT21] It is also worthwhile to compare Theorem 1.1 with the result of Chen
and Tell [CT21]. Most importantly, Theorem 1.1 present a full characterization of when prBPP = prP,
whereas the result in [CT21] has a gap between the sufficient and necessary assumptions. Neverthe-
less, there are also similarities: The condition where we require hardness for all auxiliary inputs is
closely related to the hardness condition in [CT21] which requires hardness for (almost) all inputs.
Indeed, on a technical level, the reason these requirements arise are quite similar in both works, and
our condition is inspired by [CT21]. On the other hand, our condition is also more complex than
the one in [CT21] in that the input to our problem consists of two parts—the auxiliary input z and
the instance x—and whereas we require hardness w.r.t. all sufficiently large z (just like [CT21]), we
only require the algorithm to fail on some instance x (similarly to standard notions of worst-case
hardness).

An alternative way of looking at our result is as presenting an explicit multi-output function F
where the ith component of the output of F on input z is Kt(i, z) such that almost-all-input hardness
of n − O(log n) approximating F is equivalent to prBPP = prP. This condition differs from the one
in [CT21] in that (1) we are considering an explicit function, rather that just any function, (2) the
output length of the function is exponential (similar to [ILO20]) whereas it is polynomial in [CT21],
and (3) we require hardness of approximating the function, as opposed to computing it exactly.

Finally, we note that we actually prove an even stronger result: we do not actually require
hardness of GapMcKtP w.r.t (almost) all auxiliary input strings to deduce that prBPP = prP. In
fact, we show that for every γ, there exists a universal and uniformly computable sequence Zγ =

1Hirahara presented his construction in a somewhat different way. In more detail, his construction of the HSG is
simply a “universal HSG” obtained by interpreting the seed as a program M that is executed. He then uses the [IW97]
construction in the analysis of the HSG. For our purposes, the above alternative presentation where incorporating the
IW PRG directly into the construction will be helpful.

3

{z1, z2, . . .} such that nc-time hardness of GapMcKtP[γ log n, n − 1] w.r.t. the specific sequence Zγ
implies that prBPP = prP.

We also mention that we can characterize quasi-polynomial time derandomization of prBPP using
the same problems, by changing the YES-threshold to poly log n. For technical reasons, our approach
does not extend to subexponential-time derandomization.2

1.2 Proof Overview

To prove Theorem 1.1, we prove each direction of the equivalence separately.

Hardness of GapMcKtP from prBPP = prP The first direction involves showing the hardness
of GapMcKtP assuming that prBPP = prP. This direction follows mostly leveraging Goldreich’s
[Gol11] earlier result showing the existence of a targeted PRG assuming prBPP = prP. We here
consider a notion of a targeted PRG that is essentially identical to the notion of a “targeted canonical
derandomizer” defined by Goldreich, but generalizes/strengthens his notion in several ways; most
notably, we consider randomized distinguishers that may have superlinear running time, whereas
Goldreich restricts attention to deterministic distinguishers with linear running time. Nevertheless,
we observe that the PRG constructed by Goldreich (with minor modifications) actually satisfies the
notion of a targeted PRG that we consider. Additionally, we observe that this (slightly new) notion
of a targeted PRG suffices for demonstrating hardness of GapMcKtP for all sufficiently large auxiliary
inputs z —roughly speaking, any solver for GapMcKtP can break the PRG as random strings (most
often) are NO-instances, and strings in the range of the PRG are YES-instances; the target of the
PRG will here correspond to the auxiliary input z used for the GapMcKtP problem.

prBPP = prP from the Hardness of GapMcKtP To prove the second direction, we first observe
that by the result of Buhrman and Fortnow [BF99] (building on [Sip83, Lau83]), it suffices to show
that prRP = prP to deduce that prBPP = prP. (We remark that for this result to hold, it is crucial that
we are considering promise problems and not languages). Thus, it will suffice to derandomize prRP.
Next, we consider the notion of a targeted HSG (discussed above) and demonstrate how to construct
such a targeted HSG assuming that GapMcKtP is hard for all sufficiently large auxiliary inputs z.
As mentioned above, the construction relies on ideas similar to those employed by Hirahara [Hir20]
except that, similarly to [CT21], we are using the target/instance z to obtain a “hard function” that
we can plug into the IW generator.

Finally, to weaken the assumption to require hardness of GapMcKtP with respect to a specific
universal and uniformly computable sequence of auxiliary inputs, we observe more generally that
for any candidate construction of a HSG, there exists some universal sequence of targets such that
security of the HSG w.r.t. this target sequence implies security w.r.t. all target sequences; and
furthermore, this target sequence can be computed (in exponential time).

2 Preliminaries and Definitions

We assume familiarity with basic concepts such as Turing machines, polynomial-time algorithms,
and probabilistic algorithms and computational classes such as prBPP, prRP, and prP. We let Un the
uniform distribution over {0, 1}n. Given a string x ∈ {0, 1}n and an index j ∈ [n], we let [x]j denote
the length-j prefix of x.

2More precisely, our characterization only works for complexity classes C of running times T such that if T ∈ C then
T (T (·)) ∈ C as well. This follows from our use of [Sip83, Lau83, BF99].

4

Let S ⊆ {0, 1}∗ be a set. We say that S is decidable if there exists a Turing machine M such
that for all x ∈ {0, 1}∗, x ∈ S iff M(x) = 1. Let Z = {zn}n∈N be a sequence. We say that Z is
uniform if there exists a Turing machine M such that for all n ∈ N, zn = M(1n). We say that a
function f : N → N is time-constructible if f is increasing and for all n ∈ N, f(n) can be computed
by a Turing machine in time poly(f(n)).

2.1 Levin’s Conditional Kolmogorov Complexity

We recall the notion of Levin-Kolmogorov complexity. Roughly speaking, the Levin’s Kolmogorov
complexity [Kol68, Sip83, Tra84, Ko86, Lev73], Kt(x | z), of a string x ∈ {0, 1}∗ conditioned on a
“auxiliary input” string z ∈ {0, 1}∗ is the cost of the most “efficient” program Π such that Π(z)
outputs x in t steps, where the efficiency of Π is defined to be the sum of the length of Π and
the logarithm of t. We proceed to the formal definition. Let U be some fixed Universal Turing
machine that can emulate any Turing machine Π with polynomial overhead. Let U(Π(z), 1t) denote
the output of Π(z) when emulated on U for t steps.

Definition 2.1. For all x ∈ {0, 1}∗ and z ∈ {0, 1}∗, define

Kt(x | z) = min
Π∈{0,1}∗,t∈N

{|Π|+ dlog te : U(Π(z), 1t) = x}

We will here focus on a promise version of the decisional minimum conditional Levin-Kolmogorov
complexity problem, parametrized by thresholds TYES, TNO.

Definition 2.2 (GapMcKtP). Let TYES, TNO be two threshold functions. The promise problem
GapMcKtP[TYES, TNO] is defined as follows.

• YES instances: (x, z) such that |x| = |z|, and Kt(x | z) ≤ TYES(|x|).

• NO instances: (x, z) such that |x| = |z|, and Kt(x | z) ≥ TNO(|x|).

Definition 2.3 (Deciding GapMcKtP). We say that a probabilistic machine M fails to decides
whether (x, z) ∈ GapMcKtP[TYES, TNO] if either Kt(x | z) ≤ TYES(|x|) but Pr[M(x, z) = 0] > 1/3
or Kt(x | z) ≥ TNO(|x|) but Pr[M(x, z) = 1] > 1/3.

We will consider two notions of hardness of deciding GapMcKtP: either when the auxiliary input
is fixed to some particular sequence (one for each input length), or hardness with respect to almost
all auxiliary inputs.

Definition 2.4 (Hardness of GapMcKtP). We say that GapMcKtP[TYES, TNO] is:

• hard for probabilistic T -time algorithms given the auxiliary input sequence Z =
{z1, z2, . . .} if for all probabilistic T -time algorithms M , all sufficiently large n, there exists a
string x ∈ {0, 1}n such that M fails to decide whether (x, zn) ∈ GapMcKtP[TYES, TNO].

• hard for probabilistic T -time algorithms on almost all auxiliary inputs if for all
sufficiently large z, there exists some x ∈ {0, 1}|z| such that M fails to decide whether (x, z) ∈
GapMcKtP[TYES, TNO].

5

2.2 Targeted Pseudorandom Generator

We consider the notion of a targeted pseudorandom generator (targeted PRG), which is a generaliza-
tion of the notion of a targeted derandomizer due to Goldreich [Gol11]. Roughly speaking, a targeted
pseudorandom generator g takes a seed along with a “target” string z as input, and we require that
its output is indistinguishable from uniform by (computationally-bounded) distinguishers that addi-
tionally get the target z as input. In other words, g is just like a normal PRG, but with the exception
that both the PRG and the distinguisher get access to the auxiliary “target” string z, and we require
security to hold for all strings z. Since we consider PRGs in the context of derandomization, we allow
the running-time of the PRG to be (polynomially) larger than the running-time of the distinguisher.
We highlight that our notion slightly generalizes the notion of Goldreich by allowing the length of the
target string to be different than the length of the output of the PRG, and additionally, we require
the PRG to be defined over all output lengths. Furthermore, it strengthens Goldreich’s notion by
considering randomized distringuishers that may have superlinear running time (whereas Goldreich
restricts attention to deterministic distinguishers with linear running time).

Definition 2.5 (Targeted pseudorandom generator (generalizing [Gol11])). Let g : 1n × {0, 1}`(n) ×
{0, 1}m(n) → {0, 1}n be an efficiently computable function. We say that g is an T (n)-secure (`(n),m(n))-
targeted pseudorandom generator (T -secure (`(n),m(n))-targeted PRG) if for all probabilistic attack-
ers D that run in T (n) time (where n is the length of its first input), for all sufficiently large n ∈ N
and all strings z ∈ {0, 1}`(n), it holds that

|Pr[s← {0, 1}m(n) : D(1n, z, g(1n, z, s)) = 1]− Pr[x← {0, 1}n : D(1n, z, x) = 1]| < 1

6
.

2.3 Targeted Hitting Set Generator

We turn to introducing the notion of hitting set generator (HSG) [ACR98, ACRT99] that we rely
on. Recall that a standard hitting set generator requires its image set to have an overlap with any
dense set that can be accepted by a small circuit. However, we here restrict our attention to uniform
deterministic machines and we will consider the targeted variant of HSGs [Gol11] (see also [CT21]).

Definition 2.6 (Targeted hitting set generator). Let g : 1n × {0, 1}`(n) × {0, 1}m(n) → {0, 1}n be an
efficiently computable function. We say that g is an T (n)-secure (`(n),m(n))-targeted hitting set
generator (T -secure (`,m)-targeted HSG) secure w.r.t. deterministic attackers if for all deterministic
attackers D that run in T (n) time (where n is the length of its first input), for all sufficiently large
n ∈ N and all strings z ∈ {0, 1}`(n), it holds that if

Pr[x← {0, 1}n : D(1n, z, x) = 1] ≥ 1

6

then
Pr[s← {0, 1}m(n) : D(1n, z, g(1n, z, s)) = 1] > 0

For any targeted HSG g, we say that g is O(T (n))-secure if for all constant c > 0, g is (cT (n))-
secure.

In addition, we will also consider a weaker notion of the targeted hitting set generator, where
security is only guaranteed given some particular sequence of target inputs (rather than for all
target inputs). Formally, let `(n) be a function and let Z = {zn}n∈N such that |zn| = `(n). Let
g : 1n × {0, 1}`(n) × {0, 1}m(n) → {0, 1}n be an efficiently computable function. We say that g is a
T (n)-secure (Z,m(n))-targeted hitting set generator (T -secure (Z,m)-targeted HSG) if its security
requirement holds for all sufficiently large n ∈ N and z = zn.

6

It is well-known that a (non-uniformly) secure HSG can derandomize prRP. We next show that
when considering a targeted uniformly-secure HSG, the same derandomization result still holds. This
in essence follow by the standard proof (that non-uniformly secure HSG derandomize RP), but with
an additional padding argument to deal with the “target”/auxiliary input.

Lemma 2.7. Assume that there exist constants c ≥ 1, θ ≥ 1 and a O(nθ)-secure (nθ, c log n)-targeted

HSG g : 1n×{0, 1}nθ×{0, 1}c logn → {0, 1}n secure w.r.t. deterministic attackers. Then, prRP = prP.

Proof: To show that prRP = prP, it suffices to prove that for any polynomial-time randomized
algorithm A, there exists a polynomial-time deterministic algorithm B such that for all sufficiently
long x ∈ {0, 1}∗, if Prr[A(x; r) = 1] ≥ 1

2 , then B(x) = 1; and if Prr[A(x; r) = 0] = 1, then B(x) = 0
(where r denotes the random coins that A uses).

Consider any poly-time randomized algorithm A. We can without loss of generality assume that
A runs in linear time and A uses as many random coins as its input length.3 If θ > 1, the following
padding argument is needed. For any string x ∈ {0, 1}∗, let x′ be the string x10|x|

θ−|x|−1; that is, we
pad as many ‘0’ at the end of x||1 until it becomes of length |x|θ. Let A′ be an algorithm such that
A′(x′; r) = A(x; r) for any x, r.4 (If θ = 1, we let x′ = x and A′ = A.)

We proceed to constructing a poly-time deterministic algorithm B that deterministically emulates
A. On input an instance x ∈ {0, 1}n, B(x) tries all possible seeds v ∈ {0, 1}c logn and B(x) outputs
1 if and only if there exists a seed v such that A′(x′, g(1n, x′, v)) = 1; otherwise B(x) outputs 0.

Observe that if A(x, r) outputs 0 with probability 1 (over the random choice of r), A′(x′, r) will
output 0 with probability 1 and thus B(x) will also output 0. Also note that B runs in polynomial
time.

We show that, for all sufficiently long x, B(x) will output 1 if A(x, r) outputs 1 with probability
≥ 1

2 Since g is a O(nθ)-secure (nθ, c log n)-targeted HSG and A′ runs in deterministic O(nθ) time

with respect to n = |r| = |x|, it follows that for all sufficiently large n ∈ N, x′ ∈ {0, 1}nθ , it holds
that if

Pr[r ← {0, 1}n : A′(x′, r) = 1] ≥ 1

6
(1)

then
Pr[v ← {0, 1}c logn : A′(x′; g(1m, x′, v)) = 1] > 0. (2)

Consider some string x such that g is secure on auxiliary input x′ (with respect to A′) and it holds
that Prr[A(x; r) = 1] ≥ 1

2 . It follows that Prr[A
′(x′; r) = 1] ≥ 1

2 which implies that Equation 1 holds.
Therefore, by the hitting property of g, Equation 2 also holds and there exists a seed v ∈ {0, 1}c logn

such that A′(x′, g(1n, x′, v)) = 1. Thus, B(x) will output 1. Finally note that g will be secure on all
sufficiently long x′, so B can always find a seed v such that A′(x′, g(1n, x′, v)) = 1 if Prr[A(x, r) =
1] ≥ 1

2 for all sufficiently long x.

3 Universal Target Strings for Targeted HSG or PRG

In this section, we show a useful statement about targeted PRGs/HSGs: For every candidate
PRG/HSG, there exists a universal sequence of targets (one for each input lenght) such that if
the PRG/HSG is secure with respect to this sequence, then it will be secure with respect to any
target. Furthermore, this universal sequence is computable (in exponential time). Looking ahead,

3If A does not run in linear time (or uses more random coins than its input length), we can pad the input of A so
that the padded version (of A) now runs in linear time (or uses equally many of random coins).

4More formally, A′ is an algorithm proceeding as the following. A′ takes input (x′, r) and then removes as many ‘0’
in the end of x′ as it can. A′ further remove a single bit ‘1’ and denote the result by x. A′ returns A(x, r).

7

this will later be useful to us to show that hardness of GapMcKtP with respect to a particular,
computable, sequence of auxiliary inputs, suffices to characterize derandomization.

Lemma 3.1. Let g : 1n×{0, 1}`(n)×{0, 1}m(n) → {0, 1}n be an efficiently computable function such
that `,m are polynomially bounded, and let T (n) ≤ 2n be a function. There exists an exponential
time uniform sequence Z = {zn ∈ {0, 1}`(n)}n∈N such that if g is a T -secure (Z,m(n))-target HSG
(resp PRG) secure on Z, then g is a T -secure (`(n),m(n))-target HSG (resp PRG) secure on all
target inputs.

Proof: Let g, T be as in the lemma statement. We consider the Turing machine M that proceeds as
follows. On input 1n, M(1n) enumerates all TMs D of (description) length ≤ log n in lexicographic
order. M(1n) verifies whether the following two conditions are satisfied.

• D(y1, y2, y3) terminates within T (|y1|) steps for all strings y1, y2, y3 satisfying |y1| ≤ n, |y2| =
`(|y1|), |y3| = |y1|.

• There exists a string x ∈ {0, 1}`(n) such that D breaks g on the target input x. Specifically, if
g is a HSG candidate, it requires that

Pr[s← {0, 1}m(n) : D(1n, x, g(1n, x, s)) = 0] = 1

and

Pr[r ← {0, 1}n : D(1n, x, r) = 1] >
1

6
.

Let D′ be the first machine M finds such that the above two checks are passed. Let x′ be the
lexicographically smallest string such that the second condition above is satisfied (with respect to
D′). M(1n) will simply output x′. Finally, let Z = {zn} be a sequence such that for all n ∈ N,
zn = M(1n).

We next argue that if g is a T -secure (Z,m(n))-target HSG (resp PRG) secure on Z, then g
is a T -secure (`(n),m(n))-target HSG (resp PRG) secure on all target inputs, which concludes our
proof (since M also runs in exponential time). Assume for contradiction that there exists a T -time
distinguisher D such that D breaks g on infinitely many target inputs. Let D∗ be such a distinguisher
with the lexicographically smallest description. Consider all TMs D′ that are lexicographically
smaller than D∗, and the following two observations will show that M(1n) will never accept any TM
D′ <lex D

∗ when n is sufficiently large.

• If D′ is not a T -time machine. Then there exists an input of the form y1, y2, y3 to D′ such that
D′(y1, y2, y3) runs more than T (|y1|) steps before it halts. M(1n) will not accept D′ if n > |y1|.

• If D′ is a T -time machine, since D′ <lex D
∗, D′ will only break g on finitely many target inputs

(if any). M(1n) will not accept D′ if n is sufficient large (so that D′ never breaks g on target
inputs of length larger than n).

On the other hand, note that M(1n) will accept D∗ if D∗ breaks g on some target input of length n
(which happens infinitely often). Whenever M(1n) accepts D∗, D∗ will break g on target zn since
zn = M(1n). Therefore, we conclude that D∗ breaks the security of g on infinitely many z’s ∈ Z.

8

4 Main Theorem

We are now ready to formally state out main theorem.

Theorem 4.1. There exist a constant c ≥ 1 and a Turing machine M such that the following are
equivalent.

1. prBPP = prP.

2. The existence of a constant γ0 such that for all γ ≥ γ0, GapMcKtP[γ log n, n − 1] is hard for
probabilistic nc-time algorithms on almost all auxiliary inputs.

3. The existence of a constant γ0 such that for all γ ≥ γ0, all uniform auxiliary sequence Z,
it holds that GapMcKtP[γ log n, n − 1] is hard for probabilistic nc-time algorithms given the
sequence Z.

4. The existence of a constant γ such that GapMcKtP[γ log n, n−1] is hard for probabilistic nc-time
algorithms given the auxiliary input sequence Z = {z1, z2, . . .} where zi = M(γ, 1i).

5. The existence of constants σ ≥ 1, θ ≥ 1 and an O(nθ)-secure (nθ, σ log n)-targeted HSG.

6. prRP = prP

Proof: The proof of this theorem relies on many results which will be stated and proved later. Let
c be the constant as in Lemma 6.8. Although it is stated in Lemma 6.8 that for each constant γ,
there exists a uniform auxiliary input sequence Z0 = {z0,n}n∈N (such that some desired propertise
are satisfied), its proof actually proves a stronger statement: There exists a machine M such that
M with γ as input will generate the auxiliary sequence Z0 in the sense that z0,n = M(γ, 1n) for all
n ∈ N. Given the existence of such c and M , our proof proceeds as the following.

(1) ⇒ (2): it follows from Theorem 5.1.
(2) ⇒ (3) and (3) ⇒ (4): These two implications trivially hold.
(4)⇒ (5): This implication follows from Lemma 6.8 due to our choice of M and the way we pick

Z.
(5) ⇒ (6): The proof of this implication relies on the fact that a targeted HSG allows us to

emulate prRP computation in deterministic time, and a detailed proof can be found in Lemma 2.7.
(6) ⇒ (1): This implication can be proved using standard reductions in [Sip83, Lau83] (and see

also [BF99]).

5 GapMcKtP Hardness from prBPP = prP

In this section, we show that the assumption prBPP = prP will imply the hardness of GapMcKtP
with the desired parameters.

Theorem 5.1. Assume that prBPP = prP. Then for all constants c ≥ 1, there exists a constant
γ0 > 0 such that for all constants γ ≥ γ0, it holds that GapMcKtP[γ log n, n−1] is hard for probabilistic
nc-time algorithms on almost all auxiliary inputs.

Recall that Goldreich [Gol11] showed that if prBPP = prP, then there exists a so-called “targeted
derandomizer”. Since our notion of a targeted PRG is very similar to his notion, his proof extends
with just minor modifications of the parameters also to our notion.

Theorem 5.2 (essentially implicit in [Gol11]). Assume that prBPP = prP. Then for all constants
γ > 0, c ≥ 1, there exists a nc-secure (n, γ log n)-targeted PRG g.

9

We will provide the proof of Theorem 5.2 (which closely follows [Gol11]) in Appendix A. [Gol11]
further shows that a targeted PRG can be used to derandomize prBPP (and thus shows equivalence
of derandomization of prBPP and targeted PRGs). We here instead show that the existence of
targeted PRGs implies hardness of GapMcKtP. Roughly speaking, this follows from the observation
that any solver for GapMcKtP can break the PRG as random strings (most often) are NO-instances,
and strings in the range of the PRG are YES-instances; the target of the PRG will here correspond
to the auxiliary input z used for the GapMcKtP problem.

Lemma 5.3. Assume that for all constants γ > 0, c ≥ 1, there exists a nc-secure (n, γ log n)-targeted
PRG. Then, for all constants c ≥ 1, there exists a constant γ0 > 0 such that for all constants γ ≥ γ0,
GapMcKtP[γ log n, n− 1] is hard for probabilistic nc-time algorithms on almost all auxiliary inputs.

Proof: Consider any constant c ≥ 1. By our assumption, it follows that there exists a nc-secure
(n, log n)-targeted PRG g : 1n × {0, 1}n × {0, 1}logn → {0, 1}n. Let γ0 be a constant such that
computing the PRG g(1n, x, v), x ∈ {0, 1}n, v ∈ {0, 1}logn can be done in time nγ0−2. Let γ be
any constant such that γ ≥ γ0. Assume for contradiction that GapMcKtP[γ log n, n − 1] is easy
for probabilistic nc-time algorithms on almost all auxiliary inputs. Then, there exist a nc-time
probabilistic machine M such that for infinitely many n ∈ N, there exists zn ∈ {0, 1}n such that for
all x ∈ {0, 1}n, Pr[M(1n, x, zn) = 1] ≥ 0.9 if Kt(x | zn) ≤ γ log |x| and Pr[M(1n, x, zn) = 1] ≤ 0.1 if
Kt(x | zn) ≥ |x| − 1. We will show that M(1n, zn, ·) distinguishes between g(1n, zn,Ulogn) and Un on
all zn on which M succeeds, which contradicts the security of g. Towards this, let us fix some n ∈ N,
z = zn on which M succeeds.

We first prove that on input (1n, z, g(1n, z, v)) where v ∈ {0, 1}logn, M(1n, z, g(1n, z, v)) will
output 1 with probability ≥ 0.9. Observe that

Kt(g(1n, z, v) | z) ≤ log n+ log(nγ0−2) +O(1) ≤ γ log n

when n is sufficiently large since g(1n, z, v) can be computed by hardwiring the seed v (of length
log n) and the code of g (of length O(1)) in time nγ0−2 when having access to the string z. Therefore,
Pr[M(1n, z, g(1n, z, v)) = 1] ≥ 0.9 for every v ∈ {0, 1}logn.

We next show that on input (1n, z,Un), M will output 1 with probability ≤ 0.6. Observe that
there are at most 2n−1 strings x of length n that have conditional Kt-complexity ≤ n− 2 since there
are at most 2n−1 machines of description length ≤ n − 2. It follows that Pr[Kt(Un | z) ≥ n − 1] ≥
1− 2n−1

2n ≥
1
2 . Conditioned on this event, we know that the probability that M outputs 1 is at most

0.1. Thus, by a union bound, Pr[M(1n, z,Un) = 1] ≤ 1
2 + 1

2 × 0.1 ≤ 0.6.

We can now conclude the proof of Theorem 5.1.
Proof: [of Theorem 5.1] Theorem 5.1 follows directly from Theorem 5.2 and Lemma 5.3.

6 Derandomization from Hardness of GapMcKtP

We proceed to proving that hardness of GapMcKtP implies that prBPP = prP. Note that by standard
techniques in [Sip83, Lau83], it suffices to derive prRP = prP. Towards this, we will present how to
construct a targeted HSG from the assumption, which is known to enable us to derandomize prRP
(see also Lemma 2.7).

6.1 Targeted HSG from Hardness of GapMcKtP

We here show how to obtain an targeted HSG assuming hardness of GapMcKtP. The following result
is the crux of our proof.

10

Lemma 6.1. There exists a constant c ≥ 1 such that the following holds. For each constant γ > 0,
there exist constants σ ≥ 1, θ ≥ 1, and an efficiently computable function g : 1m × {0, 1}mθ ×
{0, 1}σ logm → {0, 1}m such that for any target input sequence Z1 = {z1,m}m∈N, if g is not an O(mθ)-
secure (Z1, σ logm)-targeted HSG, then GapMcKtP[γ log n, n−1] is not hard for probabilistic nc-time
algorithms given an auxiliary input sequence Z0 = {z0,n}n∈N where for all n ∈ N, z0,n = z1,m(n) and

m(n) = bn
1
θ c.

Tool 1: List-decidable ECCs We start by recalling the notion of a list-decodable error correcting
code that we will be relying on.

Definition 6.2 (List-decodable error correcting code (see e.g. [Vad12])). For any n, n′, L ∈ N and
δ > 0, a function Enc : {0, 1}n → {0, 1}n′ is said to be a (L, 1

2−δ)-list-decodable error correcting code

if there exists a function Dec : {0, 1}n′ → ({0, 1}n)L such that for any x ∈ {0, 1}n and x′ ∈ {0, 1}n′

satisfying Pri∈[n′][Enc(x)i 6= x′i] ≤ 1
2 − δ it holds that x ∈ Dec(x′). We refer to Dec as a decoder of

Enc.

The following construction of a list-decodable error correcting code will be useful for us.

Theorem 6.3 ([STV01]; see also [Vad12, Problem 5.2]). There exist two deterministic polynomial
time algorithms Enc,Dec such that for all n ∈ N, δ > 0, the function Encn,δ : {0, 1}n → {0, 1}2r

where r = O(log(n/δ)) is a (poly(1/δ), 1
2 − δ)-list-decodable error correcting code with Decn,δ being

its decoder, and both Encn,δ and Decn,δ run in time poly(n, 1/δ).

Tool 2: The NW PRG We turn to recalling the construction of the Nisan-Wigderson (NW)
PRG [NW94]. For any string y ∈ {0, 1}d and subset I ⊆ [d], we let yI denote the |I|-bit string
consisting of the the projection of y to the coordinates ∈ I.

Definition 6.4 (NW generator). Let I = (I1, . . . , Im) be a family of m subsets of [d] with each

|Ij | = r and let f : {0, 1}r → {0, 1} be a function. The (I, f)-NW generator is the function NWf
I :

{0, 1}d → {0, 1}m that takes any string y ∈ {0, 1}d as a seed and outputs

NWf
I(y) = f(yI1) . . . f(yIm)

The core ingredient of the Nisan-Wigderson construction is a combinatorial design which will be
used as the family of subsets in a NW generator.

Definition 6.5 (Combinatorial designs). For any integers d, r, s ∈ N such that d > r > s, a family
I = {I1, . . . , Im} of subsets of [d] is said to be a (d, r, s)-design if for every j ∈ [m], |Ij | = r, and for
every k ∈ [m], k 6= j, |Ij ∩ Ik| ≤ s.

Recall that combinatorial designs can be efficiently constructed.

Lemma 6.6 ([NW94]; see also [AB09, Lemma 16.18]). There exists a deterministic algorithm
GenDesign such that on input d, r, s ∈ N where r > s and d > 10r2/s, runs in poly(2d) steps
and outputs a (d, r, s)-design I containing 2s/10 subsets of [d].

The following version of the reconstruction theorem will be useful for us.

Lemma 6.7 (Implicit in [NW94, IW97]). There exists a PPT algorithm NWRecon such that the
following conditions hold.

• Input: the truthtable of a function f : {0, 1}r → {0, 1}, a (d, r, s)-design I = {I1, . . . , Im}.

11

• Given oracle access to an oracle D ⊆ {0, 1}m such that∣∣∣Pr[y ← {0, 1}d : D(NWf
I(y)) = 1]− Pr[w ← {0, 1}m : D(w) = 1]

∣∣∣ ≥ 1

6
. (3)

• Output: a (deterministic) program M of description length ≤ m · 2s + m + d + O(log drsm)
such that MD(I) will output a string x′ ∈ {0, 1}2r in poly(2r) steps and x′ satisfies that

Pr[p← [2r] : x′p 6= f(p)] ≤ 1

2
− 1

12m
.

For the sake of completeness, we present a proof of Lemma 6.7 in Appendix B.

Returning to the proof of Lemma 6.1 We are finally ready to prove Lemma 6.1 by relying on
the above two tools/results.
Proof: [of Lemma 6.1] Before presenting a formal proof, it may be helpful to first discuss the choice
of parameters in our construction.

Notations. Let m denote the output length of the targeted HSG g that we hope to construct. Let
n denote the length of GapMcKtP instances and let θ ∈ N be a constant such that 1

θ is sufficiently
small. In this proof, we usually assume that n = poly(m) and it holds that n = mθ. In some cases

depending on the context, m is defined w.r.t. n and it holds that m = bn
1
θ c (and we can think of m

as being sublinear in n).
Let c be a sufficiently large constant (which will be fixed later). Consider any constant γ > 0

and a YES-threshold of GapMcKtP TYES = γ log n.

Constructing the HSG. Our HSG will take as input a unary string 1m, a target string z of length
mθ = n, along with a seed. Let δ = O(1

m) and we will need a list-decodable ECC that corrects a 1
2−δ

fraction of errors. By Theorem 6.3, there exists a function L = poly(1/δ), a function r = O(log n), a
(L, 1

2−δ)-list-decodable ECC Encn,δ that produces codewords of length 2r, and a decoding algorithm
Decn,δ that outputs a candidate message set of size L (if Dec succeeds). We will also need a NW
generator that takes functions with truthtable length 2r (matching the output length of the ECC)
and outputs m bits (matching the output length of our HSG). To achieve this, we require a (d, r, s)-
design I that contains m subsets of [d]. By Lemma 6.6, we can pick s = O(logm) to ensure that I
contains m subsets, and pick d = Ω(log n) to satisfy that d > 10r2/s. (Such designs can be efficiently
generated by GenDesign.) For our HSG to be secure, it is crucial in the NW security proof that 2s

is small enough, say, <
√
n (which will also guarantee that s < r). This can be achieved by picking

θ to be sufficiently large. (For a concrete choice of parameters, consider picking s = 10 logm and
θ = 20.)

We turn to describing our HSG formally. We will consider a function g : 1m × {0, 1}n ×
{0, 1}logn+TYES+d → {0, 1}m defined as follows. On input (1m, z, (j,Π′, y)) where z ∈ {0, 1}n, j ∈
{0, 1}logn,Π′ ∈ {0, 1}TYES , y ∈ {0, 1}d. Let k′ be an integer that k′ = j when k′ is represented in a
binary string and let k = min{k′, TYES}. Let Π = [Π′]k be the length-k prefix of Π′. Let t = 2TYES .
The algorithm g proceeds in the following steps.

• g first interprets the string Π ∈ {0, 1}k as a program and computes the output xΠ = U(Π(z), 1t)
of Π(z) after t steps.

• Then g lets f : {0, 1}r → {0, 1} be the function f = fn(Encn,δ(xΠ)) that is associated with the
truthtable Encn,δ(xΠ) ∈ {0, 1}2r . (g simply aborts if |xΠ| 6= n.)

12

• Next, g invokes the design generating algorithm GenDesign(d, r, s) to obtain a (d, r, s)-design
I = {I1, . . . , Im}.

• Finally, g outputs
g(1m, z, (j,Π′, y)) = NWf

I(y) = f(yI1) . . . f(yIm)

where the function NW is defined in Definition 6.4.

(Note that the seed length of g is log n + TYES + d = O(log n) = O(logm). And we can let σ
be the constant such that the seed length of g is σ logm. Notice that g is a function of the form
1m × {0, 1}mθ × {0, 1}σ logm → {0, 1}m.)

Deciding GapMcKtP. Suppose that g is not an O(mθ)-secure (Z1, σ logm)-targeted HSG w.r.t.

deterministic algorithms and some target string sequence Z1 = {z1,m ∈ {0, 1}m
θ}m∈N; then, there

exists a O(mθ)-time deterministic distinguisher D such that for infinitely many m ∈ N,

Pr[v ← {0, 1}σ logm : D(1m, z1,m, g(1m, z1,m, v)) = 0] = 1 (4)

and

Pr[w ← {0, 1}m : D(1m, z1,m, w) = 0] < 1− 1

6
(5)

We will prove that there exists a probabilistic nc-time algorithm that decides GapMcKtP[TYES, n−1]
infinitely often given the auxiliary input sequence Z0, where Z0 is a sequence of auxiliary input
strings such that z0,n = z1,m for all n ∈ N. (We can think of Z0 as being a padded version of Z1 to
ensure that z0,n = z1,m.)

We will construct an algorithm A that runs in a-priori bounded polynomial time such that for
any sufficiently large m ∈ N, n = mθ, z = z1,m = z0,n, if Equation 4 and Equation 5 hold w.r.t.
m, then for any x ∈ {0, 1}n, the following is true. If Kt(x | z) ≤ TYES, then A(x, z) outputs a
program Π such that |Π| ≤ |x|2/3 and Π(z) produces x within (a-priori bounded) poly time with
high probability. Let us fix c to be some sufficiently large constant such that the running time of A
(together with the time needed to check whether the output of A is correct) is bounded by nc. Note
that the existence of algorithm A will imply GapMcKtP[TYES, n − 1] can be decided by a nc-time
algorithm on auxiliary input sequence Z0 since it suffices to first run A(x, z) and check whether the
program Π output by A indeed produces x on input z within some fixed polynomially amount of
time. If Kt(x | z) ≥ |x| − 1, it follows that there exists no such machine Π and A will never find it.

We proceed to describing the algorithm A. On input strings x, z ∈ {0, 1}n (and let m = bn
1
θ c),

the algorithm A acts as the follows.

1. A(x, z) lets f : {0, 1}r → {0, 1} be the function f = fn(Encn,δ(x)) that is associated with the
truthtable Encn,δ(x) ∈ {0, 1}2r .

2. A(x, z) runs the design generating algorithm GenDesign(d, r, s) to obtain a (d, r, s)-design I =
{I1, . . . , Im}.

3. A(x, z) executes the NW reconstruction algorithm NWReconD(1m,z,·)(f, I) and let M denotes
the program it outputs.

4. A(x, z) evaluates MD(1m,z,·)(I) and denotes the output string by x′.

5. A(x, z) computes a list ~x of size L by letting ~x = Decn,δ(x
′) (which is a list of candidate strings

for x output by the list decoding algorithm), and let pos denote a coordinate of ~x such that
~xpos = x. (If x does not appear in ~x, A(x, z) simply aborts.)

13

6. Finally, A outputs a program Π with the values n,m, d, r, s, δ−1, pos, the code of M,D,Dec,
GenDesign hardwired in it. In addition, on input z, Π(z) proceeds in the following steps.

(a) Π(z) first invokes GenDesign(d, r, s) to get a (d, r, s)-design I = {I1, . . . , Im}.
(b) Π(z) computes x′ = MD(1m,z,·)(I).

(c) Π(z) runs the list decoding algorithm Decn,δ(x
′) and obtains a list ~x.

(d) Π(z) outputs the string ~xpos and halts.

Analyzing the reduction. We turn to proving that the program Π will indeed output x on input
z within polynomial time if n is of the form n = mθ for some m such that Equation 4 and Equation 5
hold w.r.t. m, z = z1,m, and Kt(x | z) ≤ TYES. Fix some such x, z that are sufficiently long. We
first show that program Π will indeed output x on input z. Since Kt(x | z) ≤ TYES, there exists a
machine Πx with |Πx| ≤ TYES such that Πx(z) will output the string x within 2TYES = t steps. Let
j = |Πx| (in its binary representation) and let Π′x be a string ∈ {0, 1}TYES such that [Π′x]j = Πx.

Observe that for all y ∈ {0, 1}d, the string NWf
I(y) equals g(1m, z, (j,Π′x, y)) and thus NWf

I(y) is in
the range of the HSG g. Note that D(1m, z, ·) is a HSG distinguisher and will always output 0 in
the range of g(1m, z, ·). By Equation 4, it follows that

Pr[y ← {0, 1}d : D(1m, z,NWf
I(y)) = 0] = 1

Combining this with Equation 5, it holds that D(1m, z, ·) distinguishes the output of NWf
I from

uniform with advantage 1
6 and thus it breaks the NW generator NWf

I . Then by Lemma 6.7, the NW

reconstruction algorithm NWReconD(1m,z,·)(f, I) will output a good approximation for f ; that is, it
holds that

Pr[p← [2r] : Encn,δ(x)p 6= x′p] = Pr[p← [2r] : f(p) 6= x′p] ≤
1

2
− 1

12m
≤ 1

2
− δ

So x′ is relatively close to Encn,δ(x). Since Enc is a good error correcting code, by Theorem 6.3,
Decn,δ(x

′) will return a list contain x; i.e., x ∈ ~x = Decn,δ(x
′). A(x, z) will then find the coordinate

pos such that ~xpos = x. Note that Π(z) will finally output ~xpos and we conclude that Π(z) will indeed
produce x.

We next argue that Π has a short description. Π spends O(log n) bits to store the values
n,m, d, r, s, δ−1, the code of D,Dec,GenDesign. In addition, Π uses

m · 2s +m+ d+ log(drsm) ≤ n
1
θ ·
√
n+ n

1
θ +O(log n)

bits to save the code of M . Π takes O(log n) bits to hardwire pos since the list ~x is of size L, which

is polynomial in n. Thus, the description length of Π is at most O(n
1
θ ·
√
n) < n2/3 = |x|2/3 (if n is

sufficiently large).
We then prove that the running time of Π(z) is a priori-bounded and polynomial in n. It takes

poly(2d) time to compute GenDesign(d, r, s), executing the program MD(z,·)(I) takes poly(2r) ·O(mθ)
time (since the distinguisher D runs in O(mθ) time). The list decoding algorithm runs in poly(n, 1/δ),
and finally to find ~xpos and output takes O(nL). So the total running time of Π(z) is at most an a-
priori bounded polynomial in n. Combining this and the proofs given above, we reach the conclusion
that Π is of length at most |x|2/3 and Π(z) indeed outputs x within a fixed number of steps.

It remains to show that the algorithm A(x, z) runs in poly time. Note that A takes poly(n, 1/δ)
time for running Encn,δ(x), poly(2d) time for GenDesign(d, r, s), poly(2r)·O(mθ) time for NWReconD(z,·)(f, I),

14

poly(2r)·O(mθ) time for emulating MD(z,·)(I), poly(n, 1/δ) for Decn,δ(x
′), and finally O(nL) to locate

x in ~x. To sum up, A runs in polynomial time.

As a summary, Lemma 6.1 shows that if GapMcKtP is hard given some particular auxiliary input
sequence, then we can obtain a “partial” targeted HSG which is only secure on some sequence of
targeted strings. We next show how to make use of this result to obtain a full-fledged targeted HSG.

Lemma 6.8. There exists a constant c ≥ 1, and for each constant γ > 0, there exists an exponential
time uniform auxiliary input sequence Z0 such that the following holds. If GapMcKtP[γ log n, n− 1]
is hard for probabilistic nc-time algorithms given auxiliary input Z0, then there exist constants σ ≥
1, θ ≥ 1 and a O(mθ)-secure (mθ, σ logm)-target HSG.

Proof: Let c be the constant guaranteed to exist by Lemma 6.1. Consider any constant γ > 0, and
let σ, θ be the constants and g : 1m×{0, 1}mθ ×{0, 1}σ logm → {0, 1}m be the efficiently computable
function where σ, θ, g are guaranteed to exist by Lemma 6.1. Given g and the security bound of
g (which is taken to be O(mθ)), let Z1 = {z1,n}n∈N be the exponential time uniform (universal)
sequence of target strings we pick in Lemma 3.1. Let Z0 = {z0,n}n∈N be an auxiliary input sequence
such that z0,n = z1,n1/θ (which is a simply padded version of Z1). Notice that Z0 can also be produced
by an exponential machine.

Assume that GapMcKtP[γ log n, n−1] is hard for probabilistic nc-time algorithms given auxiliary
input Z0. Then, by (the contrapositive of) Lemma 6.1, g is a O(mθ)-secure (Z1, σ logm)-target
HSG with respect to the target string sequence Z1. Finally, by Lemma 3.1, g is a O(mθ)-secure
(mθ, σ logm)-target HSG secure on all target strings.

7 Acknowledgments

We thank the anonymous STOC reviewers for many helpful comments, and most notably for making
us aware of [Hir20].

References

[AB09] Sanjeev Arora and Boaz Barak. Computational complexity: a modern approach. Cam-
bridge University Press, 2009.

[ACR98] Alexander E Andreev, Andrea EF Clementi, and Jose DP Rolim. A new general deran-
domization method. Journal of the ACM (JACM), 45(1):179–213, 1998.

[ACRT99] Alexander E Andreev, Andrea EF Clementi, José DP Rolim, and Luca Trevisan. Weak
random sources, hitting sets, and bpp simulations. SIAM Journal on Computing,
28(6):2103–2116, 1999.

[BF99] Harry Buhrman and Lance Fortnow. One-sided versus two-sided error in probabilistic
computation. In Annual Symposium on Theoretical Aspects of Computer Science, pages
100–109. Springer, 1999.

[BFNW93] László Babai, Lance Fortnow, Noam Nisan, and Avi Wigderson. BPP has subexponential
time simulations unless EXPTIME has publishable proofs. Computational Complexity,
3:307–318, 1993.

[BM84] Manuel Blum and Silvio Micali. How to generate cryptographically strong sequences of
pseudo-random bits. SIAM Journal on Computing, 13(4):850–864, 1984.

15

[Cha69] Gregory J. Chaitin. On the simplicity and speed of programs for computing infinite sets
of natural numbers. J. ACM, 16(3):407–422, 1969.

[CRTY20] Lijie Chen, Ron D Rothblum, Roei Tell, and Eylon Yogev. On exponential-time hypothe-
ses, derandomization, and circuit lower bounds. In 2020 IEEE 61st Annual Symposium
on Foundations of Computer Science (FOCS), pages 13–23. IEEE, 2020.

[CT21] Lijie Chen and Roei Tell. Hardness vs randomness, revised: Uniform, non-black-box,
and instance-wise. Electronic Colloquium on Computational Complexity, 2021. https:

//eccc.weizmann.ac.il/report/2021/080/l.

[Gol11] Oded Goldreich. In a world of p= bpp. In Studies in Complexity and Cryptography.
Miscellanea on the Interplay between Randomness and Computation, pages 191–232.
Springer, 2011.

[Hir20] Shuichi Hirahara. Non-disjoint promise problems from meta-computational view of pseu-
dorandom generator constructions. In 35th Computational Complexity Conference (CCC
2020). Schloss Dagstuhl-Leibniz-Zentrum für Informatik, 2020.

[IKW02] Russell Impagliazzo, Valentine Kabanets, and Avi Wigderson. In search of an easy
witness: Exponential time vs. probabilistic polynomial time. Journal of Computer and
System Sciences, 65(4):672–694, 2002.

[ILO20] Rahul Ilango, Bruno Loff, and Igor Carboni Oliveira. NP-hardness of circuit minimization
for multi-output functions. In 35th Computational Complexity Conference, CCC 2020,
pages 22:1–22:36, 2020.

[IW97] Russell Impagliazzo and Avi Wigderson. P = BPP if e requires exponential circuits:
Derandomizing the xor lemma. In STOC ’97, pages 220–229, 1997.

[Ko86] Ker-I Ko. On the notion of infinite pseudorandom sequences. Theor. Comput. Sci.,
48(3):9–33, 1986.

[Kol68] A. N. Kolmogorov. Three approaches to the quantitative definition of information. In-
ternational Journal of Computer Mathematics, 2(1-4):157–168, 1968.

[Lau83] Clemens Lautemann. BPP and the polynomial hierarchy. Inf. Process. Lett., 17(4):215–
217, 1983.

[Lev73] Leonid A. Levin. Universal search problems (russian), translated into English by BA
Trakhtenbrot in [Tra84]. Problems of Information Transmission, 9(3):265–266, 1973.

[LM91] Luc Longpré and Sarah Mocas. Symmetry of information and one-way functions. In
Wen-Lian Hsu and Richard C. T. Lee, editors, ISA ’91 Algorithms, 2nd International
Symposium on Algorithms, Taipei, Republic of China, December 16-18, 1991, Proceed-
ings, volume 557 of Lecture Notes in Computer Science, pages 308–315. Springer, 1991.

[MW18] Cody Murray and Ryan Williams. Circuit lower bounds for nondeterministic quasi-
polytime: an easy witness lemma for np and nqp. In Proceedings of the 50th Annual
ACM SIGACT Symposium on Theory of Computing, pages 890–901, 2018.

[Nis91] Noam Nisan. Pseudorandom bits for constant depth circuits. Combinatorica, 11(1):63–
70, 1991.

16

https://eccc.weizmann.ac.il/report/2021/080/l
https://eccc.weizmann.ac.il/report/2021/080/l

[NW94] Noam Nisan and Avi Wigderson. Hardness vs randomness. J. Comput. Syst. Sci.,
49(2):149–167, 1994.

[Sip83] Michael Sipser. A complexity theoretic approach to randomness. In Proceedings of the
15th Annual ACM Symposium on Theory of Computing, 25-27 April, 1983, Boston,
Massachusetts, USA, pages 330–335. ACM, 1983.

[Sol64] R.J. Solomonoff. A formal theory of inductive inference. part i. Information and Control,
7(1):1 – 22, 1964.

[STV01] Madhu Sudan, Luca Trevisan, and Salil Vadhan. Pseudorandom generators without the
xor lemma. Journal of Computer and System Sciences, 62(2):236–266, 2001.

[Tel19] Roei Tell. Proving that prbpp= prp is as hard as proving that “almost np” is not
contained in p/poly. Information Processing Letters, 152:105841, 2019.

[Tra84] Boris A Trakhtenbrot. A survey of Russian approaches to perebor (brute-force searches)
algorithms. Annals of the History of Computing, 6(4):384–400, 1984.

[Vad12] Salil P Vadhan. Pseudorandomness. Foundations and Trends R© in Theoretical Computer
Science, 7(1–3):1–336, 2012.

[Yao82] Andrew Chi-Chih Yao. Theory and applications of trapdoor functions (extended ab-
stract). In 23rd Annual Symposium on Foundations of Computer Science, Chicago,
Illinois, USA, 3-5 November 1982, pages 80–91, 1982.

[ZL70] A. K. Zvonkin and L. A. Levin. the Complexity of Finite Objects and the Development
of the Concepts of Information and Randomness by Means of the Theory of Algorithms.
Russian Mathematical Surveys, 25(6):83–124, December 1970.

A Proof of Theorem 5.2

Towards proving Theorem 5.2, it is instructive to recall some definitions and results from [Gol11].
We first recall the definition of a prBPP search problem.

Definition A.1 (prBPP search problem). Let RYES and RNO be two disjoint binary relations ⊆
{0, 1}∗×{0, 1}∗. We say that (RYES, RNO) is a prBPP search problem if the following two conditions
hold.

1. The decisional problem (RYES, RNO) ∈ prBPP; that is, there exists a PPT algorithm V such
that for every (x, y) ∈ RYES it holds that Pr[V (x, y) = 1] ≥ 2/3, and for every (x, y) ∈ RNO it
holds that Pr[V (x, y) = 1] ≤ 1/3.

2. There exist a PPT algorithm A such that, for every x ∈ SRYES
, it holds that Pr[A(x) ∈

RYES(x)] ≥ 2/3, where RYES(x) = {y : (x, y) ∈ RYES} and SRYES
= {x : RYES 6= ∅}

It has been also shown in [Gol11] that there exists a search to decision reduction for prBPP.

Theorem A.2 (Search to decision reduction). For every prBPP search problem (RYES, RNO), there
exists a binary relation R such that RYES ⊆ R ⊆ ({0, 1}∗ × {0, 1}∗)\RNO and solving the search
problem of R is polynomial-time deterministically reducible to some decisional problem in prBPP.

17

Now we are ready to present a proof for Theorem 5.2.
Proof: [of Theorem 5.2] We first show that the task of constructing an targeted PRG, when being
viewed as a search problem, can be solved by a search prBPP algorithm. Consider any constant
c > 0, and any polynomial T (n) ≥ n. To construct an (n, c log n)-targeted PRG, it is convenient here
to think of the PRG as a set of size 2c logn = nc consisting of strings of length n. Thus, we consider
the following prBPP search problem. Given an instance (1n, x) (where |x| ∈ {0, 1}n), a witness of x
is just a set of strings that “fools” the first log n probabilistic T (n) time machines. More formally, let
RYES be a binary relation such that (1n, x, Sn,x) ∈ RYES if Sn,x is a set of n-bit strings, |Sn,x| = nc,
and for any probabilistic machine D such that D runs in time T (n) and |D| ≤ log log n, it holds that∣∣∣∣∣∣ 1

|Sn,x|
∑
s∈Sn,x

Pr[D(1n, x, s) = 1]− Pr[r ← {0, 1}n : D(1n, x, r) = 1]

∣∣∣∣∣∣ ≤ 1

12
. (6)

In addition, let RNO be a binary relation such that (x, Sn,x) ∈ RNO if for at least one machine of the
machines with description length ≤ log log n Equation 6 with 1

12 replaced by 1
6 does not hold.

We next explain that (RYES, RNO) is indeed a prBPP search problem. We first build a PPT
algorithm V that decides whether (1n, x, Sn,x) ∈ RYES or (1n, x, Sn,x) ∈ RNO. V enumerates all
probabilistic machines D such that |D| ≤ log logn and verifies whether Equation 6 with 1

12 replaced
by 3

24 holds w.r.t. this D (where V stops to emulate D after T (n) steps and V compute the value
of Pr[r ← {0, 1}n : D(x, r) = 1] by drawing sufficiently many samples and taking the average). V
accepts only when every machine D passes this check. By Chernoff bound and union bound, we
conclude that V satisfies the properties required in Definition A.1. We then construct a solution-
finding PPT algorithm A such that for any (1n, x), A find a set Sn,x satisfying (1n, x, Sn,x) ∈ RYES−
(with high probability). On input (1n, x), A simply sample a set Sn,x of nc n-bit random strings.
Since the number of strings in Sn,x (nc) is much larger than the number of machines that Sn,x tries
to fool (log n), by Chernoff bound and union bound, it follows that A will find a solution Sn,x with
high probability (≥ 2/3).

Finally, by Theorem A.2, there exists a binary relation R such that RYES ⊆ R ⊆ ({0, 1}∗ ×
{0, 1}∗)\RNO and a deterministic polynomial-time algorithm G such that for all n ∈ N, x ∈ {0, 1}n,
(1n, x,G(1n, x)) ∈ R. Let g : 1n × {0, 1}n × {0, 1}c logn → {0, 1}n be a function such that on input
(1n, x, i), g(1n, x, i) outputs the i-th string in the set G(1n, x). Note that since R and RNO are
disjoint, it follows that for all n ∈ N, all x ∈ {0, 1}n, all probabilistic machines D such that D runs
in time T (n) and |D| ≤ log logn, it holds that∣∣∣Pr[i← {0, 1}c logn : D(1n, x, g(1n, x, i)) = 1]− Pr[r ← {0, 1}n : D(1n, x, r) = 1]

∣∣∣ ≤ 1

6

Thus, we conclude that g is a T -secure (n, c log n)-targeted PRG.

B Proof of Lemma 6.7

Proof: Our proof starts with a standard hybrid argument. Let α = 1
6 . To remove the absolute

value in Equation 3, observe that there exists a bit b ∈ {0, 1} such that

Pr[y ← {0, 1}d : D(NWf
I(y)) = b]− Pr[w ← {0, 1}m : D(w) = b] ≥ α.

For every j ∈ {0, 1, . . . ,m}, we consider the hybrid distribution Hj defined as the following:

Hj = (f(yI1), . . . , f(yIj), wj+1, . . . , wm)

18

where y ← {0, 1}d and each wk ← {0, 1} (for j + 1 ≤ k ≤ m). Notice that H0 and Um are identically

distributed, and Hm is a distribution identical to NWf
I(Ud). Therefore, it follows that

1

m

∑
j∈[m]

(
Pr
y,w

[D(Hj) = b]− Pr
y,w

[D(Hj−1) = b]

)
=

1

m

(
Pr
y,w

[D(Hm) = b]− Pr
y,w

[D(H0) = b]

)
≥ α

m

If we think of j as a random variable distributed over [m], we obtain

Ej←[m],y,w

[
Pr[D(Hj) = b]− Pr[D(Hj−1) = b]

]
= Ej∈[m]

[
Pr
y,w

[D(Hj) = b]− Pr
y,w

[D(Hj−1) = b]

]
≥ α

m

Observe that the value Pr[D(Hj) = b]−Pr[D(Hj−1) = b] is upper bounded by 1. By an averaging
argument, with probability at least α

2m over the choice of j ← [m], y[d]\Ij ← {0, 1}d−r, w[m]\[j] ←
{0, 1}m−j , the strings j, y[d]\Ij , w[m]\[j] will satisfy

Pr
yIj←{0,1}

r

[
D(Hj) = b

]
− Pr
yIj←{0,1}

r,wj←{0,1}

[
D(Hj−1) = b

]
≥ α

2m
(7)

We refer to a choice of j, y[d]\Ij , w[m]\[j] as being good if it satisfies the above condition. Note that we
can find a good choice of j, y[d]\Ij , w[m]\[j] with high probability (≥ 2/3) by drawing O(m/α) random

samples and verifying if Equation 7 holds.5 Fix some good choice of j, y[d]\Ij , w[m]\[j]. By Yao’s
prediction versus indistinguishability theorem [Yao82] (see also [AB09, Theorem 10.12] and [Vad12,
Proposition 7.16]), Equation 7 turns out to imply a good prediction of the function f , and it holds
that

Pr
yIj←{0,1}

r,wj←{0,1}

[
D(Hj−1)⊕ b⊕ wj = f(yIj)

]
≥ 1

2
+

α

2m

By an average argument, there exists wj ∈ {0, 1} such that

Pr
yIj←{0,1}

r

[
D(Hj−1)⊕ b⊕ wj = f(yIj)

]
≥ 1

2
+

α

2m
(8)

Notice that we can use Equation 8 to approximate the function f . Let M be a machine with
the values d, r, s,m, the bit b, the choice of j ∈ [m], y[d]\Ij ∈ {0, 1}d−r, w[m]\[j] ∈ {0, 1}m−j , and the
bit wj hardwired in it. M also needs to hardwire some values of f in order to compute Hj−1. For
each k < j, note that |Ik ∩ Ij | ≤ s and there are only s bits in yIk depends on yIj . Thus, we need to
hardwire 2s values of f to compute f(yIk). Finally, MD(I) will compute a string x′ ∈ {0, 1}2r and
for each p ∈ [2r], let yIj = p and let

x′p = D(f(yI1), . . . , f(yIj−1), wj , wj+1, . . . , wm)⊕ b⊕ wj .

Note that x′p = D(Hj−1) ⊕ b ⊕ wj and thus by Equation 8, x′ is a good approximation of (the
truthtable of) the function f . M uses O(log drsm) bits to include d, r, s,m, b, j, wj and its code, no
more than d+m bits to store y[d]\Ij and w[m]\[j], and no more than m2s bits to save the values of f
that it needs. So the description length of M is ≤ m · 2s +m+ d+O(log drsm). To print the string
x′, M has to compute 2r bits and computing each bit requires to load the values of f . Thus, MD(I)
runs in time 2r(m2s)2.

Finally, note that to find the machine M , we need to pick the bit b ∈ {0, 1}, select a good choice
of j, y[d]\Ij , w[m]\[j], and then pick the bit wj ∈ {0, 1}. As mentioned, we can select a good choice of

j, y[d]\Ij , w[m]\[j] by sampling and checking (which takes O(m/α) · 2r(m2s)2 time), and we can also
use the same approach to determine b and wj . We conclude that there exists a randomized algorithm
finding M in polynomial time.

5Verifying if Equation 7 holds can be done deterministic (by enumerating all possible values of yIj and wj).

19
ECCC ISSN 1433-8092

https://eccc.weizmann.ac.il

