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Abstract. A monotone Boolean circuit is a restriction of a Boolean
circuit allowing for the use of disjunctions, conjunctions, the Boolean
constants, and the input variables. A monotone Boolean circuit is mul-
tilinear if for any AND gate the two input functions have no variable in
common. We show that the known lower bounds on the size of monotone
arithmetic circuits for multivariate polynomials that are sums of mono-
mials consisting of k distinct variables yield the analogous lower bounds
divided by O(k2) on the size of monotone multilinear Boolean circuits
computing the Boolean functions represented by the corresponding mul-
tivariate Boolean polynomials.
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1 Introduction

The derivation of superlinear lower bounds on the size of Boolean circuits for
natural problems appeared extremely hard. Therefore, already at the end of of
the 70s and the beginning of the 80s, several researches started to study the
complexity of monotone arithmetic or monotone Boolean circuits for natural
multivariate arithmetic polynomials and natural Boolean functions, respectively.
The monotone arithmetic circuits are composed of addition gates, multiplication
gates and input gates for variables and non-negative real constants. Similarly,
monotone Boolean circuits are composed of OR gates, AND gates, and the input
gates for variables and Boolean constants. In the case of monotone arithmetic
circuits, one succeeded to derive even exponential lower bounds relatively easily
[2, 9] while in the case of monotone Boolean circuits the derivation of exponential
lower bounds for natural problems required much more effort [1, 7].

The problem of computing the permanent of an n × n matrix equivalent to
counting the number of perfect matchings in a bipartite graph is an example of
a problem for which the gap between lower bounds in the models of monotone
arithmetic circuits and monotone Boolean circuits remains very large up to to-
day. Namely, Jerrum and Snir established an exponential lower bound on the
size of monotone arithmetic circuits for this problem [2] while the best known
lower bound on the size of a monotone Boolean circuit computing the Boolean
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variant of the permanent shown by Razborov [8] is only superpolynomial. In or-
der to tackle the gap, Ponnuswami and Venkateswaran introduced the concept
of monotone multilinear Boolean circuits and showed an exponential lower bond
on the size of the restricted monotone Boolean circuits for the Boolean perma-
nent [4]. A Boolean circuit is multilinear if for any AND gate the two input
functions have no variable in common. On the other hand, Raz and Widgerson
showed that monotone Boolean circuits for the Boolean permanent require lin-
ear depth [6] and Raz proved that multilinear Boolean formulas for this problem
have superpolynomial size [5].

In this note, we consider monotone Boolean circuits. They are a restriction of
Boolean circuits allowing for disjunctions, conjunctions, the Boolean constants,
and the input variables.

We use a simple argument to obtain a more general result than the lower
bound of Ponnuswami and Venkateswaran in [4]. We show that the known lower
bounds on the size of monotone arithmetic circuits for multivariate polynomials
that are sums of monomials consisting of k distinct variables [2, 9] yield the analo-
gous lower bounds divided by O(k2) on the size of monotone multilinear Boolean
circuits computing the Boolean functions represented by the corresponding mul-
tivariate Boolean polynomials.

Since several of the aforementioned lower bonds are exponential, our results
give further evidence that the model of monotone multilinear Boolean circuit
is substantially more restricted than that of monotone Boolean circuit. In par-
ticular, the multilinearity condition makes impossible to use the full power of
idempotency.

2 Monotone circuits, Boolean functions, and arithmetic
polynomials

A monotone Boolean circuit is a finite directed acyclic graph with the following
properties:

1. The indegree of each vertex (termed gate) is either 0 or 2.
2. The source vertices (i.e., vertices with indegree 0 called input gates) are

labeled by variables or the Boolean constants 0, 1.
3. The vertices of indegree 2 are labeled by elements of the set {OR,AND}

and termed OR gates and AND gates, respectively.

A monotone arithmetic circuit is defined analogously by replacing OR and
AND with addition and multiplication, respectively. As for constants one could
allow for positive ones as in [9] or not use them at all as in [2]. For technical
reasons, we shall just allow for the 0, 1 constants. Of course, they can be easily
eliminated without increasing the number of additions or multiplications.

For convenience, we shall denote the function represented by the multivariate
Boolean or arithmetic polynomial computed at a gate g of a monotone Boolean
or arithmetic circuit also by g. The size of a monotone Boolean or an arithmetic
circuit is the total number of its non-input gates.



A monotone Boolean circuit is multilinear if for any AND gate the two input
Boolean functions have no variable in common.

With each gate g of a monotone Boolean circuit, we shall associate a set T (g)
of terms in a natural way. Thus, with each input gate, we associate the singleton
set consisting of the corresponding variable or constant. Next, with an OR gate,
we associate the union of the sets associated with its direct predecessors. Finally,
with an AND gate g, we associate the set of concatenations t1t2 of all pairs of
terms t1, t2, where ti ∈ T (gi) and gi stands for the i-th direct predecessor
of g for i = 1, 2. The function computed at the gate g is the disjunction of
the functions (called monoms) represented by the terms in T (g). The monom
con(t) represented by a term t is obtained by replacing concatenations in t
with conjunctions, respectively. A term in T (g) is a zero-term if it contains the
Boolean constant 0. Clearly, a zero-term represents the Boolean constant 0. By
the definition of T (g) and induction on the structure of the monotone Boolean
circuit, g =

∨
t∈T (g) con(t) holds. For a term t ∈ T (g), the set of variables

occurring in t is denoted by V ar(t).
A Boolean form is a finite set of Boolean 0-1 functions. An implicant of a

Boolean form F is a conjunction of some variables and/or Boolean constants
(monom) such that there is a function belonging to F which is true whenever
the conjunction is true. If the conjunction includes the Boolean 0 then it is a
trivial implicant of F.

A non-trivial implicant of F that is minimal with respect to included variables
is a prime implicant of F. The set of prime implicants of F is denoted by PI(F ).

An arithmetic multivariate monomial is a product of a finite number of vari-
ables. An arithmetic multivariate polynomial is a linear combination of a fi-
nite number of (arithmetic multivariate) monomials possibly extended by a free
constant coefficient. The set of monomials of the polynomial P is denoted by
Mon(P ). If all coefficients at the monomials in Mon(P ) and the free constant
coefficient (if any) are positive then the polynomial P is monotone. We shall say
that two monotone arithmetic multivariate polynomials P and Q are similar if
Mon(P ) = Mon(Q).

3 Lower bounds for monotone multilinear Boolean
circuits

Our main idea is to transform a monotone multilinear Boolean circuit C comput-
ing a monotone Boolean function P , whose prime implicants consist of k distinct
variables, into an O(k2) times larger monotone multilinear Boolean circuit C ′
that in particular includes a gate whose terms coincide with the non-zero terns of
the output gate of C that contain k variable occurrences. By the multilinearity
of C ′, the latter terms contain exactly k distinct variables and represent exactly
all prime implicants of P . After replacing disjunctions and conjunctions by ad-
ditions and multiplications in C ′, respectively, we obtain a monotone arithmetic
circuit computing a multivariate polynomial having the same set of monomials
as the arithmetic multivariate polynomial corresponding to the representation



of P as a disjunction of its prime mplicants. The following lemma is helpful in
implementing this idea.

Lemma 1. Let g be a gate of a monotone Boolean circuit without constant input
gates for a monotone Boolean function f. For each prime implicant p of g there is
a term t ∈ T (g) representing p that does not contain two or more occurrences of
the same variable. Consequently, if all prime implicants of g have the same length
k then T (g) restricted to terms of length k consists of (non-zero) terms having
k distinct variable occurrences and representing solely all prime implicants of g.

Proof. The first part is proved by an induction on the structure of the circuit in
a bottom up manner. A term with two or more occurrences of the same variable
can be formed only at an AND gate. Let g1, g2 be direct gate predecessors of
g. Suppose first that g is an AND gate. Consider p ∈ PI(g). It follows that
there are pi ∈ PI(gi), i = 1, 2, such that P = p1 ∧ p2. By the induction hy-
pothesis, there are terms ti ∈ PI(gi) reprsenting pi, i = 1, 2, respectively, and
having only distinct variable occurrences. We have V ar(t1)∩V ar(t2) = ∅ by the
multilinearity assumption since p1, p2 are prime implicants of g1, g2, respec-
tively. Therefore, the term t1t2 has only distinct variable occurrences. The case
when is g is an OR gate follows immediately by the induction hypothesis since
if p ∈ PI(g) then p ∈ PI(g1) ∪ PI(g2). This completes the proof of the first
part. The second part follows immediately from the fact that each term in T (g)
represents an implicant of g and if it does not represent a prime implicant of g
then the term has to contain at least k + 1 variable occurrences. ut

Theorem 1. Let fn be a sequence of monotone Boolean functions from {0, 1}n
to {0, 1} such that each prime implicant of fn consists of k(n) distinct variables.
Let C be a monotone multilinear Boolean circuit for fn with β(n) OR gates
and α(n) AND gates. There is a multivariate polynomial

∑
p∈PI(fn) apmon(p),

where ap are natural coefficients and mon(p) is the monomial resulting from the
replacement of conjunctions with multiplications in p, and a monotone arith-
metic circuit with O(k(n)2α(n) + k(n)β(n)) addition gates and O(k(n)2α(n))
multiplication gates computing the polynomial.

Proof. We may assume w.l.o.g. that the circuit C does not use input gates with
the Boolean constants 0, 1, since otherwise, we can easily eliminate them pre-
serving the properties of C, in particular the multilinearity, without increasing
the number of OR and AND gates.

Now, the idea is to construct a monotone multilinear Boolean circuit C ′ on
the basis of C, where for each gate g of C there are at most k(n) correspond-
ing gates g1, .., gk(n). For 1 ≤ ` ≤ k(n), the set of terms in T (g`) is supposed
to consist of the (non-zero) terms in T (g) having exactly ` variable occurrences.
The construction of C ′ is straightforward. For an input gate g corresponding to a
variable x, only g1 = x is defined. For a gate g of C with direct predecessor gates
g′, g′′ and 1 ≤ ` ≤ k(n), if g is an OR gate then g` = g′` ∨ g′′` provided that both
g′` and g′′` are defined. If only one of the latter gates is defined then it is substi-
tuted for g`. Finally, if none of the gates g′`, g′′` is defined then g` is not defined.



Thus, there are at most k(n)β(n) OR gates in C ′ corresponding to an OR gate in
C. If g is an AND gate then g` =

∨`−1
j=1 g

′
j ∧g′′`−j , where the conjunction g′j ∧g′′`−j

takes place if both g′j and g′′`−j are defined for j = 1, ..., `− 1. If no conjunction
takes place in the sum g` is not defined. Thus, in the case of the AND gate,
a partial convolution of (g′1, ..., g′k(n)) and (g′′1 , ..., g′′k(n)) needs to be computed.
It requires O(k(n)2) AND and OR gates. Importantly, the AND gates in the
monotone Boolean subcircuit computing the convolution satisfy the multilinear-
ity condition since the original AND gate g does it. Thus, the resulting monotone
Boolean circuit is multilinear and it has O(k(n)2α(n)+k(n)β(n))) OR gates and
O(k(n)2α(n)) AND gates. The correctness of the construction of C ′ , i.e., the ful-
fillment of the supposed relationship between gates in C and the corresponding
gates in C ′ follows by an induction on the structure of C in a bottom-up manner
By the second part of Lemma 1, g =

∨
p∈PI(g) p =

∨
t∈T (gk(n)) con(t) = gk(n)

holds and each term in T (gk(n) represents a prime implicant in PI(g) and has
k(n) different variable occurrences. Hence, if we transform C ′ to a monotone
arithmetic circuit by replacing OR gates by addition gates and AND gates by
multiplication gates, the multivariate polynomial computed at the gate in the
transformed circuit corresponding to gk(n) will have the form stated in the the-
orem. ut

Corollary 1. Let Pn be a sequence of monotone arithmetic n-variable polyno-
mials whose each monomial is a product of k(n) distinct variables. Suppose that
any monotone arithmetic circuit computing Pn or a polynomial similar to Pn
requires a(n) additions and m(n) multiplications. Let P ′n be the corresponding
monotone Boolean polynomial resulting from the replacement of additions and
multiplications by disjunctions and conjunctions, respectively, and discarding the
positive coefficients at the monomials. Any monotone multilinear Boolean circuit
computing the Boolean function represented by P ′n has Ω((a(n) +m(n))/k(n)2)
size. In particular, it requires Ω(m(n)/k(n)2) AND gates.

Proof. Observe that the monoms of P ′n corresponding to the monomials of Pn
form the set of prime implicants of the Boolean function represented by P ′n.
Clearly, the monotone arithmetic multivariate polynomial resulting from the re-
placement of disjunctions and conjunctions by additions and multiplications,
respectively, in P ′n is similar to Pn. Hence, if for any constant c, a monotone
multilinear Boolean circuit computing the Boolean function represented by P ′n
has size smaller than the number of addition and multiplication gates divided
by ck(n)2 in a monotone arithmetic circuit computing a polynomial similar to
Pn then we obtain a contradiction with Theorem 1. Similarly, if for any con-
stant c, a monotone multilinear Boolean circuit computing the Boolean function
represented by P ′n has a number of AND gates smaller than the number of mul-
tiplication gates divided by ck(n)2 in a monotone arithmetic circuit computing
a polynomial similar to Pn then again we obtain a contradiction with Theorem
1. ut

Since the proofs of the lower bounds on the size of monotone arithmetic
circuits for the monotone multivariate polynomials in [2, 9] work also for the



polynomials similar to them, i.e., they are invariant of the positive coefficients
at the monomials of the polynomials, we obtain the following corollary.

Corollary 2. The lower bounds on the number of addition gates and/or mul-
tiplication gates in monotone arithmetic circuits for several sequences of mono-
tone arithmetic n-variable polynomials whose monomials consist of k(n) distinct
variables established by Schnorr in [9] and Jerrum and Snir in [2] carry over to
analogous lower bounds on the number of OR and AND gates or just AND gates,
respectively, divided by O(k(n)2), in monotone multilinear Boolean circuits com-
puting the Boolean functions represented by the corresponding monotone Boolean
polynomials (resulting from the replacement of additions and multiplications by
disjunctions and conjunctions, respectively).

Proof. Schnorr introduced the concept of a separated set of monomials of a mono-
tone arithmetic multivariate polynomial in [9]. Such a set S is called separated if
it has the following property: for any three monomials r, s, t in S, if the multi-set
of variables in r is contained in the union of the multi-sets of variables in s and t
then r = s or r = t. Schnorr showed that any monotone arithmetic circuit com-
puting a polynomial P whose set S of monomials is separated has to include at
least |S| − 1 addition gates. Since the definition of a separated set of monomials
is invariant of the positive coefficients at the monomials of P , the same lower
bound on the number of additions holds for any polynomial similar to P.

Similarly as in [9], the lower bounds bounds in [2] are established for homo-
geneous and linear polynomials, i.e., all monomials of the polynomial have the
same degree and no monomial contains two or more occurrences of the same
variable. Again, the lower bounds on the monotone arithmetic complexity of
specific polynomials established in Section 4 of [2] are invariant of the values of
the positive coefficients at the monomials and can be immediately extended to
any similar polynomials. Namely, the underlying lower bounds are established in
Section 3 of [2] for formal homogeneous and linear polynomials over the Boolean
semi-ring. Then, they are carried over in particular to the arithmetic semi-ring
on non-negative reals by a homomorphism τ mapping any positive real onto the
Boolean 1 and 0 onto the Boolean 0, respectively (see page 878 in [2]). ut

The lower bounds on the size of monotone arithmetic circuits presented in
[2, 9] (cf. [10]) include the clique polynomial CLn,k, the permanent polynomial
Pern×n, the Hamiltonian circuit polynomialHCn×n, and the spanning tree poly-
nomial STn,n. Their Boolean counterparts are

BCLn,k =
∨

1≤v1<...<vk≤n

∧
1≤i<j≤k

xvi,vj
,

BPern×n =
∨

π∈S(n)

n∧
i=1

xi,π(i),

BHCn×n =
∨

π∈C(n)

n∧
i=1

xi,π(i), ,



and
BSTn,n =

∨
t∈T (n)

x2,t(2)x3,t(3)...xn,t(n),

respectively, where S(n), C(n) stand for the set of permutations and the set
of cyclic permutations of 1, ..., n, respectively, and T (n) is the set of functions
t : {2, 3, ..., n} → {1, 2, ...., n} such that for each i ∈ {2, ..., n} there is q satisfying
tq(i) = 1.

Ponnuswami and Venkateswaran showed that any monotone multilinear Boolean
circuit for the Boolean function represented by BPern×n has an exponential in
n size [4]. By combining Corollary 2 with [2, 9], we obtain the following lower
bounds on the size of monotone multilinear Boolean circuits for the Boolean
functions represented by BCLn,k, BPern×n, BHCn,n, and BSTn,n, respectively.
For simplicity, we use the names of the Boolean polynomials to denote also the
functions represented by them in the following corollary.
Corollary 3. Any monotone multilinear Boolean circuit for BCLn,k has Ω(

(
n
k

)
/k2)

size. Next, any monotone multilinear circuit for BPern,n includes
Ω(n−1(2n−1 − 1)) AND gates, any monotone multilinear circuit for BHCn,n
includes Ω(2n−3) AND gates, and any monotone multilinear circuit for BSTn,n
includes Ω(n−3(4/3)n−1) AND gates.

They lower bounds in [2, 9] also include monotone arithmetic circuits for such
sets of polynomials as matrix product, convolution and their iterated versions.
All results in this section can be easily generalized to include monotone arith-
metic circuits computing sets of polynomials and multilinear Boolean circuits
computing the corresponding Boolean forms, respectively.

4 Final remarks
The multilinearity restriction in monotone Boolean circuits is substantial. In
particular, it makes impossible to use the full power of idempotency.

As the lower bounds in [2, 9] we rely on are basically asymptotically tight it
follows easily that our concrete lower bounds in Corollary 3 are asymptotically
tight up to the O(k2) factor, where k is the length of the prime implicants of
the respective Boolean functions.

Most likely, the requirement in Corollary 1 that the lower bounds hold also
for similar polynomials is unnecessary at least in case of the polynomials with
symmetric monomials as those considered in [2, 9]. In case of the symmetry of
the monomials it is hard to imagine how an asymmetry of the coefficients at the
monomials could speed up the circuit computation.
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